Sample records for mevalonate diphosphate decarboxylase

  1. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is notmore » involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.« less

  2. Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization.

    PubMed

    Abbassi, Shakeel J; Vishwakarma, Rishi K; Patel, Parth; Kumari, Uma; Khan, Bashir M

    2015-08-01

    Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 μM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. A preliminary crystallographic analysis of the putative mevalonate diphosphate decarboxylase from Trypanosoma brucei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byres, Emma; Martin, David M. A.; Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk

    2005-06-01

    The gene encoding the putative mevalonate diphosphate decarboxylase, an enzyme from the mevalonate pathway of isoprenoid precursor biosynthesis, has been cloned from T. brucei. Recombinant protein has been expressed, purified and highly ordered crystals obtained and characterized to aid the structure–function analysis of this enzyme. Mevalonate diphosphate decarboxylase catalyses the last and least well characterized step in the mevalonate pathway for the biosynthesis of isopentenyl pyrophosphate, an isoprenoid precursor. A gene predicted to encode the enzyme from Trypanosoma brucei has been cloned, a highly efficient expression system established and a purification protocol determined. The enzyme gives monoclinic crystals in spacemore » group P2{sub 1}, with unit-cell parameters a = 51.5, b = 168.7, c = 54.9 Å, β = 118.8°. A Matthews coefficient V{sub M} of 2.5 Å{sup 3} Da{sup −1} corresponds to two monomers, each approximately 42 kDa (385 residues), in the asymmetric unit with 50% solvent content. These crystals are well ordered and data to high resolution have been recorded using synchrotron radiation.« less

  4. The Putative Mevalonate Diphosphate Decarboxylase from Picrophilus torridus Is in Reality a Mevalonate-3-Kinase with High Potential for Bioproduction of Isobutene

    PubMed Central

    Hall, Stephen J.; Eastham, Graham; Licence, Peter; Stephens, Gill

    2015-01-01

    Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway. MVD is a key enzyme in engineered metabolic pathways for bioproduction of isobutene, since it catalyzes the conversion of 3-hydroxyisovalerate (3-HIV) to isobutene, an important platform chemical. The putative homologue from Picrophilus torridus has been identified as a highly efficient variant in a number of patents, but its detailed characterization has not been reported. In this study, we have successfully purified and characterized the putative MVD from P. torridus. We discovered that it is not a decarboxylase per se but an ATP-dependent enzyme, mevalonate-3-kinase (M3K), which catalyzes the phosphorylation of MVA to mevalonate-3-phosphate. The enzyme's potential in isobutene formation is due to the conversion of 3-HIV to an unstable 3-phosphate intermediate that undergoes consequent spontaneous decarboxylation to form isobutene. Isobutene production rates were as high as 507 pmol min−1 g cells−1 using Escherichia coli cells expressing the enzyme and 2,880 pmol min−1 mg protein−1 with the purified histidine-tagged enzyme, significantly higher than reported previously. M3K is a key enzyme of the novel MVA pathway discovered very recently in Thermoplasma acidophilum. We suggest that P. torridus metabolizes MVA by the same pathway. PMID:25636853

  5. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further ourmore » understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.« less

  6. Functional and conformational transitions of mevalonate diphosphate decarboxylase from Bacopa monniera.

    PubMed

    Abbassi, Shakeel; Patel, Krunal; Khan, Bashir; Bhosale, Siddharth; Gaikwad, Sushama

    2016-02-01

    Functional and conformational transitions of mevalonate diphosphate decarboxylase (MDD), a key enzyme of mevalonate pathway in isoprenoid biosynthesis, from Bacopa monniera (BmMDD), cloned and overexpressed in Escherichia coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and Circular dichroism spectroscopy. Native BmMDD is a helix dominant structure with 45% helix and 11% sheets and possesses seven tryptophan residues with two residues exposed on surface, three residues partially exposed and two situated in the interior of the protein. Thermal denaturation of BmMDD causes rapid structural transitions at and above 40°C and transient exposure of hydrophobic residues at 50°C, leading to aggregation of the protein. An acid induced molten globule like structure was observed at pH 4, exhibiting altered but compact secondary structure, distorted tertiary structure and exposed hydrophobic residues. The molten globule displayed different response at higher temperature and similar response to chemical denaturation as compared to the native protein. The surface tryptophans have predominantly positively charged amino acids around them, as indicated by higher KSV for KI as compared to that for CsCl. The native enzyme displayed two different lifetimes, τ1 (1.203±0.036 ns) and τ2 (3.473±0.12 ns) indicating two populations of tryptophan. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Aram; George, Kevin W.; Wang, George

    Branched C 5 alcohols are promising biofuels with excellent combustion properties. A mevalonate (MVA)-based isoprenoid biosynthetic pathway for C 5 alcohols was constructed in Escherichia coli using genes from several organisms, and the pathway was optimized to achieve over 50% theoretical yield. Although the MVA pathway is energetically less efficient than the native methylerythritol 4-phosphate (MEP) pathway, implementing the MVA pathway in bacterial hosts such as E. coli is advantageous due to its lack of endogenous regulation. The MVA and MEP pathways intersect at isopentenyl diphosphate (IPP), the direct precursor to isoprenoid-derived C 5 alcohols and initial precursor to longermore » chain terpenes, which makes independent regulation of the pathways difficult. In pursuit of the complete "decoupling" of the MVA pathway from native cellular regulation, we designed novel IPP-bypass MVA pathways for C 5 alcohol production by utilizing promiscuous activities of two enzymes, phosphomevalonate decarboxylase (PMD) and an E. coli-endogenous phosphatase (AphA). These bypass pathways have reduced energetic requirements, are further decoupled from intrinsic regulation, and are free from IPP-related toxicity. In addition to these benefits, we demonstrate that reduced aeration rate has less impact on the bypass pathway than the original MVA pathway. Finally, we showed that performance of the bypass pathway was primarily determined by the activity of PMD. We designed PMD mutants with improved activity and demonstrated titer increases in the mutant strains. These modified pathways would be a good platform for industrial production of isopentenol and related chemicals such as isoprene.« less

  8. Isopentenyl diphosphate (IPP)-bypass mevalonate pathways for isopentenol production

    DOE PAGES

    Kang, Aram; George, Kevin W.; Wang, George; ...

    2015-12-17

    Branched C 5 alcohols are promising biofuels with excellent combustion properties. A mevalonate (MVA)-based isoprenoid biosynthetic pathway for C 5 alcohols was constructed in Escherichia coli using genes from several organisms, and the pathway was optimized to achieve over 50% theoretical yield. Although the MVA pathway is energetically less efficient than the native methylerythritol 4-phosphate (MEP) pathway, implementing the MVA pathway in bacterial hosts such as E. coli is advantageous due to its lack of endogenous regulation. The MVA and MEP pathways intersect at isopentenyl diphosphate (IPP), the direct precursor to isoprenoid-derived C 5 alcohols and initial precursor to longermore » chain terpenes, which makes independent regulation of the pathways difficult. In pursuit of the complete "decoupling" of the MVA pathway from native cellular regulation, we designed novel IPP-bypass MVA pathways for C 5 alcohol production by utilizing promiscuous activities of two enzymes, phosphomevalonate decarboxylase (PMD) and an E. coli-endogenous phosphatase (AphA). These bypass pathways have reduced energetic requirements, are further decoupled from intrinsic regulation, and are free from IPP-related toxicity. In addition to these benefits, we demonstrate that reduced aeration rate has less impact on the bypass pathway than the original MVA pathway. Finally, we showed that performance of the bypass pathway was primarily determined by the activity of PMD. We designed PMD mutants with improved activity and demonstrated titer increases in the mutant strains. These modified pathways would be a good platform for industrial production of isopentenol and related chemicals such as isoprene.« less

  9. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production

    DOE PAGES

    Kang, Aram; Meadows, Corey W.; Canu, Nicolas; ...

    2017-04-05

    Isopentenol (or isoprenol, 3-methyl-3-buten-1-ol) is a drop-in biofuel and a precursor for commodity chemicals such as isoprene. Biological production of isopentenol via the mevalonate pathway has been optimized extensively in Escherichia coli, yielding 70% of its theoretical maximum. However, high ATP requirements and isopentenyl diphosphate (IPP) toxicity pose immediate challenges for engineering bacterial strains to overproduce commodities utilizing IPP as an intermediate. To overcome these limitations, we developed an “IPP-bypass” isopentenol pathway using the promiscuous activity of a mevalonate diphosphate decarboxylase (PMD) and demonstrated improved performance under aeration-limited conditions. However, relatively low activity of PMD toward the non-native substrate (mevalonatemore » monophosphate, MVAP) was shown to limit flux through this new pathway. By inhibiting all IPP production from the endogenous non-mevalonate pathway, we developed a high-throughput screening platform that correlated promiscuous PMD activity toward MVAP with cellular growth. Successful identification of mutants that altered PMD activity demonstrated the sensitivity and specificity of the screening platform. Strains with evolved PMD mutants and the novel IPP-bypass pathway increased titers up to 2.4-fold. Further enzymatic characterization of the evolved PMD variants suggested that higher isopentenol titers could be achieved either by altering residues directly interacting with substrate and cofactor or by altering residues on nearby α-helices. These altered residues could facilitate the production of isopentenol by tuning either k cat or K i of PMD for the non-native substrate. The synergistic modification made on PMD for the IPP-bypass mevalonate pathway is expected to significantly facilitate the industrial scale production of isopentenol.« less

  10. High-throughput enzyme screening platform for the IPP-bypass mevalonate pathway for isopentenol production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Aram; Meadows, Corey W.; Canu, Nicolas

    Isopentenol (or isoprenol, 3-methyl-3-buten-1-ol) is a drop-in biofuel and a precursor for commodity chemicals such as isoprene. Biological production of isopentenol via the mevalonate pathway has been optimized extensively in Escherichia coli, yielding 70% of its theoretical maximum. However, high ATP requirements and isopentenyl diphosphate (IPP) toxicity pose immediate challenges for engineering bacterial strains to overproduce commodities utilizing IPP as an intermediate. To overcome these limitations, we developed an “IPP-bypass” isopentenol pathway using the promiscuous activity of a mevalonate diphosphate decarboxylase (PMD) and demonstrated improved performance under aeration-limited conditions. However, relatively low activity of PMD toward the non-native substrate (mevalonatemore » monophosphate, MVAP) was shown to limit flux through this new pathway. By inhibiting all IPP production from the endogenous non-mevalonate pathway, we developed a high-throughput screening platform that correlated promiscuous PMD activity toward MVAP with cellular growth. Successful identification of mutants that altered PMD activity demonstrated the sensitivity and specificity of the screening platform. Strains with evolved PMD mutants and the novel IPP-bypass pathway increased titers up to 2.4-fold. Further enzymatic characterization of the evolved PMD variants suggested that higher isopentenol titers could be achieved either by altering residues directly interacting with substrate and cofactor or by altering residues on nearby α-helices. These altered residues could facilitate the production of isopentenol by tuning either k cat or K i of PMD for the non-native substrate. The synergistic modification made on PMD for the IPP-bypass mevalonate pathway is expected to significantly facilitate the industrial scale production of isopentenol.« less

  11. An adaptation to life in acid through a novel mevalonate pathway

    DOE PAGES

    Vinokur, Jeffrey M.; Cummins, Matthew C.; Korman, Tyler P.; ...

    2016-12-22

    Here, extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previouslymore » identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.« less

  12. An adaptation to life in acid through a novel mevalonate pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinokur, Jeffrey M.; Cummins, Matthew C.; Korman, Tyler P.

    Here, extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previouslymore » identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.« less

  13. Mevalonate Biosynthesis Intermediates Are Key Regulators of Innate Immunity in Bovine Endometritis

    PubMed Central

    Collier, Christine; Griffin, Sholeem; Schuberth, Hans-Joachim; Sandra, Olivier; Smith, David G.; Mahan, Suman; Dieuzy-Labaye, Isabelle; Sheldon, I. Martin

    2016-01-01

    Metabolic changes can influence inflammatory responses to bacteria. To examine whether localized manipulation of the mevalonate pathway impacts innate immunity, we exploited a unique mucosal disease model, endometritis, where inflammation is a consequence of innate immunity. IL responses to pathogenic bacteria and LPS were modulated in bovine endometrial cell and organ cultures by small molecules that target the mevalonate pathway. Treatment with multiple statins, bisphosphonates, squalene synthase inhibitors, and small interfering RNA showed that inhibition of farnesyl-diphosphate farnesyl transferase (squalene synthase), but not 3-hydroxy-3-methylglutaryl-CoA reductase or farnesyl diphosphate synthase, reduced endometrial organ and cellular inflammatory responses to pathogenic bacteria and LPS. Although manipulation of the mevalonate pathway reduced cellular cholesterol, impacts on inflammation were independent of cholesterol concentration as cholesterol depletion using cyclodextrins did not alter inflammatory responses. Treatment with the isoprenoid mevalonate pathway-intermediates, farnesyl diphosphate and geranylgeranyl diphosphate, also reduced endometrial cellular inflammatory responses to LPS. These data imply that manipulating the mevalonate pathway regulates innate immunity within the endometrium, and that isoprenoids are regulatory molecules in this process, knowledge that could be exploited for novel therapeutic strategies. PMID:26673142

  14. Characterisation of a thiamine diphosphate-dependent alpha-keto acid decarboxylase from Proteus mirabilis JN458.

    PubMed

    Wang, Biying; Bai, Yajun; Fan, Taiping; Zheng, Xiaohui; Cai, Yujie

    2017-10-01

    Alpha-keto acid decarboxylases can convert keto acids to their corresponding aldehydes, which are often volatile aroma compounds. The gene encoding α-keto acid decarboxylase in Proteus mirabilis JN458 was cloned, and the enzyme overexpressed in Escherichia coli BL21 (DE3), purified in high yield, and characterised. The molecular weight is 62.291kDa by MALDI-TOF MS, and optimum activity at pH 6.0 and 40-50°C. The enzyme is a typical decarboxylase, dependent on thiamine diphosphate and Mg 2+ as cofactors. For the decarboxylation reaction, the enzyme displayed a broad substrate range. Kinetic parameters were determined using 4-methyl-2-oxopentanoic acid, phenyl pyruvate and 3-methyl-2-oxopentanoic acid as substrates. K m and k cat values for phenyl pyruvate were 0.62mM and 77.38s -1 , respectively, and the k cat /K m value was 124.81mM -1 s -1 . The enzyme properties suggest it may act effectively under cheese ripening conditions. Copyright © 2017. Published by Elsevier Ltd.

  15. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    NASA Astrophysics Data System (ADS)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  16. Efficient Use of Exogenous Isoprenols for Protein Isoprenylation by MDA-MB-231 Cells Is Regulated Independently of the Mevalonate Pathway*

    PubMed Central

    Onono, Fredrick; Subramanian, Thangaiah; Sunkara, Manjula; Subramanian, Karunai Leela; Spielmann, H. Peter; Morris, Andrew J.

    2013-01-01

    Mammalian cells can use exogenous isoprenols to generate isoprenoid diphosphate substrates for protein isoprenylation, but the mechanism, efficiency, and biological importance of this process are not known. We developed mass spectrometry-based methods using chemical probes and newly synthesized stable isotope-labeled tracers to quantitate incorporation of exogenously provided farnesol, geranylgeraniol, and unnatural analogs of these isoprenols containing an aniline group into isoprenoid diphosphates and protein isoprenylcysteines by cultured human cancer cell lines. We found that at exogenous isoprenol concentrations >10 μm, this process can generate as much as 50% of the cellular isoprenoid diphosphate pool used for protein isoprenylation. Mutational activation of p53 in MDA-MB-231 breast cancer cells up-regulates the mevalonate pathway to promote tumor invasiveness. p53 silencing or pharmacological inhibition of HMG-CoA reductase in these cells decreases protein isoprenylation from endogenously synthesized isoprenoids but enhances the use of exogenous isoprenols for this purpose, indicating that this latter process is regulated independently of the mevalonate pathway. Our observations suggest unique opportunities for design of cancer cell-directed therapies and may provide insights into mechanisms underlying pleiotropic therapeutic benefits and unwanted side effects of mevalonate pathway inhibition. PMID:23908355

  17. Fruit color mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Isoprenoids are a large class of compounds that are present in all living organisms. They are derived from the 5C building blocks isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In plants, IPP is synthesized in the cytoplasm from mevalonic acid via the “MVA pathway” a...

  18. Characterization of feedback-resistant mevalonate kinases from the methanogenic archaeons Methanosaeta concilii and Methanocella paludicola.

    PubMed

    Kazieva, Ekaterina; Yamamoto, Yoko; Tajima, Yoshinori; Yokoyama, Keiichi; Katashkina, Joanna; Nishio, Yousuke

    2017-09-01

    The inhibition of mevalonate kinase (MVK) by downstream metabolites is an important mechanism in the regulation of isoprenoid production in a broad range of organisms. The first feedback-resistant MVK was previously discovered in the methanogenic archaeon Methanosarcinamazei. Here, we report the cloning, expression, purification, kinetic characterization and inhibition analysis of MVKs from two other methanogens, Methanosaetaconcilii and Methanocellapaludicola. Similar to the M. mazei MVK, these enzymes were not inhibited by diphosphomevalonate (DPM), dimethylallyl diphosphate (DMAPP), isopentenyldiphosphate (IPP), geranylpyrophosphate (GPP) or farnesylpyrophosphate (FPP). However, they exhibited significantly higher affinity to mevalonate and higher catalytic efficiency than the previously characterized enzyme.

  19. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.

    PubMed

    Kim, Yong-Kyoung; Kim, Yeon Bok; Uddin, Md Romij; Lee, Sanghyun; Kim, Soo-Un; Park, Sang Un

    2014-10-17

    To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and PgFPS than that by the wild-type control. Among the hairy root lines transformed with PgMVD, M18 showed the highest level of transcription compared to the control (14.5-fold higher). Transcriptions of F11 and F20 transformed with PgFPS showed 11.1-fold higher level compared with control. In triterpene analysis, M25 of PgMVD produced 4.4-fold higher stigmasterol content (138.95 μg/100 mg, dry weight [DW]) than that by the control; F17 of PgFPS showed the highest total ginsenoside (36.42 mg/g DW) content, which was 2.4-fold higher compared with control. Our results indicate that metabolic engineering in P. ginseng was successfully achieved through Agrobacterium rhizogenes-mediated transformation and that the accumulation of phytosterols and ginsenosides was enhanced by introducing the PgMVD and PgFPS genes into the hairy roots of the plant. Our results suggest that PgMVD and PgFPS play an important role in the triterpene biosynthesis of P. ginseng.

  20. Biosynthesis of 2-methyl-3-buten-2-ol emitted from needles of Pinus ponderosa via the non-mevalonate DOXP/MEP pathway of isoprenoid formation.

    PubMed

    Zeidler, J; Lichtenthaler, H K

    2001-06-01

    The volatile hemiterpene 2-methyl-3-buten-2-ol (MBO) is emitted from the needles of several pine species from the Western United States and contributes to ozone formation in the atmosphere. It is synthesised enzymatically from dimethylallyl diphosphate (DMAPP). We show here that needles of Pinus ponderosa Laws. incorporated [1-2H1]-1-deoxy-D-xylulose (d-DOX) into the emitted MBO, but not D,L-[2-13C]mevalonic acid lactone. Furthermore, MBO emission was inhibited by fosmidomycin, a specific inhibitor of the second enzyme of the mevalonate-independent pathway of isopentenyl diphosphate and DMAPP formation, i.e. the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. We thus prove that MBO emitted from needles of P. ponderosa is primarily formed via the DOXP/MEP pathway.

  1. p53 regulates the mevalonate pathway in human glioblastoma multiforme

    PubMed Central

    Laezza, C; D'Alessandro, A; Di Croce, L; Picardi, P; Ciaglia, E; Pisanti, S; Malfitano, A M; Comegna, M; Faraonio, R; Gazzerro, P; Bifulco, M

    2015-01-01

    The mevalonate (MVA) pathway is an important metabolic pathway implicated in multiple aspects of tumorigenesis. In this study, we provided evidence that p53 induces the expression of a group of enzymes of the MVA pathway including 3′-hydroxy-3′-methylglutaryl-coenzyme A reductase, MVA kinase, farnesyl diphosphate synthase and farnesyl diphosphate farnesyl transferase 1, in the human glioblastoma multiforme cell line, U343 cells, and in normal human astrocytes, NHAs. Genetic and pharmacologic perturbation of p53 directly influences the expression of these genes. Furthermore, p53 is recruited to the gene promoters in designated p53-responsive elements, thereby increasing their transcription. Such effect was abolished by site-directed mutagenesis in the p53-responsive element of promoter of the genes. These findings highlight another aspect of p53 functions unrelated to tumor suppression and suggest p53 as a novel regulator of the MVA pathway providing insight into the role of this pathway in cancer progression. PMID:26469958

  2. Identifying Potential Therapeutics for Osteoporosis by Exploiting the Relationship between Mevalonate Pathway and Bone Metabolism.

    PubMed

    Wan Hasan, Wan Nuraini; Chin, Kok-Yong; Jolly, James Jam; Abd Ghafar, Norzana; Soelaiman, Ima Nirwana

    2018-04-23

    Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling. This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential. Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans. mevalonate pathway can be exploited to develop effective antiosteoporosis agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Structure and Mechanism of the Farnesyl Diphosphate Synthase from Trypanosoma cruzi: Implications for Drug Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabelli,S.; McLellan, J.; Montalvetti, A.

    2006-01-01

    Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C{sub 5} alcohols (isopentenyl and dimethylallyl) to form C{sub 10} and C{sub 15} diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformationalmore » change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.« less

  4. Utilization of biodiesel by-product as substrate for high-production of β-farnesene via relatively balanced mevalonate pathway in Escherichia coli.

    PubMed

    You, Shengping; Yin, Qingdian; Zhang, Jianye; Zhang, Chengyu; Qi, Wei; Gao, Lan; Tao, Zhiping; Su, Rongxin; He, Zhimin

    2017-11-01

    Farnesene has been identified as suitable jet fuel substitutes and metabolic engineering for microbial production of farnesene is an alternative and attractive route. In this study, due to accumulation of toxic intermediate isopentenyl pyrophosphate (IPP), an engineered Escherichia coli strain harboring heterologous mevalonate pathway produced only 4.11mg/L β-farnesene. Through higher-level expression of isopentenyl diphosphate isomerase and farnesyl diphosphate synthase to minimize the accumulated IPP, another engineered strain with relatively balanced mevalonate pathway was constructed and had the highest production of β-farnesene to date (8.74g/L) by Escherichia coli in a lab bioreactor. Furthermore, this is the first report on utilization of biodiesel by-product (simple purification) as substrate for high-production of β-farnesene by the engineered strain optimized and β-farnesene concentration reached 2.83g/L in a lab bioreactor. Therefore, the engineered strain optimized could be used as a platform host for high-production of other terpenoids using biodiesel by-product as substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. Thesemore » structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.« less

  6. Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate.

    PubMed Central

    Hoeffler, Jean-François; Hemmerlin, Andréa; Grosdemange-Billiard, Catherine; Bach, Thomas J; Rohmer, Michel

    2002-01-01

    In the bacterium Escherichia coli, the mevalonic-acid (MVA)-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway is characterized by two branches leading separately to isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). The signature of this branching is the retention of deuterium in DMAPP and the deuterium loss in IPP after incorporation of 1-[4-(2)H]deoxy-d-xylulose ([4-(2)H]DX). Feeding tobacco BY-2 cell-suspension cultures with [4-(2)H]DX resulted in deuterium retention in the isoprene units derived from DMAPP, as well as from IPP in the plastidial isoprenoids, phytoene and plastoquinone, synthesized via the MEP pathway. This labelling pattern represents direct evidence for the presence of the DMAPP branch of the MEP pathway in a higher plant, and shows that IPP can be synthesized from DMAPP in plant plastids, most probably via a plastidial IPP isomerase. PMID:12010124

  7. Influence of oxidative and nitrosative stress on accumulation of diphosphate intermediates of the non-mevalonate pathway of isoprenoid biosynthesis in corynebacteria and mycobacteria.

    PubMed

    Artsatbanov, V Yu; Vostroknutova, G N; Shleeva, M O; Goncharenko, A V; Zinin, A I; Ostrovsky, D N; Kapreliants, A S

    2012-04-01

    Artificial generation of oxygen superoxide radicals in actively growing cultures of Mycobacterium tuberculosis, Myc. smegmatis, and Corynebacterium ammoniagenes is followed by accumulation in the bacterial cells of substantial amounts of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEcDP) - an intermediate of the non-mevalonate pathway of isoprenoid biosynthesis (MEP) - most possibly due to the interaction of the oxygen radicals with the 4Fe-4S group in the active center and inhibition of the enzyme (E)-4-oxy-3-methylbut-2-enyl diphosphate synthase (IspG). Cadmium ions known to inhibit IspG enzyme in chloroplasts (Rivasseau, C., Seemann, M., Boisson, A. M., Streb, P., Gout, E., Douce, R., Rohmer, M., and Bligny, R. (2009) Plant Cell Environ., 32, 82-92), when added to culture of Myc. smegmatis, substantially increase accumulation of MEcDP induced by oxidative stress with no accumulation of other organic phosphate intermediates in the cell. Corynebacterium ammoniagenes'', well-known for its ability to synthesize large amounts of MEcDP, was also shown to accumulate this unique cyclodiphosphate in actively growing culture when NO at low concentration is artificially generated in the medium. A possible role of the MEP-pathway of isoprenoid biosynthesis and a role of its central intermediate MEcDP in bacterial response to nitrosative and oxidative stress is discussed.

  8. Frontalin pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases

    PubMed Central

    Keeling, Christopher I.; Chiu, Christine C.; Aw, Tidiane; Li, Maria; Henderson, Hannah; Tittiger, Claus; Weng, Hong-Biao; Blomquist, Gary J.; Bohlmann, Joerg

    2013-01-01

    The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive pest of western North American pine forests. Adult males produce frontalin, an eight-carbon antiaggregation pheromone, via the mevalonate pathway, as part of several pheromones that initiate and modulate the mass attack of host trees. Frontalin acts as a pheromone, attractant, or kairomone in most Dendroctonus species, other insects, and even elephants. 6-Methylhept-6-en-2-one, a frontalin precursor, is hypothesized to originate from 10-carbon geranyl diphosphate (GPP), 15-carbon farnesyl diphosphate (FPP), or 20-carbon geranylgeranyl diphosphate (GGPP) via a dioxygenase- or cytochrome P450-mediated carbon–carbon bond cleavage. To investigate the role of isoprenyl diphosphate synthases in pheromone biosynthesis, we characterized a bifunctional GPP/FPP synthase and a GGPP synthase in the mountain pine beetle. The ratio of GPP to FPP produced by the GPP/FPP synthase was highly dependent on the ratio of the substrates isopentenyl diphosphate and dimethylallyl diphosphate used in the assay. Transcript levels in various tissues and life stages suggested that GGPP rather than GPP or FPP is used as a precursor to frontalin. Reduction of transcript levels by RNA interference of the isoprenyl diphosphate synthases identified GGPP synthase as having the largest effect on frontalin production, suggesting that frontalin is derived from a 20-carbon isoprenoid precursor rather than from the 10- or 15-carbon precursors. PMID:24167290

  9. Diagnostic Value of Urinary Mevalonic Acid Excretion in Patients with a Clinical Suspicion of Mevalonate Kinase Deficiency (MKD).

    PubMed

    Jeyaratnam, Jerold; Ter Haar, Nienke M; de Sain-van der Velden, Monique G M; Waterham, Hans R; van Gijn, Mariëlle E; Frenkel, Joost

    2016-01-01

    In patients suffering from mevalonate kinase deficiency (MKD), the reduced enzyme activity leads to an accumulation of mevalonic acid which is excreted in the urine. This study aims to evaluate the diagnostic value of urinary mevalonic acid measurement in patients with a clinical suspicion of mevalonate kinase deficiency. In this single-center, retrospective analysis, all patients in whom both measurement of mevalonic acid and genetic testing had been performed in the preceding 17 years have been included. The presence of two pathogenic MVK mutations or demonstration of decreased enzyme activity was considered to be the gold standard for the diagnosis of MKD. Sixty-one patients were included in this study. Thirteen of them harbored two MVK mutations; twelve of them showed elevated levels of mevalonic acid. Forty-eight patients did not harbor any MVK mutations, yet five of them excreted increased amounts of mevalonic acid. This corresponds to a sensitivity of 92%, a specificity of 90%, a positive predictive value of 71%, and a negative predictive value of 98%. The positive likelihood ratio is 10 and the negative likelihood ratio is 0.09. MKD seems very unlikely in patients with a normal mevalonic acid excretion, but it cannot be excluded completely. Further, a positive urinary mevalonic acid excretion still requires MVK analysis to confirm the diagnosis of MKD. Therefore, detection of urinary mevalonic acid should not be mandatory before genetic testing. However, as long as genetic testing is not widely available and affordable, measurement of urinary mevalonic acid is a fair way to select patients for MVK gene analysis or enzyme assay.

  10. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae.

    PubMed

    Zhao, Jianzhi; Bao, Xiaoming; Li, Chen; Shen, Yu; Hou, Jin

    2016-05-01

    Monoterpenes have wide applications in the food, cosmetics, and medicine industries and have recently received increased attention as advanced biofuels. However, compared with sesquiterpenes, monoterpene production is still lagging in Saccharomyces cerevisiae. In this study, geraniol, a valuable acyclic monoterpene alcohol, was synthesized in S. cerevisiae. We evaluated three geraniol synthases in S. cerevisiae, and the geraniol synthase Valeriana officinalis (tVoGES), which lacked a plastid-targeting peptide, yielded the highest geraniol production. To improve geraniol production, synthesis of the precursor geranyl diphosphate (GPP) was regulated by comparing three specific GPP synthase genes derived from different plants and the endogenous farnesyl diphosphate synthase gene variants ERG20 (G) (ERG20 (K197G) ) and ERG20 (WW) (ERG20 (F96W-N127W) ), and controlling endogenous ERG20 expression, coupled with increasing the expression of the mevalonate pathway by co-overexpressing IDI1, tHMG1, and UPC2-1. The results showed that overexpressing ERG20 (WW) and strengthening the mevalonate pathway significantly improved geraniol production, while expressing heterologous GPP synthase genes or down-regulating endogenous ERG20 expression did not show positive effect. In addition, we constructed an Erg20p(F96W-N127W)-tVoGES fusion protein, and geraniol production reached 66.2 mg/L after optimizing the amino acid linker and the order of the proteins. The best strain yielded 293 mg/L geraniol in a fed-batch cultivation, a sevenfold improvement over the highest titer previously reported in an engineered S. cerevisiae strain. Finally, we showed that the toxicity of geraniol limited its production. The platform developed here can be readily used to synthesize other monoterpenes.

  11. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.

    PubMed

    Zhu, Wen-Liang; Cui, Jin-Yu; Cui, Lan-Yu; Liang, Wei-Fan; Yang, Song; Zhang, Chong; Xing, Xin-Hui

    2016-03-01

    Methylotrophic biosynthesis using methanol as a feedstock is a promising and attractive method to solve the over-dependence of the bioindustry on sugar feedstocks derived from grains that are used for food. In this study, we introduced and engineered the mevalonate pathway into Methylobacterium extorquens AM1 to achieve high mevalonate production from methanol, which could be a platform for terpenoid synthesis. We first constructed a natural operon (MVE) harboring the mvaS and mvaE genes from Enterococcus faecalis as well as an artificial operon (MVH) harboring the hmgcs1 gene from Blattella germanica and the tchmgr gene from Trypanosoma cruzi that encoded enzymes with the highest reported activities. We achieved mevalonate titers of 56 and 66 mg/L, respectively, in flask cultivation. Introduction of the phaA gene from Ralstonia eutropha into the operon MVH increased the mevalonate titer to 180 mg/L, 3.2-fold higher than that of the natural operon MVE. Further modification of the expression level of the phaA gene by regulating the strength of the ribosomal binding site resulted in an additional 20 % increase in mevalonate production to 215 mg/L. A fed-batch fermentation of the best-engineered strain yielded a mevalonate titer of 2.22 g/L, which was equivalent to an overall yield and productivity of 28.4 mg mevalonate/g methanol and 7.16 mg/L/h, respectively. The production of mevalonate from methanol, which is the initial, but critical step linking methanol with valuable terpenoids via methylotrophic biosynthesis, represents a proof of concept for pathway engineering in M. extorquens AM1.

  12. Geranylgeranyl diphosphate synthase inhibition induces apoptosis that is dependent upon GGPP depletion, ERK phosphorylation and caspase activation.

    PubMed

    Agabiti, Sherry S; Li, Jin; Wiemer, Andrew J

    2017-03-16

    Bisphosphonates are diphosphate analogs that inhibit the intermediate enzymes of the mevalonate pathway. Here, we compared the effects of a farnesyl diphosphate synthase inhibitor, zoledronate, and a geranylgeranyl diphosphate synthase (GGDPS) inhibitor, digeranyl bisphosphonate (DGBP), on lymphocytic leukemia cell proliferation and apoptosis. Both zoledronate and DGBP inhibited proliferation with DGBP doing so more potently. DGBP was markedly less toxic than zoledronate toward the viability of healthy human peripheral blood mononuclear cells. Addition of GGPP, but not farnesyl diphosphate (FPP), prevented the anti-proliferative effects of DGBP. Both GGPP and FPP partially rescued the effects of zoledronate. Co-treatment with DGBP and zoledronate was antagonistic. To further assess the effects of the bisphosphonates, we analyzed annexin V and propidium iodide staining via flow cytometry and found that DGBP induced apoptosis more potently than zoledronate. Western blots show that DGBP treatment altered expression and membrane affinity of some but not all geranylgeranylated small GTPases, activated caspases and increased ERK phosphorylation. Importantly, the anti-proliferative effects of DGBP were blocked by treatment with a caspase inhibitor and by treatment with a MEK inhibitor. Together, our findings indicate that DGBP is a more potent and selective compound than zoledronate in inducing apoptosis mediated through pathways that include caspases and MEK/ERK. These findings support the further development of GGDPS inhibitors as anticancer therapeutics.

  13. Formation of isobutene from 3-hydroxy-3-methylbutyrate by diphosphomevalonate decarboxylase.

    PubMed

    Gogerty, David S; Bobik, Thomas A

    2010-12-01

    Isobutene is an important commercial chemical used for the synthesis of butyl rubber, terephthalic acid, specialty chemicals, and a gasoline performance additive known as alkylate. Currently, isobutene is produced from petroleum and hence is nonrenewable. Here, we report that the Saccharomyces cerevisiae mevalonate diphosphate decarboxylase (ScMDD) can convert 3-hydroxy-3-methylbutyrate (3-HMB) to isobutene. Whole cells of Escherichia coli producing ScMDD with an N-terminal 6×His tag (His(6)-ScMDD) formed isobutene from 3-HMB at a rate of 154 pmol h(-1) g cells(-1). In contrast, no isobutene was detected from control cells lacking ScMDD. His(6)-ScMDD was purified by nickel affinity chromatography and shown to produce isobutene from 3-HMB at a rate of 1.33 pmol min(-1) mg(-1) protein. Controls showed that both His(6)-ScMDD and 3-HMB were required for detectable isobutene formation. Isobutene was identified by gas chromatography (GC) with flame ionization detection as well as by GC-mass spectrometry (MS). ScMDD was subjected to error-prone PCR, and two improved variants were characterized, ScMDD1 (I145F) and ScMDD2 (R74H). Whole cells of E. coli producing ScMDD1 and ScMDD2 produced isobutene from 3-HMB at rates of 3,000 and 5,888 pmol h(-1) g cells(-1), which are 19- and 38-fold increases compared to rates for cells producing His(6)-ScMDD. This showed that genetic modifications can be used to increase the rate at which ScMDD converts 3-HMB to isobutene. Because 3-HMB can be produced from l-leucine, ScMDD has a potential application for the production of renewable isobutene. Moreover, isobutene is a gas, which might simplify its purification from a fermentation medium, substantially reducing production costs.

  14. Quantification of mevalonate-5-phosphate using UPLC-MS/MS for determination of mevalonate kinase activity.

    PubMed

    Reitzle, Lukas; Maier, Barbara; Stojanov, Silvia; Teupser, Daniel; Muntau, Ania C; Vogeser, Michael; Gersting, Søren W

    2015-08-01

    Mevalonate kinase deficiency, a rare autosomal recessive autoinflammatory disease, is caused by mutations in the MVK gene encoding mevalonate kinase (MK). MK catalyzes the phosphorylation of mevalonic acid to mevalonate-5-phosphate (MVAP) in the pathway of isoprenoid and sterol synthesis. The disease phenotype correlates with residual activity ranging from <0.5% for mevalonic aciduria to 1-7% for the milder hyperimmunoglobulinemia D and periodic fever syndrome (HIDS). Hence, assessment of loss-of-function requires high accuracy measurements. We describe a method using isotope dilution UPLC-MS/MS for precise and sensitive determination of MK activity. Wild-type MK and the variant V261A, which is associated with HIDS, were recombinantly expressed in Escherichia coli. Enzyme activity was determined by formation of MVAP over time quantified by isotope dilution UPLC-MS/MS. The method was validated according to the FDA Guidance for Bioanalytical Method Validation. Sensitivity for detection of MAVP by UPLC-MS/MS was improved by derivatization with butanol-HCl (LLOQ, 5.0 fmol) and the method was linear from 0.5 to 250 μmol/L (R(2) > 0.99) with a precision of ≥ 89% and an accuracy of ± 2.7%. The imprecision of the activity assay, including the enzymatic reaction and the UPLC-MS/MS quantification, was 8.3%. The variant V261A showed a significantly decreased activity of 53.1%. Accurate determination of MK activity was enabled by sensitive and reproducible detection of MVAP using UPLC-MS/MS. The novel method may improve molecular characterization of MVK mutations, provide robust genotype-phenotype correlations, and accelerate compound screening for drug candidates restoring variant MK activity. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. Metabolic Induction of Trained Immunity through the Mevalonate Pathway.

    PubMed

    Bekkering, Siroon; Arts, Rob J W; Novakovic, Boris; Kourtzelis, Ioannis; van der Heijden, Charlotte D C C; Li, Yang; Popa, Calin D; Ter Horst, Rob; van Tuijl, Julia; Netea-Maier, Romana T; van de Veerdonk, Frank L; Chavakis, Triantafyllos; Joosten, Leo A B; van der Meer, Jos W M; Stunnenberg, Henk; Riksen, Niels P; Netea, Mihai G

    2018-01-11

    Innate immune cells can develop long-term memory after stimulation by microbial products during infections or vaccinations. Here, we report that metabolic signals can induce trained immunity. Pharmacological and genetic experiments reveal that activation of the cholesterol synthesis pathway, but not the synthesis of cholesterol itself, is essential for training of myeloid cells. Rather, the metabolite mevalonate is the mediator of training via activation of IGF1-R and mTOR and subsequent histone modifications in inflammatory pathways. Statins, which block mevalonate generation, prevent trained immunity induction. Furthermore, monocytes of patients with hyper immunoglobulin D syndrome (HIDS), who are mevalonate kinase deficient and accumulate mevalonate, have a constitutive trained immunity phenotype at both immunological and epigenetic levels, which could explain the attacks of sterile inflammation that these patients experience. Unraveling the role of mevalonate in trained immunity contributes to our understanding of the pathophysiology of HIDS and identifies novel therapeutic targets for clinical conditions with excessive activation of trained immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  17. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  18. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium.

    PubMed

    Bledsoe, C S

    1978-11-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [(14)C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [(14)C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [(14)C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable (14)C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated (14)C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments.

  19. Molecular cloning of mevalonate pathway genes from Taraxacum brevicorniculatum and functional characterisation of the key enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

    PubMed

    van Deenen, Nicole; Bachmann, Anne-Lena; Schmidt, Thomas; Schaller, Hubert; Sand, Jennifer; Prüfer, Dirk; Schulze Gronover, Christian

    2012-04-01

    Taraxacum brevicorniculatum is known to produce high quality rubber. The biosynthesis of rubber is dependent on isopentenyl pyrophosphate (IPP) precursors derived from the mevalonate (MVA) pathway. The cDNA sequences of seven MVA pathway genes from latex of T. brevicorniculatum were isolated, including three cDNA sequences encoding for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases (TbHMGR1-3). Expression analyses indicate an important role of TbHMGR1 as well as for the HMG-CoA synthase (TbHMGS), the diphosphomevalonate decarboxylase and the mevalonate kinase in the provision of precursors for rubber biosynthesis. The amino acid sequences of the TbHMGRs show the typical motifs described for plant HMGRs such as two transmembrane domains and a catalytic domain containing two HMG-CoA and two NADP(H) binding sites. The functionality of the HMGRs was demonstrated by complementation assay using an IPP auxotroph mutant of Escherichia coli. Furthermore, the transient expression of the catalytic domains of TbHMGR1 and TbHMGR2 in Nicotiana benthamiana resulted in a strong accumulation of sterol precursors, one of the major groups of pathway end-products.

  20. Biochemical characterization of recombinant mevalonate kinase from Bacopa monniera.

    PubMed

    Kumari, Uma; Vishwakarma, Rishi K; Sonawane, Prashant; Abbassi, Shakeel; Khan, Bashir M

    2015-01-01

    Mevalonate kinase (MK; ATP: mevalonate 5-phosphotransferase; EC 2.7.1.36) plays a key role in isoprenoid biosynthetic pathway in plants. MK catalyzes the phosphorylation of mevalonate to form mevalonate-5-phosphate. The recombinant BmMK was cloned and over-expressed in E. coli BL21 (DE3), and purified to homogeneity by affinity chromatography followed by gel filtration. Optimum pH and temperature for forward reaction was found to be 7.0 and 30 °C, respectively. The enzyme was most stable at pH 8 at 25 °C with deactivation rate constant (Kd*) 1.398 × 10(-4) and half life (t1/2) 49 h. pH activity profile of BmMK indicates the involvement of carboxylate ion, histidine, lysine, arginine or aspartic acid at the active site of enzyme. Activity of recombinant BmMK was confirmed by phosphorylation of RS-mevalonate in the presence of Mg(2+), having Km and Vmax 331.9 μM and 719.1 pKat μg(-1), respectively. The values of kcat and kcat/Km for RS-mevalonate were determined to be 143.82 s(-1) and 0.43332 M(-1) s(-1) and kcat and kcat/Km values for ATP were found 150.9 s(-1) and 1.023 M(-1) s(-1). The metal ion studies suggested that BmMK is a metal dependent enzyme and highly active in the presence of MgCl2. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Metabolism of Mevalonic Acid in Vegetative and Induced Plants of Xanthium strumarium 1

    PubMed Central

    Bledsoe, Caroline S.; Ross, Cleon W.

    1978-01-01

    The metabolism of mevalonic acid in Xanthium strumarium L. Chicago plants was studied to determine how mevalonate was metabolized and whether metabolism was related to induction of flowering. Leaves of vegetative, photoperiodically induced, and chemically inhibited cocklebur plants were supplied with [14C]mevalonic acid prior to or during a 16-hour inductive dark period. Vegetative, induced, and Tris(2-diethylaminoethyl)phosphate trihydrochloride-treated plants did not differ significantly in the amount of [14C]mevalonic acid they absorbed, nor in the distribution of radioactivity among the leaf blade (97%), petiole (2.3%), or shoot tip (0.7%). [14C]Mevalonic acid was rapidly metabolized and transported out of the leaves. Possible metabolites of mevalonate were mevalonic acid phosphates and sterols. No detectable 14C was found in gibberellins, carotenoids, or the phytol alcohol of chlorophyll. Chemically inhibited plants accumulated 14C compounds not found in vegetative or induced plants. When ethanol extracts of leaves, petioles, and buds were chromatographed, comparisons of chromatographic patterns did not show significant differences between vegetative and induced treatments. ImagesFig. 1 PMID:16660583

  2. Anti-inflammatory and cytoprotective effects of a squalene synthase inhibitor, TAK-475 active metabolite-I, in immune cells simulating mevalonate kinase deficiency (MKD)-like condition.

    PubMed

    Suzuki, Nobutaka; Ito, Tatsuo; Matsui, Hisanori; Takizawa, Masayuki

    2016-01-01

    TAK-475 (lapaquistat acetate) and its active metabolite-I (TAK-475 M-I) inhibit squalene synthase, which catalyzes the conversion of farnesyl diphosphate (FPP) to squalene. FPP is a substrate for synthesis of other mevalonate-derived isoprenoids (MDIs) such as farnesol (FOH), geranlygeranyl diphosphate (GGPP), and geranylgeraniol. In patients with MKD, a rare autosomal recessive disorder, defective activity of mevalonate kinase leads to a shortage of MDIs. MDIs especially GGPP are required for prenylation of proteins, which is a posttranslation modification necessary for proper functioning of proteins like small guanosine triphosphatases. Malfunction of prenylation of proteins results in upregulation of the inflammatory cascade, leading to increased production of proinflammatory cytokines like interleukin-1β (IL-1β), eventually leading to episodic febrile attacks. In vitro, TAK-475 M-I incubation in a concentration dependent manner increased levels of FPP, GGPP, and FOH in human monocytic THP-1 cells. In subsequent experiments, THP-1 cells or human peripheral blood mononuclear cells (PBMCs) were incubated with simvastatin, which inhibits hydroxymethylglutaryl-coenzyme A reductase and thereby decreases levels of the precursors of MDIs, leading to the depletion of MDIs as expected in MKD patients. Increased levels of GGPP and FPP attenuated lipopolysaccharide (LPS)-induced IL-1β production in THP-1 cells and human PBMCs in statin-treated conditions. The MDIs also significantly reduced the damaged cell ratio in this active MKD-like condition. Moreover, TAK-475 M-I directly inhibited LPS-induced IL-1β production from statin-treated THP-1 cells. These results show anti-inflammatory and cytoprotective effects of MDIs via TAK-475 M-I treatment in statin-treated immune cells, suggesting that possible therapeutic effects of TAK-475 treatment in MKD patients.

  3. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.

    PubMed

    Pal, Tarun; Malhotra, Nikhil; Chanumolu, Sree Krishna; Chauhan, Rajinder Singh

    2015-07-01

    The transcriptomes of Aconitum heterophyllum were assembled and characterized for the first time to decipher molecular components contributing to biosynthesis and accumulation of metabolites in tuberous roots. Aconitum heterophyllum Wall., popularly known as Atis, is a high-value medicinal herb of North-Western Himalayas. No information exists as of today on genetic factors contributing to the biosynthesis of secondary metabolites accumulating in tuberous roots, thereby, limiting genetic interventions towards genetic improvement of A. heterophyllum. Illumina paired-end sequencing followed by de novo assembly yielded 75,548 transcripts for root transcriptome and 39,100 transcripts for shoot transcriptome with minimum length of 200 bp. Biological role analysis of root versus shoot transcriptomes assigned 27,596 and 16,604 root transcripts; 12,340 and 9398 shoot transcripts into gene ontology and clusters of orthologous group, respectively. KEGG pathway mapping assigned 37 and 31 transcripts onto starch-sucrose metabolism while 329 and 341 KEGG orthologies associated with transcripts were found to be involved in biosynthesis of various secondary metabolites for root and shoot transcriptomes, respectively. In silico expression profiling of the mevalonate/2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway genes for aconites biosynthesis revealed 4 genes HMGR (3-hydroxy-3-methylglutaryl-CoA reductase), MVK (mevalonate kinase), MVDD (mevalonate diphosphate decarboxylase) and HDS (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase) with higher expression in root transcriptome compared to shoot transcriptome suggesting their key role in biosynthesis of aconite alkaloids. Five genes, GMPase (geranyl diphosphate mannose pyrophosphorylase), SHAGGY, RBX1 (RING-box protein 1), SRF receptor kinases and β-amylase, implicated in tuberous root formation in other plant species showed higher levels of expression in tuberous roots compared to shoots. A total of 15

  4. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene.

    PubMed

    Bentley, Fiona K; Zurbriggen, Andreas; Melis, Anastasios

    2014-01-01

    Heterologous expression of the isoprene synthase gene in the cyanobacterium Synechocystis PCC 6803 conferred upon these microorganisms the property of photosynthetic isoprene (C₅H₈) hydrocarbons production. Continuous production of isoprene from CO₂ and H₂O was achieved in the light, occurring via the endogenous methylerythritol-phosphate (MEP) pathway, in tandem with the growth of Synechocystis. This work addressed the issue of photosynthetic carbon partitioning between isoprene and biomass in Synechocystis. Evidence is presented to show heterologous genomic integration and cellular expression of the mevalonic acid (MVA) pathway genes in Synechocystis endowing a non-native pathway for carbon flux amplification to isopentenyl-diphosphate (IPP) and dimethylallyl-diphosphate (DMAPP) precursors of isoprene. Heterologous expression of the isoprene synthase in combination with the MVA pathway enzymes resulted in photosynthetic isoprene yield improvement by approximately 2.5-fold, compared with that measured in cyanobacteria transformed with the isoprene synthase gene only. These results suggest that the MVA pathway introduces a bypass in the flux of endogenous cellular substrate in Synechocystis to IPP and DMAPP, overcoming flux limitations of the native MEP pathway. The work employed a novel chromosomal integration and expression of synthetic gene operons in Synechocystis, comprising up to four genes under the control of a single promoter, and expressing three operons simultaneously. This is the first time an entire biosynthetic pathway with seven recombinant enzymes has been heterologously expressed in a photosynthetic microorganism. It constitutes contribution to the genetic engineering toolkit of photosynthetic microorganisms and a paradigm in the pursuit of photosynthetic approaches for the renewable generation of high-impact products.

  5. Intersubunit structure within heterodimers of medium-chain prenyl diphosphate synthases. Formation of a hybrid-type heptaprenyl diphosphate synthase.

    PubMed

    Koike-Takeshita, A; Koyama, T; Ogura, K

    1998-10-01

    Among prenyltransferases that catalyze the sequential condensation of isopentenyl diphosphate with allylic diphosphate to produce prenyl diphosphates with various chain lengths and stereochemistries, medium-chain prenyl diphosphate synthases are exceptional in that they comprise two dissociable heteromeric protein components. These components exist without binding with each other under physiological conditions, and neither of them has any prenyltransferase activity by itself. In order to elucidate the precise molecular mechanism underlying expression of the catalytic function by such a unique two-component system, we examined the possibility of forming a hybrid between two of the components of three different medium-chain prenyl diphosphate synthases, components I and II of heptaprenyl diphosphate synthase from Bacillus subtilis, components I' and II' of heptaprenyl diphosphate synthase from Bacillus stearothermophilus, and components A and B of hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26. As a result, only the hybrid-type combination of component I and component II' gave distinct prenyltransferase activity. The hybrid-type enzyme catalyzed the synthesis of heptaprenyl diphosphate and showed moderate heat stability, which lay between those of the natural enzymes from B. subtilis and B. stearothermophilus. There is no possibility of forming a hybrid between the heptaprenyl and hexaprenyl diphosphate synthases.

  6. Could drugs inhibiting the mevalonate pathway also target cancer stem cells?

    PubMed

    Likus, Wirginia; Siemianowicz, Krzysztof; Bieńk, Konrad; Pakuła, Małgorzata; Pathak, Himani; Dutta, Chhanda; Wang, Qiong; Shojaei, Shahla; Assaraf, Yehuda G; Ghavami, Saeid; Cieślar-Pobuda, Artur; Łos, Marek J

    2016-03-01

    Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, show that it could promote transformation. Hence, these studies pinpoint HMG CoA-reductase as a candidate proto-oncogene. Several recent epidemiological studies, in different populations, have proven that statins are beneficial for the treatment-outcome of various cancers, and may improve common cancer therapy strategies involving alkylating agents, and antimetabolites. Cancer stem cells/cancer initiating cells (CSC) are key to cancer progression and metastasis. Therefore, in the current review we address the different effects of statins on cancer stem cells. The mevalonate cascade is among the most pleiotropic, and highly interconnected signaling pathways. Through G-protein-coupled receptors (GRCP), it integrates extra-, and intracellular signals. The mevalonate pathway is implicated in cell stemness, cell proliferation, and organ size regulation through the Hippo pathway (e.g. Yap/Taz signaling axis). This pathway is a prime preventive target through the administration of statins for the prophylaxis of obesity-related cardiovascular diseases. Its prominent role in regulation of cell growth and stemness also invokes its role in cancer development and progression. The mevalonate pathway affects cancer metastasis in several ways by: (i) affecting epithelial-to-mesenchymal transition (EMT), (ii) affecting remodeling of the cytoskeleton as well as cell motility, (iii) affecting cell polarity (non-canonical Wnt/planar pathway), and (iv) modulation of mesenchymal-to-epithelial transition (MET). Herein we provide an overview of the mevalonate signaling network. We then briefly

  7. Biosynthesis of Taxadiene in Saccharomyces cerevisiae : Selection of Geranylgeranyl Diphosphate Synthase Directed by a Computer-Aided Docking Strategy

    PubMed Central

    Li, Lin-feng; Zhai, Fang; Shang, Lu-qing; Yin, Zheng; Yuan, Ying-jin

    2014-01-01

    Identification of efficient key enzymes in biosynthesis pathway and optimization of the fitness between functional modules and chassis are important for improving the production of target compounds. In this study, the taxadiene biosynthesis pathway was firstly constructed in yeast by transforming ts gene and overexpressing erg20 and thmgr. Then, the catalytic capabilities of six different geranylgeranyl diphosphate synthases (GGPPS), the key enzyme in mevalonic acid (MVA) pathway catalyzing famesyl diphosphate (FPP) to geranylgeranyl diphosphate (GGPP), were predicted using enzyme-substrate docking strategy. GGPPSs from Taxus baccata x Taxus cuspidate (GGPPSbc), Erwinia herbicola (GGPPSeh), and S. cerevisiae (GGPPSsc) which ranked 1st, 4th and 6th in docking with FPP were selected for construction. The experimental results were consistent with the computer prediction that the engineered yeast with GGPPSbc exhibited the highest production. In addition, two chassis YSG50 and W303-1A were chosen, and the titer of taxadiene reached 72.8 mg/L in chassis YSG50 with GGPPSbc. Metabolomic study revealed that the contents of tricarboxylic acid cycle (TCA) intermediates and their precursor amino acids in chassis YSG50 was lower than those in W303-1A, indicating less carbon flux was divided into TCA cycle. Furthermore, the levels of TCA intermediates in the taxadiene producing yeasts were lower than those in chassis YSG50. Thus, it may result in more carbon flux in MVA pathway in chassis YSG50, which suggested that YSG50 was more suitable for engineering the taxadiene producing yeast. These results indicated that computer-aided protein modeling directed isoenzyme selection strategy and metabolomic study could guide the rational design of terpenes biosynthetic cells. PMID:25295588

  8. Temperature and Drug Treatments in Mevalonate Kinase Deficiency: An Ex Vivo Study

    PubMed Central

    Tricarico, Paola Maura; Piscianz, Elisa; Crovella, Sergio

    2013-01-01

    Mevalonate Kinase Deficiency (MKD) is a rare autosomal recessive inborn disorder of cholesterol biosynthesis caused by mutations in the mevalonate kinase (MK) gene, leading to MK enzyme decreased activity. The consequent shortage of mevalonate-derived isoprenoid compounds results in an inflammatory phenotype, caused by the activation of the NALP3 inflammasome that determines an increased caspase-1 activation and IL-1β release. In MKD, febrile temperature can further decrease the residual MK activity, leading to mevalonate pathway modulation and to possible disease worsening. We previously demonstrated that the administration of exogenous isoprenoids such as geraniol or the modulation of the enzymatic pathway with drugs, such as Tipifarnib, partially rescues the inflammatory phenotype associated with the defective mevalonic pathway. However, it has not been investigated yet how temperature can affect the success of these treatments. Thus, we investigated the effect of temperature on primary human monocytes from MKD patients. Furthermore the ability of geraniol and Tipifarnib to reduce the abnormal inflammatory response, already described at physiological temperature in MKD, was studied in a febrile condition. We evidenced the role of temperature in the modulation of the inflammatory events and suggested strongly considering this variable in future researches aimed at finding a treatment for MKD. PMID:24073415

  9. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate.

    PubMed

    Schilmiller, Anthony L; Schauvinhold, Ines; Larson, Matthew; Xu, Richard; Charbonneau, Amanda L; Schmidt, Adam; Wilkerson, Curtis; Last, Robert L; Pichersky, Eran

    2009-06-30

    We identified a cis-prenyltransferase gene, neryl diphosphate synthase 1 (NDPS1), that is expressed in cultivated tomato (Solanum lycopersicum) cultivar M82 type VI glandular trichomes and encodes an enzyme that catalyzes the formation of neryl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. mRNA for a terpene synthase gene, phellandrene synthase 1 (PHS1), was also identified in these glands. It encodes an enzyme that uses neryl diphosphate to produce beta-phellandrene as the major product as well as a variety of other monoterpenes. The profile of monoterpenes produced by PHS1 is identical with the monoterpenes found in type VI glands. PHS1 and NDPS1 map to chromosome 8, and the presence of a segment of chromosome 8 derived from Solanum pennellii LA0716 causes conversion from the M82 gland monoterpene pattern to that characteristic of LA0716 plants. The data indicate that, contrary to the textbook view of geranyl diphosphate as the "universal" substrate of monoterpene synthases, in tomato glands neryl diphosphate serves as a precursor for the synthesis of monoterpenes.

  10. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate

    PubMed Central

    Schilmiller, Anthony L.; Schauvinhold, Ines; Larson, Matthew; Xu, Richard; Charbonneau, Amanda L.; Schmidt, Adam; Wilkerson, Curtis; Last, Robert L.; Pichersky, Eran

    2009-01-01

    We identified a cis-prenyltransferase gene, neryl diphosphate synthase 1 (NDPS1), that is expressed in cultivated tomato (Solanum lycopersicum) cultivar M82 type VI glandular trichomes and encodes an enzyme that catalyzes the formation of neryl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. mRNA for a terpene synthase gene, phellandrene synthase 1 (PHS1), was also identified in these glands. It encodes an enzyme that uses neryl diphosphate to produce β-phellandrene as the major product as well as a variety of other monoterpenes. The profile of monoterpenes produced by PHS1 is identical with the monoterpenes found in type VI glands. PHS1 and NDPS1 map to chromosome 8, and the presence of a segment of chromosome 8 derived from Solanum pennellii LA0716 causes conversion from the M82 gland monoterpene pattern to that characteristic of LA0716 plants. The data indicate that, contrary to the textbook view of geranyl diphosphate as the “universal” substrate of monoterpene synthases, in tomato glands neryl diphosphate serves as a precursor for the synthesis of monoterpenes. PMID:19487664

  11. The mevalonate pathway regulates primitive streak formation via protein farnesylation

    PubMed Central

    Okamoto-Uchida, Yoshimi; Yu, Ruoxing; Miyamura, Norio; Arima, Norie; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Yoshida, Suguru; Hosoya, Takamitsu; Nawa, Makiko; Kasama, Takeshi; Asaoka, Yoichi; Alois, Reiner Wimmer; Elling, Ulrich; Penninger, Josef M.; Nishina, Sachiko; Azuma, Noriyuki; Nishina, Hiroshi

    2016-01-01

    The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation. PMID:27883036

  12. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration

    PubMed Central

    Wang, Jilong; Niyompanich, Suthamat; Tai, Yi-Shu; Wang, Jingyu; Bai, Wenqin; Mahida, Prithviraj; Gao, Tuo

    2016-01-01

    ABSTRACT Chromosomal integration of heterologous metabolic pathways is optimal for industrially relevant fermentation, as plasmid-based fermentation causes extra metabolic burden and genetic instabilities. In this work, chromosomal integration was adapted for the production of mevalonate, which can be readily converted into β-methyl-δ-valerolactone, a monomer for the production of mechanically tunable polyesters. The mevalonate pathway, driven by a constitutive promoter, was integrated into the chromosome of Escherichia coli to replace the native fermentation gene adhE or ldhA. The engineered strains (CMEV-1 and CMEV-2) did not require inducer or antibiotic and showed slightly higher maximal productivities (0.38 to ∼0.43 g/liter/h) and yields (67.8 to ∼71.4% of the maximum theoretical yield) than those of the plasmid-based fermentation. Since the glycolysis pathway is the first module for mevalonate synthesis, atpFH deletion was employed to improve the glycolytic rate and the production rate of mevalonate. Shake flask fermentation results showed that the deletion of atpFH in CMEV-1 resulted in a 2.1-fold increase in the maximum productivity. Furthermore, enhancement of the downstream pathway by integrating two copies of the mevalonate pathway genes into the chromosome further improved the mevalonate yield. Finally, our fed-batch fermentation showed that, with deletion of the atpFH and sucA genes and integration of two copies of the mevalonate pathway genes into the chromosome, the engineered strain CMEV-7 exhibited both high maximal productivity (∼1.01 g/liter/h) and high yield (86.1% of the maximum theoretical yield, 30 g/liter mevalonate from 61 g/liter glucose after 48 h in a shake flask). IMPORTANCE Metabolic engineering has succeeded in producing various chemicals. However, few of these chemicals are commercially competitive with the conventional petroleum-derived materials. In this work, chromosomal integration of the heterologous pathway and

  13. Active-site-directed irreversible inhibitors of isopentenyl diphosphate isomerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muhlbacher, M.

    1987-01-01

    Seven analogues of isopentenyl diphosphate, containing fluorine, epoxy, or ammonium functionalities were found to irreversibly inhibit isopentenyl diphosphate:dimethylallyl diphosphate isomerase isolated from the mold Claviceps purpurea. The mechanism of their inhibition of isomerase was studied. Syntheses of 3-(fluoromethyl)-3-buten-1-yl diphosphate, 2-dimethylamino-1-ethyl diphosphate, 3,4-epoxy-3-methyl-1-butyl diphosphate, 3,4,-epoxy-1-butyl diphosphate, and 2,3-epoxy-3-methyl-1-butyl diphosphate were developed and carried out in high overall yield affording 100 mg quantities of the triammonium diphosphate salts. Radiolabeled materials of these analogues with {sup 3}H, {sup 14}C, and {sup 32}P at appropriate positions were also prepared. Inactivation kinetics, substrate protection studies, and labeling experiments demonstrated that the analogues interact stoichiometrically withmore » the active-site of isomerase. Radioactive enzyme-inactivator complexes were isolated, that are stable to extended dialysis and chaotropic reagents. The complexes resulting from inactivation of the enzyme by 3-(fluoromethyl)-3-buten-1-yl diphosphate and 3,4-epoxy-3-methyl-1-butyl diphosphate are stable to ion exchange chromatography and gel electrophoresis. Stoichiometric fluoride ion release occurs during inactivation of isomerase with 3-(fluoromethyl)-3-buten-1-yl diphosphate. The complexes are not stable to high concentrations of mixtures of 2-mercaptoethanol-sodium dodecyl sulfate. The radiolabeled 2-dimethylamino-1-ethyl diphosphate isomerase complex loses radioactivity almost instantaneously when treated with base. Partial fragmentation of the inactivator molecule was observed.« less

  14. Repositioning Of Tak-475 In Mevalonate Kinase Disease: Translating Theory Into Practice.

    PubMed

    Marcuzzi, Annalisa; Loganes, Claudia; Celeghini, Claudio; Kleiner, Giulio

    2017-09-11

    Mevalonate Kinase Deficiency (MKD, OMIM #610377) is a rare autosomal recessive metabolic and inflammatory disease. In MKD, defective function of the enzyme mevalonate kinase (MK), due to a mutation in the MVK gene, leads to the shortage of mevalonate-derived intermediates, which results in unbalanced prenylation of proteins and altered metabolism of sterols. These defects lead to a complex multisystem inflammatory and metabolic syndrome. Although biologic therapies aimed at blocking the inflammatory cytokine interleukin-1 (IL-1) can significantly reduce inflammation, they cannot completely control the clinical symptoms that affects the nervous system. For this reason, MKD can still be considered an orphan drug disease. Cellular models for MKD can be obtained by biochemical inhibition of mevalonate-derived isoprenoids. Of note, these cells present an exaggerated response to inflammatory stimuli that can be reduced by treatment with zaragozic acid, an inhibitor of squalene synthase (SQS) able to increase the availability of isoprenoids intermediates upstream the enzymatic block. A similar action might be obtained by lapaquistat acetate (TAK-475, Takeda), a drug that underwent extensive clinical trials as a cholesterol lowering agent 10 years ago, with a good safety profile. Here we describe the preclinical evidence supporting the possible repositioning of TAK-475 from its originally intended use to the treatment of MKD and discuss its potential to modulate the mevalonate pathway in inflammatory diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  16. Bacterial Cell Growth Inhibitors Targeting Undecaprenyl Diphosphate Synthase and Undecaprenyl Diphosphate Phosphatase.

    PubMed

    Wang, Yang; Desai, Janish; Zhang, Yonghui; Malwal, Satish R; Shin, Christopher J; Feng, Xinxin; Sun, Hong; Liu, Guizhi; Guo, Rey-Ting; Oldfield, Eric

    2016-10-19

    We synthesized a series of benzoic acids and phenylphosphonic acids and investigated their effects on the growth of Staphylococcus aureus and Bacillus subtilis. One of the most active compounds, 5-fluoro-2-(3-(octyloxy)benzamido)benzoic acid (7, ED 50 ∼0.15 μg mL -1 ) acted synergistically with seven antibiotics known to target bacterial cell-wall biosynthesis (a fractional inhibitory concentration index (FICI) of ∼0.35, on average) but had indifferent effects in combinations with six non-cell-wall biosynthesis inhibitors (average FICI∼1.45). The most active compounds were found to inhibit two enzymes involved in isoprenoid/bacterial cell-wall biosynthesis: undecaprenyl diphosphate synthase (UPPS) and undecaprenyl diphosphate phosphatase (UPPP), but not farnesyl diphosphate synthase, and there were good correlations between bacterial cell growth inhibition, UPPS inhibition, and UPPP inhibition. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The "Mevalonate hypothesis": a cholesterol-independent alternative for the etiology of atherosclerosis.

    PubMed

    Keizer, Hiskias G

    2012-11-05

    The "cholesterol hypothesis" is the leading theory to explain the cause of atherosclerosis. The "cholesterol hypothesis" assumes that plasma (LDL) cholesterol is an important causal factor for atherosclerosis.However, data of at least seven placebo controlled randomized prospective trials with various cholesterol lowering drugs show that plasma cholesterol lowering does not necessarily lead to protection against cardiovascular disease. Therefore an alternative hypothesis for the etiology of cardiovascular disease is formulated. This alternative hypothesis, the "mevalonate hypothesis", assumes that after stimulation of the mevalonate pathway in endothelial cells by inflammatory factors, these cells start producing cholesterol and free radicals. In this hypothesis, only the latter play a role in the etiology of atherosclerosis by contributing to the formation of oxidized cholesterol which is a widely accepted causal factor for atherosclerosis.Regardless of how the mevalonate pathway is activated (by withdrawal of statin drugs, by inflammatory factors or indirectly by reduced intracellular cholesterol levels) in all these cases free radical production is observed as well as cardiovascular disease. Since in the "mevalonate hypothesis" cholesterol is produced at the same time as the free radicals causing atherosclerosis, this hypothesis provides an explanation for the correlation which exists between cardiovascular disease and plasma cholesterol levels. From an evolutionary perspective, concomitant cholesterol production and free radical production in response to inflammatory factors makes sense if one realizes that both activities potentially protect cells and organisms from infection by gram-negative bacteria.In conclusion, data have been collected which suggest that activation of the mevalonate pathway in endothelial cells is likely to be a causal factor for atherosclerosis. This "mevalonate hypothesis" provides a better explanation for results obtained from recent

  18. Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase.

    PubMed

    Hirooka, Kazutake; Bamba, Takeshi; Fukusaki, Ei-ichiro; Kobayashi, Akio

    2003-03-01

    trans -Long-chain prenyl diphosphate synthases catalyse the sequential condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate to produce the C(30)-C(50) prenyl diphosphates, which are precursors of the side chains of prenylquinones. Based on the relationship between product specificity and the region around the first aspartate-rich motif in trans -prenyl diphosphate synthases characterized so far, we have isolated the cDNA for a member of trans -long-chain prenyl diphosphate synthases from Arabidopsis thaliana. The cDNA was heterologously expressed in Escherichia coli, and the recombinant His(6)-tagged protein was purified and characterized. Product analysis revealed that the cDNA encodes solanesyl diphosphate (C(45)) synthase (At-SPS). At-SPS utilized farnesyl diphosphate (FPP; C(15)) and geranylgeranyl diphosphate (GGPP; C(20)), but did not accept either the C(5) or the C(10) allylic diphosphate as a primer substrate. The Michaelis constants for FPP and GGPP were 5.73 microM and 1.61 microM respectively. We also performed an analysis of the side chains of prenylquinones extracted from the A. thaliana plant, and showed that its major prenylquinones, i.e. plastoquinone and ubiquinone, contain the C(45) prenyl moiety. This suggests that At-SPS might be devoted to the biosynthesis of either or both of the prenylquinone side chains. This is the first established trans -long-chain prenyl diphosphate synthase from a multicellular organism.

  19. Geraniol rescues inflammation in cellular and animal models of mevalonate kinase deficiency.

    PubMed

    Marcuzzi, Annalisa; Crovella, Sergio; Pontillo, Alessandra

    2011-01-01

    The inhibition of the mevalonate pathway through genetic defects such as mevalonate kinase deficiency (MKD) or pharmacological drugs such as aminobisphosphonates causes a shortage of intermediate compounds, in particular geranylgeranyl-pyrophosphate (GGPP), which is associated with the consequent augmented IL-1β release in monocytes. Considering that, due to its biochemical structure, isoprenoid geraniol enters the mevalonate pathway and may revert the genetic or pharmacological inhibition, the present study tested isoprenoid geraniol in cellular and animal MKD models obtained through the use of aminobisphosphonate pamidronate. The effect of natural isoprenoid geraniol on bacterial induced-inflammation was evaluated in a monocytic cell line (Raw 264.7) and in Balb/c mice treated with pamidronate. Geraniol diminished the levels of inflammatory markers induced by pamidronate stimuli in vitro and in vivo. Geraniol may be proposed as a novel therapeutic approach for the orphan disease MKD, and may also be considered for the evaluation of possible inflammatory side-effects of aminobisphosphonates.

  20. Prenyl alcohol production by expression of exogenous isopentenyl diphosphate isomerase and farnesyl diphosphate synthase genes in Escherichia coli.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-01-01

    Isopentenyl diphosphate isomerase (idi) and farnesyl diphosphate synthase (ispA) genes were overexpressed in Escherichia coli. The resulting transformant showed 6.8-fold higher production of farnesol (389 microg/l). In a similar manner, overexpression of idi and mutated ispA led to high production of geranylgeraniol (128 microg/l).

  1. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.

    PubMed

    Diner, Bruce A; Fan, Janine; Scotcher, Miles C; Wells, Derek H; Whited, Gregory M

    2018-01-01

    There is a growing interest in the use of microbial fermentation for the generation of high-demand, high-purity chemicals using cheap feedstocks in an environmentally friendly manner. One example explored here is the production of isoprene (C 5 H 8 ), a hemiterpene, which is primarily polymerized to polyisoprene in synthetic rubber in tires but which can also be converted to C 10 and C 15 biofuels. The strictly anaerobic, acetogenic bacterium Clostridium ljungdahlii , used in all of the work described here, is capable of glycolysis using the Embden-Meyerhof-Parnas pathway and of carbon fixation using the Wood-Ljungdahl pathway. Clostridium - Escherichia coli shuttle plasmids, each bearing either 2 or 3 different heterologous genes of the eukaryotic mevalonic acid (MVA) pathway or eukaryotic isopentenyl pyrophosphate isomerase (Idi) and isoprene synthase (IspS), were constructed and electroporated into C. ljungdahlii These plasmids, one or two of which were introduced into the host cells, enabled the synthesis of mevalonate and of isoprene from fructose and from syngas (H 2 , CO 2 , and CO) and the conversion of mevalonate to isoprene. All of the heterologous enzymes of the MVA pathway, as well as Idi and IspS, were shown to be synthesized at high levels in C. ljungdahlii , as demonstrated by Western blotting, and were enzymatically active, as demonstrated by in vivo product synthesis. The quantities of mevalonate and isoprene produced here are far below what would be required of a commercial production strain. However, proposals are made that could enable a substantial increase in the mass yield of product formation. IMPORTANCE This study demonstrates the ability to synthesize a heterologous metabolic pathway in C. ljungdahlii , an organism capable of metabolizing either simple sugars or syngas or both together (mixotrophy). Syngas, an inexpensive source of carbon and reducing equivalents, is produced as a major component of some industrial waste gas, and it can be

  2. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene

    PubMed Central

    Fan, Janine; Scotcher, Miles C.; Wells, Derek H.; Whited, Gregory M.

    2017-01-01

    ABSTRACT There is a growing interest in the use of microbial fermentation for the generation of high-demand, high-purity chemicals using cheap feedstocks in an environmentally friendly manner. One example explored here is the production of isoprene (C5H8), a hemiterpene, which is primarily polymerized to polyisoprene in synthetic rubber in tires but which can also be converted to C10 and C15 biofuels. The strictly anaerobic, acetogenic bacterium Clostridium ljungdahlii, used in all of the work described here, is capable of glycolysis using the Embden-Meyerhof-Parnas pathway and of carbon fixation using the Wood-Ljungdahl pathway. Clostridium-Escherichia coli shuttle plasmids, each bearing either 2 or 3 different heterologous genes of the eukaryotic mevalonic acid (MVA) pathway or eukaryotic isopentenyl pyrophosphate isomerase (Idi) and isoprene synthase (IspS), were constructed and electroporated into C. ljungdahlii. These plasmids, one or two of which were introduced into the host cells, enabled the synthesis of mevalonate and of isoprene from fructose and from syngas (H2, CO2, and CO) and the conversion of mevalonate to isoprene. All of the heterologous enzymes of the MVA pathway, as well as Idi and IspS, were shown to be synthesized at high levels in C. ljungdahlii, as demonstrated by Western blotting, and were enzymatically active, as demonstrated by in vivo product synthesis. The quantities of mevalonate and isoprene produced here are far below what would be required of a commercial production strain. However, proposals are made that could enable a substantial increase in the mass yield of product formation. IMPORTANCE This study demonstrates the ability to synthesize a heterologous metabolic pathway in C. ljungdahlii, an organism capable of metabolizing either simple sugars or syngas or both together (mixotrophy). Syngas, an inexpensive source of carbon and reducing equivalents, is produced as a major component of some industrial waste gas, and it can be

  3. Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis.

    PubMed

    Sitthithaworn, W; Kojima, N; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Noji, M; Saito, K; Niwa, Y; Sankawa, U

    2001-02-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene-producing plants, Scoparia dulcis and Croton sublyratus, have been isolated using the homology-based polymerase chain reaction (PCR) method. Both clones contained highly conserved aspartate-rich motifs (DDXX(XX)D) and their N-terminal residues exhibited the characteristics of chloroplast targeting sequence. When expressed in Escherichia coli, both the full-length and truncated proteins in which the putative targeting sequence was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to produce geranylgeranyl diphosphate (GGPP). The structural factors determining the product length in plant GGPPSs were investigated by constructing S. dulcis GGPPS mutants on the basis of sequence comparison with the first aspartate-rich motif (FARM) of plant farnesyl diphosphate synthase. The result indicated that in plant GGPPSs small amino acids, Met and Ser, at the fourth and fifth positions before FARM and Pro and Cys insertion in FARM play essential roles in determination of product length. Further, when a chimeric gene comprised of the putative transit peptide of the S. dulcis GGPPS gene and a green fluorescent protein was introduced into Arabidopsis leaves by particle gun bombardment, the chimeric protein was localized in chloroplasts, indicating that the cloned S. dulcis GGPPS is a chloroplast protein.

  4. Geranylgeranyl diphosphate synthases from Scoparia dulcis and Croton sublyratus. cDNA cloning, functional expression, and conversion to a farnesyl diphosphate synthase.

    PubMed

    Kojima, N; Sitthithaworn, W; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Sankaw, U

    2000-07-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene producing plants, Scoparia dulcis and Croton sublyratus, were isolated using the homology-based polymerase chain reaction method. Both cloned genes showed high amino acid sequence homology (60-70%) to other plant GGPPSs and contained highly conserved aspartate-rich motifs. The obtained clones were functionally expressed in Escherichia coli and showed sufficient GGPPS activity to catalyze the condensation of farnesyl diphosphate (FPP) and isopentenyl diphosphate to form geranylgeranyl diphosphate. To investigate the factor determining the product chain length of plant GGPPSs, S. dulcis GGPPS mutants in which either the small amino acids at the fourth and fifth positions before the first aspartate-rich motif (FARM) were replaced with aromatic amino acids or in which two additional amino acids in FARM were deleted were constructed. Both mutants behaved like FPPS-like enzymes and almost exclusively produced FPP when dimethylallyl diphosphate was used as a primer substrate, and failed to accept FPP as a primer substrate. These results indicate that both small amino acids at the fourth and fifth positions before FARM and the amino acid insertion in FARM play essential roles in product length determination in plant GGPPSs.

  5. Synthesis and Evaluation of Chlorinated Substrate Analogues for Farnesyl Diphosphate Synthase

    PubMed Central

    Heaps, Nicole A.; Poulter, C. Dale

    2011-01-01

    Substrate analogues for isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), where the C3 methyl groups were replaced by chlorine, were synthesized and evaluated as substrates for avian farnesyl diphosphate synthase (FPPase). The IPP analogue (3-ClIPP) was a co-substrate when incubated with dimethylallyl diphosphate (DMAPP) or geranyl diphosphate (GPP) to give the corresponding chlorinated analogues of geranyl diphosphate (3-ClGPP) and farnesyl diphosphate (3-ClFPP), respectively. No products were detected in incubations of 3-ClIPP with 3-ClDMAPP. Incubation of IPP with 3-ClDMAPP gave 11-ClFPP as the sole product. Values of KM3-ClIPP (with DMAPP) and KM3-ClDMAPP (with IPP) were similar to those for IPP and DMAPP, however values of kcat for both analogues were substantially lower. These results are consistent with a dissociative electrophilic alkylation mechanism where the rate-limiting step changes from heterolytic cleavage of the carbon-oxygen bond in the allylic substrate to alkylation of the double bond of the homoallylic substrate. PMID:21344952

  6. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae.

    PubMed

    Liu, Jidong; Zhang, Weiping; Du, Guocheng; Chen, Jian; Zhou, Jingwen

    2013-12-01

    Monoterpene geraniol, a compound obtained from aromatic plants, has wide applications. In this study, geraniol was synthesized in Saccharomyces cerevisiae through the introduction of geraniol synthase. To increase geraniol production, the mevalonate pathway in S. cerevisiae was genetically manipulated to enhance the supply of geranyl diphosphate, a substrate used for the biosynthesis of geraniol. Identification and optimization of the key regulatory points in the mevalonate pathway in S. cerevisiae increased geraniol production to 36.04 mg L(-1). The results obtained revealed that the IDI1-encoded isopentenyl diphosphate isomerase is a rate-limiting enzyme in the biosynthesis of geraniol in S. cerevisiae, and overexpression of MAF1, a negative regulator in tRNA biosynthesis, is another effective method to increase geraniol production in S. cerevisiae. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Bifunctionality of the thiamin diphosphate cofactor: assignment of tautomeric/ionization states of the 4′-aminopyrimidine ring when various intermediates occupy the active sites during the catalysis of yeast pyruvate decarboxylase

    PubMed Central

    Balakrishnan, Anand; Gao, Yuhong; Moorjani, Prerna; Nemeria, Natalia S.; Tittmann, Kai; Jordan, Frank

    2012-01-01

    Thiamin diphosphate (ThDP) dependent enzymes perform crucial C-C bond forming and breaking reactions in sugar and amino acid metabolism and in biosynthetic pathways via a sequence of ThDP-bound covalent intermediates. A member of this superfamily, yeast pyruvate decarboxylase (YPDC) carries out the non-oxidative decarboxylation of pyruvate and is mechanistically a simpler ThDP enzyme. YPDC variants created by substitution at the active center (D28A, E51X, E477Q) and on the substrate activation pathway (E91D and C221E) display varying activity, suggesting that they stabilize different covalent intermediates. To test the role of both rings of ThDP in YPDC catalysis (the 4′-aminopyrimidine as acid-base, and thiazolium as electrophilic covalent catalyst), we applied a combination of steady state and time-resolved circular dichroism experiments (assessing the state of ionization and tautomerization of enzyme-bound ThDP-related intermediates), and chemical quench of enzymatic reaction mixtures followed by NMR characterization of the ThDP-bound intermediates released from YPDC (assessing occupancy of active centers by these intermediates and rate-limiting steps). Results suggest that: (1) Pyruvate and analogs induce active site asymmetry in YPDC and variants. (2) The rare 1′,4′-iminopyrimidine ThDP tautomer participates in formation of ThDP-bound intermediates. (3) Propionylphosphinate also binds at the regulatory site and its binding is reflected by catalytic events at the active site 20Å away. (4) YPDC stabilizes an electrostatic model for the 4′-aminopyrimidinium ionization state, an important contribution of the protein to catalysis. The combination of tools used provides time-resolved details about individual events during ThDP catalysis; the methods are transferable to other ThDP superfamily members. PMID:22300533

  8. Production of taxadiene by engineering of mevalonate pathway in Escherichia coli and endophytic fungus Alternaria alternata TPF6.

    PubMed

    Bian, Guangkai; Yuan, Yujie; Tao, Hui; Shi, Xiaofei; Zhong, Xiaofang; Han, Yichao; Fu, Shuai; Fang, Chengxiang; Deng, Zixin; Liu, Tiangang

    2017-04-01

    Taxol (paclitaxel) is a diterpenoid compound with significant and extensive applications in the treatment of cancer. The production of Taxol and relevant intermediates by engineered microbes is an attractive alternative to the semichemical synthesis of Taxol. In this study, based on a previously developed platform, the authors first established taxadiene production in mutant E. coli T2 and T4 by engineering of the mevalonate (MVA) pathway. The authors then developed an Agrobacterium tumefaciens-mediated transformation (ATMT) method and verified the strength of heterologous promoters in Alternaria alternata TPF6. The authors next transformed the taxadiene-producing platform into A. alternata TPF6, and the MVA pathway was engineered, with introduction of the plant taxadiene-forming gene. Notably, by co-overexpression of isopentenyl diphosphate isomerase (Idi), a truncated version of 3-hydroxy-3-methylglutaryl-CoA reductase (tHMG1), and taxadiene synthase (TS), the authors could detect 61.9 ± 6.3 μg/L taxadiene in the engineered strain GB127. This is the first demonstration of taxadiene production in filamentous fungi, and the approach presented in this study provides a new method for microbial production of Taxol. The well-established ATMT method and the known promoter strengths facilitated further engineering of taxaenes in this fungus. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cloning and sequence analysis of the meso-diaminopimelate decarboxylase gene from Bacillus methanolicus MGA3 and comparison to other decarboxylase genes.

    PubMed

    Mills, D A; Flickinger, M C

    1993-09-01

    The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) and Corynebacterium glutamicum (40%). Amino acid sequence analysis indicated several regions of conservation among bacterial DAP decarboxylases, eukaryotic ornithine decarboxylases, and arginine decarboxylases, suggesting a common structural arrangement for positioning of substrate and the cofactor pyridoxal 5'-phosphate. The B. methanolicus MGA3 DAP decarboxylase was shown to be a dimer (M(r) 86,000) with a subunit molecular mass of approximately 50,000 Da. This decarboxylase is inhibited by lysine (Ki = 0.93 mM) with a Km of 0.8 mM for DAP. The inhibition pattern suggests that the activity of this enzyme in lysine-overproducing strains of B. methanolicus MGA3 may limit lysine synthesis.

  10. Non-enzymatic synthesis of the coenzymes, uridine diphosphate glucose and cytidine diphosphate choline, and other phosphorylated metabolic intermediates

    NASA Technical Reports Server (NTRS)

    Mar, A.; Dworkin, J.; Oro, J.

    1987-01-01

    Using urea and cyanamide, the two condensing agents considered to have been present on the primitive earth, uridine diphosphate glucose (UDPG), cytidine diphosphate choline (CDP-choline), glucose-1-phosphate (G1P), and glucose-6-phosphate (G6P) were synthesized under simulated prebiotic conditions. The reaction products were separated and identified using paper chromatography, thin layer chromatography, enzymatic analyses, and ion-pair reverse-phase high performance liquid chromatography. The possibility of nonenzymatic synthesis of metabolic intermediates on the primitive earth from simple precursors was thus demonstrated.

  11. S-adenosylmethionine decarboxylase from baker's yeast.

    PubMed Central

    Pösö, H; Sinervirta, R; Jänne, J

    1975-01-01

    1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate. PMID:1108876

  12. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae

    DOE PAGES

    Rodriguez, Sarah; Denby, Charles M.; Van Vu, T.; ...

    2016-03-03

    With increasing concern about the environmental impact of a petroleum based economy, focus has shifted towards greener production strategies including metabolic engineering of microbes for the conversion of plant-based feedstocks to second generation biofuels and industrial chemicals. Saccharomyces cerevisiae is an attractive host for this purpose as it has been extensively engineered for production of various fuels and chemicals. Many of the target molecules are derived from the central metabolite and molecular building block, acetyl-CoA. To date, it has been difficult to engineer S. cerevisiae to continuously convert sugars present in biomass-based feedstocks to acetyl-CoA derived products due to intrinsicmore » physiological constraints—in respiring cells, the precursor pyruvate is directed away from the endogenous cytosolic acetyl-CoA biosynthesis pathway towards the mitochondria, and in fermenting cells pyruvate is directed towards the byproduct ethanol. In this study we incorporated an alternative mode of acetyl-CoA biosynthesis mediated by ATP citrate lyase (ACL) that may obviate such constraints. We characterized the activity of several heterologously expressed ACLs in crude cell lysates, and found that ACL from Aspergillus nidulans demonstrated the highest activity. We employed a push/pull strategy to shunt citrate towards ACL by deletion of the mitochondrial NAD+-dependent isocitrate dehydrogenase (IDH1) and engineering higher flux through the upper mevalonate pathway. We demonstrated that combining the two modifications increases accumulation of mevalonate pathway intermediates, and that both modifications are required to substantially increase production. Finally, we incorporated a block strategy by replacing the native ERG12 (mevalonate kinase) promoter with the copper-repressible CTR3 promoter to maximize accumulation of the commercially important molecule mevalonate. In conclusion, by combining the push/pull/block strategies, we significantly

  13. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Sarah; Denby, Charles M.; Van Vu, T.

    With increasing concern about the environmental impact of a petroleum based economy, focus has shifted towards greener production strategies including metabolic engineering of microbes for the conversion of plant-based feedstocks to second generation biofuels and industrial chemicals. Saccharomyces cerevisiae is an attractive host for this purpose as it has been extensively engineered for production of various fuels and chemicals. Many of the target molecules are derived from the central metabolite and molecular building block, acetyl-CoA. To date, it has been difficult to engineer S. cerevisiae to continuously convert sugars present in biomass-based feedstocks to acetyl-CoA derived products due to intrinsicmore » physiological constraints—in respiring cells, the precursor pyruvate is directed away from the endogenous cytosolic acetyl-CoA biosynthesis pathway towards the mitochondria, and in fermenting cells pyruvate is directed towards the byproduct ethanol. In this study we incorporated an alternative mode of acetyl-CoA biosynthesis mediated by ATP citrate lyase (ACL) that may obviate such constraints. We characterized the activity of several heterologously expressed ACLs in crude cell lysates, and found that ACL from Aspergillus nidulans demonstrated the highest activity. We employed a push/pull strategy to shunt citrate towards ACL by deletion of the mitochondrial NAD+-dependent isocitrate dehydrogenase (IDH1) and engineering higher flux through the upper mevalonate pathway. We demonstrated that combining the two modifications increases accumulation of mevalonate pathway intermediates, and that both modifications are required to substantially increase production. Finally, we incorporated a block strategy by replacing the native ERG12 (mevalonate kinase) promoter with the copper-repressible CTR3 promoter to maximize accumulation of the commercially important molecule mevalonate. In conclusion, by combining the push/pull/block strategies, we significantly

  14. Cloning and sequence analysis of the meso-diaminopimelate decarboxylase gene from Bacillus methanolicus MGA3 and comparison to other decarboxylase genes.

    PubMed Central

    Mills, D A; Flickinger, M C

    1993-01-01

    The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) and Corynebacterium glutamicum (40%). Amino acid sequence analysis indicated several regions of conservation among bacterial DAP decarboxylases, eukaryotic ornithine decarboxylases, and arginine decarboxylases, suggesting a common structural arrangement for positioning of substrate and the cofactor pyridoxal 5'-phosphate. The B. methanolicus MGA3 DAP decarboxylase was shown to be a dimer (M(r) 86,000) with a subunit molecular mass of approximately 50,000 Da. This decarboxylase is inhibited by lysine (Ki = 0.93 mM) with a Km of 0.8 mM for DAP. The inhibition pattern suggests that the activity of this enzyme in lysine-overproducing strains of B. methanolicus MGA3 may limit lysine synthesis. Images PMID:8215365

  15. An enzyme-coupled continuous fluorescence assay for farnesyl diphosphate synthases

    PubMed Central

    Dozier, Jonathan K; Distefano, Mark D

    2012-01-01

    Farnesyl diphosphate synthase (FDPS) catalyzes the conversion of isopentenyl diphosphate and dimethylallyl diphosphate to farnesyl diphosphate, a crucial metabolic intermediate in the synthesis of cholesterol, ubiquinone and prenylated proteins; consequently, much effort has gone into developing inhibitors that target FDPS. Currently most FDPS assays use either radiolabeled substrates and are discontinuous, or monitor pyrophosphate release and not farnesyl diphosphate (FPP) creation. Here we report the development of a continuous coupled enzyme assay for FDPS activity that involves the subsequent incorporation of the FPP product of that reaction into a peptide via the action of protein farnesyltransferase (PFTase). By using a dansylated peptide whose fluorescence quantum yield increases upon farnesylation, the rate of FDPS-catalyzed FPP production can be measured. We show that this assay is more sensitive than existing coupled assays, that it can be used to conveniently monitor FDPS activity in a 96-well plate format and that it can reproduce IC50 values for several previously reported FDPS inhibitors. This new method offers a simple, safe and continuous method to assay FDPS activity that should greatly facilitate the screening of inhibitors of this important target. PMID:22085443

  16. Regulation of the Mevalonate Pathway for the Prevention of Breast Cancer

    DTIC Science & Technology

    2003-08-01

    eicosapentaenoic acid (EPA) as well as the dietary isoprenoid geraniol that inhibit cell proliferation, are inhibitors of HMG-CoA reductase activity in...breast cancer cells. The inhibitory effects of EPA and geraniol on cell proliferation, however, are independent of mevalonate. DHA, on the other hand

  17. Enzymatic process optimization for the in vitro production of isoprene from mevalonate.

    PubMed

    Cheng, Tao; Liu, Hui; Zou, Huibin; Chen, Ningning; Shi, Mengxun; Xie, Congxia; Zhao, Guang; Xian, Mo

    2017-01-09

    As an important bulk chemical for synthetic rubber, isoprene can be biosynthesized by robust microbes. But rational engineering and optimization are often demanded to make the in vivo process feasible due to the complexities of cellular metabolism. Alternative synthetic biochemistry strategies are in fast development to produce isoprene or isoprenoids in vitro. This study set up an in vitro enzyme synthetic chemistry process using 5 enzymes in the lower mevalonate pathway to produce isoprene from mevalonate. We found the level and ratio of individual enzymes would significantly affect the efficiency of the whole system. The optimized process using 10 balanced enzyme unites (5.0 µM of MVK, PMK, MVD; 10.0 µM of IDI, 80.0 µM of ISPS) could produce 6323.5 µmol/L/h (430 mg/L/h) isoprene in a 2 ml in vitro system. In a scale up process (50 ml) only using 1 balanced enzyme unit (0.5 µM of MVK, PMK, MVD; 1.0 µM of IDI, 8.0 µM of ISPS), the system could produce 302 mg/L isoprene in 40 h, which showed higher production rate and longer reaction phase with comparison of the in vivo control. By optimizing the enzyme levels of lower MVA pathway, synthetic biochemistry methods could be set up for the enzymatic production of isoprene or isoprenoids from mevalonate.

  18. Genetics Home Reference: malonyl-CoA decarboxylase deficiency

    MedlinePlus

    ... decarboxylase malonic aciduria malonyl-coenzyme A decarboxylase deficiency MCD deficiency Related Information How are genetic conditions and ... Morrell JC, Wanders RJ, Matalon R, Gould SJ. MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA ...

  19. The cloning, characterization, and functional analysis of a gene encoding an isopentenyl diphosphate isomerase involved in triterpene biosynthesis in the Lingzhi or reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes).

    PubMed

    Wu, Feng-Li; Shi, Liang; Yao, Jian; Ren, Ang; Zhou, Chao; Mu, Da-Shuai; Zhao, Ming-Wen

    2013-01-01

    An isopentenyl diphosphate isomerase (IDI) gene, GlIDI, was isolated from Ganoderma lucidum, which produces triterpenes through the mevalonate pathway. The open reading frame of GlIDI encodes a 252 amino acid polypeptide with a theoretical molecular mass of 28.71 kDa and a theoretical isoelectric point of 5.36. GlIDI is highly homologous to other fungal IDIs and contains conserved active residues and nudix motifs shared by the IDI protein family. The color complementation assay indicated that GlIDI can accelerate the accumulation of β-carotene and confirmed that the cloned complementary DNA encoded a functional GlIDI protein. Gene expression analysis showed that the GlIDI transcription level was relatively low in the mycelia and reached a relatively high level in the mushroom primordia. In addition, its expression level could be up-regulated by 254 µM methyl jasmonate. Our results suggest that this enzyme may play an important role in triterpene biosynthesis.

  20. D-tagatose 1,6-diphosphate aldolase from lactic streptococci: purification, properties, and use in measuring intracellular tagatose 1,6-diphosphate.

    PubMed Central

    Crow, V L; Thomas, T D

    1982-01-01

    Two D-ketohexose 1,6-diphosphate aldolases are present in Streptococcus cremoris E8 and S. lactis C10. One aldolase, which was induced by growth on either lactose or galactose, was active with both tagatose 1,6-diphosphate (TDP) and fructose 1,6-diphosphate (FDP), having a lower Km and a higher Vmax with TDP as the substrate. This enzyme, named TDP aldolase, had properties typical of a class I aldolase, being insensitive to EDTA and showing substrate-dependent inactivation by sodium borohydride. Sodium dodecyl sulfate-gel electrophoresis indicated a subunit molecular weight of 34,500. The amino acid composition of TDP aldolase is reported. When the enzyme was incubated with either triose phosphates or FDP, the equilibrium mixture contained an FDP/TDP ratio of 6.9:1. The other aldolase, which had properties typical of a class II aldolase, showed activity with FDP but not with TDP. The intracellular TDP concentration, measured with the purified TDP aldolase, was 0.4 to 4.0 mM in cells growing on lactose or galactose and was lower (0 to 1.0 mM) in cells growing on glucose. The intracellular concentration of FDP was always higher than that of TDP. The role of ketohexose diphosphates in the regulation of end product fermentation by lactic streptococci is discussed. PMID:6807956

  1. Properties of ribulose diphosphate carboxylase immobilized on porous glass

    NASA Technical Reports Server (NTRS)

    Shapira, J.; Hanson, C. L.; Lyding, J. M.; Reilly, P. J.

    1974-01-01

    Ribulose-1,5-diphosphate carboxylase from spinach has been bound to arylamine porous glass with a diazo linkage and to alklamine porous glass with glutaraldehyde. Stability at elevated temperatures and responses to changes of pH and ribulose-1,5-diphosphate, Mg(2+), and dithiothreitol concentrations were not significantly different from the soluble enzyme, though stability at 4 C was somewhat improved.

  2. Current insights into pathogenesis of Parkinson's disease: Approach to mevalonate pathway and protective role of statins.

    PubMed

    Saeedi Saravi, Seyed Soheil; Saeedi Saravi, Seyed Sobhan; Khoshbin, Katayoun; Dehpour, Ahmad Reza

    2017-06-01

    Although Parkinson's disease (PD) is considered as the second most common life threatening age-related neurodegenerative disorder, but the underlying mechanisms for pathogenesis of PD are remained to be fully found. However, a complex relationship between genetic and environmental predisposing factors are involved in progression of PD. Dopaminergic neuronal cell death caused by mutations and accumulation of α-synuclein in Lewy bodies and neurites was suggested as the main strategy for PD, but current studies have paid attention to the role of mevalonate pathway in incidence of neurodegenerative diseases including PD. The discovery may change the therapeutic protocols from symptomatic treatment by dopamine precursors and agonists to neurodegenerative process halting drugs. Moreover, the downstream metabolites of mevalonate pathway may be used as diagnostic biomarkers for early diagnosis of PD. Statins, as cholesterol lowering drugs, may ameliorate the enzyme complex dysfunction, a key step in the progression of the neurodegenerative disorders, oxidative stress-induced damage and neuro-inflammation. Statins exert the neuroprotective effects on striatal dopaminergic neurons through blocking the mevalonate pathway. In the present review, we have focused on the new approaches to pathogenesis of PD regarding to mevalonate pathway, in addition to the previous understood mechanisms for the disease. It tries to elucidate the novel findings about PD for the development of future diagnostic and therapeutic strategies. Moreover, we explain the controversial role of statins in improvement or progression of PD and the position of these drugs in neuroprotection in PD patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. The Mevalonate Pathway and Innate Immune Hyper-Responsiveness in the Pathogenesis of COPD and Lung Cancer: Potential for Chemoprevention.

    PubMed

    Young, Robert P; Hopkins, Raewyn J

    2017-01-01

    Current evidence suggests that persisting and/or exaggerated inflammation in the lungs initiated by smoking, and up-regulated through genetic susceptibility, may result in lung remodelling and impaired repair. The mevalonate pathway, through its modifying effects on innate immune responsiveness, may be involved in these processes providing a plausible pathogenic link between the development of chronic obstructive pulmonary disease (COPD) and lung cancer. The mevalonate pathway, mediates these effects through important intra-cellular signalling molecules called guanine phosphate transferases (GTPases) such as Rho-A. Smoke exposure activates cell surface proteins which, through the mediating influence of GTPases, then modify the activation of NFkB and its downstream effects on genes underlying innate immunity, neutrophilic inflammation and carcinogenesis. The mevalonate pathway is readily and substantially modified by inhibition of the enzyme 3-hydroxy-3-methyl-glutaryl-Coenzyme A (HMGCo-A) reductase. This enzyme controls the rate limiting step of the mevalonate pathway and is subject to inhibition by statin drugs and small chain fatty acids derived from high dietary fibre intake. Thus inhibiting the mevelonate pathway, and dampening the innate immune response to smoking, may play a critical role in modifying pulmonary inflammation and lung remodelling. Such an action might slow the progression of COPD and reduce the tendency to the development of lung cancer. This review examines the pre-clinical and clinical data suggesting that HMGCoA-reductase inhibition and it's modification of the mevalonate pathway, may have a chemo-preventive effect on lung cancer, particularly in patients with COPD where pulmonary inflammation is increased and the risk of lung cancer is greatest. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Activities of arginine and ornithine decarboxylases in various plant species.

    PubMed

    Birecka, H; Bitonti, A J; McCann, P P

    1985-10-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to V(max), ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. alpha-Difluoromethylornithine and alpha-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  5. Microbial modulation of bacoside A biosynthetic pathway and systemic defense mechanism in Bacopa monnieri under Meloidogyne incognita stress.

    PubMed

    Gupta, Rupali; Singh, Akanksha; Srivastava, Madhumita; Singh, Vivek; Gupta, M M; Pandey, Rakesh

    2017-02-03

    Plant-associated beneficial microbes have been explored to fulfill the imperative function for plant health. However, their impact on the host secondary metabolite production and nematode disease management remains elusive. Our present work has shown that chitinolytic microbes viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 singly as well as in combination modulated the biosynthetic pathway of bacoside A and systemic defense mechanism against Meloidogyne incognita in Bacopa monnieri. Interestingly, expression of bacoside biosynthetic pathway genes (3-Hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate diphosphate decarboxylase, and squalene synthase) were upregulated in plants treated with the microbial combination in the presence as well as in absence of M. incognita stress. These microbes not only augmented bacoside A production (1.5 fold) but also strengthened host resistance via enhancement in chlorophyll a, defense enzymes and phenolic compounds like gallic acid, syringic acid, ferulic acid and cinnamic acid. Furthermore, elevated lignification and callose deposition in the microbial combination treated plants corroborate well with the above findings. Overall, the results provide novel insights into the underlying mechanisms of priming by beneficial microbes and underscore their capacity to trigger bacoside A production in B. monnieri under biotic stress.

  6. Microbial modulation of bacoside A biosynthetic pathway and systemic defense mechanism in Bacopa monnieri under Meloidogyne incognita stress

    PubMed Central

    Gupta, Rupali; Singh, Akanksha; Srivastava, Madhumita; Singh, Vivek; Gupta, M. M.; Pandey, Rakesh

    2017-01-01

    Plant-associated beneficial microbes have been explored to fulfill the imperative function for plant health. However, their impact on the host secondary metabolite production and nematode disease management remains elusive. Our present work has shown that chitinolytic microbes viz., Chitiniphilus sp. MTN22 and Streptomyces sp. MTN14 singly as well as in combination modulated the biosynthetic pathway of bacoside A and systemic defense mechanism against Meloidogyne incognita in Bacopa monnieri. Interestingly, expression of bacoside biosynthetic pathway genes (3-Hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate diphosphate decarboxylase, and squalene synthase) were upregulated in plants treated with the microbial combination in the presence as well as in absence of M. incognita stress. These microbes not only augmented bacoside A production (1.5 fold) but also strengthened host resistance via enhancement in chlorophyll a, defense enzymes and phenolic compounds like gallic acid, syringic acid, ferulic acid and cinnamic acid. Furthermore, elevated lignification and callose deposition in the microbial combination treated plants corroborate well with the above findings. Overall, the results provide novel insights into the underlying mechanisms of priming by beneficial microbes and underscore their capacity to trigger bacoside A production in B. monnieri under biotic stress. PMID:28157221

  7. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase.

    PubMed

    Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S

    2013-03-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.

  8. Isolation and characterization of farnesyl diphosphate synthase from the cotton boll weevil, Anthonomus grandis.

    PubMed

    Taban, A Huma; Tittiger, Claus; Blomquist, Gary J; Welch, William H

    2009-06-01

    Farnesyl diphosphate synthase (FPPS) catalyzes the consecutive condensation of two molecules of isopentenyl diphosphate with dimethylallyl diphosphate to form farnesyl diphosphate (FPP). In insects, FPP is used for the synthesis of ubiquinones, dolicols, protein prenyl groups, and juvenile hormone. A full-length cDNA of FPPS was cloned from the cotton boll weevil, Anthonomus grandis (AgFPPS). AgFPPS cDNA consists of 1,835 nucleotides and encodes a protein of 438 amino acids. The deduced amino acid sequence has high similarity to previously isolated insect FPPSs and other known FPPSs. Recombinant AgFPPS expressed in E. coli converted labeled isopentenyl diphosphate in the presence of dimethylallyl diphosphate to FPP. Southern blot analysis indicated the presence of a single copy gene. Using molecular modeling, the three-dimensional structure of coleopteran FPPS was determined and compared to the X-ray crystal structure of avian FPPS. The alpha-helical fold is conserved in AgFPPS and the size of the active site cavity is consistent with the enzyme being a FPPS. (c) 2009 Wiley Periodicals, Inc.

  9. Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba.

    PubMed

    Chen, Qiangwen; Yan, Jiaping; Meng, Xiangxiang; Xu, Feng; Zhang, Weiwei; Liao, Yongling; Qu, Jinwang

    2017-01-02

    Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba . Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C -acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT ( GbAACT , GenBank Accession No. KX904942) and MVK ( GbMVK , GenBank Accession No. KX904944) were cloned from G. biloba . The deduced GbAACT and GbMVK proteins contain 404 and 396 amino acids with the corresponding open-reading frame (ORF) sizes of 1215 bp and 1194 bp, respectively. Tissue expression pattern analysis revealed that GbAACT was highly expressed in ginkgo fruits and leaves, and GbMVK was highly expressed in leaves and roots. The functional complementation of GbAACT in AACT-deficient Saccharomyces cerevisiae strain Δerg10 and GbMVK in MVK-deficient strain Δerg12 confirmed that GbAACT mediated the conversion of mevalonate acetyl-CoA to acetoacetyl-CoA and GbMVK mediated the conversion of mevalonate to mevalonate phosphate. This observation indicated that GbAACT and GbMVK are functional genes in the cytosolic mevalonate (MVA) biosynthesis pathway. After G. biloba seedlings were treated with methyl jasmonate and salicylic acid, the expression levels of GbAACT and GbMVK increased, and TTL production was enhanced. The cloning, characterization, expression and functional analysis of GbAACT and GbMVK will be helpful to understand more about the role of these two genes involved in TTL biosynthesis.

  10. The Small Subunit of Snapdragon Geranyl Diphosphate Synthase Modifies the Chain Length Specificity of Tobacco Geranylgeranyl Diphosphate Synthase in Planta[W

    PubMed Central

    Orlova, Irina; Nagegowda, Dinesh A.; Kish, Christine M.; Gutensohn, Michael; Maeda, Hiroshi; Varbanova, Marina; Fridman, Eyal; Yamaguchi, Shinjiro; Hanada, Atsushi; Kamiya, Yuji; Krichevsky, Alexander; Citovsky, Vitaly; Pichersky, Eran; Dudareva, Natalia

    2009-01-01

    Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta. PMID:20028839

  11. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    PubMed Central

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  12. Activities of Arginine and Ornithine Decarboxylases in Various Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species. No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed. In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum. PMID:16664442

  13. On-demand anakinra treatment is effective in mevalonate kinase deficiency.

    PubMed

    Bodar, E J; Kuijk, L M; Drenth, J P H; van der Meer, J W M; Simon, A; Frenkel, J

    2011-12-01

    Mevalonate kinase deficiency (MKD) is a hereditary autoinflammatory syndrome marked by recurrent attacks of fever and inflammation. Severe enzyme deficiency results in mevalonic aciduria (MA) and milder deficiency in hyperimmunoglobulin D syndrome (HIDS). Treatment remains a challenge. To observe the effect of the recombinant interleukin-1 receptor antagonist anakinra in patients with MKD. A prospective observational study was undertaken. Two patients with MA started continuous treatment with anakinra (1-2 mg/kg/day) and nine patients with HIDS chose between continuous treatment and on-demand treatment (starting at first symptoms of attack, 100 mg/day or 1 mg/kg/day for 5-7 days). Anakinra induced partial remission in one patient with MA but there was no response in the other patient with MA. In one patient with HIDS continuous treatment induced complete remission for 7 months but was stopped because of side effects. Eight patients with HIDS preferred on-demand treatment from the start. This induced a clinical response (≥50% reduction in duration) in 8 of 12 treated attacks without a change in attack frequency. Anakinra prevented fever attacks due to vaccination without inhibiting antibody induction. No major side effects were seen. On-demand treatment with anakinra in HIDS decreases the duration and severity of fever attacks. Because of the burden of daily injections and relatively long asymptomatic intervals of HIDS, all patients with HIDS preferred on-demand treatment.

  14. Regulation of the Mevalonate Pathway for the Prevention of Breast Cancer

    DTIC Science & Technology

    2000-08-01

    establish growth conditions of all cell lines and concentration-response profiles for the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid ... acids (PUFAs) can be accounted for by their inhibitory effect on the cholesterol biosynthesis (mevalonate) pathway. In Task 1, we have shown that the...polyunsaturated fatty acids (PUFAs) is associated with a decreased risk of breast cancer in women. These fatty acids also inhibit the development of

  15. α-VINYLLYSINE AND α-VINYLARGININE ARE TIME-DEPENDENT INHIBITORS OF THEIR COGNATE DECARBOXYLASES

    PubMed Central

    Berkowitz, David B.; Jahng, Wan-Jin; Pedersen, Michelle L.

    2017-01-01

    (±)-α-Vinyllysine and (±)-α-vinylarginine display time-dependent inhibition of L-lysine decarboxylase from B. cadaveris, and L-arginine decarboxylase from E. coli, respectively. A complete Kitz-Wilson analysis has been performed using a modification of the Palcic continuous UV assay for decarboxylase activity. PMID:29123334

  16. Regulation of the Mevalonate Pathway for the Prevention of Breast Cancer

    DTIC Science & Technology

    2002-08-01

    eicosapentaenoic acid (EPA) on growth of MCF-7 cells. In Task 4 (new), we determined that mevalonate promotes the growth of mammary tumors in nude mice, and...serum medium (2% fetal bovine serum) was used to support MCF-7 growth during test treatments. The effects of the n-3 PUFAs eicosapentaenoic acid (EPA...mammary carcinogenesis by n-3 polyunsaturated fatty acids (PUFAs) can be accounted for by their inhibitory effect on the cholesterol biosynthesis

  17. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    PubMed

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  18. A kinetic study on the chemical cleavage of nucleoside diphosphate sugars.

    PubMed

    Huhta, Eija; Parjanen, Atte; Mikkola, Satu

    2010-03-30

    Nucleoside diphosphate sugars serve in essential roles in metabolic processes. They have, therefore, been used in mechanistic studies on glycosylation reactions, and their analogues have been synthesised as enzyme and receptor inhibitors. Despite extensive biochemical research, little is known about their chemical reactions. In the present work the chemical cleavage of two different types of nucleoside diphosphate sugars has been studied. UDP-Glc is phosphorylated at the anomeric carbon, whereas in ADP-Rib C-1 is unsubstituted, allowing hence the equilibrium between cyclic hemiacetal and acyclic carbonyl forms. Due to the structural difference, these substrates react via different pathways under slightly alkaline conditions: while UDP-Glc reacts exclusively by a nucleophilic attack of a glucose hydroxyl group on the diphosphate moiety, ADP-Rib undergoes a complex reaction sequence that involves isomerisation processes of the acyclic ribose sugar and results in a release of ADP. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Elevated guanosine 5'-diphosphate 3'-diphosphate level inhibits bacterial growth and interferes with FtsZ assembly.

    PubMed

    Yamaguchi, Takayoshi; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2015-12-01

    FtsZ, a protein essential for prokaryotic cell division, forms a ring structure known as the Z-ring at the division site. FtsZ has a GTP binding site and is assembled into linear structures in a GTP-dependent manner in vitro. We assessed whether guanosine 5'-diphosphate 3'-diphosphate (ppGpp), a global regulator of gene expression in starved bacteria, affects cell division in Salmonella Paratyphi A. Elevation of intracellular ppGpp levels by using the relA expression vector induced repression of bacterial growth and incorrect FtsZ assembly. We found that FtsZ forms helical structures in the presence of ppGpp by using the GTP binding site; however, ppGpp levels required to form helical structures were at least 20-fold higher than the required GTP levels in vitro. Furthermore, once formed, helical structures did not change to the straight form even after GTP addition. Our data indicate that elevation of the ppGpp level leads to inhibition of bacterial growth and interferes with FtsZ assembly. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F Forouhar; S Lew; J Seetharaman

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. Themore » TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.« less

  1. Ornithine Decarboxylase, Polyamines, and Pyrrolizidine Alkaloids in Senecio and Crotalaria

    PubMed Central

    Birecka, Helena; Birecki, Mieczyslaw; Cohen, Eric J.; Bitonti, Alan J.; McCann, Peter P.

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence. PMID:16665870

  2. Ornithine decarboxylase, polyamines, and pyrrolizidine alkaloids in senecio and crotalaria.

    PubMed

    Birecka, H; Birecki, M; Cohen, E J; Bitonti, A J; McCann, P P

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here-using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors-endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence-with relatively very high levels of these compounds-in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.

  3. Regulation of S-adenosylmethionine decarboxylase by polyamines in Ehrlich ascites-carcinoma cells grown in culture

    PubMed Central

    Alhonen-Hongisto, Leena

    1980-01-01

    1. The mechanism of stimulation of S-adenosylmethionine decarboxylase (EC 4.1.1.50) activity by inhibitors of ornithine decarboxylase (EC 4.1.1.17), namely dl-α-difluoromethylornithine, 1,3-diaminopropane and 1,3-diaminopropan-2-ol, was studied in Ehrlich ascites-tumour cells grown in suspension cultures. 2. Difluoromethylornithine and diaminopropane, although decreasing the content of putrescine and spermidine, markedly stimulated adenosylmethionine decarboxylase activity after exposure of the cells to the drugs for 8h, whereas the effect of diaminopropanol only became apparent many hours later. In tumour cells exposed to any of the inhibitors, a close negative correlation existed between the activity of adenosylmethionine decarboxylase and the intracellular concentration of spermidine and/or spermidine plus spermine, suggesting that a depletion of higher polyamines triggered enhancement of adenosylmethionine decarboxylase activity. 3. The mechanism of difluoromethylornithine- and diaminopropane-induced stimulation of adenosylmethionine decarboxylase involved (a) a marked increase in the apparent half-life of the enzyme and (b) an induction of enhanced enzyme synthesis. Diaminopropanol seemed to act solely via an induction mechanism. 4. The increased adenosylmethionine decarboxylase activity elicited by difluoromethylornithine could be restored to control values by micromolar concentrations of exogenous spermidine and spermine in 4h and by putrescine in 22h. In addition to the natural polyamines, elevated adenosylmethionine decarboxylase activity could be repressed by 3,3′-iminodipropylamine, a close analogue of spermidine, but not by non-physiological diamines. 5. Addition of spermidine and actinomycin D to cultures treated with difluoromethylornithine produced a comparable decay of enhanced adenosylmethionine decarboxylase activity (with an apparent half-life of about 2.5h), whereas the effect of cycloheximide was much more rapid. The present results suggest

  4. Structure and Function of 4-Hydroxyphenylacetate Decarboxylase and Its Cognate Activating Enzyme.

    PubMed

    Selvaraj, Brinda; Buckel, Wolfgang; Golding, Bernard T; Ullmann, G Matthias; Martins, Berta M

    2016-01-01

    4-Hydroxyphenylacetate decarboxylase (4Hpad) is the prototype of a new class of Fe-S cluster-dependent glycyl radical enzymes (Fe-S GREs) acting on aromatic compounds. The two-enzyme component system comprises a decarboxylase responsible for substrate conversion and a dedicated activating enzyme (4Hpad-AE). The decarboxylase uses a glycyl/thiyl radical dyad to convert 4-hydroxyphenylacetate into p-cresol (4-methylphenol) by a biologically unprecedented Kolbe-type decarboxylation. In addition to the radical dyad prosthetic group, the decarboxylase unit contains two [4Fe-4S] clusters coordinated by an extra small subunit of unknown function. 4Hpad-AE reductively cleaves S-adenosylmethionine (SAM or AdoMet) at a site-differentiated [4Fe-4S]2+/+ cluster (RS cluster) generating a transient 5'-deoxyadenosyl radical that produces a stable glycyl radical in the decarboxylase by the abstraction of a hydrogen atom. 4Hpad-AE binds up to two auxiliary [4Fe-4S] clusters coordinated by a ferredoxin-like insert that is C-terminal to the RS cluster-binding motif. The ferredoxin-like domain with its two auxiliary clusters is not vital for SAM-dependent glycyl radical formation in the decarboxylase, but facilitates a longer lifetime for the radical. This review describes the 4Hpad and cognate AE families and focuses on the recent advances and open questions concerning the structure, function and mechanism of this novel Fe-S-dependent class of GREs. © 2016 S. Karger AG, Basel.

  5. Identification of Isopentenol Biosynthetic Genes from Bacillus subtilis by a Screening Method Based on Isoprenoid Precursor Toxicity▿

    PubMed Central

    Withers, Sydnor T.; Gottlieb, Shayin S.; Lieu, Bonny; Newman, Jack D.; Keasling, Jay D.

    2007-01-01

    We have developed a novel method to clone terpene synthase genes. This method relies on the inherent toxicity of the prenyl diphosphate precursors to terpenes, which resulted in a reduced-growth phenotype. When these precursors were consumed by a terpene synthase, normal growth was restored. We have demonstrated that this method is capable of enriching a population of engineered Escherichia coli for those clones that express the sesquiterpene-producing amorphadiene synthase. In addition, we enriched a library of genomic DNA from the isoprene-producing bacterium Bacillus subtilis strain 6051 in E. coli engineered to produce elevated levels of isopentenyl diphosphate and dimethylallyl diphosphate. The selection resulted in the discovery of two genes (yhfR and nudF) whose protein products acted directly on the prenyl diphosphate precursors and produced isopentenol. Expression of nudF in E. coli engineered with the mevalonate-based isopentenyl pyrophosphate biosynthetic pathway resulted in the production of isopentenol. PMID:17693564

  6. GLUTAMIC DECARBOXYLASE OF ERGOT, CLAVICEPS PURPUREA

    PubMed Central

    Anderson, John A.; Cheldelin, Vernon H.; King, Tsoo E.

    1961-01-01

    Anderson, John A. (Oregon State University, Corvallis), Vernon H. Cheldelin, and Tsoo E. King. Glutamic decarboxylase of ergot, Claviceps purpurea. J. Bacteriol. 82:354–358. 1961.—l-Glutamic acid is the only naturally occurring amino acid which can be decarboxylated by cell-free extracts of Claviceps purpurea. This decarboxylase was partially purified and the properties of the enzyme studied. The specific activity of the purified preparation was 111 μliters per 10 min per mg of protein. The products formed, stability, inhibition, stimulation of activity with pyridoxal phosphate, and pH activity curve were typical of l-glutamic decarboxylase in Escherichia coli and other microorganisms. The substrate constants at pH 4.6, 5.25, and 5.65 were 0.0169 m, 0.0174 m, and 0.0139 m, respectively. The respective maximal velocities at these pH values were 104, 104, and 90 μliters per 10 min. The pH optimum was 4.8 to 5.2. The enzyme was unstable below pH 4.5 and it was suggested that the fall in activity at the lower end of the pH curve was due to inactivation of the enzyme. The decrease in activity above pH 5.2 did not appear to be due to a change in affinity of enzyme for substrate but to a change of the enzyme-substrate complex into an inactive form. PMID:13683214

  7. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  8. Lack of Prenylated Proteins, Autophagy Impairment and Apoptosis in SH-SY5Y Neuronal Cell Model of Mevalonate Kinase Deficiency.

    PubMed

    Tricarico, Paola Maura; Romeo, Alessandra; Gratton, Rossella; Crovella, Sergio; Celsi, Fulvio

    2017-01-01

    Mevalonate Kinase Deficiency (MKD), is a hereditary disease due to mutations in mevalonate kinase gene (MVK). MKD has heterogeneous clinical phenotypes: the correlation between MVK mutations and MKD clinical phenotype is still to be fully elucidated. Deficiency of prenylated proteins has been hypothesized as possible MKD pathogenic mechanism. Based on this hypothesis and considering that neurologic impairment characterizes Mevalonic Aciduria (MA), the most severe form of MKD, we studied the effects of I268T and N301T MVK mutations on protein prenylation, autophagy and programmed cell death in SH-SY5Y neuroblastoma cell lines. SH-SY5Y cells were transiently transfected, with the pCMV-6 plasmid containing MVK wild type and the two mutated sequences. Protein prenylation levels were evaluated using GFP-RhoA-F to assess farnesylation, and GFP-RhoA to evaluate geranylgeranylation; autophagy was measured by evaluating LC3 and p62 protein levels, while Annexin V-FITC and Propidium Iodide staining allowed apoptosis detection. MVK mutants' over-expression causes decreased levels of farnesylation and geranylgeranylation, and also increased LC3 lipidation in SH-SY5Y, with concomitant p62 accumulation. Treatment with bafilomycin A1 (an inhibitor of vacuolar H+-ATPase, a late autophagy inhibitor) further increase LC3-II and p62 levels, suggesting that degradation of autophagolysosome could be impaired. SH-SY5Y, with both MVK mutants, showed apoptosis increase; the presence of N301T associated with augmented cell death. We hypothesize that mevalonate pathway impairment causes alteration of farnesylation and geranylgeranylation proteins and alteration of the autophagic flux; these changes can induce apoptosis, possibly more relevant in the presence of N301T mutation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  9. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli.

    PubMed

    Zhu, Fayin; Zhong, Xiaofang; Hu, Mengzhu; Lu, Lei; Deng, Zixin; Liu, Tiangang

    2014-07-01

    Approaches using metabolic engineering and synthetic biology to overproduce terpenoids, such as the precursors of taxol and artemisinin, in microbial systems have achieved initial success. However, due to the lack of steady-state kinetic information and incomplete understanding of the terpenoid biosynthetic pathway, it has been difficult to build a highly efficient, universal system. Here, we reconstituted the mevalonate pathway to produce farnesene (a precursor of new jet fuel) in vitro using purified protein components. The information from this in vitro reconstituted system guided us to rationally optimize farnesene production in E. coli by quantitatively overexpressing each component. Targeted proteomic assays and intermediate assays were used to determine the metabolic status of each mutant. Through targeted engineering, farnesene production could be increased predictably step by step, up to 1.1 g/L (∼ 2,000 fold) 96 h after induction at the shake-flask scale. The strategy developed to release the potential of the mevalonate pathway for terpenoid overproduction should also work in other multistep synthetic pathways. © 2014 Wiley Periodicals, Inc.

  10. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus

    USDA-ARS?s Scientific Manuscript database

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  11. Identification of bottlenecks in Escherichia coli engineered for the production of CoQ(10).

    PubMed

    Cluis, Corinne P; Ekins, Andrew; Narcross, Lauren; Jiang, Heng; Gold, Nicholas D; Burja, Adam M; Martin, Vincent J J

    2011-11-01

    In this work, Escherichia coli was engineered to produce a medically valuable cofactor, coenzyme Q(10) (CoQ(10)), by removing the endogenous octaprenyl diphosphate synthase gene and functionally replacing it with a decaprenyl diphosphate synthase gene from Sphingomonas baekryungensis. In addition, by over-expressing genes coding for rate-limiting enzymes of the aromatic pathway, biosynthesis of the CoQ(10) precursor para-hydroxybenzoate (PHB) was increased. The production of isoprenoid precursors of CoQ(10) was also improved by the heterologous expression of a synthetic mevalonate operon, which permits the conversion of exogenously supplied mevalonate to farnesyl diphosphate. The over-expression of these precursors in the CoQ(10)-producing E. coli strain resulted in an increase in CoQ(10) content, as well as in the accumulation of an intermediate of the ubiquinone pathway, decaprenylphenol (10P-Ph). In addition, the over-expression of a PHB decaprenyl transferase (UbiA) encoded by a gene from Erythrobacter sp. NAP1 was introduced to direct the flux of DPP and PHB towards the ubiquinone pathway. This further increased CoQ(10) content in engineered E. coli, but decreased the accumulation of 10P-Ph. Finally, we report that the combined over-production of isoprenoid precursors and over-expression of UbiA results in the decaprenylation of para-aminobenzoate, a biosynthetic precursor of folate, which is structurally similar to PHB. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Role of isopentenyl-diphosphate isomerase in heterologous cyanobacterial (Synechocystis) isoprene production.

    PubMed

    Chaves, Julie E; Romero, Paloma Rueda; Kirst, Henning; Melis, Anastasios

    2016-12-01

    Heterologous production of isoprene (C 5 H 8 ) hydrocarbons in cyanobacteria, emanating from sunlight, CO 2 , and water, is now attracting increasing attention. The concept entails application of an isoprene synthase transgene from terrestrial plants, heterologously expressed in cyanobacteria, aiming to reprogram carbon flux in the terpenoid biosynthetic pathway toward formation and spontaneous release of this volatile chemical from the cell and liquid culture. However, flux manipulations and carbon-partitioning reactions between isoprene (the product) and native terpenoid biosynthesis for cellular needs are not yet optimized for isoprene yield. The primary reactant for isoprene biosynthesis is dimethylallyl diphosphate (DMAPP), whereas both DMAPP and its isopentenyl diphosphate (IPP) isomer are needed for cellular terpenoid biosynthesis. The present work addressed the function of an isopentenyl diphosphate (IPP) isomerase in cyanobacteria and its role in carbon partitioning between IPP and DMAPP, both of which serve, in variable ratios, as reactants for the synthesis of different cellular terpenoids. The work was approached upon the heterologous expression in Synechocystis of the "isopentenyl diphosphate isomerase" gene (FNI) from Streptococcus pneumoniae, using isoprene production as a "reporter process" for substrate partitioning between DMAPP and IPP. It is shown that transgenic expression of the FNI gene in Synechocystis resulted in a 250 % increase in the "reporter isoprene" rate and yield, suggesting that the FNI isomerase shifted the endogenous DMAPP-IPP steady-state pool size toward DMAPP, thereby enhancing rates and yield of isoprene production. The work provides insight into the significance and functional role of the IPP isomerase in these photosynthetic microorganisms.

  13. Overexpression of an archaeal geranylgeranyl diphosphate synthase in Escherichia coli cells.

    PubMed

    Ohto, C; Nakane, H; Hemmi, H; Ohnuma, S; Obata, S; Nishino, T

    1998-06-01

    An archaeal geranylgeranyl diphosphate synthase was overexpressed in Escherichia coli cells as fusion proteins. These fusion proteins retained their thermostability and had higher specific activity than did a partially purified native enzyme Previously reported. We purified 24.3 mg of MBP (maltose-binding protein)-fusion protein and 5.4 mg of GST (glutathione S-transferase)-fusion protein from a one-liter culture of E. coli. The MBP-fusion proteins existed in dimer, tetramer, octamer, or dodecamer form, and their product specificities were altered according to the oligomerization. The MBP-fusion protein has protease-sensitive sites in the portion corresponding to geranylgeranyl diphosphate synthase.

  14. ALLYLISOPROPYLACETAMIDE INDUCES RAT HEPATIC ORNITHINE DECARBOXYLASE

    EPA Science Inventory

    In rat liver, allylisopropylacetamide (AIA) treatment strongly induced (25-fold) the activity of rat hepatic ornithine decarboxylase (ODC). y either the oral or the subcutaneous routes, AIA produced a long-lasting induction (30 to 4O hours) of hepatic ODC activity. hree analogs o...

  15. The Regulation of the Mevalonate Pathway for the Prevention of Breast Cancer

    DTIC Science & Technology

    2001-08-01

    the ability of mevalonate to rescue inhibition of cell proliferation by n- 3 PUFAs ( EPA and DHA ) is being ascertained in 3 human breast cancer cell...HMG-CoA reductase activity in response to treatment with the n- 3 PUFA EPA , compared to the n-6 PUFA LA. However, unexpectedly, EPA appears to... omega - 3 fatty acids on human breast cancer growth and metastases in nude mice. J Natl Cancer Inst, 1993. 85(21): p. 1743-7. 7. El-Sohemy, A. and M.C

  16. Assaying Ornithine and Arginine Decarboxylases in Some Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    A release of 14CO2 not related to ornithine decarboxylase activity was found in crude leaf extracts from Lycopersicon esculentum, Avena sativa, and especially from the pyrrolizidine alkaloid-bearing Heliotropium angiospermum when incubated with [1-14C]- or [U-14C]ornithine. The total 14CO2 produced was about 5- to 100-fold higher than that due to ornithine decarboxylase activities calculated from labeled putrescine (Put) found by thin-layer electrophoresis in the incubation mixtures. Partial purification with (NH4)2SO4 did not eliminate completely the interfering decarboxylation. When incubated with labeled arginine, a very significant 14CO2 release not related to arginine decarboxylase activity was observed only in extracts from H. angiospermum leaves, especially in Tris·HCl buffer. Under the assay conditions, these extracts exhibited oxidative degradation of added Put and agmatine (Agm) and also revealed a high arginase activity. Amino-guanidine at 0.1 to 0.2 millimolar prevented Put degradation and greatly decreased oxidative degradation of Agm; ornithine at 15 to 20 millimolar significantly inhibited arginase activity. A verification of the reliability of the standard 14CO2-based method by assessing labeled Put and/or Agm—formed in the presence of added aminoguanidine and/or ornithine when needed—is recommended especially when crude or semicrude plant extracts are assayed. When based on Put and/or Agm formed at 1.0 to 2.5 millimolar of substrate, the activities of ornithine decarboxylase and arginine decarboxylase in the youngest leaves of the tested species ranged between 1.1 and 3.6 and 1 and 1600 nanomoles per hour per gram fresh weight, respectively. The enzyme activities are discussed in relation to the biosynthesis of pyrrolizidine alkaloids. PMID:16664441

  17. Dependence of the product chain-length on detergents for long-chain E-polyprenyl diphosphate synthases

    PubMed Central

    Pan, Jian-Jung; Ramamoorthy, Gurusankar; Poulter, C. Dale

    2013-01-01

    Long-chain E-polyprenyl diphosphate synthases (E-PDS) catalyze repetitive addition of isopentenyl diphosphate (IPP) to the growing prenyl chain of an allylic diphosphate. The polyprenyl diphosphate products are required for the biosynthesis of ubiquinones and menaquinones required for electron transport during oxidative phosphorylation to generate ATP. In vitro, the long-chain PDSs require addition of phospholipids or detergents to the assay buffer to enhance product release and maintain efficient turnover. During preliminary assays of product chain-length with anionic, zwitterionic, and non-ionic detergents, we discovered considerable variability. Examination of a series of non-ionic PEG detergents with several long-chain E-PDSs from different organisms revealed that in vitro incubations with nonaethylene glycol monododecyl ether or Triton X-100 typically gave chain lengths that corresponded to those of the isoprenoid moieties in respiratory quinones synthesized in vivo. In contrast incubations in buffer with n-butanol, CHAPS, DMSO, n-octyl-β-glucopyranoside, or β-cyclodextrin or in buffer without detergent typically proceeded more slowly and gave a broad range of chain lengths. PMID:23802587

  18. Immunochemical study of uroporphyrinogen decarboxylase in a patient with mild hepatoerythropoietic porphyria.

    PubMed Central

    Fujita, H; Sassa, S; Toback, A C; Kappas, A

    1987-01-01

    Hepatoerythropoietic porphyria (HEP) is due to a marked deficiency of uroporphyrinogen (URO) decarboxylase, a cytosolic enzyme in the heme biosynthetic pathway. Using a radioimmunoassay method, we determined the concentration of URO decarboxylase protein in erythrocytes from a patient with mild HEP and found that the enzyme protein concentration had markedly decreased to less than 7% of the normal controls. This finding, however, was in contrast to the enzyme activity in the patient's erythrocytes, which was 16% of normal control levels and different from previously reported HEP cases in that erythrocytes in our patient contained disproportionately elevated URO decarboxylase activity in comparison to its immunoreactive material. Our findings suggests the possibility of a mutant isozyme in this patient that is not immunoreactive with an antibody raised against the normal enzyme. PMID:3571497

  19. Expression of the cytoplasmic mevalonate pathway in chloroplasts to reduce substrate limitations for cytoplasmically-produced terpenoid secondary products

    USDA-ARS?s Scientific Manuscript database

    All products of isoprenoid metabolism originate with the C5 non-allylic substrate, isopentenyl pyrophosphate (IPP). IPP is produced in plants by two distinct pathways, the mevalonate pathway (MEV) in the cytosol and the 2 C methyl-D-erythritol 4 phosphate (MEP) pathway in plastids. A multi-gene a...

  20. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    PubMed

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Synthesis of the coenzymes adenosine diphosphate glucose, guanosine diphosphate glucose, and cytidine diphosphoethanolamine under primitive Earth conditions

    NASA Technical Reports Server (NTRS)

    Mar, A.; Oro, J.

    1991-01-01

    The nonenzymatic synthesis of the coenzymes adenosine diphosphate glucose (ADPG), guanosine diphosphate glucose (GDPG), and cytidine diphosphoethanolamine (CDP-ethanolamine) has been carried out under conditions considered to have been prevalent on the early Earth. The production of these compounds was performed by allowing simple precursor molecules to react under aqueous solutions, at moderate temperatures and short periods of time, with mediation by cyanamide or urea. These two condensing agents are considered to have been present in significant amounts on the primitive Earth and have been previously used in the nonenzymatic synthesis of several other important biochemical compounds. In our experiments, ADPG was obtained by heating glucose-1-phosphate (G1P) and ATP in the presence of cyanamide for 24 h at 70 degrees C. The reaction of G1P and GTP under the same conditions yielded GDPG. The cyanamide-mediated production of CDP-ethanolamine was carried out by reacting a mixture of ethanolamine phosphate and CTP for 24 h at 70 degrees C. The separation and identification of the reaction products was carried out by paper chromatography, thin-layer chromatography, high performance thin-layer chromatography, high performance liquid chromatography, both normal and reverse-phase, UV spectroscopy, enzymatic assays, and acid hydrolysis. Due to the mild conditions employed, and to the relative ease of these reactions, these studies offer a simple attractive system for the nonenzymatic synthesis of phosphorylated high-energy metabolic intermediates under conditions considered to have been prevalent on the ancient Earth.

  2. Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways.

    PubMed

    Brandi, Jessica; Dando, Ilaria; Pozza, Elisa Dalla; Biondani, Giulia; Jenkins, Rosalind; Elliott, Victoria; Park, Kevin; Fanelli, Giuseppina; Zolla, Lello; Costello, Eithne; Scarpa, Aldo; Cecconi, Daniela; Palmieri, Marta

    2017-01-06

    Recently, we have shown that the secretome of pancreatic cancer stem cells (CSCs) is characterized by proteins that participate in cancer differentiation, invasion, and metastasis. However, the differentially expressed intracellular proteins that lead to the specific characteristics of pancreatic CSCs have not yet been identified, and as a consequence the deranged metabolic pathways are yet to be elucidated. To identify the modulated proteins of pancreatic CSCs, iTRAQ-based proteomic analysis was performed to compare the proteome of Panc1 CSCs and Panc1 parental cells, identifying 230 modulated proteins. Pathway analysis revealed activation of glycolysis, the pentose phosphate pathway, the pyruvate-malate cycle, and lipid metabolism as well as downregulation of the Krebs cycle, the splicesome and non-homologous end joining. These findings were supported by metabolomics and immunoblotting analysis. It was also found that inhibition of fatty acid synthase by cerulenin and of mevalonate pathways by atorvastatin have a greater anti-proliferative effect on cancer stem cells than parental cells. Taken together, these results clarify some important aspects of the metabolic network signature of pancreatic cancer stem cells, shedding light on key and novel therapeutic targets and suggesting that fatty acid synthesis and mevalonate pathways play a key role in ensuring their viability. To better understand the altered metabolic pathways of pancreatic cancer stem cells (CSCs), a comprehensive proteomic analysis and metabolite profiling investigation of Panc1 and Panc1 CSCs were carried out. The findings obtained indicate that Panc1 CSCs are characterized by upregulation of glycolysis, pentose phosphate pathway, pyruvate-malate cycle, and lipid metabolism and by downregulation of Krebs cycle, spliceosome and non-homologous end joining. Moreover, fatty acid synthesis and mevalonate pathways are shown to play a critical contribution to the survival of pancreatic cancer stem cells

  3. Phosphorylation of mononucleotides and formation of cytidine 5'-diphosphate-choline and sugar nucleotides by respiration-deficient mutants of yeasts.

    PubMed Central

    Kimura, A; Hirose, K; Kariya, Y; Nagai, S

    1976-01-01

    Respiration-deficient mutants (Rho-, petite) of Saccharomyces carlsbergensis were obtained by treatment with trypaflavin (euflavine). Dried cells of these mutants phosphorylated mononucleotides to their triphosphates and further formed not only cytidine 5'-diphosphate-choline, but also sugar nucleotides, such as uridine 5'-diphosphate-glucose, guanosine 5'-diphosphate-mannose, etc. The activities were the same or slightly greater than those of the wild strain. These results showed that energy (adenosine 5'-triphosphate) necessary for phosphorylation of mononucleotides was sufficiently supplied by the glycolysis system. PMID:1245470

  4. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  5. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    DOEpatents

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  6. Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum

    USDA-ARS?s Scientific Manuscript database

    Aspartate 1-decarboxylase (ADC) and dopa decarboxylase (DDC) provide b–alanine and dopamine used in insect cuticle tanning. Beta-alanine is conjugated with dopamine to yield N-b-alanyldopamine (NBAD), a substrate for the phenoloxidase laccase that catalyzes the synthesis of cuticle protein cross-li...

  7. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate

    PubMed Central

    Gamat, Melissa; Malinowski, Rita L.; Parkhurst, Linnea J.; Steinke, Laura M.; Marker, Paul C.

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating

  8. Screening method for detection of immediate amino acid decarboxylases--producing bacteria implicated in food poisoning.

    PubMed

    Hussain, Husniza; Mohd Fuat, A R; Vimala, B; Ghazali, H M

    2011-08-01

    Assessment of amino acid decarboxylase activity can be conducted using tubed broth or plated agar. In this study, the test was carried out in microtitre plates containing lysine, ornithine, arginine, tyrosine, tryptophan, phenylalanine or histidine as biogenic amine precursors. Møller decarboxylase base broth (MDB) with or without 1% of a known amino acid were added to wells of a 96 well-microtitre plate. The wells were inoculated with Escherichia coli, Klebsiella pneumoniae, Acinetobacter anitratus or Staphylococcus aureus to the final concentration of 6.0 x 10(7) cfu/ml and incubated at 35ºC. The absorbance of the culture broth was read at 570 nm at 0, 1.0, 2.0, 3.0, 4.0, 5.5, 6.5 and 7.5 hour. Comparison of means of A'(570) between 0 hour and a specified incubation time was determined statistically. Positive decarboxylase activities were detected in the media inoculated with E. coli and K. pneumoniae in less than 6 hours. The current method is suitable for immediate producers of amino acid decarboxylase enzymes. It costs less as it uses less amino acid and it has the potential to be used for screening aliquots of food materials for amino acid decarboxylase activities.

  9. Characterization of ribulose diphosphate carboxylase and phosphoribulokinase from Thiobacillus thioparus and Thiobacillus neapolitanus.

    NASA Technical Reports Server (NTRS)

    Johnson, E. J.; Johnson, M. K.; Macelroy, R. D.

    1968-01-01

    Ribulose diphosphate carboxylase and phosphoribulokinase activity in chemosynthetic autotrophs Thiobacillus thioparus and Thiobacillus neapolitanus, noting sedimentation and gel filtration characteristics

  10. Silver indium diphosphate, AgInP(2)O(7).

    PubMed

    Zouihri, Hafid; Saadi, Mohamed; Jaber, Boujemaa; El Ammari, Lehcen

    2010-12-18

    Polycrystalline material of the title compound, AgInP(2)O(7), was synthesized by traditional high-temperature solid-state methods and single crystals were grown from the melt of a mixture of AgInP(2)O(7) and B(2)O(3) as flux in a platinium crucible. The structure consists of InO(6) octa-hedra, which are corner-shared to PO(4) tetra-hedra into a three-dimensional network with hexa-gonal channels running parallel to the c axis. The silver cation, located in the channel, is bonded to seven O atoms of the [InP(2)O(7)] framework with Ag-O distances ranging from 2.370 (2) to 3.015 (2) Å. The P(2)O(7) diphosphate anion is characterized by a P-O-P angle of 137.27 (9) and a nearly eclipsed conformation. AgInP(2)O(7) is isotypic with the M(I)FeP(2)O(7) (M(I) = Na, K, Rb, Cs and Ag) diphosphate family.

  11. Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation.

    PubMed Central

    Konrad, Zvia; Eichler, Jerry

    2002-01-01

    Once the newly synthesized surface (S)-layer glycoprotein of the halophilic archaeaon Haloferax volcanii has traversed the plasma membrane, the protein undergoes a membrane-related, Mg(2+)-dependent maturation event, revealed as an increase in the apparent molecular mass and hydrophobicity of the protein. To test whether lipid modification of the S-layer glycoprotein could explain these observations, H. volcanii cells were incubated with a radiolabelled precursor of isoprene, [(3)H]mevalonic acid. In Archaea, isoprenoids serve as the major hydrophobic component of archaeal membrane lipids and have been shown to modify other haloarchaeal S-layer glycoproteins, although little is known of the mechanism, site or purpose of such modification. In the present study we report that the H. volcanii S-layer glycoprotein is modified by a derivative of mevalonic acid and that maturation of the protein was prevented upon treatment with mevinolin (lovastatin), an inhibitor of mevalonic acid biosynthesis. These findings suggest that lipid modification of S-layer glycoproteins is a general property of halophilic archaea and, like S-layer glycoprotein glycosylation, lipid-modification of the S-layer glycoproteins takes place on the external cell surface, i.e. following protein translocation across the membrane. PMID:12069685

  12. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGES

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; ...

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  13. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    PubMed

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  14. Reactions of fac-[Re(CO)3(H2O)3]+ with nucleoside diphosphates and thiamine diphosphate in aqueous solution investigated by multinuclear NMR spectroscopy.

    PubMed

    Adams, Kristie M; Marzilli, Patricia A; Marzilli, Luigi G

    2007-10-29

    Products formed between monoester diphosphates (MDPs) and fac-[Re(CO)3(H2O)3]OTf at pH 3.6 were examined. Such adducts of the fac-[Re(CO)3]+ moiety have an uncommon combination of properties for an "inert" metal center in that sharp NMR signals can be observed, yet the products are equilibrating at rates allowing NMR EXSY cross-peaks to be observed. Thiamine diphosphate (TDP) and uridine 5'-diphosphate (5'-UDP) form 1:1 bidentate {Palpha,Pbeta} chelates, in which the MDP binds Re(I) via Palpha and Pbeta phosphate groups. Asymmetric centers are created at Re(I) (RRe/SRe) and Palpha (Delta/Lambda), leading to four diastereomers. The two mirror pairs of diastereomers (RReDelta/SReLambda) and (RReLambda/SReDelta) for TDP (no ribose) and for all four diastereomers (RReDelta, RReLambda, SReDelta, SReLambda) for 5'-UDP (asymmetric ribose) gave two and four sets of NMR signals for the bound MDP, respectively. 31Palpha-31Palpha EXSY cross-peaks indicate that the fac-[Re(CO)3(H2O)({Palpha,Pbeta}MDP)]- isomers interchange slowly on the NMR time scale, with an average k approximately equal to 0.8 s(-1) at 32 degrees C; the EXSY cross-peaks could arise from chirality changes at only Re(I) or at only Palpha. Guanosine 5'-diphosphate (5'-GDP), with a ribose moiety and a Re(I)-binding base, formed both possible diastereomers (RRe and SRe) of the fac-[Re(CO)3(H2O)({N7,Pbeta}GDP)]- macrochelate, with one slightly more abundant diastereomer suggested to be RRe by Mn2+ ion 1H NMR signal line-broadening combined with distances from molecular models. Interchange of the diastereomers requires that the coordination site of either N7 or Pbeta move to the H2O site. 31Palpha-31Palpha EXSY cross-peaks indicate a k approximately equal to 0.5 s(-1) at 32 degrees C for RRe-to-SRe interchange. The similarity of the rate constants for interchange of fac-[Re(CO)3(H2O)({Palpha,Pbeta}MDP)]- and fac-[Re(CO)3(H2O)({N7,Pbeta}GDP)]- adducts suggest strongly that interchange of Pbeta and H2O coordination

  15. Functional identification of a Lippia dulcis bornyl diphosphate synthase that contains a duplicated, inhibitory arginine-rich motif.

    PubMed

    Hurd, Matthew C; Kwon, Moonhyuk; Ro, Dae-Kyun

    2017-08-26

    Lippia dulcis (Aztec sweet herb) contains the potent natural sweetener hernandulcin, a sesquiterpene ketone found in the leaves and flowers. Utilizing the leaves for agricultural application is challenging due to the presence of the bitter-tasting and toxic monoterpene, camphor. To unlock the commercial potential of L. dulcis leaves, the first step of camphor biosynthesis by a bornyl diphosphate synthase needs to be elucidated. Two putative monoterpene synthases (LdTPS3 and LdTPS9) were isolated from L. dulcis leaf cDNA. To elucidate their catalytic functions, E. coli-produced recombinant enzymes with truncations of their chloroplast transit peptides were assayed with geranyl diphosphate (GPP). In vitro enzyme assays showed that LdTPS3 encodes bornyl diphosphate synthase (thus named LdBPPS) while LdTPS9 encodes linalool synthase. Interestingly, the N-terminus of LdBPPS possesses two arginine-rich (RRX 8 W) motifs, and enzyme assays showed that the presence of both RRX 8 W motifs completely inhibits the catalytic activity of LdBPPS. Only after the removal of the putative chloroplast transit peptide and the first RRX 8 W, LdBPPS could react with GPP to produce bornyl diphosphate. LdBPPS is distantly related to the known bornyl diphosphate synthase from sage in a phylogenetic analysis, indicating a converged evolution of camphor biosynthesis in sage and L. dulcis. The discovery of LdBPPS opens up the possibility of engineering L. dulcis to remove the undesirable product, camphor. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Isolation, identification and fermentation optimization of Bacillus tequilensis PanD37 producing L-aspartate α- decarboxylase].

    PubMed

    Feng, Zhibin; Zhang, Juan; Chen, Guozhong; Cha, Yaping; Liu, Jinjie; Ge, Yihe; Cheng, Shiwei; Yu, Botao

    2016-01-04

    We screened bacteria producing L-aspartate α-decarboxylase from grapery soil and optimized the fermentation conditions. L-aspartate α-decarboxylase producing bacteria were screened by color-changing circle and liquid secondary screening culture media. Combination of morphological, physiological and biochemical characteristics and 16S rRNA sequence analysis were used to identify the bacteria. Fermentation conditions were optimized by single factor test and orthogonal experiment. Strain PanD37 showed high L-aspartate α-decarboxylase producing property and was identified as Bacillus tequilensis. The optimum fermentation conditions of PanD37 were liquid volume of 50 mL in 500 mL flask, 220 r/min at 35 °C, inoculation amount of 5% for 28 h with a medium of 22.5 g/L sucrose, 7.5 g/L fumaric acid, 20 g/L peptone, 6 g/L L-aspartic acid, 2 g/L Triton X-100, at initial pH of 7.0. Under the optimal fermentation conditions, the highest L-aspartate α-decarboxylase activity reached 44.57 U/mL, which was 2.57 folds higher than that obtained before optimization. Strain PanD37 was identified as Bacillus tequilensiswhich was capable of highly producing L-aspartate α-decarboxylase under the optimal fermentation conditions.

  17. Guanosine 3'-diphosphate 5'-diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli.

    PubMed Central

    Gaal, T; Gourse, R L

    1990-01-01

    rRNA synthesis in Escherichia coli is subject to at least two regulation systems, growth rate-dependent control and stringent control. The inverse correlation between rRNA synthesis rates and guanosine 3'-diphosphate 5'-diphosphate (ppGpp) levels under various physiological conditions has led to the supposition that ppGpp is the mediator of both control mechanisms by inhibiting transcription from rrn P1 promoters. Recently, relA- spoT- strains have been constructed in which both ppGpp synthesis pathways most likely have been removed (M. Cashel, personal communication). We have confirmed that such strains produce no detectable ppGpp and therefore offer a direct means for testing the involvement of ppGpp in the regulation of rRNA synthesis in vivo. Stringent control was determined by measurement of rRNA synthesis after amino acid starvation, while growth rate control was determined by measurement of rRNA synthesis under different nutritional conditions. As expected, the relA- spoT- strain is relaxed for stringent control. However, growth rate-dependent regulation is unimpaired. These results indicate that growth rate regulation can occur in the absence of ppGpp and imply that ppGpp is not the mediator, or at least is not the sole mediator, of growth rate-dependent control. Therefore, growth rate-dependent control and stringent control may utilize different mechanisms for regulating stable RNA synthesis. PMID:2196571

  18. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    PubMed

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  19. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant...

  20. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant...

  1. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus subtilis. The food additive alpha...

  2. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant...

  3. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant...

  4. Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa

    PubMed Central

    Ohara, Kazuaki; Sasaki, Kanako; Yazaki, Kazufumi

    2010-01-01

    Long chain prenyl diphosphates are crucial biosynthetic precursors of ubiquinone (UQ) in many organisms, ranging from bacteria to humans, as well as precursors of plastoquinone in photosynthetic organisms. The cloning and characterization of two solanesyl diphosphate synthase genes, OsSPS1 and OsSPS2, in Oryza sativa is reported here. OsSPS1 was highly expressed in root tissue whereas OsSPS2 was found to be high in both leaves and roots. Enzymatic characterization using recombinant proteins showed that both OsSPS1 and OsSPS2 could produce solanesyl diphosphates as their final product, while OsSPS1 showed stronger activity than OsSPS2. However, an important biological difference was observed between the two genes: OsSPS1 complemented the yeast coq1 disruptant, which does not form UQ, whereas OsSPS2 only very weakly complemented the growth defect of the coq1 mutant. HPLC analyses showed that both OsSPS1 and OsSPS2 yeast transformants produced UQ9 instead of UQ6, which is the native yeast UQ. According to the complementation study, the UQ9 levels in OsSPS2 transformants were much lower than that of OsSPS1. Green fluorescent protein fusion analyses showed that OsSPS1 localized to mitochondria, while OsSPS2 localized to plastids. This suggests that OsSPS1 is involved in the supply of solanesyl diphosphate for ubiquinone-9 biosynthesis in mitochondria, whereas OsSPS2 is involved in providing solanesyl diphosphate for plastoquinone-9 formation. These findings indicate that O. sativa has a different mechanism for the supply of isoprenoid precursors in UQ biosynthesis from Arabidopsis thaliana, in which SPS1 provides a prenyl moiety for UQ9 at the endoplasmic reticulum. PMID:20421194

  5. Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa.

    PubMed

    Ohara, Kazuaki; Sasaki, Kanako; Yazaki, Kazufumi

    2010-06-01

    Long chain prenyl diphosphates are crucial biosynthetic precursors of ubiquinone (UQ) in many organisms, ranging from bacteria to humans, as well as precursors of plastoquinone in photosynthetic organisms. The cloning and characterization of two solanesyl diphosphate synthase genes, OsSPS1 and OsSPS2, in Oryza sativa is reported here. OsSPS1 was highly expressed in root tissue whereas OsSPS2 was found to be high in both leaves and roots. Enzymatic characterization using recombinant proteins showed that both OsSPS1 and OsSPS2 could produce solanesyl diphosphates as their final product, while OsSPS1 showed stronger activity than OsSPS2. However, an important biological difference was observed between the two genes: OsSPS1 complemented the yeast coq1 disruptant, which does not form UQ, whereas OsSPS2 only very weakly complemented the growth defect of the coq1 mutant. HPLC analyses showed that both OsSPS1 and OsSPS2 yeast transformants produced UQ9 instead of UQ6, which is the native yeast UQ. According to the complementation study, the UQ9 levels in OsSPS2 transformants were much lower than that of OsSPS1. Green fluorescent protein fusion analyses showed that OsSPS1 localized to mitochondria, while OsSPS2 localized to plastids. This suggests that OsSPS1 is involved in the supply of solanesyl diphosphate for ubiquinone-9 biosynthesis in mitochondria, whereas OsSPS2 is involved in providing solanesyl diphosphate for plastoquinone-9 formation. These findings indicate that O. sativa has a different mechanism for the supply of isoprenoid precursors in UQ biosynthesis from Arabidopsis thaliana, in which SPS1 provides a prenyl moiety for UQ9 at the endoplasmic reticulum.

  6. 2,5-Dimethyl-4-hydroxy-3(2H)-furanone as a secondary metabolite from D-fructose-1,6-diphosphate metabolism by Zygosaccharomyces rouxii.

    PubMed

    Dahlen, T; Hauck, T; Wein, M; Schwab, W

    2001-01-01

    2,5-Dimethyl-4-hydroxy-3(2H)-furanone (DMHF) is an important aroma compound found in many fruits such as strawberries and pineapples and it is also produced by the soy-sauce-fermenting yeast Zygosaccharomyces rouxii after the addition of d-fructose-1,6-diphosphate to yeast-peptone-dextrose nutrient media. Dilute DMHF solutions exhibit a strawberry-like flavor while DMHF concentrates have a caramel-like aroma. In media containing D-fructose-1,6-diphosphate as the sole carbon source, growth of Z. rouxii and formation of DMHF were not observed. Although Z. rouxii cells grew in media with D-glucose as the sole carbon source, DMHF was only produced when media were supplemented with D-fructose-1,6-diphosphate. The DMHF concentration always correlated with the yeast cell count and D-fructose-1,6-diphosphate concentration. Addition of CaCl2 (up to 50 g.l(-1)) led to a higher DMHF concentration. Addition of Na2SO3 reduced the growth of Z. rouxii and inhibited DMHF formation. The amount of DMHF formed by Z. rouxii was not significantly affected by the addition of KH2PO4. DMHF concentrations of 5 and 10 g.l(-1) partially and completely inhibited the growth of Z. rouxii cells, respectively. Only the singly labeled furanone was formed after the addition of 1-13C-D-fructose-1,6-diphosphate to the medium. However, unlabeled DMHF was formed in the presence of (13)C(6)-D-glucose. Therefore, the carbons of the furanone originate exclusively from exogenously supplied D-fructose-1,6-diphosphate as no exchange with the internal pool of D-fructose-1,6-diphosphate occurs. This implies that DMHF is a secondary metabolite of Z. rouxii formed from D-fructose-1,6-diphosphate. We assume that at least the first step of the metabolism of D-fructose-1,6-diphosphate takes place in the cell wall or membrane of the yeast.

  7. Isolation, characterization and antifungal docking studies of wortmannin isolated from Penicillium radicum

    PubMed Central

    Singh, Vineeta; Praveen, Vandana; Tripathi, Divya; Haque, Shafiul; Somvanshi, Pallavi; Katti, S. B.; Tripathi, C. K. M.

    2015-01-01

    During the search for a potent antifungal drug, a cell-permeable metabolite was isolated from a soil isolate taxonomically identified as Penicillium radicum. The strain was found to be a potent antifungal agent. Production conditions of the active compound were optimized and the active compound was isolated, purified, characterized and identified as a phosphoinositide 3-kinase (PI3K) inhibitor, commonly known as wortmannin (Wtmn). This is very first time we are reporting the production of Wtmn from P. radicum. In addition to its previously discovered anticancer properties, the broad spectrum antifungal property of Wtmn was re-confirmed using various fungal strains. Virtual screening was performed through molecular docking studies against potential antifungal targets, and it was found that Wtmn was predicted to impede the actions of these targets more efficiently than known antifungal compounds such as voriconazole and nikkomycin i.e. 1) mevalonate-5-diphosphate decarboxylase (1FI4), responsible for sterol/isoprenoid biosynthesis; 2) exocyst complex component SEC3 (3A58) where Rho- and phosphoinositide-dependent localization is present and 3) Kre2p/Mnt1p a Golgi alpha1,2-mannosyltransferase (1S4N) involved in the biosynthesis of yeast cell wall glycoproteins). We conclude that Wtmn produced from P. radicum is a promising lead compound which could be potentially used as an efficient antifungal drug in the near future after appropriate structural modifications to reduce toxicity and improve stability. PMID:26159770

  8. Fermentative production of isobutene.

    PubMed

    van Leeuwen, Bianca N M; van der Wulp, Albertus M; Duijnstee, Isabelle; van Maris, Antonius J A; Straathof, Adrie J J

    2012-02-01

    Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO(2) + 2H(2)O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO(2). The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 Euro kg(-1), which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.

  9. Mevalonolactone disrupts mitochondrial functions and induces permeability transition pore opening in rat brain mitochondria: Implications for the pathogenesis of mevalonic aciduria.

    PubMed

    Cecatto, Cristiane; Amaral, Alexandre Umpierrez; da Silva, Janaína Camacho; Wajner, Alessandro; Godoy, Kálita Dos Santos; Ribeiro, Rafael Teixeira; Gonçalves, Aline de Mello; Vargas, Carmen Regla; Wajner, Moacir

    2017-09-01

    Mevalonic aciduria (MVA) is caused by severe deficiency of mevalonic kinase activity leading to tissue accumulation and high urinary excretion of mevalonic acid (MA) and mevalonolactone (ML). Patients usually present severe neurologic symptoms whose pathophysiology is poorly known. Here, we tested the hypothesis that the major accumulating metabolites are toxic by investigating the in vitro effects of MA and ML on important mitochondrial functions in rat brain and liver mitochondria. ML, but not MA, markedly decreased mitochondrial membrane potential (ΔΨm), NAD(P)H content and the capacity to retain Ca 2+ in the brain, besides inducing mitochondrial swelling. These biochemical alterations were totally prevented by the classical inhibitors of mitochondrial permeability transition (MPT) cyclosporine A and ADP, as well as by ruthenium red in Ca 2+ -loaded mitochondria, indicating the involvement of MPT and an important role for mitochondrial Ca 2+ in these effects. ML also induced lipid peroxidation and markedly inhibited aconitase activity, an enzyme that is highly susceptible to free radical attack, in brain mitochondrial fractions, indicating that lipid and protein oxidative damage may underlie some of ML-induced deleterious effects including MTP induction. In contrast, ML and MA did not compromise oxidative phosphorylation in the brain and all mitochondrial functions evaluated in the liver, evidencing a selective toxicity of ML towards the central nervous system. Our present study provides for the first time evidence that ML impairs essential brain mitochondrial functions with the involvement of MPT pore opening. It is therefore presumed that disturbance of brain mitochondrial homeostasis possibly contributes to the neurologic symptoms in MVA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Characterization of Trypanosoma brucei brucei S-adenosyl-L-methionine decarboxylase and its inhibition by Berenil, pentamidine and methylglyoxal bis(guanylhydrazone).

    PubMed Central

    Bitonti, A J; Dumont, J A; McCann, P P

    1986-01-01

    Trypanosoma brucei brucei S-adenosyl-L-methionine (AdoMet) decarboxylase was found to be relatively insensitive to activation by putrescine as compared with the mammalian enzyme, being stimulated by only 50% over a 10,000-fold range of putrescine concentrations. The enzyme was not stimulated by up to 10 mM-Mg2+. The Km for AdoMet was 30 microM, similar to that of other eukaryotic AdoMet decarboxylases. T.b. brucei AdoMet decarboxylase activity was apparently irreversibly inhibited in vitro by Berenil and reversibly by pentamidine and methylglyoxal bis(guanylhydrazone). Berenil also inhibited trypanosomal AdoMet decarboxylase by 70% within 4 h after administration to infected rats and markedly increased the concentration of putrescine in trypanosomes that were exposed to the drug in vivo. Spermidine and spermine blocked the curative effect of Berenil on model mouse T.b. brucei infections. This effect of the polyamines was probably not due to reversal of Berenil's inhibitory effects on the AdoMet decarboxylase. PMID:3800910

  11. Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor

    DOEpatents

    Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL

    2008-02-05

    The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.

  12. Experimental Evidence and In Silico Identification of Tryptophan Decarboxylase in Citrus Genus.

    PubMed

    De Masi, Luigi; Castaldo, Domenico; Pignone, Domenico; Servillo, Luigi; Facchiano, Angelo

    2017-02-11

    Plant tryptophan decarboxylase (TDC) converts tryptophan into tryptamine, precursor of indolealkylamine alkaloids. The recent finding of tryptamine metabolites in Citrus plants leads to hypothesize the existence of TDC activity in this genus. Here, we report for the first time that, in Citrus x limon seedlings, deuterium labeled tryptophan is decarboxylated into tryptamine, from which successively deuterated N , N , N -trimethyltryptamine is formed. These results give an evidence of the occurrence of the TDC activity and the successive methylation pathway of the tryptamine produced from the tryptophan decarboxylation. In addition, with the aim to identify the genetic basis for the presence of TDC, we carried out a sequence similarity search for TDC in the Citrus genomes using as a probe the TDC sequence reported for the plant Catharanthus roseus . We analyzed the genomes of both Citrus clementina and Citrus sinensis , available in public database, and identified putative protein sequences of aromatic l-amino acid decarboxylase. Similarly, 42 aromatic l-amino acid decarboxylase sequences from 23 plant species were extracted from public databases. Potential sequence signatures for functional TDC were then identified. With this research, we propose for the first time a putative protein sequence for TDC in the genus Citrus .

  13. Overproduction of Geranylgeraniol by Metabolically Engineered Saccharomyces cerevisiae▿

    PubMed Central

    Tokuhiro, Kenro; Muramatsu, Masayoshi; Ohto, Chikara; Kawaguchi, Toshiya; Obata, Shusei; Muramoto, Nobuhiko; Hirai, Masana; Takahashi, Haruo; Kondo, Akihiko; Sakuradani, Eiji; Shimizu, Sakayu

    2009-01-01

    (E, E, E)-Geranylgeraniol (GGOH) is a valuable starting material for perfumes and pharmaceutical products. In the yeast Saccharomyces cerevisiae, GGOH is synthesized from the end products of the mevalonate pathway through the sequential reactions of farnesyl diphosphate synthetase (encoded by the ERG20 gene), geranylgeranyl diphosphate synthase (the BTS1 gene), and some endogenous phosphatases. We demonstrated that overexpression of the diacylglycerol diphosphate phosphatase (DPP1) gene could promote GGOH production. We also found that overexpression of a BTS1-DPP1 fusion gene was more efficient for producing GGOH than coexpression of these genes separately. Overexpression of the hydroxymethylglutaryl-coenzyme A reductase (HMG1) gene, which encodes the major rate-limiting enzyme of the mevalonate pathway, resulted in overproduction of squalene (191.9 mg liter−1) rather than GGOH (0.2 mg liter−1) in test tube cultures. Coexpression of the BTS1-DPP1 fusion gene along with the HMG1 gene partially redirected the metabolic flux from squalene to GGOH. Additional expression of a BTS1-ERG20 fusion gene resulted in an almost complete shift of the flux to GGOH production (228.8 mg liter−1 GGOH and 6.5 mg liter−1 squalene). Finally, we constructed a diploid prototrophic strain coexpressing the HMG1, BTS1-DPP1, and BTS1-ERG20 genes from multicopy integration vectors. This strain attained 3.31 g liter−1 GGOH production in a 10-liter jar fermentor with gradual feeding of a mixed glucose and ethanol solution. The use of bifunctional fusion genes such as the BTS1-DPP1 and ERG20-BTS1 genes that code sequential enzymes in the metabolic pathway was an effective method for metabolic engineering. PMID:19592534

  14. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae.

    PubMed

    Richard, Peter; Viljanen, Kaarina; Penttilä, Merja

    2015-01-01

    The S. cerevisiae PAD1 gene had been suggested to code for a cinnamic acid decarboxylase, converting trans-cinnamic acid to styrene. This was suggested for the reason that the over-expression of PAD1 resulted in increased tolerance toward cinnamic acid, up to 0.6 mM. We show that by over-expression of the PAD1 together with the FDC1 the cinnamic acid decarboxylase activity can be increased significantly. The strain over-expressing PAD1 and FDC1 tolerated cinnamic acid concentrations up to 10 mM. The cooperation of Pad1p and Fdc1p is surprising since the PAD1 has a mitochondrial targeting sequence and the FDC1 codes for a cytosolic protein. The cinnamic acid decarboxylase activity was also seen in the cell free extract. The activity was 0.019 μmol per minute and mg of extracted protein. The overexpression of PAD1 and FDC1 resulted also in increased activity with the hydroxycinnamic acids ferulic acid, p-coumaric acid and caffeinic acid. This activity was not seen when FDC1 was overexpressed alone. An efficient cinnamic acid decarboxylase is valuable for the genetic engineering of yeast strains producing styrene. Styrene can be produced from endogenously produced L-phenylalanine which is converted by a phenylalanine ammonia lyase to cinnamic acid and then by a decarboxylase to styrene.

  15. Spectroscopic and Computational Investigations of Ligand Binding to IspH: Discovery of Non-diphosphate Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Dowd, Bing; Williams, Sarah; Wang, Hongxin

    Isoprenoid biosynthesis is an important area for anti-infective drug development. One isoprenoid target described is (E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate (HMBPP) reductase (IspH), which forms isopentenyl diphosphate and dimethylallyl diphosphate from HMBPP in a 2H + /2e - reduction. IspH contains a 4 Fe-4 S cluster, and in this work, we first investigated how small molecules bound to the cluster by using HYSCORE and NRVS spectroscopies. The results of these, as well as other structural and spectroscopic investigations, led to the conclusion that, in most cases, ligands bound to IspH 4 Fe-4 S clusters by η 1 coordination, forming tetrahedral geometries at themore » unique fourth Fe, ligand side chains preventing further ligand (e.g., H 2 O, O 2 ) binding. Based on these ideas, we used in silico methods to find drug-like inhibitors that might occupy the HMBPP substrate binding pocket and bind to Fe, leading to the discovery of a barbituric acid analogue with a K i value of ≈500 nm against Pseudomonas aeruginosa IspH.« less

  16. New Synthetic Methodology for the Construction of 7-Substituted Farnesyl Diphosphate Analogs

    PubMed Central

    Placzek, Andrew T.

    2012-01-01

    Through the use of a 1,2-metalate rearrangement, six 7-substituted farnesol analogs were generated in a concise manner. This new synthetic route allowed us to quickly prepare several diverse farnesyl diphosphate analogs with interesting biological activities against mammalian protein-farnesyl transferase. PMID:21699139

  17. Reaction of uridine diphosphate galactose 4-epimerase with a suicide inactivator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flentke, G.R.; Frey, P.A.

    UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5{prime}-diphosphate chloroacetol (UDC) and uridine 5{prime}-diphosphate bromoacetol (UCB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a K{sub D} of 0.110 mM and k{sub inact} of 0.84 min{sup {minus}1} at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent bindingmore » of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD{sup +}. The inactivation of epimerase by uridine 5{prime}-diphosphate ({sup 2}H{sub 2})chloroacetol proceeds with a primary kinetic isotope effect (k{sub H}/k{sub D}) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD{sup +} at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD{sup +} is proposed to be the chromophore with {lambda}{sub max} at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction.« less

  18. Overexpression of an Isoprenyl Diphosphate Synthase in Spruce Leads to Unexpected Terpene Diversion Products That Function in Plant Defense1[W][OPEN

    PubMed Central

    Nagel, Raimund; Berasategui, Aileen; Paetz, Christian; Gershenzon, Jonathan; Schmidt, Axel

    2014-01-01

    Spruce (Picea spp.) and other conifers employ terpenoid-based oleoresin as part of their defense against herbivores and pathogens. The short-chain isoprenyl diphosphate synthases (IDS) are situated at critical branch points in terpene biosynthesis, producing the precursors of the different terpenoid classes. To determine the role of IDS and to create altered terpene phenotypes for assessing the defensive role of terpenoids, we overexpressed a bifunctional spruce IDS, a geranyl diphosphate and geranylgeranyl diphosphate synthase in white spruce (Picea glauca) saplings. While transcript level (350-fold), enzyme activity level (7-fold), and in planta geranyl diphosphate and geranylgeranyl diphosphate levels (4- to 8-fold) were significantly increased in the needles of transgenic plants, there was no increase in the major monoterpenes and diterpene acids of the resin and no change in primary isoprenoids, such as sterols, chlorophylls, and carotenoids. Instead, large amounts of geranylgeranyl fatty acid esters, known from various gymnosperm and angiosperm plant species, accumulated in needles and were shown to act defensively in reducing the performance of larvae of the nun moth (Lymantria monacha), a conifer pest in Eurasia. These results show the impact of overexpression of an IDS and the defensive role of an unexpected accumulation product of terpenoid biosynthesis with the potential for a broader function in plant protection. PMID:24346420

  19. Mammalian histidine decarboxylase; changes in molecular properties induced by oxidation and reduction.

    PubMed

    Hammar, L; Hjertén, S

    1980-04-01

    Histidine decarboxylase from a murine mastocytoma has been submitted to different separation methods. In these experiments the activity peaks were often very broad. This heterogeneity of the enzyme is traced back to the formation of aggregates, differing in apparent molecular weight by a multiple of about 55,000, as a result of oxidation. Under non-oxidative conditions the histidine decarboxylase activity is confined to one peak in both molecular sieve chromatography, hydrophic interaction chromatography, chromatography on hydroxy apatite, pore gradient electrophoresis and electrofocusing. The molecular weight of the enzyme is estimated to be 110,000 by pore gradient electrophoresis (alkylated enzyme). The isoelectric point is pH 4.9--5.0, determined by electrofocusing under reducing conditions.

  20. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  1. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.

    PubMed

    Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F

    2014-10-01

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells.

  2. New role of flavin as a general acid-base catalyst with no redox function in type 2 isopentenyl-diphosphate isomerase.

    PubMed

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-Ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-04-03

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes.

  3. Overproduction of cardiac S-adenosylmethionine decarboxylase in transgenic mice

    PubMed Central

    Nisenberg, Oleg; Pegg, Anthony E.; Welsh, Patricia A.; Keefer, Kerry; Shantz, Lisa M.

    2005-01-01

    The present study was designed to provide a better understanding of the role played by AdoMetDC (S-adenosylmethionine decarboxylase), the key rate-controlling enzyme in the synthesis of spermidine and spermine, in controlling polyamine levels and the importance of polyamines in cardiac physiology. The αMHC (α-myosin heavy chain) promoter was used to generate transgenic mice with cardiac-specific expression of AdoMetDC. A founder line (αMHC/AdoMetDC) was established with a >100-fold increase in AdoMetDC activity in the heart. Transgene expression was maximal by 1 week of age and remained constant into adulthood. However, the changes in polyamine levels were most pronounced during the first week of age, with a 2-fold decrease in putrescine and spermidine and a 2-fold increase in spermine. At later times, spermine returned to near control levels, whereas putrescine and spermidine levels remained lower, suggesting that compensatory mechanisms exist to limit spermine accumulation. The αMHC/AdoMetDC mice did not display an overt cardiac phenotype, but there was an increased cardiac hypertrophy after β-adrenergic stimulation with isoprenaline (‘isoproterenol’), as well as a small increase in spermine content. Crosses of the αMHC/AdoMetDC with αMHC/ornithine decarboxylase mice that have a >1000-fold increase in cardiac ornithine decarboxylase were lethal in utero, presumably due to increase in spermine to toxic levels. These findings suggest that cardiac spermine levels are highly regulated to avoid polyamine-induced toxicity and that homoeostatic mechanisms can maintain non-toxic levels even when one enzyme of the biosynthetic pathway is greatly elevated but are unable to do so when two biosynthetic enzymes are increased. PMID:16153183

  4. Optimization of primaquine diphosphate tablet formulation for controlled drug release using the mixture experimental design.

    PubMed

    Duque, Marcelo Dutra; Kreidel, Rogério Nepomuceno; Taqueda, Maria Elena Santos; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles; Consiglieri, Vladi Olga

    2013-01-01

    A tablet formulation based on hydrophilic matrix with a controlled drug release was developed, and the effect of polymer concentrations on the release of primaquine diphosphate was evaluated. To achieve this purpose, a 20-run, four-factor with multiple constraints on the proportions of the components was employed to obtain tablet compositions. Drug release was determined by an in vitro dissolution study in phosphate buffer solution at pH 6.8. The polynomial fitted functions described the behavior of the mixture on simplex coordinate systems to study the effects of each factor (polymer) on tablet characteristics. Based on the response surface methodology, a tablet composition was optimized with the purpose of obtaining a primaquine diphosphate release closer to a zero order kinetic. This formulation released 85.22% of the drug for 8 h and its kinetic was studied regarding to Korsmeyer-Peppas model, (Adj-R(2) = 0.99295) which has confirmed that both diffusion and erosion were related to the mechanism of the drug release. The data from the optimized formulation were very close to the predictions from statistical analysis, demonstrating that mixture experimental design could be used to optimize primaquine diphosphate dissolution from hidroxypropylmethyl cellulose and polyethylene glycol matrix tablets.

  5. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    PubMed Central

    Engprasert, Surang; Taura, Futoshi; Kawamukai, Makoto; Shoyama, Yukihiro

    2004-01-01

    Background Isopentenyl diphosphate (IPP), a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots. PMID:15550168

  6. Molecular regulation of santalol biosynthesis in Santalum album L.

    PubMed

    Rani, Arti; Ravikumar, Puja; Reddy, Manjunatha Damodara; Kush, Anil

    2013-09-25

    Santalum album L. commonly known as East-Indian sandal or chandan is a hemiparasitic tree of family santalaceae. Santalol is a bioprospecting molecule present in sandalwood and any effort towards metabolic engineering of this important moiety would require knowledge on gene regulation. Santalol is a sesquiterpene synthesized through mevalonate or non-mevalonate pathways. First step of santalol biosynthesis involves head to tail condensation of isopentenyl pyrophosphate (IPP) with its allylic co-substrate dimethyl allyl pyrophosphate (DMAPP) to produce geranyl pyrophosphate (GPP; C10 - a monoterpene). GPP upon one additional condensation with IPP produces farnesyl pyrophosphate (FPP; C15 - an open chain sesquiterpene). Both the reactions are catalyzed by farnesyl diphosphate synthase (FDS). Santalene synthase (SS), a terpene cyclase catalyzes cyclization of open ring FPP into a mixture of cyclic sesquiterpenes such as α-santalene, epi-β-santalene, β-santalene and exo bergamotene, the main constituents of sandal oil. The objective of the present work was to generate a comprehensive knowledge on the genes involved in santalol production and study their molecular regulation. To achieve this, sequences encoding farnesyl diphosphate synthase and santalene synthase were isolated from sandalwood using suppression subtraction hybridization and 2D gel electrophoresis technology. Functional characterization of both the genes was done through enzyme assays and tissue-specific expression of both the genes was studied. To our knowledge, this is the first report on studies on molecular regulation, and tissue-specific expression of the genes involved in santalol biosynthesis. © 2013.

  7. Effects of diamines on ornithine decarboxylase activity in control and virally transformed mouse fibroblasts.

    PubMed Central

    Bethell, D R; Pegg, A E

    1979-01-01

    1. The induction of ornithine decarboxylase activity in mouse 3T3 fibroblasts or an SV-40 transformed 3T3 cell line by serum was prevented by addition of the naturally occurring polyamines putrescine (butane-1,4-diamine) and spermidine. Much higher concentrations of these amines were required to fully suppress ornithine decarboxylase activity in the transformed SV-3T3 cells than in the 3T3 fibroblasts. 2. Synthetic alpha omega-diamines with 3--12 carbon atoms also prevented the increase in ornithine decarboxylase activity induced by serum in these cells. The longer chain diamines were somewhat more potent than propane-1,3-diamine in this effect, but the synthetic diamines were less active than putrescine in the 3T3 cells. There was little difference between the responses of 3T3 and SV-3T3 cells to the synthetic diamines propane-1,3-diamine and heptane-1,7-diamine. 3. These results are discussed in relation to the control of polyamine synthesis in mammalian cells. PMID:486108

  8. [Characteristics of the glutamate decarboxylase reaction in homogenates of various regions of the rat brain].

    PubMed

    Rozanov, V A

    1987-01-01

    The glutamate decarboxylase activity in rough homogenates of cerebellum, cortex and truncal part of the rat brain was studied under different conditions of incubation: in the presence of 25 mM glutamate sodium, 0.4 mM pyridoxal-5'-phosphate and both these components. It is found that the initial glutamate decarboxylase activity in cerebellum homogenates is approximately twice as high as in the cortex and trunk homogenates. Addition of the substrate and cofactor, especially in the combination, stimulates considerably the yield of gamma-aminobutyric acid (GABA) in the glutamate decarboxylase reaction, the most pronounced activation being observed in the truncal homogenates. The glutamate/GABA relation both initial and after the completion of the reaction is the maximal in the cortex and minimal in the truncal part of the brain. The data obtained evidence for the differences in the content of the GABA-producing enzyme rather than for the presence of the specific mechanisms of the enzyme regulation in different brain areas.

  9. Mutation of the oxaloacetate decarboxylase gene of Lactococcus lactis subsp. lactis impairs the growth during citrate metabolism.

    PubMed

    Augagneur, Y; Garmyn, D; Guzzo, J

    2008-01-01

    Citrate metabolism generates metabolic energy through the generation of a membrane potential and a pH gradient. The purpose of this work was to study the influence of oxaloacetate decarboxylase in citrate metabolism and intracellular pH maintenance in relation to acidic conditions. A Lactococcus lactis oxaloacetate decarboxylase mutant [ILCitM (pFL3)] was constructed by double homologous recombination. During culture with citrate, and whatever the initial pH, the growth rate of the mutant was lower. In addition, the production of diacetyl and acetoin was altered in the mutant strain. However, our results indicated no relationship with a change in the maintenance of intracellular pH. Experiments performed on resting cells clearly showed that oxaloacetate accumulated temporarily in the supernatant of the mutant. This accumulation could be involved in the perturbations observed during citrate metabolism, as the addition of oxaloacetate in M17 medium inhibited the growth of L. lactis. The mutation of oxaloacetate decarboxylase perturbed citrate metabolism and reduced the benefits of its utilization during growth under acidic conditions. This study allows a better understanding of citrate metabolism and the role of oxaloacetate decarboxylase in the tolerance of lactic acid bacteria to acidic conditions.

  10. Determination of 6-thioguanosine diphosphate and triphosphate and nucleoside diphosphate kinase activity in erythrocytes: novel targets for thiopurine therapy?

    PubMed

    Karner, Susanne; Shi, Shaojun; Fischer, Christine; Schaeffeler, Elke; Neurath, Markus F; Herrlinger, Klaus R; Hofmann, Ute; Schwab, Matthias

    2010-04-01

    6-Thioguanine nucleotides are the sum of 6-thioguanosine 5'-monophosphate (TGMP), -diphosphate (TGDP), and -triphosphate (TGTP) representing essential metabolites involved in drug action of thiopurines. Elevated levels of TGDP have been associated with poor response to azathioprine therapy in patients with inflammatory bowel disease. The conversion of TGDP to TGTP is supposed to be catalyzed by nucleoside diphosphate kinase (NDPK). The aim of this work was to investigate simultaneously individual 6-thioguanosine phosphate levels and NDPK activity in red blood cells (RBCs) of patients on azathioprine therapy. Ion-pair high-performance liquid chromatography methods with fluorescence and ultraviolet detection were applied to quantify individual levels of 6-thioguanosine 5'-phosphates and NDPK activity, respectively, in RBCs. Recombinantly expressed NDPK isoforms A and B were unequivocally identified to catalyze the formation of TGTP (30.6 +/- 3.88 nmol x min x mg for NDPK A versus 41.2 +/- 1.05 nmol x min x mg for NDPK B). Comprehensive analyses on the stability of TGMP, TGDP, and TGTP and the reproducibility of NDPK activity in RBCs were performed to provide a reliable sampling protocol for clinical practice. Of note, isolation of RBCs within 6 hours followed by immediate storage at -80 degrees C is crucial for prevention of degradation of 5'-phosphates. In a clinical study of 37 patients on azathioprine, TGTP was the predominant 6-thioguanosine phosphate in RBCs. In contrast, three patients showed TGTP/(TGDP + TGTP) ratios of 57.2%, 64.3%, and 66% corresponding to elevated TGDP levels. NDPK activity ranged from 4.1 to 11.3 nmol x min x mg hemoglobin. No correlation between NDPK activity and the 6-thioguanosine phosphate levels was found. The question whether interindividual variability of NDPK activity may explain differences in 6-thioguanosine 5'-phosphates levels has to be investigated in a prospective large-scale study.

  11. Diphosphates at the 5' end of the positive strand of yeast L-A double-stranded RNA virus as a molecular self-identity tag.

    PubMed

    Fujimura, Tsutomu; Esteban, Rosa

    2016-10-01

    The 5'end of RNA conveys important information on self-identity. In mammalian cells, double-stranded RNA (dsRNA) with 5'di- or triphosphates generated during virus infection is recognized as foreign and elicits the host innate immune response. Here, we analyze the 5' ends of the dsRNA genome of the yeast L-A virus. The positive strand has largely diphosphates with a minor amount of triphosphates, while the negative strand has only diphosphates. Although the virus can produce capped transcripts by cap snatching, neither strand carried a cap structure, suggesting that only non-capped transcripts serve as genomic RNA for encapsidation. We also found that the 5' diphosphates of the positive but not the negative strand within the dsRNA genome are crucial for transcription in vitro. Furthermore, the presence of a cap structure in the dsRNA abrogated its template activity. Given that the 5' diphosphates of the transcripts are also essential for cap acquisition and that host cytosolic RNAs (mRNA, rRNA, and tRNA) are uniformly devoid of 5' pp-structures, the L-A virus takes advantage of its 5' terminal diphosphates, using them as a self-identity tag to propagate in the host cytoplasm. © 2016 John Wiley & Sons Ltd.

  12. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.

    PubMed

    Rai, Avanish; Smita, Shachi S; Singh, Anup Kumar; Shanker, Karuna; Nagegowda, Dinesh A

    2013-09-01

    Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti-cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coli resulted in heteromeric enzyme with enhanced activity producing only GPP. While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MeJA) treatment of leaves significantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis.

  13. Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation.

    PubMed

    Zhou, Jia; Wang, Chonglong; Yoon, Sang-Hwal; Jang, Hui-Jeong; Choi, Eui-Sung; Kim, Seon-Won

    2014-01-01

    Geraniol, a monoterpene alcohol, has versatile applications in the fragrance industry, pharmacy and agrochemistry. Moreover, geraniol could be an ideal gasoline alternative. In this study, recombinant overexpression of geranyl diphosphate synthase and the bottom portion of a foreign mevalonate pathway in Escherichia coli MG1655 produced 13.3mg/L of geraniol. Introduction of Ocimum basilicum geraniol synthase increased geraniol production to 105.2mg/L. However, geraniol production encountered a loss from its endogenous dehydrogenization and isomerization into other geranoids (nerol, neral and geranial). Three E. coli enzymes (YjgB, YahK and YddN) were identified with high sequence identity to plant geraniol dehydrogenases. YjgB was demonstrated to be the major one responsible for geraniol dehydrogenization. Deletion of yjgB increased geraniol production to 129.7mg/L. Introduction of the whole mevalonate pathway for enhanced building block synthesis from endogenously synthesized mevalonate improved geraniol production up to 182.5mg/L in the yjgB mutant after 48h of culture, which was a double of that obtained in the wild type control (96.5mg/L). Our strategy for improving geraniol production in engineered E. coli should be generalizable for addressing similar problems during metabolic engineering. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. New Role of Flavin as a General Acid-Base Catalyst with No Redox Function in Type 2 Isopentenyl-diphosphate Isomerase*S⃞

    PubMed Central

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-01-01

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes. PMID:19158086

  15. A functional (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase exhibits diurnal regulation of expression in Stevia rebaudiana (Bertoni).

    PubMed

    Kumar, Hitesh; Kumar, Sanjay

    2013-09-15

    The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 ara<>ispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Synthesis of P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-α-D-rhamnopyranosyl-α-D-glucopyranosyl) diphosphate and P1-(11-phenoxyundecyl)-P2-(2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-galactopyranosyl) diphosphate for the investigation of biosynthesis of O-antigenic polysaccharides in Pseudomonas aeruginosa and Escherichia coli O104.

    PubMed

    Torgov, Vladimir; Danilov, Leonid; Utkina, Natalia; Veselovsky, Vladimir; Brockhausen, Inka

    2017-12-01

    Two new phenoxyundecyl diphosphate sugars were synthesized for the first time: P 1 -(11-phenoxyundecyl)-P 2 - (2-acetamido-2-deoxy-3-O-α-D-rhamnopyranosyl-α-D-glucopyranosyl) diphosphate and P 1 -(11-phenoxyundecyl)-P 2 -(2-acetamido-2-deoxy-3-O-β-D-galactopyranosyl-α-D-galactopyranosyl) diphosphate to study the third step of biosynthesis of the repeating units of O-antigenic polysaccharides in Pseudomonas aeruginosa and E.coli O104 respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase.

    PubMed

    Tabor, H; Hafner, E W; Tabor, C W

    1980-12-01

    We have previously described a polyamine-deficient strain of Escherichia coli that contained deletions in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). Although this strain completely lacked putrescine and spermidine, it was still able to grow at a slow rate indefinitely on amine-deficient media. However, these cells contained some cadaverine (1,5-diaminopentane). To rule out the possibility that the presence of cadaverine permitted the growth of this strain, we isolated a mutant (cadA) that is deficient in cadaverine biosynthesis, namely, a mutant lacking lysine decarboxylase, and transduced this cadA gene into the delta (speA-speB) delta speC delta D strain. The resultant strain had essentially no cadaverine but showed the same phenotypic characteristics as the parent. Thus, these results confirm our previous findings that the polyamines are not essential for the growth of E. coli or for the replication of bacteriophages T4 and T7. We have mapped the cadA gene at 92 min; the gene order is mel cadA groE ampA purA. A regulatory gene for lysine decarboxylase (cadR) was also obtained and mapped at 46 min; the gene order is his cdd cadR fpk gyrA.

  18. Detection and transfer of the glutamate decarboxylase gene in Streptococcus thermophilus

    USDA-ARS?s Scientific Manuscript database

    GABA (gamma-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermen...

  19. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    PubMed

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.

  20. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    PubMed

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-08-10

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.

  1. Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C 4 intermediate species.

    PubMed

    Hylton, C M; Rawsthorne, S; Smith, A M; Jones, D A; Woolhouse, H W

    1988-10-01

    Immunogold labelling has been used to determine the cellular distribution of glycine decarboxylase in leaves of C3, C3-C4 intermediate and C4 species in the genera Moricandia, Panicum, Flaveria and Mollugo. In the C3 species Moricandia foleyi and Panicum laxum, glycine decarboxylase was present in the mitochondria of both mesophyll and bundle-sheath cells. However, in all the C3-C4 intermediate (M. arvensis var. garamatum, M. nitens, M. sinaica, M. spinosa, M. suffruticosa, P. milioides, Flaveria floridana, F. linearis, Mollugo verticillata) and C4 (P. prionitis, F. trinervia) species studied glycine decarboxylase was present in the mitochondria of only the bundle-sheath cells. The bundle-sheath cells of all the C3-C4 intermediate species have on their centripetal faces numerous mitochondria which are larger in profile area than those in mesophyll cells and are in close association with chloroplasts and peroxisomes. Confinement of glycine decarboxylase to the bundle-sheath cells is likely to improve the potential for recapture of photorespired CO2 via the Calvin cycle and could account for the low rate of photorespiration in all C3-C4 intermediate species.

  2. Identification, Cloning, and Characterization of a Lactococcus lactis Branched-Chain α-Keto Acid Decarboxylase Involved in Flavor Formation

    PubMed Central

    Smit, Bart A.; van Hylckama Vlieg, Johan E. T.; Engels, Wim J. M.; Meijer, Laura; Wouters, Jan T. M.; Smit, Gerrit

    2005-01-01

    The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain α-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagenesis approach, the gene encoding KdcA in L. lactis B1157 was identified. The gene for this enzyme is highly homologous to the gene annotated ipd, which encodes a putative indole pyruvate decarboxylase, in L. lactis IL1403. Strain IL1403 does not produce KdcA, which could be explained by a 270-nucleotide deletion at the 3′ terminus of the ipd gene encoding a truncated nonfunctional decarboxylase. The kdcA gene was overexpressed in L. lactis for further characterization of the decarboxylase enzyme. Of all of the potential substrates tested, the highest activity was observed with branched-chain α-keto acids. Moreover, the enzyme activity was hardly affected by high salinity, and optimal activity was found at pH 6.3, indicating that the enzyme might be active under cheese ripening conditions. PMID:15640202

  3. Active-Site Engineering of Benzaldehyde Lyase Shows That a Point Mutation Can Confer Both New Reactivity and Susceptibility to Mechanism-Based Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Gabriel S.; Kneen, Malea M.; Petsko, Gregory A.

    2010-02-11

    Benzaldehyde lyase (BAL) from Pseudomonas putida is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the breakdown of (R)-benzoin. Here we report that a point mutant, BAL A28S, not only catalyzes the decarboxylation of benzoylformate but, like benzoylformate decarboxylase (BFDC), is also inactivated by the benzoylformate analogues methyl benzoylphosphonate (MBP) and benzoylphosphonate (BP). The latter has no effect on wild-type BAL, and the inactivation of the A28S variant is shown to result from phosphorylation of the newly introduced serine residue. This lends support to the proposal that an appropriately placed nucleophile facilitates the expulsion of carbon dioxide from the active sitemore » in many ThDP-dependent decarboxylases.« less

  4. An endogenous factor enhances ferulic acid decarboxylation catalyzed by phenolic acid decarboxylase from Candida guilliermondii

    PubMed Central

    2012-01-01

    The gene for a eukaryotic phenolic acid decarboxylase of Candida guilliermondii was cloned, sequenced, and expressed in Escherichia coli for the first time. The structural gene contained an open reading frame of 504 bp, corresponding to 168 amino acids with a calculated molecular mass of 19,828 Da. The deduced amino sequence exhibited low similarity to those of functional phenolic acid decarboxylases previously reported from bacteria with 25-39% identity and to those of PAD1 and FDC1 proteins from Saccharomyces cerevisiae with less than 14% identity. The C. guilliermondii phenolic acid decarboxylase converted the main substrates ferulic acid and p-coumaric acid to the respective corresponding products. Surprisingly, the ultrafiltrate (Mr 10,000-cut-off) of the cell-free extract of C. guilliermondii remarkably activated the ferulic acid decarboxylation by the purified enzyme, whereas it was almost without effect on the p-coumaric acid decarboxylation. Gel-filtration chromatography of the ultrafiltrate suggested that an endogenous amino thiol-like compound with a molecular weight greater than Mr 1,400 was responsible for the activation. PMID:22217315

  5. The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway

    PubMed Central

    Rauthan, Manish; Ranji, Parmida; Aguilera Pradenas, Nataly; Pitot, Christophe; Pilon, Marc

    2013-01-01

    Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the synthesis of cholesterol via the mevalonate pathway. This pathway also produces coenzyme Q (a component of the respiratory chain), dolichols (important for protein glycosylation), and isoprenoids (lipid moieties responsible for the membrane association of small GTPases). We previously showed that the nematode Caenorhabditis elegans is useful to study the noncholesterol effects of statins because its mevalonate pathway lacks the sterol synthesis branch but retains all other branches. Here, from a screen of 150,000 mutagenized genomes, we isolated four C. elegans mutants resistant to statins by virtue of gain-of-function mutations within the first six amino acids of the protein ATFS-1, the key regulator of the mitochondrial unfolded protein response that includes activation of the chaperones HSP-6 and HSP-60. The atfs-1 gain-of-function mutants are also resistant to ibandronate, an inhibitor of an enzyme downstream of HMG-CoA reductase, and to gliotoxin, an inhibitor acting on a subbranch of the pathway important for protein prenylation, and showed improved mitochondrial function and protein prenylation in the presence of statins. Additionally, preinduction of the mitochondrial unfolded protein response in wild-type worms using ethidium bromide or paraquat triggered statin resistance, and similar observations were made in Schizosaccharomyces pombe and in a mammalian cell line. We conclude that statin resistance through maintenance of mitochondrial homeostasis is conserved across species, and that the cell-lethal effects of statins are caused primarily through impaired protein prenylation that results in mitochondria dysfunction. PMID:23530189

  6. The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway.

    PubMed

    Rauthan, Manish; Ranji, Parmida; Aguilera Pradenas, Nataly; Pitot, Christophe; Pilon, Marc

    2013-04-09

    Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the synthesis of cholesterol via the mevalonate pathway. This pathway also produces coenzyme Q (a component of the respiratory chain), dolichols (important for protein glycosylation), and isoprenoids (lipid moieties responsible for the membrane association of small GTPases). We previously showed that the nematode Caenorhabditis elegans is useful to study the noncholesterol effects of statins because its mevalonate pathway lacks the sterol synthesis branch but retains all other branches. Here, from a screen of 150,000 mutagenized genomes, we isolated four C. elegans mutants resistant to statins by virtue of gain-of-function mutations within the first six amino acids of the protein ATFS-1, the key regulator of the mitochondrial unfolded protein response that includes activation of the chaperones HSP-6 and HSP-60. The atfs-1 gain-of-function mutants are also resistant to ibandronate, an inhibitor of an enzyme downstream of HMG-CoA reductase, and to gliotoxin, an inhibitor acting on a subbranch of the pathway important for protein prenylation, and showed improved mitochondrial function and protein prenylation in the presence of statins. Additionally, preinduction of the mitochondrial unfolded protein response in wild-type worms using ethidium bromide or paraquat triggered statin resistance, and similar observations were made in Schizosaccharomyces pombe and in a mammalian cell line. We conclude that statin resistance through maintenance of mitochondrial homeostasis is conserved across species, and that the cell-lethal effects of statins are caused primarily through impaired protein prenylation that results in mitochondria dysfunction.

  7. Molecular cloning and nucleotide sequences of the genes for two essential proteins constituting a novel enzyme system for heptaprenyl diphosphate synthesis.

    PubMed

    Koike-Takeshita, A; Koyama, T; Obata, S; Ogura, K

    1995-08-04

    The genes encoding two dissociable components essential for Bacillus stearothermophilus heptaprenyl diphosphate synthase (all-trans-hexparenyl-diphosphate:isopentenyl-diphosphate hexaprenyl-trans-transferase, EC 2.5.1.30) were cloned, and their nucleotide sequences were determined. Sequence analyses revealed the presence of three open reading frames within 2,350 base pairs, designated as ORF-1, ORF-2, and ORF-3 in order of nucleotide sequence, which encode proteins of 220, 234, and 323 amino acids, respectively. Deletion experiments have shown that expression of the enzymatic activity requires the presence of ORF-1 and ORF-3, but ORF-2 is not essential. As a result, this enzyme was proved genetically to consist of two different protein compounds with molecular masses of 25 kDa (Component I) and 36 kDa (Component II), encoded by two of the three tandem genes. The protein encoded by ORF-1 has no similarity to any protein so far registered. However, the protein encoded by ORF-3 shows a 32% similarity to the farnesyl diphosphate synthase of the same bacterium and has seven highly conserved regions that have been shown typical in prenyltransferases (Koyama, T., Obata, S., Osabe, M., Takeshita, A., Yokoyama, K., Uchida, M., Nishino, T., and Ogura, K. (1993) J. Biochem. (Tokyo) 113, 355-363).

  8. Swit_4259, an acetoacetate decarboxylase-like enzyme from Sphingomonas wittichii RW1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mydy, Lisa S.; Mashhadi, Zahra; Knight, T. William

    The Gram-negative bacteriumSphingomonas wittichiiRW1 is notable for its ability to metabolize a variety of aromatic hydrocarbons. Not surprisingly, theS. wittichiigenome contains a number of putative aromatic hydrocarbon-degrading gene clusters. One of these includes an enzyme of unknown function, Swit_4259, which belongs to the acetoacetate decarboxylase-like superfamily (ADCSF). Here, it is reported that Swit_4259 is a small (28.8 kDa) tetrameric ADCSF enzyme that, unlike the prototypical members of the superfamily, does not have acetoacetate decarboxylase activity. Structural characterization shows that the tertiary structure of Swit_4259 is nearly identical to that of the true decarboxylases, but there are important differences in themore » fine structure of the Swit_4259 active site that lead to a divergence in function. In addition, it is shown that while it is a poor substrate, Swit_4259 can catalyze the hydration of 2-oxo-hex-3-enedioate to yield 2-oxo-4-hydroxyhexanedioate. It is also demonstrated that Swit_4259 has pyruvate aldolase-dehydratase activity, a feature that is common to all of the family V ADCSF enzymes studied to date. The enzymatic activity, together with the genomic context, suggests that Swit_4259 may be a hydratase with a role in the metabolism of an as-yet-unknown hydrocarbon. These data have implications for engineering bioremediation pathways to degrade specific pollutants, as well as structure–function relationships within the ADCSF in general.« less

  9. Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate.

    PubMed

    Gutensohn, Michael; Nguyen, Thuong T H; McMahon, Richard D; Kaplan, Ian; Pichersky, Eran; Dudareva, Natalia

    2014-07-01

    Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zargar, K.; Saville, R.; Phelan, R. M.

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation inmore » complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extract s, (iii) both activities were irreversibly inactivated upon exposure to O 2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.« less

  11. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    DOE PAGES

    Zargar, K.; Saville, R.; Phelan, R. M.; ...

    2016-08-10

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation inmore » complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extract s, (iii) both activities were irreversibly inactivated upon exposure to O 2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.« less

  12. Expression of Ornithine Decarboxylase Is Transiently Increased by Pollination, 2,4-Dichlorophenoxyacetic Acid, and Gibberellic Acid in Tomato Ovaries1

    PubMed Central

    Alabadí, David; Carbonell, Juan

    1998-01-01

    A cDNA encoding for a functional ornithine decarboxylase has been isolated from a cDNA library of carpels of tomato (Lycopersicon esculentum Mill.). Ornithine decarboxylase in tomato is represented by a single-copy gene that we show to be up-regulated during early fruit growth induced by 2,4-dichlorophenoxyacetic acid and gibberellic acid. PMID:9733552

  13. Geranyl diphosphate:4-hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon. Cloning and characterization of a ket enzyme in shikonin biosynthesis.

    PubMed

    Yazaki, Kazufumi; Kunihisa, Miyuki; Fujisaki, Takahiro; Sato, Fumihiko

    2002-02-22

    Two cDNAs encoding geranyl diphosphate:4-hy- droxybenzoate 3-geranyltransferase were isolated from Lithospermum erythrorhizon by nested PCR using the conserved amino acid sequences among polyprenyl- transferases for ubiquinone biosynthesis. They were functionally expressed in yeast COQ2 disruptant and showed a strict substrate specificity for geranyl diphosphate as the prenyl donor, in contrast to ubiquinone biosynthetic enzymes, suggesting that they are involved in the biosynthesis of shikonin, a naphthoquinone secondary metabolite. Regulation of their expression by various culture conditions coincided with that of geranyltransferase activity and the secondary metabolites biosynthesized via this enzyme. This is the first established plant prenyltransferase that transfers the prenyl chain to an aromatic substrate.

  14. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110

    USDA-ARS?s Scientific Manuscript database

    GABA ('-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermented da...

  15. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli: Production of Jet Fuel Precursor Monoterpenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun

    Monoterpenes (C 10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP productionmore » but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes.« less

  16. Dynamics of Monoterpene Formation in Spike Lavender Plants.

    PubMed

    Mendoza-Poudereux, Isabel; Kutzner, Erika; Huber, Claudia; Segura, Juan; Arrillaga, Isabel; Eisenreich, Wolfgang

    2017-12-19

    The metabolic cross-talk between the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways was analyzed in spike lavender ( Lavandula latifolia Med) on the basis of 13 CO₂-labelling experiments using wildtype and transgenic plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the first and key enzyme of the MVA pathway. The plants were labelled in the presence of 13 CO₂ in a gas chamber for controlled pulse and chase periods of time. GC/MS and NMR analysis of 1,8-cineole and camphor, the major monoterpenes present in their essential oil, indicated that the C5-precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of both monoterpenes are predominantly biosynthesized via the MEP pathway. Surprisingly, overexpression of HMGR did not have significant impact upon the crosstalk between the MVA and MEP pathways indicating that the MEP route is the preferred pathway for the synthesis of C5 monoterpene precursors in spike lavender.

  17. Development of inhibitors of the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway enzymes as potential anti-infective agents.

    PubMed

    Masini, Tiziana; Hirsch, Anna K H

    2014-12-11

    Important pathogens such as Mycobacterium tuberculosis and Plasmodium falciparum, the causative agents of tuberculosis and malaria, respectively, and plants, utilize the 2C-methyl-D-erythritol 4-phosphate (MEP, 5) pathway for the biosynthesis of isopentenyl diphosphate (1) and dimethylallyl diphosphate (2), the universal precursors of isoprenoids, while humans exclusively utilize the alternative mevalonate pathway for the synthesis of 1 and 2. This distinct distribution, together with the fact that the MEP pathway is essential in numerous organisms, makes the enzymes of the MEP pathway attractive drug targets for the development of anti-infective agents and herbicides. Herein, we review the inhibitors reported over the past 2 years, in the context of the most important older developments and with a particular focus on the results obtained against enzymes of pathogenic organisms. We will also discuss new discoveries in terms of structural and mechanistic features, which can help to guide a rational development of inhibitors.

  18. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli: Production of Jet Fuel Precursor Monoterpenoids

    DOE PAGES

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun; ...

    2017-05-18

    Monoterpenes (C 10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP productionmore » but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes.« less

  19. Dynamics of Monoterpene Formation in Spike Lavender Plants

    PubMed Central

    Kutzner, Erika; Huber, Claudia; Segura, Juan; Arrillaga, Isabel

    2017-01-01

    The metabolic cross-talk between the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways was analyzed in spike lavender (Lavandula latifolia Med) on the basis of 13CO2-labelling experiments using wildtype and transgenic plants overexpressing the 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), the first and key enzyme of the MVA pathway. The plants were labelled in the presence of 13CO2 in a gas chamber for controlled pulse and chase periods of time. GC/MS and NMR analysis of 1,8-cineole and camphor, the major monoterpenes present in their essential oil, indicated that the C5-precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) of both monoterpenes are predominantly biosynthesized via the MEP pathway. Surprisingly, overexpression of HMGR did not have significant impact upon the crosstalk between the MVA and MEP pathways indicating that the MEP route is the preferred pathway for the synthesis of C5 monoterpene precursors in spike lavender. PMID:29257083

  20. A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C25) Formation in the Glandular Trichomes of the Mint Species Leucosceptrum canum

    PubMed Central

    Luo, Shi-Hong; Schmidt, Axel; Sun, Gui-Ling; Kuang, Ce; Yang, Min-Jie; Jing, Shu-Xi; Li, Chun-Huan

    2016-01-01

    Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-d-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms. PMID:26941091

  1. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed Central

    Dalton, Heidi L.; Blomstedt, Cecilia K.; Neale, Alan D.; Gleadow, Ros; DeBoer, Kathleen D.; Hamill, John D.

    2016-01-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  2. Mevalonate kinase activity during different stages of plant regeneration from nodular callus cultures in white pine (Pinus strobus).

    PubMed

    Tang, Wei; Newton, Ronald J

    2006-02-01

    Mevalonate kinase (MK) catalyzes a step in the isoprenoid biosynthetic pathway, which leads to a huge number of compounds that play important roles in plant growth and development. Here, we report on changes in MK activity in white pine (Pinus strobus L.) during plant regeneration by adventitious shoot organogenesis from cotyledons of mature embryos, including nodular callus induction, shoot formation and rooting. Nodular calli were induced from Pinus strobus (PS) embryos by culture in nodular callus induction medium in a 0-, 8- or 16-h photoperiod. Mevalonate kinase activity peaked in nodular calli after three weeks of culture on nodular callus induction medium in a 16-h photoperiod, whereas frequency of nodular callus formation peaked after 4 weeks of culture on nodular callus induction medium in darkness. During adventitious shoot formation, MK activity peaked in shoots derived from dark-grown nodular calli after 3 weeks on bud formation medium, and frequency of shoot formation was highest in dark-grown nodular calli cultured on bud formation medium for 4 weeks. During rooting, MK activity peaked 2 weeks after transfer of adventitious shoots to rooting medium and rooting frequency was highest in adventitious shoots after 3 weeks on rooting medium. Although during nodular callus induction in darkness MK activity was inversely related to frequency of nodular callus formation, MK activity was highly correlated with frequency of shoot formation and with rooting frequency. The observed increase in MK activity preceding rooting suggests that MK could serve as a marker for rooting of white pine shoots in vitro.

  3. Molecular characteristic and physiological role of DOPA-decarboxylase.

    PubMed

    Guenter, Joanna; Lenartowski, Robert

    2016-12-31

    The enzyme DOPA decarboxylase (aromatic-L-amino-acid decarboxylase, DDC) plays an important role in the dopaminergic system and participates in the uptake and decarboxylation of amine precursors in the peripheral tissues. Apart from catecholamines, DDC catalyses the biosynthesis of serotonin and trace amines. It has been shown that the DDC amino acid sequence is highly evolutionarily conserved across many species. The activity of holoenzyme is regulated by stimulation/blockade of membrane receptors, phosphorylation of serine residues, and DDC interaction with regulatory proteins. A single gene codes for DDC both in neuronal and non-neuronal tissue, but synthesized isoforms of mRNA differ in the 5' UTR and in the presence of alternative exons. Tissue-specific expression of the DDC gene is controlled by two spatially distinct promoters - neuronal and non-neuronal. Several consensus sequences recognized by the HNF and POU family proteins have been mapped in the neuronal DDC promoter. Since DDC is located close to the imprinted gene cluster, its expression can be subjected to tightly controlled epigenetic regulation. Perturbations in DDC expression result in a range of neurodegenerative and psychiatric disorders and correlate with neoplasia. Apart from the above issues, the role of DDC in prostate cancer, bipolar affective disorder, Parkinson's disease and DDC deficiency is discussed in our review. Moreover, novel and prospective clinical treatments based on gene therapy and stem cells for the diseases mentioned above are described.

  4. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses.

    PubMed

    Manzano, David; Andrade, Paola; Caudepón, Daniel; Altabella, Teresa; Arró, Montserrat; Ferrer, Albert

    2016-09-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. © 2016

  5. Polyamine formation by arginine decarboxylase as a transducer of hormonal, environmental and stress stimuli in higher plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.

    1982-01-01

    Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.

  6. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    PubMed

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  7. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  8. uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs

    PubMed Central

    Ivanov, Ivaylo P.; Loughran, Gary; Atkins, John F.

    2008-01-01

    In a minority of eukaryotic mRNAs, a small functional upstream ORF (uORF), often performing a regulatory role, precedes the translation start site for the main product(s). Here, conserved uORFs in numerous ornithine decarboxylase homologs are identified from yeast to mammals. Most have noncanonical evolutionarily conserved start codons, the main one being AUU, which has not been known as an initiator for eukaryotic chromosomal genes. The AUG-less uORF present in mouse antizyme inhibitor, one of the ornithine decarboxylase homologs in mammals, mediates polyamine-induced repression of the downstream main ORF. This repression is part of an autoregulatory circuit, and one of its sensors is the AUU codon, which suggests that translation initiation codon identity is likely used for regulation in eukaryotes. PMID:18626014

  9. Induction of ornithine decarboxylase activity in weanling rat pancreas by an orally administered soy protein isolate.

    PubMed

    Caldwell, K A

    1987-03-15

    The induction of ornithine decarboxylase activity in weanling rat pancreas by a trypsin inhibitor-containing soy protein isolate has been studied. Oral administration of the isolate at 0.8, 1.6, 4.0, 6.0, and 8.0 mg/g body wt produced marked elevations in enzyme activity, a response which was proportional to the amount of isolate administered. Ornithine decarboxylase activity was measured at 2, 4, 6, 8, 12, and 24 hr after the isolate was given. A statistically significant increase in enzyme activity was evident as early as 2 hr after treatment; maximal activity occurred at 6 hr and was approximately 140 times greater than the

  10. Effect of the hexapeptide dalargin on ornithine decarboxylase activity in the duodenal mucosa of rats with experimental duodenal ulcer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarygin, K.N.; Shitin, A.G.; Polonskii, V.M.

    1987-08-01

    The authors study the effect of dalargin on ornithine decarboxylase in homogenates of the duodenal ulcer from rats with experimental duodenal ulcer induced by cysteamine. Activity of the enzyme was expressed in pmoles /sup 14/CO/sub 2//mg protein/h. Protein was determined by Lowry's method. The findings indicate that stimulation of ornithine decarboxylase and the antiulcerative effect of dalargin may be due to direct interaction of the peptide with cells of the intestinal mucosa and with enterocytes.

  11. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.

    PubMed

    Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William

    2006-06-02

    The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.

  12. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    PubMed

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  13. Threonine 57 is required for the post-translational activation of Escherichia coli aspartate α-decarboxylase

    PubMed Central

    Webb, Michael E.; Yorke, Briony A.; Kershaw, Tom; Lovelock, Sarah; Lobley, Carina M. C.; Kilkenny, Mairi L.; Smith, Alison G.; Blundell, Tom L.; Pearson, Arwen R.; Abell, Chris

    2014-01-01

    Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of β-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation. PMID:24699660

  14. Pyruvate Decarboxylase Catalyzes Decarboxylation of Branched-Chain 2-Oxo Acids but Is Not Essential for Fusel Alcohol Production by Saccharomyces cerevisiae

    PubMed Central

    ter Schure, Eelko G.; Flikweert, Marcel T.; van Dijken, Johannes P.; Pronk, Jack T.; Verrips, C. Theo

    1998-01-01

    The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production. PMID:9546164

  15. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses1[OPEN

    PubMed Central

    Andrade, Paola; Caudepón, Daniel; Arró, Montserrat

    2016-01-01

    Farnesyl diphosphate synthase (FPS) catalyzes the synthesis of farnesyl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. Arabidopsis (Arabidopsis thaliana) contains two genes (FPS1 and FPS2) encoding FPS. Single fps1 and fps2 knockout mutants are phenotypically indistinguishable from wild-type plants, while fps1/fps2 double mutants are embryo lethal. To assess the effect of FPS down-regulation at postembryonic developmental stages, we generated Arabidopsis conditional knockdown mutants expressing artificial microRNAs devised to simultaneously silence both FPS genes. Induction of silencing from germination rapidly caused chlorosis and a strong developmental phenotype that led to seedling lethality. However, silencing of FPS after seed germination resulted in a slight developmental delay only, although leaves and cotyledons continued to show chlorosis and altered chloroplasts. Metabolomic analyses also revealed drastic changes in the profile of sterols, ubiquinones, and plastidial isoprenoids. RNA sequencing and reverse transcription-quantitative polymerase chain reaction transcriptomic analysis showed that a reduction in FPS activity levels triggers the misregulation of genes involved in biotic and abiotic stress responses, the most prominent one being the rapid induction of a set of genes related to the jasmonic acid pathway. Down-regulation of FPS also triggered an iron-deficiency transcriptional response that is consistent with the iron-deficient phenotype observed in FPS-silenced plants. The specific inhibition of the sterol biosynthesis pathway by chemical and genetic blockage mimicked these transcriptional responses, indicating that sterol depletion is the primary cause of the observed alterations. Our results highlight the importance of sterol homeostasis for normal chloroplast development and function and reveal important clues about how isoprenoid and sterol metabolism is integrated within plant physiology and development. PMID

  16. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    PubMed Central

    2016-01-01

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs. PMID:27490479

  17. Structure of the ent-Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase.

    PubMed

    Rudolf, Jeffrey D; Dong, Liao-Bin; Cao, Hongnan; Hatzos-Skintges, Catherine; Osipiuk, Jerzy; Endres, Michael; Chang, Chin-Yuan; Ma, Ming; Babnigg, Gyorgy; Joachimiak, Andrzej; Phillips, George N; Shen, Ben

    2016-08-31

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three α-helical domains (αβγ), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (α) and type II TSs (βγ). Type II DTSs of bacterial origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtmT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 Å, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg(2+)-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.

  18. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    DOE PAGES

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed.more » Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.« less

  19. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation.

    PubMed

    Sasaki, Daisuke; Fujihashi, Masahiro; Okuyama, Naomi; Kobayashi, Yukiko; Noike, Motoyoshi; Koyama, Tanetoshi; Miki, Kunio

    2011-02-04

    Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.

  20. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario

    2007-04-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belongedmore » to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.« less

  1. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  2. A role for the mevalonate pathway in early plant symbiotic signaling

    PubMed Central

    Venkateshwaran, Muthusubramanian; Jayaraman, Dhileepkumar; Chabaud, Mireille; Genre, Andrea; Balloon, Allison J.; Maeda, Junko; Forshey, Kari; den Os, Désirée; Kwiecien, Nicholas W.; Coon, Joshua J.; Barker, David G.; Ané, Jean-Michel

    2015-01-01

    Rhizobia and arbuscular mycorrhizal fungi produce signals that are perceived by host legume receptors at the plasma membrane and trigger sustained oscillations of the nuclear and perinuclear Ca2+ concentration (Ca2+ spiking), which in turn leads to gene expression and downstream symbiotic responses. The activation of Ca2+ spiking requires the plasma membrane-localized receptor-like kinase Does not Make Infections 2 (DMI2) as well as the nuclear cation channel DMI1. A key enzyme regulating the mevalonate (MVA) pathway, 3-Hydroxy-3-Methylglutaryl CoA Reductase 1 (HMGR1), interacts with DMI2 and is required for the legume–rhizobium symbiosis. Here, we show that HMGR1 is required to initiate Ca2+ spiking and symbiotic gene expression in Medicago truncatula roots in response to rhizobial and arbuscular mycorrhizal fungal signals. Furthermore, MVA, the direct product of HMGR1 activity, is sufficient to induce nuclear-associated Ca2+ spiking and symbiotic gene expression in both wild-type plants and dmi2 mutants, but interestingly not in dmi1 mutants. Finally, MVA induced Ca2+ spiking in Human Embryonic Kidney 293 cells expressing DMI1. This demonstrates that the nuclear cation channel DMI1 is sufficient to support MVA-induced Ca2+ spiking in this heterologous system. PMID:26199419

  3. A role for the mevalonate pathway in early plant symbiotic signaling.

    PubMed

    Venkateshwaran, Muthusubramanian; Jayaraman, Dhileepkumar; Chabaud, Mireille; Genre, Andrea; Balloon, Allison J; Maeda, Junko; Forshey, Kari; den Os, Désirée; Kwiecien, Nicholas W; Coon, Joshua J; Barker, David G; Ané, Jean-Michel

    2015-08-04

    Rhizobia and arbuscular mycorrhizal fungi produce signals that are perceived by host legume receptors at the plasma membrane and trigger sustained oscillations of the nuclear and perinuclear Ca(2+) concentration (Ca(2+) spiking), which in turn leads to gene expression and downstream symbiotic responses. The activation of Ca(2+) spiking requires the plasma membrane-localized receptor-like kinase Does not Make Infections 2 (DMI2) as well as the nuclear cation channel DMI1. A key enzyme regulating the mevalonate (MVA) pathway, 3-Hydroxy-3-Methylglutaryl CoA Reductase 1 (HMGR1), interacts with DMI2 and is required for the legume-rhizobium symbiosis. Here, we show that HMGR1 is required to initiate Ca(2+) spiking and symbiotic gene expression in Medicago truncatula roots in response to rhizobial and arbuscular mycorrhizal fungal signals. Furthermore, MVA, the direct product of HMGR1 activity, is sufficient to induce nuclear-associated Ca(2+) spiking and symbiotic gene expression in both wild-type plants and dmi2 mutants, but interestingly not in dmi1 mutants. Finally, MVA induced Ca(2+) spiking in Human Embryonic Kidney 293 cells expressing DMI1. This demonstrates that the nuclear cation channel DMI1 is sufficient to support MVA-induced Ca(2+) spiking in this heterologous system.

  4. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Feng, Yang-Zheng; Regunathan, Soundar; Bissette, Garth

    2008-01-01

    Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to two hour immobilization stress daily for seven days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Likewise, endogenous agmatine levels measured by high performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92% to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism. PMID:18832001

  5. A mathematical model of the mevalonate cholesterol biosynthesis pathway.

    PubMed

    Pool, Frances; Currie, Richard; Sweby, Peter K; Salazar, José Domingo; Tindall, Marcus J

    2018-04-14

    We formulate, parameterise and analyse a mathematical model of the mevalonate pathway, a key pathway in the synthesis of cholesterol. Of high clinical importance, the pathway incorporates rate limiting enzymatic reactions with multiple negative feedbacks. In this work we investigate the pathway dynamics and demonstrate that rate limiting steps and negative feedbacks within it act in concert to tightly regulate intracellular cholesterol levels. Formulated using the theory of nonlinear ordinary differential equations and parameterised in the context of a hepatocyte, the governing equations are analysed numerically and analytically. Sensitivity and mathematical analysis demonstrate the importance of the two rate limiting enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and squalene synthase in controlling the concentration of substrates within the pathway as well as that of cholesterol. The role of individual feedbacks, both global (between that of cholesterol and sterol regulatory element-binding protein 2; SREBP-2) and local internal (between substrates in the pathway) are investigated. We find that whilst the cholesterol SREBP-2 feedback regulates the overall system dynamics, local feedbacks activate within the pathway to tightly regulate the overall cellular cholesterol concentration. The network stability is analysed by constructing a reduced model of the full pathway and is shown to exhibit one real, stable steady-state. We close by addressing the biological question as to how farnesyl-PP levels are affected by CYP51 inhibition, and demonstrate that the regulatory mechanisms within the network work in unison to ensure they remain bounded. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    PubMed

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  7. Regio- and Stereoselective Aliphatic-Aromatic Cross-Benzoin Reaction: Enzymatic Divergent Catalysis.

    PubMed

    Beigi, Maryam; Gauchenova, Ekaterina; Walter, Lydia; Waltzer, Simon; Bonina, Fabrizio; Stillger, Thomas; Rother, Dörte; Pohl, Martina; Müller, Michael

    2016-09-19

    The catalytic asymmetric synthesis of chiral 2-hydroxy ketones by using different thiamine diphosphate dependent enzymes, namely benzaldehyde lyase from Pseudomonas fluorescens (PfBAL), a variant of benzoylformate decarboxylase from Pseudomonas putida (PpBFD-L461A), branched-chain 2-keto acid decarboxylase from Lactococcus lactis (LlKdcA) and a variant of pyruvate decarboxylase from Acetobacter pasteurianus (ApPDC-E469G), was studied. Starting with the same set of substrates, substituted benzaldehydes in combination with different aliphatic aldehydes, PfBAL and PpBFD-L461A selectively deliver the (R)- and (S)-2-hydroxy-propiophenone derivatives, respectively. The (R)- and (S)-phenylacetylcarbinol (1-hydroxy-1-phenylacetone) derivatives are accessible in a similar way using LlKdcA and ApPDC-E469G, respectively. In many cases excellent stereochemical purities (>98 % enantiomeric excess) could be achieved. Hence, the regio- and stereochemistry of the product in the asymmetric aliphatic-aromatic cross-benzoin reaction can be controlled solely by choice of the appropriate enzyme or enzyme variant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Structure of the ent -Copalyl Diphosphate Synthase PtmT2 from Streptomyces platensis CB00739, a Bacterial Type II Diterpene Synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudolf, Jeffrey D.; Dong, Liao-Bin; Cao, Hongnan

    Terpenoids are the largest and most structurally diverse family of natural products found in nature, yet their presence in bacteria is underappreciated. The carbon skeletons of terpenoids are generated through carbocation-dependent cyclization cascades catalyzed by terpene synthases (TSs). Type I and type II TSs initiate cyclization via diphosphate ionization and protonation, respectively, and protein structures of both types are known. Most plant diterpene synthases (DTSs) possess three alpha-helical domains (alpha beta gamma), which are thought to have arisen from the fusion of discrete, ancestral bacterial type I TSs (alpha) and type II TSs (beta gamma). Type II DTSs of bacterialmore » origin, of which there are no structurally characterized members, are a missing piece in the structural evolution of TSs. Here, we report the first crystal structure of a type II DTS from bacteria. PtnaT2 from Streptomyces platensis CB00739 was verified as an ent-copalyl diphosphate synthase involved in the biosynthesis of platensimycin and platencin. The crystal structure of PtmT2 was solved at a resolution of 1.80 angstrom, and docking studies suggest the catalytically active conformation of geranylgeranyl diphosphate (GGPP). Site-directed mutagenesis confirmed residues involved in binding the diphosphate moiety of GGPP and identified DxxxxE as a potential Mg2+-binding motif for type II DTSs of bacterial origin. Finally, both the shape and physicochemical properties of the active sites are responsible for determining specific catalytic outcomes of TSs. The structure of PtmT2 fundamentally advances the knowledge of bacterial TSs, their mechanisms, and their role in the evolution of TSs.« less

  9. Production of jet fuel precursor monoterpenoids from engineered Escherichia coli.

    PubMed

    Mendez-Perez, Daniel; Alonso-Gutierrez, Jorge; Hu, Qijun; Molinas, Margaux; Baidoo, Edward E K; Wang, George; Chan, Leanne J G; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek S

    2017-08-01

    Monoterpenes (C 10 isoprenoids) are the main components of essential oils and are possible precursors for many commodity chemicals and high energy density fuels. Monoterpenes are synthesized from geranyl diphosphate (GPP), which is also the precursor for the biosynthesis of farnesyl diphosphate (FPP). FPP biosynthesis diverts the carbon flux from monoterpene production to C 15 products and quinone biosynthesis. In this study, we tested a chromosomal mutation of Escherichia coli's native FPP synthase (IspA) to improve GPP availability for the production of monoterpenes using a heterologous mevalonate pathway. Monoterpene production at high levels required not only optimization of GPP production but also a basal level of FPP to maintain growth. The optimized strains produced two jet fuel precursor monoterpenoids 1,8-cineole and linalool at the titer of 653 mg/L and 505 mg/L, respectively, in batch cultures with 1% glucose. The engineered strains developed in this work provide useful resources for the production of high-value monoterpenes. Biotechnol. Bioeng. 2017;114: 1703-1712. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Cloning and expression analysis of the ornithine decarboxylase gene (PbrODC) of the pathogenic fungus Paracoccidioides brasiliensis.

    PubMed

    Niño-Vega, Gustavo A; Sorais, Françoise; Calcagno, Ana-María; Ruiz-Herrera, José; Martínez-Espinoza, Alfredo D; San-Blas, Gioconda

    2004-02-01

    We describe the isolation and sequencing of PbrODC, the gene encoding ornithine decarboxylase (ODC) in Paracoccidioides brasiliensis. The gene contains a single open reading frame made of 1413 bp with a single intron (72 bp), and encodes a 447 amino acid polypeptide with a predicted molecular weight of 50.0 kDa, an isoelectric point of 4.9 and a high similarity to other fungal ornithine decarboxylases. Functionality of the gene was demonstrated by transformation into a Saccharomyces cerevisiae odc null mutant. A phylogenetic tree generated with several fungal ODCs provided additional evidence to favour a taxonomic position for P. brasiliensis as an ascomycetous fungus, belonging to the order Onygenales. Expression of the PbrODC gene was determined by Northern analyses during growth of the mycelial and yeast forms, and through the temperature-regulated dimorphic transition between these two extreme phases. Expression of PbrODC remained constant at all stages of the fungal growth, and did not correlate with a previously observed increase in the activity of ornithine decarboxylase at the onset of the budding process in both yeast growth and mycelium-to-yeast transition. Accordingly, post-transcriptional regulation for the product of PbrODC is suggested. Copyright 2004 John Wiley & Sons, Ltd.

  11. Effects of bis(guanylhydrazones) on the activity and expression of ornithine decarboxylase.

    PubMed Central

    Nikula, P; Alhonen-Hongisto, L; Jänne, J

    1985-01-01

    Derivatives of glyoxal bis(guanylhydrazone) (GBG), such as methylglyoxal bis(guanylhydrazone) and ethylglyoxal bis(guanylhydrazone), are potent inhibitors of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the key enzyme required for the synthesis of spermidine and spermine. These compounds, but not the parent compound, induce a massive accumulation of putrescine, partly by blocking the conversion of putrescine into spermidine, but also by strikingly stimulating ornithine decarboxylase (ODC; EC 4.1.1.17) activity. The mechanism of the stimulation of ODC activity and enhanced accumulation of the enzyme protein apparently involved a distinct stabilization of the enzyme against intracellular degradation. However, although the parent compound GBG also stabilized ODC, it powerfully inhibited the enzyme activity and the accumulation of immunoreactive protein in cultured L1210 leukaemia cells. Kinetic considerations indicated that, in addition to the stabilization, all three compounds, GBG in particular, inhibited the expression of ODC. It is unlikely that the decreased rate of synthesis of ODC was attributable to almost unaltered amounts of mRNA in drug-treated cells, thus supporting the view that especially GBG apparently depressed the expression of ODC at some post-transcriptional level. Images PMID:4062886

  12. Substrate uptake and protein stability relationship in mammalian histidine decarboxylase.

    PubMed

    Pino-Angeles, A; Morreale, A; Negri, A; Sánchez-Jiménez, F; Moya-García, A A

    2010-01-01

    There is some evidence linking the substrate entrance in the active site of mammalian histidine decarboxylase and an increased stability against proteolytic degradation. In this work, we study the basis of this relationship by means of protein structure network analysis and molecular dynamics simulations. We find that the substrate binding to the active site influences the conformation of a flexible region sensible to proteolytic degradation and observe how formation of the Michaelis-Menten complex increases stability in the conformation of this region. (c) 2009 Wiley-Liss, Inc.

  13. Toxoplasma gondii Relies on Both Host and Parasite Isoprenoids and Can Be Rendered Sensitive to Atorvastatin

    PubMed Central

    Li, Zhu-Hong; Ramakrishnan, Srinivasan; Striepen, Boris; Moreno, Silvia N. J.

    2013-01-01

    Intracellular pathogens have complex metabolic interactions with their host cells to ensure a steady supply of energy and anabolic building blocks for rapid growth. Here we use the obligate intracellular parasite Toxoplasma gondii to probe this interaction for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Synthesis of precursors for isoprenoids in Apicomplexa occurs in the apicoplast and is essential. To synthesize longer isoprenoids from these precursors, T. gondii expresses a bifunctional farnesyl diphosphate/geranylgeranyl diphosphate synthase (TgFPPS). In this work we construct and characterize T. gondii null mutants for this enzyme. Surprisingly, these mutants have only a mild growth phenotype and an isoprenoid composition similar to wild type parasites. However, when extracellular, the loss of the enzyme becomes phenotypically apparent. This strongly suggests that intracellular parasite salvage FPP and/or geranylgeranyl diphosphate (GGPP) from the host. We test this hypothesis using inhibitors of host cell isoprenoid synthesis. Mammals use the mevalonate pathway, which is susceptible to statins. We document strong synergy between statin treatment and pharmacological or genetic interference with the parasite isoprenoid pathway. Mice can be cured with atorvastatin (Lipitor) from a lethal infection with the TgFPPs mutant. We propose a double-hit strategy combining inhibitors of host and parasite pathways as a novel therapeutic approach against Apicomplexan parasites. PMID:24146616

  14. Toxoplasma gondii relies on both host and parasite isoprenoids and can be rendered sensitive to atorvastatin.

    PubMed

    Li, Zhu-Hong; Ramakrishnan, Srinivasan; Striepen, Boris; Moreno, Silvia N J

    2013-01-01

    Intracellular pathogens have complex metabolic interactions with their host cells to ensure a steady supply of energy and anabolic building blocks for rapid growth. Here we use the obligate intracellular parasite Toxoplasma gondii to probe this interaction for isoprenoids, abundant lipidic compounds essential to many cellular processes including signaling, trafficking, energy metabolism, and protein translation. Synthesis of precursors for isoprenoids in Apicomplexa occurs in the apicoplast and is essential. To synthesize longer isoprenoids from these precursors, T. gondii expresses a bifunctional farnesyl diphosphate/geranylgeranyl diphosphate synthase (TgFPPS). In this work we construct and characterize T. gondii null mutants for this enzyme. Surprisingly, these mutants have only a mild growth phenotype and an isoprenoid composition similar to wild type parasites. However, when extracellular, the loss of the enzyme becomes phenotypically apparent. This strongly suggests that intracellular parasite salvage FPP and/or geranylgeranyl diphosphate (GGPP) from the host. We test this hypothesis using inhibitors of host cell isoprenoid synthesis. Mammals use the mevalonate pathway, which is susceptible to statins. We document strong synergy between statin treatment and pharmacological or genetic interference with the parasite isoprenoid pathway. Mice can be cured with atorvastatin (Lipitor) from a lethal infection with the TgFPPs mutant. We propose a double-hit strategy combining inhibitors of host and parasite pathways as a novel therapeutic approach against Apicomplexan parasites.

  15. Utilization of alkaline phosphatase PhoA in the bioproduction of geraniol by metabolically engineered Escherichia coli.

    PubMed

    Liu, Wei; Zhang, Rubing; Tian, Ning; Xu, Xin; Cao, Yujing; Xian, Mo; Liu, Huizhou

    2015-01-01

    Geraniol is a valuable acyclic monoterpene alcohol and has many applications in the perfume industries, pharmacy and others. It has been hypothesized that phosphatases can convert geranyl diphosphate (GPP) into geraniol. However, whether and which phosphatases can transform GPP to geraniol has remained unanswered up till now. In this paper, the catalysis abilities of 4 different types of phosphatases were studied with GPP as substrate in vitro. They are bifunctional diacylglycerol diphosphate phosphatase (DPP1) and lipid phosphate phosphatase (LPP1) from Saccharomyces cerevisiae, ADP-ribose pyrophosphatase (NudF) and alkaline phosphatase (PhoA) from Escherichia coli. The results show that just PhoA from E. coli can convert GPP into geraniol. Moreover, in order to confirm the ability of PhoA in vivo, the heterologous mevalonate pathway and geranyl diphosphate synthase gene from Abies grandis were co-overexpressed in E. coli with PhoA gene and 5.3 ± 0.2 mg/l geraniol was produced from glucose in flask-culture. Finally, we also evaluated the fed-batch fermentation of this engineered E. coli and a maximum concentration of 99.3 mg/l geraniol was produced while the conversion efficiency of glucose to geranoid (gram to gram) was 0.51%. Our results offer a new option for geraniol biosynthesis and promote the industrial bio-production of geraniol.

  16. Utilization of alkaline phosphatase PhoA in the bioproduction of geraniol by metabolically engineered Escherichia coli

    PubMed Central

    Liu, Wei; Zhang, Rubing; Tian, Ning; Xu, Xin; Cao, Yujing; Xian, Mo; Liu, Huizhou

    2015-01-01

    Geraniol is a valuable acyclic monoterpene alcohol and has many applications in the perfume industries, pharmacy and others. It has been hypothesized that phosphatases can convert geranyl diphosphate (GPP) into geraniol. However, whether and which phosphatases can transform GPP to geraniol has remained unanswered up till now. In this paper, the catalysis abilities of 4 different types of phosphatases were studied with GPP as substrate in vitro. They are bifunctional diacylglycerol diphosphate phosphatase (DPP1) and lipid phosphate phosphatase (LPP1) from Saccharomyces cerevisiae, ADP-ribose pyrophosphatase (NudF) and alkaline phosphatase (PhoA) from Escherichia coli. The results show that just PhoA from E. coli can convert GPP into geraniol. Moreover, in order to confirm the ability of PhoA in vivo, the heterologous mevalonate pathway and geranyl diphosphate synthase gene from Abies grandis were co-overexpressed in E. coli with PhoA gene and 5.3 ± 0.2 mg/l geraniol was produced from glucose in flask-culture. Finally, we also evaluated the fed-batch fermentation of this engineered E. coli and a maximum concentration of 99.3 mg/l geraniol was produced while the conversion efficiency of glucose to geranoid (gram to gram) was 0.51%. Our results offer a new option for geraniol biosynthesis and promote the industrial bio-production of geraniol. PMID:26091008

  17. Functional characterization of ent-copalyl diphosphate synthase from Andrographis paniculata with putative involvement in andrographolides biosynthesis.

    PubMed

    Shen, Qinqin; Li, Lixia; Jiang, Yu; Wang, Qiang

    2016-01-01

    To characterize the ent-copalyl diphosphate (ent-CPP) synthase involved in the biosynthetic pathway of andrographolides in a medicinal plant, Andrographis paniculata. The ent-CPP synthase (ent-CPS) gene was cloned from A. paniculata and its encoded ApCPS was demonstrated to react with (E,E,E)-geranylgeranyl diphosphate to form ent-CPP through recombinant expression in Escherichia coli. Site-directed mutagenesis of the Asp to Ala in the conserved DXDD motif of ApCPS resulted in loss of function. One Arg is located in the conserved position close to DXDD motif indicating the involvement of ApCPS in specialized metabolism. In addition, RT-PCR analysis revealed that ApCPS was expressed in all tissues of A. paniculata at all growth stages, which is consistent with andrographolides accumulating in these organs. Methyl jasmonate induced ApCPS gene expression, matching inducible accumulation of andrographolides in vivo. ApCPS is the first ent-CPS characterized in A. paniculata and is suggested to be involved in biosynthesis of andrographolides that have high pharmaceutical values.

  18. Expression and stereochemical and isotope effect studies of active 4-oxalocrotonate decarboxylase.

    PubMed

    Stanley, T M; Johnson, W H; Burks, E A; Whitman, C P; Hwang, C C; Cook, P F

    2000-02-01

    4-Oxalocrotonate decarboxylase (4-OD) and vinylpyruvate hydratase (VPH) from Pseudomonas putida mt-2 form a complex that converts 2-oxo-3-hexenedioate to 2-oxo-4-hydroxypentanoate in the catechol meta fission pathway. To facilitate mechanistic and structural studies of the complex, the two enzymes have been coexpressed and the complex has been purified to homogeneity. In addition, Glu-106, a potential catalytic residue in VPH, has been changed to glutamine, and the resulting E106QVPH mutant has been coexpressed with 4-OD and purified to homogeneity. The 4-OD/E106QVPH complex retains full decarboxylase activity, with comparable kinetic parameters to those observed for 4-OD in the wild-type complex, but is devoid of any detectable hydratase activity. Decarboxylation of (5S)-2-oxo-3-[5-D]hexenedioate by either the 4-OD/VPH complex or the mutant complex generates 2-hydroxy-2,4E-[5-D]pentadienoate in D(2)O. Ketonization of 2-hydroxy-2,4-pentadienoate by the wild-type complex is highly stereoselective and results in the formation of 2-oxo-(3S)-[3-D]-4-pentenoate, while the mutant complex generates a racemic mixture. These results indicate that 2-hydroxy-2, 4-pentadienoate is the product of 4-OD and that 2-oxo-4-pentenoate results from a VPH-catalyzed process. On this basis, the previously proposed hypothesis for the conversion of 2-oxo-3-hexenedioate to 2-oxo-4-hydroxypentanoate has been revised [Lian, H., and Whitman, C. P. (1994) J. Am. Chem. Soc. 116, 10403-10411]. Finally, the observed (13)C kinetic isotope effect on the decarboxylation of 2-oxo-3-hexenedioate by the 4-OD/VPH complex suggests that the decarboxylation step is nearly rate-limiting. Because the value is not sensitive to either magnesium or manganese, it is likely that the transition state for carbon-carbon bond cleavage is late and that the metal positions the substrate and polarizes the carbonyl group, analogous to its role in oxalacetate decarboxylase.

  19. Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chuan-Hsiang; Gabelli, Sandra B.; Oldfield, Eric

    Bisphosphonates (BPs) are a class of compounds that have been used extensively in the treatment of osteoporosis and malignancy-related hypercalcemia. Some of these compounds act through inhibition of farnesyl diphosphate synthase (FPPS), a key enzyme in the synthesis of isoprenoids. Recently, nitrogen-containing bisphosphonates (N-BPs) used in bone resorption therapy have been shown to be active against Trypanosoma cruzi, the parasite that causes American trypanosomiasis (Chagas disease), suggesting that they may be used as anti-trypanosomal agents. The crystal structures of TcFPPS in complex with substrate (isopentenyl diphosphate, IPP) and five N-BP inhibitors show that the C-1 hydroxyl and the nitrogen-containing groupsmore » of the inhibitors alter the binding of IPP and the conformation of two TcFPPS residues, Tyr94 and Gln167. Isothermal titration calorimetry experiments suggest that binding of the first N-BPs to the homodimeric TcFPPS changes the binding properties of the second site. This mechanism of binding of N-BPs to TcFPPS is different to that reported for the binding of the same compounds to human FPPS.« less

  20. DPD epitope-specific glutamic acid decarboxylase GAD)65 autoantibodies in children with Type 1 diabetes

    USDA-ARS?s Scientific Manuscript database

    To study whether DPD epitope-specific glutamate decarboxylase autoantibodies are found more frequently in children with milder forms of Type 1 diabetes. We prospectively evaluated 75 children with new-onset autoimmune Type 1 diabetes, in whom we collected demographic, anthropometric and clinical dat...

  1. Antileishmanial activity of berenil and methylglyoxal bis (guanylhydrazone) and its correlation with S-adenosylmethionine decarboxylase and polyamines.

    PubMed

    Mukhopadhyay, R; Madhubala, R

    1995-01-01

    Leishmania donovani S-adenosyl-L-methionine (AdoMet) decarboxylase was found to show a growth related pattern. Methylglyoxal bis (guanylhydrazone) (MGBG) and Berenil inhibited the growth of Leishmania donovani promastigotes (strain UR6) in a dose dependent manner. The concentrations of MGBG and Berenil required for 50% inhibition of rate of growth were 67 and 47 microM, respectively. The growth inhibition of MGBG was partially reversed by spermidine (100 microM) and spermine (100 microM). Berenil inhibition of promastigote growth was partially reversed by 100 microM spermidine whereas 100 microM spermine did not result in any reversal of growth. The reduction in parasitemia in vitro by these inhibitors was accompanied by inhibition of AdoMet decarboxylase activity and spermidine levels.

  2. Gene cloning, recombinant expression, purification and characterization of l-methionine decarboxylase from Streptomyces sp. 590.

    PubMed

    Hayashi, Masaya; Okada, Akane; Yamamoto, Kumiko; Okugochi, Tomomi; Kusaka, Chika; Kudou, Daizou; Nemoto, Michiko; Inagaki, Junko; Hirose, Yuu; Okajima, Toshihide; Tamura, Takashi; Soda, Kenji; Inagaki, Kenji

    2017-04-01

    l-Methionine decarboxylase (MetDC) from Streptomyces sp. 590 depends on pyridoxal 5'-phosphate and catalyzes the non-oxidative decarboxylation of l-methionine to produce 3-methylthiopropylamine and carbon dioxide. MetDC gene (mdc) was determined to consist of 1,674 bp encoding 557 amino acids, and the amino acid sequence is similar to that of l-histidine decarboxylases and l-valine decarboxylases from Streptomyces sp. strains. The mdc gene was cloned and recombinant MetDC was heterologously expressed by Escherichia coli. The purification of recombinant MetDC was carried out by DEAE-Toyopearl and Ni-NTA agarose column chromatography. The recombinant enzyme was homodimeric with a molecular mass of 61,000 Da and showed optimal activity between 45 to 55 °C and at pH 6.6, and the stability below 30 °C and between pH 4.6 to 7.0. l-Methionine and l-norleucine were good substrates for MetDC. The Michaelis constants for l-methionine and l-norleucine were 30 and 73 mM, respectively. The recombinant MetDC (0.50 U/ml) severely inhibited growth of human tumour cells A431 (epidermoid ovarian carcinoma cell line) and MDA-MB-231 (breast cancer cell line), however showed relatively low cytotoxicity for human normal cell NHDF-Neo (dermal fibroblast cell line from neonatal foreskin). This study revealed the properties of the gene and the protein sequence of MetDC for the first time. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  3. Study of the Crystal Structures of Sodium Magnesium and Sodium Nickel Diphosphates

    NASA Astrophysics Data System (ADS)

    Erragh, Fatima; Boukhari, Ali; Abraham, Francis; Elouadi, Brahim

    2000-07-01

    Single-crystal X-ray crystallography studies have shown that diphosphates Na3.64Mg2.18(P2O7)2 and Na3.64Ni2.18(P2O7)2 crystallize with the same structural type and the same space group Poverline1. Their triclinic lattice parameters are equal to a=10.901 (2), b=9.765 (2), c=6.382 (1) Å, α=112.43 (1)°, β=99.64 (1)°, γ=107.53 (1)°, Z=2 and a=10.889 (5), b=9.705 (4), c=6.358 (4) Å, α=112.46 (4)°, β=99.92 (4)°, γ=107.54 (4)°, Z=2, respectively. The structure could be regarded as a packing of diphosphate groups [P2O7]4- and [MO6] octahedra (M=Mg, Ni) delimiting cavities and tunnels which host sodium cations. The tunnels are running along [001]. The structure is characterized by mixed (Na, M) sites with an occupation factor ratio equal to ca. 0.82/0.18. Sodium cations are located in five different sites: two cavities (one penta- and the other octa-coordinated) totally occupied and three octahedral interstices, which are partially filled by Na(3), Na(4), and Na(5) according to the respective occupation factors of 0.15, 0.42, and 0.25 for Na3.64Mg2.18(P2O7)2 and 0.13, 0.40, and 0.29 in the case of Na3.64Ni2.18(P2O7)2.

  4. Evidence for the Involvement of Acid/Base Chemistry in the Reaction Catalyzed by the Type II Isopentenyl Diphosphate/Dimethylallyl Diphosphate Isomerase from Staphylococcus aureus†

    PubMed Central

    Thibodeaux, Christopher J.; Mansoorabadi, Steven O.; Kittleman, William; Chang, Wei-chen; Liu, Hung-wen

    2011-01-01

    The type II isopentenyl diphosphate/dimethylallyl diphosphate isomerase (IDI-2) is a flavin mononucleotide (FMN)-dependent enzyme that catalyzes the reversible isomerization of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP), a reaction with no net change in redox state of the coenzyme or substrate. Here, UV-vis spectral analysis of the IDI-2 reaction revealed the accumulation of a reduced neutral dihydroflavin intermediate when the reduced enzyme was incubated with IPP or DMAPP. When IDI-2 was reconstituted with 1-deazaFMN and 5-deazaFMN, similar reduced neutral forms of the deazaflavin analogues were observed in the presence of IPP. Single turnover stopped-flow absorbance experiments indicated that this flavin intermediate formed and decayed at kinetically competent rates in the pre-steady-state and, thus, most likely represents a true intermediate in the catalytic cycle. UV-vis spectra of the reaction mixtures reveal trace amounts of a neutral semiquinone, but evidence for the presence of IPP-based radicals could not be obtained by EPR spectroscopy. Rapid-mix chemical quench experiments show no burst in DMAPP formation, suggesting that the rate determining step in the forward direction (IPP to DMAPP) occurs prior to DMAPP formation. A solvent deuterium kinetic isotope effect (D2OVmax = 1.5) was measured on vo in steady-state kinetic experiments at saturating substrate concentrations. A substrate deuterium kinetic isotope effect was also measured on the initital velocity (DVmax = 1.8) and on the decay rate of the flavin intermediate (Dks = 2.3) in single-turnover stopped-flow experiments using (R)-[2-2H]-IPP. Taken together, these data suggest that the C2–H bond of IPP is cleaved in the rate determining step and that general acid/base catalysis may be involved during turnover. Possible mechanisms for the IDI-2 catalyzed reaction are presented and discussed in terms of the available X-ray crystal structures. PMID:18229948

  5. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Q.; Ding, H; Robinson, H

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82more » and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.« less

  6. Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface methodology.

    PubMed

    Long, Han; Cai, XingHua; Yang, Hui; He, JunBin; Wu, Jia; Lin, RiHui

    2017-09-01

    In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.

  7. The mevalonate pathway in neurons: It's not just about cholesterol.

    PubMed

    Moutinho, Miguel; Nunes, Maria João; Rodrigues, Elsa

    2017-11-01

    Cholesterol homeostasis greatly impacts neuronal function due to the essential role of this sterol in the brain. The mevalonate (MVA) pathway leads to the synthesis of cholesterol, but also supplies cells with many other intermediary molecules crucial for neuronal function. Compelling evidence point to a model in which neurons shutdown cholesterol synthesis, and rely on a shuttle derived from astrocytes to meet their cholesterol needs. Nevertheless, several reports suggest that neurons maintain the MVA pathway active, even with sustained cholesterol supply by astrocytes. Hence, in this review we focus not on cholesterol production, but rather on the role of the MVA pathway in the synthesis of particular intermediaries, namely isoprenoids, and on their role on neuronal function. Isoprenoids act as anchors for membrane association, after being covalently bound to proteins, such as most of the small guanosine triphosphate-binding proteins, which are critical to neuronal cell function. Based on literature, on our own results, and on the analysis of public transcriptomics databases, we raise the idea that in neurons there is a shift of the MVA pathway towards the non-sterol branch, responsible for isoprenoid synthesis, in detriment to post-squalene branch, and that this is ultimately essential for synaptic activity. Nevertheless new tools that facilitate imaging and the biochemical characterization and quantification of the prenylome in neurons and astrocytes are needed to understand the regulation of isoprenoid production and protein prenylation in the brain, and to analyze its differences on diverse physiological or pathological conditions, such as aging and neurodegenerative states. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 7-methylguanosine diphosphate (m(7)GDP) is not hydrolyzed but strongly bound by decapping scavenger (DcpS) enzymes and potently inhibits their activity.

    PubMed

    Wypijewska, Anna; Bojarska, Elzbieta; Lukaszewicz, Maciej; Stepinski, Janusz; Jemielity, Jacek; Davis, Richard E; Darzynkiewicz, Edward

    2012-10-09

    Decapping scavenger (DcpS) enzymes catalyze the cleavage of a residual cap structure following 3' → 5' mRNA decay. Some previous studies suggested that both m(7)GpppG and m(7)GDP were substrates for DcpS hydrolysis. Herein, we show that mononucleoside diphosphates, m(7)GDP (7-methylguanosine diphosphate) and m(3)(2,2,7)GDP (2,2,7-trimethylguanosine diphosphate), resulting from mRNA decapping by the Dcp1/2 complex in the 5' → 3' mRNA decay, are not degraded by recombinant DcpS proteins (human, nematode, and yeast). Furthermore, whereas mononucleoside diphosphates (m(7)GDP and m(3)(2,2,7)GDP) are not hydrolyzed by DcpS, mononucleoside triphosphates (m(7)GTP and m(3)(2,2,7)GTP) are, demonstrating the importance of a triphosphate chain for DcpS hydrolytic activity. m(7)GTP and m(3)(2,2,7)GTP are cleaved at a slower rate than their corresponding dinucleotides (m(7)GpppG and m(3)(2,2,7)GpppG, respectively), indicating an involvement of the second nucleoside for efficient DcpS-mediated digestion. Although DcpS enzymes cannot hydrolyze m(7)GDP, they have a high binding affinity for m(7)GDP and m(7)GDP potently inhibits DcpS hydrolysis of m(7)GpppG, suggesting that m(7)GDP may function as an efficient DcpS inhibitor. Our data have important implications for the regulatory role of m(7)GDP in mRNA metabolic pathways due to its possible interactions with different cap-binding proteins, such as DcpS or eIF4E.

  9. Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae.

    PubMed

    Weber, Heike E; Gottardi, Manuela; Brückner, Christine; Oreb, Mislav; Boles, Eckhard; Tripp, Joanna

    2017-05-15

    Biotechnological production of cis , cis -muconic acid from renewable feedstocks is an environmentally sustainable alternative to conventional, petroleum-based methods. Even though a heterologous production pathway for cis , cis -muconic acid has already been established in the host organism Saccharomyces cerevisiae , the generation of industrially relevant amounts of cis , cis -muconic acid is hampered by the low activity of the bacterial protocatechuic acid (PCA) decarboxylase AroY isomeric subunit C iso (AroY-C iso ), leading to secretion of large amounts of the intermediate PCA into the medium. In the present study, we show that the activity of AroY-C iso in S. cerevisiae strongly depends on the strain background. We could demonstrate that the strain dependency is caused by the presence or absence of an intact genomic copy of PAD1 , which encodes a mitochondrial enzyme responsible for the biosynthesis of a prenylated form of the cofactor flavin mononucleotide (prFMN). The inactivity of AroY-C iso in strain CEN.PK2-1 could be overcome by plasmid-borne expression of Pad1 or its bacterial homologue AroY subunit B (AroY-B). Our data reveal that the two enzymes perform the same function in decarboxylation of PCA by AroY-C iso , although coexpression of Pad1 led to higher decarboxylase activity. Conversely, AroY-B can replace Pad1 in its function in decarboxylation of phenylacrylic acids by ferulic acid decarboxylase Fdc1. Targeting of the majority of AroY-B to mitochondria by fusion to a heterologous mitochondrial targeting signal did not improve decarboxylase activity of AroY-C iso , suggesting that mitochondrial localization has no major impact on cofactor biosynthesis. IMPORTANCE In Saccharomyces cerevisiae , the decarboxylation of protocatechuic acid (PCA) to catechol is the bottleneck reaction in the heterologous biosynthetic pathway for production of cis , cis -muconic acid, a valuable precursor for the production of bulk chemicals. In our work, we demonstrate

  10. Production of monospecific antibodies to rat liver ornithine decarboxylase and their use in turnover studies.

    PubMed

    Obenrader, M F; Prouty, W F

    1977-05-10

    Two forms of ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) were purified from the livers of rats which had been treated with thioacetamide for 16 h (for details, see miniprint to Obenrader, M.F., and Prouty, W. F. (1977) J. Biol. Chem. 252, 2860-2865). The enzyme was purified over 7,000-fold from liver cytosol with an overall yield of 8%. Enzyme activity was eluted finally in two distinct fractions by chromatography on activated thiol-Sepharose 4B. Both forms appear to be dimeric proteins having molecular weights of approximately 100,000 by equilibrium sedimentation and analysis on a calibrated Sephadex G-200 column. The apparent subunits are approximately 50,000 daltons as determined by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. Since electrophoresis in the presence of detergent is the only method used here to indicate subunits, the possibility that conditions of sample preparation resulted in splitting of a labile protein cannot be excluded from consideration. Ornithine decarboxylase has a very broad pH-activity curve with an optimum that shifts from pH 7.0 to pH 7.8 as the enzyme is purified. The apparent Km values for a highly purified mixture of the two forms of enzyme for L-ornithine and pyridoxal 5'-phosphate were determined to be 0.13 mM and 0.25 micronM, respectively. Both sodium and potassium chloride were shown to inhibit enzymatic activity; 50% inhibition occurred at 270 mM for each when Km amounts or ornithine were used. Rat liver ornithine decarboxylase antiserum was prepared in rabbits using Form I of the enzyme as the antigen. The antibody was shown to precipitate quantitatively the ornithine decarboxylase activity isolated from induced rat liver and rat ventral prostate. The specificity of the antiserum was demonstrated by rocket immunoelectrophoresis and by gel electrophoresis in the presence of sodium dodecyl sulfate using immunoprecipitates obtained from enzyme preparations labeled either

  11. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    PubMed

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexopoulos, Eftichia; Department of Medical Biophysics, University of Toronto, Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto Medical Discovery Tower, 101 College Street, Toronto, Ontario M5G 1L7; Kanjee, Usheer

    2008-08-01

    The structure of the decameric inducible lysine decarboxylase from E. coli was determined by SIRAS using a hexatantalum dodecabromide (Ta{sub 6}Br{sub 12}{sup 2+}) derivative. Model building and refinement are under way. The decameric inducible lysine decarboxylase (LdcI) from Escherichia coli has been crystallized in space groups C2 and C222{sub 1}; the Ta{sub 6}Br{sub 12}{sup 2+} cluster was used to derivatize the C2 crystals. The method of single isomorphous replacement with anomalous scattering (SIRAS) as implemented in SHELXD was used to solve the Ta{sub 6}Br{sub 12}{sup 2+}-derivatized structure to 5 Å resolution. Many of the Ta{sub 6}Br{sub 12}{sup 2+}-binding sites hadmore » twofold and fivefold noncrystallographic symmetry. Taking advantage of this feature, phase modification was performed in DM. The electron-density map of LdcI displays many features in agreement with the low-resolution negative-stain electron-density map [Snider et al. (2006 ▶), J. Biol. Chem.281, 1532–1546].« less

  13. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved.

  14. Geranylgeranyl Diphosphate Synthase Modulates Fetal Lung Branching Morphogenesis Possibly through Controlling K-Ras Prenylation.

    PubMed

    Jia, Wen-Jun; Jiang, Shan; Tang, Qiao-Li; Shen, Di; Xue, Bin; Ning, Wen; Li, Chao-Jun

    2016-06-01

    G proteins play essential roles in regulating fetal lung development, and any defects in their expression or function (eg, activation or posttranslational modification) can lead to lung developmental malformation. Geranylgeranyl diphosphate synthase (GGPPS) can modulate protein prenylation that is required for protein membrane-anchoring and activation. Here, we report that GGPPS regulates fetal lung branching morphogenesis possibly through controlling K-Ras prenylation during fetal lung development. GGPPS was continuously expressed in lung epithelium throughout whole fetal lung development. Specific deletion of geranylgeranyl diphosphate synthase 1 (Ggps1) in lung epithelium during fetal lung development resulted in neonatal respiratory distress syndrome-like disease. The knockout mice died at postnatal day 1 of respiratory failure, and the lungs showed compensatory pneumonectasis, pulmonary atelectasis, and hyaline membranes. Subsequently, we proved that lung malformations in Ggps1-deficient mice resulted from the failure of fetal lung branching morphogenesis. Further investigation revealed Ggps1 deletion blocked K-Ras geranylgeranylation and extracellular signal-related kinase 1 or 2/mitogen-activated protein kinase signaling, which in turn disturbed fibroblast growth factor 10 regulation on fetal lung branching morphogenesis. Collectively, our data suggest that GGPPS is essential for maintaining fetal lung branching morphogenesis, which is possibly through regulating K-Ras prenylation. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.

    PubMed

    Pudlik, Agata M; Lolkema, Juke S

    2011-08-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of L-lactate, indicating exchange between oxaloacetate and L-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate.

  16. Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae.

    PubMed

    Zhao, Jianzhi; Li, Chen; Zhang, Yan; Shen, Yu; Hou, Jin; Bao, Xiaoming

    2017-01-31

    Microbial production of monoterpenes provides a promising substitute for traditional chemical-based methods, but their production is lagging compared with sesquiterpenes. Geraniol, a valuable monoterpene alcohol, is widely used in cosmetic, perfume, pharmaceutical and it is also a potential gasoline alternative. Previously, we constructed a geraniol production strain by engineering the mevalonate pathway together with the expression of a high-activity geraniol synthase. In this study, we further improved the geraniol production through reducing the endogenous metabolism of geraniol and controlling the precursor geranyl diphosphate flux distribution. The deletion of OYE2 (encoding an NADPH oxidoreductase) or ATF1 (encoding an alcohol acetyltransferase) both involving endogenous conversion of geraniol to other terpenoids, improved geraniol production by 1.7-fold or 1.6-fold in batch fermentation, respectively. In addition, we found that direct down-regulation of ERG20 expression, the branch point regulating geranyl diphosphate flux, does not improve geraniol production. Therefore, we explored dynamic control of ERG20 expression to redistribute the precursor geranyl diphosphate flux and achieved a 3.4-fold increase in geraniol production after optimizing carbon source feeding. Furthermore, the combination of dynamic control of ERG20 expression and OYE2 deletion in LEU2 prototrophic strain increased geraniol production up to 1.69 g/L with pure ethanol feeding in fed-batch fermentation, which is the highest reported production in engineered yeast. An efficient geraniol production platform was established by reducing the endogenous metabolism of geraniol and by controlling the flux distribution of the precursor geranyl diphosphate. The present work also provides a production basis to synthesis geraniol-derived chemicals, such as monoterpene indole alkaloids.

  17. Strength Characteristics of Resorbable Osteoconductive Ceramics Based on Diphosphates of Calcium and Alkali Metals

    NASA Astrophysics Data System (ADS)

    Putlayev, V. I.; Evdokimov, P. V.; Garshev, A. V.; Prosvirin, D. V.; Klimashina, E. S.; Safronova, T. V.; Ivanov, V. K.

    2014-02-01

    An investigation into the strength characteristics of ceramics based on diphosphates Ca(3- x)М2 x (PO4)2 ( x = 0-1 and М = Na, K) provides evidence of composition strengthening in the range х = 0.6-0.8 containing the greatest amount of the supercooled high-temperature modification α-СаМРО4. The method of high-temperature x-ray diffractometry is used to examine thermal expansion of rhenanite phases of СаМРО4.

  18. A homomeric geranyl diphosphate synthase-encoding gene from Camptotheca acuminata and its combinatorial optimization for production of geraniol in Escherichia coli.

    PubMed

    Yang, Lixia; Jiang, Liangzhen; Li, Wei; Yang, Yun; Zhang, Guolin; Luo, Yinggang

    2017-10-01

    Geranyl diphosphate (GPP), the unique precursor for all monoterpenoids, is biosynthesized from isopentenyl diphosphate and dimethylallyl diphosphate via the head-to-tail condensation reaction catalyzed by GPP synthase (GPPS). Herein a homomeric GPPS from Camptotheca acuminata, a camptothecin-producing plant, was obtained from 5'- and 3'-rapid amplification of cDNA ends and subsequent overlap extension and convenient PCR amplifications. The truncate CaGPPS was introduced to replace ispA of pBbA5c-MevT(CO)-MBIS(CO, ispA), a de novo biosynthetic construct for farnesyl diphosphate generation, and overexpressed in Escherichia coli, together with the truncate geraniol synthase-encoding gene from C. acuminata (tCaGES), to confirm CaGPPS-catalyzed reaction in vivo. A 24.0 ± 1.3 mg L -1 of geraniol was produced in the recombinant E. coli. The production of GPP was also validated by the direct UPLC-HRMS E analyses. The tCaGPPS and tCaGES genes with different copy numbers were introduced into E. coli to balance their catalytic potential for high-yield geraniol production. A 1.6-fold increase of geraniol production was obtained when four copies of tCaGPPS and one copy of tCaGES were introduced into E. coli. The following fermentation conditions optimization, including removal of organic layers and addition of new n-decane, led to a 74.6 ± 6.5 mg L -1 of geraniol production. The present study suggested that the gene copy number optimization, i.e., the ratio of tCaGPPS and tCaGES, plays an important role in geraniol production in the recombinant E. coli. The removal and addition of organic solvent are very useful for sustainable high-yield production of geraniol in the recombinant E. coli in view of that the solubility of geraniol is limited in the fermentation broth and/or n-decane.

  19. Leigh Syndrome with Nephropathy and CoQ10 Deficiency Due to decaprenyl diphosphate synthase subunit 2 (PDSS2) Mutations

    PubMed Central

    López, Luis Carlos ; Schuelke, Markus ; Quinzii, Catarina M. ; Kanki, Tomotake ; Rodenburg, Richard J. T. ; Naini, Ali ; DiMauro, Salvatore ; Hirano, Michio 

    2006-01-01

    Coenzyme Q10 (CoQ10) is a vital lipophilic molecule that transfers electrons from mitochondrial respiratory chain complexes I and II to complex III. Deficiency of CoQ10 has been associated with diverse clinical phenotypes, but, in most patients, the molecular cause is unknown. The first defect in a CoQ10 biosynthetic gene, COQ2, was identified in a child with encephalomyopathy and nephrotic syndrome and in a younger sibling with only nephropathy. Here, we describe an infant with severe Leigh syndrome, nephrotic syndrome, and CoQ10 deficiency in muscle and fibroblasts and compound heterozygous mutations in the PDSS2 gene, which encodes a subunit of decaprenyl diphosphate synthase, the first enzyme of the CoQ10 biosynthetic pathway. Biochemical assays with radiolabeled substrates indicated a severe defect in decaprenyl diphosphate synthase in the patient’s fibroblasts. This is the first description of pathogenic mutations in PDSS2 and confirms the molecular and clinical heterogeneity of primary CoQ10 deficiency. PMID:17186472

  20. Phosphoribosyl diphosphate synthetase-independent NAD de novo synthesis in Escherichia coli: a new phenotype of phosphate regulon mutants.

    PubMed Central

    Hove-Jensen, B

    1996-01-01

    Phosphoribosyl diphosphate-lacking (delta prs) mutant strains of Escherichia coli require NAD, guanosine, uridine, histidine, and tryptophan for growth. NAD is required by phosphoribosyl diphosphate-lacking mutants because of lack of one of the substrates for the quinolinate phosphoribosyltransferase reaction, an enzyme of the NAD de novo pathway. Several NAD-independent mutants of a host from which prs had been deleted were isolated; all of them were shown to have lesions in the pstSCAB-phoU operon, in which mutations lead to derepression of the Pho regulon. In addition NAD-independent growth was dependent on a functional quinolinate phosphoribosyltransferase. The prs suppressor mutations led to the synthesis of a new phosphoryl compound that may act as a precursor for a new NAD biosynthetic pathway. This compound may be synthesized by the product of an unknown phosphate starvation-inducible gene of the Pho regulon because the ability of pst or phoU mutations to suppress the NAD requirement requires PhoB, the transcriptional activator of the Pho regulon. PMID:8550505

  1. Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria.

    PubMed

    Choi, Sun Young; Lee, Hyun Jeong; Choi, Jaeyeon; Kim, Jiye; Sim, Sang Jun; Um, Youngsoon; Kim, Yunje; Lee, Taek Soon; Keasling, Jay D; Woo, Han Min

    2016-01-01

    Metabolic engineering of cyanobacteria has enabled photosynthetic conversion of CO2 to value-added chemicals as bio-solar cell factories. However, the production levels of isoprenoids in engineered cyanobacteria were quite low, compared to other microbial hosts. Therefore, modular optimization of multiple gene expressions for metabolic engineering of cyanobacteria is required for the production of farnesyl diphosphate-derived isoprenoids from CO2. Here, we engineered Synechococcus elongatus PCC 7942 with modular metabolic pathways consisting of the methylerythritol phosphate pathway enzymes and the amorphadiene synthase for production of amorpha-4,11-diene, resulting in significantly increased levels (23-fold) of amorpha-4,11-diene (19.8 mg/L) in the best strain relative to a parental strain. Replacing amorphadiene synthase with squalene synthase led to the synthesis of a high amount of squalene (4.98 mg/L/OD730). Overexpression of farnesyl diphosphate synthase is the most critical factor for the significant production, whereas overexpression of 1-deoxy-d-xylulose 5-phosphate reductase is detrimental to the cell growth and the production. Additionally, the cyanobacterial growth inhibition was alleviated by expressing a terpene synthase in S. elongatus PCC 7942 strain with the optimized MEP pathway only (SeHL33). This is the first demonstration of photosynthetic production of amorpha-4,11-diene from CO2 in cyanobacteria and production of squalene in S. elongatus PCC 7942. Our optimized modular OverMEP strain (SeHL33) with either co-expression of ADS or SQS demonstrated the highest production levels of amorpha-4,11-diene and squalene, which could expand the list of farnesyl diphosphate-derived isoprenoids from CO2 as bio-solar cell factories.

  2. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae

    PubMed Central

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved. PMID:26588105

  3. Cold generation of smoke flavour by the first phenolic acid decarboxylase from a filamentous ascomycete - Isaria farinosa.

    PubMed

    Linke, Diana; Riemer, Stephanie J L; Schimanski, Silke; Nieter, Annabel; Krings, Ulrich; Berger, Ralf G

    2017-09-01

    A decarboxylase (IfPAD) from the ascomycete Isaria farinosa converted ferulic acid to 4-vinylguaiacol (4-VG), a volatile which imparts the distinct "smoke flavor" of pyrolized wood. The activity was enhanced by adding (E)-ferulic acid to the culture medium and peaked with 3.6 U g -1 mycelium (1 μmol 4-VG min -1 ). The coding sequence of 543 bp was translated into a 25 kDa protein with a homology of 91 % to putative phenolic acid decarboxylases of its teleomorph, Cordyceps militaris, and Beauveria bassiana, the anamorph of Cordyceps bassiana. Cold shock expression in Escherichia coli yielded 411 U g -1 wet mass. Substrate conversion required a hydroxyl substituent para to a trans-unsaturated C3-side chain of the aromatic ring. K m and k cat /K m values were determined to 0.3 mM and 78.4 mM -1 s -1 for p-coumaric acid and 1.9 mM and 45.1 mM -1 s -1 for (E)-ferulic acid, respectively. The native enzyme and its recombinant counterpart showed pH-optima at pH 6.0 and pH 5.5, and low temperature optima of 19 °C and 14 °C, respectively. IfPAD produced 4-VG from destarched wheat bran and sugar beet fiber, confirming activity on complex plant biomass. This is the first report on the biochemical characterization of a phenolic acid decarboxylase from a filamentous ascomycete. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. Involvement of the ornithine decarboxylase gene in acid stress response in probiotic Lactobacillus delbrueckii UFV H2b20.

    PubMed

    Ferreira, A B; Oliveira, M N V de; Freitas, F S; Paiva, A D; Alfenas-Zerbini, P; Silva, D F da; Queiroz, M V de; Borges, A C; Moraes, C A de

    2015-01-01

    Amino acid decarboxylation is important for the maintenance of intracellular pH under acid stress. This study aims to carry out phylogenetic and expression analysis by real-time PCR of two genes that encode proteins involved in ornithine decarboxylation in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress. Sequencing and phylogeny analysis of genes encoding ornithine decarboxylase and amino acid permease in L. delbrueckii UFV H2b20 showed their high sequence identity (99%) and grouping with those of L. delbrueckii subsp. bulgaricus ATCC 11842. Exposure of L. delbrueckii UFV H2b20 cells in MRS pH 3.5 for 30 and 60 min caused a significant increase in expression of the gene encoding ornithine decarboxylase (up to 8.1 times higher when compared to the control treatment). Increased expression of the ornithine decarboxylase gene demonstrates its involvement in acid stress response in L. delbrueckii UFV H2b20, evidencing that the protein encoded by that gene could be involved in intracellular pH regulation. The results obtained show ornithine decarboxylation as a possible mechanism of adaptation to an acidic environmental condition, a desirable and necessary characteristic for probiotic cultures and certainly important to the survival and persistence of the L. delbrueckii UFV H2b20 in the human gastrointestinal tract.

  5. The actions of dihydroxyphenylalanine and dihydroxyphenylserine on the sleep-wakefulness cycle of the rat after peripheral decarboxylase inhibition.

    PubMed Central

    Altier, H; Moldes, M; Monti, J M

    1975-01-01

    1. The actions of dihydroxyphenylalanine (DOPA) and dihydroxyphenylserine (DOPS) were assessed on the sleep-wakefulness cycle of male Wistar rats. 2. In comparative studies the extracerebral decarboxylase was inhibited with serinetrihydroxybenzylhydrazide (RO 4-4602) before injection of DOPA or DOPS. 3. DOPA (80-160 mg/kg, i.p.) with or without previous inhibition of the peripheral decarboxylase gave rise to an initial significant increase of slow wave activity, which may be related to a release of 5-hydroxytryptamine. 4. During the subsequent 8 h sessions, DOPA significantly decreased slow wave sleep and rapid eye movement sleep (REM) and increased wakefulness. 5. DOPS (80-160 mg/kg, i.p.) did not significantly modify the sleep-wakefulness cycle apart from a decrease of the latency for the first REM episode after 160 mg/kg in the RO 4-4602 pretreated animals. PMID:166716

  6. Bergamot natural products eradicate cancer stem cells (CSCs) by targeting mevalonate, Rho-GDI-signalling and mitochondrial metabolism.

    PubMed

    Fiorillo, Marco; Peiris-Pagès, Maria; Sanchez-Alvarez, Rosa; Bartella, Lucia; Di Donna, Leonardo; Dolce, Vincenza; Sindona, Giovanni; Sotgia, Federica; Cappello, Anna Rita; Lisanti, Michael P

    2018-04-04

    Here, we show that a 2:1 mixture of Brutieridin and Melitidin, termed "BMF", has a statin-like properties, which blocks the action of the rate-limiting enzyme for mevalonate biosynthesis, namely HMGR (3-hydroxy-3-methylglutaryl-CoA-reductase). Moreover, our results indicate that BMF functionally inhibits several key characteristics of CSCs. More specifically, BMF effectively i) reduced ALDH activity, ii) blocked mammosphere formation and iii) inhibited the activation of CSC-associated signalling pathways (STAT1/3, Notch and Wnt/beta-catenin) targeting Rho-GDI-signalling. In addition, BMF metabolically inhibited mitochondrial respiration (OXPHOS) and fatty acid oxidation (FAO). Importantly, BMF did not show the same toxic side-effects in normal fibroblasts that were observed with statins. Lastly, we show that high expression of the mRNA species encoding HMGR is associated with poor clinical outcome in breast cancer patients, providing a potential companion diagnostic for BMF-directed personalized therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Polyamine regulation of ornithine decarboxylase and its antizyme in intestinal epithelial cells.

    PubMed

    Yuan, Q; Ray, R M; Viar, M J; Johnson, L R

    2001-01-01

    Ornithine decarboxylase (ODC) is feedback regulated by polyamines. ODC antizyme mediates this process by forming a complex with ODC and enhancing its degradation. It has been reported that polyamines induce ODC antizyme and inhibit ODC activity. Since exogenous polyamines can be converted to each other after they are taken up into cells, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone) (DEGBG), to block the synthesis of spermidine and spermine from putrescine and investigated the specific roles of individual polyamines in the regulation of ODC in intestinal epithelial crypt (IEC-6) cells. We found that putrescine, spermidine, and spermine inhibited ODC activity stimulated by serum to 85, 46, and 0% of control, respectively, in the presence of DEGBG. ODC activity increased in DEGBG-treated cells, despite high intracellular putrescine levels. Although exogenous spermidine and spermine reduced ODC activity of DEGBG-treated cells close to control levels, spermine was more effective than spermidine. Exogenous putrescine was much less effective in inducing antizyme than spermidine or spermine. High putrescine levels in DEGBG-treated cells did not induce ODC antizyme when intracellular spermidine and spermine levels were low. The decay of ODC activity and reduction of ODC protein levels were not accompanied by induction of antizyme in the presence of DEGBG. Our results indicate that spermine is the most, and putrescine the least, effective polyamine in regulating ODC activity, and upregulation of antizyme is not required for the degradation of ODC protein.

  8. 2'-Deoxy-2'-methylenecytidine and 2'-deoxy-2',2'-difluorocytidine 5'-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase.

    PubMed

    Baker, C H; Banzon, J; Bollinger, J M; Stubbe, J; Samano, V; Robins, M J; Lippert, B; Jarvi, E; Resvick, R

    1991-06-01

    It has been found that 2'-deoxy-2'-methyleneuridine (MdUrd), 2'-deoxy-2'-methylenecytidine (MdCyd), and 2'-deoxy-2',2'-difluorocytidine (dFdCyd) 5'-diphosphates (MdUDP (1) MdCDP (2) and dFdCDP (3), respectively) function as irreversible inactivators of the Escherichia coli ribonucleoside diphosphate reductase (RDPR). 2 is a much more potent inhibitor than its uridine analogue 1. It is proposed that 2 undergoes abstraction of H3' to give an allylic radical that captures a hydrogen atom and decomposes to an active alkylating furanone species. RDPR also accepts 3 as an alternative substrate analogue and presumably executes an initial abstraction of H3' to initiate formation of a suicide species. Both 2 and 3 give inactivation results that differ from those of previously studied inhibitors. The potent anticancer activities of MdCyd and dFdCyd indicate a significant chemotherapeutic potential. The analogous RDPR of mammalian cells should be regarded as a likely target and/or activating enzyme for these novel mechanism-based inactivators.

  9. Mechanism of Citrate Metabolism by an Oxaloacetate Decarboxylase-Deficient Mutant of Lactococcus lactis IL1403 ▿

    PubMed Central

    Pudlik, Agata M.; Lolkema, Juke S.

    2011-01-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706–714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of l-lactate, indicating exchange between oxaloacetate and l-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate. PMID:21665973

  10. Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging

    NASA Astrophysics Data System (ADS)

    Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.

    2016-03-01

    Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes.

  11. Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging

    PubMed Central

    Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.

    2016-01-01

    Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes. PMID:26943243

  12. Inhibition of ultraviolet-B epidermal ornithine decarboxylase induction and skin carcinogenesis in hairless mice by topical indomethacin and triamcinolone acetonide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, N.J.; Connor, M.J.; Breeding, J.

    1982-10-01

    Modulation of ultraviolet-B (UVB) skin carcinogenesis by topical treatment with two antiinflammatory drugs expected to have different mechanisms of action has been studied in the hairless mouse. Indomethacin is a nonsteroidal antiinflammatory agent which may act by inhibiting prostaglandin biosynthesis. Triamcinolone acetonide is a steroidal antiinflammatory agent. Both of these drugs inhibited the induction of epidermal ornithine decarboxylase by UVB when applied topically in a acetone vehicle. A UVB skin tumor study was designed. Groups of mice were irradiated daily with UVB for 20 days, each mouse receiving a total of 17.1 kJ UVB per sq m. Group 1 wasmore » treated with acetone immediately after each irradiation; Group 2 received 700 nmol indomethacin in acetone immediately after each irradiation; Group 3 received 14.4 nmol triamcinolone acetonide in acetone immediately after each irradiation. Mice were killed after 52 weeks, and the tumors were excised and examined histologically. Both topical indomethacin and topical triamcinolone acetonide were effective in reducing the incidence and size of the skin tumors induced by UVB. This evidence supports the hypothesis that the induction of ornithine decarboxylase may be a critical component of UVB skin carcinogenesis and that inhibition of ornithine decarboxylase induction can be used as a screen for agents which will inhibit UVB skin carcinogenesis.« less

  13. Aromatic L-Amino Acid Decarboxylase (AADC) Is Crucial for Brain Development and Motor Functions

    PubMed Central

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children. PMID:23940784

  14. Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions.

    PubMed

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.

  15. The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase.

    PubMed

    Tabor, C W; Tabor, H

    1987-11-25

    We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).

  16. Arginine decarboxylase (ADC) and agmatinase (AGMAT): an alternative pathway for synthesis of polyamines in pig conceptuses and uteri

    USDA-ARS?s Scientific Manuscript database

    Arginine, a precursor for the synthesis of nitric oxide (NO) and polyamines, is critical for implantation and development of the conceptus. We first reported that the arginine decarboxylase (ADC)/agmatinase(AGMAT) pathway as an alternative pathway for synthesis of polyamines in the ovine conceptuses...

  17. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation

    PubMed Central

    2011-01-01

    Background Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. Results A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. Conclusions The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal

  18. Liquid chromatography-tandem mass spectrometry method for the measurement of serum mevalonic acid: a novel marker of hydroxymethylglutaryl coenzyme A reductase inhibition by statins.

    PubMed

    Waldron, Jenna; Webster, Craig

    2011-05-01

    Mevalonic acid (MVA) is synthesized at an early and rate-limiting step in the biosynthesis of cholesterol by the enzyme hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase, and is a useful measure of statin efficacy or treatment. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the measurement of serum MVA has been developed. Following the in vitro conversion of MVA to mevalonic acid lactone (MVAL) in the serum, MVAL and a deuterated internal standard were extracted using an online solid-phase extraction procedure. Chromatographic separation was achieved using a Luna PFP column (Phenomenex), with enhanced selectivity and improved resolution for polar compounds. A gradient system was used, with mobile phase comprising methanol and water (5 mmol/L ammonium formate buffer, pH 2.5). Analysis was performed using an API 5000 tandem mass spectrometer (Applied Biosystems) in positive electrospray ionization mode. The method showed excellent recoveries (98 ± 8%) and imprecision (intra-assay coefficient of variation of 2.2% [6.5 ng/mL] and 2.6% [10.5 ng/mL], and inter-assay coefficient of variation of 9% [10.5 ng/mL]). The assay provides a calibration range up to 50 ng/mL with a limit of detection at 0.1 ng/mL. A simple, rapid and analytically specific method has been developed for the measurement of serum MVA, in the form of MVAL. The high analytical sensitivity of the method allows for accurate quantitation of MVAL in serum samples, both at the endogenous levels found in healthy individuals and in statin-treated patients where normal levels are expected to be greatly reduced through the inhibition of HMG-CoA reductase.

  19. CONFIRMATIONAL IDENTIFICATION OF ESCHERICHIA COLI, A COMPARISON OF GENOTYPIC AND PHENOTYPIC ASSAYS FOR GLUTAMATE DECARBOXYLASE AND B-D-GLUCURONIDASE

    EPA Science Inventory

    Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and B-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E.coli, three major...

  20. Binding of uridine 5'-diphosphate in the "basic patch" of the zinc deacetylase LpxC and implications for substrate binding.

    PubMed

    Gennadios, Heather A; Christianson, David W

    2006-12-26

    LpxC is a zinc metalloenzyme that catalyzes the first committed step in the biosynthesis of lipid A, a vital component of the outer membrane of Gram-negative bacteria. Accordingly, the inhibition of LpxC is an attractive strategy for the treatment of Gram-negative bacterial infections. Here, we report the 2.7 A resolution X-ray crystal structure of LpxC from Aquifex aeolicus complexed with uridine 5'-diphosphate (UDP), and the 3.1 A resolution structure of LpxC complexed with pyrophosphate. The X-ray crystal structure of the LpxC-UDP complex provides the first view of interactions likely to be exploited by the substrate UDP group in the "basic patch" of the active site. The diphosphate group of UDP makes hydrogen bond interactions with strictly conserved residue K239 as well as solvent molecules. The ribose moiety of UDP interacts with partially conserved residue E197. The UDP uracil group hydrogen bonds with both the backbone NH group and the backbone carbonyl group of E160, and with the backbone NH group of K162 through an intervening water molecule. Finally, the alpha-phosphate and uracil groups of UDP interact with R143 and R262 through intervening water molecules. The structure of LpxC complexed with pyrophosphate reveals generally similar intermolecular interactions in the basic patch. Unexpectedly, diphosphate binding in both complexes is accompanied by coordination to an additional zinc ion, resulting in the identification of a new metal-binding site termed the E-site. The structures of the LpxC-UDP and LpxC-pyrophosphate complexes provide new insights with regard to substrate recognition in the basic patch and metal ion coordination in the active site of LpxC.

  1. Polyamine biosynthesis in Phytomonas: biochemical characterisation of a very unstable ornithine decarboxylase.

    PubMed

    Marcora, M Silvina; Cejas, Silvina; González, Nélida S; Carrillo, Carolina; Algranati, Israel D

    2010-10-01

    The metabolism of polyamines as well as their functions as growth regulators in plants have been extensively studied for many years. However, almost nothing is known about the biosynthesis and roles of these substances in Phytomonas spp., parasites of several plants. We have used HPLC and electrophoretic analyses to investigate the presence and metabolism of polyamines in Phytomonas Jma strain, detecting both putrescine and spermidine but not spermine. Experiments carried out by incubation of intact parasites with labelled ornithine or putrescine showed the formation of radioactive putrescine or spermidine, respectively. These results indicated that Phytomonas Jma can synthesise these polyamines through the action of ornithine decarboxylase (ODC) and spermidine synthase. On the other hand, we could not detect the conversion of arginine to agmatine, suggesting the absence of arginine decarboxylase (ADC) in Phytomonas. However, we cannot ensure the complete absence of this enzymatic activity in the parasite. Phytomonas ODC required pyridoxal 5'-phosphate for maximum activity and was specifically inhibited by α-difluoromethylornithine. The metabolic turnover of the enzyme was very high, with a half-life of 10-15 min, one of the shortest found among all ODC enzymes studied to date. The parasite proteasome seems to be involved in degradation of the enzyme, since Phytomonas ODC can be markedly stabilized by MG-132, a well known proteasome inhibitor. The addition of polyamines to Phytomonas cultures did not decrease ODC activity, strongly suggesting the possible absence of antizyme in this parasite. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  2. The catalytic activity for ginkgolic acid biodegradation, homology modeling and molecular dynamic simulation of salicylic acid decarboxylase.

    PubMed

    Hu, Yanying; Hua, Qingyuan; Sun, Guojuan; Shi, Kunpeng; Zhang, Huitu; Zhao, Kai; Jia, Shiru; Dai, Yujie; Wu, Qingli

    2018-05-02

    The toxic ginkgolic acids are the main safety concern for the application of Ginkgo biloba. In this study, the degradation ability of salicylic acid decarboxylase (SDC) for ginkgolic acids was examined using ginkgolic acid C15:1 as a substrate. The results indicated that the content of ginkgolic acid C15:1 in Ginkgo biloba seeds was significantly decreased after 5 h treatment with SDC at 40 °Cand pH 5.5. In order to explore the structure of SDC and the interaction between SDC and substrates, homology modeling, molecular docking and molecular dynamics were performed. The results showed that SDC might also have a catalytic active center containing a Zn 2+ . Compared with the template structure of 2,6-dihydroxybenzoate decarboxylase, the residues surrounding the binding pocket, His10, Phe23 and Phe290, were replaced by Ala10, Tyr27 and Tyr301 in the homology constructed structure of SDC, respectively. These differences may significantly affect the substrates adaptability of SDC for salicylic acid derivatives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice.

    PubMed

    Zhou, Fei; Wang, Cheng-Yuan; Gutensohn, Michael; Jiang, Ling; Zhang, Peng; Zhang, Dabing; Dudareva, Natalia; Lu, Shan

    2017-06-27

    In plants, geranylgeranyl diphosphate (GGPP) is produced by plastidic GGPP synthase (GGPPS) and serves as a precursor for vital metabolic branches, including chlorophyll, carotenoid, and gibberellin biosynthesis. However, molecular mechanisms regulating GGPP allocation among these biosynthetic pathways localized in the same subcellular compartment are largely unknown. We found that rice contains only one functionally active GGPPS, OsGGPPS1, in chloroplasts. A functionally active homodimeric enzyme composed of two OsGGPPS1 subunits is located in the stroma. In thylakoid membranes, however, the GGPPS activity resides in a heterodimeric enzyme composed of one OsGGPPS1 subunit and GGPPS recruiting protein (OsGRP). OsGRP is structurally most similar to members of the geranyl diphosphate synthase small subunit type II subfamily. In contrast to members of this subfamily, OsGRP enhances OsGGPPS1 catalytic efficiency and specificity of GGPP production on interaction with OsGGPPS1. Structural biology and protein interaction analyses demonstrate that affinity between OsGRP and OsGGPPS1 is stronger than between two OsGGPPS1 molecules in homodimers. OsGRP determines OsGGPPS1 suborganellar localization and directs it to a large protein complex in thylakoid membranes, consisting of geranylgeranyl reductase (OsGGR), light-harvesting-like protein 3 (OsLIL3), protochlorophyllide oxidoreductase (OsPORB), and chlorophyll synthase (OsCHLG). Taken together, genetic and biochemical analyses suggest OsGRP functions in recruiting OsGGPPS1 from the stroma toward thylakoid membranes, thus providing a mechanism to control GGPP flux toward chlorophyll biosynthesis.

  4. Chloroquine diphosphate bearing dextran nanoparticles augmented drug delivery and overwhelmed drug resistance in Plasmodium falciparum parasites.

    PubMed

    Kashyap, Aman; Kaur, Rupinder; Baldi, Ashish; Jain, Upendra Kumar; Chandra, Ramesh; Madan, Jitender

    2018-07-15

    Chloroquine diphosphate (CHQ) is primarily used for the treatment of Plasmodium falciparum malaria at the dose of 500mg orally or 10mg/kg parenterally. However, point mutations in Plasmodiumfalciparum chloroquine resistance transporter (PfCRT) protein and Plasmodium falciparum multidrug resistance protein 1 (Pfmdr1) localized in digestive vacuole membrane, are responsible for CHQ resistance. Therefore, in present investigation, dextran nanoparticles bearing chloroquine diphosphate (CHQ-DEX-NPs) were formulated by solvent diffusion method of size below 70nm with zeta-potential of -20.1±3.2mV. FT-IR, DSC and PXRD techniques confirmed the successful loading of drug in nanomatrix system with amorphous attributes. In vitro drug release analysis indicated the Higuchi pattern with diffusion controlled drug release. The IC 50 of CHQ-DEX-NPs in sensitive (3D7) and resistant (RKL9) Plasmodium falciparum strains was estimated to be 0.031-μg/ml and 0.13-μg/ml significantly lower than 0.059-μg/ml and 0.36-μg/ml of CHQ. The augmented therapeutic efficacy of CHQ-DEX-NPs may be credited to deposition of tailored nanoparticles in food vacuoles of malaria parasites owing to the affinity of parasite towards DEX that consequently lower the drug resistance and improved the therapeutic index. In conclusion, CHQ-DEX-NPs must be evaluated under a set of stringent in vivo parameters to establish its therapeutic efficacy in preclinical model. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. A novel bisphosphonate inhibitor of squalene synthase combined with a statin or a nitrogenous bisphosphonate in vitro[S

    PubMed Central

    Wasko, Brian M.; Smits, Jacqueline P.; Shull, Larry W.; Wiemer, David F.; Hohl, Raymond J.

    2011-01-01

    Statins and nitrogenous bisphosphonates (NBP) inhibit 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR) and farnesyl diphosphate synthase (FDPS), respectively, leading to depletion of farnesyl diphosphate (FPP) and disruption of protein prenylation. Squalene synthase (SQS) utilizes FPP in the first committed step from the mevalonate pathway toward cholesterol biosynthesis. Herein, we have identified novel bisphosphonates as potent and specific inhibitors of SQS, including the tetrasodium salt of 9-biphenyl-4,8-dimethyl-nona-3,7-dienyl-1,1-bisphosphonic acid (compound 5). Compound 5 reduced cholesterol biosynthesis and lead to a substantial intracellular accumulation of FPP without reducing cell viability in HepG2 cells. At high concentrations, lovastatin and zoledronate impaired protein prenylation and decreased cell viability, which limits their potential use for cholesterol depletion. When combined with lovastatin, compound 5 prevented lovastatin-induced FPP depletion and impairment of protein farnesylation. Compound 5 in combination with the NBP zoledronate completely prevented zoledronate-induced impairment of both protein farnesylation and geranylgeranylation. Cotreatment of cells with compound 5 and either lovastatin or zoledronate was able to significantly prevent the reduction of cell viability caused by lovastatin or zoledronate alone. The combination of an SQS inhibitor with an HMGCR or FDPS inhibitor provides a rational approach for reducing cholesterol synthesis while preventing nonsterol isoprenoid depletion. PMID:21903868

  6. Effects of polyamine biosynthesis inhibitors on S-adenosylmethionine synthetase and S-adenosylmethionine decarboxylase activities in carrot cell cultures

    Treesearch

    S.C. Minocha; R. Minocha; A. Komamine

    1991-01-01

    Changes in the activites of S-adcnosylmethionine (SAM) synthetase (methionine adenosyltransferase, EC 2.5.1.6.) and SAM decarboxylase (EC 4.1.1.50) were studied in carrot (Daucus carota) cell cultures in response to 2,4-dichlorophenoxyacetic acid (2,4-D) and several inhibitors of polyamine biosynthesis. Activity of SAM synthetase increased...

  7. Localization of arginine decarboxylase in tobacco plants.

    PubMed

    Bortolotti, Cristina; Cordeiro, Alexandra; Alcázar, Rubén; Borrell, Antoni; Culiañez-Macià, Francisco A.; Tiburcio, Antonio F.; Altabella, Teresa

    2004-01-01

    The lack of knowledge about the tissue and subcellular distribution of polyamines (PAs) and the enzymes involved in their metabolism remains one of the main obstacles in our understanding of the biological role of PAs in plants. Arginine decarboxylase (ADC; EC 4.1.1.9) is a key enzyme in polyamine biosynthesis in plants. We have characterized a cDNA coding for ADC from Nicotiana tabacum L. cv. Petit Havana SR1. The deduced ADC polypeptide had 721 amino acids and a molecular mass of 77 kDa. The ADC cDNA was overexpressed in Escherichia coli, and the ADC fusion protein obtained was used to produce polyclonal antibodies. Using immunological methods, we demonstrate the presence of the ADC protein in all plant organs analysed: flowers, seeds, stems, leaves and roots. Moreover, depending on the tissue, the protein is localized in two different subcellular compartments, the nucleus and the chloroplast. In photosynthetic tissues, ADC is located mainly in chloroplasts, whereas in non-photosynthetic tissues the protein appears to be located in nuclei. The different compartmentation of ADC may be related to distinct functions of the protein in different cell types.

  8. Agdc1p - a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans.

    PubMed

    Meier, Anna K; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (K m -0.7 ± 0.2 mM, k cat -42.0 ± 8.2 s -1 ) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (K m -3.2 ± 0.2 mM, k cat -44.0 ± 3.2 s -1 ). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δ agdc1 ] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis -muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be

  9. Investigations of systems ThO 2-MO 2-P 2O 5 (M=U, Ce, Zr, Pu). Solid solutions of thorium-uranium (IV) and thorium-plutonium (IV) phosphate-diphosphates

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Podor, R.; Brandel, V.; Genet, M.

    1998-02-01

    In the framework of nuclear waste management aiming at the research of a storage matrix, the chemistry of thorium phosphates has been completely re-examined. In the ThO 2-P 2O 5 system a new compound thorium phosphate-diphosphate Th 4(PO 4) 4P 2O 7 has been synthesized. The replacement of Th 4+ by a smaller cation like U 4+ and Pu 4+ in the thorium phosphate-diphosphate (TPD) lattice has been achieved. Th 4- xU x(PO 4) 4P 2O 7 and Th 4- xPu x(PO 4) 4P 2O 7 solid solutions have been synthesized through wet and dry processes with 0< x<3.0 for uranium and 0< x<1.0 for plutonium. From the variation of the unit cell parameters, an upper x value equal to 1.67 has been estimated for the thorium-plutonium (IV) phosphate-diphosphate solid solutions. Two other tetravalent cations, Ce 4+ and Zr 4+, cannot be incorporated in the TPD lattice: cerium (IV) because of its reduction into Ce (III) at high temperature, and zirconium probably because of its too small radius compared to thorium.

  10. Adenosine diphosphate sugar pyrophosphatase prevents glycogen biosynthesis in Escherichia coli

    PubMed Central

    Moreno-Bruna, Beatriz; Baroja-Fernández, Edurne; Muñoz, Francisco José; Bastarrica-Berasategui, Ainara; Zandueta-Criado, Aitor; Rodríguez-López, Milagros; Lasa, Iñigo; Akazawa, Takashi; Pozueta-Romero, Javier

    2001-01-01

    An adenosine diphosphate sugar pyrophosphatase (ASPPase, EC 3.6.1.21) has been characterized by using Escherichia coli. This enzyme, whose activities in the cell are inversely correlated with the intracellular glycogen content and the glucose concentration in the culture medium, hydrolyzes ADP-glucose, the precursor molecule of glycogen biosynthesis. ASPPase was purified to apparent homogeneity (over 3,000-fold), and sequence analyses revealed that it is a member of the ubiquitously distributed group of nucleotide pyrophosphatases designated as “nudix” hydrolases. Insertional mutagenesis experiments leading to the inactivation of the ASPPase encoding gene, aspP, produced cells with marginally low enzymatic activities and higher glycogen content than wild-type bacteria. aspP was cloned into an expression vector and introduced into E. coli. Transformed cells were shown to contain a dramatically reduced amount of glycogen, as compared with the untransformed bacteria. No pleiotropic changes in the bacterial growth occurred in both the aspP-overexpressing and aspP-deficient strains. The overall results pinpoint the reaction catalyzed by ASPPase as a potential step of regulating glycogen biosynthesis in E. coli. PMID:11416161

  11. Study of pyruvate decarboxylase and thiamine kinase from brewer's yeast by SERS

    NASA Astrophysics Data System (ADS)

    Maskevich, Sergei A.; Chernikevich, Ivan P.; Gachko, Gennedy A.; Kivach, Leonid N.; Strekal, Nataliya D.

    1993-06-01

    The Surface Enhanced Raman Scattering (SERS) spectra of holopyruvate decarboxylase (PDC) and thiamine kinase (ThK) adsorbed on silver electrode were obtained. In contrast to the Raman, the SERS spectrum of PDC contained no modes of tryptophan residues, it indicates a removal of this moiety from the surface. In the SERS spectrum of ThK the bands belonging to ligands bound to the protein were observed. A correlation between the SERS signal intensity and the enzymatic activity of the ThK separate fraction and found. The influence of amino acids on SERS spectra of thiamine (Th) was studied to determine the possible composition on microsurrounding of coenzyme.

  12. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.

    PubMed

    Despinasse, Yolande; Fiorucci, Sébastien; Antonczak, Serge; Moja, Sandrine; Bony, Aurélie; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis; Jullien, Frédéric

    2017-05-01

    Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221. Copyright © 2017. Published by Elsevier Ltd.

  13. C acid decarboxylases required for C photosynthesis are active in the mid-vein of the C species Arabidopsis thaliana, and are important in sugar and amino acid metabolism.

    PubMed

    Brown, Naomi J; Palmer, Ben G; Stanley, Susan; Hajaji, Hana; Janacek, Sophie H; Astley, Holly M; Parsley, Kate; Kajala, Kaisa; Quick, W Paul; Trenkamp, Sandra; Fernie, Alisdair R; Maurino, Veronica G; Hibberd, Julian M

    2010-01-01

    Cells associated with veins of petioles of C(3) tobacco possess high activities of the decarboxylase enzymes required in C(4) photosynthesis. It is not clear whether this is the case in other C(3) species, nor whether these enzymes provide precursors for specific biosynthetic pathways. Here, we investigate the activity of C(4) acid decarboxylases in the mid-vein of Arabidopsis, identify regulatory regions sufficient for this activity, and determine the impact of removing individual isoforms of each protein on mid-vein metabolite profiles. This showed that radiolabelled malate and bicarbonate fed to the xylem stream were incorporated into soluble and insoluble material in the mid-vein of Arabidopsis leaves. Compared with the leaf lamina, mid-veins possessed high activities of NADP-dependent malic enzyme (NADP-ME), NAD-dependent malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PEPCK). Transcripts derived from both NAD-ME, one PCK and two of the four NADP-ME genes were detectable in these veinal cells. The promoters of each decarboxylase gene were sufficient for expression in mid-veins. Analysis of insertional mutants revealed that cytosolic NADP-ME2 is responsible for 80% of NADP-ME activity in mid-veins. Removing individual decarboxylases affected the abundance of amino acids derived from pyruvate and phosphoenolpyruvate. Reducing cytosolic NADP-ME activity preferentially affected the sugar content, whereas abolishing NAD-ME affected both the amino acid and the glucosamine content of mid-veins.

  14. Influence of ornithine decarboxylase antizymes and antizyme inhibitors on agmatine uptake by mammalian cells.

    PubMed

    Ramos-Molina, Bruno; López-Contreras, Andrés J; Lambertos, Ana; Dardonville, Christophe; Cremades, Asunción; Peñafiel, Rafael

    2015-05-01

    Agmatine (4-aminobutylguanidine), a dicationic molecule at physiological pH, exerts relevant modulatory actions at many different molecular target sites in mammalian cells, having been suggested that the administration of this compound may have therapeutic interest. Several plasma membrane transporters have been implicated in agmatine uptake by mammalian cells. Here we report that in kidney-derived COS-7 cell line, at physiological agmatine levels, the general polyamine transporter participates in the plasma membrane translocation of agmatine, with an apparent Km of 44 ± 7 µM and Vmax of 17.3 ± 3.3 nmol h(-1) mg(-1) protein, but that at elevated concentrations, agmatine can be also taken up by other transport systems. In the first case, the physiological polyamines (putrescine, spermidine and spermine), several diguanidines and bis(2-aminoimidazolines) and the polyamine transport inhibitor AMXT-1501 markedly decreased agmatine uptake. In cells transfected with any of the three ornithine decarboxylase antizymes (AZ1, AZ2 and AZ3), agmatine uptake was dramatically reduced. On the contrary, transfection with antizyme inhibitors (AZIN1 and AZIN2) markedly increased the transport of agmatine. Furthermore, whereas putrescine uptake was significantly decreased in cells transfected with ornithine decarboxylase (ODC), the accumulation of agmatine was stimulated, suggesting a trans-activating effect of intracellular putrescine on agmatine uptake. All these results indicate that ODC and its regulatory proteins (antizymes and antizyme inhibitors) may influence agmatine homeostasis in mammalian tissues.

  15. Targeting ornithine decarboxylase in Myc-induced lymphomagenesis prevents tumor formation.

    PubMed

    Nilsson, Jonas A; Keller, Ulrich B; Baudino, Troy A; Yang, Chunying; Norton, Sara; Old, Jennifer A; Nilsson, Lisa M; Neale, Geoffrey; Kramer, Debora L; Porter, Carl W; Cleveland, John L

    2005-05-01

    Checkpoints that control Myc-mediated proliferation and apoptosis are bypassed during tumorigenesis. Genes encoding polyamine biosynthetic enzymes are overexpressed in B cells from E mu-Myc transgenic mice. Here, we report that disabling one of these Myc targets, Ornithine decarboxylase (Odc), abolishes Myc-induced suppression of the Cdk inhibitors p21(Cip1) and p27(Kip1), thereby impairing Myc's proliferative, but not apoptotic, response. Moreover, lymphoma development was markedly delayed in E mu-Myc;Odc(+/-) transgenic mice and in E mu-Myc mice treated with the Odc inhibitor difluoromethylornithine (DFMO). Strikingly, tumors ultimately arising in E mu-Myc;Odc(+/-) transgenics lacked deletions of Arf, suggesting that targeting Odc forces other routes of transformation. Therefore, Odc is a critical Myc transcription target that regulates checkpoints that guard against tumorigenesis and is an effective target for cancer chemoprevention.

  16. Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans

    PubMed Central

    Meier, Anna K.; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km −0.7 ± 0.2 mM, kcat −42.0 ± 8.2 s−1) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (Km −3.2 ± 0.2 mM, kcat −44.0 ± 3.2 s−1). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be

  17. Electron density reactivity indexes of the tautomeric/ionization forms of thiamin diphosphate.

    PubMed

    Jaña, Gonzalo A; Delgado, Eduardo J

    2013-09-01

    The generation of the highly reactive ylide in thiamin diphosphate catalysis is analyzed in terms of the nucleophilicity of key atoms, by means of density functional calculations at X3LYP/6-31++G(d,p) level of theory. The Fukui functions of all tautomeric/ionization forms are calculated in order to assess their reactivity. The results allow to conclude that the highly conserved glutamic residue does not protonate the N1' atom of the pyrimidyl ring, but it participates in a strong hydrogen bonding, stabilizing the eventual negative charge on the nitrogen, in all forms involved in the ylide generation. This condition provides the necessary reactivity on key atoms, N4' and C2, to carry out the formation of the ylide required to initiate the catalytic cycle of ThDP-dependent enzymes. This study represents a new approach for the ylide formation in ThDP catalysis.

  18. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    PubMed

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  19. Analysis of the Impact of Rosuvastatin on Bacterial Mevalonate Production Using a UPLC-Mass Spectrometry Approach.

    PubMed

    Nolan, J A; Kinsella, M; Hill, C; Joyce, S A; Gahan, C G M

    2016-07-01

    Statins are widely prescribed cholesterol-lowering medications and act through inhibition of the human enzyme 3-methylglutaryl coenzyme A reductase (HMG-R) which produces mevalonate (MVAL), a key substrate for cholesterol biosynthesis. Some important microbial species also express an isoform of HMG-R; however, the nature of the interaction between statins and bacteria is currently unclear and studies would benefit from protocols to quantify MVAL in complex microbial environments. The objective of this study was to develop a protocol for the analytical quantification of MVAL in bacterial systems and to utilise this approach to analyse the effects of Rosuvastatin (RSV) on bacterial MVAL formation. To determine the effective concentration range of RSV, we examined the dose-dependent inhibition of growth in the HMG-R(+) bacterial pathogens Listeria monocytogenes, Staphylococcus aureus and Enterococcus faecium at various concentrations of pure RSV. Growth inhibition generally correlated with a reduction in bacterial MVAL levels, particularly in culture supernatants at high RSV concentrations, as determined using our ultra-performance liquid chromatography mass spectrometry protocol. This work therefore outlines a refined protocol for the analysis of MVAL in microbial cultures and provides evidence for statin-mediated inhibition of bacterial HMG-R. Furthermore, we show that MVAL is readily transported and secreted from bacterial cells into the growth media.

  20. Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.

    PubMed Central

    Jänne, J; Morris, D R

    1984-01-01

    Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine. PMID:6426466

  1. Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.

    PubMed

    Jänne, J; Morris, D R

    1984-03-15

    Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine.

  2. The X-ray structure of Paramecium bursaria Chlorella virus arginine decarboxylase: insight into the structural basis for substrate specificity

    PubMed Central

    Shah, Rahul; Akella, Radha; Goldsmith, Elizabeth J.; Phillips, Margaret A.

    2008-01-01

    The group IV pyridoxal-5′-phosphate (PLP)-dependent decarboxylases belong to the β/α barrel structural family, and include enzymes with substrate specificity for a range of basic amino acids. A unique homolog of this family, the Paramecium bursaria Chlorella virus arginine decarboxylase (cvADC), shares about 40% amino acid sequence identity with the eukaryotic ornithine decarboxylases (ODCs). The X-ray structure of cvADC has been solved to 1.95 and 1.8 Å resolution for the free and agmatine (product)-bound enzymes. The global structural differences between cvADC and eukaryotic ODC are minimal (rmsd of 1.2 – 1.4 Å), however, the active site has significant structural rearrangements. The key “specificity element,” is identified as the 310-helix that contains and positions substrate-binding residues such as E296 cvADC (D332 in T. brucei ODC). In comparison to the ODC structures, the 310-helix in cvADC is shifted over 2 Å away from the PLP cofactor, thus accommodating the larger arginine substrate. Within the context of this conserved fold, the protein is designed to be flexible in the positioning and amino acid sequence of the 310-helix, providing a mechanism to evolve different substrate preferences within the family without large structural rearrangements. Also, in the structure, the “K148-loop” (homologous to the “K169-loop” of ODC) is observed in a closed, substrate-bound conformation for the first time. Apparently the K148 loop is a mobile loop, analogous to those observed in triose phosphate isomerase and tryptophan synthetase. In conjunction with prior structural studies these data predict that this loop adopts different conformations throughout the catalytic cycle, and that loop movement may be kinetically linked to the rate-limiting step of product release. PMID:17305368

  3. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    NASA Astrophysics Data System (ADS)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  4. DOPA Decarboxylase Modulates Tau Toxicity.

    PubMed

    Kow, Rebecca L; Sikkema, Carl; Wheeler, Jeanna M; Wilkinson, Charles W; Kraemer, Brian C

    2018-03-01

    The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D 2 -family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. To better understand how loss of D 2 -family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D 2 receptors. We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D 2 -family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan. Published by Elsevier Inc.

  5. Sustainable heterologous production of terpene hydrocarbons in cyanobacteria.

    PubMed

    Formighieri, Cinzia; Melis, Anastasios

    2016-12-01

    Cyanobacteria can be exploited as photosynthetic platforms for heterologous generation of terpene hydrocarbons with industrial application. However, the slow catalytic activity of terpene synthases (k cat  = 4 s -1 or slower) makes them noncompetitive for the pool of available substrate, thereby limiting the rate and yield of product generation. Work in this paper applied transformation technologies in Synechocystis for the heterologous production of β-phellandrene (monoterpene) hydrocarbons. Conditions were defined whereby expression of the β-phellandrene synthase (PHLS), as a CpcB·PHLS fusion protein with the β-subunit of phycocyanin, accounted for up to 20 % of total cellular protein. Moreover, CpcB·PHLS was heterologously co-expressed with enzymes of the mevalonic acid (MVA) pathway and geranyl-diphosphate synthase, increasing carbon flux toward the terpenoid biosynthetic pathway and enhancing substrate availability. These improvements enabled yields of 10 mg of β-phellandrene per g of dry cell weight generated in the course of a 48-h incubation period, or the equivalent of 1 % β-phellandrene:biomass (w:w) carbon-partitioning ratio. The work helped to identify prerequisites for the efficient heterologous production of terpene hydrocarbons in cyanobacteria: (i) requirement for overexpression of the heterologous terpene synthase, so as to compensate for the slow catalytic turnover of the enzyme, and (ii) enhanced endogenous carbon partitioning toward the terpenoid biosynthetic pathway, e.g., upon heterologous co-expression of the MVA pathway, thereby supplementing the native metabolic flux toward the universal isopentenyl-diphosphate and dimethylallyl-diphosphate terpenoid precursors. The two prerequisites are shown to be critical determinants of yield in the photosynthetic CO 2 to terpene hydrocarbons conversion process.

  6. Evaluation of the use of malic acid decarboxylase-deficient starter culture in NaCl-free cucumber fermentations to reduce bloater incidence

    USDA-ARS?s Scientific Manuscript database

    AIMS: Accumulation of carbon dioxide in cucumber fermentations is known to cause hollow cavities inside whole fruits or bloaters, conducive to economic losses for the pickling industry. This study focused on evaluating the use of a malic acid decarboxylase (MDC)-deficient starter culture to minimiz...

  7. Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae for production of prenyl alcohols.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2009-04-01

    To develop microbial production method for prenyl alcohols (e.g., (E,E)-farnesol (FOH), (E)-nerolidol (NOH), and (E,E,E)-geranylgeraniol (GGOH)), the genes encoding enzymes in the mevalonate and prenyl diphosphate pathways were overexpressed in Saccharomyces cerevisiae, and the resultant transformants were evaluated as to the production of these alcohols. Overexpression of the gene encoding hydroxymethylglutaryl (HMG)-CoA reductase was most effective among the genes tested. A derivative of S. cerevisiae ATCC 200589, which was selected through screening, was found to be the most suitable host for the production. On cultivation of the resultant transformant, in which the HMG-CoA reductase gene was overexpressed, in a 5-liter bench-scale jar fermenter for 7 d, the production of FOH, NOH, and GGOH reached 145.7, 98.8, and 2.46 mg/l, respectively.

  8. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol.

    PubMed

    May, Bianca; Lange, B Markus; Wüst, Matthias

    2013-11-01

    The participation of the mevalonic acid (MVA) and 1-deoxy-d-xylulose 5-phosphate/2-C-methyl-d-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-(2)H2]-1-deoxy-d-xylulose and [5,5-(2)H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Biosynthesis of sesquiterpenes in grape berry exocarp of Vitis vinifera L.: evidence for a transport of farnesyl diphosphate precursors from plastids to the cytosol

    PubMed Central

    May, Bianca; Lange, B. Markus; Wüst, Matthias

    2013-01-01

    The participation of the mevalonic acid (MVA) and 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol-4-phosphate (DOXP/MEP) pathways in sesquiterpene biosynthesis of grape berries was investigated. There is an increasing interest in this class of terpenoids, since the oxygenated sesquiterpene rotundone was identified as the peppery aroma impact compound in Australian Shiraz wines. To investigate precursor supply pathway utilization, in vivo feeding experiments were performed with the deuterium labeled, pathway specific, precursors [5,5-2H2]-1-deoxy-D-xylulose and [5,5-2H2]-mevalonic acid lactone. Head Space-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) analysis of the generated volatile metabolites demonstrated that de novo sesquiterpene biosynthesis is mainly located in the grape berry exocarp (skin), with no detectable activity in the mesocarp (flesh) of the Lemberger variety. Interestingly, precursors from both the (primarily) cytosolic MVA and plastidial DOXP/MEP pathways were incorporated into grape sesquiterpenes in the varieties Lemberger, Gewürztraminer and Syrah. Our labeling data provide evidence for a homogenous, cytosolic pool of precursors for sesquiterpene biosynthesis, indicating that a transport of precursors occurs mostly from plastids to the cytosol. The labeling patterns of the sesquiterpene germacrene D were in agreement with a cyclization mechanism analogous to that of a previously cloned enantioselective (R)-germacrene D synthase from Solidago canadensis. This observation was subsequently confirmed by enantioselective GC-MS analysis demonstrating the exclusive presence of (R)-germacrene D, and not the (S)-enantiomer, in grape berries. PMID:23954075

  10. Mevalonate Cascade and Small Rho GTPase in Spinal Cord Injury.

    PubMed

    Eftekharpour, Eftekhar; Nagakannan, Pandian; Iqbal, Mohamed Ariff; Chen, Qi Min

    2017-01-01

    The mevalonate pathway has been extensively studied for its involvement in cholesterol synthesis. Inhibition of this pathway using statins (3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors; HMGR inhibitors) is the primarily selected method due to its cholesterol-lowering effect, making statins the most commonly used (86-94%) cholesterol-lowering drugs in adults. This pathway has several other by-products that are affected by statins including GTPase molecules (guanine triphosphate-binding kinases), such as Rho/Rho-associated coiled kinase (ROCK) kinases, that are implicated in other diseases, including those of the central nervous system (CNS). These molecules control several aspects of neural cell life including axonal growth, cellular migration, and cell death, and therefore, are of increasing interest in the field of spinal cord injury (SCI). Limited regeneration capacity of nerve fibers in adult CNS has been considered the main obstacle for finding a SCI cure. Over the past two decades, the identity of inhibitory factors for regeneration has been widely investigated. It is well-established that the Rho/ROCK kinase system is specifically activated by the components of damaged spinal cord tissue, including oligodendrocytes and myelin, as well as extracellular matrix. This has led many groups to hypothesize that statin therapy may in fact enhance the current neurorestorative approaches. In this mini-review, a summary of SCI pathophysiology is discussed and the current literature targeting the regeneration obstacles in SCI are reviewed, with special attention to recent publications of the past decade. In addition, we focus on the current literature involving the use of pharmacological and molecular inhibitors of small GTPase molecules for treatment of neurotrauma. Inhibiting these molecules has been shown to increase neuroprotection, enhance axonal regeneration, and facilitate the implementation of cell replacement therapies. Based upon available

  11. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate.

    PubMed

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transformed by the encoding gene for FPPS (ispA) under the control of either the trc or P BAD promoters. Over-expression of ispA under the control of P BAD promoter led to a relative increase in CoQ 10 production only in recombinant E. coli Br although induction by arabinose resulted in partial reduction of CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains. Over-expression of ispA under the control of stronger trc promoter, however, led to a severe decrease in CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains, as reflected by reductions from 629±40 to 30±13 and 564±28 to 80±14 μg/g Dried Cell Weight (DCW), respectively. The results showed high level of FPP reduces endogenous CoQ 8 production as well and that CoQs are produced in a complimentary manner, as the increase in production of one decreases the production of the other. The reduction in CoQ 10 production can be a result of Dds inhibition by high FPP concentration. Therefore, more effort is needed to verify the role of intermediate metabolite concentration and to optimize production of CoQ 10 .

  12. Inhibition of Coenzyme Qs Accumulation in Engineered Escherichia coli by High Concentration of Farnesyl Diphosphate

    PubMed Central

    Samoudi, Mojtaba; Omid Yeganeh, Negar; Shahbani Zahiri, Hossein; Shariati, Parvin; Hajhosseini, Reza

    2015-01-01

    Background: Coenzyme Q 10 (CoQ 10 ) is an isoprenoid component used widely in nutraceutical industries. Farnesyl diphosphate synthase (FPPS) is a responsible enzyme for biosynthesis of farnesyl diphosphate (FPP), a key precursor for CoQs production. This research involved investigating the effect of FPPS over-expression on CoQs production in engineered CoQ 10 -producing Escherichia coli (E. coli). Methods: Two CoQ 10 -producing strains, as referred to E. coli Ba and E. coli Br, were transformed by the encoding gene for FPPS (ispA) under the control of either the trc or P BAD promoters. Results: Over-expression of ispA under the control of P BAD promoter led to a relative increase in CoQ 10 production only in recombinant E. coli Br although induction by arabinose resulted in partial reduction of CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains. Over-expression of ispA under the control of stronger trc promoter, however, led to a severe decrease in CoQ 10 production in both recombinant E. coli Ba and E. coli Br strains, as reflected by reductions from 629±40 to 30±13 and 564±28 to 80±14 μg/g Dried Cell Weight (DCW), respectively. The results showed high level of FPP reduces endogenous CoQ 8 production as well and that CoQs are produced in a complimentary manner, as the increase in production of one decreases the production of the other. Conclusion: The reduction in CoQ 10 production can be a result of Dds inhibition by high FPP concentration. Therefore, more effort is needed to verify the role of intermediate metabolite concentration and to optimize production of CoQ 10 . PMID:26306151

  13. Functional characterization of a geraniol synthase-encoding gene from Camptotheca acuminata and its application in production of geraniol in Escherichia coli.

    PubMed

    Chen, Fei; Li, Wei; Jiang, Liangzhen; Pu, Xiang; Yang, Yun; Zhang, Guolin; Luo, Yinggang

    2016-09-01

    Geraniol synthase (GES) catalyzes the conversion of geranyl diphosphate (GPP) into geraniol, an acyclic monoterpene alcohol that has been widely used in many industries. Here we report the functional characterization of CaGES from Camptotheca acuminata, a camptothecin-producing plant, and its application in production of geraniol in Escherichia coli. The full-length cDNA of CaGES was obtained from overlap extension PCR amplification. The intact and N-terminus-truncated CaGESs were overexpressed in E. coli and purified to homogeneity. Recombinant CaGES showed the conversion activity from GPP to geraniol. To produce geraniol in E. coli using tCaGES, the biosynthetic precursor GPP should be supplied and transferred to the catalytic pocket of tCaGES. Thus, ispA(S80F), a mutant of farnesyl diphosphate (FPP) synthase, was prepared to produce GPP via the head-to-tail condensation of isoprenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). A slight increase of geraniol production was observed in the fermentation broth of the recombinant E. coli harboring tCaGES and ispA(S80F). To enhance the supply of IPP and DMAPP, the encoding genes involved in the whole mevalonic acid biosynthetic pathway were introduced to the E. coli harboring tCaGES and the ispA(S80F) and a significant increase of geraniol yield was observed. The geraniol production was enhanced to 5.85 ± 0.46 mg L(-1) when another copy of ispA(S80F) was introduced to the above recombinant strain. The following optimization of medium composition, fermentation time, and addition of metal ions led to the geraniol production of 48.5 ± 0.9 mg L(-1). The present study will be helpful to uncover the biosynthetic enigma of camptothecin and tCaGES will be an alternative to selectively produce geraniol in E. coli with other metabolic engineering approaches.

  14. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krungkrai, Sudaratana R.; Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871; Tokuoka, Keiji

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 asmore » a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})« less

  15. Functional evidence for the critical amino-terminal conserved domain and key amino acids of Arabidopsis 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE.

    PubMed

    Hsieh, Wei-Yu; Sung, Tzu-Ying; Wang, Hsin-Tzu; Hsieh, Ming-Hsiun

    2014-09-01

    The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes. © 2014

  16. Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4.

    PubMed

    Gu, Wen; Yang, Jinkui; Lou, Zhiyong; Liang, Lianming; Sun, Yuna; Huang, Jingwen; Li, Xuemei; Cao, Yi; Meng, Zhaohui; Zhang, Ke-Qin

    2011-01-21

    Microbial ferulic acid decarboxylase (FADase) catalyzes the transformation of ferulic acid to 4-hydroxy-3-methoxystyrene (4-vinylguaiacol) via non-oxidative decarboxylation. Here we report the crystal structures of the Enterobacter sp. Px6-4 FADase and the enzyme in complex with substrate analogues. Our analyses revealed that FADase possessed a half-opened bottom β-barrel with the catalytic pocket located between the middle of the core β-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD) superfamily. Structural analysis revealed that FADase catalyzed reactions by an "open-closed" mechanism involving a pocket of 8 × 8 × 15 Å dimension on the surface of the enzyme. The active pocket could directly contact the solvent and allow the substrate to enter when induced by substrate analogues. Site-directed mutagenesis showed that the E134A mutation decreased the enzyme activity by more than 60%, and Y21A and Y27A mutations abolished the enzyme activity completely. The combined structural and mutagenesis results suggest that during decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer.

  17. Dopa decarboxylase (Ddc) affects variation in Drosophila longevity.

    PubMed

    De Luca, Maria; Roshina, Nataliya V; Geiger-Thornsberry, Gretchen L; Lyman, Richard F; Pasyukova, Elena G; Mackay, Trudy F C

    2003-08-01

    Mutational analyses in model organisms have shown that genes affecting metabolism and stress resistance regulate life span, but the genes responsible for variation in longevity in natural populations are largely unidentified. Previously, we mapped quantitative trait loci (QTLs) affecting variation in longevity between two Drosophila melanogaster strains. Here, we show that the longevity QTL in the 36E;38B cytogenetic interval on chromosome 2 contains multiple closely linked QTLs, including the Dopa decarboxylase (Ddc) locus. Complementation tests to mutations show that Ddc is a positional candidate gene for life span in these strains. Linkage disequilibrium (LD) mapping in a sample of 173 alleles from a single population shows that three common molecular polymorphisms in Ddc account for 15.5% of the genetic contribution to variance in life span from chromosome 2. The polymorphisms are in strong LD, and the effects of the haplotypes on longevity suggest that the polymorphisms are maintained by balancing selection. DDC catalyzes the final step in the synthesis of the neurotransmitters, dopamine and serotonin. Thus, these data implicate variation in the synthesis of bioamines as a factor contributing to natural variation in individual life span.

  18. Transport of phosphatidylserine from the endoplasmic reticulum to the site of phosphatidylserine decarboxylase2 in yeast.

    PubMed

    Kannan, Muthukumar; Riekhof, Wayne R; Voelker, Dennis R

    2015-02-01

    Over the past two decades, most of the genes specifying lipid synthesis and metabolism in yeast have been identified and characterized. Several of these biosynthetic genes and their encoded enzymes have provided valuable tools for the genetic and biochemical dissection of interorganelle lipid transport processes in yeast. One such pathway involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), and its non-vesicular transport to the site of phosphatidylserine decarboxylase2 (Psd2p) in membranes of the Golgi and endosomal sorting system. In this review, we summarize the identification and characterization of the yeast phosphatidylserine decarboxylases, and examine their role in studies of the transport-dependent pathways of de novo synthesis of phosphatidylethanolamine (PtdEtn). The emerging picture of the Psd2p-specific transport pathway is one in which the enzyme and its non-catalytic N-terminal domains act as a hub to nucleate the assembly of a multiprotein complex, which facilitates PtdSer transport at membrane contact sites between the ER and Golgi/endosome membranes. After transport to the catalytic site of Psd2p, PtdSer is decarboxylated to form PtdEtn, which is disseminated throughout the cell to support the structural and functional needs of multiple membranes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Molecular cloning and expression of gene encoding aromatic amino acid decarboxylase in 'Vidal blanc' grape berries.

    PubMed

    Pan, Qiu-Hong; Chen, Fang; Zhu, Bao-Qing; Ma, Li-Yan; Li, Li; Li, Jing-Ming

    2012-04-01

    The pleasantly fruity and floral 2-phenylethanol are a dominant aroma compound in post-ripening 'Vidal blanc' grapes. However, to date little has been reported about its synthetic pathway in grapevine. In the present study, a full-length cDNA of VvAADC (encoding aromatic amino acid decarboxylase) was firstly cloned from the berries of 'Vidal blanc', an interspecific hybrid variety of Vitis vinifera × Vitis riparia. This sequence encodes a complete open reading frame of 482 amino acids with a calculated molecular mass of 54 kDa and isoelectric point value (pI) of 5.73. The amino acid sequence deduced shared about 79% identity with that of aromatic L: -amino acid decarboxylases (AADCs) from tomato. Real-time PCR analysis indicated that VvAADC transcript abundance presented a small peak at 110 days after full bloom and then a continuous increase at the berry post-ripening stage, which was consistent with the accumulation of 2-phenylethanol, but did not correspond to the trends of two potential intermediates, phenethylamine and 2-phenylacetaldehyde. Furthermore, phenylalanine still exhibited a continuous increase even in post-ripening period. It is thus suggested that 2-phenylethanol biosynthetic pathway mediated by AADC exists in grape berries, but it has possibly little contribution to a considerable accumulation of 2-phenylethanol in post-ripening 'Vidal blanc' grapes.

  20. Off-plane polarization ordering in metal chalcogen diphosphates from bulk to monolayer

    NASA Astrophysics Data System (ADS)

    Song, Wenshen; Fei, Ruixiang; Yang, Li

    2017-12-01

    Vertically (off-plane) ferroelectric ordering in ultrathin films has been pursued for decades. We predict the existence of intrinsic vertical polarization orderings in ultrathin metal chalcogen-diphosphates (MCDs). Taking CuInP2Se6 as an example, the first-principles calculation and electrostatic-energy model show that, under the open-circuit boundary condition, the ground state of bulk CuInP2Se6 is ferroelectric (FE) while that of monolayer is antiferroelectric (AFE), and the critical thickness for this FE/AFE transition is around six layers. Interestingly, under the closed-circuit boundary condition, the FE state can hold even for monolayer. Particularly, because of the small energy difference but the large barrier between FE and AFE orderings, the FE state can be stabilized in a free-standing monolayer, giving rise to intrinsic, off-plane two-dimensional ferroelectrics. Applying Monte Carlo simulations, we further calculate the ferroelectric Curie temperature (Tc) and electric hysteresis.

  1. Gene cloning and overexpression of a geranylgeranyl diphosphate synthase of an extremely thermophilic bacterium, Thermus thermophilus.

    PubMed

    Ohto, C; Ishida, C; Koike-Takeshita, A; Yokoyama, K; Muramatsu, M; Nishino, T; Obata, S

    1999-02-01

    A geranylgeranyl diphosphate (GGPP) synthase gene of an extremely thermophilic bacterium, Thermus thermophilus, was cloned and sequenced. T. thermophilus GGPP synthase, overexpressed in Escherichia coli cells as a glutathione S-transferase fusion protein, was purified and characterized. The fusion protein, retaining thermostability, formed a homodimer, and showed higher specific activity than did a partially purified thermostable enzyme previously reported. Optimal reaction conditions and kinetic parameters were also examined. The deduced amino acid sequence indicated that T. thermophilus GGPP synthase was excluded from the group of bacterial type GGPP synthases and lacked the insertion amino acid residues in the first aspartate-rich motif as do archaeal and eukaryotic short-chain prenyltransferases.

  2. Acid Evolution of Escherichia coli K-12 Eliminates Amino Acid Decarboxylases and Reregulates Catabolism.

    PubMed

    He, Amanda; Penix, Stephanie R; Basting, Preston J; Griffith, Jessie M; Creamer, Kaitlin E; Camperchioli, Dominic; Clark, Michelle W; Gonzales, Alexandra S; Chávez Erazo, Jorge Sebastian; George, Nadja S; Bhagwat, Arvind A; Slonczewski, Joan L

    2017-06-15

    Acid-adapted strains of Escherichia coli K-12 W3110 were obtained by serial culture in medium buffered at pH 4.6 (M. M. Harden, A. He, K. Creamer, M. W. Clark, I. Hamdallah, K. A. Martinez, R. L. Kresslein, S. P. Bush, and J. L. Slonczewski, Appl Environ Microbiol 81:1932-1941, 2015, https://doi.org/10.1128/AEM.03494-14). Revised genomic analysis of these strains revealed insertion sequence (IS)-driven insertions and deletions that knocked out regulators CadC (acid induction of lysine decarboxylase), GadX (acid induction of glutamate decarboxylase), and FNR (anaerobic regulator). Each acid-evolved strain showed loss of one or more amino acid decarboxylase systems, which normally help neutralize external acid (pH 5 to 6) and increase survival in extreme acid (pH 2). Strains from populations B11, H9, and F11 had an IS 5 insertion or IS-mediated deletion in cadC , while population B11 had a point mutation affecting the arginine activator adiY The cadC and adiY mutants failed to neutralize acid in the presence of exogenous lysine or arginine. In strain B11-1, reversion of an rpoC (RNA polymerase) mutation partly restored arginine-dependent neutralization. All eight strains showed deletion or downregulation of the Gad acid fitness island. Strains with the Gad deletion lost the ability to produce GABA (gamma-aminobutyric acid) and failed to survive extreme acid. Transcriptome sequencing (RNA-seq) of strain B11-1 showed upregulated genes for catabolism of diverse substrates but downregulated acid stress genes (the biofilm regulator ariR , yhiM , and Gad). Other strains showed downregulation of H 2 consumption mediated by hydrogenases ( hya and hyb ) which release acid. Strains F9-2 and F9-3 had a deletion of fnr and showed downregulation of FNR-dependent genes ( dmsABC , frdABCD , hybABO , nikABCDE , and nrfAC ). Overall, strains that had evolved in buffered acid showed loss or downregulation of systems that neutralize unbuffered acid and showed altered regulation of

  3. Real-time monitoring of the oxalate decarboxylase reaction and probing hydron exchange in the product, formate, using fourier transform infrared spectroscopy.

    PubMed

    Muthusamy, Mylrajan; Burrell, Matthew R; Thorneley, Roger N F; Bornemann, Stephen

    2006-09-05

    Oxalate decarboxylase converts oxalate to formate and carbon dioxide and uses dioxygen as a cofactor despite the reaction involving no net redox change. We have successfully used Fourier transform infrared spectroscopy to monitor in real time both substrate consumption and product formation for the first time. The assignment of the peaks was confirmed using [(13)C]oxalate as the substrate. The K(m) for oxalate determined using this assay was 3.8-fold lower than that estimated from a stopped assay. The infrared assay was also capable of distinguishing between oxalate decarboxylase and oxalate oxidase activity by the lack of formate being produced by the latter. In D(2)O, the product with oxalate decarboxylase was C-deuterio formate rather than formate, showing that the source of the hydron was solvent as expected. Large solvent deuterium kinetic isotope effects were observed on V(max) (7.1 +/- 0.3), K(m) for oxalate (3.9 +/- 0.9), and k(cat)/K(m) (1.8 +/- 0.4) indicative of a proton transfer event during a rate-limiting step. Semiempirical quantum mechanical calculations on the stability of formate-derived species gave an indication of the stability and nature of a likely enzyme-bound formyl radical catalytic intermediate. The capability of the enzyme to bind formate under conditions in which the enzyme is known to be active was determined by electron paramagnetic resonance. However, no enzyme-catalyzed exchange of the C-hydron of formate was observed using the infrared assay, suggesting that a formyl radical intermediate is not accessible in the reverse reaction. This restricts the formation of potentially harmful radical intermediates to the forward reaction.

  4. Structures of the N47A and E109Q mutant proteins of pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soriano, Erika V.; McCloskey, Diane E.; Kinsland, Cynthia

    2008-04-01

    The crystal structures of two arginine decarboxylase mutant proteins provide insights into the mechanisms of pyruvoyl-group formation and the decarboxylation reaction. Pyruvoyl-dependent arginine decarboxylase (PvlArgDC) catalyzes the first step of the polyamine-biosynthetic pathway in plants and some archaebacteria. The pyruvoyl group of PvlArgDC is generated by an internal autoserinolysis reaction at an absolutely conserved serine residue in the proenzyme, resulting in two polypeptide chains. Based on the native structure of PvlArgDC from Methanococcus jannaschii, the conserved residues Asn47 and Glu109 were proposed to be involved in the decarboxylation and autoprocessing reactions. N47A and E109Q mutant proteins were prepared and themore » three-dimensional structure of each protein was determined at 2.0 Å resolution. The N47A and E109Q mutant proteins showed reduced decarboxylation activity compared with the wild-type PvlArgDC. These residues may also be important for the autoprocessing reaction, which utilizes a mechanism similar to that of the decarboxylation reaction.« less

  5. Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate.

    PubMed

    Hiraga, Kazumi; Ueno, Yoshie; Oda, Kohei

    2008-05-01

    In this study, the glutamate decarboxylase (GAD) gene from Lactobacillus brevis IFO12005 (Biosci. Biotechnol. Biochem., 61, 1168-1171 (1997)), was cloned and expressed. The deduced amino acid sequence showed 99.6% and 53.1% identity with GAD of L. brevis ATCC367 and L. lactis respectively. The His-tagged recombinant GAD showed an optimum pH of 4.5-5.0, and 54 kDa on SDS-PAGE. The GAD activity and stability was significantly dependent on the ammonium sulfate concentration, as observed in authentic GAD. Gel filtration showed that the inactive form of the GAD was a dimer. In contrast, the ammonium sulfate-activated form was a tetramer. CD spectral analyses at pH 5.5 revealed that the structures of the tetramer and the dimer were similar. Treatment of the GAD with high concentrations of ammonium sulfate and subsequent dilution with sodium glutamate was essential for tetramer formation and its activation. Thus the biochemical properties of the GAD from L. brevis IFO12005 were significantly different from those from other sources.

  6. Characterization of the cDNA coding for rat brain cysteine sulfinate decarboxylase: brain and liver enzymes are identical proteins encoded by two distinct mRNAs.

    PubMed

    Tappaz, M; Bitoun, M; Reymond, I; Sergeant, A

    1999-09-01

    Cysteine sulfinate decarboxylase (CSD) is considered as the rate-limiting enzyme in the biosynthesis of taurine, a possible osmoregulator in brain. Through cloning and sequencing of RT-PCR and RACE-PCR products of rat brain mRNAs, a 2,396-bp cDNA sequence was obtained encoding a protein of 493 amino acids (calculated molecular mass, 55.2 kDa). The corresponding fusion protein showed a substrate specificity similar to that of the endogenous enzyme. The sequence of the encoded protein is identical to that encoded by liver CSD cDNA. Among other characterized amino acid decarboxylases, CSD shows the highest homology (54%) with either isoform of glutamic acid decarboxylase (GAD65 and GAD67). A single mRNA band, approximately 2.5 kb, was detected by northern blot in RNA extracts of brain, liver, and kidney. However, brain and liver CSD cDNA sequences differed in the 5' untranslated region. This indicates two forms of CSD mRNA. Analysis of PCR-amplified products of genomic DNA suggests that the brain form results from the use of a 3' alternative internal splicing site within an exon specifically found in liver CSD mRNA. Through selective RT-PCR the brain form was detected in brain only, whereas the liver form was found in liver and kidney. These results indicate a tissue-specific regulation of CSD genomic expression.

  7. Laticifer-specific cis-prenyltransferase silencing affects the rubber, triterpene, and inulin content of Taraxacum brevicorniculatum.

    PubMed

    Post, Janina; van Deenen, Nicole; Fricke, Julia; Kowalski, Natalie; Wurbs, David; Schaller, Hubert; Eisenreich, Wolfgang; Huber, Claudia; Twyman, Richard M; Prüfer, Dirk; Gronover, Christian Schulze

    2012-03-01

    Certain Taraxacum species, such as Taraxacum koksaghyz and Taraxacum brevicorniculatum, produce large amounts of high-quality natural rubber in their latex, the milky cytoplasm of specialized cells known as laticifers. This high-molecular mass biopolymer consists mainly of poly(cis-1,4-isoprene) and is deposited in rubber particles by particle-bound enzymes that carry out the stereospecific condensation of isopentenyl diphosphate units. The polymer configuration suggests that the chain-elongating enzyme (rubber transferase; EC 2.5.1.20) is a cis-prenyltransferase (CPT). Here, we present a comprehensive analysis of transgenic T. brevicorniculatum plants in which the expression of three recently isolated CPTs known to be associated with rubber particles (TbCPT1 to -3) was heavily depleted by laticifer-specific RNA interference (RNAi). Analysis of the CPT-RNAi plants by nuclear magnetic resonance, size-exclusion chromatography, and gas chromatography-mass spectrometry indicated a significant reduction in rubber biosynthesis and a corresponding 50% increase in the levels of triterpenes and the main storage carbohydrate, inulin. Transmission electron microscopy revealed that the laticifers in CPT-RNAi plants contained fewer and smaller rubber particles than wild-type laticifers. We also observed lower activity of hydroxymethylglutaryl-coenzyme A reductase, the key enzyme in the mevalonate pathway, reflecting homeostatic control of the isopentenyl diphosphate pool. To our knowledge, this is the first in planta demonstration of latex-specific CPT activity in rubber biosynthesis.

  8. [In vitro study over statins effects on cellular growth curves and its reversibility with mevalonate].

    PubMed

    Millan Núñez-Cortés, Jesús; Alvarez Rodriguez, Ysmael; Alvarez Novés, Granada; Recarte Garcia-Andrade, Carlos; Alvarez-Sala Walther, Luis

    2014-01-01

    HMG-CoA-Reductase inhibitors, also known as statins, are currently the most powerful cholesterol-lowering drugs available on the market. Clinical trials and experimental evidence suggest that statins have heavy anti-atherosclerotic effects. These are in part consequence of lipid lowering but also result from pleiotropic actions of the drugs. These so-called pleiotropic properties affect various aspects of cell function, inflammation, coagulation, and vasomotor activity. These effects are mediated either indirectly through LDL-c reduction or via a direct effect on cellular functions. Although many of the pleiotropic properties of statins may be a class effect, some may be unique to certain agents and account for differences in their pharmacological activity. So, although statins typically have similar effects on LDL-c levels, differences in chemical structure and pharmacokinetic profile can lead to variations in pleiotropic effects. In this paper we analize the in vitro effects of different statins over different cell lines from cells implicated in atherosclerotic process: endothelial cells, fibroblasts, and vascular muscular cells. In relation with our results we can proof that the effects of different dosis of different statins provides singular effects over growth curves of different cellular lines, a despite of a class-dependent effects. So, pleiotropic effects and its reversibility with mevalonate are different according with the molecule and the dosis. Copyright © 2013 Elsevier España, S.L. y SEA. All rights reserved.

  9. Synthesis and Characterization of a New Hydroquinone Derivative: Disodium p-Phenylene Diisostearyl Diphosphate.

    PubMed

    Hisama, Masayoshi; Matsuda, Sanae; Arai, Junichi; Masui, Katsunobu; Yamamura, Haruo

    2015-01-01

    A novel amphiphilic hydroquinone derivative having a C18 alkyl chain phosphate attached to the hydroquinone (HQ) moiety was chemically synthesized. The thermal stability, distribution between organic and aqueous phases, and in vitro skin permeability were evaluated. This HQ derivative was identified as disodium p-phenylene diisostearyl diphosphate (HQ-2P2IS) by UV, infrared, mass, and nuclear magnetic resonance spectroscopies. Product HQ-2P2IS was obtained in good yield (56%), and it exhibited satisfactory stability in neutral solution, comparable to that of HQ. Its skin permeability was also higher than that of HQ. HQ-2P2IS is susceptible to enzymatic hydrolysis by tissue phosphatase, which releases HQ in the skin tissues. Thus, these characteristics indicate that the novel hydroquinone derivative presented herein, i.e., HQ-2P2IS, may serve as an effective pro-hydroquinone for skin care applications.

  10. Comparative studies on glutamate decarboxylase and choline acetyltransferase activities in the vertebrate vestibule.

    PubMed

    López, I; Meza, G

    1990-01-01

    1. Vestibular putative neurotransmitters GABA and acetylcholine synthesizing enzymes were quantified in four vertebrate species to find a correlation between all-vertebrate vestibular hair cell II (HCII) and synaptic contacts and appearance of hair cell I (HCI) and related synapses in terrestrial species. 2. Glutamate decarboxylase (GAD) and choline acetyltransferase (ChAT) values were: 3.76; 15.38; 21.68; 27.78 and 9.44; 450; 720; 970 n(pico)mol/mg protein/hr (min) in, respectively, frogs, guinea pigs, rats and chicks. 3. GAD and ChAT omnipresence may indicate constant GABAergic HCII and its cholinergic efferent synapses, their raised content, appearance of GABA-containing HCI and related cholinergic boutons in higher vertebrates.

  11. The biosynthetic genes for prenylated phenazines are located at two different chromosomal loci of Streptomyces cinnamonensis DSM 1042

    PubMed Central

    Seeger, Kerstin; Flinspach, Katrin; Haug‐Schifferdecker, Elisa; Kulik, Andreas; Gust, Bertolt; Fiedler, Hans‐Peter; Heide, Lutz

    2011-01-01

    Summary Streptomyces cinnamonensis DSM 1042 produces two types of isoprenoid secondary metabolites: the prenylated naphthalene derivative furanonaphthoquinone I (FNQ I), and isoprenylated phenazines which are termed endophenazines. Previously, a 55 kb gene cluster was identified which contained genes for both FNQ I and endophenazine biosynthesis. However, several genes required for the biosynthesis of these metabolites were not present in this cluster. We now re‐screened the cosmid library for genes of the mevalonate pathway and identified a separate genomic locus which contains the previously missing genes. This locus (15 kb) comprised orthologues of four phenazine biosynthesis genes known from Pseudomonas strains. Furthermore, the locus contained a putative operon of six genes of the mevalonate pathway, as well as the gene epzP which showed sequence similarity to a recently discovered class of prenyltransferases. Inactivation and complementation experiments proved the involvement of epzP in the prenylation reaction in endophenazine biosynthesis. This newly identified genomic locus is more than 40 kb distant from the previously identified cluster. The protein EpzP was expressed in Escherichia coli in form of a his‐tag fusion protein and purified. The enzyme catalysed the prenylation of 5,10‐dihydrophenazine‐1‐carboxylic acid (dihydro‐PCA) using dimethylallyl diphosphate (DMAPP) as isoprenoid substrate. Km values were determined as 108 µM for dihydro‐PCA and 25 µM for DMAPP. PMID:21342470

  12. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in Rats

    PubMed Central

    Peng, Qian-Yi; Zou, Yu; Zhang, Li-Na; Ai, Mei-Lin; Liu, Wei; Ai, Yu-Hang

    2016-01-01

    Background: Acute lung injury (ALI) is a common complication of sepsis that is associated with high mortality. Intracellular Ca2+ overload plays an important role in the pathophysiology of sepsis-induced ALI, and cyclic adenosine diphosphate ribose (cADPR) is an important regulator of intracellular Ca2+ mobilization. The cluster of differentiation 38 (CD38)/cADPR pathway has been found to play roles in multiple inflammatory processes but its role in sepsis-induced ALI is still unknown. This study aimed to investigate whether the CD38/cADPR signaling pathway is activated in sepsis-induced ALI and whether blocking cADPR-mediated calcium overload attenuates ALI. Methods: Septic rat models were established by cecal ligation and puncture (CLP). Rats were divided into the sham group, the CLP group, and the CLP+ 8-bromo-cyclic adenosine diphosphate ribose (8-Br-cADPR) group. Nicotinamide adenine dinucleotide (NAD+), cADPR, CD38, and intracellular Ca2+ levels in the lung tissues were measured at 6, 12, 24, and 48 h after CLP surgery. Lung histologic injury, tumor necrosis factor (TNF)-α, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities were measured. Results: NAD+, cADPR, CD38, and intracellular Ca2+ levels in the lungs of septic rats increased significantly at 24 h after CLP surgery. Treatment with 8-Br-cADPR, a specific inhibitor of cADPR, significantly reduced intracellular Ca2+ levels (P = 0.007), attenuated lung histological injury (P = 0.023), reduced TNF-α and MDA levels (P < 0.001 and P = 0.002, respectively) and recovered SOD activity (P = 0.031) in the lungs of septic rats. Conclusions: The CD38/cADPR pathway is activated in the lungs of septic rats, and blocking cADPR-mediated calcium overload with 8-Br-cADPR protects against sepsis-induced ALI. PMID:27411462

  13. Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle.

    PubMed

    Chen, Grey S; Siao, Siang Wun; Shen, Claire R

    2017-09-12

    Iterative ketoacid elongation has been an essential tool in engineering artificial metabolism, in particular the synthetic alcohols. However, precise control of product specificity is still greatly challenged by the substrate promiscuity of the ketoacid decarboxylase, which unselectively hijacks ketoacid intermediates from the elongation cycle along with the target ketoacid. In this work, preferential tuning of the Lactococcus lactis ketoisovalerate decarboxylase (Kivd) specificity toward 1-pentanol synthesis was achieved via saturated mutagenesis of the key residue V461 followed by screening of the resulting alcohol spectrum. Substitution of V461 with the small and polar amino acid glycine or serine significantly improved the Kivd selectivity toward the 1-pentanol precursor 2-ketocaproate by lowering its catalytic efficiency for the upstream ketoacid 2-ketobutyrate and 2-ketovalerate. Conversely, replacing V461 with bulky or charged side chains displayed severely adverse effect. Increasing supply of the iterative addition unit acetyl-CoA by acetate feeding further drove 2-ketoacid flux into the elongation cycle and enhanced 1-pentanol productivity. The Kivd V461G variant enabled a 1-pentanol production specificity around 90% of the total alcohol content with or without oleyl alcohol extraction. This work adds insight to the selectivity of Kivd active site.

  14. Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway.

    PubMed

    Nakada, Yuji; Itoh, Yoshifumi

    2003-03-01

    Putrescine can be synthesized either directly from ornithine by ornithine decarboxylase (ODC; the speC product) or indirectly from arginine via arginine decarboxylase (ADC; the speA product). The authors identified the speA and speC genes in Pseudomonas aeruginosa PAO1. The activities of the two decarboxylases were similar and each enzyme alone appeared to direct sufficient formation of the polyamine for normal growth. A mutant defective in both speA and speC was a putrescine auxotroph. In this strain, agmatine deiminase (the aguA product) and N-carbamoylputrescine amidohydrolase (the aguB product), which were initially identified as the catabolic enzymes of agmatine, biosynthetically convert agmatine to putrescine in the ADC pathway: a double mutant of aguAB and speC was a putrescine auxotroph. AguA was purified as a homodimer of 43 kDa subunits and AguB as a homohexamer of 33 kDa subunits. AguA specifically deiminated agmatine with K(m) and K(cat) values of 0.6 mM and 4.2 s(-1), respectively. AguB was specific to N-carbamoylputrescine and the K(m) and K(cat) values of the enzyme for the substrate were 0.5 mM and 3.3 s(-1), respectively. Whereas AguA has no structural relationship to any known C-N hydrolases, AguB is a protein of the nitrilase family that performs thiol-assisted catalysis. Inhibition by SH reagents and the conserved cysteine residue in AguA and its homologues suggested that this enzyme is also involved in thiol-mediated catalysis.

  15. A substrate radical intermediate in the reaction between ribonucleotide reductase from Escherichia coli and 2'-azido-2'-deoxynucleoside diphosphates.

    PubMed

    Sjöberg, B M; Gräslund, A; Eckstein, F

    1983-07-10

    The B2 subunit of ribonucleotide reductase from Escherichia coli contains a tyrosine radical which is essential for enzyme activity. In the reaction between ribonucleotide reductase and the substrate analogue 2'-azido-2'-deoxycytidine 5'-diphosphate a new transient radical is formed. The EPR characteristics of this new radical species are consistent with a localization of the unpaired electron at the sugar moiety of the nucleotide. The radical shows hyperfine couplings to a hydrogen and a nitrogen nucleus, the latter probably being part of the azide substituent. The formation of the nucleotide radical in this suicidal reaction is concomitant with the decay of the tyrosine radical of the B2 subunit. Kinetic data argue for a first (pseudosecond) order decay of the B2 radical via generation of the nucleotide radical followed by a slower first order decay of the nucleotide radical. End products in the reaction are cytosine and radical-free protein B2. In the reaction between bacteriophage T4 ribonucleotide reductase and 2'-azido-2'-deoxycytidine 5'-diphosphate an identical nucleotide radical is formed. The present results are consistent with the hypothesis that the appearance and structure of the transient radical mimic stages in the normal reaction pathway of ribonucleotide reductase, postulated to proceed via 3'-hydrogen abstraction and cation radical formation of the substrate nucleotide (Stubbe, J., and Ackles, D. (1980) J. Biol. Chem. 255, 8027-8030). The nucleotide radical described here might be equivalent to such a cation radical intermediate.

  16. Structural Characterization of the Molecular Events during a Slow Substrate-Product Transition in Orotidine 5'-Monophosphate Decarboxylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P

    2009-04-06

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6more » of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.« less

  17. Structural characterization of the molecular events during a slow substrate-product transition in orotidine 5'-monophosphate decarboxylase.

    PubMed

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P; Pai, Emil F

    2009-04-17

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6 of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.

  18. Alkylation of an active-site cysteinyl residue during substrate-dependent inactivation of Escherichia coli S-adenosylmethionine decarboxylase.

    PubMed

    Diaz, E; Anton, D L

    1991-04-23

    S-Adenosylmethionine decarboxylase from Escherichia coli is a member of a small class of enzymes that uses a pyruvoyl prosthetic group. The pyruvoyl group is proposed to form a Schiff base with the substrate and then act as an electron sink facilitating decarboxylation. We have previously shown that once every 6000-7000 turnovers the enzyme undergoes an inactivation that results in a transaminated pyruvoyl group and the formation of an acrolein-like species from the methionine moiety. The acrolein then covalently alkylates the enzyme [Anton, D. L., & Kutny, R. (1987) Biochemistry 26, 6444]. After reduction of the alkylated enzyme with NaBH4, a tryptic peptide with the sequence Ala-Asp-Ile-Glu-Val-Ser-Thr-[S-(3-hydroxypropyl)Cys]-Gly-Val-Ile-Ser-Pro - Leu-Lys was isolated. This corresponds to acrolein alkylation of a cysteine residue in the second tryptic peptide from the NH2 terminal of the alpha-subunit [Anton, D. L., & Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822]. The modified residue derived is from Cys-140 of the proenzyme [Tabor, C. W., & Tabor, H. (1987) J. Biol. Chem. 262, 16037-16040] and lies in the only sequence conserved between rat liver and E. coli S-adenosylmethionine decarboxylase [Pajunen et al. (1988) J. Biol. Chem. 263, 17040-17049]. We suggest that the alkylated Cys residue could have a role in the catalytic mechanism.

  19. Chemical models and their mechanistic implications for the transformation of 6-cyanouridine 5'-monophosphate catalyzed by orotidine 5'-monophosphate decarboxylase.

    PubMed

    Chien, Tun-Cheng; Jen, Cheng-Hung; Wu, Yuen-Jen; Liao, Chen-Chieh

    2008-01-01

    Orotidine 5'-monophosphate decarboxylase (ODCase) catalyzes an unprecedented transformation of 6- cyanouridine 5'-monophosphate (6-CN-UMP) into barbiturate nucleoside 5'-monophosphate (6-hydroxyuridine 5'-monophosphate, BMP). The reactions of 6- cyano-1,3-dimethyluracil toward various nucleophilic conditions have been studied as chemical models in order to understand the possible mechanism for the ODCase-catalyzed transformation of 6-CN-UMP.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aripirala, Srinivas; Gonzalez-Pacanowska, Dolores; Oldfield, Eric

    Structural insights into L. major farnesyl diphosphate synthase, a key enzyme in the mevalonate pathway, are described. Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the biosynthesis of sterols (cholesterol in humans and ergosterol in yeasts, fungi and trypanosomatid parasites) as well as in protein prenylation. It is inhibited by bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. The development of bisphosphonates as antiparasitic compounds targeting ergosterol biosynthesis has become an important route for therapeutic intervention. Here, the X-ray crystallographic structures of complexes of FPPS from Leishmania major (the causative agent of cutaneousmore » leishmaniasis) with three bisphosphonates determined at resolutions of 1.8, 1.9 and 2.3 Å are reported. Two of the inhibitors, 1-(2-hydroxy-2,2-diphosphonoethyl)-3-phenylpyridinium (300B) and 3-butyl-1-(2,2-diphosphonoethyl)pyridinium (476A), co-crystallize with the homoallylic substrate isopentenyl diphosphate (IPP) and three Ca{sup 2+} ions. A third inhibitor, 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium (46I), was found to bind two Mg{sup 2+} ions but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically driven. Comparison of the structures of L. major FPPS (LmFPPS) and human FPPS provides new information for the design of bisphosphonates that will be more specific for inhibition of LmFPPS. The asymmetric structure of the LmFPPS–46I homodimer indicates that binding of the allylic substrate to both monomers of the dimer results in an asymmetric dimer with one open and one closed homoallylic site. It is proposed that IPP first binds to the open site, which then closes, opening the site on the other monomer, which closes after binding the second IPP, leading to the symmetric fully occupied FPPS dimer observed in other structures.« less

  1. Downbeating nystagmus and muscle spasms in a patient with glutamic-acid decarboxylase antibodies.

    PubMed

    Ances, Beau M; Dalmau, Josep O; Tsai, Jean; Hasbani, M Josh; Galetta, Steven L

    2005-07-01

    To report the ophthalmic findings and response to treatment in a patient with glutamic-acid decarboxylase antibodies. Case report. A 55-year-old woman developed progressive, painful, low back muscle spasms, vertical diplopia, downbeating nystagmus, and asymmetric appendicular ataxia. Downbeating nystagmus was present in primary gaze with an alternating skew deviation in lateral gaze. Serum and cerebrospinal fluid GAD antibodies were detected. Treatment with diazepam led to resolution of spasticity, whereas repeated courses of intravenous immunoglobulin improved cerebellar function, including appendicular ataxia and downbeating nystagmus. Patients with GAD antibodies may have elements of both Stiff-person syndrome (muscle rigidity and spasms) and prominent cerebellar dysfunction. Treatment with diazepam rapidly improved Stiff-person symptoms, whereas IVIg was partially effective at the early stage of cerebellar dysfunction.

  2. Identification and characterization of L-lysine decarboxylase from Huperzia serrata and its role in the metabolic pathway of lycopodium alkaloid.

    PubMed

    Xu, Baofu; Lei, Lei; Zhu, Xiaocen; Zhou, Yiqing; Xiao, Youli

    2017-04-01

    Lysine decarboxylation is the first biosynthetic step of Huperzine A (HupA). Six cDNAs encoding lysine decarboxylases (LDCs) were cloned from Huperzia serrata by degenerate PCR and rapid amplification of cDNA ends (RACE). One HsLDC isoform was functionally characterized as lysine decarboxylase. The HsLDC exhibited greatest catalytic efficiency (k cat /K m , 2.11 s -1  mM -1 ) toward L-lysine in vitro among all reported plant-LDCs. Moreover, transient expression of the HsLDC in tobacco leaves specifically increased cadaverine content from zero to 0.75 mg per gram of dry mass. Additionally, a convenient and reliable method used to detect the two catalytic products was developed. With the novel method, the enzymatic products of HsLDC and HsCAO, namely cadaverine and 5-aminopentanal, respectively, were detected simultaneously both in assay with purified enzymes and in transgenic tobacco leaves. This work not only provides direct evidence of the first two-step in biosynthetic pathway of HupA in Huperzia serrata and paves the way for further elucidation of the pathway, but also enables engineering heterologous production of HupA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses

    PubMed Central

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  4. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    PubMed

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-03-29

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage.

  5. Haplotype analysis indicates an association between the DOPA decarboxylase (DDC) gene and nicotine dependence.

    PubMed

    Ma, Jennie Z; Beuten, Joke; Payne, Thomas J; Dupont, Randolph T; Elston, Robert C; Li, Ming D

    2005-06-15

    DOPA decarboxylase (DDC; also known as L-amino acid decarboxylase; AADC) is involved in the synthesis of dopamine, norepinephrine and serotonin. Because the mesolimbic dopaminergic system is implicated in the reinforcing effects of many drugs, including nicotine, the DDC gene is considered a plausible candidate for involvement in the development of vulnerability to nicotine dependence (ND). Further, this gene is located within the 7p11 region that showed a 'suggestive linkage' to ND in our previous genome-wide scan in the Framingham Heart Study population. In the present study, we tested eight single nucleotide polymorphisms (SNPs) within DDC for association with ND, which was assessed by smoking quantity (SQ), the heaviness of smoking index (HSI) and the Fagerstrom test for ND (FTND) score, in a total of 2037 smokers and non-smokers from 602 nuclear families of African- or European-American (AA or EA, respectively) ancestry. Association analysis for individual SNPs using the PBAT-GEE program indicated that SNP rs921451 was significantly associated with two of the three adjusted ND measures in the EA sample (P=0.01-0.04). Haplotype-based association analysis revealed a protective T-G-T-G haplotype for rs921451-rs3735273-rs1451371-rs2060762 in the AA sample, which was significantly associated with all three adjusted ND measures after correction for multiple testing (min Z=-2.78, P=0.006 for HSI). In contrast, we found a high-risk T-G-T-G haplotype for a different SNP combination in the EA sample, rs921451-rs3735273-rs1451371-rs3757472, which showed a significant association after Bonferroni correction with the SQ and FTND score (max Z=2.73, P=0.005 for FTND). In summary, our findings provide the first evidence for the involvement of DDC in the susceptibility to ND and, further, reveal the racial specificity of its impact.

  6. Chemical models and their mechanistic implications for the transformation of 6-cyanouridine 5'-monophosphate catalyzed by orotidine 5'-monophosphate decarboxylase.

    PubMed

    Wu, Yuen-Jen; Liao, Chen-Chieh; Jen, Cheng-Hung; Shih, Yu-Chiao; Chien, Tun-Cheng

    2010-07-14

    The reactions of 6-cyano-1,3-dimethyluracil have been studied as chemical models to illustrate the mechanism for the transformation of 6-cyanouridine 5'-monophosphate (6-CN-UMP) to barbiturate ribonucleoside 5'-monophosphate (BMP) catalyzed by orotidine 5'-monophosphate decarboxylase (ODCase). The results suggest that the Asp residue in the ODCase active site plays the role of a general base in the transformation.

  7. Diethylglyoxal bis(guanylhydrazone): a novel highly potent inhibitor of S-adenosylmethionine decarboxylase with promising properties for potential chemotherapeutic use.

    PubMed

    Elo, H; Mutikainen, I; Alhonen-Hongisto, L; Laine, R; Jänne, J

    1988-07-01

    Diethylglyoxal bis(guanylhydrazone) (DEGBG), a novel analog of the antileukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) was synthesized. It was found to be the most powerful inhibitor of yeast S-adenosylmethionine decarboxylase (AdoMetDC) so far studied (Ki approx. 9 nM). This property, together with the finding that the compound is a weaker inhibitor of intestinal diamine oxidase than are MGBG and its glyoxal, ethylglyoxal and ethylmethylglyoxal analogs, makes the compound a promising candidate as a polyamine antimetabolite for chemotherapy studies. DEGBG was also found to potentiate the antiproliferative effect of the ornithine decarboxylase inhibitor alpha-difluoromethyl ornithine against mouse L1210 leukemia cells in vitro. DEGBG increased several-fold the intracellular putrescine concentration of cultured L1210 cells, just as MGBG and its ethylglyoxal analog are known to do. The results strongly suggest that DEGBG is worth further studies. Combined with previous studies, they also made possible the construction of some empirical rules concerning the structure-activity relationships of bis(guanylhydrazone) type inhibitors of AdoMetDC. The identity of DEGBG was confirmed by a single-crystal X-ray analysis and by 1H- and 13C-NMR spectroscopy. It consisted of the same isomer as MGBG and several of its analogs are known to consist of.

  8. Isoprene production by Escherichia coli through the exogenous mevalonate pathway with reduced formation of fermentation byproducts.

    PubMed

    Kim, Jung-Hun; Wang, Chonglong; Jang, Hui-Jung; Cha, Myeong-Seok; Park, Ju-Eon; Jo, Seon-Yeong; Choi, Eui-Sung; Kim, Seon-Won

    2016-12-23

    Isoprene, a volatile C5 hydrocarbon, is an important platform chemical used in the manufacturing of synthetic rubber for tires and various other applications, such as elastomers and adhesives. In this study, Escherichia coli MG1655 harboring Populus trichocarpa isoprene synthase (PtispS) and the exogenous mevalonate (MVA) pathway produced 80 mg/L isoprene. Codon optimization and optimal expression of the ispS gene via adjustment of the RBS strength and inducer concentration increased isoprene production to 199 and 337 mg/L, respectively. To augment expression of MVA pathway genes, the MVA pathway was cloned on a high-copy plasmid (pBR322 origin) with a strong promoter (P trc ), which resulted in an additional increase in isoprene production up to 956 mg/L. To reduce the formation of byproducts derived from acetyl-CoA (an initial substrate of the MVA pathway), nine relevant genes were deleted to generate the E. coli AceCo strain (E. coli MG1655 ΔackA-pta, poxB, ldhA, dld, adhE, pps, and atoDA). The AceCo strain harboring the ispS gene and MVA pathway showed enhanced isoprene production of 1832 mg/L in flask culture with reduced accumulation of byproducts. We achieved a 23-fold increase in isoprene production by codon optimization of PtispS, augmentation of the MVA pathway, and deletion of genes involved in byproduct formation.

  9. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to designmore » novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.« less

  10. Diagnostic accuracy of the anti-glutamic acid decarboxylase antibody in type 1 diabetes mellitus: Comparison between radioimmunoassay and enzyme-linked immunosorbent assay.

    PubMed

    Murata, Takashi; Tsuzaki, Kokoro; Nirengi, Shinsuke; Watanabe, Tomokazu; Mizutani, Yukako; Okada, Hayami; Tsukamoto, Masami; Odori, Shinji; Nakagawachi, Reiko; Kawaguchi, Yaeko; Yoshioka, Fumi; Yamada, Kazunori; Shimatsu, Akira; Kotani, Kazuhiko; Satoh-Asahara, Noriko; Sakane, Naoki

    2017-07-01

    The distributer of the anti-glutamic acid decarboxylase antibody assay kit using radioimmunoassay (RIA) recently announced its discontinuation, and proposed an alternative kit using enzyme-linked immunosorbent assay (ELISA). The aim of the present study was to investigate the diagnostic values of the anti-glutamic acid decarboxylase antibody by RIA and ELISA among type 1 diabetes mellitus patients and control participants. A total of 79 type 1 diabetes mellitus patients and 79 age-matched controls were enrolled and assessed using RIA and ELISA. Sensitivity, specificity, positive predictive values and negative predictive values were calculated for cut-off values (RIA = 1.5 U/mL and ELISA = 5.0 U/mL, respectively). Kappa coefficients were used to test for agreements between the RIA and ELISA methods regarding the diagnosis of type 1 diabetes mellitus. The sensitivity, specificity, positive predictive values, and negative predictive values for diagnosing type 1 diabetes mellitus were 57.0, 97.5, 95.7, and 69.4% by RIA, and 60.8, 100.0, 100.0 and 71.8% by ELISA, respectively. The diagnosis of type 1 diabetes mellitus using the RIA and ELISA methods showed substantial agreement with the kappa values of 0.74 for all participants, and of 0.64 for the acute type; however, there was moderate agreement with the kappa value of 0.56 for the slowly progressive type. The present study suggests that both anti-glutamic acid decarboxylase antibody by RIA and ELISA was useful for diagnosing type 1 diabetes mellitus. However, in the slowly progressive type, the degree of agreement of these two kits was poorer compared with those in all participants or in the acute type. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  11. Engineering the expression level of cytosolic nucleoside diphosphate kinase in transgenic Solanum tuberosum roots alters growth, respiration and carbon metabolism.

    PubMed

    Dorion, Sonia; Clendenning, Audrey; Rivoal, Jean

    2017-03-01

    Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphate from a donor nucleoside triphosphate to an acceptor nucleoside diphosphate. In this study we used a targeted metabolomic approach and measurement of physiological parameters to report the effects of the genetic manipulation of cytosolic NDPK (NDPK1) expression on physiology and carbon metabolism in potato (Solanum tuberosum) roots. Sense and antisense NDPK1 constructs were introduced in potato using Agrobacterium rhizogenes to generate a population of root clones displaying a 40-fold difference in NDPK activity. Root growth, O 2 uptake, flux of carbon between sucrose and CO 2 , levels of reactive oxygen species and some tricarboxylic acid cycle intermediates were positively correlated with levels of NDPK1 expression. In addition, NDPK1 levels positively affected UDP-glucose and cellulose contents. The activation state of ADP-glucose pyrophosphorylase, a key enzyme in starch synthesis, was higher in antisense roots than in roots overexpressing NDPK1. Further analyses demonstrated that ADP-glucose pyrophosphorylase was more oxidized, and therefore less active, in sense clones than antisense clones. Consequently, antisense NDPK1 roots accumulated more starch and the starch to cellulose ratio was negatively affected by the level of NDPK1. These data support the idea that modulation of NDPK1 affects the distribution of carbon between starch and cellulose biosynthetic pathways. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Induction of hepatic and renal ornithine decarboxylase by cobalt and other metal ions in rats.

    PubMed Central

    Yoshida, T; Numazawa, S; Kuroiwa, Y

    1986-01-01

    We previously showed that Cd2+ is able to induce hepatic and renal ornithine decarboxylase (ODC). In addition to Cd2+, the administration of Co2+ and other metal ions such as Se2+, Zn2+ and Cr2+ produced a significant increase of hepatic and/or renal ODC activity. Of the metal ions used in this study, Co2+ produced the greatest increase of ODC activity. The maximum increases in hepatic and renal ODC activity, to respectively 70 and 14 times the control values in male rats, were observed 6 h after the administration of Co2+. A similar response was seen in the liver, but not in the kidney, of female rats. Thereafter, ODC activity gradually returned to control values in the liver, but it was profoundly decreased to 7% of the control value at 24 h in the kidney. The pretreatment of animals with either actinomycin D or cycloheximide almost completely blocked the Co2+-mediated increase of ODC activity. Co2+ complexed with either cysteine or glutathione (GSH) failed to induce ODC. Depletion of hepatic GSH content by treatment of rats with diethyl maleate greatly enhanced the inducing effect of Co2+ on ODC. The inhibitors of ODC, 1,3-diaminopropane and alpha-difluoromethylornithine, were able to inhibit the induction of the enzyme, without affecting the induction of haem oxygenase by Co2+. Methylglyoxal bis(guanylhydrazone), an inhibitor of S-adenosylmethionine decarboxylase, significantly inhibited the Co2+-mediated induction of both ODC and haem oxygenase. It is suggested that the inducing effects of Co2+ on ODC and haem oxygenase are brought about in a similar manner. PMID:3754136

  13. Novel concept of enzyme selective nicotinamide adenine dinucleotide (NAD)-modified inhibitors based on enzyme taxonomy from the diphosphate conformation of NAD.

    PubMed

    Fujii, Mikio; Kitagawa, Yasuyuki; Iida, Shui; Kato, Keisuke; Ono, Machiko

    2015-11-15

    The dihedral angle θ of the diphosphate part of NAD(P) were investigated to distinguish the differences in the binding-conformation of NAD(P) to enzymes and to create an enzyme taxonomy. Furthermore, new inhibitors with fixed dihedral angles showed that enzymes could recognize the differences in the dihedral angle θ. We suggest the taxonomy and the dihedral angle θ are important values for chemists to consider when designing inhibitors and drugs that target enzymes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Redox Cycling, pH Dependence, and Ligand Effects of Mn(III) in Oxalate Decarboxylase from Bacillus subtilis.

    PubMed

    Twahir, Umar T; Ozarowski, Andrew; Angerhofer, Alexander

    2016-11-29

    This contribution describes electron paramagnetic resonance (EPR) experiments on Mn(III) in oxalate decarboxylase of Bacillus subtilis, an interesting enzyme that catalyzes the redox-neutral dissociation of oxalate into formate and carbon dioxide. Chemical redox cycling provides strong evidence that both Mn centers can be oxidized, although the N-terminal Mn(II) appears to have the lower reduction potential and is most likely the carrier of the +3 oxidation state under moderate oxidative conditions, in agreement with the general view that it represents the active site. Significantly, Mn(III) was observed in untreated OxDC in succinate and acetate buffers, while it could not be directly observed in citrate buffer. Quantitative analysis showed that up to 16% of the EPR-visible Mn is in the +3 oxidation state at low pH in the presence of succinate buffer. The fine structure and hyperfine structure parameters of Mn(III) are affected by small carboxylate ligands that can enter the active site and have been recorded for formate, acetate, and succinate. The results from a previous report [Zhu, W., et al. (2016) Biochemistry 55, 429-434] could therefore be reinterpreted as evidence of formate-bound Mn(III) after the enzyme is allowed to turn over oxalate. The pH dependence of the Mn(III) EPR signal compares very well with that of enzymatic activity, providing strong evidence that the catalytic reaction of oxalate decarboxylase is driven by Mn(III), which is generated in the presence of dioxygen.

  15. Synthesis, Rietveld refinements, Infrared and Raman spectroscopy studies of the sodium diphosphate NaCryFe1-yP2O7 (0 ≤ y ≤ 1)

    NASA Astrophysics Data System (ADS)

    Bih, H.; Saadoune, I.; Bih, L.; Mansori, M.; ToufiK, H.; Fuess, H.; Ehrenberg, H.

    2016-01-01

    In the present study we report on the synthesis and crystal structure studies of NaCryFe1-yP2O7 sodium diphosphate solid solution (0 ≤ y ≤ 1). The X-ray diffraction shows that these compounds are isostructural with NaFeP2O7 and NaCrP2O7 (space group P21/c (C2h5) Z = 4). The Rietveld refinements based on the XRD patterns show the existence of a continuous solid solution over the whole composition range (0 ≤ y ≤ 1). A continuous evolution of the monoclinic unit cell parameters was obtained. The transition metal ions (Cr3+ and/or Fe3+) connect the diphosphate anions forming a three-dimensional network with cages filled by Na+ cations. IR and Raman spectra have been interpreted using factor group analysis. A small shift of the band frequencies is observed when Fe is substituted by Cr. The POP bridge angles are determined from Lazarev's relation and agree well with those deduced from the crystal structure refinement.

  16. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    PubMed

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  17. Understanding the roles of glutamine synthetase, glutaminase, and glutamate decarboxylase autoantibodies in imbalanced excitatory/inhibitory neurotransmission as etiological mechanisms of autism.

    PubMed

    Hamed, Najat O; Al-Ayadhi, Laila; Osman, Mohamed A; Elkhawad, Abdalla O; Qasem, Hanan; Al-Marshoud, Majida; Merghani, Nada M; El-Ansary, Afaf

    2018-05-01

    Autism is a heterogeneous neurological disorder that is characterized by impairments in communication and social interactions, repetitive behaviors, and sensory abnormalities. The etiology of autism remains unclear. Animal, genetic, and post-mortem studies suggest that an imbalance exists in the neuronal excitation and inhibition system in autism. The aim of this study was to determine whether alterations of the measured parameters in children with autism are significantly associated with the risk of a sensory dysfunction. The glutamine synthetase (GS), kidney-type glutaminase (GLS1), and glutamic acid decarboxylase autoantibody levels were analyzed in 38 autistic children and 33 age- and sex-matched controls using enzyme-linked immunosorbent assays. The obtained data demonstrated significant alterations in glutamate and glutamine cycle enzymes, as represented by GS and GLS1, respectively. While the glutamic acid decarboxylase autoantibodies levels were remarkably increased, no significant difference was observed compared to the healthy control participants. The obtained data indicate that GS and GLS1 are promising indicators of a neuronal excitation and inhibition system imbalance and that combined measured parameters are good predictive biomarkers of autism. © 2018 The Authors. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  18. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid.

    PubMed

    Guimarães, Samuel L; Coitinho, Juliana B; Costa, Débora M A; Araújo, Simara S; Whitman, Christian P; Nagem, Ronaldo A P

    2016-05-10

    The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD.

  19. Novel cytidine-based orotidine-5'-monophosphate decarboxylase inhibitors with an unusual twist.

    PubMed

    Purohit, Meena K; Poduch, Ewa; Wei, Lianhu William; Crandall, Ian Edward; To, Terrence; Kain, Kevin C; Pai, Emil F; Kotra, Lakshmi P

    2012-11-26

    Orotidine-5'-monophosphate decarboxylase (ODCase) is an interesting enzyme with an unusual catalytic activity and a potential drug target in Plasmodium falciparum, which causes malaria. ODCase has been shown to exhibit unusual and interesting interactions with a variety of nucleotide ligands. Cytidine-5'-monophosphate (CMP) is a poor ligand of ODCase, and CMP binds to the active site of ODCase with an unusual orientation and conformation. We designed N3- and N4-modified CMP derivatives as novel ligands to ODCase. These novel CMP derivatives and their corresponding nucleosides were evaluated against Plasmodium falciparum ODCase and parasitic cultures, respectively. These derivatives exhibited improved inhibition of the enzyme catalytic activity, displayed interesting binding conformations and unusual molecular rearrangements of the ligands. These findings with the modified CMP nucleotides underscored the potential of transformation of poor ligands to ODCase into novel inhibitors of this drug target.

  20. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.

    PubMed Central

    Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J

    1993-01-01

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692

  1. Chemistry and biotechnology of carotenoids.

    PubMed

    Namitha, K K; Negi, P S

    2010-09-01

    Carotenoids are one of the most widespread groups of pigments in nature and more than 600 of these have been identified. Beside provitamin A activity, carotenoids are important as antioxidants and protective agents against various diseases. They are isoprenoids with a long polyene chain containing 3 to 15 conjugated double bonds, which determines their absorption spectrum. Cyclization at one or both ends occurs in hydrocarbon carotene, while xanthophylls are formed by the introduction of oxygen. In addition, modifications involving chain elongation, isomerization, or degradation are also found. The composition of carotenoids in food may vary depending upon production practices, post-harvest handling, processing, and storage. In higher plants they are synthesized in the plastid. Both mevalonate dependent and independent pathway for the formation of isopentenyl diphosphate are known. Isopentenyl diphosphate undergoes a series of addition and condensation reactions to form phytoene, which gets converted to lycopene. Cyclization of lycopene either leads to the formation of β-carotene and its derivative xanthophylls, β-cryptoxanthin, zeaxanthin, antheraxanthin, and violaxanthin or α-carotene and lutein. Even though most of the carotenoid biosynthetic genes have been cloned and identified, some aspects of carotenoid formation and manipulation in higher plants especially remain poorly understood. In order to enhance the carotenoid content of crop plants to a level that will be required for the prevention of diseases, there is a need for research in both the basic and the applied aspects.

  2. Laticifer-Specific cis-Prenyltransferase Silencing Affects the Rubber, Triterpene, and Inulin Content of Taraxacum brevicorniculatum12[C][W

    PubMed Central

    Post, Janina; van Deenen, Nicole; Fricke, Julia; Kowalski, Natalie; Wurbs, David; Schaller, Hubert; Eisenreich, Wolfgang; Huber, Claudia; Twyman, Richard M.; Prüfer, Dirk; Gronover, Christian Schulze

    2012-01-01

    Certain Taraxacum species, such as Taraxacum koksaghyz and Taraxacum brevicorniculatum, produce large amounts of high-quality natural rubber in their latex, the milky cytoplasm of specialized cells known as laticifers. This high-molecular mass biopolymer consists mainly of poly(cis-1,4-isoprene) and is deposited in rubber particles by particle-bound enzymes that carry out the stereospecific condensation of isopentenyl diphosphate units. The polymer configuration suggests that the chain-elongating enzyme (rubber transferase; EC 2.5.1.20) is a cis-prenyltransferase (CPT). Here, we present a comprehensive analysis of transgenic T. brevicorniculatum plants in which the expression of three recently isolated CPTs known to be associated with rubber particles (TbCPT1 to -3) was heavily depleted by laticifer-specific RNA interference (RNAi). Analysis of the CPT-RNAi plants by nuclear magnetic resonance, size-exclusion chromatography, and gas chromatography-mass spectrometry indicated a significant reduction in rubber biosynthesis and a corresponding 50% increase in the levels of triterpenes and the main storage carbohydrate, inulin. Transmission electron microscopy revealed that the laticifers in CPT-RNAi plants contained fewer and smaller rubber particles than wild-type laticifers. We also observed lower activity of hydroxymethylglutaryl-coenzyme A reductase, the key enzyme in the mevalonate pathway, reflecting homeostatic control of the isopentenyl diphosphate pool. To our knowledge, this is the first in planta demonstration of latex-specific CPT activity in rubber biosynthesis. PMID:22238421

  3. L-Dopa decarboxylase expression profile in human cancer cells.

    PubMed

    Chalatsa, Ioanna; Nikolouzou, Eleftheria; Fragoulis, Emmanuel G; Vassilacopoulou, Dido

    2011-02-01

    L-Dopa decarboxylase (DDC) catalyses the decarboxylation of L-Dopa. It has been shown that the DDC gene undergoes alternative splicing within its 5'-untranslated region (UTR), in a tissue-specific manner, generating identical protein products. The employment of two alternative 5'UTRs is thought to be responsible for tissue-specific expression of the human DDC mRNA. In this study, we focused on the investigation of the nature of the mRNA expression in human cell lines of neural and non-neural origin. Our results show the expression of a neural-type DDC mRNA splice variant, lacking exon 3 in all cell lines studied. Co-expression of the full length non-neural DDC mRNA and the neural-type DDC splice variant lacking exon 3 was detected in all cell lines. The alternative DDC protein isoform, Alt-DDC, was detected in SH-SY5Y and HeLa cells. Our findings suggest that the human DDC gene undergoes complex processing, leading to the formation of multiple mRNA isoforms. The study of the significance of this phenomenon of multiple DDC mRNA isoforms could provide us with new information leading to the elucidation of the complex biological pathways that the human enzyme is involved in.

  4. Molecular adaptability of nucleoside diphosphate kinase b from trypanosomatid parasites: stability, oligomerization and structural determinants of nucleotide binding.

    PubMed

    Souza, Tatiana A C B; Trindade, Daniel M; Tonoli, Celisa C C; Santos, Camila R; Ward, Richard J; Arni, Raghuvir K; Oliveira, Arthur H C; Murakami, Mário T

    2011-07-01

    Nucleoside diphosphate kinases play a crucial role in the purine-salvage pathway of trypanosomatid protozoa and have been found in the secretome of Leishmania sp., suggesting a function related to host-cell integrity for the benefit of the parasite. Due to their importance for housekeeping functions in the parasite and by prolonging the life of host cells in infection, they become an attractive target for drug discovery and design. In this work, we describe the first structural characterization of nucleoside diphosphate kinases b from trypanosomatid parasites (tNDKbs) providing insights into their oligomerization, stability and structural determinants for nucleotide binding. Crystallographic studies of LmNDKb when complexed with phosphate, AMP and ADP showed that the crucial hydrogen-bonding residues involved in the nucleotide interaction are fully conserved in tNDKbs. Depending on the nature of the ligand, the nucleotide-binding pocket undergoes conformational changes, which leads to different cavity volumes. SAXS experiments showed that tNDKbs, like other eukaryotic NDKs, form a hexamer in solution and their oligomeric state does not rely on the presence of nucleotides or mimetics. Fluorescence-based thermal-shift assays demonstrated slightly higher stability of tNDKbs compared to human NDKb (HsNDKb), which is in agreement with the fact that tNDKbs are secreted and subjected to variations of temperature in the host cells during infection and disease development. Moreover, tNDKbs were stabilized upon nucleotide binding, whereas HsNDKb was not influenced. Contrasts on the surface electrostatic potential around the nucleotide-binding pocket might be a determinant for nucleotide affinity and protein stability differentiation. All these together demonstrated the molecular adaptation of parasite NDKbs in order to exert their biological functions intra-parasite and when secreted by regulating ATP levels of host cells.

  5. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA

    PubMed Central

    Kandiah, Eaazhisai; Carriel, Diego; Perard, Julien; Malet, Hélène; Bacia, Maria; Liu, Kaiyin; Chan, Sze W. S.; Houry, Walid A.; Ollagnier de Choudens, Sandrine; Elsen, Sylvie; Gutsche, Irina

    2016-01-01

    The inducible lysine decarboxylase LdcI is an important enterobacterial acid stress response enzyme whereas LdcC is its close paralogue thought to play mainly a metabolic role. A unique macromolecular cage formed by two decamers of the Escherichia coli LdcI and five hexamers of the AAA+ ATPase RavA was shown to counteract acid stress under starvation. Previously, we proposed a pseudoatomic model of the LdcI-RavA cage based on its cryo-electron microscopy map and crystal structures of an inactive LdcI decamer and a RavA monomer. We now present cryo-electron microscopy 3D reconstructions of the E. coli LdcI and LdcC, and an improved map of the LdcI bound to the LARA domain of RavA, at pH optimal for their enzymatic activity. Comparison with each other and with available structures uncovers differences between LdcI and LdcC explaining why only the acid stress response enzyme is capable of binding RavA. We identify interdomain movements associated with the pH-dependent enzyme activation and with the RavA binding. Multiple sequence alignment coupled to a phylogenetic analysis reveals that certain enterobacteria exert evolutionary pressure on the lysine decarboxylase towards the cage-like assembly with RavA, implying that this complex may have an important function under particular stress conditions. PMID:27080013

  6. Surface acidic amino acid of Pseudomonas/Halomonas chimeric nucleoside diphosphate kinase leads effective recovery from heat-denaturation.

    PubMed

    Tokunaga, Hiroko; Arakawa, Tsutomu; Tokunaga, Masao

    2013-07-01

    One of the hallmarks of halophilic properties is reversibility of thermal unfolding. A nucleoside diphosphate kinase (NDK) from a moderate halophile Halomonas sp. 593 (HaNDK) follows this behavior. His-tagged chimeric NDK (HisPaHaNDK) consisting of an N-terminal half of a non-halophilic Pseuodomonas aeruginosa NDK (PaNDK) and a Cterminal half of HaNDK loses this reversible property, indicating a critical role of the N-terminal portion of PaNDK in determining the reversibility of the chimeric protein. Various mutations were introduced at Arg45 and Lys61, based on the model NDK structure. It appears that having Glu at position 45 is critical in conferring the thermal reversibility to HisPa- HaNDK chimeric protein.

  7. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy.

    PubMed

    Lv, Xiaomei; Xie, Wenping; Lu, Wenqiang; Guo, Fei; Gu, Jiali; Yu, Hongwei; Ye, Lidan

    2014-09-30

    To explore the capacity of isoprene production in Saccharomyces cerevisiae, a rational push-pull-restrain strategy was proposed to engineer the mevalonic acid (MVA) and acetyl-CoA pathways. The strategy can be decomposed into the up-regulation of precursor supply in the acetyl-CoA module and the MVA pathway (push-strategy), increase of the isoprene branch flux (pull-strategy), and down-regulation of the competing pathway (restrain-strategy). Furthermore, to reduce the production cost arising from galactose addition and meanwhile maintain the high expression of Gal promoters, the galactose regulatory network was modulated by Gal80p deletion. Finally, the engineered strain YXM10-ispS-ispS could accumulate up to 37 mg/L isoprene (about 782-fold increase compared to the parental strain) under aerobic conditions with glycerol-sucrose as carbon source. In this way, a new potential platform for isoprene production was established via metabolic engineering of the yeast native pathways. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif.

    PubMed

    Hsiao, Yu-Yun; Jeng, Mei-Fen; Tsai, Wen-Chieh; Chuang, Yu-Chen; Li, Chia-Ying; Wu, Tian-Shung; Kuoh, Chang-Sheng; Chen, Wen-Huei; Chen, Hong-Hwa

    2008-09-01

    Geranyl diphosphate (GDP) is the precursor of monoterpenes, which are the major floral scent compounds in Phalaenopsis bellina. The cDNA of P. bellina GDP synthase (PbGDPS) was cloned, and its sequence corresponds to the second Asp-rich motif (SARM), but not to any aspartate-rich (Asp-rich) motif. The recombinant PbGDPS enzyme exhibits dual prenyltransferase activity, producing both GDP and farnesyl diphosphate (FDP), and a yeast two-hybrid assay and gel filtration revealed that PbGDPS was able to form a homodimer. Spatial and temporal expression analyses showed that the expression of PbGDPS was flower specific, and that maximal PbGDPS expression was concomitant with maximal emission of monoterpenes on day 5 post-anthesis. Homology modelling of PbGDPS indicated that the Glu-rich motif might provide a binding site for Mg(2+) and catalyze the formation of prenyl products in a similar way to SARM. Replacement of the key Glu residues with alanine totally abolished enzyme activity, whereas their mutation to Asp resulted in a mutant with two-thirds of the activity of the wild-type protein. Phylogenetic analysis indicated that plant GDPS proteins formed four clades: members of both GDPS-a and GDPS-b clades contain Asp-rich motifs, and function as homodimers. In contrast, proteins in the GDPS-c and GDPS-d clades do not contain Asp-rich motifs, but although members of the GDPS-c clade function as heterodimers, PbGDPS, which is more closely related to the GDPS-c clade proteins than to GDPS-a and GDPS-b proteins, and is currently the sole member of the GDPS-d clade, functions as a homodimer.

  9. Synergistic Substrate Inhibition of ent-Copalyl Diphosphate Synthase: A Potential Feed-Forward Inhibition Mechanism Limiting Gibberellin Metabolism1[OA

    PubMed Central

    Prisic, Sladjana; Peters, Reuben J.

    2007-01-01

    Gibberellins (GAs) or gibberellic acids are ubiquitous diterpenoid phytohormones required for many aspects of plant growth and development, including repression of photosynthetic pigment production (i.e. deetiolation) in the absence of light. The committed step in GA biosynthesis is catalyzed in plastids by ent-copalyl diphosphate synthase (CPS), whose substrate, (E,E,E,)-geranylgeranyl diphosphate (GGPP), is also a direct precursor of carotenoids and the phytol side chain of chlorophyll. Accordingly, during deetiolation, GA production is repressed, whereas flux toward these photosynthetic pigments through their common GGPP precursor is dramatically increased. How this is accomplished has been unclear because no mechanism for regulation of CPS activity has been reported. We present here kinetic analysis of recombinant pseudomature CPS from Arabidopsis (Arabidopsis thaliana; rAtCPS) demonstrating that Mg2+ and GGPP exert synergistic substrate inhibition effects on CPS activity. These results suggest that GA metabolism may be limited by feed-forward inhibition of CPS; in particular, the effect of Mg2+ because light induces increases in plastid Mg2+ levels over a similar range as that observed here to affect rAtCPS activity. Notably, this effect is most pronounced in the GA-specific AtCPS because the corresponding activity of the resin acid biosynthetic enzyme abietadiene synthase is 100-fold less sensitive to [Mg2+]. Furthermore, Mg2+ allosterically activates the plant porphobilinogen synthase involved in chlorophyll production. Hence, Mg2+ may have a broad role in regulating plastidial metabolic flux during deetiolation. Finally, the observed synergistic substrate/feed-forward inhibition of CPS also seems to provide a novel example of direct regulation of enzymatic activity in hormone biosynthesis. PMID:17384166

  10. Biosynthesis of the Common Polysaccharide Antigen of Pseudomonas aeruginosa PAO1: Characterization and Role of GDP-D-Rhamnose:GlcNAc/GalNAc-Diphosphate-Lipid α1,3-D-Rhamnosyltransferase WbpZ.

    PubMed

    Wang, Shuo; Hao, Youai; Lam, Joseph S; Vlahakis, Jason Z; Szarek, Walter A; Vinnikova, Anna; Veselovsky, Vladimir V; Brockhausen, Inka

    2015-06-15

    The opportunistic pathogen Pseudomonas aeruginosa produces two major cell surface lipopolysaccharides, characterized by distinct O antigens, called common polysaccharide antigen (CPA) and O-specific antigen (OSA). CPA contains a polymer of D-rhamnose (D-Rha) in α1-2 and α1-3 linkages. Three putative glycosyltransferase genes, wbpX, wbpY, and wbpZ, are part of the CPA biosynthesis cluster. To characterize the enzymatic function of the wbpZ gene product, we chemically synthesized the donor substrate GDP-D-Rha and enzymatically synthesized GDP-D-[(3)H]Rha. Using nuclear magnetic resonance (NMR) spectroscopy, we showed that WbpZ transferred one D-Rha residue from GDP-D-Rha in α1-3 linkage to both GlcNAc- and GalNAc-diphosphate-lipid acceptor substrates. WbpZ is also capable of transferring D-mannose (D-Man) to these acceptors. Therefore, WbpZ has a relaxed specificity with respect to both acceptor and donor substrates. The diphosphate group of the acceptor, however, is required for activity. WbpZ does not require divalent metal ion for activity and exhibits an unusually high pH optimum of 9. WbpZ from PAO1 is therefore a GDP-D-Rha:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-rhamnosyltransferase that has significant activity of GDP-D-Man:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-mannosyltransferase. We used site-directed mutagenesis to replace the Asp residues of the two DXD motifs with Ala. Neither of the mutant constructs of wbpZ (D172A or D254A) could be used to rescue CPA biosynthesis in the ΔwbpZ knockout mutant in a complementation assay. This suggested that D172 and D254 are essential for WbpZ function. This work is the first detailed characterization study of a D-Rha-transferase and a critical step in the development of CPA synthesis inhibitors. This is the first characterization of a D-rhamnosyltransferase and shows that it is essential in Pseudomonas aeruginosa for the synthesis of the common polysaccharide antigen. Copyright © 2015, American Society for

  11. Changes in isoprenoid lipid synthesis by gemfibrozil and clofibric acid in rat hepatocytes.

    PubMed

    Hashimoto, F; Taira, S; Hayashi, H

    2000-05-15

    We studied whether gemfibrozil and clofibric acid alter isoprenoid lipid synthesis in rat hepatocytes. After incubation of the cells with the agent for 74 hr, [(14)C]acetate or [(3)H]mevalonate was added, and the cells were further incubated for 4 hr. Gemfibrozil and clofibric acid increased ubiquinone synthesis from [(14)C]acetate and [(3)H]mevalonate. The effect of gemfibrozil was greater than that of clofibric acid. Also, gemfibrozil decreased dolichol synthesis from [(14)C]acetate and [(3)H]mevalonate. However, clofibric acid increased dolichol synthesis from [(3)H]mevalonate. Gemfibrozil decreased cholesterol synthesis from [(14)C]acetate and [(3)H]mevalonate. Clofibric acid decreased cholesterol synthesis from [(14)C]acetate, but did not affect synthesis from [(3)H]mevalonate. These results suggest that both agents, at different rates, activate the synthetic pathway of ubiquinone, at least from mevalonate. Gemfibrozil may inhibit the synthetic pathway of dolichol, at least from mevalonate. Contrary to gemfibrozil, clofibric acid may activate the synthetic pathway of dolichol from mevalonate. Gemfibrozil may inhibit the synthetic pathway of cholesterol from mevalonate in addition to the pathway from acetate to mevalonate inhibited by both agents.

  12. [Research of expression of L-DOPA decarboxylase in laryngeal cancer].

    PubMed

    Lai, Shisheng; Wan, Zhili

    2014-12-01

    This study aimed to investigate the expression levels of L-DOPA decarboxylase (DDC) mRNA and protein in laryngeal cancer, and to determine the clinical significance of DDC in diagnosis and prognosis of laryngeal cancer. Total RNA was isolated from 106 tissue samples surgically removed from 53 laryngeal cancer patients. A quantitative real-time polymerase chain reaction (RT-PCR) methodology based on SYBR Green I fluorescent dye was developed for the quantification of mRNA levels. In addition, Western Blot analysis was performed to detect the expression level of DDC protein. DDC mRNA expression in both primary (P= 0. 000) and recurrent (P=0. 033) laryngeal cancer samples downregulated significantly compared with their nonmalignant counterparts. Moreover, expression of DDC mRNA was not associated with age and histologic grade, but the significantly decreased mRNA were correlated with early TMN stage (P=0. 021). Additionally, DDC protein was detected in both cancerous and noncancerous tissues. Expression levels of DDC may play a vital role in the progression of laryngeal cancer, which can be served as a promising biomarker for the future clinical management of laryngeal cancer patients.

  13. Effects of methylglyoxal bis(guanylhydrazone) and two phenylated analogues on S-adenosylmethionine decarboxylase activity from Eimeria stiedai (Apicomplexa).

    PubMed

    San-Martín Núñez, B; Alunda, J M; Balaña-Fouce, R; Ordóñez Escudero, D

    1987-01-01

    1. Activity of S-adenosylmethionine decarboxylase, one of the rate-limiting enzymes of polyamine biosynthesis, was determined in oocysts of Eimeria stiedai, a coccidian parasite of the rabbit. 2. Several properties of the enzyme were compared to the mammalian enzyme. It showed considerably less substrate affinity than the analog enzyme from the rabbit. 3. The E. stiedai enzyme showed a low sensitivity to methylglyoxal bis(guanylhydrazone), a frequently used inhibitor of the enzyme in mammals, and two phenylated derivatives. 4. Results with the inhibitors are discussed in view of their potential use in chemotherapy.

  14. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance

    PubMed Central

    Andersen, Kasper R.; Kilstrup, Mogens; Martinussen, Jan; Switzer, Robert L.; Willemoës, Martin

    2016-01-01

    SUMMARY Phosphoribosyl diphosphate (PRPP) is an important intermediate in cellular metabolism. PRPP is synthesized by PRPP synthase, as follows: ribose 5-phosphate + ATP → PRPP + AMP. PRPP is ubiquitously found in living organisms and is used in substitution reactions with the formation of glycosidic bonds. PRPP is utilized in the biosynthesis of purine and pyrimidine nucleotides, the amino acids histidine and tryptophan, the cofactors NAD and tetrahydromethanopterin, arabinosyl monophosphodecaprenol, and certain aminoglycoside antibiotics. The participation of PRPP in each of these metabolic pathways is reviewed. Central to the metabolism of PRPP is PRPP synthase, which has been studied from all kingdoms of life by classical mechanistic procedures. The results of these analyses are unified with recent progress in molecular enzymology and the elucidation of the three-dimensional structures of PRPP synthases from eubacteria, archaea, and humans. The structures and mechanisms of catalysis of the five diphosphoryltransferases are compared, as are those of selected enzymes of diphosphoryl transfer, phosphoryl transfer, and nucleotidyl transfer reactions. PRPP is used as a substrate by a large number phosphoribosyltransferases. The protein structures and reaction mechanisms of these phosphoribosyltransferases vary and demonstrate the versatility of PRPP as an intermediate in cellular physiology. PRPP synthases appear to have originated from a phosphoribosyltransferase during evolution, as demonstrated by phylogenetic analysis. PRPP, furthermore, is an effector molecule of purine and pyrimidine nucleotide biosynthesis, either by binding to PurR or PyrR regulatory proteins or as an allosteric activator of carbamoylphosphate synthetase. Genetic analyses have disclosed a number of mutants altered in the PRPP synthase-specifying genes in humans as well as bacterial species. PMID:28031352

  15. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate.

    PubMed

    Moss, Angela K; Hamarneh, Sulaiman R; Mohamed, Mussa M Rafat; Ramasamy, Sundaram; Yammine, Halim; Patel, Palak; Kaliannan, Kanakaraju; Alam, Sayeda N; Muhammad, Nur; Moaven, Omeed; Teshager, Abeba; Malo, Nondita S; Narisawa, Sonoko; Millán, José Luis; Warren, H Shaw; Hohmann, Elizabeth; Malo, Madhu S; Hodin, Richard A

    2013-03-15

    Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP.

  16. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate

    PubMed Central

    Hamarneh, Sulaiman R.; Mohamed, Mussa M. Rafat; Ramasamy, Sundaram; Yammine, Halim; Patel, Palak; Kaliannan, Kanakaraju; Alam, Sayeda N.; Muhammad, Nur; Moaven, Omeed; Teshager, Abeba; Malo, Nondita S.; Narisawa, Sonoko; Millán, José Luis; Warren, H. Shaw; Hohmann, Elizabeth; Malo, Madhu S.; Hodin, Richard A.

    2013-01-01

    Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP. PMID:23306083

  17. Enchancement of Gamma-Aminobutyric Acid Production by Co-Localization of Neurospora crassa OR74A Glutamate Decarboxylase with Escherichia coli GABA Transporter Via Synthetic Scaffold Complex.

    PubMed

    Somasundaram, Sivachandiran; Maruthamuthu, Murali Kannan; Ganesh, Irisappan; Eom, Gyeong Tae; Hong, Soon Ho

    2017-09-28

    Gamma-aminobutyric acid is a precursor of nylon-4, which is a promising heat-resistant biopolymer. GABA can be produced from the decarboxylation of glutamate by glutamate decarboxylase. In this study, a synthetic scaffold complex strategy was employed involving the Neurospora crassa glutamate decarboxylase (GadB) and Escherichia coli GABA antiporter (GadC) to improve GABA production. To construct the complex, the SH3 domain was attached to the N. crassa GadB, and the SH3 ligand was attached to the N-terminus, middle, and C-terminus of E. coli GadC. In the C-terminus model, 5.8 g/l of GABA concentration was obtained from 10 g/l glutamate. When a competing pathway engineered strain was used, the final GABA concentration was further increased to 5.94 g/l, which corresponds to 97.5% of GABA yield. With the introduction of the scaffold complex, the GABA productivity increased by 2.9 folds during the initial culture period.

  18. Vanadium-Binding Ability of Nucleoside Diphosphate Kinase from the Vanadium-Rich Fan Worm, Pseudopotamilla occelata.

    PubMed

    Yamaguchi, Nobuo; Yoshinaga, Masafumi; Kamino, Kei; Ueki, Tatsuya

    2016-06-01

    Polychaete fan worms and ascidians accumulate high levels of vanadium ions. Several vanadiumbinding proteins, known as vanabins, have been found in ascidians. However, no vanadium-binding factors have been isolated from the fan worm. In the present study, we sought to identify vanadiumbinding proteins in the branchial crown of the fan worm using immobilized metal ion affinity chromatography. A nucleoside diphosphate kinase (NDK) homolog was isolated and determined to be a vanadium-binding protein. Kinase activity of the NDK homologue, PoNDK, was suppressed by the addition of V(IV), but was unaffected by V(V). The effect of V(IV) on PoNDK precedes its activation by Mg(II). This is the first report to describe the relationship between NDK and V(IV). PoNDK is located in the epidermis of the branchial crown, and its distribution is very similar to that of vanadium. These results suggest that PoNDK is associated with vanadium accumulation and metabolism in P. occelata.

  19. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2010-07-01

    An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.

  20. Optimization of thermophilic trans-isoprenyl diphosphate synthase expression in Escherichia coli by response surface methodology.

    PubMed

    Piccolomini, Angelica A; Fiabon, Alex; Borrotti, Matteo; De Lucrezia, Davide

    2017-01-01

    We optimized the heterologous expression of trans-isoprenyl diphosphate synthase (IDS), the key enzyme involved in the biosynthesis of trans-polyisoprene. trans-Polyisoprene is a particularly valuable compound due to its superior stiffness, excellent insulation, and low thermal expansion coefficient. Currently, trans-polyisoprene is mainly produced through chemical synthesis and no biotechnological processes have been established so far for its large-scale production. In this work, we employed D-optimal design and response surface methodology to optimize the expression of thermophilic enzymes IDS from Thermococcus kodakaraensis. The design of experiment took into account of six factors (preinduction cell density, inducer concentration, postinduction temperature, salt concentration, alternative carbon source, and protein inhibitor) and seven culture media (LB, NZCYM, TB, M9, Ec, Ac, and EDAVIS) at five different pH points. By screening only 109 experimental points, we were able to improve IDS production by 48% in close-batch fermentation. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  1. Intensification of ion exchange desorption of thiamine diphosphate by low-powered ultrasound.

    PubMed

    Pinchukova, Natalia A; Voloshko, Alexander Y; Merko, Maria A; Bondarenko, Yana A; Chebanov, Valentin A

    2018-03-01

    The process of ultrasound-assisted ion-exchange desorption of cocarboxylase (thiamine diphosphate (TDP)) from a strong acidic cation resin was studied. Kinetics studies revealed that ultrasound accelerates TDP desorption by 3 times. The optimal desorption parameters, viz. US power input, sonication time, eluent/resin ratio and the eluent (ammonium acetate buffer) concentration were established which were 15mW/cm 3 , 20min, 1:1 and 1M, respectively. The resin stability studies showed that the optimal ultrasonic power was less by the order than the resin degradation threshold which ensures durable and efficient resin exploitation during production. The resin sorption capacity remained unchanged even after 20 cycles of TDP sorption, ultrasonic desorption and resin regeneration. The recovery ratio of TDP was shown to increase non-linearly with decreasing the resin saturation factor, which can be attributed to diffusion limitations occurring during desorption. The optimal resin loading corresponding to more than 90 per cent of TDP recovery was found to be at the level of 10 per cent of the maximal sorption capacity. The study revealed 4-5-fold increase in concentrations of the recovered solutions, which together with process times shortening should result in considerable energy saving in downstream operations on production scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Multitiered and Cooperative Surveillance of Mitochondrial Phosphatidylserine Decarboxylase 1.

    PubMed

    Ogunbona, Oluwaseun B; Onguka, Ouma; Calzada, Elizabeth; Claypool, Steven M

    2017-09-01

    Phosphatidylserine decarboxylase 1 (Psd1p), an ancient enzyme that converts phosphatidylserine to phosphatidylethanolamine in the inner mitochondrial membrane, must undergo an autocatalytic self-processing event to gain activity. Autocatalysis severs the protein into a large membrane-anchored β subunit that noncovalently associates with the small α subunit on the intermembrane space side of the inner membrane. Here, we determined that a temperature sensitive ( ts ) PSD1 allele is autocatalytically impaired and that its fidelity is closely monitored throughout its life cycle by multiple mitochondrial quality control proteases. Interestingly, the proteases involved in resolving misfolded Psd1 ts vary depending on its autocatalytic status. Specifically, the degradation of a Psd1 ts precursor unable to undergo autocatalysis requires the unprecedented cooperative and sequential actions of two inner membrane proteases, Oma1p and Yme1p. In contrast, upon heat exposure postautocatalysis, Psd1 ts β subunits accumulate in protein aggregates that are resolved by Yme1p acting alone, while the released α subunit is degraded in parallel by an unidentified protease. Importantly, the stability of endogenous Psd1p is also influenced by Yme1p. We conclude that Psd1p, the key enzyme required for the mitochondrial pathway of phosphatidylethanolamine production, is closely monitored at several levels and by multiple mitochondrial quality control mechanisms present in the intermembrane space. Copyright © 2017 American Society for Microbiology.

  3. The first step in the biosynthesis of cocaine in Erythroxylum coca: the characterization of arginine and ornithine decarboxylases.

    PubMed

    Docimo, Teresa; Reichelt, Michael; Schneider, Bernd; Kai, Marco; Kunert, Grit; Gershenzon, Jonathan; D'Auria, John C

    2012-04-01

    Despite the long history of cocaine use among humans and its social and economic significance today, little information is available about the biochemical and molecular aspects of cocaine biosynthesis in coca (Erythroxylum coca) in comparison to what is known about the formation of other pharmacologically-important tropane alkaloids in species of the Solanaceae. In this work, we investigated the site of cocaine biosynthesis in E. coca and the nature of the first step. The two principal tropane alkaloids of E. coca, cocaine and cinnamoyl cocaine, were present in highest concentrations in buds and rolled leaves. These are also the organs in which the rate of alkaloid biosynthesis was the highest based on the incorporation of ¹³CO₂. In contrast, tropane alkaloids in the Solanaceae are biosynthesized in the roots and translocated to the leaves. A collection of EST sequences from a cDNA library made from young E. coca leaves was employed to search for genes encoding the first step in tropane alkaloid biosynthesis. Full-length cDNA clones were identified encoding two candidate enzymes, ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), and the enzymatic activities of the corresponding proteins confirmed by heterologous expression in E. coli and complementation of a yeast mutant. The transcript levels of both ODC and ADC genes were highest in buds and rolled leaves and lower in other organs. The levels of both ornithine and arginine themselves showed a similar pattern, so it was not possible to assign a preferential role in cocaine biosynthesis to one of these proteins.

  4. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease.

    PubMed

    Yeganeh, Behzad; Wiechec, Emilia; Ande, Sudharsana R; Sharma, Pawan; Moghadam, Adel Rezaei; Post, Martin; Freed, Darren H; Hashemi, Mohammad; Shojaei, Shahla; Zeki, Amir A; Ghavami, Saeid

    2014-07-01

    The cholesterol biosynthesis pathway, also known as the mevalonate (MVA) pathway, is an essential cellular pathway that is involved in diverse cell functions. The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) is the rate-limiting step in cholesterol biosynthesis and catalyzes the conversion of HMG-CoA to MVA. Given its role in cholesterol and isoprenoid biosynthesis, the regulation of HMGCR has been intensely investigated. Because all cells require a steady supply of MVA, both the sterol (i.e. cholesterol) and non-sterol (i.e. isoprenoid) products of MVA metabolism exert coordinated feedback regulation on HMGCR through different mechanisms. The proper functioning of HMGCR as the proximal enzyme in the MVA pathway is essential under both normal physiologic conditions and in many diseases given its role in cell cycle pathways and cell proliferation, cholesterol biosynthesis and metabolism, cell cytoskeletal dynamics and stability, cell membrane structure and fluidity, mitochondrial function, proliferation, and cell fate. The blockbuster statin drugs ('statins') directly bind to and inhibit HMGCR, and their use for the past thirty years has revolutionized the treatment of hypercholesterolemia and cardiovascular diseases, in particular coronary heart disease. Initially thought to exert their effects through cholesterol reduction, recent evidence indicates that statins also have pleiotropic immunomodulatory properties independent of cholesterol lowering. In this review we will focus on the therapeutic applications and mechanisms involved in the MVA cascade including Rho GTPase and Rho kinase (ROCK) signaling, statin inhibition of HMGCR, geranylgeranyltransferase (GGTase) inhibition, and farnesyltransferase (FTase) inhibition in cardiovascular disease, pulmonary diseases (e.g. asthma and chronic obstructive pulmonary disease (COPD)), and cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Quenching of graphene quantum dots fluorescence by alkaline phosphatase activity in the presence of hydroquinone diphosphate.

    PubMed

    Pereira da Silva Neves, Marta Maria; González-García, María Begoña; Pérez-Junquera, Alejandro; Hernández-Santos, David; Fanjul-Bolado, Pablo

    2018-05-01

    In this work, a turn-off photoluminescent sensing proof-of-concept based on blue luminescent graphene quantum dots (GQDs) as the fluorescent probe was developed. For that purpose, GQDs optical response was related with the catalytic enzymatic activity of alkaline phosphatase (ALP), in the presence of hydroquinone diphosphate (HQDP). The hydrolysis of HQDP by ALP generated hydroquinone (HQ). The oxidation of HQ, enzymatically produced, to p-benzoquinone (BQ) resulted in the quenching of GQDs fluorescence (FL). Therefore, the developed luminescent sensing mechanism allowed the FL quenching with ALP activity to be related and thus quantified the concentration of ALP down to 0.5 nM of enzyme. This innovative design principle appears as a promising tool for the development of enzymatic sensors based on ALP labeling with fluorescent detection or even for direct ALP luminescent quantification in an easy, fast and sensitive manner. Copyright © 2018 John Wiley & Sons, Ltd.

  6. Development of petri net-based dynamic model for improved production of farnesyl pyrophosphate by integrating mevalonate and methylerythritol phosphate pathways in yeast.

    PubMed

    Baadhe, Rama Raju; Mekala, Naveen Kumar; Palagiri, Satwik Reddy; Parcha, Sreenivasa Rao

    2012-07-01

    In this case study, we designed a farnesyl pyrophosphate (FPP) biosynthetic network using hybrid functional Petri net with extension (HFPNe) which is derived from traditional Petri net theory and allows easy modeling with graphical approach of various types of entities in the networks together. Our main objective is to improve the production of FPP in yeast, which is further converted to amorphadiene (AD), a precursor of artemisinin (antimalarial drug). Natively, mevalonate (MEV) pathway is present in yeast. Methyl erythritol phosphate pathways (MEP) are present only in higher plant plastids and eubacteria, but not present in yeast. IPP and DAMP are common isomeric intermediate in these two pathways, which immediately yields FPP. By integrating these two pathways in yeast, we augmented the FPP synthesis approximately two folds higher (431.16 U/pt) than in MEV pathway alone (259.91 U/pt) by using HFPNe technique. Further enhanced FPP levels converted to AD by amorphadiene synthase gene yielding 436.5 U/pt of AD which approximately two folds higher compared to the AD (258.5 U/pt) synthesized by MEV pathway exclusively. Simulation and validation processes performed using these models are reliable with identified biological information and data.

  7. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexopoulos, E.; Kanjee, U.; Snider, J.

    2010-02-11

    The decameric inducible lysine decarboxylase (LdcI) from Escherichia coli has been crystallized in space groups C2 and C222{sub 1}; the Ta{sub 6}Br{sub 12}{sup 2+} cluster was used to derivatize the C2 crystals. The method of single isomorphous replacement with anomalous scattering (SIRAS) as implemented in SHELXD was used to solve the Ta{sub 6}Br{sub 12}{sup 2+}-derivatized structure to 5 {angstrom} resolution. Many of the Ta{sub 6}Br{sub 12}{sup 2+}-binding sites had twofold and fivefold noncrystallographic symmetry. Taking advantage of this feature, phase modification was performed in DM. The electron-density map of LdcI displays many features in agreement with the low-resolution negative-stain electron-densitymore » map [Snider et al. (2006), J. Biol. Chem. 281, 1532-1546].« less

  8. Synthesis, crystal structures and optical properties of two congruent-melting isotypic diphosphates: LiM{sub 3}P{sub 2}O{sub 7} (M=Na, K)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi Yunjing; Wang Ying; Graduate University of the Chinese Academy of Sciences, Beijing 100039

    2013-01-15

    Two new isotypic diphosphates, LiNa{sub 3}P{sub 2}O{sub 7} (1) and LiK{sub 3}P{sub 2}O{sub 7} (2), have been synthesized by conventional solid-state reaction. The single-crystal X-ray structural analyses have shown that they crystallize in the orthorhombic space group C222{sub 1} (No. 20) with the unit cells: a=5.4966(2) A, b=9.1365(4) A, c=12.2764(5) A for compound 1 and a=6.0373(14) A, b=9.339(2) A, c=13.292(3) A for compound 2. The LiM{sub 3}P{sub 2}O{sub 7} (M=Na, K) consist of two-dimensional [LiP{sub 2}O{sub 7}]{sup 3-} layers, which are composed by LiO{sub 4} tetrahedral and diphosphate groups, the Na or K atoms are filled in the interlayers andmore » balance the charge. Second harmonic generation (SHG) on powder samples have been measured using Kurtz and Perry techniques. Thermal analyses, IR spectroscopy, UV-vis-NIR diffuse reflectance spectra, and band structure calculations are performed on the reported compounds. - Graphical Abstract: LiM{sub 3}P{sub 2}O{sub 7} (M=Na, K) consists of a two-dimensional infinite [LiP{sub 2}O{sub 7}]{sup 3-} layer, which is composed by LiO{sub 4} tetrahedra and diphosphate groups. Highlights: Black-Right-Pointing-Pointer LiNa{sub 3}P{sub 2}O{sub 7} and LiK{sub 3}P{sub 2}O{sub 7} are new compounds in the Li{sub 2}O-M{sub 2}O (M=Na, K)-P{sub 2}O{sub 5} systems. Black-Right-Pointing-Pointer Crystal structures of LiNa{sub 3}P{sub 2}O{sub 7} and LiK{sub 3}P{sub 2}O{sub 7} consist of two-dimensional [LiP{sub 2}O{sub 7}]{sup 3-} layers. Black-Right-Pointing-Pointer LiNa{sub 3}P{sub 2}O{sub 7} and LiK{sub 3}P{sub 2}O{sub 7} are congruent melting compounds.« less

  9. Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in petunia.

    PubMed

    Gass, Nathalie; Glagotskaia, Tatiana; Mellema, Stefan; Stuurman, Jeroen; Barone, Mario; Mandel, Therese; Roessner-Tunali, Ute; Kuhlemeier, Cris

    2005-08-01

    Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.

  10. Insights on ornithine decarboxylase silencing as a potential strategy for targeting retinoblastoma.

    PubMed

    Muthukumaran, Sivashanmugam; Bhuvanasundar, Renganathan; Umashankar, Vetrivel; Sulochana, K N

    2018-02-01

    Ornithine Decarboxylase (ODC) is a key enzyme involved in polyamine synthesis and is reported to be up regulated in several cancers. However, the effect of ODC gene silencing in retinoblastoma is to be understood for utilization in therapeutic applications. Hence, in this study, a novel siRNA (small interference RNA) targeting ODC was designed and validated in Human Y79 retinoblastoma cells for its effects on intracellular polyamine levels, Matrix Metalloproteinase 2 & 9 activity and Cell cycle. The designed siRNA showed efficient silencing of ODC mRNA expression and protein levels in Y79 cells. It also showed significant reduction of intracellular polyamine levels and altered levels of oncogenic LIN28b expression. By this study, a regulatory loop is proposed, wherein, ODC silencing in Y79 cells to result in decreased polyamine levels, thereby, leading to altered protein levels of Lin28b, MMP-2 and MMP-9, which falls in line with earlier studies in neuroblastoma. Thus, by this study, we propose ODC silencing as a prospective strategy for targeting retinoblastoma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Genomic organization and expression analysis of a farnesyl diphosphate synthase gene (FPPS2) in apples (Malus domestica Borkh.).

    PubMed

    Yuan, Kejun; Wang, Changjun; Xin, Li; Zhang, Anning; Ai, Chengxiang

    2013-07-25

    A farnesyl diphosphate synthase gene (FPPS2), which contains 11 introns and 12 exons, was isolated from the apple cultivar "White Winter Pearmain". When it was compared to our previously reported FPPS1, its each intron size was different, its each exon size was the same as that of FPPS1 gene, 30 nucleotide differences were found in its coding sequence. Based on these nucleotide differences, specific primers were designed to perform expression analysis; the results showed that it expressed in both fruit and leaf, its expression level was obviously lower than that of FPPS1 gene in fruit which was stored at 4°C for 5 weeks. This is the first report concerning two FPPS genes and their expression comparison in apples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Aromatic Prenylation in Phenazine Biosynthesis

    PubMed Central

    Saleh, Orwah; Gust, Bertolt; Boll, Björn; Fiedler, Hans-Peter; Heide, Lutz

    2009-01-01

    The bacterium Streptomyces anulatus 9663, isolated from the intestine of different arthropods, produces prenylated derivatives of phenazine 1-carboxylic acid. From this organism, we have identified the prenyltransferase gene ppzP. ppzP resides in a gene cluster containing orthologs of all genes known to be involved in phenazine 1-carboxylic acid biosynthesis in Pseudomonas strains as well as genes for the six enzymes required to generate dimethylallyl diphosphate via the mevalonate pathway. This is the first complete gene cluster of a phenazine natural compound from streptomycetes. Heterologous expression of this cluster in Streptomyces coelicolor M512 resulted in the formation of prenylated derivatives of phenazine 1-carboxylic acid. After inactivation of ppzP, only nonprenylated phenazine 1-carboxylic acid was formed. Cloning, overexpression, and purification of PpzP resulted in a 37-kDa soluble protein, which was identified as a 5,10-dihydrophenazine 1-carboxylate dimethylallyltransferase, forming a C–C bond between C-1 of the isoprenoid substrate and C-9 of the aromatic substrate. In contrast to many other prenyltransferases, the reaction of PpzP is independent of the presence of magnesium or other divalent cations. The Km value for dimethylallyl diphosphate was determined as 116 μm. For dihydro-PCA, half-maximal velocity was observed at 35 μm. Kcat was calculated as 0.435 s-1. PpzP shows obvious sequence similarity to a recently discovered family of prenyltransferases with aromatic substrates, the ABBA prenyltransferases. The present finding extends the substrate range of this family, previously limited to phenolic compounds, to include also phenazine derivatives. PMID:19339241

  13. Trypanosoma cruzi has not lost its S-adenosylmethionine decarboxylase: characterization of the gene and the encoded enzyme.

    PubMed Central

    Persson, K; Aslund, L; Grahn, B; Hanke, J; Heby, O

    1998-01-01

    All attempts to identify ornithine decarboxylase in the human pathogen Trypanosoma cruzi have failed. The parasites have instead been assumed to depend on putrescine uptake and S-adenosylmethionine decarboxylase (AdoMetDC) for their synthesis of the polyamines spermidine and spermine. We have now identified the gene encoding AdoMetDC in T. cruzi by PCR cloning, with degenerate primers corresponding to conserved amino acid sequences in AdoMetDC proteins of other trypanosomatids. The amplified DNA fragment was used as a probe to isolate the complete AdoMetDC gene from a T. cruzi genomic library. The AdoMetDC gene was located on chromosomes with a size of approx. 1.4 Mbp, and contained a coding region of 1110 bp, specifying a sequence of 370 amino acid residues. The protein showed a sequence identity of only 25% with human AdoMetDC, the major differences being additional amino acids present in the terminal regions of the T. cruzi enzyme. As expected, a higher sequence identity (68-72%) was found in comparison with trypanosomatid AdoMetDCs. When the coding region was expressed in Escherichia coli, the recombinant protein underwent autocatalytic cleavage, generating a 33-34 kDa alpha subunit and a 9 kDa beta subunit. The encoded protein catalysed the decarboxylation of AdoMet (Km 0.21 mM) and was stimulated by putrescine but inhibited by the polyamines, weakly by spermidine and strongly by spermine. Methylglyoxal-bis(guanylhydrazone) (MGBG), a potent inhibitor of human AdoMetDC, was a poor inhibitor of the T. cruzi enzyme. This differential sensitivity to MGBG suggests that the two enzymes are sufficiently different to warrant the search for compounds that might interfere with the progression of Chagas' disease by selectively inhibiting T. cruzi AdoMetDC. PMID:9677309

  14. Malate decarboxylases: evolution and roles of NAD(P)-ME isoforms in species performing C(4) and C(3) photosynthesis.

    PubMed

    Maier, Alexandra; Zell, Martina B; Maurino, Veronica G

    2011-05-01

    In the C(4) pathway of photosynthesis two types of malate decarboxylases release CO(2) in bundle sheath cells, NADP- and NAD-dependent malic enzyme (NADP-ME and NAD-ME), located in the chloroplasts and the mitochondria of these cells, respectively. The C(4) decarboxylases involved in C(4) photosynthesis did not evolve de novo; they were recruited from existing housekeeping isoforms. NADP-ME housekeeping isoforms would function in the control of malate levels during hypoxia, pathogen defence responses, and microspore separation, while NAD-ME participates in the respiration of malate in the tricarboxylic acid cycle. Recently, the existence of three enzymatic NAD-ME entities in Arabidopsis, occurring by alternative association of two subunits, was described as a novel mechanism to regulate NAD-ME activity under changing metabolic environments. The C(4) NADP-ME is thought to have evolved from a C(3) chloroplastic ancestor, which in turn would have evolved from an ancient cytosolic enzyme. In this way, the C(4) NADP-ME would have emerged through gene duplication, acquisition of a new promoter, and neo-functionalization. In contrast, there would exist a unique NAD-ME in C(4) plants, which would have been adapted to perform a dual function through changes in the kinetic and regulatory properties of the C(3) ancestors. In addition to this, for the evolution of C(4) NAD-ME, insertion of promoters or enhancers into the single-copy genes of the C(3) ancestors would have changed the expression without gene duplication.

  15. Interception of the Enzymatic Conversion of Farnesyl Diphosphate to 5-Epi-Aristolochene by Using a Fluoro Substrate Analogue: 1-Fluorogermacrene A from (2E,6Z)-6-Fluorofarnesyl Diphosphate**

    PubMed Central

    Faraldos, Juan A.; Zhao, Yuxin; O'Maille, Paul E.; Noel, Joseph P.; Coates, Robert M.

    2009-01-01

    Tobacco 5-epi-aristolochene synthase (TEAS) catalyzes the MgII-dependent cyclizations and rearrangements of (E,E)-farnesyl diphosphate (PP) to the bicyclic sesquiterpene hydrocarbon via a tightly bound (+)-germacrene A as a deprotonated intermediate. With the native enzyme, only a few percent of the putative germacrene A intermediate is released from the active site during the catalytic cycle. 6-Fluorofarnesyl PP was designed and synthesized with the aim of arresting the cyclization-rearrangement mechanism en route to 5-epi-aristolochene. Indeed, incubation of (2E,6Z)-6-fluorofarnesyl PP with recombinant TEAS afforded (-)-1-fluororogermacrene A as the sole product in 58% yield. Steady-state kinetic experiments with farnesyl PP and the 6-fluoro analogue showed that the overall catalytic efficiencies (kcat/Km) are essentially the same for both substrates. 1-Fluorogermacrene A was characterized by chromatographic properties (TLC, GC), MS, optical rotation, UV, IR and 1H NMR data, and by heat-induced Cope rearrangement to (+)-1-fluoro-β-elemene. 1H NMR spectra at room temperature revealed that this (E,E)-configured fluorocyclodecadiene exists in solution as a 7:3 mixture of UU and UD conformers. 1-Fluorogermacrene A underwent trifluoroacetic acid-catalyzed cyclization to give three 1α-fluoroselinene isomers at a rate estimated to be about 1000 times slower than that of the similar cyclization of (+)-germacrene A to the parent selinenes. PMID:17886322

  16. Identification and Functional Characterization of Monofunctional ent-Copalyl Diphosphate and ent-Kaurene Synthases in White Spruce Reveal Different Patterns for Diterpene Synthase Evolution for Primary and Secondary Metabolism in Gymnosperms1[W][OA

    PubMed Central

    Keeling, Christopher I.; Dullat, Harpreet K.; Yuen, Mack; Ralph, Steven G.; Jancsik, Sharon; Bohlmann, Jörg

    2010-01-01

    The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms. PMID:20044448

  17. First evidence of a membrane-bound, tyramine and beta-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: a two-dimensional electrophoresis proteomic study.

    PubMed

    Pessione, Enrica; Pessione, Alessandro; Lamberti, Cristina; Coïsson, Daniel Jean; Riedel, Kathrin; Mazzoli, Roberto; Bonetta, Silvia; Eberl, Leo; Giunta, Carlo

    2009-05-01

    The soluble and membrane proteome of a tyramine producing Enterococcus faecalis, isolated from an Italian goat cheese, was investigated. A detailed analysis revealed that this strain also produces small amounts of beta-phenylethylamine. Kinetics of tyramine and beta-phenylethylamine accumulation, evaluated in tyrosine plus phenylalanine-enriched cultures (stimulated condition), suggest that the same enzyme, the tyrosine decarboxylase (TDC), catalyzes both tyrosine and phenylalanine decarboxylation: tyrosine was recognized as the first substrate and completely converted into tyramine (100% yield) while phenylalanine was decarboxylated to beta-phenylethylamine (10% yield) only when tyrosine was completely depleted. The presence of an aspecific aromatic amino acid decarboxylase is a common feature in eukaryotes, but in bacteria only indirect evidences of a phenylalanine decarboxylating TDC have been presented so far. Comparative proteomic investigations, performed by 2-DE and MALDI-TOF/TOF MS, on bacteria grown in conditions stimulating tyramine and beta-phenylethylamine biosynthesis and in control conditions revealed 49 differentially expressed proteins. Except for aromatic amino acid biosynthetic enzymes, no significant down-regulation of the central metabolic pathways was observed in stimulated conditions, suggesting that tyrosine decarboxylation does not compete with the other energy-supplying routes. The most interesting finding is a membrane-bound TDC highly over-expressed during amine production. This is the first evidence of a true membrane-bound TDC, longly suspected in bacteria on the basis of the gene sequence.

  18. The three-dimensional structure of diaminopimelate decarboxylase from Mycobacterium tuberculosis reveals a tetrameric enzyme organisation.

    PubMed

    Weyand, Simone; Kefala, Georgia; Svergun, Dmitri I; Weiss, Manfred S

    2009-09-01

    The three-dimensional structure of the enzyme diaminopimelate decarboxylase from Mycobacterium tuberculosis has been determined in a new crystal form and refined to a resolution of 2.33 A. The monoclinic crystals contain one tetramer exhibiting D(2)-symmetry in the asymmetric unit. The tetramer exhibits a donut-like structure with a hollow interior. All four active sites are accessible only from the interior of the tetrameric assembly. Small-angle X-ray scattering indicates that in solution the predominant oligomeric species of the protein is a dimer, but also that higher oligomers exist at higher protein concentrations. The observed scattering data are best explained by assuming a dimer-tetramer equilibrium with about 7% tetramers present in solution. Consequently, at the elevated protein concentrations in the crowded environment inside the cell the observed tetramer may constitute the biologically relevant functional unit of the enzyme.

  19. Orotidine Monophosphate Decarboxylase--A Fascinating Workhorse Enzyme with Therapeutic Potential.

    PubMed

    Fujihashi, Masahiro; Mnpotra, Jagjeet S; Mishra, Ram Kumar; Pai, Emil F; Kotra, Lakshmi P

    2015-05-20

    Orotidine 5'-monophosphate decarboxylase (ODCase) is known as one of the most proficient enzymes. The enzyme catalyzes the last reaction step of the de novo pyrimidine biosynthesis, the conversion from orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate. The enzyme is found in all three domains of life, Bacteria, Eukarya and Archaea. Multiple sequence alignment of 750 putative ODCase sequences resulted in five distinct groups. While the universally conserved DxKxxDx motif is present in all the groups, depending on the groups, several characteristic motifs and residues can be identified. Over 200 crystal structures of ODCases have been determined so far. The structures, together with biochemical assays and computational studies, elucidated that ODCase utilized both transition state stabilization and substrate distortion to accelerate the decarboxylation of its natural substrate. Stabilization of the vinyl anion intermediate by a conserved lysine residue at the catalytic site is considered the largest contributing factor to catalysis, while bending of the carboxyl group from the plane of the aromatic pyrimidine ring of OMP accounts for substrate distortion. A number of crystal structures of ODCases complexed with potential drug candidate molecules have also been determined, including with 6-iodo-uridine, a potential antimalarial agent. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  20. Conformational Changes in Orotidine 5-Monophosphate Decarboxylase: "Remote" Residues That Stabilize the Active Conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, B.; Amyes, T; Fedorov, A

    2010-01-01

    The structural factors responsible for the extraordinary rate enhancement ({approx}10{sup 17}) of the reaction catalyzed by orotidine 5{prime}-monophosphate decarboxylase (OMPDC) have not been defined. Catalysis requires a conformational change that closes an active site loop and 'clamps' the orotate base proximal to hydrogen-bonded networks that destabilize the substrate and stabilize the intermediate. In the OMPDC from Methanobacter thermoautotrophicus, a 'remote' structurally conserved cluster of hydrophobic residues that includes Val 182 in the active site loop is assembled in the closed, catalytically active conformation. Substitution of these residues with Ala decreases k{sub cat}/K{sub m} with a minimal effect on k{sub cat},more » providing evidence that the cluster stabilizes the closed conformation. The intrinsic binding energies of the 5{prime}-phosphate group of orotidine 5{prime}-monophosphate for the mutant enzymes are similar to that for the wild type, supporting this conclusion.« less

  1. The discovery of the pressor effect of DOPS and its blunting by decarboxylase inhibitors.

    PubMed

    Kaufmann, H

    2006-01-01

    In the 1950s it was found that an artificial aminoacid, 3,4-threo-dihydroxyphenylserine (DOPS), was converted to norepinephrine (NE) in a single step by the enzyme L-aromatic amino acid decarboxylase (AADC), bypassing the need for the rate limiting enzyme dopamine beta hydroxylase. Trying to replicate the success of dihydroxyphenylalanine (DOPA) in the treatment of Parkinson disease, treatment with DOPS was attempted in patients with autonomic failure who have impaired NE release. DOPS improved orthostatic hypotension in patients with familial amyloid polyneuropathy, congenital deficiency of dopamine beta hydroxylase, pure autonomic failure and multiple system atrophy. DOPS pressor effect is due to its conversion to NE outside the central nervous system because concomitant administration of carbidopa, an inhibitor of AADC that does not cross the blood-brain barrier, blunted both the increase in plasma NE and the pressor response. DOPS pressor response is not dependent on intact sympathetic terminals because its conversion to NE also occurs in non-neuronal tissues.

  2. Pyruvate Decarboxylase, the Target for Omeprazole in Metronidazole-Resistant and Iron-Restricted Tritrichomonas foetus

    PubMed Central

    Sutak, Róbert; Tachezy, Jan; Kulda, Jaroslav; Hrdý, Ivan

    2004-01-01

    The substituted benzimidazole omeprazole, used for the treatment of human peptic ulcer disease, inhibits the growth of the metronidazole-resistant bovine pathogen Tritrichomonas foetus in vitro (MIC at which the growth of parasite cultures is inhibited by 50%, 22 μg/ml [63 μM]). The antitrichomonad activity appears to be due to the inhibition of pyruvate decarboxylase (PDC), which is the key enzyme responsible for ethanol production and which is strongly upregulated in metronidazole-resistant trichomonads. PDC was purified to homogeneity from the cytosol of metronidazole-resistant strain. The tetrameric enzyme of 60-kDa subunits is inhibited by omeprazole (50% inhibitory concentration, 16 μg/ml). Metronidazole-susceptible T. foetus, which expresses very little PDC, is only slightly affected. Omeprazole has the same inhibitory effect on T. foetus cells grown under iron-limited conditions. Similarly to metronidazole-resistant cells, T. foetus cells grown under iron-limited conditions have nonfunctional hydrogenosomal metabolism and rely on cytosolic PDC-mediated ethanol fermentation. PMID:15155220

  3. Structure and inhibition of orotidine 5'-monophosphate decarboxylase from Plasmodium falciparum.

    PubMed

    Langley, David B; Shojaei, Maryam; Chan, Camilla; Lok, Hiu Chuen; Mackay, Joel P; Traut, Thomas W; Guss, J Mitchell; Christopherson, Richard I

    2008-03-25

    Orotidine 5'-monophosphate (OMP) decarboxylase from Plasmodium falciparum (PfODCase, EC 4.1.1.23) has been overexpressed, purified, subjected to kinetic and biochemical analysis, and crystallized. The native enzyme is a homodimer with a subunit molecular mass of 38 kDa. The saturation curve for OMP as a substrate conformed to Michaelis-Menten kinetics with K m = 350 +/- 60 nM and V max = 2.70 +/- 0.10 micromol/min/mg protein. Inhibition patterns for nucleoside 5'-monophosphate analogues were linear competitive with respect to OMP with a decreasing potency of inhibition of PfODCase in the order: pyrazofurin 5'-monophosphate ( K i = 3.6 +/- 0.7 nM) > xanthosine 5'-monophosphate (XMP, K i = 4.4 +/- 0.7 nM) > 6-azauridine 5'-monophosphate (AzaUMP, K i = 12 +/- 3 nM) > allopurinol-3-riboside 5'-monophosphate ( K i = 240 +/- 20 nM). XMP is an approximately 150-fold more potent inhibitor of PfODCase compared with the human enzyme. The structure of PfODCase was solved in the absence of ligand and displays a classic TIM-barrel fold characteristic of the enzyme. Both the phosphate-binding loop and the betaalpha5-loop have conformational flexibility, which may be associated with substrate capture and product release along the reaction pathway.

  4. Biochemical and genetic characterization of the Enterococcus faecalis oxaloacetate decarboxylase complex.

    PubMed

    Repizo, Guillermo D; Blancato, Víctor S; Mortera, Pablo; Lolkema, Juke S; Magni, Christian

    2013-05-01

    Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation.

  5. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex

    PubMed Central

    Chow, Keng-See; Mat-Isa, Mohd.-Noor; Bahari, Azlina; Ghazali, Ahmad-Kamal; Alias, Halimah; Mohd.-Zainuddin, Zainorlina; Hoh, Chee-Choong; Wan, Kiew-Lian

    2012-01-01

    The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees. PMID:22162870

  6. Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex.

    PubMed

    Chow, Keng-See; Mat-Isa, Mohd-Noor; Bahari, Azlina; Ghazali, Ahmad-Kamal; Alias, Halimah; Mohd-Zainuddin, Zainorlina; Hoh, Chee-Choong; Wan, Kiew-Lian

    2012-03-01

    The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees.

  7. Cytidine derivatives as IspF inhibitors of Burkolderia pseudomallei

    PubMed Central

    Zhang, Zheng; Jakkaraju, Sriram; Blain, Joy; Gogol, Kenneth; Zhao, Lei; Hartley, Robert C.; Karlsson, Courtney A.; Staker, Bart L.; Stewart, Lance J.; Myler, Peter J.; Clare, Michael; Begley, Darren W.; Horn, James R.; Hagen, Timothy J

    2013-01-01

    Published biological data suggest that the methyl erythritol phosphate (MEP) pathway, a non-mevalonate isoprenoid biosynthetic pathway, is essential for certain bacteria and other infectious disease organisms. One highly conserved enzyme in the MEP pathway is 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF). Fragment-bound complexes of IspF from Burkholderia pseudomallei were used to design and synthesize a series of molecules linking the cytidine moiety to different zinc pocket fragment binders. Testing by surface plasmon resonance (SPR) found one molecule in the series to possess binding affinity equal to that of cytidine diphosphate, despite lacking any metal-coordinating phosphate groups. Close inspection of the SPR data suggest different binding stoichiometries between IspF and test compounds. Crystallographic analysis shows important variations between the binding mode of one synthesized compound and the pose of the bound fragment from which it was designed. The binding modes of these molecules add to our structural knowledge base for IspF and suggest future refinements in this compound series. PMID:24157367

  8. Kinetic and thermodynamic study of the thorium phosphate-diphosphate dissolution

    NASA Astrophysics Data System (ADS)

    Thomas, A. C.; Dacheux, N.; Le Coustumer, P.; Brandel, V.; Genet, M.

    2000-10-01

    The dissolution of the thorium phosphate-diphosphate (TPD), which was proposed for the actinides immobilization, was systematically studied as a function of several parameters such as surface, leaching flow, temperature, acidity or basicity of the leachate and phosphate concentration. The dependence of the normalized leaching rate on the temperature leads to an activation energy equal to about 42±3 kJ mol -1. The normalized leaching rate is slightly increased when increasing the acidity or the basicity of the leachate. The partial orders related to proton and hydroxide ions are equal to 0.31-0.35 and 0.35, respectively. For the pH range studied, i.e., 1

  9. S-Adenosylmethionine decarboxylase from human prostate. Activation by putrescine

    PubMed Central

    Zappia, Vincenzo; Cartenì-Farina, Maria; Pietra, Gennaro Della

    1972-01-01

    1. The presence of S-adenosylmethionine decarboxylase in human prostate gland is reported. A satisfactory radiochemical enzymic assay was developed and the enzyme was partially characterized. 2. Putrescine stimulates the reaction rate by up to 6-fold at pH7.5: the apparent activation constant was estimated to be 0.13mm. The stimulation is pH-dependent and a maximal effect is observed at acid pH values. 3. Putrescine activation is rather specific: other polyamines, such as spermidine and spermine, did not show any appreciable effect. 4. The apparent Km for the substrate is 4×10−5m. The calculated S-adenosylmethionine content of human prostate (0.18μmol/g wet wt. of tissue) demonstrates that the cellular amounts of sulphonium compound are saturating with respect to the enzyme. 5. The enzyme is moderately stable at 0°C and is rapidly inactivated at 40°C. The optimum pH is about 7.5, with one-half of the maximal activity occurring at pH6.6. 6. Several carboxy-14C-labelled analogues and derivatives of S-adenosylmethionine were tested as substrates. The enzyme appears to be highly specific: the replacement of the 6′-amino group of the sulphonium compound alone results in a complete loss of activity. 7. Inhibition of the enzyme activity by several carbonyl reagents suggests an involvement of either pyridoxal phosphate or pyruvate in the catalytic process. 8. The inhibitory effect of thiol reagents indicates the presence of `essential' thiol groups. PMID:4658995

  10. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally relatedmore » proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.« less

  11. Fractionation of carbon (13C/12C) isotopes in glycine decarboxylase reaction.

    PubMed

    Ivlev, A A; Bykova, N V; Igamberdiev, A U

    1996-05-20

    Fractionation of carbon isotopes (13C/12C) by glycine decarboxylase (GDC) was investigated in mitochondrial preparations isolated from photosynthetic tissues of different plants (Pisum, Medicago, Triticum, Hordeum, Spinacia, Brassica, Wolffia). 20 mM glycine was supplied to mitochondria, and the CO2 formed was absorbed and analyzed for isotopic content. CO2 evolved by mitochondria of Pisum was enriched up to 8% in 12C compared to the carboxylic atom of glycine. CO2 evolved by mitochondria of the other plants investigated was enriched by 5-16% in 13C. Carbon isotope effects were sensitive to reaction conditions (pH and the presence of GDC cofactors). Theoretical treatment of the reaction mechanism enabled us to conclude that the value and even the sign of the carbon isotope effect in glycine decarboxylation depend on the contribution of the enzyme-substrate binding step and of the decarboxylation step itself to the overall reaction rate. Therefore, the fractionation of carbon isotopes in GDC reaction was revealed which provides essential isotopic effects in plants in addition to the well-known effect of carbon isotope fractionation by the central photosynthetic enzyme, ribulose-1,5-biphosphate carboxylase.

  12. A potent, covalent inhibitor of orotidine 5'-monophosphate decarboxylase with antimalarial activity.

    PubMed

    Bello, Angelica M; Poduch, Ewa; Fujihashi, Masahiro; Amani, Merhnaz; Li, Yan; Crandall, Ian; Hui, Raymond; Lee, Ping I; Kain, Kevin C; Pai, Emil F; Kotra, Lakshmi P

    2007-03-08

    Orotidine 5'-monophosphate decarboxylase (ODCase) has evolved to catalyze the decarboxylation of orotidine 5'-monophosphate without any covalent intermediates. Active site residues in ODCase are involved in an extensive hydrogen-bonding network. We discovered that 6-iodouridine 5'-monophosphate (6-iodo-UMP) irreversibly inhibits the catalytic activities of ODCases from Methanobacterium thermoautotrophicum and Plasmodium falciparum. Mass spectral analysis of the enzyme-inhibitor complex confirms covalent attachment of the inhibitor to ODCase accompanied by the loss of two protons and the iodo moiety. The X-ray crystal structure (1.6 A resolution) of the complex of the inhibitor and ODCase clearly shows the covalent bond formation with the active site Lys-72 [corrected] residue. 6-Iodo-UMP inhibits ODCase in a time- and concentration-dependent fashion. 6-Iodouridine, the nucleoside form of 6-iodo-UMP, exhibited potent antiplasmodial activity, with IC50s of 4.4 +/- 1.3 microM and 6.2 +/- 0.7 microM against P. falciparum ItG and 3D7 isolates, respectively. 6-Iodouridine 5'-monophosphate is a novel covalent inhibitor of ODCase, and its nucleoside analogue paves the way to a new class of inhibitors against malaria.

  13. Proteins of the Glycine Decarboxylase Complex in the Hydrogenosome of Trichomonas vaginalis†

    PubMed Central

    Mukherjee, Mandira; Brown, Mark T.; McArthur, Andrew G.; Johnson, Patricia J.

    2006-01-01

    Trichomonas vaginalis is a unicellular eukaryote that lacks mitochondria and contains a specialized organelle, the hydrogenosome, involved in carbohydrate metabolism and iron-sulfur cluster assembly. We report the identification of two glycine cleavage H proteins and a dihydrolipoamide dehydrogenase (L protein) of the glycine decarboxylase complex in T. vaginalis with predicted N-terminal hydrogenosomal presequences. Immunofluorescence analyses reveal that both H and L proteins are localized in hydrogenosomes, providing the first evidence for amino acid metabolism in this organelle. All three proteins were expressed in Escherichia coli and purified to homogeneity. The experimental Km of L protein for the two H proteins were 2.6 μM and 3.7 μM, consistent with both H proteins serving as substrates of L protein. Analyses using purified hydrogenosomes showed that endogenous H proteins exist as monomers and endogenous L protein as a homodimer in their native states. Phylogenetic analyses of L proteins revealed that the T. vaginalis homologue shares a common ancestry with dihydrolipoamide dehydrogenases from the firmicute bacteria, indicating its acquisition via a horizontal gene transfer event independent of the origins of mitochondria and hydrogenosomes. PMID:17158739

  14. Structure-activity relationships of C6-uridine derivatives targeting plasmodia orotidine monophosphate decarboxylase.

    PubMed

    Bello, Angelica M; Poduch, Ewa; Liu, Yan; Wei, Lianhu; Crandall, Ian; Wang, Xiaoyang; Dyanand, Christopher; Kain, Kevin C; Pai, Emil F; Kotra, Lakshmi P

    2008-02-14

    Malaria, caused by Plasmodia parasites, has re-emerged as a major problem, imposing its fatal effects on human health, especially due to multidrug resistance. In Plasmodia, orotidine 5'-monophosphate decarboxylase (ODCase) is an essential enzyme for the de novo synthesis of uridine 5'-monophosphate. Impairing ODCase in these pathogens is a promising strategy to develop novel classes of therapeutics. Encouraged by our recent discovery that 6-iodo uridine is a potent inhibitor of P. falciparum, we investigated the structure-activity relationships of various C6 derivatives of UMP. 6-Cyano, 6-azido, 6-amino, 6-methyl, 6- N-methylamino, and 6- N, N-dimethylamino derivatives of uridine were evaluated against P. falciparum. The mononucleotides of 6-cyano, 6-azido, 6-amino, and 6-methyl uridine derivatives were studied as inhibitors of plasmodial ODCase. 6-Azidouridine 5'-monophosphate is a potent covalent inhibitor of P. falciparum ODCase. 6-Methyluridine exhibited weak antimalarial activity against P. falciparum 3D7 isolate. 6- N-Methylamino and 6- N, N-dimethylamino uridine derivatives exhibited moderate antimalarial activities.

  15. The Ornithine Decarboxylase Gene Is Essential for Cell Survival during Early Murine Development

    PubMed Central

    Pendeville, Hélène; Carpino, Nick; Marine, Jean-Christophe; Takahashi, Yutaka; Muller, Marc; Martial, Joseph A.; Cleveland, John L.

    2001-01-01

    Overexpression and inhibitor studies have suggested that the c-Myc target gene for ornithine decarboxylase (ODC), the enzyme which converts ornithine to putrescine, plays an important role in diverse biological processes, including cell growth, differentiation, transformation, and apoptosis. To explore the physiological function of ODC in mammalian development, we generated mice harboring a disrupted ODC gene. ODC-heterozygous mice were viable, normal, and fertile. Although zygotic ODC is expressed throughout the embryo prior to implantation, loss of ODC did not block normal development to the blastocyst stage. Embryonic day E3.5 ODC-deficient embryos were capable of uterine implantation and induced maternal decidualization yet failed to develop substantially thereafter. Surprisingly, analysis of ODC-deficient blastocysts suggests that loss of ODC does not affect cell growth per se but rather is required for survival of the pluripotent cells of the inner cell mass. Therefore, ODC plays an essential role in murine development, and proper homeostasis of polyamine pools appears to be required for cell survival prior to gastrulation. PMID:11533243

  16. Pyruvate Decarboxylase Provides Growing Pollen Tubes with a Competitive Advantage in PetuniaW⃞

    PubMed Central

    Gass, Nathalie; Glagotskaia, Tatiana; Mellema, Stefan; Stuurman, Jeroen; Barone, Mario; Mandel, Therese; Roessner-Tunali, Ute; Kuhlemeier, Cris

    2005-01-01

    Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen–pistil interaction. PMID:15994907

  17. Analysis of nucleotide diphosphate sugar dehydrogenases reveals family and group-specific relationships.

    PubMed

    Freas, Nicholas; Newton, Peter; Perozich, John

    2016-01-01

    UDP-glucose dehydrogenase (UDPGDH), UDP-N-acetyl-mannosamine dehydrogenase (UDPNAMDH) and GDP-mannose dehydrogenase (GDPMDH) belong to a family of NAD (+)-linked 4-electron-transfering oxidoreductases called nucleotide diphosphate sugar dehydrogenases (NDP-SDHs). UDPGDH is an enzyme responsible for converting UDP-d-glucose to UDP-d-glucuronic acid, a product that has different roles depending on the organism in which it is found. UDPNAMDH and GDPMDH convert UDP-N-acetyl-mannosamine to UDP-N-acetyl-mannosaminuronic acid and GDP-mannose to GDP-mannuronic acid, respectively, by a similar mechanism to UDPGDH. Their products are used as essential building blocks for the exopolysaccharides found in organisms like Pseudomonas aeruginosa and Staphylococcus aureus. Few studies have investigated the relationships between these enzymes. This study reveals the relationships between the three enzymes by analysing 229 amino acid sequences. Eighteen invariant and several other highly conserved residues were identified, each serving critical roles in maintaining enzyme structure, coenzyme binding or catalytic function. Also, 10 conserved motifs that included most of the conserved residues were identified and their roles proposed. A phylogenetic tree demonstrated relationships between each group and verified group assignment. Finally, group entropy analysis identified novel conservations unique to each NDP-SDH group, including residue positions critical to NDP-sugar substrate interaction, enzyme structure and intersubunit contact. These positions may serve as targets for future research. UDP-glucose dehydrogenase (UDPGDH, EC 1.1.1.22).

  18. Pyrrole-indolinone SU11652 targets the nucleoside diphosphate kinase from Leishmania parasites.

    PubMed

    Vieira, Plínio Salmazo; Souza, Tatiana de Arruda Campos Brasil; Honorato, Rodrigo Vargas; Zanphorlin, Letícia Maria; Severiano, Kelven Ulisses; Rocco, Silvana Aparecida; de Oliveira, Arthur Henrique Cavalcante; Cordeiro, Artur Torres; Oliveira, Paulo Sérgio Lopes; de Giuseppe, Priscila Oliveira; Murakami, Mário Tyago

    2017-07-01

    Nucleoside diphosphate kinases (NDKs) are key enzymes in the purine-salvage pathway of trypanosomatids and have been associated with the maintenance of host-cell integrity for the benefit of the parasite, being potential targets for rational drug discovery and design. The NDK from Leishmania major (LmNDK) and mutants were expressed and purified to homogeneity. Thermal shift assays were employed to identify potential inhibitors for LmNDK. Calorimetric experiments, site-directed mutagenesis and molecular docking analysis were performed to validate the interaction and to evaluate the structural basis of ligand recognition. Furthermore, the anti-leishmanial activity of the newly identified and validated compound was tested in vitro against different Leishmania species. The molecule SU11652, a Sunitinib analog, was identified as a potential inhibitor for LmNDK and structural studies indicated that this molecule binds to the active site of LmNDK in a similar conformation to nucleotides, mimicking natural substrates. Isothermal titration calorimetry experiments combined with site-directed mutagenesis revealed that the residues H50 and H117, considered essential for catalysis, play an important role in ligand binding. In vitro cell studies showed that SU11652 had similar efficacy to Amphotericin b against some Leishmania species. Together, our results indicate the pyrrole-indolinone SU11652 as a promising scaffold for the rational design of new drugs targeting the enzyme NDK from Leishmania parasites. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Observational Study of a French and Belgian Multicenter Cohort of 23 Patients Diagnosed in Adulthood With Mevalonate Kinase Deficiency.

    PubMed

    Durel, Cécile-Audrey; Aouba, Achille; Bienvenu, Boris; Deshayes, Samuel; Coppéré, Brigitte; Gombert, Bruno; Acquaviva-Bourdain, Cécile; Hachulla, Eric; Lecomte, Frédéric; Touitou, Isabelle; Ninet, Jacques; Philit, Jean-Baptiste; Messer, Laurent; Brouillard, Marc; Girard-Madoux, Marie-Hélène; Moutschen, Michel; Raison-Peyron, Nadia; Hutin, Pascal; Duffau, Pierre; Trolliet, Pierre; Hatron, Pierre-Yves; Heudier, Philippe; Cevallos, Ramiro; Lequerré, Thierry; Brousse, Valentine; Lesire, Vincent; Audia, Sylvain; Maucort-Boulch, Delphine; Cuisset, Laurence; Hot, Arnaud

    2016-03-01

    The aim of this study was to describe the clinical and biological features of Mevalonate kinase deficiency (MKD) in patients diagnosed in adulthood. This is a French and Belgian observational retrospective study from 2000 to 2014. To constitute the cohort, we cross-check the genetic and biochemical databases. The clinical, enzymatic, and genetic data were gathered from medical records. Twenty-three patients were analyzed. The mean age at diagnosis was 40 years, with a mean age at onset of symptoms of 3 years. All symptomatic patients had fever. Febrile attacks were mostly associated with arthralgia (90.9%); lymphadenopathy, abdominal pain, and skin lesions (86.4%); pharyngitis (63.6%); cough (59.1%); diarrhea, and hepatosplenomegaly (50.0%). Seven patients had psychiatric symptoms (31.8%). One patient developed recurrent seizures. Three patients experienced renal involvement (13.6%). Two patients had angiomyolipoma (9.1%). All but one tested patients had elevated serum immunoglobulin (Ig) D level. Twenty-one patients had genetic diagnosis; most of them were compound heterozygote (76.2%). p.Val377Ile was the most prevalent mutation. Structural articular damages and systemic AA amyloidosis were the 2 most serious complications. More than 65% of patients displayed decrease in severity and frequency of attacks with increasing age, but only 35% achieved remission. MKD diagnosed in adulthood shared clinical and genetic features with classical pediatric disease. An elevated IgD concentration is a good marker for MKD in adults. Despite a decrease of severity and frequency of attacks with age, only one-third of patients achieved spontaneous remission.

  20. The DOPA decarboxylase (DDC) gene is associated with alerting attention.

    PubMed

    Zhu, Bi; Chen, Chuansheng; Moyzis, Robert K; Dong, Qi; Chen, Chunhui; He, Qinghua; Li, Jin; Li, Jun; Lei, Xuemei; Lin, Chongde

    2013-06-03

    DOPA decarboxylase (DDC) is involved in the synthesis of dopamine, norepinephrine and serotonin. It has been suggested that genes involved in the dopamine, norepinephrine, and cholinergic systems play an essential role in the efficiency of human attention networks. Attention refers to the cognitive process of obtaining and maintaining the alert state, orienting to sensory events, and regulating the conflicts of thoughts and behavior. The present study tested seven single nucleotide polymorphisms (SNPs) within the DDC gene for association with attention, which was assessed by the Attention Network Test to detect three networks of attention, including alerting, orienting, and executive attention, in a healthy Han Chinese sample (N=451). Association analysis for individual SNPs indicated that four of the seven SNPs (rs3887825, rs7786398, rs10499695, and rs6969081) were significantly associated with alerting attention. Haplotype-based association analysis revealed that alerting was associated with the haplotype G-A-T for SNPs rs7786398-rs10499695-rs6969081. These associations remained significant after correcting for multiple testing by max(T) permutation. No association was found for orienting and executive attention. This study provides the first evidence for the involvement of the DDC gene in alerting attention. A better understanding of the genetic basis of distinct attention networks would allow us to develop more effective diagnosis, treatment, and prevention of deficient or underdeveloped alerting attention as well as its related prevalent neuropsychiatric disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    PubMed

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Crystal structure of a dodecameric FMN-dependent UbiX-like decarboxylase (Pad1) from Escherichia coli O157: H7

    PubMed Central

    Rangarajan, Erumbi S.; Li, Yunge; Iannuzzi, Pietro; Tocilj, Ante; Hung, Li-Wei; Matte, Allan; Cygler, Miroslaw

    2004-01-01

    The crystal structure of the flavoprotein Pad1 from Escherichia coli O157:H7 complexed with the cofactor FMN has been determined by the multiple anomalous diffraction method and refined at 2.0 Å resolution. This protein is a paralog of UbiX (3-octaprenyl-4-hydroxybenzoate carboxylyase, 51% sequence identity) that catalyzes the third step in ubiquinone biosynthesis and to Saccharomyces cerevisiae Pad1 (54% identity), an enzyme that confers resistance to the antimicrobial compounds phenylacrylic acids through decarbox-ylation of these compounds. Each Pad1 monomer consists of a typical Rossmann fold containing a non–covalently bound molecule of FMN. The fold of Pad1 is similar to MrsD, an enzyme associated with lantibiotic synthesis; EpiD, a peptidyl-cysteine decarboxylase; and AtHAL3a, the enzyme, which decarboxylates 4′-phosphopantothenoylcysteine to 4′-phosphopantetheine during coenzyme A biosynthesis, all with a similar location of the FMN binding site at the interface between two monomers, yet each having little sequence similarity to one another. All of these proteins associate into oligomers, with a trimer forming the common structural unit in each case. In MrsD and EpiD, which belong to the homo-dodecameric flavin-containing cysteine decarboxylase (HFCD) family, these trimers associate further into dodecamers. Pad1 also forms dodecamers, although the association of the trimers is completely different, resulting in exposure of a different side of the trimer unit to the solvent. This exposure affects the location of the substrate binding site and, specifically, its access to the FMN cofactor. Therefore, Pad1 forms a separate family, distinguishable from the HFCD family. PMID:15459342

  3. Overproduction of Threonine Aldolase Circumvents the Biosynthetic Role of Pyruvate Decarboxylase in Glucose-Limited Chemostat Cultures of Saccharomyces cerevisiae

    PubMed Central

    van Maris, Antonius J. A.; Luttik, Marijke A. H.; Winkler, Aaron A.; van Dijken, Johannes P.; Pronk, Jack T.

    2003-01-01

    Pyruvate decarboxylase-negative (Pdc−) mutants of Saccharomyces cerevisiae require small amounts of ethanol or acetate to sustain aerobic, glucose-limited growth. This nutritional requirement has been proposed to originate from (i) a need for cytosolic acetyl coenzyme A (acetyl-CoA) for lipid and lysine biosynthesis and (ii) an inability to export mitochondrial acetyl-CoA to the cytosol. To test this hypothesis and to eliminate the C2 requirement of Pdc− S. cerevisiae, we attempted to introduce an alternative pathway for the synthesis of cytosolic acetyl-CoA. The addition of l-carnitine to growth media did not restore growth of a Pdc− strain on glucose, indicating that the C2 requirement was not solely due to the inability of S. cerevisiae to synthesize this compound. The S. cerevisiae GLY1 gene encodes threonine aldolase (EC 4.1.2.5), which catalyzes the cleavage of threonine to glycine and acetaldehyde. Overexpression of GLY1 enabled a Pdc− strain to grow under conditions of carbon limitation in chemostat cultures on glucose as the sole carbon source, indicating that acetaldehyde formed by threonine aldolase served as a precursor for the synthesis of cytosolic acetyl-CoA. Fractionation studies revealed a cytosolic localization of threonine aldolase. The absence of glycine in these cultures indicates that all glycine produced by threonine aldolase was either dissimilated or assimilated. These results confirm the involvement of pyruvate decarboxylase in cytosolic acetyl-CoA synthesis. The Pdc− GLY1 overexpressing strain was still glucose sensitive with respect to growth in batch cultivations. Like any other Pdc− strain, it failed to grow on excess glucose in batch cultures and excreted pyruvate when transferred from glucose limitation to glucose excess. PMID:12676688

  4. Glutamate decarboxylase genes and alcoholism in Han Taiwanese men.

    PubMed

    Loh, El-Wui; Lane, Hsien-Yuan; Chen, Chien-Hsiun; Chang, Pi-Shan; Ku, Li-Wen; Wang, Kathy H T; Cheng, Andrew T A

    2006-11-01

    Glutamate decarboxylase (GAD), the rate-limiting enzyme in the synthesis of gamma-aminobutyric acid (GABA), may be involved in the development of alcoholism. This study examined the possible roles of the genes that code for 2 forms of GAD (GAD1 and GAD2) in the development of alcoholism. An association study was conducted among 140 male alcoholic subjects meeting the DSM-III-R criteria for alcohol dependence and 146 controls recruited from the Han Taiwanese in community and clinical settings. Psychiatric assessment of drinking conditions was conducted using a Chinese version of the Schedules for Clinical Assessment in Neuropsychiatry. The SHEsis and Haploview programs were used in statistical analyses. Nine single-nucleotide polymorphisms (SNPs) at the GAD1 gene were valid for further statistics. Between alcoholic subjects and controls, significant differences were found in genotype distributions of SNP1 (p=0.000), SNP2 (p=0.015), SNP4 (p=0.015), SNP5 (p=0.031), SNP6 (p=0.012), and SNP8 (p=0.004) and in allele distributions of SNP1 (p=0.001), SNP2 (p=0.009), and SNP8 (p=0.009). Permutation tests of SNP1, SNP2, and SNP8 demonstrated significant differences in allele frequencies but not in 2 major haplotype blocks. Three valid SNPs at the GAD2 gene demonstrated no associations with alcoholism. Further permutation tests in the only 1 haplotype block or individual SNPs demonstrated no significant differences. This is the first report indicating a possible significant role of the GAD1 gene in the development of alcohol dependence and/or the course of alcohol withdrawal and outcome of alcoholism.

  5. Enterococcus faecalis phosphomevalonate kinase

    PubMed Central

    Doun, Stephanie S.; Burgner, John W.; Briggs, Scott D.; Rodwell, Victor W.

    2005-01-01

    The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. 2.7.4.2). E. faecalis genomic DNA and the polymerase chain reaction were used to clone DNA thought to encode phosphomevalonate kinase into pET28b(+). Double-stranded DNA sequencing verified the sequence of the recombinant gene. The encoded N-terminal hexahistidine-tagged protein was expressed in Escherichia coli with induction by isopropylthiogalactoside and purified by Ni++ affinity chromatography, yield 20 mg protein per liter. Analysis of the purified protein by MALDI-TOF mass spectrometry established it as E. faecalis phosphomevalonate kinase. Analytical ultracentrifugation revealed that the kinase exists in solution primarily as a dimer. Assay for phosphomevalonate kinase activity used pyruvate kinase and lactate dehydrogenase to couple the formation of ADP to the oxidation of NADH. Optimal activity occurred at pH 8.0 and at 37°C. The activation energy was ~5.6 kcal/mol. Activity with Mn++, the preferred cation, was optimal at about 4 mM. Relative rates using different phosphoryl donors were 100 (ATP), 3.6 (GTP), 1.6 (TTP), and 0.4 (CTP). Km values were 0.17 mM for ATP and 0.19 mM for (R,S)-5-phosphomevalonate. The specific activity of the purified enzyme was 3.9 μmol substrate converted per minute per milligram protein. Applications to an immobilized enzyme bioreactor and to drug screening and design are discussed. PMID:15802646

  6. Structure of 2C-Methyl-D-erythritol-2,4-cyclodiphosphate Synthase from Shewanella oneidensis at 1.6 angstrom: Identification of Farnesyl pyrophosphate Trapped in a Hydrophobic Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Shuisong; Robinson, Howard; Marsing, Gregory C.

    2004-11-01

    1. Introduction Enzymes in the non-mevalonate pathway for isoprenoid synthesis have gained recent attention because of their potential value as targets for antibiotic drug development. 2C-methyl-D-erythritol-2,4 cyclophosphate (MECDP) synthase is the fifth enzyme in the seven enzyme non-mevalonate pathway for synthesis of isopentenyl diphosphate. Four groups have published structures of MECDP synthase at resolutions varying from 1.6Å to 2.8Å, either in the presence or absence of substrate from Escherichia coli (Richard et al., 2002; Kemp et al., 2002; Steinbacher et al., 2002) or from Thermus thermophilus (Kishida et al., 2003). Among these structures, the protein always exists as a homotrimermore » either with a crystallographic or a non-crystallographic three-fold symmetry axis and an active site formed in a cleft between adjacent monomers. While the overall shape of the proteins is highly similar among these structures, each of the four reported structures contain different combinations of metal ions in the active site including a Zn2+ ion only (Steinbacher et al., 2002), a Mn2+ ion only (Richard et al., 2002), Zn2+ and Mn2+ ions (Kemp et al., 2002) or two Mg2+ ions (Kishida et al., 2003). Furthermore, two of the structures are reported to contain a hydrophobic channel along the three-fold symmetry axis that is capped by a cluster of three arginine side chains (one from each monomer) at one end of the cavity and a cluster of three glutamic acid side chains (one from each monomer) at the other side of the cavity. In a 1.8Å resolution structure, Kemp et al. (2002) reported a sulfate ion coordinated to the arginine cap and solvent trapped in a hydrophobic cavity. In a lower 2.8Å resolution structure, Richard et al. (2002) concluded that geranyl diphosphate, GPP, was most likely trapped by the arginine cap and hydrophobic cavity (Richard et al., 2002), however, the low resolution of the data together with the presence of the crystallographic symmetry axis

  7. A Whole-Cell Phenotypic Screening Platform for Identifying Methylerythritol Phosphate Pathway-Selective Inhibitors as Novel Antibacterial Agents

    PubMed Central

    Johnson, L. Jeffrey

    2012-01-01

    Isoprenoid biosynthesis is essential for survival of all living organisms. More than 50,000 unique isoprenoids occur naturally, with each constructed from two simple five-carbon precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Two pathways for the biosynthesis of IPP and DMAPP are found in nature. Humans exclusively use the mevalonate (MVA) pathway, while most bacteria, including all Gram-negative and many Gram-positive species, use the unrelated methylerythritol phosphate (MEP) pathway. Here we report the development of a novel, whole-cell phenotypic screening platform to identify compounds that selectively inhibit the MEP pathway. Strains of Salmonella enterica serovar Typhimurium were engineered to have separately inducible MEP (native) and MVA (nonnative) pathways. These strains, RMC26 and CT31-7d, were then used to differentiate MVA pathway- and MEP pathway-specific perturbation. Compounds that inhibit MEP pathway-dependent bacterial growth but leave MVA-dependent growth unaffected represent MEP pathway-selective antibacterials. This screening platform offers three significant results. First, the compound is antibacterial and is therefore cell permeant, enabling access to the intracellular target. Second, the compound inhibits one or more MEP pathway enzymes. Third, the MVA pathway is unaffected, suggesting selectivity for targeting the bacterial versus host pathway. The cell lines also display increased sensitivity to two reported MEP pathway-specific inhibitors, further biasing the platform toward inhibitors selective for the MEP pathway. We demonstrate development of a robust, high-throughput screening platform that combines phenotypic and target-based screening that can identify MEP pathway-selective antibacterials simply by monitoring optical density as the readout for cell growth/inhibition. PMID:22777049

  8. Uroporphyrinogen decarboxylase is a radiosensitizing target for head and neck cancer.

    PubMed

    Ito, Emma; Yue, Shijun; Moriyama, Eduardo H; Hui, Angela B; Kim, Inki; Shi, Wei; Alajez, Nehad M; Bhogal, Nirmal; Li, Guohua; Datti, Alessandro; Schimmer, Aaron D; Wilson, Brian C; Liu, Peter P; Durocher, Daniel; Neel, Benjamin G; O'Sullivan, Brian; Cummings, Bernard; Bristow, Rob; Wrana, Jeff; Liu, Fei-Fei

    2011-01-26

    Head and neck cancer (HNC) is the eighth most common malignancy worldwide, comprising a diverse group of cancers affecting the head and neck region. Despite advances in therapeutic options over the last few decades, treatment toxicities and overall clinical outcomes have remained disappointing, thereby underscoring a need to develop novel therapeutic approaches in HNC treatment. Uroporphyrinogen decarboxylase (UROD), a key regulator of heme biosynthesis, was identified from an RNA interference-based high-throughput screen as a tumor-selective radiosensitizing target for HNC. UROD knockdown plus radiation induced caspase-mediated apoptosis and cell cycle arrest in HNC cells in vitro and suppressed the in vivo tumor-forming capacity of HNC cells, as well as delayed the growth of established tumor xenografts in mice. This radiosensitization appeared to be mediated by alterations in iron homeostasis and increased production of reactive oxygen species, resulting in enhanced tumor oxidative stress. Moreover, UROD was significantly overexpressed in HNC patient biopsies. Lower preradiation UROD mRNA expression correlated with improved disease-free survival, suggesting that UROD could potentially be used to predict radiation response. UROD down-regulation also radiosensitized several different models of human cancer, as well as sensitized tumors to chemotherapeutic agents, including 5-fluorouracil, cisplatin, and paclitaxel. Thus, our study has revealed UROD as a potent tumor-selective sensitizer for both radiation and chemotherapy, with potential relevance to many human malignancies.

  9. Crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new representative of the family of hydrated diphosphates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriukhina, G. V., E-mail: g-biralo@yandex.ru; Yakubovich, O. V.; Dimitrova, O. V.

    2016-09-15

    The crystal structure of Rb{sub 2}Mn{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2}, a new phase obtained in the form of single crystals under hydrothermal conditions in the MnCl{sub 2}–Rb{sub 3}PO{sub 4}–H{sub 2}O system, is determined by X-ray diffraction (Xcalibur-S-CCD diffractometer, R = 0.0270): a = 9.374(2), b = 8.367(2), c = 9.437(2) Å, ß = 99.12(2)°, space group P2{sub 1}/c, Z = 2, D{sub x} = 3.27 g/cm{sup 3}. A correlation between the unit-cell parameters and the size of cations forming the crystal structures of isostructural A{sub 2}M{sub 3}(H{sub 2}O){sub 2}[P{sub 2}O{sub 7}]{sub 2} diphosphates (A = K, NH{sub 4},more » Rb, or Na; {sub M} = Mn, Fe, Co, or Ni) is revealed. It is shown that, due to the topological similarity, the structures of diphosphates and orthophosphates of the farringtonite structural type can undergo mutual transformations.« less

  10. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.

    2010-08-26

    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains bothmore » a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.« less

  11. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate.

    PubMed

    Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Sax, Martin; Brunskill, Andrew; Nemeria, Natalia; Jordan, Frank; Furey, William

    2004-03-09

    Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis.

  12. Repurposing a Histamine Detection Platform for High-Throughput Screening of Histidine Decarboxylase.

    PubMed

    Juang, Yu-Chi; Fradera, Xavier; Han, Yongxin; Partridge, Anthony William

    2018-06-01

    Histidine decarboxylase (HDC) is the primary enzyme that catalyzes the conversion of histidine to histamine. HDC contributes to many physiological responses as histamine plays important roles in allergic reaction, neurological response, gastric acid secretion, and cell proliferation and differentiation. Small-molecule modulation of HDC represents a potential therapeutic strategy for a range of histamine-associated diseases, including inflammatory disease, neurological disorders, gastric ulcers, and select cancers. High-throughput screening (HTS) methods for measuring HDC activity are currently limited. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring HDC activity. The assay is based on competition between HDC-generated histamine and fluorophore-labeled histamine for binding to a Europium cryptate (EuK)-labeled anti-histamine antibody. We demonstrated that the assay is highly sensitive and simple to develop. Assay validation experiments were performed using low-volume 384-well plates and resulted in good statistical parameters. A pilot HTS screen gave a Z' score > 0.5 and a hit rate of 1.1%, and led to the identification of a validated hit series. Overall, the presented assay should facilitate the discovery of therapeutic HDC inhibitors by acting as a novel tool suitable for large-scale HTS and subsequent interrogation of compound structure-activity relationships.

  13. Novel protein-protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani.

    PubMed

    Mishra, Arjun K; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J Venkatesh

    2015-01-09

    Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein-protein interaction between SpdSyn and AdoMetDc. The protein-protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Enzyme Architecture: Erection of Active Orotidine 5'-Monophosphate Decarboxylase by Substrate-Induced Conformational Changes.

    PubMed

    Reyes, Archie C; Amyes, Tina L; Richard, John P

    2017-11-15

    Orotidine 5'-monophosphate decarboxylase (OMPDC) catalyzes the decarboxylation of 5-fluoroorotate (FO) with k cat /K m = 1.4 × 10 -7 M -1 s -1 . Combining this and related kinetic parameters shows that the 31 kcal/mol stabilization of the transition state for decarboxylation of OMP provided by OMPDC represents the sum of 11.8 and 10.6 kcal/mol stabilization by the substrate phosphodianion and the ribosyl ring, respectively, and an 8.6 kcal/mol stabilization from the orotate ring. The transition state for OMPDC-catalyzed decarboxylation of FO is stabilized by 5.2, 7.2, and 9.0 kcal/mol, respectively, by 1.0 M phosphite dianion, d-glycerol 3-phosphate and d-erythritol 4-phosphate. The stabilization is due to the utilization of binding interactions of the substrate fragments to drive an enzyme conformational change, which locks the orotate ring of the whole substrate, or the substrate pieces in a caged complex. We propose that enzyme-activation is a possible, and perhaps probable, consequence of any substrate-induced enzyme conformational change.

  15. Label-free offline versus online activity methods for nucleoside diphosphate kinase b using high performance liquid chromatography.

    PubMed

    Lima, Juliana Maria; Salmazo Vieira, Plínio; Cavalcante de Oliveira, Arthur Henrique; Cardoso, Carmen Lúcia

    2016-08-07

    Nucleoside diphosphate kinase from Leishmania spp. (LmNDKb) has recently been described as a potential drug target to treat leishmaniasis disease. Therefore, screening of LmNDKb ligands requires methodologies that mimic the conditions under which LmNDKb acts in biological systems. Here, we compare two label-free methodologies that could help screen LmNDKb ligands and measure NDKb activity: an offline LC-UV assay for soluble LmNDKb and an online two-dimensional LC-UV system based on LmNDKb immobilised on a silica capillary. The target enzyme was immobilised on the silica capillary via Schiff base formation (to give LmNDKb-ICER-Schiff) or affinity attachment (to give LmNDKb-ICER-His). Several aspects of the ICERs resulting from these procedures were compared, namely kinetic parameters, stability, and procedure steps. Both the LmNDKb immobilisation routes minimised the conformational changes and preserved the substrate binding sites. However, considering the number of steps involved in the immobilisation procedure, the cost of reagents, and the stability of the immobilised enzyme, immobilisation via Schiff base formation proved to be the optimal procedure.

  16. Intracellular Distribution of Enzymes of the Cytidine Diphosphate Choline Pathway in Castor Bean Endosperm

    PubMed Central

    Lord, J. M.; Kagawa, T.; Beevers, Harry

    1972-01-01

    The occurrence and subcellular distribution of enzymes of the cytidine diphosphate choline pathway of lecithin synthesis have been examined. Choline kinase (EC 2.7.1.32) was completely soluble, while phosphorylcholine-cytidyl transferase (EC 2.7.7.15) and phosphorylcholine-glyceride transferase (EC 2.7.8.2) were associated with particulate fractions. Although components sedimenting at 10,000 to 100,000 × g contained both enzymes, phosphorylcholine-cytidyl transferase and particularly phosphorylcholine-glyceride transferase were present in the 10,000 × g pellet, which contained the major organelles, mitochondria, and glyoxysomes. When the crude homogenate was centrifuged on a sucrose density gradient, four major bands of particulate protein were recovered. A band at density 1.24 g/cm3 contained the glyoxysomes and was devoid of phosphorylcholine-cytidyl transferase and phosphorylcholine-glyceride transferase activity. Enzyme activity was barely detectable in the mitochondria, at density 1.18 g/cm2. Phosphorylcholine-glyceride transferase was found almost exclusively in a sharp band at density 1.12 g/cm3, and phosphorylcholinecytidyl transferase was found in the uppermost band at density 1.08 g/cm3. Thus, for the synthesis of lecithin in their membranes, the glyoxysomes and mitochondria depend on enzymes elsewhere in the cell; the final two steps in lecithin formation occur, apparently exclusively, in separate particulate cell components. Images PMID:4506764

  17. Histidine-decarboxylase knockout mice show deficient nonreinforced episodic object memory, improved negatively reinforced water-maze performance, and increased neo- and ventro-striatal dopamine turnover.

    PubMed

    Dere, Ekrem; De Souza-Silva, Maria A; Topic, Bianca; Spieler, Richard E; Haas, Helmut L; Huston, Joseph P

    2003-01-01

    The brain's histaminergic system has been implicated in hippocampal synaptic plasticity, learning, and memory, as well as brain reward and reinforcement. Our past pharmacological and lesion studies indicated that the brain's histamine system exerts inhibitory effects on the brain's reinforcement respective reward system reciprocal to mesolimbic dopamine systems, thereby modulating learning and memory performance. Given the close functional relationship between brain reinforcement and memory processes, the total disruption of brain histamine synthesis via genetic disruption of its synthesizing enzyme, histidine decarboxylase (HDC), in the mouse might have differential effects on learning dependent on the task-inherent reinforcement contingencies. Here, we investigated the effects of an HDC gene disruption in the mouse in a nonreinforced object exploration task and a negatively reinforced water-maze task as well as on neo- and ventro-striatal dopamine systems known to be involved in brain reward and reinforcement. Histidine decarboxylase knockout (HDC-KO) mice had higher dihydrophenylacetic acid concentrations and a higher dihydrophenylacetic acid/dopamine ratio in the neostriatum. In the ventral striatum, dihydrophenylacetic acid/dopamine and 3-methoxytyramine/dopamine ratios were higher in HDC-KO mice. Furthermore, the HDC-KO mice showed improved water-maze performance during both hidden and cued platform tasks, but deficient object discrimination based on temporal relationships. Our data imply that disruption of brain histamine synthesis can have both memory promoting and suppressive effects via distinct and independent mechanisms and further indicate that these opposed effects are related to the task-inherent reinforcement contingencies.

  18. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis

    PubMed Central

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I.; Rodríguez-Hernández, Aída A.; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F.

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes. PMID:27014322

  19. Syndromic intellectual disability: a new phenotype caused by an aromatic amino acid decarboxylase gene (DDC) variant.

    PubMed

    Graziano, Claudio; Wischmeijer, Anita; Pippucci, Tommaso; Fusco, Carlo; Diquigiovanni, Chiara; Nõukas, Margit; Sauk, Martin; Kurg, Ants; Rivieri, Francesca; Blau, Nenad; Hoffmann, Georg F; Chaubey, Alka; Schwartz, Charles E; Romeo, Giovanni; Bonora, Elena; Garavelli, Livia; Seri, Marco

    2015-04-01

    The causative variant in a consanguineous family in which the three patients (two siblings and a cousin) presented with intellectual disability, Marfanoid habitus, craniofacial dysmorphisms, chronic diarrhea and progressive kyphoscoliosis, has been identified through whole exome sequencing (WES) analysis. WES study identified a homozygous DDC variant in the patients, c.1123C>T, resulting in p.Arg375Cys missense substitution. Mutations in DDC cause a recessive metabolic disorder (aromatic amino acid decarboxylase, AADC, deficiency, OMIM #608643) characterized by hypotonia, oculogyric crises, excessive sweating, temperature instability, dystonia, severe neurologic dysfunction in infancy, and specific abnormalities of neurotransmitters and their metabolites in the cerebrospinal fluid (CSF). In our family, analysis of neurotransmitters and their metabolites in patient's CSF shows a pattern compatible with AADC deficiency, although the clinical signs are different from the classic form. Our work expands the phenotypic spectrum associated with DDC variants, which therefore can cause an additional novel syndrome without typical movement abnormalities. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Cloning and characterization of the ddc homolog encoding L-2,4-diaminobutyrate decarboxylase in Enterobacter aerogenes.

    PubMed

    Yamamoto, S; Mutoh, N; Tsuzuki, D; Ikai, H; Nakao, H; Shinoda, S; Narimatsu, S; Miyoshi, S I

    2000-05-01

    L-2,4-diaminobutyrate decarboxylase (DABA DC) catalyzes the formation of 1,3-diaminopropane (DAP) from DABA. In the present study, the ddc gene encoding DABA DC from Enterobacter aerogenes ATCC 13048 was cloned and characterized. Determination of the nucleotide sequence revealed an open reading frame of 1470 bp encoding a 53659-Da protein of 490 amino acids, whose deduced NH2-terminal sequence was identical to that of purified DABA DC from E. aerogenes. The deduced amino acid sequence was highly similar to those of Acinetobacter baumannii and Haemophilus influenzae DABA DCs encoded by the ddc genes. The lysine-307 of the E. aerogenes DABA DC was identified as the pyridoxal 5'-phosphate binding residue by site-directed mutagenesis. Furthermore, PCR analysis revealed the distribution of E. aerogenes ddc homologs in some other species of Enterobacteriaceae. Such a relatively wide occurrence of the ddc homologs implies biological significance of DABA DC and its product DAP.

  1. Combined Use of α‐Difluoromethylornithine and an Inhibitor of S‐Adenosylmethionine Decarboxylase in Mice Bearing P388 Leukemia or Lewis Lung Carcinoma

    PubMed Central

    Nakaike, Shiro; Kashiwagi, Keiko; Terao, Kiyoshi; Iio, Kokoro

    1988-01-01

    The antitumor and antimetastatic effects of α‐difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, combined with an inhibitor of S‐adenosylmethionine decarboxylase, either methylglyoxal bis(guanylhydrazone) (MGBG) or ethylglyoxal bis(guanylhydrazone) (EGBG), were studied in mice bearing P388 leukemia or Lewis lung carcinoma. Although EGBG is a more specific inhibitor of polyamine biosynthesis than the widely used MGBG, the antitumor effect of the DFMO‐EGBG combination on P388 leukemia‐bearing mice was less than that of the DFMO‐MGBG combination. The prolongation of survival time by the DFMOC1000 mg/kg)‐MGBG(25 mg/kg) combination was 2.65‐fold, while that of the DFMO(1000 mg/kg)‐EGBG(50 mg/kg) combination was 1.34‐fold. When mice were fed a polyamine‐deficient diet, stronger antitumor effects were exerted; the prolongation of survival time by the DFMO‐MGBG and the DFMO‐EGBG combinations was 2.89‐fold and 2.03‐fold, respectively. The antitumor effect of combined use of the two polyamine antimetabolites with mice on normal and polyamine‐deficient diets correlated with a decrease of polyamine charge contents in the tumor cells. The above in vivo results were confirmed clearly in the KB cell culture system. The antimetastatic activity of DFMO on Lewis lung carcinoma‐bearing mice was strengthened by the addition of MGBG or EGBG. The antimetastatic activity of the DFMO‐MGBG or DFMO‐EGBG combination did not parallel the polyamine charge contents in the primary tumor and blood. PMID:3133338

  2. Toward industrial production of isoprenoids in Escherichia coli: Lessons learned from CRISPR-Cas9 based optimization of a chromosomally integrated mevalonate pathway.

    PubMed

    Alonso-Gutierrez, Jorge; Koma, Daisuke; Hu, Qijun; Yang, Yuchen; Chan, Leanne J G; Petzold, Christopher J; Adams, Paul D; Vickers, Claudia E; Nielsen, Lars K; Keasling, Jay D; Lee, Taek S

    2018-04-01

    Escherichia coli has been the organism of choice for the production of different chemicals by engineering native and heterologous pathways. In the present study, we simultaneously address some of the main issues associated with E. coli as an industrial platform for isoprenoids, including an inability to grow on sucrose, a lack of endogenous control over toxic mevalonate (MVA) pathway intermediates, and the limited pathway engineering into the chromosome. As a proof of concept, we generated an E. coli DH1 strain able to produce the isoprenoid bisabolene from sucrose by integrating the cscAKB operon into the chromosome and by expressing a heterologous MVA pathway under stress-responsive control. Production levels dropped dramatically relative to plasmid-mediated expression when the entire pathway was integrated into the chromosome. In order to optimize the chromosomally integrated MVA pathway, we established a CRISPR-Cas9 system to rapidly and systematically replace promoter sequences. This strategy led to higher pathway expression and a fivefold improvement in bisabolene production. More interestingly, we analyzed proteomics data sets to understand and address some of the challenges associated with metabolic engineering of the chromosomally integrated pathway. This report shows that integrating plasmid-optimized operons into the genome and making them work optimally is not a straightforward task and any poor engineering choices on the chromosome may lead to cell death rather than just resulting in low titers. Based on these results, we also propose directions for chromosomal metabolic engineering. © 2017 Wiley Periodicals, Inc.

  3. Investigation of the system ThO 2-NpO 2-P 2O 5. Solid solutions of thorium-neptunium (IV) phosphate-diphosphate

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Thomas, A. C.; Brandel, V.; Genet, M.

    1998-11-01

    Considering that phosphate matrices could be potential candidates for the immobilization of actinides or for the final disposal of the excess plutonium from dismantled nuclear weapons, the chemistry of thorium phosphates has been re-examined. In the ThO 2-P 2O 5 system, the thorium phosphate-diphosphate Th 4(PO 4) 4P 2O 7 (TPD) can be synthesized by wet and dry chemical processes. The substitution of thorium by other tetravalent actinides like uranium or plutonium can be obtained for 0 < x < 3.0 and 0 < x < 1.63, respectively. In this work, we report the chemical conditions of synthesis of thorium-neptunium (IV) phosphate-diphosphate solid solutions Th 4- xNp x(PO 4) 4P 2O 7 (TNPD) with 0 < x < 1.6 from a mixture of thorium and neptunium (IV) nitrates and concentrated phosphoric acid. From the variation of the cell parameters and volume, the maximum substitution of Th 4+ by Np 4+ in the TPD structure is evaluated to 2.08 (which corresponds to about 52 mol% of thorium replaced by neptunium (IV)). The field of existence of solid solutions Th 4- xU- xNp- xPuU xUNp xNpPu xPu(PO 4)4P 2O 7 has been calculated. These solid solutions should be synthesized for 5 xU+7 xNp+9 xPu⩽15. In the NpO 2-P 2O 5 system, the unit cell parameters of Np 2O(PO 4) 2 were refined by analogy with U 2O(PO 4) 2 which crystallographic data have been published recently. For Np 2O(PO 4) 2 the unit cell is orthorhombic with the following cell parameters: a=7.033(2) Å, b=9.024(3) Å, c=12.587(6) Å and V=799(1) Å 3. The unit cell parameter obtained for α-NpP 2O 7 ( a=8.586(1) Å) is in good agreement with those already reported in literature.

  4. The Relationship among Tyrosine Decarboxylase and Agmatine Deiminase Pathways in Enterococcus faecalis

    PubMed Central

    Perez, Marta; Ladero, Victor; del Rio, Beatriz; Redruello, Begoña; de Jong, Anne; Kuipers, Oscar; Kok, Jan; Martin, M. Cruz; Fernandez, Maria; Alvarez, Miguel A.

    2017-01-01

    Enterococci are considered mainly responsible for the undesirable accumulation of the biogenic amines tyramine and putrescine in cheeses. The biosynthesis of tyramine and putrescine has been described as a species trait in Enterococcus faecalis. Tyramine is formed by the decarboxylation of the amino acid tyrosine, by the tyrosine decarboxylase (TDC) route encoded in the tdc cluster. Putrescine is formed from agmatine by the agmatine deiminase (AGDI) pathway encoded in the agdi cluster. These biosynthesis routes have been independently studied, tyrosine and agmatine transcriptionally regulate the tdc and agdi clusters. The objective of the present work is to study the possible co-regulation among TDC and AGDI pathways in E. faecalis. In the presence of agmatine, a positive correlation between putrescine biosynthesis and the tyrosine concentration was found. Transcriptome studies showed that tyrosine induces the transcription of putrescine biosynthesis genes and up-regulates pathways involved in cell growth. The tyrosine modulation over AGDI route was not observed in the mutant Δtdc strain. Fluorescence analyses using gfp as reporter protein revealed PaguB (the promoter of agdi catabolic genes) was induced by tyrosine in the wild-type but not in the mutant strain, confirming that tdc cluster was involved in the tyrosine induction of putrescine biosynthesis. This study also suggests that AguR (the transcriptional regulator of agdi) was implicated in interaction among the two clusters. PMID:29163401

  5. Loss of HMG-CoA reductase in C. elegans causes defects in protein prenylation and muscle mitochondria.

    PubMed

    Ranji, Parmida; Rauthan, Manish; Pitot, Christophe; Pilon, Marc

    2014-01-01

    HMG-CoA reductase is the rate-limiting enzyme in the mevalonate pathway and the target of cholesterol-lowering statins. We characterized the C. elegans hmgr-1(tm4368) mutant, which lacks HMG-CoA reductase, and show that its phenotypes recapitulate that of statin treatment, though in a more severe form. Specifically, the hmgr-1(tm4368) mutant has defects in growth, reproduction and protein prenylation, is rescued by exogenous mevalonate, exhibits constitutive activation of the UPRer and requires less mevalonate to be healthy when the UPRmt is activated by a constitutively active form of ATFS-1. We also show that different amounts of mevalonate are required for different physiological processes, with reproduction requiring the highest levels. Finally, we provide evidence that the mevalonate pathway is required for the activation of the UPRmt.

  6. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.

    PubMed

    Torrens-Spence, Michael P; Gillaspy, Glenda; Zhao, Bingyu; Harich, Kim; White, Robert H; Li, Jianyong

    2012-02-10

    Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Transcriptional and translational control of ornithine decarboxylase during Ras transformation.

    PubMed Central

    Shantz, Lisa M

    2004-01-01

    ODC (ornithine decarboxylase) activity is induced following ras activation. However, the Ras effector pathways responsible are unknown. These experiments used NIH-3T3 cells expressing partial-loss-of-function Ras mutants to activate selectively pathways downstream of Ras and examined the contribution of each pathway to ODC induction. Overexpression of Ras12V, a constitutively active mutant, resulted in ODC activities up to 20-fold higher than controls. Stable transfections of Ras partial-loss-of-function mutants and constitutively active forms of MEK (MAPK kinase) and Akt indicated that activation of more than one Ras effector pathway is necessary for the complete induction of ODC activity. The increase in ODC activity in Ras12V-transformed cells is not owing to a substantial change in ODC protein half-life, which increased by <2-fold. Northern-blot analysis and reporter assays suggested that the mechanism of ODC induction involves both a modest increase in the transcription of ODC mRNA and a much more considerable increase in the translation of mRNA into protein. ODC transcription was controlled through a pathway dependent on Raf/MEK/ERK (where ERK stands for extracellular-signal-regulated kinase) activation, whereas activation of the phosphoinositide 3-kinase and the Raf/MEK/ERK pathways were necessary for translational regulation of ODC. The increase in ODC synthesis was accompanied by changes in phosphorylation of eukaryotic initiation factor 4E and its binding protein 4E-BP1. Results show that the phosphoinositide 3-kinase pathway regulates phosphorylation of both proteins, whereas the Raf/MEK/ERK pathway affects only the eukaryotic initiation factor 4E phosphorylation. PMID:14519103

  8. Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abell, L.M.; O'Leary, M.H.

    1988-08-09

    The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30 a shows a carbon isotope effect k/sup 12//k/sup 13/ = 1.0334 +/- 0.0005 and a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9799 +/- 0.0006 at pH 4.8, 37/sup 0/C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D/sub 2/O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capablemore » of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine.« less

  9. The Genetic and Molecular Organization of the Dopa Decarboxylase Gene Cluster of Drosophila Melanogaster

    PubMed Central

    Stathakis, D. G.; Pentz, E. S.; Freeman, M. E.; Kullman, J.; Hankins, G. R.; Pearlson, N. J.; Wright, TRF.

    1995-01-01

    We report the complete molecular organization of the Dopa decarboxylase gene cluster. Mutagenesis screens recovered 77 new Df(2L)TW130 recessive lethal mutations. These new alleles combined with 263 previously isolated mutations in the cluster to define 18 essential genes. In addition, seven new deficiencies were isolated and characterized. Deficiency mapping, restriction fragment length polymorphism (RFLP) analysis and P-element-mediated germline transformation experiments determined the gene order for all 18 loci. Genomic and cDNA restriction endonuclease mapping, Northern blot analysis and DNA sequencing provided information on exact gene location, mRNA size and transcriptional direction for most of these loci. In addition, this analysis identified two transcription units that had not previously been identified by extensive mutagenesis screening. Most of the loci are contained within two dense subclusters. We discuss the effectiveness of mutagens and strategies used in our screens, the variable mutability of loci within the genome of Drosophila melanogaster, the cytological and molecular organization of the Ddc gene cluster, the validity of the one band-one gene hypothesis and a possible purpose for the clustering of genes in the Ddc region. PMID:8647399

  10. Partial purification and characterization of a novel histidine decarboxylase from Enterobacter aerogenes DL-1.

    PubMed

    Zou, Yu; Hu, Wenzhong; Jiang, Aili; Tian, Mixia

    2015-08-18

    Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.

  11. The identity of the active site of oxalate decarboxylase and the importance of the stability of active-site lid conformations1

    PubMed Central

    Just, Victoria J.; Burrell, Matthew R.; Bowater, Laura; McRobbie, Iain; Stevenson, Clare E. M.; Lawson, David M.; Bornemann, Stephen

    2007-01-01

    Oxalate decarboxylase (EC 4.1.1.2) catalyses the conversion of oxalate into carbon dioxide and formate. It requires manganese and, uniquely, dioxygen for catalysis. It forms a homohexamer and each subunit contains two similar, but distinct, manganese sites termed sites 1 and 2. There is kinetic evidence that only site 1 is catalytically active and that site 2 is purely structural. However, the kinetics of enzymes with mutations in site 2 are often ambiguous and all mutant kinetics have been interpreted without structural information. Nine new site-directed mutants have been generated and four mutant crystal structures have now been solved. Most mutants targeted (i) the flexibility (T165P), (ii) favoured conformation (S161A, S164A, D297A or H299A) or (iii) presence (Δ162–163 or Δ162–164) of a lid associated with site 1. The kinetics of these mutants were consistent with only site 1 being catalytically active. This was particularly striking with D297A and H299A because they disrupted hydrogen bonds between the lid and a neighbouring subunit only when in the open conformation and were distant from site 2. These observations also provided the first evidence that the flexibility and stability of lid conformations are important in catalysis. The deletion of the lid to mimic the plant oxalate oxidase led to a loss of decarboxylase activity, but only a slight elevation in the oxalate oxidase side reaction, implying other changes are required to afford a reaction specificity switch. The four mutant crystal structures (R92A, E162A, Δ162–163 and S161A) strongly support the hypothesis that site 2 is purely structural. PMID:17680775

  12. Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein.

    PubMed

    Escobar Galvis, M L; Marttila, S; Håkansson, G; Forsberg, J; Knorpp, C

    2001-05-01

    In this work we have further characterized the first mitochondrial nucleoside diphosphate kinase (mtNDPK) isolated from plants. The mitochondrial isoform was found to be especially abundant in reproductive and young tissues. Expression of the pea (Pisum sativum L. cv Oregon sugarpod) mtNDPK was not affected by different stress conditions. However, the pea mtNDPK was found to interact with a novel 86-kD protein, which is de novo synthesized in pea leaves upon exposure to heat. Thus, we have evidence for the involvement of mtNDPK in mitochondrial heat response in pea in vivo. Studies on oligomerization revealed that mtNDPK was found in complexes of various sizes, corresponding to the sizes of e.g. hexamers, tetramers, and dimers, indicating flexibility in oligomerization. This flexibility, also found for other NDPK isoforms, has been correlated with the ability of this enzyme to interact with other proteins. We believe that the mtNDPK is involved in heat stress response in pea, possibly as a modulator of the 86-kD protein.

  13. Glutamate and GABA-metabolizing enzymes in post-mortem cerebellum in Alzheimer's disease: phosphate-activated glutaminase and glutamic acid decarboxylase.

    PubMed

    Burbaeva, G Sh; Boksha, I S; Tereshkina, E B; Savushkina, O K; Prokhorova, T A; Vorobyeva, E A

    2014-10-01

    Enzymes of glutamate and GABA metabolism in postmortem cerebellum from patients with Alzheimer's disease (AD) have not been comprehensively studied. The present work reports results of original comparative study on levels of phosphate-activated glutaminase (PAG) and glutamic acid decarboxylase isoenzymes (GAD65/67) in autopsied cerebellum samples from AD patients and matched controls (13 cases in each group) as well as summarizes published evidence for altered levels of PAG and GAD65/67 in AD brain. Altered (decreased) levels of these enzymes and changes in links between amounts of these enzymes and other glutamate-metabolizing enzymes (such as glutamate dehydrogenase and glutamine synthetase-like protein) in AD cerebella suggest significantly impaired glutamate and GABA metabolism in this brain region, which was previously regarded as not substantially involved in AD pathogenesis.

  14. A novel MVA-mediated pathway for isoprene production in engineered E. coli.

    PubMed

    Yang, Jianming; Nie, Qingjuan; Liu, Hui; Xian, Mo; Liu, Huizhou

    2016-01-20

    To deal with the increasingly severe energy crisis and environmental consequences, biofuels and biochemicals generated from renewable resources could serve as a promising alternative for replacing petroleum as a source of fuel and chemicals, among which isoprene (2-methyl-1,3-butadiene) in particular is of great significance in that it is an important platform chemical, which has been used in industrial production of synthetic rubber for tires and coatings or aviation fuel. We firstly introduced fatty acid decarboxylase (OleTJE) from Jeotgalicoccus species into E. coli to directly convert MVA(mevalonate) into 3-methy-3-buten-1-ol. And then to transform 3-methy-3-buten-1-ol to isoprene, oleate hydratase (OhyAEM) from Elizabethkingia meningoseptica was overexpressed in E. coli. A novel biosynthetic pathway of isoprene in E. coli was established by co-expressing the heterologous mvaE gene encoding acetyl-CoA acetyltransferase/HMG-CoA reductase and mvaS gene encoding HMG-CoA synthase from Enterococcus faecalis, fatty acid decarboxylase (OleTJE) and oleate hydratase (OhyAEM). Furthermore, to enhance isoprene production, a further optimization of expression level of OleTJE, OhyAEM was carried out by using different promoters and copy numbers of plasmids. Thereafter, the fermentation process was also optimized to improve the production of isoprene. The final engineered strain, YJM33, bearing the innovative biosynthetic pathway of isoprene, was found to produce isoprene up to 2.2 mg/L and 620 mg/L under flask and fed-batch fermentation conditions, respectively. In this study, by using metabolic engineering techniques, the novel MVA-mediated biosynthetic pathway of isoprene was successfully assembled in E. coli BL21(DE3) with the heterologous MVA upper pathway, OleTJE from Jeotgalicoccus species and OhyAEM from Elizabethkingia meningoseptica. Compared with traditional MVA pathway, the novel pathway is shortened by 3 steps. In addition, this is the first report on the

  15. The effect of cytidine-diphosphate choline (CDP-choline) on brain lipid changes during aging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Medio, G.E.; Trovarelli, G.; Piccinin, G.L.

    1984-01-01

    Lipid synthesis has been tested in vivo in different brain areas of 12-month-old male rats. Cortex, striatum, brainstem, and subcortex of brain have been examined. The cerebellum was discarded. Mixtures of (2-/sup 3/H)glycerol and (Me-/sup 14/C)choline were injected into the lateral ventricle of the brain as lipid precursors, and their incorporation into total lipid, water-soluble intermediates and choline-containing phospholipids was examined 1 hr after isotope injection. In another series of experiments cytidine-5'-diphosphate choline (CDP-choline) was injected intraventricularly to the aged rats 10 min before sacrifice with a simultaneous injection, and radioactivity assays were performed as above. Distribution of radioactivity contentmore » of CDP-choline among brain areas 10 min after its administration showed a noticeable enrichment of the nucleotide and water-soluble-related compounds in the examined areas, but to a lesser degree in the cerebral cortex. The incorporation of labelled glycerol, which is severely depressed in aged rats in all four areas (Gaiti et al, 1982, 1983), was increased only in the cortex, and apparently decreased in the other areas. This last result is probably due to a dilution effect brought about by the administered cold CDP-choline upon the (/sup 14/C)-containing water-soluble metabolites. As a consequence, the (/sup 3/H)/(/sup 14/C) ratio in total lipid and in isolated phosphatidylcholine and choline plasmalogen increased after CDP-choline treatment.« less

  16. Loss of HMG-CoA Reductase in C. elegans Causes Defects in Protein Prenylation and Muscle Mitochondria

    PubMed Central

    Ranji, Parmida; Rauthan, Manish; Pitot, Christophe; Pilon, Marc

    2014-01-01

    HMG-CoA reductase is the rate-limiting enzyme in the mevalonate pathway and the target of cholesterol-lowering statins. We characterized the C. elegans hmgr-1(tm4368) mutant, which lacks HMG-CoA reductase, and show that its phenotypes recapitulate that of statin treatment, though in a more severe form. Specifically, the hmgr-1(tm4368) mutant has defects in growth, reproduction and protein prenylation, is rescued by exogenous mevalonate, exhibits constitutive activation of the UPRer and requires less mevalonate to be healthy when the UPRmt is activated by a constitutively active form of ATFS-1. We also show that different amounts of mevalonate are required for different physiological processes, with reproduction requiring the highest levels. Finally, we provide evidence that the mevalonate pathway is required for the activation of the UPRmt. PMID:24918786

  17. Up-Regulation of 1-Deoxy-d-Xylulose-5-Phosphate Synthase Enhances Production of Essential Oils in Transgenic Spike Lavender1

    PubMed Central

    Muñoz-Bertomeu, Jesús; Arrillaga, Isabel; Ros, Roc; Segura, Juan

    2006-01-01

    Spike lavender (Lavandula latifolia) is an aromatic shrub cultivated worldwide for the production of essential oils. The major constituents of these oils are monoterpenes, which are obtained from isopentenyl diphosphate and dimethylallyl diphosphate precursors through the plastidial methylerythritol phosphate (MEP) pathway and/or the cytosolic mevalonate pathway. 1-Deoxy-d-xylulose-5-P synthase (DXS) catalyzes the first step of the MEP pathway. A cDNA coding for the Arabidopsis (Arabidopsis thaliana) DXS was constitutively expressed in spike lavender. Gas chromatography/mass spectrometry analyses revealed that transgenic plants accumulated significantly more essential oils compared to controls (from 101.5% to 359.0% and from 12.2% to 74.1% yield increase compared to controls in leaves and flowers, respectively). T0 transgenic plants were grown for 2 years, self-pollinated, and the T1 seeds obtained. The inheritance of the DXS transgene was studied in the T1 generation. The increased essential oil phenotype observed in the transgenic T0 plants was maintained in the progeny that inherited the DXS transgene. Total chlorophyll and carotenoid content in DXS progenies that inherited the transgene depended on the analyzed plant, showing either no variation or a significant decrease in respect to their counterparts without the transgene. Transgenic plants had a visual phenotype similar to untransformed plants (controls) in terms of morphology, growth habit, flowering, and seed germination. Our results demonstrate that the MEP pathway contributes to essential oil production in spike lavender. They also demonstrate that the DXS enzyme plays a crucial role in monoterpene precursor biosynthesis and, thus, in essential oil production in spike lavender. In addition, our results provide a strategy to increase the essential oil production in spike lavender by metabolic engineering of the MEP pathway without apparent detrimental effects on plant development and fitness. PMID

  18. L-dopa decarboxylase (DDC) gene expression is related to outcome in patients with prostate cancer.

    PubMed

    Koutalellis, Georgios; Stravodimos, Konstantinos; Avgeris, Margaritis; Mavridis, Konstantinos; Scorilas, Andreas; Lazaris, Andreas; Constantinides, Constantinos

    2012-09-01

    What's known on the subject? and What does the study add? L-dopa decarboxylase (DDC) has been documented as a novel co-activator of androgen receptor transcriptional activity. Recently, it was shown that DDC gene expression is significantly higher in patients with PCa than in those with BPH. In the present study, there was a significant association between the DDC gene expression levels and the pathological stage and Gleason score of patients with prostate cancer (PCa). Moreover, DDC expression was shown to be an unfavourable prognostic marker of biochemical recurrence and disease-free survival in patients with PCa treated by radical prostatectomy. To determine whether L-dopa decarboxylase gene (DDC) expression levels in patients with prostate cancer (PCa) correlate to biochemical recurrence and disease prognosis after radical prostatectomy (RP). The present study consisted of 56 samples with confirmed malignancy from patients with PCa who had undergone RP at a single tertiary academic centre. Total RNA was isolated from tissue specimens and a SYBR Green fluorescence-based quantitative real-time polymerase chain reaction methodology was developed for the determination of DDC mRNA expression levels of the tested tissues. Follow-up time ranged between 1.0 and 62.0 months (mean ± SE, 28.6 ± 2.1 month; median, 31.5 months). Time to biochemical recurrence was defined as the interval between the surgery and the measurement of two consecutive values of prostate-specific antigen (PSA) ≥0.2 ng/mL. DDC expression levels were found to be positively correlated with the tumour-node-metastasis stage (P = 0.021) and Gleason score (P = 0.036) of the patients with PCa. Patients with PCa with raised DDC expression levels run a significantly higher risk of biochemical recurrence after RP, as indicated by Cox proportional regression analysis (P = 0.021). Multivariate Cox proportional regression models revealed the preoperative PSA-, age- and digital rectal examination

  19. Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 degrees C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Christopher R.; Felmy, Andrew R.; Clark, Sue B.

    2010-11-01

    In this report we present experimental solubility data for well-characterized triuranyl diphosphate tetrahydrate (TDT: (UO2)(3)(PO4)(2)center dot 4H(2)O) and Na autunite (Na[UO2PO4]center dot xH(2)O) at 23 and 50 degrees C in NaClO4-HClO4 solutions at pC(H+) = 2. Duplicate samples of TDT in 0.1, 0.5, 1.0, 2.0 and 5.0 in solutions were equilibrated at 23 and 50 degrees C. TDT solid was synthesized and characterized with ICP-OES, ATR-IR and powder XRD before and after solubility experiments. The pH of the suspensions were monitored throughout the experiments. Equilibrium was achieved from undersaturation with respect to TDT and oversaturation for Na autunite. Steady-state conditionsmore » were achieved in all cases within 82 d. TDT was unstable at ionic strengths above 0.1 m, where its complete conversion to Na autunite was observed. The ion-interaction model was used to interpret the experimental solubility data. The solubility product, log K-sp, for TDT was determined to be -49.7 and -51.3 at 23 and 50 degrees C respectively. log K for Na autunite was determined to be -24.4 (23 degrees C) and -24.1 +/- 0.2 (50 degrees C).« less

  20. Biphasic Elimination of Tenofovir Diphosphate and Nonlinear Pharmacokinetics of Zidovudine Triphosphate in a Microdosing Study

    PubMed Central

    Chen, Jianmeng; Flexner, Charles; Liberman, Rosa G.; Skipper, Paul L.; Louissaint, Nicolette; Tannenbaum, Steven R.; Hendrix, Craig; Fuchs, Edward

    2012-01-01

    Objective Phase 0 studies can provide initial pharmacokinetics (PK) data in humans and help to facilitate early drug development, but their predictive value for standard dosing is controversial. To evaluate the prediction of microdosing for active intracellular drug metabolites, we compared the PK profile of two antiretroviral drugs, zidovudine (ZDV) and tenofovir (TFV), in microdose and standard dosing regimens. Study Design We administered a microdose (100 μg) of 14C-labeled drug (ZDV or tenofovir disoproxil fumarate (TDF)) with or without a standard unlabelled dose (300 mg) to healthy volunteers. Both the parent drug in plasma and the active metabolite, ZDV-triphosphate (ZDV-TP) or TFV-diphosphate (TFV-DP) in PBMCs and CD4+ cells were measured by AMS. Results The intracellular ZDV-TP concentration increased less than proportionally over the dose range studied (100 μg to 300 mg), while the intracellular TFV-DP PK were linear over the same dose range. ZDV-TP concentrations were lower in CD4+ cells versus total peripheral blood mononuclear cells (PBMCs), while TFV-DP concentrations were not different in CD4+ cells and PBMCs. Conclusion Our data were consistent with a rate-limiting step in the intracellular phosphorylation of ZDV but not TFV. AMS shows promise for predicting the PK of active intracellular metabolites of nucleosides, but nonlinearity of PK may be seen with some drugs. PMID:23187888

  1. Defining small differences in efficacy between anti-parkinsonian agents using gait analysis: a comparison of two controlled release formulations of levodopa/decarboxylase inhibitor.

    PubMed Central

    Weller, C; O'Neill, C J; Charlett, A; Bowes, S G; Purkiss, A; Nicholson, P W; Dobbs, R J; Dobbs, S M

    1993-01-01

    1. Stride length is highly relevant to mobility and is sensitive to the effects of levodopa in Parkinsonism. Its selection as the primary outcome criterion allowed comparison of two levodopa/decarboxylase inhibitor formulations using a small number of subjects. 2. It is also desirable to improve stability. An instrumental method, based on infrared telemetry, has been developed which obtains both distance/time measures of gait and broadness of base, as measured by foot separation at mid-swing. The latter was used as a subsidiary outcome criterion. 3. Nine patients (aged 57 to 77 years) then receiving maintenance therapy for idiopathic Parkinsonism with Sinemet CR alone, but who had previously experienced end of dose effect within 4 h of receiving a dose of a conventional formulation of levodopa/decarboxylase inhibitor, were studied. 4. They received, in random order and at least 4 days apart, single doses of one tablet of Sinemet CR (200 mg levodopa/50 mg carbidopa) and of two capsules of Madopar CR (each 100 mg levodopa/25 mg benserazide), with placebo balance, at 10.00 h. Gait analysis was carried out immediately before and half-hourly for 7 h after a challenge. No routine doses of Sinemet CR were taken between 22.00 h on the night before and 17.00 h on the day of a challenge. 5. Analysis of variance showed a highly significant difference in mean stride length (P < 0.001) and in mean foot separation (P = 0.01) between serial time points, irrespective of the nature of treatment. There appeared to be a useful therapeutic response to both challenges.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8485018

  2. Biochemical identification of residues that discriminate between 3,4-dihydroxyphenylalanine decarboxylase and 3,4-dihydroxyphenylacetaldehyde synthase-mediated reactions.

    PubMed

    Liang, Jing; Han, Qian; Ding, Haizhen; Li, Jianyong

    2017-12-01

    In available insect genomes, there are several L-3,4-dihydroxyphenylalanine (L-dopa) decarboxylase (DDC)-like or aromatic amino acid decarboxylase (AAAD) sequences. This contrasts to those of mammals whose genomes contain only one DDC. Our previous experiments established that two DDC-like proteins from Drosophila actually mediate a complicated decarboxylation-oxidative deamination process of dopa in the presence of oxygen, leading to the formation of 3,4-dihydroxyphenylacetaldehyde (DHPA), CO 2 , NH 3, and H 2 O 2 . This contrasts to the typical DDC-catalyzed reaction, which produces CO 2 and dopamine. These DDC-like proteins were arbitrarily named DHPA synthases based on their critical role in insect soft cuticle formation. Establishment of reactions catalyzed by these AAAD-like proteins solved a puzzle that perplexed researchers for years, but to tell a true DHPA synthase from a DDC in the insect AAAD family remains problematic due to high sequence similarity. In this study, we performed extensive structural and biochemical comparisons between DHPA synthase and DDC. These comparisons identified several target residues potentially dictating DDC-catalyzed and DHPA synthase-catalyzed reactions, respectively. Comparison of DHPA synthase homology models with crystal structures of typical DDC proteins, particularly residues in the active sites, provided further insights for the roles these identified target residues play. Subsequent site-directed mutagenesis of the tentative target residues and activity evaluations of their corresponding mutants determined that active site His192 and Asn192 are essential signature residues for DDC- and DHPA synthase-catalyzed reactions, respectively. Oxygen is required in DHPA synthase-mediated process and this oxidizing agent is reduced to H 2 O 2 in the process. Biochemical assessment established that H 2 O 2 , formed in DHPA synthase-mediated process, can be reused as oxidizing agent and this active oxygen species is reduced to H 2

  3. Determination of agmatine using isotope dilution UPLC-tandem mass spectrometry: application to the characterization of the arginine decarboxylase pathway in Pseudomonas aeruginosa.

    PubMed

    Dalluge, Joseph J; McCurtain, Jennifer L; Gilbertsen, Adam J; Kalstabakken, Kyle A; Williams, Bryan J

    2015-07-01

    A method has been developed for the direct determination of agmatine in bacterial culture supernatants using isotope dilution ultra performance liquid chromatography (UPLC)-tandem mass spectrometry (UPLC-MS/MS). Agmatine determination in bacterial supernatants is comprised of spiking culture or isolate supernatants with a fixed concentration of uniformly labeled (13)C5,(15)N4-agmatine (synthesized by decarboxylation of uniformly labeled (13)C6,(15)N4-arginine using arginine decarboxylase from Pseudomonas aeruginosa) as an internal standard, followed by derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBDF) to improve the reversed-phase chromatographic retention characteristics of agmatine, as well as the selectivity and sensitivity of UPLC-MS/MS detection of this amine in complex biologically derived mixtures. Intrasample precisions for measurement of agmatine in culture supernatants average 4.1% (relative standard deviation). Calibration curves are linear over the range 5 nM to 10 μM, and the detection limit is estimated at 1.5 nM. To demonstrate the utility of the method, agmatine levels in supernatants of overnight cultures of wild-type (UCBPP-PA14), as well as arginine decarboxylase and agmatine deiminase mutant strains of P. aeruginosa strain UCBPP-PA14 were measured. This method verified that the mutant strains are lacking the specific metabolic capabilities to produce and metabolize agmatine. In addition, measurement of agmatine in supernatants of a panel of clinical isolates from patients with cystic fibrosis revealed that three of the P. aeruginosa isolates hyper-secreted agmatine into the supernatant, hypothesized to be a result of a mutation in the aguA gene. Because agmatine has potential inflammatory activities in the lung, this phenotype may be a virulence factor for P. aeruginosa in the lung environment of cystic fibrosis patients.

  4. Determination of agmatine using isotope dilution UPLC-tandem mass spectrometry: application to the characterization of the arginine decarboxylase pathway in Pseudomonas aeruginosa

    PubMed Central

    McCurtain, Jennifer L.; Gilbertsen, Adam J.; Kalstabakken, Kyle A.; Williams, Bryan J.

    2018-01-01

    A method has been developed for the direct determination of agmatine in bacterial culture supernatants using isotope dilution ultra performance liquid chromatography (UPLC)-tandem mass spectrometry (UPLC-MS/MS). Agmatine determination in bacterial supernatants is comprised of spiking culture or isolate supernatants with a fixed concentration of uniformly labeled 13C5,15N4-agmatine (synthesized by decarboxylation of uniformly labeled 13C6,15N4-arginine using arginine decarboxylase from Pseudomonas aeruginosa) as an internal standard, followed by derivatization with 4-fluoro-7-nitro-2,l,3-benzoxadiazole (NBDF) to improve the reversed-phase chromatographic retention characteristics of agmatine, as well as the selectivity and sensitivity of UPLC-MS/MS detection of this amine in complex biologically derived mixtures. Intrasample precisions for measurement of agmatine in culture supernatants average 4.1 % (relative standard deviation). Calibration curves are linear over the range 5 nM to 10 μM, and the detection limit is estimated at 1.5 nM. To demonstrate the utility of the method, agmatine levels in supernatants of overnight cultures of wild-type (UCBPP-PA14), as well as arginine decarboxylase and agmatine deiminase mutant strains of P. aeruginosa strain UCBPP-PA14 were measured. This method verified that the mutant strains are lacking the specific metabolic capabilities to produce and metabolize agmatine. In addition, measurement of agmatine in supernatants of a panel of clinical isolates from patients with cystic fibrosis revealed that three of the P. aeruginosa isolates hyper-secreted agmatine into the supernatant, hypothesized to be a result of a mutation in the aguA gene. Because agmatine has potential inflammatory activities in the lung, this phenotype may be a virulence factor for P. aeruginosa in the lung environment of cystic fibrosis patients. PMID:25957842

  5. [MVK gene abnormality and new approach to treatment of hyper IgD syndrome and periodic fever syndrome].

    PubMed

    Naruto, Takuya

    2007-04-01

    Hyper IgD and periodic fever syndrome (HIDS; OMIM 260920) is one of the hereditary autoinflammatory syndromes characterized by recurrent episodes of fever and inflammation.. HIDS is an autosomal recessive disorder characterized by recurrent fever attacks in early childhood. HIDS caused by mevalonate kinase (MK) mutations, also that is the gene of mevalonic aciduria (OMIM 251170). During febrile episodes, urinary mevalonate concentrations were found to be significantly elevated in patients. Diagnosis of HIDS was retrieving gene or measurement of the enzyme activity in peripheral blood lymphocyte in general. This of HIDS is an activity decline of MK, and a complete deficiency of MK becomes a mevalonic aciduria with a nervous symptom. The relation between the fever and inflammation of mevalonate or isoprenoid products are uncertain. The therapy attempt with statins, which is inhibited the next enzyme after HMG-CoA reductase, or inhibit the proinflammatory cytokines.

  6. Mycobacterial Nucleoside Diphosphate Kinase Blocks Phagosome Maturation in Murine Raw 264.7 Macrophages

    PubMed Central

    Sun, Jim; Wang, Xuetao; Lau, Alice; Liao, Ting-Yu Angela; Bucci, Cecilia; Hmama, Zakaria

    2010-01-01

    Background Microorganisms capable of surviving within macrophages are rare, but represent very successful pathogens. One of them is Mycobacterium tuberculosis (Mtb) whose resistance to early mechanisms of macrophage killing and failure of its phagosomes to fuse with lysosomes causes tuberculosis (TB) disease in humans. Thus, defining the mechanisms of phagosome maturation arrest and identifying mycobacterial factors responsible for it are key to rational design of novel drugs for the treatment of TB. Previous studies have shown that Mtb and the related vaccine strain, M. bovis bacille Calmette-Guérin (BCG), disrupt the normal function of host Rab5 and Rab7, two small GTPases that are instrumental in the control of phagosome fusion with early endosomes and late endosomes/lysosomes respectively. Methodology/Principal Findings Here we show that recombinant Mtb nucleoside diphosphate kinase (Ndk) exhibits GTPase activating protein (GAP) activity towards Rab5 and Rab7. Then, using a model of latex bead phagosomes, we demonstrated that Ndk inhibits phagosome maturation and fusion with lysosomes in murine RAW 264.7 macrophages. Maturation arrest of phagosomes containing Ndk-beads was associated with the inactivation of both Rab5 and Rab7 as evidenced by the lack of recruitment of their respective effectors EEA1 (early endosome antigen 1) and RILP (Rab7-interacting lysosomal protein). Consistent with these findings, macrophage infection with an Ndk knocked-down BCG strain resulted in increased fusion of its phagosome with lysosomes along with decreased survival of the mutant. Conclusion Our findings provide evidence in support of the hypothesis that mycobacterial Ndk is a putative virulence factor that inhibits phagosome maturation and promotes survival of mycobacteria within the macrophage. PMID:20098737

  7. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase

    PubMed Central

    Laurent, Gaëlle; German, Natalie J.; Saha, Asish K.; de Boer, Vincent C. J.; Davies, Michael; Koves, Timothy R.; Dephoure, Noah; Fischer, Frank; Boanca, Gina; Vaitheesvaran, Bhavapriya; Lovitch, Scott B.; Sharpe, Arlene H.; Kurland, Irwin J.; Steegborn, Clemens; Gygi, Steven P.; Muoio, Deborah M.; Ruderman, Neil B.; Haigis, Marcia C.

    2013-01-01

    Summary Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a novel regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a novel SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis. PMID:23746352

  8. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  9. Increasing thermal stability and catalytic activity of glutamate decarboxylase in E. coli: An in silico study.

    PubMed

    Tavakoli, Yasaman; Esmaeili, Abolghasem; Saber, Hossein

    2016-10-01

    Glutamate decarboxylase (GAD) is an enzyme that converts l-glutamate to gamma amino butyric acid (GABA) that is a widely used drug to treat mental disorders like Alzheimer's disease. In this study for the first time point mutation was performed virtually in the active site of the E. coli GAD in order to increase thermal stability and catalytic activity of the enzyme. Energy minimization and addition of water box were performed using GROMACS 5.4.6 package. PoPMuSiC 2.1 web server was used to predict potential spots for point mutation and Modeller software was used to perform point mutation on three dimensional model. Molegro virtual docker software was used for cavity detection and stimulated docking study. Results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermo- stable in all 7 mutants based on ΔΔG value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase.

    PubMed

    Laurent, Gaëlle; German, Natalie J; Saha, Asish K; de Boer, Vincent C J; Davies, Michael; Koves, Timothy R; Dephoure, Noah; Fischer, Frank; Boanca, Gina; Vaitheesvaran, Bhavapriya; Lovitch, Scott B; Sharpe, Arlene H; Kurland, Irwin J; Steegborn, Clemens; Gygi, Steven P; Muoio, Deborah M; Ruderman, Neil B; Haigis, Marcia C

    2013-06-06

    Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis, whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism, leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. The importance of SERINE DECARBOXYLASE1 (SDC1) and ethanolamine biosynthesis during embryogenesis of Arabidopsis thaliana.

    PubMed

    Yunus, Ian Sofian; Liu, Yu-Chi; Nakamura, Yuki

    2016-11-01

    In plants, ethanolamine is considered a precursor for the synthesis of choline, which is an essential dietary nutrient for animals. An enzyme serine decarboxylase (SDC) has been identified and characterized in Arabidopsis, which directly converts serine to ethanolamine, a precursor to phosphorylethanolamine and its subsequent metabolites in plants. However, the importance of SDC and ethanolamine production in plant growth and development remains unclear. Here, we show that SDC is required for ethanolamine biosynthesis in vivo and essential in plant embryogenesis in Arabidopsis. The knockout of SDC1 caused an embryonic lethal defect due to the developmental arrest of the embryos at the heart stage. During embryo development, the expression was observed at the later stages, at which developmental defect occurred in the knockout mutant. Overexpression of SDC1 in planta increased levels of ethanolamine, phosphatidylethanolamine, and phosphatidylcholine both in leaves and siliques. These results suggest that SDC1 plays an essential role in ethanolamine biosynthesis during the embryogenesis in Arabidopsis. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Dissecting the total transition state stabilization provided by amino acid side chains at orotidine 5'-monophosphate decarboxylase: a two-part substrate approach.

    PubMed

    Barnett, Shonoi A; Amyes, Tina L; Wood, Bryant M; Gerlt, John A; Richard, John P

    2008-07-29

    Kinetic analysis of decarboxylation catalyzed by S154A, Q215A, and S154A/Q215A mutant yeast orotidine 5'-monophosphate decarboxylases with orotidine 5'-monophosphate (OMP) and with a truncated nucleoside substrate (EO) activated by phosphite dianion shows (1) the side chain of Ser-154 stabilizes the transition state through interactions with the pyrimidine rings of OMP or EO, (2) the side chain of Gln-215 interacts with the phosphodianion group of OMP or with phosphite dianion, and (3) the interloop hydrogen bond between the side chains of Ser-154 and Gln-215 orients the amide side chain of Gln-215 to interact with the phosphodianion group of OMP or with phosphite dianion.

  13. Anatomical mapping of choline acetyltransferase (ChAT)-like and glutamate decarboxylase (GAD)-like immunoreactivity in outer hair cell efferents in adult rats.

    PubMed

    Dannhof, B J; Roth, B; Bruns, V

    1991-10-01

    The distribution of choline acetyltransferase (ChAT)-like and glutamate decarboxylase (GAD)-like immunoreactivity in the cochleae of 15 adult Wistar white rats was investigated using the peroxidase-antiperoxidase (PAP) technique. A monoclonal antibody to ChAT and a polyclonal antiserum to GAD were used. Immunoreaction was investigated quantitatively, in the electron microscope, on tangential sections of the tunnel of Corti and the rows of outer hair cells. ChAT-like and GAD-like immunoreactivity was found in all efferent nerve fibres in the tunnel of Corti and in all efferent synapses on the outer hair cells. A coexistence of ChAT and GAD in the efferent system to the outer hair cells of the rat is therefore assumed.

  14. Heat Stress Response in Pea Involves Interaction of Mitochondrial Nucleoside Diphosphate Kinase with a Novel 86-Kilodalton Protein1

    PubMed Central

    Escobar Galvis, Martha L.; Marttila, Salla; Håkansson, Gunilla; Forsberg, Jens; Knorpp, Carina

    2001-01-01

    In this work we have further characterized the first mitochondrial nucleoside diphosphate kinase (mtNDPK) isolated from plants. The mitochondrial isoform was found to be especially abundant in reproductive and young tissues. Expression of the pea (Pisum sativum L. cv Oregon sugarpod) mtNDPK was not affected by different stress conditions. However, the pea mtNDPK was found to interact with a novel 86-kD protein, which is de novo synthesized in pea leaves upon exposure to heat. Thus, we have evidence for the involvement of mtNDPK in mitochondrial heat response in pea in vivo. Studies on oligomerization revealed that mtNDPK was found in complexes of various sizes, corresponding to the sizes of e.g. hexamers, tetramers, and dimers, indicating flexibility in oligomerization. This flexibility, also found for other NDPK isoforms, has been correlated with the ability of this enzyme to interact with other proteins. We believe that the mtNDPK is involved in heat stress response in pea, possibly as a modulator of the 86-kD protein. PMID:11351071

  15. Ability of m-chloroperoxybenzoic acid to induce the ornithine decarboxylase marker of skin tumor promotion and inhibition of this response by gallotannins, oligomeric proanthocyanidins, and their monomeric units in mouse epidermis in vivo

    Treesearch

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Steven W. Newell; Vittorio Bottari; Richard W. Hemingway; Jean-Pierre Perchellet

    1995-01-01

    m-Chloroperoxybenzoic acid (CPBA) was tested for its ability to induce the ornithine decarboxylase (ODC) marker of skin tumor promotion. In contrast to benzoyl peroxide, dicumyl peroxide, and 2-butanol peroxide, 5 mg of CPBA applied twice at a 72-h interval induce DOC activity at least as much as 3 µg of 12-O-tetradecanoylphorbol-13.acetate (TPA)....

  16. Ability of m-chloroperoxybenzoic acid to induce the ornithine decarboxylase marker of skin tumor promotion and inhibition of this response by gallotannins, oligomeric proanthocyanidins, and their monomeric units in mouse epidermis in Vivo

    Treesearch

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Steven W. Newell; richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellet

    1995-01-01

    m-Chloroperoxybenzoic acid (CPBA) was tested for its ability to induce the ornithine decarboxylase (ODC) marker of skin tumor promotion. In contrast to benzoyl peroxide, dicumyl peroxide, and 2-butanol peroxide, 5 mg of CPBA applied twice at a 72-h interval induce ODC activity at least as much as 3 ug of 12-O-tetradecanoylphorbol-13-acetate (TPA). ODC induction peaks...

  17. The histamine-synthesizing enzyme histidine decarboxylase is upregulated by keratinocytes in atopic skin.

    PubMed

    Gutowska-Owsiak, D; Greenwald, L; Watson, C; Selvakumar, T A; Wang, X; Ogg, G S

    2014-10-01

    Histamine is an abundant mediator accumulating in the skin of atopic patients, where it is thought to be derived from immune cells. While keratinocytes express histidine decarboxylase (HDC), levels of the enzyme in normal or diseased epidermis and factors that influence its expression in human keratinocytes are not known. To assess levels of HDC in inflammatory skin diseases and factors influencing its expression. Normal and filaggrin-insufficient human keratinocytes, organotypic epidermal models and skin samples were investigated for the expression of HDC. The effect of cytokines, bacterial and allergen stimuli exposure and functional changes in differentiation were evaluated in vitro. We detected abundant expression of the HDC protein in all models studied; expression was increased in atopic skin samples. Filaggrin-insufficient keratinocytes maintained HDC levels, but exposure of keratinocytes to thymic stromal lymphopoietin, tumour necrosis factor-α, lipopolysaccharide (LPS) and house dust mite (HDM) extract increased HDC expression in vitro. Furthermore, filaggrin expression in cultured keratinocytes increased following histamine depletion. Keratinocytes express abundant HDC protein, and the levels increase in atopic skin. LPS, HDM and cytokines, which are implicated in allergic inflammation, promote the expression of the enzyme and upregulate histamine levels in keratinocytes. Actively produced histamine influences keratinocyte differentiation, suggesting functional relevance of the axis to atopic dermatitis. The findings therefore identify a new point of therapeutic intervention. © 2014 British Association of Dermatologists.

  18. Expression analysis and clinical utility of L-Dopa decarboxylase (DDC) in prostate cancer.

    PubMed

    Avgeris, Margaritis; Koutalellis, Georgios; Fragoulis, Emmanuel G; Scorilas, Andreas

    2008-10-01

    L-Dopa decarboxylase (DDC) is a pyridoxal 5'-phosphate-dependent enzyme that was found to be involved in many malignancies. The aim of this study was to investigate the mRNA expression levels of DDC in prostate tissues and to evaluate its clinical utility in prostate cancer (CaP). Total RNA was isolated from 118 tissue specimens from benign prostate hyperplasia (BPH) and CaP patients and a highly sensitive quantitative real-time RT-PCR (qRT-PCR) method for DDC mRNA quantification has been developed using the SYBR Green chemistry. LNCaP prostate cancer cell line was used as a calibrator and GAPDH as a housekeeping gene. DDC was found to be overexpressed, at the mRNA level, in the specimens from prostate cancer patients, in comparison to those from benign prostate hyperplasia patients (p<0.001). Logistic regression and ROC analysis have demonstrated that the DDC expression has significant discriminatory value between CaP and BPH (p<0.001). DDC expression status was compared with other established prognostic factors, in prostate cancer. High expression levels of DDC were found more frequently in high Gleason's score tumors (p=0.022) as well as in advanced stage patients (p=0.032). Our data reveal the potential of DDC expression, at the mRNA level, as a novel biomarker in prostate cancer.

  19. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae.

    PubMed

    Miyata, Non; Miyoshi, Takuya; Yamaguchi, Takanori; Nakazono, Toshimitsu; Tani, Motohiro; Kuge, Osamu

    2015-12-15

    Phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al. (2011) Mol. Microbiol. 80: , 248-265]. In the present study, we found that vid22Δ mutant exhibits Etn auxotrophy under PSD1-depressed conditions. Deletion of VID22 in wild-type and PSD1-depressed cells caused partial defects in PE formation through decarboxylation of PS. The enzyme activity of PS decarboxylase in an extract of vid22Δ cells was ∼70% of that in wild-type cells and similar to that in psd2Δ cells and the PS decarboxylase activity remaining in the PSD1-depressed cells became almost negligible with deletion of VID22. Thus, the vid22Δ mutation was suggested to cause a defect in the Psd2p activity. Furthermore, vid22Δ cells were shown to be defective in expression of the PSD2 gene tagged with 6×HA, the defect being ameliorated by replacement of the native promoter of the PSD2 gene with a CYC1 promoter. In addition, an α-galactosidase reporter assay revealed that the activity of the promoter of the PSD2 gene in vid22Δ cells was ∼5% of that in wild-type cells. These results showed that VID22 is required for transcriptional activation of the PSD2 gene. © 2015 Authors; published by Portland Press Limited.

  20. Multi-omics analysis reveals that ornithine decarboxylase contributes to erlotinib resistance in pancreatic cancer cells

    PubMed Central

    Song, Sang-Hoon; Lee, Naeun; Kim, Dong-Joon; Lee, Sooyeun; Jeong, Chul-Ho

    2017-01-01

    Molecular and metabolic alterations in cancer cells are one of the leading causes of acquired resistance to chemotherapeutics. In this study, we explored an experimental strategy to identify which of these alterations can induce erlotinib resistance in human pancreatic cancer. Using genetically matched erlotinib-sensitive (BxPC-3) and erlotinib-resistant (BxPC-3ER) pancreatic cancer cells, we conducted a multi-omics analysis of metabolomes and transcriptomes in these cells. Untargeted and targeted metabolomic analyses revealed significant changes in metabolic pathways involved in the regulation of polyamines, amino acids, and fatty acids. Further transcriptomic analysis identified that ornithine decarboxylase (ODC) and its major metabolite, putrescine, contribute to the acquisition of erlotinib resistance in BxPC-3ER cells. Notably, either pharmacological or genetic blockage of ODC was able to restore erlotinib sensitivity, and this could be rescued by treatment with exogenous putrescine in erlotinib-resistant BxPC-3ER cells. Moreover, using a panel of cancer cells we demonstrated that ODC expression levels in cancer cells are inversely correlated with sensitivity to chemotherapeutics. Taken together, our findings will begin to uncover mechanisms of acquired drug resistance and ultimately help to identify potential therapeutic markers in cancer. PMID:29190951

  1. Lys314 is a nucleophile in non-classical reactions of orotidine-5'-monophosphate decarboxylase.

    PubMed

    Heinrich, Daniel; Diederichsen, Ulf; Rudolph, Markus Georg

    2009-07-06

    Orotidine-5'-monophosphate decarboxylase (OMPD) catalyzes the decarboxylation of orotidine-5'-monophosphate (OMP) to uridine-5'-monophosphate (UMP) in an extremely proficient manner. The reaction does not require any cofactors and proceeds by an unknown mechanism. In addition to decarboxylation, OMPD is able to catalyze other reactions. We show that several C6-substituted UMP derivatives undergo hydrolysis or substitution reactions that depend on a lysine residue (Lys314) in the OMPD active site. 6-Cyano-UMP is converted to UMP, and UMP derivatives with good leaving groups inhibit OMPD by a suicide mechanism in which Lys314 covalently binds to the substrate. These non-classical reactivities of human OMPD were characterized by cocrystallization and freeze-trapping experiments with wild-type OMPD and two active-site mutants by using substrate and inhibitor nucleotides. The structures show that the C6-substituents are not coplanar with the pyrimidine ring. The extent of this substrate distortion is a function of the substituent geometry. Structure-based mechanisms for the reaction of 6-substituted UMP derivatives are extracted in accordance with results from mutagenesis, mass spectrometry, and OMPD enzyme activity. The Lys314-based mechanisms explain the chemodiversity of OMPD, and offer a strategy to design mechanism-based inhibitors that could be used for antineoplastic purposes for example.

  2. Nucleotide variation at the dopa decarboxylase (Ddc) gene in natural populations of Drosophila melanogaster.

    PubMed

    Tatarenkov, Andrey; Ayala, Francisco J

    2007-08-01

    We studied nucleotide sequence variation at the gene coding for dopa decarboxylase (Ddc) in seven populations of Drosophila melanogaster. Strength and pattern of linkage disequilibrium are somewhat distinct in the extensively sampled Spanish and Raleigh populations. In the Spanish population, a few sites are in strong positive association, whereas a large number of sites in the Raleigh population are associated nonrandomly but the association is not strong. Linkage disequilibrium analysis shows presence of two groups of haplotypes in the populations, each of which is fairly diverged, suggesting epistasis or inversion polymorphism. There is evidence of two forms of natural selection acting on Ddc. The McDonald-Kreitman test indicates a deficit of fixed amino acid differences between D. melanogaster and D. simulans, which may be due to negative selection. An excess of derived alleles at high frequency, significant according to the H-test, is consistent with the effect of hitchhiking. The hitchhiking may have been caused by directional selection downstream of the locus studied, as suggested by a gradual decrease of the polymorphism-to-divergence ratio. Altogether, the Ddc locus exhibits a complicated pattern of variation apparently due to several evolutionary forces. Such a complex pattern may be a result of an unusually high density of functionally important genes.

  3. Quaternary Structure of the Oxaloacetate Decarboxylase Membrane Complex and Mechanistic Relationships to Pyruvate Carboxylases*

    PubMed Central

    Balsera, Monica; Buey, Ruben M.; Li, Xiao-Dan

    2011-01-01

    The oxaloacetate decarboxylase primary Na+ pump (OAD) is an essential membrane protein complex that functions in the citrate fermentation pathway of some pathogenic bacteria under anaerobic conditions. OAD contains three different subunits: Oad-α, a biotinylated extrinsic protein that catalyzes the α-ketodecarboxylation of oxaloacetate; Oad-γ, a structural bitopic membrane protein whose cytosolic tail (named as Oad-γ′) binds tightly to Oad-α; and Oad-β, a multispan transmembrane α-helical protein that constitutes the Na+ channel. How OAD is organized structurally at the membrane and what the molecular determinants are that lead to an efficient energy coupling mechanism remain elusive. In the present work, we elucidate the stoichiometry of the native complex as well as the low resolution structure of the peripheral components of OAD (Oad-α and Oad-γ′) by small angle x-ray scattering. Our results point to a quaternary assembly similar to the pyruvate carboxylase complex organization. Herein, we propose a model in which the association in pairs of Oad-α dimers, mediated by Oad-γ, results in the acquisition of a functional oligomeric state at the bacterial membrane. New structural insights for the conformational rearrangements associated with the carboxylbiotin transfer reaction within OAD are provided. PMID:21209096

  4. Expression of a Heterologous S-Adenosylmethionine Decarboxylase cDNA in Plants Demonstrates That Changes in S-Adenosyl-l-Methionine Decarboxylase Activity Determine Levels of the Higher Polyamines Spermidine and Spermine1

    PubMed Central

    Thu-Hang, Pham; Bassie, Ludovic; Safwat, Gehan; Trung-Nghia, Pham; Christou, Paul; Capell, Teresa

    2002-01-01

    We posed the question of whether steady-state levels of the higher polyamines spermidine and spermine in plants can be influenced by overexpression of a heterologous cDNA involved in the later steps of the pathway, in the absence of any further manipulation of the two synthases that are also involved in their biosynthesis. Transgenic rice (Oryza sativa) plants engineered with the heterologous Datura stramonium S-adenosylmethionine decarboxylase (samdc) cDNA exhibited accumulation of the transgene steady-state mRNA. Transgene expression did not affect expression of the orthologous samdc gene. Significant increases in SAMDC activity translated to a direct increase in the level of spermidine, but not spermine, in leaves. Seeds recovered from a number of plants exhibited significant increases in spermidine and spermine levels. We demonstrate that overexpression of the D. stramonium samdc cDNA in transgenic rice is sufficient for accumulation of spermidine in leaves and spermidine and spermine in seeds. These findings suggest that increases in enzyme activity in one of the two components of the later parts of the pathway leading to the higher polyamines is sufficient to alter their levels mostly in seeds and, to some extent, in vegetative tissue such as leaves. Implications of our results on the design of rational approaches for the modulation of the polyamine pathway in plants are discussed in the general framework of metabolic pathway engineering. PMID:12177487

  5. Mapping of human autoantibody epitopes on aromatic L-amino acid decarboxylase.

    PubMed

    Candeloro, Paola; Voltattorni, Carla Borri; Perniola, Roberto; Bertoldi, Mariarita; Betterle, Corrado; Mannelli, Massimo; Giordano, Roberta; De Bellis, Annamaria; Tiberti, Claudio; Laureti, Stefano; Santeusanio, Fausto; Falorni, Alberto

    2007-03-01

    Aromatic l-amino acid decarboxylase (AADC) is target of autoantibodies in autoimmune polyendocrine syndrome I (APS I), especially in patients with autoimmune hepatitis. Little information is currently available on AADC autoantibody epitopes and on the interrelation between autoantibody-mediated inhibition of enzymatic activity and epitope specificity. We tested the immunoreactivity of full-length porcine AADC and of eight fragments of the enzyme with human serum from 18 patients with APS I, 199 with non-APS I autoimmune Addison's disease, 124 with type 1 diabetes mellitus, 36 with Graves' disease, and 141 healthy control subjects, and we evaluated the autoantibody-mediated enzymatic inhibition. AADC antibodies (Ab) were detected in 12 of 18 (67%) APS I patients and in six of 199 (3%) autoimmune Addison's disease patients. Four patients with autoimmune hepatitis were all positive for AADCAb. None of the 141 healthy control subjects, 82 patients with nonautoimmune adrenal insufficiency, 124 with type 1 diabetes mellitus, and 36 with Graves' disease were found positive. Two epitope regions, corresponding to amino acids 274-299 (E1) and 380-471 (E2) were identified. Localization of E1 was confirmed by displacement studies with synthetic peptides corresponding to peptides of porcine AADC. All 12 AADCAb-positive APS I sera reacted with E1, and seven of 12 (58%) reacted also with E2. E2-specific, but not E1-specific, autoantibodies were associated with a significant inhibition of in vitro AADC enzymatic activity. We mapped the human AADCAb epitopes to the middle and COOH-terminal regions of the enzyme. Autoantibodies to the COOH-terminal region induce a significant inhibition of enzymatic activity.

  6. The three-dimensional structure of "Lonely Guy" from Claviceps purpurea provides insights into the phosphoribohydrolase function of Rossmann fold-containing lysine decarboxylase-like proteins.

    PubMed

    Dzurová, Lenka; Forneris, Federico; Savino, Simone; Galuszka, Petr; Vrabka, Josef; Frébort, Ivo

    2015-08-01

    The recently discovered cytokinin (CK)-specific phosphoribohydrolase "Lonely Guy" (LOG) is a key enzyme of CK biosynthesis, converting inactive CK nucleotides into biologically active free bases. We have determined the crystal structures of LOG from Claviceps purpurea (cpLOG) and its complex with the enzymatic product phosphoribose. The structures reveal a dimeric arrangement of Rossmann folds, with the ligands bound to large pockets at the interface between cpLOG monomers. Structural comparisons highlight the homology of cpLOG to putative lysine decarboxylases. Extended sequence analysis enabled identification of a distinguishing LOG sequence signature. Taken together, our data suggest phosphoribohydrolase activity for several proteins of unknown function. © 2015 Wiley Periodicals, Inc.

  7. Lower glutamic acid decarboxylase 65-kDa isoform messenger RNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia.

    PubMed

    Glausier, Jill R; Kimoto, Sohei; Fish, Kenneth N; Lewis, David A

    2015-01-15

    Altered gamma-aminobutyric acid (GABA) signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in patients with schizophrenia and schizoaffective disorder. Levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67-kDa isoform (GAD67) in the PFC have been consistently reported to be lower in patients with these disorders, but the status of the second GABA-synthesizing enzyme, glutamic acid decarboxylase 65-kDa isoform (GAD65), remains unclear. GAD65 messenger RNA (mRNA) levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. In a subset of subject pairs, GAD65 relative protein levels were quantified by confocal immunofluorescence microscopy. Mean GAD65 mRNA levels were 13.6% lower in subjects with schizoaffective disorder but did not differ in subjects with schizophrenia relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein levels within subjects with schizoaffective disorder were not attributable to factors commonly comorbid with the diagnosis. In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in patients with schizoaffective disorder relative to patients with schizophrenia, these findings may support an interpretation that GAD65 downregulation provides a homeostatic response complementary to GAD67 downregulation that serves to reduce inhibition in the face of lower PFC network activity. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc

  8. A nonradioactive high-performance liquid chromatographic microassay for uridine 5'-monophosphate synthase, orotate phosphoribosyltransferase, and orotidine 5'-monophosphate decarboxylase.

    PubMed

    Krungkrai, J; Wutipraditkul, N; Prapunwattana, P; Krungkrai, S R; Rochanakij, S

    2001-12-15

    A novel nonradioactive, microassay method has been developed to determine simultaneously the two enzymatic activities of orotate phosphoribosyltransferase (OPRTase) and orotidine 5'-monophosphate decarboxylase (ODCase), either as a bifunctional protein (uridine 5'-monophosphate synthase, UMPS) or as separate enzymes. Substrates (orotate for OPRTase or orotidine 5'-monophosphate for ODCase) and a product (UMP) of the enzymatic assay were separated by high-performance liquid chromatography (HPLC) using a reversed-phase column and an ion-pairing system; the amount of UMP was quantified by dual-wavelength uv detection at 260 and 278 nm. This HPLC assay can easily detect picomole levels of UMP in enzymatic reactions using low specific activity UMPS of mammalian cell extracts, which is difficult to do with the other nonradioactive assays that have been described. The HPLC assay is suitable for use in protein purification and for kinetic study of these enzymes. (c)2001 Elsevier Science.

  9. Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624.

    PubMed

    Wang, Jianqiao; Hirabayashi, Sho; Mori, Toshio; Kawagishi, Hirokazu; Hirai, Hirofumi

    2016-07-01

    To improve ethanol production by Phanerochaete sordida YK-624, the pyruvate decarboxylase (PDC) gene was cloned from and reintroduced into this hyper lignin-degrading fungus; the gene encodes a key enzyme in alcoholic fermentation. We screened 16 transformant P. sordida YK-624 strains that each expressed a second, recombinant PDC gene (pdc) and then identified the transformant strain (designated GP7) with the highest ethanol production. Direct ethanol production from hardwood was 1.41 higher with GP7 than with wild-type P. sordida YK-624. RT-PCR analysis indicated that the increased PDC activity was caused by elevated recombinant pdc expression. Taken together, these results suggested that ethanol production by P. sordida YK-624 can be improved by the stable expression of an additional, recombinant pdc. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. Hepatoerythropoietic porphyria due to a novel mutation in the uroporphyrinogen decarboxylase gene

    PubMed Central

    To-Figueras, J.; Phillips, J.; Gonzalez-López, J.M.; Badenas, C.; Madrigal, I.; González-Romarís, E.M.; Ramos, C.; Aguirre, J.M.; Herrero, C.

    2013-01-01

    Summary Background Hepatoerythropoietic porphyria (HEP) is a rare form of porphyria that results from a deficiency of uroporphyrinogen decarboxylase (UROD). The disease is caused by homoallelism or heteroallelism for mutations in the UROD gene. Objective To study a 19 year-old woman from Equatorial Guinea, one of the few cases of HEP of African descent and to characterize a new mutation causing HEP. Methods Excretion of porphyrins and residual UROD activity in erythrocytes were measured and compared to other HEP patients. UROD gene of the proband was sequenced and a new mutation identified. The recombinant UROD protein was purified and assayed for enzymatic activity. The aminoacid change mapped to the UROD protein and the functional consequences were predicted. Results The patient presented a novel G170D missense mutation in homozygosity. Porphyrin excretion showed an atypical pattern in stool with a high pentaporphyrin III to isocoproporphyrin ratio. Erythrocyte UROD activity was 42 % of normal and higher than the activity found in HEP patients with a G281E mutation. The recombinant UROD protein showed a relative activity of 17 % and 60 % of wild-type towards uroporphyrinogen I and III respectively. Molecular modelling showed that glycine 170 is located on the dimer interface of UROD, in a loop containing residues 167-172 that are critical for optimal enzymatic activity and that carboxyl side chain from aspartic acid is predicted to cause negative interactions between the protein and the substrate. Conclusions The results emphasize the complex relationship between the genetic defects and the biochemical phenotype in homozygous porphyria. PMID:21668429

  11. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae

    PubMed Central

    Katow, Hideki; Katow, Tomoko; Abe, Kouki; Ooka, Shioh; Kiyomoto, Masato; Hamanaka, Gen

    2014-01-01

    Summary The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD)-expressing cells (GADCs) in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH) detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad) in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells. PMID:24357228

  12. Factors affecting the hydroxycinnamate decarboxylase/vinylphenol reductase activity of dekkera/brettanomyces: application for dekkera/brettanomyces control in red wine making.

    PubMed

    Benito, S; Palomero, F; Morata, A; Calderón, F; Suárez-Lepe, J A

    2009-01-01

    The growth of Dekkera/Brettanomyces yeasts during the ageing of red wines-which can seriously reduce the quality of the final product-is difficult to control. The present study examines the hydroxycinnamate decarboxylase/vinylphenol reductase activity of different strains of Dekkera bruxellensis and Dekkera anomala under a range of growth-limiting conditions with the aim of finding solutions to this problem. The yeasts were cultured in in-house growth media containing different quantities of growth inhibitors such as ethanol, SO(2), ascorbic acid, benzoic acid and nicostatin, different sugar contents, and at different pHs and temperatures. The reduction of p-coumaric acid and the formation of 4-ethylphenol were periodically monitored by HPLC-PDA. The results of this study allow the optimization of differential media for detecting/culturing these yeasts, and suggest possible ways of controlling these organisms in wineries.

  13. New and highly sensitive assay for L-5-hydroxytryptophan decarboxylase activity by high-performance liquid chromatography-voltammetry.

    PubMed

    Rahman, M K; Nagatsu, T; Kato, T

    1980-12-12

    This paper describes a new, inexpensive and highly sensitive assay for aromatic L-amino acid decarboxylase (AADC) activity, using L-5-hydroxytryptophan (L-5-HTP) as substrate, in rat and human brains and serum by high-performance liquid chromatography (HPLC) with voltammetric detection. L-5-HTP was used as substrate and D-5-HTP for the blank. After isolating serotonin (5-HT) formed enzymatically from L-5-HTP on a small Amberlite CG-50 column, the 5-HT was eluted with hydrochloric acid and assayed by HPLC with a voltammetric detector. N-Methyldopamine was added to each incubation mixture as an internal standard. This method is sensitive enough to measure 5-HT, formed by the enzyme, 100 fmol to 140 pmol or more. An advantage of this method is that one can incubate the enzyme for longer time (up to 150 min), as compared with AADC assay using L-DOPA as substrate, resulting in a very high sensitivity. By using this new method, AADC activity was discovered in rat serum.

  14. Substrate Induced Structural and Dynamics Changes in Human Phosphomevalonate Kinase and Implications for Mechanism

    PubMed Central

    Olson, Andrew L.; Yao, Huili; Herdendorf, Timothy J.; Miziorko, Henry M.; Hannongbua, Supa; Saparpakorn, Patchareenart; Cai, Sheng; Sem, Daniel S.

    2008-01-01

    Phosphomevalonate kinase (PMK) catalyzes an essential step in the mevalonate pathway, which is the only pathway for synthesis of isoprenoids and steroids in humans. PMK catalyzes transfer of the γ-phosphate of ATP to mevalonate 5-phosphate (M5P) to form mevalonate 5-diphosphate. Bringing these phosphate groups in proximity to react is especially challenging, given the high negative charge density on the four phosphate groups in the active site. As such, conformational and dynamics changes needed to form the Michaelis complex are of mechanistic interest. Herein, we report the characterization of substrate induced changes (Mg-ADP, M5P, and the ternary complex) in PMK, using NMR-based dynamics and chemical shift perturbation measurements. Mg-ADP and M5P Kd's were 6-60 μM in all complexes, consistent with there being little binding synergy. Binding of M5P causes the PMK structure to compress (τc= 13.5 nsec), while subsequent binding of Mg-ADP opens the structure up (τc= 17.6 nsec). The overall complex seems to stay very rigid on the psec-nsec timescale with an average NMR order parameter of S2∼0.88. Data are consistent with addition of M5P causing movement around a hinge region to permit domain closure, which would bring the M5P domain close to ATP to permit catalysis. Dynamics data identify potential hinge residues as H55 and R93, based on their low order parameters and their location in extended regions that connect the M5P and ATP domains in the PMK homology model. Likewise, D163 may be a hinge residue for the lid region that is homologous to the adenylate kinase lid, covering the “Walker-A” catalytic loop. Binding of ATP or ADP appears to cause similar conformational changes; but, these observations do not indicate an obvious role for γ-phosphate binding interactions. Indeed, the role of γ-phosphate interactions may be more subtle than suggested by ATP/ADP comparisons, since the conservative O to NH substitution in the β-γ bridge of ATP causes a

  15. Adenosine-diphosphate (ADP) receptor antagonists for the prevention of cardiovascular disease in type 2 diabetes mellitus.

    PubMed

    Valentine, Nyoli; Van de Laar, Floris A; van Driel, Mieke L

    2012-11-14

    Cardiovascular disease (CVD) is the most prevalent complication of type 2 diabetes with an estimated 65% of people with type 2 diabetes dying from a cause related to atherosclerosis. Adenosine-diphosphate (ADP) receptor antagonists like clopidogrel, ticlopidine, prasugrel and ticagrelor impair platelet aggregation and fibrinogen-mediated platelet cross-linking and may be effective in preventing CVD. To assess the effects of adenosine-diphosphate (ADP) receptor antagonists for the prevention of cardiovascular disease in type 2 diabetes mellitus. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (issue 2, 2011), MEDLINE (until April 2011) and EMBASE (until May 2011). We also performed a manual search, checking references of original articles and pertinent reviews to identify additional studies. Randomised controlled trials comparing an ADP receptor antagonist with another antiplatelet agent or placebo for a minimum of 12 months in patients with diabetes. In particular, we looked for trials assessing clinical cardiovascular outcomes. Two review authors extracted data for studies which fulfilled the inclusion criteria, using standard data extraction templates. We sought additional unpublished information and data from the principal investigators of all included studies. Eight studies with a total of 21,379 patients with diabetes were included. Three included studies investigated ticlopidine compared to aspirin or placebo. Five included studies investigated clopidogrel compared to aspirin or a combination of aspirin and dipyridamole, or compared clopidogrel in combination with aspirin to aspirin alone. All trials included patients with previous CVD except the CHARISMA trial which included patients with multiple risk factors for coronary artery disease. Overall the risk of bias of the trials was low. The mean duration of follow-up ranged from 365 days to 913 days.Data for diabetes patients on all-cause mortality, vascular

  16. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells.

    PubMed

    Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M

    1990-09-01

    The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.

  17. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells.

    PubMed Central

    Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M

    1990-01-01

    The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility. Images PMID:1697032

  18. Pinocembrin, a novel histidine decarboxylase inhibitor with anti-allergic potential in in vitro.

    PubMed

    Hanieh, Hamza; Hairul Islam, Villianur Ibrahim; Saravanan, Subramanian; Chellappandian, Muthiah; Ragul, Kessavane; Durga, Arumugam; Venugopal, Kaliyamoorthy; Senthilkumar, Venugopal; Senthilkumar, Palanisamy; Thirugnanasambantham, Krishnaraj

    2017-11-05

    Pinocembrin (5, 7- dihydroxy flavanone) is the most abundant chiral flavonoid found in propolis, exhibiting antioxidant, antimicrobial and anti-inflammatory properties. However, the effect of Pinocembrin on allergic response is unexplored. Thus, current study aimed at investigating the effects of Pinocembrin on IgE-mediated allergic response in vitro. A special emphasis was directed toward histidine decarboxylase (HDC) and other pro-allergic and pro-inflammatory mediators. Preliminary studies, using a microbiological model of Klebsiella pneumoniae, provided first evidences that suggest Pinocembrin as a potential thermal stable inhibitor for HDC. Applying docking analysis revealed possible interaction between Pinocembrin and mammalian HDC. In vitro studies validated the predicted interaction and showed that Pinocembrin inhibits HDC activity and histamine in IgE-sensitized RBL-2H3 in response to dinitrophenol (DNP)-bovine serum albumin (BSA) stimulation. In addition, Pinocembrin mitigated the damage in the mitochondrial membrane, formation of cytoplasmic granules and degranulation as indicated by lower β-hexoseaminidase level. Interestingly, it reduced range of pro-inflammatory mediators in the IgE-mediated allergic response including tumor necrosis factor (TNF)-α, interleukin (IL)-6, nitric oxide (NO), inducible NO synthase (iNOS), phosphorylation of inhibitory kappa B (IкB)-α, prostaglandin (PGE)-2 and cyclooxygenase (COX)-2. In conclusion, current study suggests Pinocembrin as a potential HDC inhibitor, and provides the first evidences it is in vitro anti-allergic properties, suggesting Pinocembrin as a new candidate for natural anti-allergic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.

    PubMed

    Bunik, Victoria I; Tylicki, Adam; Lukashev, Nikolay V

    2013-12-01

    Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed. © 2013 FEBS.

  20. Structural Asymmetry and Disulfide Bridges among Subunits Modulate the Activity of Human Malonyl-CoA Decarboxylase*

    PubMed Central

    Aparicio, David; Pérez-Luque, Rosa; Carpena, Xavier; Díaz, Mireia; Ferrer, Joan C.; Loewen, Peter C.; Fita, Ignacio

    2013-01-01

    Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is an essential facet in the regulation of fatty acid metabolism. The structure of human peroxisomal MCD reveals a molecular tetramer that is best described as a dimer of structural heterodimers, in which the two subunits present markedly different conformations. This molecular organization is consistent with half-of-the-sites reactivity. Each subunit has an all-helix N-terminal domain and a catalytic C-terminal domain with an acetyltransferase fold (GNAT superfamily). Intersubunit disulfide bridges, Cys-206–Cys-206 and Cys-243–Cys-243, can link the four subunits of the tetramer, imparting positive cooperativity to the catalytic process. The combination of a half-of-the-sites mechanism within each structural heterodimer and positive cooperativity in the tetramer produces a complex regulatory picture that is further complicated by the multiple intracellular locations of the enzyme. Transport into the peroxisome has been investigated by docking human MCD onto the peroxisomal import protein peroxin 5, which revealed interactions that extend beyond the C-terminal targeting motif. PMID:23482565