Science.gov

Sample records for mevalonate diphosphate decarboxylase

  1. Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization.

    PubMed

    Abbassi, Shakeel J; Vishwakarma, Rishi K; Patel, Parth; Kumari, Uma; Khan, Bashir M

    2015-08-01

    Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 μM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+).

  2. A preliminary crystallographic analysis of the putative mevalonate diphosphate decarboxylase from Trypanosoma brucei

    SciTech Connect

    Byres, Emma; Martin, David M. A.; Hunter, William N.

    2005-06-01

    The gene encoding the putative mevalonate diphosphate decarboxylase, an enzyme from the mevalonate pathway of isoprenoid precursor biosynthesis, has been cloned from T. brucei. Recombinant protein has been expressed, purified and highly ordered crystals obtained and characterized to aid the structure–function analysis of this enzyme. Mevalonate diphosphate decarboxylase catalyses the last and least well characterized step in the mevalonate pathway for the biosynthesis of isopentenyl pyrophosphate, an isoprenoid precursor. A gene predicted to encode the enzyme from Trypanosoma brucei has been cloned, a highly efficient expression system established and a purification protocol determined. The enzyme gives monoclinic crystals in space group P2{sub 1}, with unit-cell parameters a = 51.5, b = 168.7, c = 54.9 Å, β = 118.8°. A Matthews coefficient V{sub M} of 2.5 Å{sup 3} Da{sup −1} corresponds to two monomers, each approximately 42 kDa (385 residues), in the asymmetric unit with 50% solvent content. These crystals are well ordered and data to high resolution have been recorded using synchrotron radiation.

  3. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    SciTech Connect

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V.

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  4. Functional and conformational transitions of mevalonate diphosphate decarboxylase from Bacopa monniera.

    PubMed

    Abbassi, Shakeel; Patel, Krunal; Khan, Bashir; Bhosale, Siddharth; Gaikwad, Sushama

    2016-02-01

    Functional and conformational transitions of mevalonate diphosphate decarboxylase (MDD), a key enzyme of mevalonate pathway in isoprenoid biosynthesis, from Bacopa monniera (BmMDD), cloned and overexpressed in Escherichia coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and Circular dichroism spectroscopy. Native BmMDD is a helix dominant structure with 45% helix and 11% sheets and possesses seven tryptophan residues with two residues exposed on surface, three residues partially exposed and two situated in the interior of the protein. Thermal denaturation of BmMDD causes rapid structural transitions at and above 40°C and transient exposure of hydrophobic residues at 50°C, leading to aggregation of the protein. An acid induced molten globule like structure was observed at pH 4, exhibiting altered but compact secondary structure, distorted tertiary structure and exposed hydrophobic residues. The molten globule displayed different response at higher temperature and similar response to chemical denaturation as compared to the native protein. The surface tryptophans have predominantly positively charged amino acids around them, as indicated by higher KSV for KI as compared to that for CsCl. The native enzyme displayed two different lifetimes, τ1 (1.203±0.036 ns) and τ2 (3.473±0.12 ns) indicating two populations of tryptophan.

  5. The Putative Mevalonate Diphosphate Decarboxylase from Picrophilus torridus Is in Reality a Mevalonate-3-Kinase with High Potential for Bioproduction of Isobutene

    PubMed Central

    Hall, Stephen J.; Eastham, Graham; Licence, Peter; Stephens, Gill

    2015-01-01

    Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway. MVD is a key enzyme in engineered metabolic pathways for bioproduction of isobutene, since it catalyzes the conversion of 3-hydroxyisovalerate (3-HIV) to isobutene, an important platform chemical. The putative homologue from Picrophilus torridus has been identified as a highly efficient variant in a number of patents, but its detailed characterization has not been reported. In this study, we have successfully purified and characterized the putative MVD from P. torridus. We discovered that it is not a decarboxylase per se but an ATP-dependent enzyme, mevalonate-3-kinase (M3K), which catalyzes the phosphorylation of MVA to mevalonate-3-phosphate. The enzyme's potential in isobutene formation is due to the conversion of 3-HIV to an unstable 3-phosphate intermediate that undergoes consequent spontaneous decarboxylation to form isobutene. Isobutene production rates were as high as 507 pmol min−1 g cells−1 using Escherichia coli cells expressing the enzyme and 2,880 pmol min−1 mg protein−1 with the purified histidine-tagged enzyme, significantly higher than reported previously. M3K is a key enzyme of the novel MVA pathway discovered very recently in Thermoplasma acidophilum. We suggest that P. torridus metabolizes MVA by the same pathway. PMID:25636853

  6. Crystal Structures of Staphylococcus epidermidis Mevalonate Diphosphate Decarboxylase Bound to Inhibitory Analogs Reveal New Insight into Substrate Binding and Catalysis

    SciTech Connect

    Barta, Michael L.; Skaff, D. Andrew; McWhorter, William J.; Herdendorf, Timothy J.; Miziorko, Henry M.; Geisbrecht, Brian V.

    2011-10-28

    The polyisoprenoid compound undecaprenyl phosphate is required for biosynthesis of cell wall peptidoglycans in Gram-positive bacteria, including pathogenic Enterococcus, Streptococcus, and Staphylococcus spp. In these organisms, the mevalonate pathway is used to produce the precursor isoprenoid, isopentenyl 5-diphosphate. Mevalonate diphosphate decarboxylase (MDD) catalyzes formation of isopentenyl 5-diphosphate in an ATP-dependent irreversible reaction and is therefore an attractive target for inhibitor development that could lead to new antimicrobial agents. To facilitate exploration of this possibility, we report the crystal structure of Staphylococcus epidermidis MDD (1.85 {angstrom} resolution) and, to the best of our knowledge, the first structures of liganded MDD. These structures include MDD bound to the mevalonate 5-diphosphate analogs diphosphoglycolyl proline (2.05 {angstrom} resolution) and 6-fluoromevalonate diphosphate (FMVAPP; 2.2 {angstrom} resolution). Comparison of these structures provides a physical basis for the significant differences in K{sub i} values observed for these inhibitors. Inspection of enzyme/inhibitor structures identified the side chain of invariant Ser{sup 192} as making potential contributions to catalysis. Significantly, Ser {yields} Ala substitution of this side chain decreases k{sub cat} by {approx}10{sup 3}-fold, even though binding interactions between FMVAPP and this mutant are similar to those observed with wild type MDD, as judged by the 2.1 {angstrom} cocrystal structure of S192A with FMVAPP. Comparison of microbial MDD structures with those of mammalian counterparts reveals potential targets at the active site periphery that may be exploited to selectively target the microbial enzymes. These studies provide a structural basis for previous observations regarding the MDD mechanism and inform future work toward rational inhibitor design.

  7. The Saccharomyces cerevisiae mevalonate diphosphate decarboxylase is essential for viability, and a single Leu-to-Pro mutation in a conserved sequence leads to thermosensitivity.

    PubMed Central

    Bergès, T; Guyonnet, D; Karst, F

    1997-01-01

    The mevalonate diphosphate decarboxylase is an enzyme which converts mevalonate diphosphate to isopentenyl diphosphate, the building block of isoprenoids. We used the Saccharomyces cerevisiae temperature-sensitive mutant defective for mevalonate diphosphate decarboxylase previously described (C. Chambon, V. Ladeveve, M. Servouse, L. Blanchard, C. Javelot, B. Vladescu, and F. Karst, Lipids 26:633-636, 1991) to characterize the mutated allele. We showed that a single change in a conserved amino acid accounts for the temperature-sensitive phenotype of the mutant. Complementation experiments were done both in the erg19-mutated background and in a strain in which the ERG19 gene, which was shown to be an essential gene for yeast, was disrupted. Epitope tagging of the wild-type mevalonate diphosphate decarboxylase allowed us to isolate the enzyme in an active form by a versatile one-step immunoprecipitation procedure. Furthermore, during the course of this study, we observed that a high level of expression of the wild-type ERG19 gene led to a lower sterol steady-state accumulation compared to that of a wild-type strain, suggesting that this enzyme may be a key enzyme in mevalonate pathway regulation. PMID:9244250

  8. Active site binding modes of inhibitors of Staphylococcus aureus mevalonate diphosphate decarboxylase from docking and molecular dynamics simulations.

    PubMed

    Addo, James K; Skaff, D Andrew; Miziorko, Henry M

    2016-01-01

    Bacterial mevalonate diphosphate decarboxylase (MDD) is an attractive therapeutic target for antibacterial drug development. In this work, we discuss a combined docking and molecular dynamics strategy toward inhibitor binding to bacterial MDD. The docking parameters utilized in this study were first validated with observations for the inhibitors 6-fluoromevalonate diphosphate (FMVAPP) and diphosphoglycolylproline (DPGP) using existing structures for the Staphylococcus epidermidis enzyme. The validated docking protocol was then used to predict structures of the inhibitors bound to Staphylococcus aureus MDD using the unliganded crystal structure of Staphylococcus aureus MDD. We also investigated a possible interactions improvement by combining this docking method with molecular dynamics simulations. Thus, the predicted docking structures were analyzed in a molecular dynamics trajectory to generate dynamic models and reinforce the predicted binding modes. FMVAPP is predicted to make more extensive contacts with S. aureus MDD, forming stable hydrogen bonds with Arg144, Arg193, Lys21, Ser107, and Tyr18, as well as making stable hydrophobic interactions with Tyr18, Trp19, and Met196. The differences in predicted binding are supported by experimentally determined Ki values of 0.23 ± 0.02 and 34 ± 8 μM, for FMVAPP and DPGP, respectively. The structural information coupled with the kinetic characterization obtained from this study should be useful in defining the requirements for inhibition as well as in guiding the selection of active compounds for inhibitor optimization.

  9. Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases

    PubMed Central

    Vinokur, Jeffrey M; Korman, Tyler P; Sawaya, Michael R; Collazo, Michael; Cascio, Duillio; Bowie, James U

    2015-01-01

    In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation. PMID:25422158

  10. Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases.

    PubMed

    Vinokur, Jeffrey M; Korman, Tyler P; Sawaya, Michael R; Collazo, Michael; Cascio, Duillio; Bowie, James U

    2015-02-01

    In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation. PMID:25422158

  11. Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway.

    PubMed

    Vannice, John C; Skaff, D Andrew; Keightley, Andrew; Addo, James K; Wyckoff, Gerald J; Miziorko, Henry M

    2014-03-01

    Mevalonate (MVA) metabolism provides the isoprenoids used in archaeal lipid biosynthesis. In synthesis of isopentenyl diphosphate, the classical MVA pathway involves decarboxylation of mevalonate diphosphate, while an alternate pathway has been proposed to involve decarboxylation of mevalonate monophosphate. To identify the enzymes responsible for metabolism of mevalonate 5-phosphate to isopentenyl diphosphate in Haloferax volcanii, two open reading frames (HVO_2762 and HVO_1412) were selected for expression and characterization. Characterization of these proteins indicated that one enzyme is an isopentenyl phosphate kinase that forms isopentenyl diphosphate (in a reaction analogous to that of Methanococcus jannaschii MJ0044). The second enzyme exhibits a decarboxylase activity that has never been directly attributed to this protein or any homologous protein. It catalyzes the synthesis of isopentenyl phosphate from mevalonate monophosphate, a reaction that has been proposed but never demonstrated by direct experimental proof, which is provided in this account. This enzyme, phosphomevalonate decarboxylase (PMD), exhibits strong inhibition by 6-fluoromevalonate monophosphate but negligible inhibition by 6-fluoromevalonate diphosphate (a potent inhibitor of the classical mevalonate pathway), reinforcing its selectivity for monophosphorylated ligands. Inhibition by the fluorinated analog also suggests that the PMD utilizes a reaction mechanism similar to that demonstrated for the classical MVA pathway decarboxylase. These observations represent the first experimental demonstration in H. volcanii of both the phosphomevalonate decarboxylase and isopentenyl phosphate kinase reactions that are required for an alternate mevalonate pathway in an archaeon. These results also represent, to our knowledge, the first identification and characterization of any phosphomevalonate decarboxylase. PMID:24375100

  12. Synthesis of Mevalonate- and Fluorinated Mevalonate Prodrugs and Their in vitro Human Plasma Stability

    PubMed Central

    Kang, Soosung; Watanabe, Mizuki; Jacobs, JC; Yamaguchi, Masaya; Dahesh, Samira; Nizet, Victor; Leyh, Thomas S.; Silverman, Richard B.

    2014-01-01

    The mevalonate pathway is essential for the production of many important molecules in lipid biosynthesis. Inhibition of this pathway is the mechanism of statin cholesterol-lowering drugs, as well as the target of drugs to treat osteoporosis, to combat parasites, and to inhibit tumor cell growth. Unlike the human mevalonate pathway, the bacterial pathway appears to be regulated by diphosphomevalonate (DPM). Enzymes in the mevalonate pathway act to produce isopentenyl diphosphate, the product of the DPM decarboxylase reaction, utilize phosphorylated (charged) intermediates, which are poorly bioavailable. It has been shown that fluorinated DPMs (6-fluoro- and 6,6,6-trifluoro-5-diphosphomevalonate) are excellent inhibitors of the bacterial pathway; however, highly charged DPM and analogues are not bioavailable. To increase cellular permeability of mevalonate analogues, we have synthesized various prodrugs of mevalonate and 6-fluoro- and 6,6,6-trifluoromevalonate that can be enzymatically transformed to the corresponding DPM or fluorinated DPM analogues by esterases or amidases. To probe the required stabilities as potentially bioavailable prodrugs, we measured the half-lives of esters, amides, carbonates, acetals, and ketal promoieties of mevalonate and the fluorinated mevalonate analogues in human blood plasma. Stability studies showed that the prodrugs are converted to the mevalonates in human plasma with a wide range of half-lives. These studies provide stability data for a variety of prodrug options having varying stabilities and should be very useful in the design of appropriate prodrugs of mevalonate and fluorinated mevalonates. PMID:25461893

  13. Synthesis of mevalonate- and fluorinated mevalonate prodrugs and their in vitro human plasma stability.

    PubMed

    Kang, Soosung; Watanabe, Mizuki; Jacobs, J C; Yamaguchi, Masaya; Dahesh, Samira; Nizet, Victor; Leyh, Thomas S; Silverman, Richard B

    2015-01-27

    The mevalonate pathway is essential for the production of many important molecules in lipid biosynthesis. Inhibition of this pathway is the mechanism of statin cholesterol-lowering drugs, as well as the target of drugs to treat osteoporosis, to combat parasites, and to inhibit tumor cell growth. Unlike the human mevalonate pathway, the bacterial pathway appears to be regulated by diphosphomevalonate (DPM). Enzymes in the mevalonate pathway act to produce isopentenyl diphosphate, the product of the DPM decarboxylase reaction, utilize phosphorylated (charged) intermediates, which are poorly bioavailable. It has been shown that fluorinated DPMs (6-fluoro- and 6,6,6-trifluoro-5-diphosphomevalonate) are excellent inhibitors of the bacterial pathway; however, highly charged DPM and analogs are not bioavailable. To increase cellular permeability of mevalonate analogs, we have synthesized various prodrugs of mevalonate and 6-fluoro- and 6,6,6-trifluoromevalonate that can be enzymatically transformed to the corresponding DPM or fluorinated DPM analogs by esterases or amidases. To probe the required stabilities as potentially bioavailable prodrugs, we measured the half-lives of esters, amides, carbonates, acetals, and ketal promoieties of mevalonate and the fluorinated mevalonate analogs in human blood plasma. Stability studies showed that the prodrugs are converted to the mevalonates in human plasma with a wide range of half-lives. These studies provide stability data for a variety of prodrug options having varying stabilities and should be very useful in the design of appropriate prodrugs of mevalonate and fluorinated mevalonates.

  14. Preliminary crystallographic data for the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from brewers' yeast.

    PubMed

    Dyda, F; Furey, W; Swaminathan, S; Sax, M; Farrenkopf, B; Jordan, F

    1990-10-15

    Single crystals of the thiamin diphosphate (the vitamin B1 coenzyme)-dependent enzyme pyruvate decarboxylase (EC 4.1.1.1) from brewers' yeast have been grown using polyethylene glycol as a precipitating agent. Crystals of the homotetrameric version alpha 4 of the holoenzyme are triclinic, space group P1, with cell constants a = 81.0, b = 82.4, c = 116.6 A, alpha = 69.5 beta = 72.6, gamma = 62.4 degrees. The crystals are reasonably stable in a rotating anode x-ray beam and diffract to at least 2.5 A resolution. The Vm value of 2.55 A/dalton is consistent with a unit cell containing four subunits with mass of approximately 60 kDa each. Rotation function results with native data indicate strong non-crystallographic 222 symmetry relating the four identical subunits, thus density averaging methods are likely to play a role in the structure determination.

  15. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.

    PubMed

    Kim, Yong-Kyoung; Kim, Yeon Bok; Uddin, Md Romij; Lee, Sanghyun; Kim, Soo-Un; Park, Sang Un

    2014-10-17

    To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and PgFPS than that by the wild-type control. Among the hairy root lines transformed with PgMVD, M18 showed the highest level of transcription compared to the control (14.5-fold higher). Transcriptions of F11 and F20 transformed with PgFPS showed 11.1-fold higher level compared with control. In triterpene analysis, M25 of PgMVD produced 4.4-fold higher stigmasterol content (138.95 μg/100 mg, dry weight [DW]) than that by the control; F17 of PgFPS showed the highest total ginsenoside (36.42 mg/g DW) content, which was 2.4-fold higher compared with control. Our results indicate that metabolic engineering in P. ginseng was successfully achieved through Agrobacterium rhizogenes-mediated transformation and that the accumulation of phytosterols and ginsenosides was enhanced by introducing the PgMVD and PgFPS genes into the hairy roots of the plant. Our results suggest that PgMVD and PgFPS play an important role in the triterpene biosynthesis of P. ginseng.

  16. Mechanism of reconstitution of brewers' yeast pyruvate decarboxylase with thiamin diphosphate and magnesium.

    PubMed

    Vaccaro, J A; Crane, E J; Harris, T K; Washabaugh, M W

    1995-10-01

    Reconstitution of apo-pyruvate decarboxylase isozymes (PDC, EC 4.1.1.1) from Saccharomyces carlsbergensis was investigated by determination of the steady-state kinetics of the reaction with thiamin diphosphate (TDP) and Mg2+ in the presence and absence of substrate (pyruvate) or allosteric effector (pyruvamide). Reconstitution of the PDC isozyme mixture and alpha 4 isozyme (alpha 4-PDC) exhibits biphasic kinetics with 52 +/- 11% of the PDC reacting with k1 = (1.0 +/- 0.3) x 10(-2) s-1 and 48 +/- 12% of the PDC reacting with k2 = (1.1 +/- 0.6) x 10(-1) s-1 when TDP (KTDP = 0.5 +/- 0.2 mM) is added to apo-PDC equilibrated with saturating Mg2+. PDC reconstitution exhibits first-order kinetics with k1 = (1.6 +/- 0.5) x 10(-2) s-1 upon addition of Mg2+ (KMg2+ = 0.2 +/- 0.1 mM) to apo-PDC equilibrated with saturating TDP. Biphasic kinetics for the PDC isozymes provides evidence that apo-PDC reconstitution with TDP and Mg2+ involves two pathways, TDP binding followed by Mg2+ (k1) or Mg2+ binding followed by TDP (k2). This is supported by a change in reconstitution pathway with the order of cofactor addition and is inconsistent with a single pathway involving ordered binding of the metal ion followed by TDP. The presence of pyruvamide has no significant effect on the rate constants for apo-PDC reconstitution and favors the k2 pathway; pyruvate decreases the value of k2 < or = 3-fold and has no effect on the value of k1.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Distribution of the thiamin diphosphate C(2)-proton during catalysis of acetaldehyde formation by brewers' yeast pyruvate decarboxylase.

    PubMed

    Harris, T K; Washabaugh, M W

    1995-10-31

    The distribution of tritium derived from enzyme-bound [thiazole-2-T]thiamin diphosphate (TDP) during the reaction of pyruvate to form acetaldehyde catalyzed by pyruvate decarboxylase isozymes (PDC; EC 4.1.1.1) from Saccharomyces carlsbergensis was determined under single-turnover conditions ([E] > [S]) in the presence of the nonsubstrate allosteric effector pyruvamide. The specific radioactivity of the [1-L]acetaldehyde product and solvent ([L]H2O) was 43 +/- 4% and 54 +/- 2%, respectively, of the initial specific radioactivity of PDC-bound [thiazole-2-T]TDP and was independent of the extent of the single-turnover reaction. There is little (< or = 3%) or no return of the abstracted C(2)-hydron to the C(2) position of PDC-bound TDP. This provides evidence that the abstracted C(2)-hydron is involved in the specific protonation of the C(alpha) position of the PDC-bound intermediate 2-(1-hydroxyethyl)thiamin diphosphate (HETDP), which is cleaved to form [1-L]acetaldehyde and PDC-bound [thiazole-2-H]TDP. The partial exchange of C(2)-derived tritium into solvent requires that (1) hydron transfer from C(2) occurs to a catalytic-base in which the conjugate catalytic acid is partially shielded from hydron exchange with the solvent, (2) the conjugate catalytic acid transfers the C(2)-derived hydron to the C(alpha) position of HETDP, and (3) hydron transfer to C(2) to regenerate the coenzyme occurs either from solvent directly or from a second catalytic acid of the enzyme that undergoes rapid hydron exchange with the solvent.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Mevalonate-Farnesal Biosynthesis in Ticks: Comparative Synganglion Transcriptomics and a New Perspective.

    PubMed

    Zhu, Jiwei; Khalil, Sayed M; Mitchell, Robert D; Bissinger, Brooke W; Egekwu, Noble; Sonenshine, Daniel E; Roe, R Michael

    2016-01-01

    Juvenile hormone (JH) controls the growth, development, metamorphosis, and reproduction of insects. For many years, the general assumption has been that JH regulates tick and other acarine development and reproduction the same as in insects. Although researchers have not been able to find the common insect JHs in hard and soft tick species and JH applications appear to have no effect on tick development, it is difficult to prove the negative or to determine whether precursors to JH are made in ticks. The tick synganglion contains regions which are homologous to the corpora allata, the biosynthetic source for JH in insects. Next-gen sequencing of the tick synganglion transcriptome was conducted separately in adults of the American dog tick, Dermacentor variabilis, the deer tick, Ixodes scapularis, and the relapsing fever tick, Ornithodoros turicata as a new approach to determine whether ticks can make JH or a JH precursor. All of the enzymes that make up the mevalonate pathway from acetyl-CoA to farnesyl diphosphate (acetoacetyl-CoA thiolase, HMG-S, HMG-R, mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, and farnesyl diphosphate synthase) were found in at least one of the ticks studied but most were found in all three species. Sequence analysis of the last enzyme in the mevalonate pathway, farnesyl diphosphate synthase, demonstrated conservation of the seven prenyltransferase regions and the aspartate rich motifs within those regions typical of this enzyme. In the JH branch from farnesyl diphosphate to JH III, we found a putative farnesol oxidase used for the conversion of farnesol to farnesal in the synganglion transcriptome of I. scapularis and D. variabilis. Methyltransferases (MTs) that add a methyl group to farnesoic acid to make methyl farnesoate were present in all of the ticks studied with similarities as high as 36% at the amino acid level to insect JH acid methyltransferase (JHAMT). However, when the tick MTs were compared to

  19. Mevalonate-Farnesal Biosynthesis in Ticks: Comparative Synganglion Transcriptomics and a New Perspective

    PubMed Central

    Zhu, Jiwei; Khalil, Sayed M.; Mitchell, Robert D.; Bissinger, Brooke W.; Egekwu, Noble; Sonenshine, Daniel E.; Roe, R. Michael

    2016-01-01

    Juvenile hormone (JH) controls the growth, development, metamorphosis, and reproduction of insects. For many years, the general assumption has been that JH regulates tick and other acarine development and reproduction the same as in insects. Although researchers have not been able to find the common insect JHs in hard and soft tick species and JH applications appear to have no effect on tick development, it is difficult to prove the negative or to determine whether precursors to JH are made in ticks. The tick synganglion contains regions which are homologous to the corpora allata, the biosynthetic source for JH in insects. Next-gen sequencing of the tick synganglion transcriptome was conducted separately in adults of the American dog tick, Dermacentor variabilis, the deer tick, Ixodes scapularis, and the relapsing fever tick, Ornithodoros turicata as a new approach to determine whether ticks can make JH or a JH precursor. All of the enzymes that make up the mevalonate pathway from acetyl-CoA to farnesyl diphosphate (acetoacetyl-CoA thiolase, HMG-S, HMG-R, mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, and farnesyl diphosphate synthase) were found in at least one of the ticks studied but most were found in all three species. Sequence analysis of the last enzyme in the mevalonate pathway, farnesyl diphosphate synthase, demonstrated conservation of the seven prenyltransferase regions and the aspartate rich motifs within those regions typical of this enzyme. In the JH branch from farnesyl diphosphate to JH III, we found a putative farnesol oxidase used for the conversion of farnesol to farnesal in the synganglion transcriptome of I. scapularis and D. variabilis. Methyltransferases (MTs) that add a methyl group to farnesoic acid to make methyl farnesoate were present in all of the ticks studied with similarities as high as 36% at the amino acid level to insect JH acid methyltransferase (JHAMT). However, when the tick MTs were compared to

  20. Detection and Time Course of Formation of Major Thiamin Diphosphate-Bound Covalent Intermediates Derived from a Chromophoric Substrate Analogue on Benzoylformate Decarboxylase

    SciTech Connect

    Chakraborty, Sumit; Nemeria, Natalia S.; Balakrishnan, Anand; Brandt, Gabriel S.; Kneen, Malea M.; Yep, Alejandra; McLeish, Michael J.; Kenyon, George L.; Petsko, Gregory A.; Ringe, Dagmar; Jordan, Frank

    2009-04-02

    The mechanism of the enzyme benzoylformate decarboxylase (BFDC), which carries out a typical thiamin diphosphate (ThDP)-dependent nonoxidative decarboxylation reaction, was studied with the chromophoric alternate substrate (E)-2-oxo-4(pyridin-3-yl)-3-butenoic acid (3-PKB). Addition of 3-PKB resulted in the appearance of two transient intermediates formed consecutively, the first one to be formed a predecarboxylation ThDP-bound intermediate with {lambda}{sub max} at 477 nm, and the second one corresponding to the first postdecarboxylation intermediate the enamine with {lambda}{sub max} at 437 nm. The time course of formation/depletion of the PKB-ThDP covalent complex and of the enamine showed that decarboxylation was slower than formation of the PKB-ThDP covalent adduct. When the product of decarboxylation 3-(pyridin-3-yl)acrylaldehyde (PAA) was added to BFDC, again an absorbance with {lambda}{sub max} at 473 nm was formed, corresponding to the tetrahedral adduct of PAA with ThDP. Addition of well-formed crystals of BFDC to a solution of PAA resulted in a high resolution (1.34 {angstrom}) structure of the BFDC-bound adduct of ThDP with PAA confirming the tetrahedral nature at the C2{alpha} atom, rather than of the enamine, and supporting the assignment of the {lambda}{sub max} at 473 nm to the PAA-ThDP adduct. The structure of the PAA-ThDP covalent complex is the first example of a product-ThDP adduct on BFDC. Similar studies with 3-PKB indicated that decarboxylation had taken place. Evidence was also obtained for the slow formation of the enamine intermediate when BFDC was incubated with benzaldehyde, the product of the decarboxylation reaction thus confirming its presence on the reaction pathway.

  1. Identification of ten mevalonate enzyme-encoding genes and their expression in response to juvenile hormone levels in Leptinotarsa decemlineata (Say).

    PubMed

    Li, Qian; Meng, Qing-Wei; Lü, Feng-Gong; Guo, Wen-Chao; Li, Guo-Qing

    2016-06-15

    The mevalonate pathway is responsible for the biosynthesis of many essential molecules important in insect development, reproduction, chemical communication and defense. Based on Leptinotarsa decemlineata transcriptome and genome data, we identified ten genes that encoded acetoacetyl-CoA thiolase (LdAACT1 and LdAACT2), hydroxymethylglutaryl (HMA)-CoA synthase (LdHMGS), HMG-CoA reductase (LdHMGR1 and LdHMGR2), mevalonate kinase (LdMevK), phospho-mevalonate kinase (LdPMK), mevalonate diphosphate decarboxylase (LdMDD), isopentenyl-diphosphate isomerase (LdIDI) and farnesyl pyrophosphate synthetase (LdFPPS). Nine of these genes (except for LdAACT1) were mainly expressed in the larval brain-corpora cardiaca-corpora allata complex, and adult ovary and testis. The 9 genes were transcribed at high levels right after each ecdysis, and at low levels in the mid instar. Therefore, the 9 genes were indicated to be involved in JH biosynthesis. Moreover, knockdown of a JH biosynthesis gene LdJHAMT to lower JH titer significantly downregulated the transcription of the 9 genes. Ingestion of JH to activate JH signaling also significantly suppressed the expression of the 9 genes. It appears that the accumulation of JH precursors in LdJHAMT RNAi larvae and a high JH titer in JH-fed specimens may cause negative feedbacks to repress the expression of the 9 mevalonate enzyme-encoding genes (excluding LdAACT1) to balance the enzyme quantity in L. decemlineata. PMID:26899871

  2. Mevalonate Biosynthesis Intermediates Are Key Regulators of Innate Immunity in Bovine Endometritis.

    PubMed

    Healey, Gareth D; Collier, Christine; Griffin, Sholeem; Schuberth, Hans-Joachim; Sandra, Olivier; Smith, David G; Mahan, Suman; Dieuzy-Labaye, Isabelle; Sheldon, I Martin

    2016-01-15

    Metabolic changes can influence inflammatory responses to bacteria. To examine whether localized manipulation of the mevalonate pathway impacts innate immunity, we exploited a unique mucosal disease model, endometritis, where inflammation is a consequence of innate immunity. IL responses to pathogenic bacteria and LPS were modulated in bovine endometrial cell and organ cultures by small molecules that target the mevalonate pathway. Treatment with multiple statins, bisphosphonates, squalene synthase inhibitors, and small interfering RNA showed that inhibition of farnesyl-diphosphate farnesyl transferase (squalene synthase), but not 3-hydroxy-3-methylglutaryl-CoA reductase or farnesyl diphosphate synthase, reduced endometrial organ and cellular inflammatory responses to pathogenic bacteria and LPS. Although manipulation of the mevalonate pathway reduced cellular cholesterol, impacts on inflammation were independent of cholesterol concentration as cholesterol depletion using cyclodextrins did not alter inflammatory responses. Treatment with the isoprenoid mevalonate pathway-intermediates, farnesyl diphosphate and geranylgeranyl diphosphate, also reduced endometrial cellular inflammatory responses to LPS. These data imply that manipulating the mevalonate pathway regulates innate immunity within the endometrium, and that isoprenoids are regulatory molecules in this process, knowledge that could be exploited for novel therapeutic strategies. PMID:26673142

  3. Mevalonate Biosynthesis Intermediates Are Key Regulators of Innate Immunity in Bovine Endometritis

    PubMed Central

    Collier, Christine; Griffin, Sholeem; Schuberth, Hans-Joachim; Sandra, Olivier; Smith, David G.; Mahan, Suman; Dieuzy-Labaye, Isabelle; Sheldon, I. Martin

    2016-01-01

    Metabolic changes can influence inflammatory responses to bacteria. To examine whether localized manipulation of the mevalonate pathway impacts innate immunity, we exploited a unique mucosal disease model, endometritis, where inflammation is a consequence of innate immunity. IL responses to pathogenic bacteria and LPS were modulated in bovine endometrial cell and organ cultures by small molecules that target the mevalonate pathway. Treatment with multiple statins, bisphosphonates, squalene synthase inhibitors, and small interfering RNA showed that inhibition of farnesyl-diphosphate farnesyl transferase (squalene synthase), but not 3-hydroxy-3-methylglutaryl-CoA reductase or farnesyl diphosphate synthase, reduced endometrial organ and cellular inflammatory responses to pathogenic bacteria and LPS. Although manipulation of the mevalonate pathway reduced cellular cholesterol, impacts on inflammation were independent of cholesterol concentration as cholesterol depletion using cyclodextrins did not alter inflammatory responses. Treatment with the isoprenoid mevalonate pathway-intermediates, farnesyl diphosphate and geranylgeranyl diphosphate, also reduced endometrial cellular inflammatory responses to LPS. These data imply that manipulating the mevalonate pathway regulates innate immunity within the endometrium, and that isoprenoids are regulatory molecules in this process, knowledge that could be exploited for novel therapeutic strategies. PMID:26673142

  4. Fruit color mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isoprenoids are a large class of compounds that are present in all living organisms. They are derived from the 5C building blocks isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In plants, IPP is synthesized in the cytoplasm from mevalonic acid via the “MVA pathway” a...

  5. Biosynthesis of the labdane diterpene marrubiin in Marrubium vulgare via a non-mevalonate pathway.

    PubMed

    Knöss, W; Reuter, B; Zapp, J

    1997-09-01

    The biosynthesis of the furanic labdane diterpene marrubiin has been studied in plantlets and shoot cultures of Marrubium vulgare (Lamiaceae). The use of [2-14C]acetate, [2-14C]pyruvate, [2-14C]mevalonic acid and [U-14C]glucose incorporation experiments showed that the labelling of sterols in etiolated shoot cultures of M. vulgare was in accordance with their biosynthesis via the acetate-mevalonate pathway. In contrast, the incorporation rates of these precursors into the diterpene marrubiin could not be explained by biosynthesis of this compound via the acetate-mevalonate pathway. Cultivation of etiolated shoot cultures of M. vulgare on medium containing [1-13C]glucose and subsequent 13C-NMR spectroscopy of marrubiin led to the conclusion that the biosynthesis of marrubiin follows a non-mevalonate pathway. All isoprenic units of 13C-labelled marrubiin were enriched in those carbons that correspond to positions 1 and 5 of a putative precursor isopentenyl diphosphate. This labelling pattern from [1-13C]glucose is consistent with an alternative pathway via trioses, which has already been shown to occur in Eubacteria and Gymnospermae. The labdane skeleton is a precursor of many other skeletal types of diterpenes. Therefore it becomes obvious that in connection with the few known examples of a non-mevalonate pathway to isoprenoids the formation of some isoprenoids in plants via a non-mevalonate pathway might be quite common.

  6. Mevalonate kinase deficiency: current perspectives

    PubMed Central

    Favier, Leslie A; Schulert, Grant S

    2016-01-01

    Mevalonate kinase deficiency (MKD) is a recessively inherited autoinflammatory disorder with a spectrum of manifestations, including the well-defined clinical phenotypes of hyperimmunoglobulinemia D and periodic fever syndrome and mevalonic aciduria. Patients with MKD have recurrent attacks of hyperinflammation associated with fever, abdominal pain, arthralgias, and mucocutaneous lesions, and more severely affected patients also have dysmorphisms and central nervous system anomalies. MKD is caused by mutations in the gene encoding mevalonate kinase, with the degree of residual enzyme activity largely determining disease severity. Mevalonate kinase is essential for the biosynthesis of nonsterol isoprenoids, which mediate protein prenylation. Although the precise pathogenesis of MKD remains unclear, increasing evidence suggests that deficiency in protein prenylation leads to innate immune activation and systemic hyperinflammation. Given the emerging understanding of MKD as an autoinflammatory disorder, recent treatment approaches have largely focused on cytokine-directed biologic therapy. Herein, we review the current genetic and pathologic understanding of MKD, its various clinical phenotypes, and the evolving treatment approach for this multifaceted disorder. PMID:27499643

  7. Negative Feedbacks by Isoprenoids on a Mevalonate Kinase Expressed in the Corpora Allata of Mosquitoes

    PubMed Central

    Noriega, Fernando G.

    2015-01-01

    Background Juvenile hormones (JH) regulate development and reproductive maturation in insects. JHs are synthesized through the mevalonate pathway (MVAP), an ancient metabolic pathway present in the three domains of life. Mevalonate kinase (MVK) is a key enzyme in the MVAP. MVK catalyzes the synthesis of phosphomevalonate (PM) by transferring the γ-phosphoryl group from ATP to the C5 hydroxyl oxygen of mevalonic acid (MA). Despite the importance of MVKs, these enzymes have been poorly characterized in insects. Results We functionally characterized an Aedes aegypti MVK (AaMVK) expressed in the corpora allata (CA) of the mosquito. AaMVK displayed its activity in the presence of metal cofactors. Different nucleotides were used by AaMVK as phosphoryl donors. In the presence of Mg2+, the enzyme has higher affinity for MA than ATP. The activity of AaMVK was regulated by feedback inhibition from long-chain isoprenoids, such as geranyl diphosphate (GPP) and farnesyl diphosphate (FPP). Conclusions AaMVK exhibited efficient inhibition by GPP and FPP (Ki less than 1 μM), and none by isopentenyl pyrophosphate (IPP) and dimethyl allyl pyrophosphate (DPPM). These results suggest that GPP and FPP might act as physiological inhibitors in the synthesis of isoprenoids in the CA of mosquitoes. Changing MVK activity can alter the flux of precursors and therefore regulate juvenile hormone biosynthesis. PMID:26566274

  8. p53 regulates the mevalonate pathway in human glioblastoma multiforme

    PubMed Central

    Laezza, C; D'Alessandro, A; Di Croce, L; Picardi, P; Ciaglia, E; Pisanti, S; Malfitano, A M; Comegna, M; Faraonio, R; Gazzerro, P; Bifulco, M

    2015-01-01

    The mevalonate (MVA) pathway is an important metabolic pathway implicated in multiple aspects of tumorigenesis. In this study, we provided evidence that p53 induces the expression of a group of enzymes of the MVA pathway including 3′-hydroxy-3′-methylglutaryl-coenzyme A reductase, MVA kinase, farnesyl diphosphate synthase and farnesyl diphosphate farnesyl transferase 1, in the human glioblastoma multiforme cell line, U343 cells, and in normal human astrocytes, NHAs. Genetic and pharmacologic perturbation of p53 directly influences the expression of these genes. Furthermore, p53 is recruited to the gene promoters in designated p53-responsive elements, thereby increasing their transcription. Such effect was abolished by site-directed mutagenesis in the p53-responsive element of promoter of the genes. These findings highlight another aspect of p53 functions unrelated to tumor suppression and suggest p53 as a novel regulator of the MVA pathway providing insight into the role of this pathway in cancer progression. PMID:26469958

  9. Genetics Home Reference: mevalonate kinase deficiency

    MedlinePlus

    ... cytoskeleton), gene activity (expression), and protein production and modification. Most MVK gene mutations that cause mevalonate kinase ... What are the different ways in which a genetic condition can be inherited? More about Inheriting Genetic ...

  10. A family of transketolases that directs isoprenoid biosynthesis via a mevalonate-independent pathway.

    PubMed

    Lange, B M; Wildung, M R; McCaskill, D; Croteau, R

    1998-03-01

    Isopentenyl diphosphate, the common precursor of all isoprenoids, has been widely assumed to be synthesized by the acetate/mevalonate pathway in all organisms. However, based on in vivo feeding experiments, isopentenyl diphosphate formation in several eubacteria, a green alga, and plant chloroplasts has been demonstrated very recently to originate via a mevalonate-independent route from pyruvate and glyceraldehyde 3-phosphate as precursors. Here we describe the cloning from peppermint (Mentha x piperita) and heterologous expression in Escherichia coli of 1-deoxy-D-xylulose-5-phosphate synthase, the enzyme that catalyzes the first reaction of this pyruvate/glyceraldehyde 3-phosphate pathway. This synthase gene contains an ORF of 2,172 base pairs. When the proposed plastid targeting sequence is excluded, the deduced amino acid sequence indicates the peppermint synthase to be about 650 residues in length, corresponding to a native size of roughly 71 kDa. The enzyme appears to represent a novel class of highly conserved transketolases and likely plays a key role in the biosynthesis of plastid-derived isoprenoids essential for growth, development, and defense in plants. PMID:9482845

  11. The potential of the mevalonate pathway for enhanced isoprenoid production.

    PubMed

    Liao, Pan; Hemmerlin, Andréa; Bach, Thomas J; Chye, Mee-Len

    2016-01-01

    The cytosol-localised mevalonic acid (MVA) pathway delivers the basic isoprene unit isopentenyl diphosphate (IPP). In higher plants, this central metabolic intermediate is also synthesised by the plastid-localised methylerythritol phosphate (MEP) pathway. Both MVA and MEP pathways conspire through exchange of intermediates and regulatory interactions. Products downstream of IPP such as phytosterols, carotenoids, vitamin E, artemisinin, tanshinone and paclitaxel demonstrate antioxidant, cholesterol-reducing, anti-ageing, anticancer, antimalarial, anti-inflammatory and antibacterial activities. Other isoprenoid precursors including isoprene, isoprenol, geraniol, farnesene and farnesol are economically valuable. An update on the MVA pathway and its interaction with the MEP pathway is presented, including the improvement in the production of phytosterols and other isoprenoid derivatives. Such attempts are for instance based on the bioengineering of microbes such as Escherichia coli and Saccharomyces cerevisiae, as well as plants. The function of relevant genes in the MVA pathway that can be utilised in metabolic engineering is reviewed and future perspectives are presented. PMID:26995109

  12. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, Rodney Bruce; Wildung, Mark Raymond; Burke, Charles Cullen; Gershenzon, Jonathan

    1999-01-01

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate.

  13. Geranyl diphosphate synthase from mint

    DOEpatents

    Croteau, R.B.; Wildung, M.R.; Burke, C.C.; Gershenzon, J.

    1999-03-02

    A cDNA encoding geranyl diphosphate synthase from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Accordingly, an isolated DNA sequence (SEQ ID No:1) is provided which codes for the expression of geranyl diphosphate synthase (SEQ ID No:2) from peppermint (Mentha piperita). In other aspects, replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase or for a base sequence sufficiently complementary to at least a portion of the geranyl diphosphate synthase DNA or RNA to enable hybridization therewith (e.g., antisense geranyl diphosphate synthase RNA or fragments of complementary geranyl diphosphate synthase DNA which are useful as polymerase chain reaction primers or as probes for geranyl diphosphate synthase or related genes). In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase that may be used to facilitate the production, isolation and purification of significant quantities of recombinant geranyl diphosphate synthase for subsequent use, to obtain expression or enhanced expression of geranyl diphosphate synthase in plants in order to enhance the production of monoterpenoids, to produce geranyl diphosphate in cancerous cells as a precursor to monoterpenoids having anti-cancer properties or may be otherwise employed for the regulation or expression of geranyl diphosphate synthase or the production of geranyl diphosphate. 5 figs.

  14. Structure and Mechanism of the Farnesyl Diphosphate Synthase from Trypanosoma cruzi: Implications for Drug Design

    SciTech Connect

    Gabelli,S.; McLellan, J.; Montalvetti, A.; Oldfield, E.; Docampo, R.; Amzel, L.

    2006-01-01

    Typanosoma cruzi, the causative agent of Chagas disease, has recently been shown to be sensitive to the action of the bisphosphonates currently used in bone resorption therapy. These compounds target the mevalonate pathway by inhibiting farnesyl diphosphate synthase (farnesyl pyrophosphate synthase, FPPS), the enzyme that condenses the diphosphates of C{sub 5} alcohols (isopentenyl and dimethylallyl) to form C{sub 10} and C{sub 15} diphosphates (geranyl and farnesyl). The structures of the T. cruzi FPPS (TcFPPS) alone and in two complexes with substrates and inhibitors reveal that following binding of the two substrates and three Mg2+ ions, the enzyme undergoes a conformational change consisting of a hinge-like closure of the binding site. In this conformation, it would be possible for the enzyme to bind a bisphosphonate inhibitor that spans the sites usually occupied by dimethylallyl diphosphate (DMAPP) and the homoallyl moiety of isopentenyl diphosphate. This observation may lead to the design of new, more potent anti-trypanosomal bisphosphonates, because existing FPPS inhibitors occupy only the DMAPP site. In addition, the structures provide an important mechanistic insight: after its formation, geranyl diphosphate can swing without leaving the enzyme, from the product site to the substrate site to participate in the synthesis of farnesyl diphosphate.

  15. The Mevalonate Pathway of Staphylococcus aureus▿ †

    PubMed Central

    Balibar, Carl J.; Shen, Xiaoyu; Tao, Jianshi

    2009-01-01

    Isoprenoids are a class of ubiquitous organic molecules synthesized from the five-carbon starter unit isopentenyl pyrophosphate (IPP). Comprising more than 30,000 known natural products, isoprenoids serve various important biological functions in many organisms. In bacteria, undecaprenyl pyrophosphate is absolutely required for the formation of cell wall peptidoglycan and other cell surface structures, while ubiquinones and menaquinones, both containing an essential prenyl moiety, are key electron carriers in respiratory energy generation. There is scant knowledge on the nature and regulation of bacterial isoprenoid pathways. In order to explore the cellular responses to perturbations in the mevalonate pathway, responsible for producing the isoprenoid precursor IPP in many gram-positive bacteria and eukaryotes, we constructed three strains of Staphylococcus aureus in which each of the mevalonate pathway genes is regulated by an IPTG (isopropyl-β-d-thiogalactopyranoside)-inducible promoter. We used DNA microarrays to profile the transcriptional effects of downregulating the components of the mevalonate pathway in S. aureus and demonstrate that decreased expression of the mevalonate pathway leads to widespread downregulation of primary metabolism genes, an upregulation in virulence factors and cell wall biosynthetic determinants, and surprisingly little compensatory expression in other isoprenoid biosynthetic genes. We subsequently correlate these transcriptional changes with downstream metabolic consequences. PMID:19028897

  16. Putative modifier genes in mevalonate kinase deficiency.

    PubMed

    Marcuzzi, Annalisa; Vozzi, Diego; Girardelli, Martina; Tricarico, Paola Maura; Knowles, Alessandra; Crovella, Sergio; Vuch, Josef; Tommasini, Alberto; Piscianz, Elisa; Bianco, Anna Monica

    2016-04-01

    Mevalonate kinase deficiency (MKD) is an autosomal recessive auto‑inflammatory disease, caused by impairment of the mevalonate pathway. Although the molecular mechanism remains to be elucidated, there is clinical evidence suggesting that other regulatory genes may be involved in determining the phenotype. The identification of novel target genes may explain non‑homogeneous genotype‑phenotype correlations, and provide evidence in support of the hypothesis that novel regulatory genes predispose or amplify deregulation of the mevalonate pathway in this orphan disease. In the present study, DNA samples were obtained from five patients with MKD, which were then analyzed using whole exome sequencing. A missense variation in the PEX11γ gene was observed in homozygosis in P2, possibly correlating with visual blurring. The UNG rare gene variant was detected in homozygosis in P5, without correlating with a specific clinical phenotype. A number of other variants were found in the five analyzed DNA samples from the MKD patients, however no correlation with the phenotype was established. The results of the presents study suggested that further analysis, using next generation sequencing approaches, is required on a larger sample size of patients with MKD, who share the same MVK mutations and exhibit 'extreme' clinical phenotypes. As MVK mutations may be associated with MKD, the identification of specific modifier genes may assist in providing an earlier diagnosis.

  17. Intracellular localization of mevalonate-activating enzymes in plant cells

    PubMed Central

    Rogers, L. J.; Shah, S. P. J.; Goodwin, T. W.

    1966-01-01

    Mevalonate-activating enzymes are shown to be present in the chloroplasts of French-bean leaves. The chloroplast membrane is impermeable to mevalonic acid. Mevalonate-activating enzymes also appear to be found outside the chloroplast. These results support the view that terpenoid biosynthesis in the plant cell is controlled by a combination of enzyme segregation and specific membrane permeability. ImagesFig. 1.Fig. 2. PMID:5947149

  18. Frontalin pheromone biosynthesis in the mountain pine beetle, Dendroctonus ponderosae, and the role of isoprenyl diphosphate synthases.

    PubMed

    Keeling, Christopher I; Chiu, Christine C; Aw, Tidiane; Li, Maria; Henderson, Hannah; Tittiger, Claus; Weng, Hong-Biao; Blomquist, Gary J; Bohlmann, Joerg

    2013-11-19

    The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most destructive pest of western North American pine forests. Adult males produce frontalin, an eight-carbon antiaggregation pheromone, via the mevalonate pathway, as part of several pheromones that initiate and modulate the mass attack of host trees. Frontalin acts as a pheromone, attractant, or kairomone in most Dendroctonus species, other insects, and even elephants. 6-Methylhept-6-en-2-one, a frontalin precursor, is hypothesized to originate from 10-carbon geranyl diphosphate (GPP), 15-carbon farnesyl diphosphate (FPP), or 20-carbon geranylgeranyl diphosphate (GGPP) via a dioxygenase- or cytochrome P450-mediated carbon-carbon bond cleavage. To investigate the role of isoprenyl diphosphate synthases in pheromone biosynthesis, we characterized a bifunctional GPP/FPP synthase and a GGPP synthase in the mountain pine beetle. The ratio of GPP to FPP produced by the GPP/FPP synthase was highly dependent on the ratio of the substrates isopentenyl diphosphate and dimethylallyl diphosphate used in the assay. Transcript levels in various tissues and life stages suggested that GGPP rather than GPP or FPP is used as a precursor to frontalin. Reduction of transcript levels by RNA interference of the isoprenyl diphosphate synthases identified GGPP synthase as having the largest effect on frontalin production, suggesting that frontalin is derived from a 20-carbon isoprenoid precursor rather than from the 10- or 15-carbon precursors.

  19. Methylerythritol and mevalonate pathway contributions to biosynthesis of mono-, sesqui-, and diterpenes in glandular trichomes and leaves of Stevia rebaudiana Bertoni.

    PubMed

    Wölwer-Rieck, Ursula; May, Bianca; Lankes, Christa; Wüst, Matthias

    2014-03-19

    The biosynthesis of the diterpenoid steviol glycosides rebaudioside A and stevioside in nonrooted cuttings of Stevia rebaudiana was investigated by feeding experiments using the labeled key precursors [5,5-(2)H2]-mevalonic acid lactone (d2-MVL) and [5,5-(2)H2]-1-deoxy-d-xylulose (d2-DOX). Labeled glycosides were extracted from the leaves and stems and were directly analyzed by LC-(-ESI)-MS/MS and by GC-MS after hydrolysis and derivatization of the resulting isosteviol to the corresponding TMS-ester. Additionally, the incorporation of the proffered d2-MVL and d2-DOX into volatile monoterpenes, sesquiterpenes, and diterpenes in glandular trichomes on leaves and stems was investigated by headspace-solid phase microextraction-GC-MS (HS-SPME-GC-MS). Incorporation of the labeled precursors indicated that diterpenes in leaves and monoterpenes and diterpenes in glandular trichomes are predominately biosynthesized via the methylerythritol phosphate (MEP) pathway, whereas both the MEP and mevalonate (MVA) pathways contribute to the biosynthesis of sesquiterpenes at equal rates in glandular trichomes. These findings give evidence for a transport of MEP pathway derived farnesyl diphosphate precursors from plastids to the cytosol. Contrarily, the transport of MVA pathway derived geranyl diphosphate and geranylgeranyl diphosphate precursors from the cytosol to the plastid is limited.

  20. Bioconversion of methanol to value-added mevalonate by engineered Methylobacterium extorquens AM1 containing an optimized mevalonate pathway.

    PubMed

    Zhu, Wen-Liang; Cui, Jin-Yu; Cui, Lan-Yu; Liang, Wei-Fan; Yang, Song; Zhang, Chong; Xing, Xin-Hui

    2016-03-01

    Methylotrophic biosynthesis using methanol as a feedstock is a promising and attractive method to solve the over-dependence of the bioindustry on sugar feedstocks derived from grains that are used for food. In this study, we introduced and engineered the mevalonate pathway into Methylobacterium extorquens AM1 to achieve high mevalonate production from methanol, which could be a platform for terpenoid synthesis. We first constructed a natural operon (MVE) harboring the mvaS and mvaE genes from Enterococcus faecalis as well as an artificial operon (MVH) harboring the hmgcs1 gene from Blattella germanica and the tchmgr gene from Trypanosoma cruzi that encoded enzymes with the highest reported activities. We achieved mevalonate titers of 56 and 66 mg/L, respectively, in flask cultivation. Introduction of the phaA gene from Ralstonia eutropha into the operon MVH increased the mevalonate titer to 180 mg/L, 3.2-fold higher than that of the natural operon MVE. Further modification of the expression level of the phaA gene by regulating the strength of the ribosomal binding site resulted in an additional 20 % increase in mevalonate production to 215 mg/L. A fed-batch fermentation of the best-engineered strain yielded a mevalonate titer of 2.22 g/L, which was equivalent to an overall yield and productivity of 28.4 mg mevalonate/g methanol and 7.16 mg/L/h, respectively. The production of mevalonate from methanol, which is the initial, but critical step linking methanol with valuable terpenoids via methylotrophic biosynthesis, represents a proof of concept for pathway engineering in M. extorquens AM1.

  1. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene.

    PubMed

    Bentley, Fiona K; Zurbriggen, Andreas; Melis, Anastasios

    2014-01-01

    Heterologous expression of the isoprene synthase gene in the cyanobacterium Synechocystis PCC 6803 conferred upon these microorganisms the property of photosynthetic isoprene (C₅H₈) hydrocarbons production. Continuous production of isoprene from CO₂ and H₂O was achieved in the light, occurring via the endogenous methylerythritol-phosphate (MEP) pathway, in tandem with the growth of Synechocystis. This work addressed the issue of photosynthetic carbon partitioning between isoprene and biomass in Synechocystis. Evidence is presented to show heterologous genomic integration and cellular expression of the mevalonic acid (MVA) pathway genes in Synechocystis endowing a non-native pathway for carbon flux amplification to isopentenyl-diphosphate (IPP) and dimethylallyl-diphosphate (DMAPP) precursors of isoprene. Heterologous expression of the isoprene synthase in combination with the MVA pathway enzymes resulted in photosynthetic isoprene yield improvement by approximately 2.5-fold, compared with that measured in cyanobacteria transformed with the isoprene synthase gene only. These results suggest that the MVA pathway introduces a bypass in the flux of endogenous cellular substrate in Synechocystis to IPP and DMAPP, overcoming flux limitations of the native MEP pathway. The work employed a novel chromosomal integration and expression of synthetic gene operons in Synechocystis, comprising up to four genes under the control of a single promoter, and expressing three operons simultaneously. This is the first time an entire biosynthetic pathway with seven recombinant enzymes has been heterologously expressed in a photosynthetic microorganism. It constitutes contribution to the genetic engineering toolkit of photosynthetic microorganisms and a paradigm in the pursuit of photosynthetic approaches for the renewable generation of high-impact products.

  2. Mevalonate Pathway Regulates Cell Size Homeostasis and Proteostasis through Autophagy

    PubMed Central

    Miettinen, Teemu P.; Björklund, Mikael

    2015-01-01

    Summary Balance between cell growth and proliferation determines cell size homeostasis, but little is known about how metabolic pathways are involved in the maintenance of this balance. Here, we perform a screen with a library of clinically used drug molecules for their effects on cell size. We find that statins, inhibitors of the mevalonate pathway, reduce cell proliferation and increase cell size and cellular protein density in various cell types, including primary human cells. Mevalonate pathway effects on cell size and protein density are mediated through geranylgeranylation of the small GTPase RAB11, which is required for basal autophagic flux. Our results identify the mevalonate pathway as a metabolic regulator of autophagy and expose a paradox in the regulation of cell size and proteostasis, where inhibition of an anabolic pathway can cause an increase in cell size and cellular protein density. PMID:26686643

  3. Biochemical characterization of recombinant mevalonate kinase from Bacopa monniera.

    PubMed

    Kumari, Uma; Vishwakarma, Rishi K; Sonawane, Prashant; Abbassi, Shakeel; Khan, Bashir M

    2015-01-01

    Mevalonate kinase (MK; ATP: mevalonate 5-phosphotransferase; EC 2.7.1.36) plays a key role in isoprenoid biosynthetic pathway in plants. MK catalyzes the phosphorylation of mevalonate to form mevalonate-5-phosphate. The recombinant BmMK was cloned and over-expressed in E. coli BL21 (DE3), and purified to homogeneity by affinity chromatography followed by gel filtration. Optimum pH and temperature for forward reaction was found to be 7.0 and 30 °C, respectively. The enzyme was most stable at pH 8 at 25 °C with deactivation rate constant (Kd*) 1.398 × 10(-4) and half life (t1/2) 49 h. pH activity profile of BmMK indicates the involvement of carboxylate ion, histidine, lysine, arginine or aspartic acid at the active site of enzyme. Activity of recombinant BmMK was confirmed by phosphorylation of RS-mevalonate in the presence of Mg(2+), having Km and Vmax 331.9 μM and 719.1 pKat μg(-1), respectively. The values of kcat and kcat/Km for RS-mevalonate were determined to be 143.82 s(-1) and 0.43332 M(-1) s(-1) and kcat and kcat/Km values for ATP were found 150.9 s(-1) and 1.023 M(-1) s(-1). The metal ion studies suggested that BmMK is a metal dependent enzyme and highly active in the presence of MgCl2.

  4. Genomic variations of the mevalonate pathway in porokeratosis

    PubMed Central

    Zhang, Zhenghua; Li, Caihua; Wu, Fei; Ma, Ruixiao; Luan, Jing; Yang, Feng; Liu, Weida; Wang, Li; Zhang, Shoumin; Liu, Yan; Gu, Jun; Hua, Wenlian; Fan, Min; Peng, Hua; Meng, Xuemei; Song, Ningjing; Bi, Xinling; Gu, Chaoying; Zhang, Zhen; Huang, Qiong; Chen, Lianjun; Xiang, Leihong; Xu, Jinhua; Zheng, Zhizhong; Jiang, Zhengwen

    2015-01-01

    Porokeratosis (PK) is a heterogeneous group of keratinization disorders. No causal genes except MVK have been identified, even though the disease was linked to several genomic loci. Here, we performed massively parallel sequencing and exonic CNV screening of 12 isoprenoid genes in 134 index PK patients (61 familial and 73 sporadic) and identified causal mutations in three novel genes (PMVK, MVD, and FDPS) in addition to MVK in the mevalonate pathway. Allelic expression imbalance (AEI) assays were performed in 13 lesional tissues. At least one mutation in one of the four genes in the mevalonate pathway was found in 60 (98%) familial and 53 (73%) sporadic patients, which suggests that isoprenoid biosynthesis via the mevalonate pathway may play a role in the pathogenesis of PK. Significantly reduced expression of the wild allele was common in lesional tissues due to gene conversion or some other unknown mechanism. A G-to-A RNA editing was observed in one lesional tissue without AEI. In addition, we observed correlations between the mutations in the four mevalonate pathway genes and clinical manifestations in the PK patients, which might support a new and simplified classification of PK under the guidance of genetic testing. DOI: http://dx.doi.org/10.7554/eLife.06322.001 PMID:26202976

  5. Mevalonate-suppressive dietary isoprenoids for bone health.

    PubMed

    Mo, Huanbiao; Yeganehjoo, Hoda; Shah, Anureet; Mo, Warren K; Soelaiman, Ima Nirwana; Shen, Chwan-Li

    2012-12-01

    Osteoclastogenesis and osteoblastogenesis, the balancing acts for optimal bone health, are under the regulation of small guanosine triphosphate-binding proteins (GTPases) including Ras, Rac, Rho and Rab. The activities of GTPases require post-translational modification with mevalonate-derived prenyl pyrophosphates. Mevalonate deprivation induced by competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (e.g., statins) prevents the activation of GTPases, suppresses the expression of the receptor for activation of nuclear factor kappa B (NFκB) ligand (RANKL) and activation of NFκB and, consequently, inhibits osteoclast differentiation and induces osteoclast apoptosis. In contrast, statin-mediated inactivation of GTPases enhances alkaline phosphatase activity and the expression of bone morphogenetic protein-2, vascular epithelial growth factor, and osteocalcin in osteoblasts and induces osteoblast proliferation and differentiation. Animal studies show that statins inhibit bone resorption and increase bone formation. The anabolic effect of statins and other mevalonate pathway-suppressive pharmaceuticals resembles the anti-osteoclastogenic and bone-protective activities conferred by dietary isoprenoids, secondary products of plant mevalonate metabolism. The tocotrienols, vitamin E molecules with HMG CoA reductase-suppressive activity, induce mevalonate deprivation and concomitantly suppress the expression of RANKL and cyclooxygenase-2, the production of prostaglandin E2 and the activation of NFκB. Accordingly, tocotrienols inhibit osteoclast differentiation and induce osteoclast apoptosis, impacts reminiscent of those of statins. In vivo studies confirm the bone protective activity of tocotrienols at nontoxic doses. Blends of tocotrienols, statins and isoprenoids widely found in fruits, vegetables, grains, herbs, spices, and essential oils may synergistically suppress osteoclastogenesis while promoting osteoblastogenesis, offering a novel

  6. In vitro inhibition of lysine decarboxylase activity by organophosphate esters.

    PubMed

    Wang, Sufang; Wan, Bin; Zhang, Lianying; Yang, Yu; Guo, Liang-Hong

    2014-12-01

    Organophosphate esters (OPEs), a major group of organophosphorus flame retardants, are regarded as emerging environmental contaminants of health concern. Amino acid decarboxylases catalyze the conversion of amino acids into polyamines that are essential for cell proliferation, hypertrophy and tissue growth. In this paper, inhibitory effect of twelve OPEs with aromatic, alkyl or chlorinated alkyl substituents on the activity of lysine decarboxylase (LDC) was assessed quantitatively with an economic and label-free fluorescence sensor and cell assay. The sensor comprises a macrocyclic host (cucurbit[7]uril) and a fluorescent dye (acridine orange) reporter. The twelve OPEs were found to vary in their capacity to inhibit LDC activity. Alkyl group substituted OPEs had no inhibitory effect. By contrast, six OPEs substituted with aromatic or chlorinated alkyl groups inhibited LDC activity significantly with IC50 ranging from 1.32 μM to 9.07 μM. Among them, the inhibitory effect of tri-m-cresyl phosphate (TCrP) was even more effective as an inhibitor than guanosine 5'-diphosphate-3'-diphosphate (ppGpp) (1.60 μM), an LDC natural inhibitor in vivo. Moreover, at non-cytotoxic concentrations, these six OPEs showed perceptible inhibitory effects on LDC activity in PC12 living cells, and led to a marked loss in the cadaverine content. Molecular docking analysis of the LDC/OPE complexes revealed that different binding modes contribute to the difference in their inhibitory effect. Our finding suggested that LDC, as a new potential biological target of OPEs, might be implicated in toxicological and pathogenic mechanism of OPEs. PMID:25264276

  7. Engineering the lactococcal mevalonate pathway for increased sesquiterpene production.

    PubMed

    Song, Adelene A; Abdullah, Janna Ong; Abdullah, Mohd P; Shafee, Norazizah; Othman, Roohaida; Noor, Normah Mohd; Rahim, Raha A

    2014-06-01

    Isoprenoids are a large, diverse group of secondary metabolites which has recently raised a renewed research interest due to genetic engineering advances, allowing specific isoprenoids to be produced and characterized in heterologous hosts. Many researches on metabolic engineering of heterologous hosts for increased isoprenoid production are focussed on Escherichia coli and yeasts. E. coli, as most prokaryotes, use the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway for isoprenoid production. Yeasts on the other hand, use the mevalonate pathway which is commonly found in eukaryotes. However, Lactococcus lactis is an attractive alternative host for heterologous isoprenoid production. Apart from being food-grade, this Gram-positive prokaryote uses the mevalonate pathway for isoprenoid production instead of the MEP pathway. Previous studies have shown that L. lactis is able to produce sesquiterpenes through heterologous expression of plant sesquiterpene synthases. In this work, we analysed the gene expression of the lactococcal mevalonate pathway through RT-qPCR to successfully engineer L. lactis as an efficient host for isoprenoid production. We then overexpressed the mvk gene singly or co-expressed with the mvaA gene as an attempt to increase β-sesquiphellandrene production in L. lactis. It was observed that co-expression of mvk with mvaA doubled the amount of β-sesquiphellandrene produced. PMID:24828482

  8. Anti-inflammatory and cytoprotective effects of a squalene synthase inhibitor, TAK-475 active metabolite-I, in immune cells simulating mevalonate kinase deficiency (MKD)-like condition.

    PubMed

    Suzuki, Nobutaka; Ito, Tatsuo; Matsui, Hisanori; Takizawa, Masayuki

    2016-01-01

    TAK-475 (lapaquistat acetate) and its active metabolite-I (TAK-475 M-I) inhibit squalene synthase, which catalyzes the conversion of farnesyl diphosphate (FPP) to squalene. FPP is a substrate for synthesis of other mevalonate-derived isoprenoids (MDIs) such as farnesol (FOH), geranlygeranyl diphosphate (GGPP), and geranylgeraniol. In patients with MKD, a rare autosomal recessive disorder, defective activity of mevalonate kinase leads to a shortage of MDIs. MDIs especially GGPP are required for prenylation of proteins, which is a posttranslation modification necessary for proper functioning of proteins like small guanosine triphosphatases. Malfunction of prenylation of proteins results in upregulation of the inflammatory cascade, leading to increased production of proinflammatory cytokines like interleukin-1β (IL-1β), eventually leading to episodic febrile attacks. In vitro, TAK-475 M-I incubation in a concentration dependent manner increased levels of FPP, GGPP, and FOH in human monocytic THP-1 cells. In subsequent experiments, THP-1 cells or human peripheral blood mononuclear cells (PBMCs) were incubated with simvastatin, which inhibits hydroxymethylglutaryl-coenzyme A reductase and thereby decreases levels of the precursors of MDIs, leading to the depletion of MDIs as expected in MKD patients. Increased levels of GGPP and FPP attenuated lipopolysaccharide (LPS)-induced IL-1β production in THP-1 cells and human PBMCs in statin-treated conditions. The MDIs also significantly reduced the damaged cell ratio in this active MKD-like condition. Moreover, TAK-475 M-I directly inhibited LPS-induced IL-1β production from statin-treated THP-1 cells. These results show anti-inflammatory and cytoprotective effects of MDIs via TAK-475 M-I treatment in statin-treated immune cells, suggesting that possible therapeutic effects of TAK-475 treatment in MKD patients. PMID:27652005

  9. An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes

    PubMed Central

    Richardson, Graham; Ding, Haizhen; Rocheleau, Tom; Mayhew, George; Reddy, Erin; Han, Qian; Christensen, Bruce M.; Li, Jianyong

    2010-01-01

    A major pathway of beta-alanine synthesis in insects is through the alpha-decarboxylation of aspartate, but the enzyme involved in the decarboxylation of aspartate has not been clearly defined in mosquitoes and characterized in any insect species. In this study, we expressed two putative mosquito glutamate decarboxylase-like enzymes of mosquitoes and critically analyzed their substrate specificity and biochemical properties. Our results provide clear biochemical evidence establishing that one of them is an aspartate decarboxylase and the other is a glutamate decarboxylase. The mosquito aspartate decarboxylase functions exclusively on the production of beta-alanine with no activity with glutamate. Likewise the mosquito glutamate decarboxylase is highly specific to glutamate with essentially no activity with aspartate. Although insect aspartate decarboxylase shares high sequence identity with glutamate decarboxylase, we are able to closely predict aspartate decarboxylase from glutamate decarboxylase based on the difference of their active site residues. PMID:19842059

  10. Molecular cloning of mevalonate pathway genes from Taraxacum brevicorniculatum and functional characterisation of the key enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

    PubMed

    van Deenen, Nicole; Bachmann, Anne-Lena; Schmidt, Thomas; Schaller, Hubert; Sand, Jennifer; Prüfer, Dirk; Schulze Gronover, Christian

    2012-04-01

    Taraxacum brevicorniculatum is known to produce high quality rubber. The biosynthesis of rubber is dependent on isopentenyl pyrophosphate (IPP) precursors derived from the mevalonate (MVA) pathway. The cDNA sequences of seven MVA pathway genes from latex of T. brevicorniculatum were isolated, including three cDNA sequences encoding for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases (TbHMGR1-3). Expression analyses indicate an important role of TbHMGR1 as well as for the HMG-CoA synthase (TbHMGS), the diphosphomevalonate decarboxylase and the mevalonate kinase in the provision of precursors for rubber biosynthesis. The amino acid sequences of the TbHMGRs show the typical motifs described for plant HMGRs such as two transmembrane domains and a catalytic domain containing two HMG-CoA and two NADP(H) binding sites. The functionality of the HMGRs was demonstrated by complementation assay using an IPP auxotroph mutant of Escherichia coli. Furthermore, the transient expression of the catalytic domains of TbHMGR1 and TbHMGR2 in Nicotiana benthamiana resulted in a strong accumulation of sterol precursors, one of the major groups of pathway end-products.

  11. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells.

    PubMed

    Hemmerlin, Andréa; Hoeffler, Jean-François; Meyer, Odile; Tritsch, Denis; Kagan, Isabelle A; Grosdemange-Billiard, Catherine; Rohmer, Michel; Bach, Thomas J

    2003-07-18

    In plants, two pathways are utilized for the synthesis of isopentenyl diphosphate, the universal precursor for isoprenoid biosynthesis. The key enzyme of the cytoplasmic mevalonic acid (MVA) pathway is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). Treatment of Tobacco Bright Yellow-2 (TBY-2) cells by the HMGR-specific inhibitor mevinolin led to growth reduction and induction of apparent HMGR activity, in parallel to an increase in protein representing two HMGR isozymes. Maximum induction was observed at 24 h. 1-Deoxy-d-xylulose (DX), the dephosphorylated first precursor of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, complemented growth inhibition by mevinolin in the low millimolar concentration range. Furthermore, DX partially re-established feedback repression of mevinolin-induced HMGR activity. Incorporation studies with [1,1,1,4-2H4]DX showed that sterols, normally derived from MVA, in the presence of mevinolin are synthesized via the MEP pathway. Fosmidomycin, an inhibitor of 1-deoxy-d-xylulose-5-phosphate reductoisomerase, the second enzyme of the MEP pathway, was utilized to study the reverse complementation. Growth inhibition by fosmidomycin of TBY-2 cells could be partially overcome by MVA. Chemical complementation was further substantiated by incorporation of [2-13C]MVA into plastoquinone, representative of plastidial isoprenoids. Best rates of incorporation of exogenous stably labeled precursors were observed in the presence of both inhibitors, thereby avoiding internal isotope dilution.

  12. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    MedlinePlus

    ... aromatic l-amino acid decarboxylase deficiency aromatic l-amino acid decarboxylase deficiency Enable Javascript to view the expand/ ... PDF Open All Close All Description Aromatic l-amino acid decarboxylase (AADC) deficiency is an inherited disorder that ...

  13. Coordinated transcriptional regulation of isopentenyl diphosphate biosynthetic pathway enzymes in plastids by phytochrome-interacting factor 5.

    PubMed

    Mannen, Kazuto; Matsumoto, Takuro; Takahashi, Seiji; Yamaguchi, Yuta; Tsukagoshi, Masanori; Sano, Ryosuke; Suzuki, Hideyuki; Sakurai, Nozomu; Shibata, Daisuke; Koyama, Tanetoshi; Nakayama, Toru

    2014-01-10

    All isoprenoids are derived from a common C5 unit, isopentenyl diphosphate (IPP). In plants, IPP is synthesized via two distinct pathways; the cytosolic mevalonate pathway and the plastidial non-mevalonate (MEP) pathway. In this study, we used a co-expression analysis to identify transcription factors that coordinately regulate the expression of multiple genes encoding enzymes in the IPP biosynthetic pathway. Some candidates showed especially strong correlations with multiple genes encoding MEP-pathway enzymes. We report here that phytochrome-interacting factor 5 (PIF5), a basic-helix-loop-helix type transcription factor, functions as a positive regulator of the MEP pathway. Its overexpression in T87 suspension cultured cells resulted in increased accumulation of chlorophylls and carotenoids. Detailed analyses of carotenoids by HPLC indicated that some carotenoid biosynthetic pathways were concomitantly up-regulated, possibly as a result of enhanced IPP metabolic flow. Our results also revealed other PIF family proteins that play different roles from that of PIF5 in IPP metabolism.

  14. Brain glutamate decarboxylase and pyrroloquinoline quinone.

    PubMed

    Choi, S Y; Khemlani, L S; Churchich, J E

    1992-01-01

    Porcine brain glutamate decarboxylase was examined for the presence of covalently bound pyrroloquinoline quinone (PQQ). HPLC analysis of pure glutamate decarboxylase subjected to the hexanol extraction procedure gave negative results when monitored at 320 nm, the maximum of absorbance of 4-hydroxy-5-hexoxy-PQQ. Resolved glutamate decarboxylase exhibits a structureless absorption band at wavelengths longer than 300 nm which cannot be attributed to PQQ. The holoenzyme is not a pyridoxal-quinoprotein; its catalytic mechanism involves the participation of only one cofactor, i.e. pyridoxal-5-P. Free PQQ is a strong inhibitor of the decarboxylase (Ki = 13 microM) and the reaction with the protein results in spectral changes resembling those of polylysine treated with PQQ. If the concentration of free PQQ in some regions of the brain reaches the micromolar level, then PQQ might play a role in the regulation of glutamate decarboxylase activity.

  15. Cloning and characterization of bifunctional enzyme farnesyl diphosphate/geranylgeranyl diphosphate synthase from Plasmodium falciparum

    PubMed Central

    2013-01-01

    Background Isoprenoids are the most diverse and abundant group of natural products. In Plasmodium falciparum, isoprenoid synthesis proceeds through the methyl erythritol diphosphate pathway and the products are further metabolized by farnesyl diphosphate synthase (FPPS), turning this enzyme into a key branch point of the isoprenoid synthesis. Changes in FPPS activity could alter the flux of isoprenoid compounds downstream of FPPS and, hence, play a central role in the regulation of a number of essential functions in Plasmodium parasites. Methods The isolation and cloning of gene PF3D7_18400 was done by amplification from cDNA from mixed stage parasites of P. falciparum. After sequencing, the fragment was subcloned in pGEX2T for recombinant protein expression. To verify if the PF3D7_1128400 gene encodes a functional rPfFPPS protein, its catalytic activity was assessed using the substrate [4-14C] isopentenyl diphosphate and three different allylic substrates: dimethylallyl diphosphate, geranyl diphosphate or farnesyl diphosphate. The reaction products were identified by thin layer chromatography and reverse phase high-performance liquid chromatography. To confirm the product spectrum formed of rPfFPPS, isoprenic compounds were also identified by mass spectrometry. Apparent kinetic constants KM and Vmax for each substrate were determined by Michaelis–Menten; also, inhibition assays were performed using risedronate. Results The expressed protein of P. falciparum FPPS (rPfFPPS) catalyzes the synthesis of farnesyl diphosphate, as well as geranylgeranyl diphosphate, being therefore a bifunctional FPPS/geranylgeranyl diphosphate synthase (GGPPS) enzyme. The apparent KM values for the substrates dimethylallyl diphosphate, geranyl diphosphate and farnesyl diphosphate were, respectively, 68 ± 5 μM, 7.8 ± 1.3 μM and 2.06 ± 0.4 μM. The protein is expressed constitutively in all intra-erythrocytic stages of P. falciparum, demonstrated by using transgenic

  16. Incorporation of radioactive mevalonate into C50 and C55 phenols by Streptococcus mutans.

    PubMed

    Thorne, K J

    1973-11-01

    Growing cells of Streptococcus mutans Ingbritt incorporate radioactive mevalonate into unsaponifiable lipid. Of the radioactive lipid 40% was shown by chromatography and mass spectrometry to be C(50) and C(55) prenol.

  17. Mevalonate production by engineered acetogen biocatalyst during continuous fermentation of syngas or CO₂/H₂ blend.

    PubMed

    Kiriukhin, Michael; Tyurin, Michael

    2014-02-01

    Naturally mevalonate-resistant acetogen Clostridium sp. MT1243 produced only 425 mM acetate during syngas fermentation. Using Clostridium sp. MT1243 we engineered biocatalyst selectively producing mevalonate from synthesis gas or CO₂/H₂ blend. Acetate production and spore formation were eliminated from Clostridium sp. MT1243 using Cre-lox66/lox71-system. Cell energy released via elimination of phosphotransacetylase, acetate kinase and early stage sporulation genes powered mevalonate accumulation in fermentation broth due to expression of synthetic thiolase, HMG-synthase, and HMG-reductase, three copies of each, integrated using Tn7-approach. Recombinants produced 145 mM mevalonate in five independent single-step fermentation runs 25 days each in five repeats using syngas blend 60% CO and 40% H₂ (v/v) (p < 0.005). Mevalonate production was 97 mM if only CO₂/H₂ blend was fed instead of syngas (p < 0.005). Mevalonate from CO₂/H₂ blend might serve as a commercial route to mitigate global warming in proportion to CO₂ fermentation scale worldwide.

  18. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    SciTech Connect

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J.

    2014-08-14

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  19. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  20. Cyclic aristeromycin diphosphate ribose: a potent and poorly hydrolysable Ca(2+)-mobilising mimic of cyclic adenosine diphosphate ribose.

    PubMed

    Bailey, V C; Fortt, S M; Summerhill, R J; Galione, A; Potter, B V

    1996-02-01

    Cyclic aristeromycin diphosphate ribose, a carbocyclic analogue of cyclic adenosine diphosphate ribose, was synthesised using a chemo-enzymatic route involving activation of aristeromycin 5'-phosphate by diphenyl phosphochloridate. The calcium-releasing properties of this novel analogue were investigated in sea urchin egg homogenates. While cyclic aristeromycin diphosphate ribose has a calcium release profile similar to that of cyclic adenosine diphosphate ribose (EC50 values are 80 nM and 30 nM, respectively), it is degraded significantly more slowly (t1/2 values are 170 min and 15 min, respectively) and may, therefore, be a useful tool to investigate the activities of cyclic adenosine diphosphate ribose. PMID:8603694

  1. Zymographic detection of cinnamic acid decarboxylase activity.

    PubMed

    Prim, Núria; Pastor, F I Javier; Diaz, Pilar

    2002-11-01

    The manuscript includes a concise description of a new, fast and simple method for detection of cinnamic acid decarboxylase activity. The method is based on a color shift caused a by pH change and may be an excellent procedure for large screenings of samples from natural sources, as it involves no complex sample processing or purification. The method developed can be used in preliminary approaches to biotransformation processes involving detection of hydroxycinnamic acid decarboxylase activity.

  2. Could drugs inhibiting the mevalonate pathway also target cancer stem cells?

    PubMed

    Likus, Wirginia; Siemianowicz, Krzysztof; Bieńk, Konrad; Pakuła, Małgorzata; Pathak, Himani; Dutta, Chhanda; Wang, Qiong; Shojaei, Shahla; Assaraf, Yehuda G; Ghavami, Saeid; Cieślar-Pobuda, Artur; Łos, Marek J

    2016-03-01

    Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, show that it could promote transformation. Hence, these studies pinpoint HMG CoA-reductase as a candidate proto-oncogene. Several recent epidemiological studies, in different populations, have proven that statins are beneficial for the treatment-outcome of various cancers, and may improve common cancer therapy strategies involving alkylating agents, and antimetabolites. Cancer stem cells/cancer initiating cells (CSC) are key to cancer progression and metastasis. Therefore, in the current review we address the different effects of statins on cancer stem cells. The mevalonate cascade is among the most pleiotropic, and highly interconnected signaling pathways. Through G-protein-coupled receptors (GRCP), it integrates extra-, and intracellular signals. The mevalonate pathway is implicated in cell stemness, cell proliferation, and organ size regulation through the Hippo pathway (e.g. Yap/Taz signaling axis). This pathway is a prime preventive target through the administration of statins for the prophylaxis of obesity-related cardiovascular diseases. Its prominent role in regulation of cell growth and stemness also invokes its role in cancer development and progression. The mevalonate pathway affects cancer metastasis in several ways by: (i) affecting epithelial-to-mesenchymal transition (EMT), (ii) affecting remodeling of the cytoskeleton as well as cell motility, (iii) affecting cell polarity (non-canonical Wnt/planar pathway), and (iv) modulation of mesenchymal-to-epithelial transition (MET). Herein we provide an overview of the mevalonate signaling network. We then briefly

  3. Structural and thermodynamic basis of the inhibition of Leishmania major farnesyl diphosphate synthase by nitrogen-containing bisphosphonates

    SciTech Connect

    Aripirala, Srinivas; Gonzalez-Pacanowska, Dolores; Oldfield, Eric; Kaiser, Marcel; Amzel, L. Mario; Gabelli, Sandra B.

    2014-03-01

    Structural insights into L. major farnesyl diphosphate synthase, a key enzyme in the mevalonate pathway, are described. Farnesyl diphosphate synthase (FPPS) is an essential enzyme involved in the biosynthesis of sterols (cholesterol in humans and ergosterol in yeasts, fungi and trypanosomatid parasites) as well as in protein prenylation. It is inhibited by bisphosphonates, a class of drugs used in humans to treat diverse bone-related diseases. The development of bisphosphonates as antiparasitic compounds targeting ergosterol biosynthesis has become an important route for therapeutic intervention. Here, the X-ray crystallographic structures of complexes of FPPS from Leishmania major (the causative agent of cutaneous leishmaniasis) with three bisphosphonates determined at resolutions of 1.8, 1.9 and 2.3 Å are reported. Two of the inhibitors, 1-(2-hydroxy-2,2-diphosphonoethyl)-3-phenylpyridinium (300B) and 3-butyl-1-(2,2-diphosphonoethyl)pyridinium (476A), co-crystallize with the homoallylic substrate isopentenyl diphosphate (IPP) and three Ca{sup 2+} ions. A third inhibitor, 3-fluoro-1-(2-hydroxy-2,2-diphosphonoethyl)pyridinium (46I), was found to bind two Mg{sup 2+} ions but not IPP. Calorimetric studies showed that binding of the inhibitors is entropically driven. Comparison of the structures of L. major FPPS (LmFPPS) and human FPPS provides new information for the design of bisphosphonates that will be more specific for inhibition of LmFPPS. The asymmetric structure of the LmFPPS–46I homodimer indicates that binding of the allylic substrate to both monomers of the dimer results in an asymmetric dimer with one open and one closed homoallylic site. It is proposed that IPP first binds to the open site, which then closes, opening the site on the other monomer, which closes after binding the second IPP, leading to the symmetric fully occupied FPPS dimer observed in other structures.

  4. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney Bruce; Burke, Charles Cullen

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  5. The “Mevalonate hypothesis”: a cholesterol-independent alternative for the etiology of atherosclerosis

    PubMed Central

    2012-01-01

    The “cholesterol hypothesis” is the leading theory to explain the cause of atherosclerosis. The “cholesterol hypothesis” assumes that plasma (LDL) cholesterol is an important causal factor for atherosclerosis. However, data of at least seven placebo controlled randomized prospective trials with various cholesterol lowering drugs show that plasma cholesterol lowering does not necessarily lead to protection against cardiovascular disease. Therefore an alternative hypothesis for the etiology of cardiovascular disease is formulated. This alternative hypothesis, the “mevalonate hypothesis”, assumes that after stimulation of the mevalonate pathway in endothelial cells by inflammatory factors, these cells start producing cholesterol and free radicals. In this hypothesis, only the latter play a role in the etiology of atherosclerosis by contributing to the formation of oxidized cholesterol which is a widely accepted causal factor for atherosclerosis. Regardless of how the mevalonate pathway is activated (by withdrawal of statin drugs, by inflammatory factors or indirectly by reduced intracellular cholesterol levels) in all these cases free radical production is observed as well as cardiovascular disease. Since in the “mevalonate hypothesis” cholesterol is produced at the same time as the free radicals causing atherosclerosis, this hypothesis provides an explanation for the correlation which exists between cardiovascular disease and plasma cholesterol levels. From an evolutionary perspective, concomitant cholesterol production and free radical production in response to inflammatory factors makes sense if one realizes that both activities potentially protect cells and organisms from infection by gram-negative bacteria. In conclusion, data have been collected which suggest that activation of the mevalonate pathway in endothelial cells is likely to be a causal factor for atherosclerosis. This “mevalonate hypothesis” provides a better explanation for results

  6. The mevalonate pathway as a metabolic requirement for autophagy-implications for growth control, proteostasis, and disease.

    PubMed

    Miettinen, Teemu P; Björklund, Mikael

    2016-05-01

    Autophagy is responsible for the degradation and recycling of cellular proteins and organelles. Our recent work shows that the mevalonate pathway influences cell size, growth, and proteostasis by regulating basal autophagic flux through geranylgeranylation of the small GTPase RAB11. The control of autophagy by the mevalonate/cholesterol pathway has potential implications for statin toxicity, inflammation, cancer, and neurodegenerative diseases. PMID:27314093

  7. Catalysis of acetoin formation by brewers' yeast pyruvate decarboxylase isozymes.

    PubMed

    Stivers, J T; Washabaugh, M W

    1993-12-14

    Catalysis of C(alpha)-proton transfer from 2-(1-hydroxyethyl)thiamin diphosphate (HETDP) by pyruvate decarboxylase isozymes (PDC; EC 4.1.1.1) from Saccharomyces carlsbergensis was investigated by determining the steady-state kinetics of the reaction of [1-L]acetaldehyde (L = H, D, or T) to form acetoin and the primary kinetic isotope effects on the reaction. The PDC isozyme mixture and alpha 4 isozyme (alpha 4-PDC) have different steady-state kinetic parameters and isotope effects for acetoin formation in the presence and absence of the nonsubstrate allosteric effector pyruvamide: pyruvamide activation occurs by stabilization of the acetaldehyde/PDC ternary complex. The magnitudes of primary L(V/K)-type (L = D or T) isotope effects on C(alpha)-proton transfer from alpha 4-PDC-bound HETDP provide no evidence for significant breakdown of the Swain-Schaad relationship that would indicate partitioning of the putative C(alpha)-carbanion/enamine intermediate between HETDP and products. The substrate concentration dependence of the deuterium primary kinetic isotope effects provides evidence for an intrinsic isotope effect of 4.1 for C(alpha)-proton transfer from alpha 4-PDC-bound HETDP. A 1.10 +/- 0.02-fold 14C isotope discrimination against [1,2-14C]acetaldehyde in acetoin formation is inconsistent with a stepwise mechanism, in which the addition step occurs after rate-limiting formation of the C(alpha)-carbanion/enamine as a discrete enzyme-bound intermediate, and provides evidence for a concerted reaction mechanism with an important component of carbon-carbon bond formation in the transition state.

  8. A versatile photoactivatable probe designed to label the diphosphate binding site of farnesyl diphosphate utilizing enzymes.

    PubMed

    Henry, Olivier; Lopez-Gallego, Fernando; Agger, Sean A; Schmidt-Dannert, Claudia; Sen, Stephanie; Shintani, David; Cornish, Katrina; Distefano, Mark D

    2009-07-01

    Farnesyl diphosphate (FPP) is a substrate for a diverse number of enzymes found in nature. Photoactive analogues of isoprenoid diphosphates containing either benzophenone, diazotrifluoropropionate or azide groups have been useful for studying both the enzymes that synthesize FPP as well as those that employ FPP as a substrate. Here we describe the synthesis and properties of a new class of FPP analogues that links an unmodified farnesyl group to a diphosphate mimic containing a photoactive benzophenone moiety; thus, importantly, these compounds are photoactive FPP analogues that contain no modifications of the isoprenoid portion of the molecule that may interfere with substrate binding in the active site of an FPP utilizing enzyme. Two isomeric compounds containing meta- and para-substituted benzophenones were prepared. These two analogues inhibit Saccharomyces cerevisiae protein farnesyltransferase (ScPFTase) with IC(50) values of 5.8 (meta isomer) and 3.0 microM (para isomer); the more potent analogue, the para isomer, was shown to be a competitive inhibitor of ScPFTase with respect to FPP with a K(I) of 0.46 microM. Radiolabeled forms of both analogues selectively labeled the beta-subunit of ScPFTase. The para isomer was also shown to label Escherichia coli farnesyl diphosphate synthase and Drosophila melanogaster farnesyl diphosphate synthase. Finally, the para isomer was shown to be an alternative substrate for a sesquiterpene synthase from Nostoc sp. strain PCC7120, a cyanobacterial source; the compound also labeled the purified enzyme upon photolysis. Taken together, these results using a number of enzymes demonstrate that this new class of probes should be useful for a plethora of studies of FPP-utilizing enzymes. PMID:19447628

  9. A bulky hydrophobic residue is not required to maintain the V-conformation of enzyme-bound thiamin diphosphate.

    PubMed

    Andrews, Forest H; Tom, Alan R; Gunderman, Peter R; Novak, Walter R P; McLeish, Michael J

    2013-05-01

    It is widely accepted that, in thiamin diphosphate (ThDP)-dependent enzymes, much of the rate acceleration is provided by the cofactor. Inter alia, the reactive conformation of ThDP, known as the V-conformation, has been attributed to the presence of a bulky hydrophobic residue located directly below the cofactor. Here we report the use of site-saturation mutagenesis to generate variants of this residue (Leu403) in benzoylformate decarboxylase. The observed 3 orders of magnitude range in k(cat)/K(m) values suggested that conformational changes in the cofactor could be influencing catalysis. However, X-ray structures of several variants were determined, and there was remarkably little change in ThDP conformation. Rather, it seemed that, once the V-conformation was attained, residue size and hydrophobicity were more important for enzyme activity.

  10. The KLK5 protease suppresses breast cancer by repressing the mevalonate pathway

    PubMed Central

    Pampalakis, Georgios; Obasuyi, Osahon; Papadodima, Olga; Chatziioannou, Aristotelis; Zoumpourlis, Vassileios; Sotiropoulou, Georgia

    2014-01-01

    Kallikrein-related peptidase 5 (KLK5) displays aberrant expression in cancer. However, any functional association is missing. Here, we show that reconstitution of KLK5 expression in non-expressing MDA-MB-231 breast cancer cells suppresses malignancy in vitro and in vivo dose-dependently. Reactivation of KLK5 suppressed key EMT genes. Unexpectedly, we identified altered expression of genes encoding enzymes of the mevalonate pathway typical of those observed upon cholesterol starvation. Consistently, we found that SREBF1, the master regulator of the mevalonate pathway was induced. KLK5 re-expression leads to reduced cellular cholesterol and fatty acid synthesis and enhanced uptake of LDL-cholesterol. Suppression of the mevalonate pathway in KLK5 transfectants was further shown by reduced synthesis of isoprenoids. Indeed, we found diminished levels of active RhoA, a signaling oncoprotein that requires prenylation for activation. We propose that reduced RhoA activation plays a dominant role in suppression of malignancy by KLK5, since geranylgeranyl pyrophosphate restored active RhoA in KLK5-reverted cells resulting in increased malignancy. For the first time, we suggest that a protease may suppress breast cancer by modulating the mevalonate pathway. PMID:24158494

  11. Mechanism of benzaldehyde lyase studied via thiamin diphosphate-bound intermediates and kinetic isotope effects.

    PubMed

    Chakraborty, Sumit; Nemeria, Natalia; Yep, Alejandra; McLeish, Michael J; Kenyon, George L; Jordan, Frank

    2008-03-25

    Direct spectroscopic observation of thiamin diphosphate-bound intermediates was achieved on the enzyme benzaldehyde lyase, which carries out reversible and highly enantiospecific conversion of ( R)-benzoin to benzaldehyde. The key enamine intermediate could be observed at lambda max 393 nm in the benzoin breakdown direction and in the decarboxylase reaction starting with benzoylformate. With benzaldehyde as substrate, no intermediates could be detected, only formation of benzoin at 314 nm. To probe the rate-limiting step in the direction of ( R)-benzoin synthesis, the (1)H/ (2)H kinetic isotope effect was determined for benzaldehyde labeled at the aldehyde position and found to be small (1.14 +/- 0.03), indicating that ionization of the C2alphaH from C2alpha-hydroxybenzylthiamin diphosphate is not rate limiting. Use of the alternate substrates benzoylformic and phenylpyruvic acids (motivated by the observation that while a carboligase, benzaldehyde lyase could also catalyze the slow decarboxylation of 2-oxo acids) enabled the observation of the substrate-thiamin covalent intermediate via the 1',4'-iminopyrimidine tautomer, characteristic of all intermediates with a tetrahedral C2 substituent on ThDP. The reaction of benzaldehyde lyase with the chromophoric substrate analogue ( E)-2-oxo-4(pyridin-3-yl)-3-butenoic acid and its decarboxylated product ( E)-3-(pyridine-3-yl)acrylaldehyde enabled the detection of covalent adducts with both. Neither adduct underwent further reaction. An important finding of the studies is that all thiamin-related intermediates are in a chiral environment on benzaldehyde lyase as reflected by their circular dichroism signatures.

  12. Changes in enzymic activities of nucleoside diphosphate sugar interconversions during differentiation of cambium to xylem in sycamore and poplar.

    PubMed

    Dalessandro, G; Northcote, D H

    1977-02-15

    During the transition from primary wall formation to secondary thickening there is a marked shift in the synthesis of pectin, hemicellulose and cellulose. The activities of the enzymes [UDP-D-galactose 4-epimerase (EC 5.1.3.2)8 UDP-l-arabinose 4-epimerase (EC 5.1.3.5), UDP-D-glucose dehydrogenase (EC 1.1.1.22) and UDP-D--glucuronate decarboxylase (EC 4.1.1.35)] were measured in cambial cells, differentiating xylem cells and differentiated xylem cells isolated from sycamore and poplar trees, and phloem cells from poplar. At the final stage of the differentiation of cambium to xylem there was a decrease in activity of the enzymes directly involved in producing the soluble precursors of pectin (DUP-D-galactose 4-epimerase and UDP-L-arabinose 4-epimerase and an increase in those producing the precursors of hemicellulose (UDP-D-glucose dehydrogenase and UDP-D-glucuronate decarboxylase). These results strongly suggest ahat the changes were correlated with the differences observed in the chemical composition of the wall during development. The changes found in the catalytic activity of the enzymes of nucleoside diphosphate sugar interconversion exert a coarse control over the synthesis of pectin and hemicelluloses. The tissues at all stages of development contained the necessary enzyme activities to produce all the precursors of pectin and hemicellulose, even at the final stage of differentiation when no pectin was formed.

  13. Construction of Functional Monomeric Type 2 Isopentenyl Diphosphate:Dimethylallyl Diphosphate Isomerase.

    PubMed

    Neti, Syam Sundar; Eckert, Debra M; Poulter, C Dale

    2016-08-01

    Type 2 isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) in the isoprenoid biosynthetic pathway. The enzyme from Streptomyces pneumoniae (spIDI-2) is a homotetramer in solution with behavior, including a substantial increase in the rate of FMN reduction by NADPH in the presence of IPP, suggesting that substrate binding at one subunit alters the kinetic and binding properties of another. We now report the construction of catalytically active monomeric spIDI-2. The monomeric enzyme contains a single-point mutation (N37A) and a six-residue C-terminal deletion that preserves the secondary structure of the subunits in the wild-type (wt) homotetramer. UV-vis spectra of the enzyme-bound flavin mononucleotide (FMN) cofactor in FMNox, FMNred, and FMNred·IPP/DMAPP states are the same for monomeric and wt homotetrameric spIDI-2. The mutations in monomeric IDI-2 lower the melting temperature of the protein by 20 °C and reduce the binding affinities of FMN and IDI by 40-fold but have a minimal effect on kcat. Stopped-flow kinetic studies of monomeric spIDI-2 showed that the rate of reduction of FMN by NADH (k = 1.64 × 10(-3) s(-1)) is substantially faster when IPP is added to the monomeric enzyme (k = 0.57 s(-1)), similar to behavior seen for wt-spIDI-2. Our results indicate that cooperative interactions among subunits in the wt homotetramer are not responsible for the increased rate of reduction of spIDI-2·FMN by NADH, and two possible scenarios for the enhancement are suggested. PMID:27379573

  14. Glycine decarboxylase controls photosynthesis and plant growth.

    PubMed

    Timm, Stefan; Florian, Alexandra; Arrivault, Stephanie; Stitt, Mark; Fernie, Alisdair R; Bauwe, Hermann

    2012-10-19

    Photorespiration makes oxygenic photosynthesis possible by scavenging 2-phosphoglycolate. Hence, compromising photorespiration impairs photosynthesis. We examined whether facilitating photorespiratory carbon flow in turn accelerates photosynthesis and found that overexpression of the H-protein of glycine decarboxylase indeed considerably enhanced net-photosynthesis and growth of Arabidopsis thaliana. At the molecular level, lower glycine levels confirmed elevated GDC activity in vivo, and lower levels of the CO(2) acceptor ribulose 1,5-bisphosphate indicated higher drain from CO(2) fixation. Thus, the photorespiratory enzyme glycine decarboxylase appears as an important feed-back signaller that contributes to the control of the Calvin-Benson cycle and hence carbon flow through both photosynthesis and photorespiration.

  15. Biosynthetic arginine decarboxylase in phytopathogenic fungi.

    PubMed

    Khan, A J; Minocha, S C

    1989-01-01

    It has been reported that while bacteria and higher plants possess two different pathways for the biosynthesis of putrescine, via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC); the fungi, like animals, only use the former pathway. We found that contrary to the earlier reports, two of the phytopathogenic fungi (Ceratocystis minor and Verticillium dahliae) contain significant levels of ADC activity with very little ODC. The ADC in these fungi has high pH optimum (8.4) and low Km (0.237 mM for C. minor, 0.103 mM for V. dahliae), and is strongly inhibited by alpha-difluoromethylarginine (DFMA), putrescine and spermidine, further showing that this enzyme is probably involved in the biosynthesis of polyamines and not in the catabolism of arginine as in Escherichia coli. The growth of these fungi is strongly inhibited by DFMA while alpha-difluoromethylornithine (DFMO) has little effect.

  16. Substrate specificities of wild and mutated farnesyl diphosphate synthases from Bacillus stearothermophilus with artificial substrates.

    PubMed

    Nagaki, Masahiko; Nakada, Minori; Musashi, Tohru; Kawakami, Jun; Ohya, Norimasa; Kurihara, Masayo; Maki, Yuji; Nishino, Tokuzo; Koyama, Tanetoshi

    2007-07-01

    To determine the substrate specificities of wild and mutated types of farnesyl diphosphate (FPP) synthases from Bacillus stearothermophilus, we examined the reactivities of 8-hydroxygeranyl diphosphate (HOGPP) and 8-methoxygeranyl diphosphate (CH(3)OGPP) as allylic substrate homologs. The wild-type FPP synthase reaction of HOGPP (and CH(3)OGPP) with isopentenyl diphosphate (IPP) gave hydroxyfarnesyl- (and methoxyfarnesyl-) diphosphates that stopped at the first stage of condensation. On the other hand, with mutated type FPP synthase (Y81S), the former gave hydroxygeranylgeranyl diphosphate as the main double-condensation product together with hydroxyfarnesyl diphosphate as a single-condensation product and a small amount of hydroxygeranylfarnesyl diphosphate as a triple-condensation product. Moreover, the latter gave a double-condensation product, methoxygeranylgeranyl diphosphate, as the main product and only a trace of methoxyfarnesyl diphosphate was obtained. PMID:17617711

  17. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    SciTech Connect

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  18. Herbicide clomazone does not inhibit in vitro geranylgeranyl synthesis from mevalonate.

    PubMed

    Weimer, M R; Balke, N E; Buhler, D D

    1992-02-01

    Clomazone reduced the chlorophyll and carotenoid contents of spinach (Spinacia oleracea L.), barley (Hordeum vulgare L.), velvetleaf (Abutilon theophrasti Medik.), and soybean (Glycine max L. Merr.) seedlings. The order of species sensitivity was velvetleaf > spinach > barley > soybean. Clomazone (100 micromolar) did not affect the in vitro activities of spinach isopentenyl pyrophosphate isomerase or prenyl transferase. Clomazone also did not affect the synthesis of isopentenyl pyrophosphate from mevalonic acid. Thus, clomazone had no direct in vitro effect on the synthesis of geranylgeranyl pyrophosphate from mevalonic acid. Greening seedlings of both soybean and velvetleaf metabolized clomazone. No qualitative differences in the metabolites were detected between soybean and velvetleaf. Thus, differential metabolism of clomazone to a toxic chemical that inhibits terpenoid synthesis is unlikely. Clomazone has either a mode of action not yet identified or a metabolite that is selective in that it is much more active in sensitive than tolerant species.

  19. Herbicide Clomazone Does Not Inhibit In Vitro Geranylgeranyl Synthesis from Mevalonate 1

    PubMed Central

    Weimer, Monte R.; Balke, Nelson E.; Buhler, Douglas D.

    1992-01-01

    Clomazone reduced the chlorophyll and carotenoid contents of spinach (Spinacia oleracea L.), barley (Hordeum vulgare L.), velvetleaf (Abutilon theophrasti Medik.), and soybean (Glycine max L. Merr.) seedlings. The order of species sensitivity was velvetleaf > spinach > barley > soybean. Clomazone (100 micromolar) did not affect the in vitro activities of spinach isopentenyl pyrophosphate isomerase or prenyl transferase. Clomazone also did not affect the synthesis of isopentenyl pyrophosphate from mevalonic acid. Thus, clomazone had no direct in vitro effect on the synthesis of geranylgeranyl pyrophosphate from mevalonic acid. Greening seedlings of both soybean and velvetleaf metabolized clomazone. No qualitative differences in the metabolites were detected between soybean and velvetleaf. Thus, differential metabolism of clomazone to a toxic chemical that inhibits terpenoid synthesis is unlikely. Clomazone has either a mode of action not yet identified or a metabolite that is selective in that it is much more active in sensitive than tolerant species. PMID:16668657

  20. Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts.

    PubMed

    Kumar, Shashi; Hahn, Frederick M; Baidoo, Edward; Kahlon, Talwinder S; Wood, Delilah F; McMahan, Colleen M; Cornish, Katrina; Keasling, Jay D; Daniell, Henry; Whalen, Maureen C

    2012-01-01

    Metabolic engineering to enhance production of isoprenoid metabolites for industrial and medical purposes is an important goal. The substrate for isoprenoid synthesis in plants is produced by the mevalonate pathway (MEV) in the cytosol and by the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids. A multi-gene approach was employed to insert the entire cytosolic MEV pathway into the tobacco chloroplast genome. Molecular analysis confirmed the site-specific insertion of seven transgenes and homoplasmy. Functionality was demonstrated by unimpeded growth on fosmidomycin, which specifically inhibits the MEP pathway. Transplastomic plants containing the MEV pathway genes accumulated higher levels of mevalonate, carotenoids, squalene, sterols, and triacyglycerols than control plants. This is the first time an entire eukaryotic pathway with six enzymes has been transplastomically expressed in plants. Thus, we have developed an important tool to redirect metabolic fluxes in the isoprenoid biosynthesis pathway and a viable multigene strategy for engineering metabolism in plants.

  1. GRID2 a novel gene possibly associated with mevalonate kinase deficiency.

    PubMed

    Moura, Ronald; Tricarico, Paola Maura; Campos Coelho, Antonio Victor; Crovella, Sergio

    2015-04-01

    Mevalonate kinase deficiency (MKD) is a rare autosomal disease caused by mutations in the mevalonate kinase gene (MVK). The genotype-phenotype correlation is sometimes problematic due to the great genetic and clinical heterogeneity; so we hypothesize that genes other than MVK are able to modulate MKD clinical phenotypes. This hypothesis was tested by analyzing the exome of 22 patients with MKD all carrying MVK gene mutations, and 20 patients with recurrent fevers (RF) not carrying MVK mutations. Our preliminary findings suggest a possible role of GRID2 in the susceptibility to develop MKD. GRID2 gene (4q22.2), encoding for human glutamate receptor delta-2, associated with MKD: The rs1450500 SNP was differently distributed in patients with MKD with respect to those with RF. Being aware of the small number of patients analyzed, we hypothesized a possible role for GRID2 as possible phenotype modifier in MKD patients, especially in those with severe phenotypes.

  2. Properties of ribulose diphosphate carboxylase immobilized on porous glass

    NASA Technical Reports Server (NTRS)

    Shapira, J.; Hanson, C. L.; Lyding, J. M.; Reilly, P. J.

    1974-01-01

    Ribulose-1,5-diphosphate carboxylase from spinach has been bound to arylamine porous glass with a diazo linkage and to alklamine porous glass with glutaraldehyde. Stability at elevated temperatures and responses to changes of pH and ribulose-1,5-diphosphate, Mg(2+), and dithiothreitol concentrations were not significantly different from the soluble enzyme, though stability at 4 C was somewhat improved.

  3. Incorporation of Mevalonic Acid into Ribosylzeatin in Tobacco Callus Ribonucleic Acid Preparations 1

    PubMed Central

    Murai, Norimoto; Armstrong, Donald J.; Skoog, Folke

    1975-01-01

    The incorporation of 14C-2-mevalonic acid into transfer RNA and ribosomal RNA (high molecular weight RNA) in rapidly growing, cytokinin-dependent tobacco (Nicotiana tabacum var. Wisconsin No. 38) callus cultures has been investigated. Approximately 40% of the label incorporated into transfer RNA was present in a ribonucleoside with chromatographic properties identical to those of cis-ribosylzeatin. The remainder of the label in the transfer RNA appears to be nonspecific incorporation resulting from degradation and metabolism of 14C-2-mevalonic acid by the tobacco callus tissue. Although the total radioactivity incorporated into ribosomal RNA was roughly the same as in transfer RNA, the specific radioactivity of the transfer RNA was about four times higher than that of the ribosomal RNA, and the ribosomal RNA labeling could be distinguished from the cytokinin labeling observed in transfer RNA. The distributions of the 14C-2-mevalonic acid label and cytokinin activity in tobacco callus transfer RNA fractionated by benzoylated diethylaminoethylcellulose chromatography indicate that at least two cytokinin-containing transfer RNA species are present in this tissue. PMID:16659180

  4. Crystal structure of the Streptococcus pneumoniae mevalonate kinase in complex with diphosphomevalonate

    PubMed Central

    Andreassi, John L.; Bilder, Patrick W.; Vetting, Matthew W.; Roderick, Steven L.; Leyh, Thomas S.

    2007-01-01

    Streptococcus pneumoniae, a ubiquitous gram-positive pathogen with an alarming, steadily evolving resistance to frontline antimicrobials, poses a severe global health threat both in the community and in the clinic. The recent discovery that diphosphomevalonate (DPM), an essential intermediate in the isoprenoid biosynthetic pathway, potently and allosterically inhibits S. pneumoniae mevalonate kinase (SpMK) without affecting the human isozyme established a new target and lead compound for antimicrobial design. Here we present the crystal structure of the first S. pneumoniae mevalonate kinase, at a resolution of 2.5 Å and in complex with DPM·Mg2+ in the active-site cleft. Structural comparison of SpMK with other members of the GHMP kinase family reveals that DPM functions as a partial bisubstrate analog (mevalonate linked to the pyrophosphoryl moiety of ATP) in that it elicits a ternary-complexlike form of the enzyme, except for localized disordering in a region that would otherwise interact with the missing portion of the nucleotide. Features of the SpMK-binding pockets are discussed in the context of established mechanistic findings and inherited human diseases linked to MK deficiency. PMID:17400916

  5. Inhibition of the mevalonate pathway affects epigenetic regulation in cancer cells.

    PubMed

    Karlic, Heidrun; Thaler, Roman; Gerner, Christopher; Grunt, Thomas; Proestling, Katharina; Haider, Florian; Varga, Franz

    2015-05-01

    The mevalonate pathway provides metabolites for post-translational modifications such as farnesylation, which are critical for the activity of RAS downstream signaling. Subsequently occurring regulatory processes can induce an aberrant stimulation of DNA methyltransferase (DNMT1) as well as changes in histone deacetylases (HDACs) and microRNAs in many cancer cell lines. Inhibitors of the mevalonate pathway are increasingly recognized as anticancer drugs. Extensive evidence indicates an intense cross-talk between signaling pathways, which affect growth, differentiation, and apoptosis either directly or indirectly via epigenetic mechanisms. Herein, we show data obtained by novel transcriptomic and corresponding methylomic or proteomic analyses from cell lines treated with pharmacologic doses of respective inhibitors (i.e., simvastatin, ibandronate). Metabolic pathways and their epigenetic consequences appear to be affected by a changed concentration of NADPH. Moreover, since the mevalonate metabolism is part of a signaling network, including vitamin D metabolism or fatty acid synthesis, the epigenetic activity of associated pathways is also presented. This emphasizes the far-reaching epigenetic impact of metabolic therapies on cancer cells and provides some explanation for clinical observations, which indicate the anticancer activity of statins and bisphosphonates.

  6. Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo.

    PubMed

    Sharon, Chetna; Baranwal, Somesh; Patel, Nirmita J; Rodriguez-Agudo, Daniel; Pandak, William M; Majumdar, Adhip P N; Krystal, Geoffrey; Patel, Bhaumik B

    2015-06-20

    We observed a co-upregulation of the insulin-like growth factor receptor (IGF-1R)/AKT/mammalian target of rapamycin (mTOR) [InAT] axis and the mevalonate-isoprenoid biosynthesis (MIB) pathways in colorectal cancer stem cells (CSCs) in an unbiased approach. Hence, we hypothesized that the InAT axis might regulate the MIB pathway to govern colorectal CSCs growth. Stimulation (IGF-1) or inhibition (IGF-1R depletion and pharmacological inhibition of IGF-1R/mTOR) of the InAT axis produced induction or attenuation of CSC growth as well as expression of CSC markers and self-renewal factors respectively. Intriguingly, activation of the InAT axis (IGF-1) caused significant upregulation of the MIB pathway genes (both mRNA and protein); while its inhibition produced the opposite effects in colonospheres. More importantly, supplementation with dimethylallyl- and farnesyl-PP, MIB metabolites downstream of isopentenyl-diphosphate delta isomerase (IDI), but not mevalonate and isopentenyl-pp that are upstream of IDI, resulted in a near-complete reversal of the suppressive effect of the InAT axis inhibitors on CSCs growth. The latter findings suggest a specific regulation of the MIB pathway by the InAT axis distal to the target of statins that inhibit 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Effects of IGF-1R inhibition on colonic CSCs proliferation and the MIB pathway were confirmed in an 'in vivo' HCT-116 xenograft model. These observations establish a novel mechanistic link between the InAT axis that is commonly deregulated in colorectal cancer and the MIB pathway in regulation of colonic CSCs growth. Hence, the InAT-MIB corridor is a novel target for developing paradigm shifting optimum anti-CSCs therapies for colorectal cancer. PMID:25895029

  7. Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo

    PubMed Central

    Sharon, Chetna; Baranwal, Somesh; Patel, Nirmita J.; Rodriguez-Agudo, Daniel; Pandak, William M.; Majumdar, Adhip PN; Krystal, Geoffrey; Patel, Bhaumik B.

    2015-01-01

    We observed a co-upregulation of the insulin-like growth factor receptor (IGF-1R)/AKT/mammalian target of rapamycin (mTOR) [InAT] axis and the mevalonate-isoprenoid biosynthesis (MIB) pathways in colorectal cancer stem cells (CSCs) in an unbiased approach. Hence, we hypothesized that the InAT axis might regulate the MIB pathway to govern colorectal CSCs growth. Stimulation (IGF-1) or inhibition (IGF-1R depletion and pharmacological inhibition of IGF-1R/mTOR) of the InAT axis produced induction or attenuation of CSC growth as well as expression of CSC markers and self-renewal factors respectively. Intriguingly, activation of the InAT axis (IGF-1) caused significant upregulation of the MIB pathway genes (both mRNA and protein); while its inhibition produced the opposite effects in colonospheres. More importantly, supplementation with dimethylallyl- and farnesyl-PP, MIB metabolites downstream of isopentenyl-diphosphate delta isomerase (IDI), but not mevalonate and isopentenyl-pp that are upstream of IDI, resulted in a near-complete reversal of the suppressive effect of the InAT axis inhibitors on CSCs growth. The latter findings suggest a specific regulation of the MIB pathway by the InAT axis distal to the target of statins that inhibit 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR). Effects of IGF-1R inhibition on colonic CSCs proliferation and the MIB pathway were confirmed in an ‘in vivo’ HCT-116 xenograft model. These observations establish a novel mechanistic link between the InAT axis that is commonly deregulated in colorectal cancer and the MIB pathway in regulation of colonic CSCs growth. Hence, the InAT-MIB corridor is a novel target for developing paradigm shifting optimum anti-CSCs therapies for colorectal cancer. PMID:25895029

  8. Structural perspective on the direct inhibition mechanism of EGCG on mammalian histidine decarboxylase and DOPA decarboxylase.

    PubMed

    Ruiz-Pérez, M Victoria; Pino-Ángeles, Almudena; Medina, Miguel A; Sánchez-Jiménez, Francisca; Moya-García, Aurelio A

    2012-01-23

    Histidine decarboxylase (HDC) and l-aromatic amino acid decarboxylase (DDC) are homologous enzymes that are responsible for the synthesis of important neuroactive amines related to inflammatory, neurodegenerative, and neoplastic diseases. Epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, has been shown to target histamine-producing cells and to promote anti-inflammatory, antitumor, and antiangiogenic effects. Previous experimental work has demonstrated that EGCG has a direct inhibitory effect on both HDC and DDC. In this study, we investigated the binding modes of EGCG to HDC and DDC as a first step for designing new polyphenol-based HDC/DDC-specific inhibitors. PMID:22107329

  9. Ribulose diphosphate carboxylase/oxygenase. IV. Regulation by phosphate esters.

    PubMed

    Ryan, F J; Tolbert, N E

    1975-06-10

    The stimulation or inhibition of ribulose diphosphate oxygenase by a variety of compounds is compared with the reported effects on these compounds on the ribulose diphosphate carboxylase activity. A possible transition state analog of ribulose diphosphate, 2-carboxyribitol 1, 5-diphosphate, at a molar ratio of inhibitor to enzyme of 10 to 1, irreversibly inactivates the oxygenase and carboxylase activities. This is consistent with the hypothesis that there may be a single active site for both the carboxylase and oxygenase activities. Several compounds of the reductive pentose photosynthetic carbon cycle act as effectors of the ribulose diphosphate oxygenase in a manner complementary to their reported effect upon the carboxylase. Ribose 5-phosphate inhibits the oxygenase with an apparent Ki of 1.8 mM, but it is reported to activate the carboxylase; fructose 6-phosphate and glucose 6-phosphate act similarly but are less effective than ribose 5-phosphate. Fructose 1. 6-diphosphate stimulates the oxygenase at low magnesium ion concentrations. The stimulatory effect of 6-phosphogluconate on the oxygenase is associated with a 3-fold reduction of the Km (Mg2+). ATP inhibits the oxygenase but has been reported to stimulate the carboxylase; pyrophosphate acts in an opposite manner. From these results it appears that the ratio of carboxylase to oxygenase activity may be a variable factor with predictable subsequent alteration in the ratio between photosynthetic CO2 fixation and photorespiration.

  10. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism. PMID:24827744

  11. Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases.

    PubMed Central

    De Luca, V; Marineau, C; Brisson, N

    1989-01-01

    The sequence of a cDNA clone that includes the complete coding region of tryptophan decarboxylase (EC 4.1.1.28, formerly EC 4.1.1.27) from periwinkle (Catharanthus roseus) is reported. The cDNA clone (1747 base pairs) was isolated by antibody screening of a cDNA expression library produced from poly(A)+ RNA found in developing seedlings of C. roseus. The clone hybridized to a 1.8-kilobase mRNA from developing seedlings and from young leaves of mature plants. The identity of the clone was confirmed when extracts of transformed Escherichia coli expressed a protein containing tryptophan decarboxylase enzyme activity. The tryptophan decarboxylase cDNA clone encodes a protein of 500 amino acids with a calculated molecular mass of 56,142 Da. The amino acid sequence shows a high degree of similarity with the aromatic L-amino acid decarboxylase (dopa decarboxylase) and the alpha-methyldopa-hypersensitive protein of Drosophila melanogaster. The tryptophan decarboxylase sequence also showed significant similarity to feline glutamate decarboxylase and mouse ornithine decarboxylase, suggesting a possible evolutionary link between these amino acid decarboxylases. Images PMID:2704736

  12. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae

    DOE PAGES

    Rodriguez, Sarah; Denby, Charles M.; Van Vu, T.; Baidoo, Edward E. K.; Wang, George; Keasling, Jay D.

    2016-03-03

    With increasing concern about the environmental impact of a petroleum based economy, focus has shifted towards greener production strategies including metabolic engineering of microbes for the conversion of plant-based feedstocks to second generation biofuels and industrial chemicals. Saccharomyces cerevisiae is an attractive host for this purpose as it has been extensively engineered for production of various fuels and chemicals. Many of the target molecules are derived from the central metabolite and molecular building block, acetyl-CoA. To date, it has been difficult to engineer S. cerevisiae to continuously convert sugars present in biomass-based feedstocks to acetyl-CoA derived products due to intrinsicmore » physiological constraints—in respiring cells, the precursor pyruvate is directed away from the endogenous cytosolic acetyl-CoA biosynthesis pathway towards the mitochondria, and in fermenting cells pyruvate is directed towards the byproduct ethanol. In this study we incorporated an alternative mode of acetyl-CoA biosynthesis mediated by ATP citrate lyase (ACL) that may obviate such constraints. We characterized the activity of several heterologously expressed ACLs in crude cell lysates, and found that ACL from Aspergillus nidulans demonstrated the highest activity. We employed a push/pull strategy to shunt citrate towards ACL by deletion of the mitochondrial NAD+-dependent isocitrate dehydrogenase (IDH1) and engineering higher flux through the upper mevalonate pathway. We demonstrated that combining the two modifications increases accumulation of mevalonate pathway intermediates, and that both modifications are required to substantially increase production. Finally, we incorporated a block strategy by replacing the native ERG12 (mevalonate kinase) promoter with the copper-repressible CTR3 promoter to maximize accumulation of the commercially important molecule mevalonate. In conclusion, by combining the push/pull/block strategies, we significantly

  13. Substrate activation of brewers' yeast pyruvate decarboxylase is abolished by mutation of cysteine 221 to serine.

    PubMed

    Baburina, I; Gao, Y; Hu, Z; Jordan, F; Hohmann, S; Furey, W

    1994-05-10

    Brewers' yeast pyruvate decarboxylase (EC 4.1.1.1), a thiamin diphosphate and Mg(II)-dependent enzyme, isolated from Saccharomyces cerevisiae possesses four cysteines/subunit at positions 69, 152, 221, and 222. Earlier studies conducted on a variant of the enzyme with a single Cys at position 221 (derived from a gene that was the product of spontaneous fusion) showed that this enzyme is still subject to substrate activation [Zeng, X., Farrenkopf, B., Hohmann, S., Jordan, F., Dyda, F., & Furey, W. (1993) Biochemistry 32, 2704-2709], indicating that if Cys was responsible for this activation, it had to be C221. To further test the hypothesis, the C221S and C222S single and the C221S-C222S double mutants were constructed. It is clearly shown that the mutation at C221, but not at C222, leads to abolished substrate activation according to a number of kinetic criteria, both steady state and pre steady state. On the basis of the three-dimensional structure of the enzyme [Dyda, F., Furey, W., Swaminathan, S., Sax, M., Farrenkopf, B., Jordan, F. (1993) Biochemistry 32, 6165-6170], it is obvious that while C221 is located on the beta domain, whereas thiamin diphosphate is wedged at the interface of the alpha and gamma domains, addition of pyruvate or pyruvamide as a hemiketal adduct to the sulfur of C221 can easily bridge the gap between the beta and alpha domains. In fact, residues in one or both domains must be dislocated by this adduct formation. It is very likely that regulation as expressed in substrate activation is transmitted via this direct contact made between the two domains in the presence of the activator.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Identification of the bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in plants.

    PubMed

    Takahashi, Kosaku; Kasai, Koji; Ochi, Kozo

    2004-03-23

    Stringent control mediated by the bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) is a key regulatory process governing bacterial gene expression. By devising a system to measure ppGpp in plants, we have been able to identify ppGpp in the chloroplasts of plant cells. Levels of ppGpp increased markedly when plants were subjected to such biotic and abiotic stresses as wounding, heat shock, high salinity, acidity, heavy metal, drought, and UV irradiation. Abrupt changes from light to dark also caused a substantial elevation in ppGpp levels. In vitro, chloroplast RNA polymerase activity was inhibited in the presence of ppGpp, demonstrating the existence of a bacteria-type stringent response in plants. Elevation of ppGpp levels was elicited also by treatment with plant hormones jasmonic acid, abscisic acid, and ethylene, but these effects were blocked completely by another plant hormone, indole-3-acetic acid. On the basis of these findings, we propose that ppGpp plays a critical role in systemic plant signaling in response to environmental stresses, contributing to the adaptation of plants to environmental changes.

  15. Induction of aromatic-L-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in 't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-06-01

    We evaluated the effect of administration of L-dopa, alone or in combination with a peripheral decarboxylase inhibitor, on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD). After single-dose administration of L-dopa plus benserazide (Madopar) in healthy subjects and in chronically treated patients with parkinsonism, plasma ALAAD followed for 2 to 3 hours fell, but returned to predosing levels within 90 minutes. Four groups of patients with idiopathic parkinsonism were studied during chronic treatment: Group I, no L-dopa treatment (n = 31); Group II, L-dopa alone (n = 15); Group III, L-dopa plus benserazide (n = 28); and Group IV, L-dopa plus carbidopa (Sinemet, n = 30). Plasma ALAAD 2 hours after dosing was normal in Groups I and II. ALAAD was increased threefold in Groups III and IV, suggesting induction of ALAAD by the coadministration of a peripheral decarboxylase inhibitor. In a study of 3 patients in whom L-dopa/benserazide was started, plasma ALAAD rose gradually over 3 to 4 weeks. Further detailed pharmacokinetic studies of L-dopa, dopamine, and ALAAD in plasma and cerebrospinal fluid are required to determine if the apparent ALAAD induction by a peripheral decarboxylase inhibitor may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena. PMID:2742363

  16. Induction of aromatic-L-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in 't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-06-01

    We evaluated the effect of administration of L-dopa, alone or in combination with a peripheral decarboxylase inhibitor, on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD). After single-dose administration of L-dopa plus benserazide (Madopar) in healthy subjects and in chronically treated patients with parkinsonism, plasma ALAAD followed for 2 to 3 hours fell, but returned to predosing levels within 90 minutes. Four groups of patients with idiopathic parkinsonism were studied during chronic treatment: Group I, no L-dopa treatment (n = 31); Group II, L-dopa alone (n = 15); Group III, L-dopa plus benserazide (n = 28); and Group IV, L-dopa plus carbidopa (Sinemet, n = 30). Plasma ALAAD 2 hours after dosing was normal in Groups I and II. ALAAD was increased threefold in Groups III and IV, suggesting induction of ALAAD by the coadministration of a peripheral decarboxylase inhibitor. In a study of 3 patients in whom L-dopa/benserazide was started, plasma ALAAD rose gradually over 3 to 4 weeks. Further detailed pharmacokinetic studies of L-dopa, dopamine, and ALAAD in plasma and cerebrospinal fluid are required to determine if the apparent ALAAD induction by a peripheral decarboxylase inhibitor may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena.

  17. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    NASA Astrophysics Data System (ADS)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  18. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  19. Characterization and Mechanistic Studies of Type II Isopentenyl Diphosphate:Dimethylallyl Diphosphate Isomerase from Staphylococcus aureus

    PubMed Central

    Kittleman, William; Thibodeaux, Christopher J.; Liu, Yung-nan; Zhang, Hua; Liu, Hung-wen

    2008-01-01

    The recently identified type II isopentenyl diphosphate (IPP):dimethylallyl diphosphate (DMAPP) isomerase (IDI-2) is a flavoenzyme that requires FMN and NAD(P)H for activity. IDI-2 is an essential enzyme for the biosynthesis of isoprenoids in several pathogenic bacteria including Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis, and thus is considered as a potential new drug target to battle bacterial infections. One notable feature of the IDI-2 reaction is that there is no net change in redox state between the substrate (IPP) and product (DMAPP), indicating that the FMN cofactor must start and finish each catalytic cycle in the same redox state. Here, we report the characterization and initial mechanistic studies of the S. aureus IDI-2. The steady-state kinetic analyses under aerobic and anaerobic conditions show that FMN must be reduced to be catalytically active and the overall IDI-2 reaction is O2 sensitive. Interestingly, our results demonstrate that NADPH is needed only in catalytic amounts to activate the enzyme for multiple turnovers of IPP to DMAPP. The hydride transfer from NAD(P)H to reduce FMN is determined to be pro-S stereospecific. Photoreduction and oxidation-reduction potential studies reveal that the S. aureus IDI-2 can stabilize significant amounts of the neutral FMN semiquinone. In addition, reconstitution of apo-IDI-2 with 5-deazaFMN resulted in a dead enzyme, whereas reconstitution with 1-deazaFMN led to the full recovery of enzyme activity. Taken together, these studies of S. aureus IDI-2 support a catalytic mechanism in which the reduced flavin coenzyme mediates a single electron transfer to and from the IPP substrate during catalysis. PMID:17585782

  20. Taxodione and arenarone inhibit farnesyl diphosphate synthase by binding to the isopentenyl diphosphate site

    PubMed Central

    Liu, Yi-Liang; Lindert, Steffen; Zhu, Wei; Wang, Ke; McCammon, J. Andrew; Oldfield, Eric

    2014-01-01

    We used in silico methods to screen a library of 1,013 compounds for possible binding to the allosteric site in farnesyl diphosphate synthase (FPPS). Two of the 50 predicted hits had activity against either human FPPS (HsFPPS) or Trypanosoma brucei FPPS (TbFPPS), the most active being the quinone methide celastrol (IC50 versus TbFPPS ∼20 µM). Two rounds of similarity searching and activity testing then resulted in three leads that were active against HsFPPS with IC50 values in the range of ∼1–3 µM (as compared with ∼0.5 µM for the bisphosphonate inhibitor, zoledronate). The three leads were the quinone methides taxodone and taxodione and the quinone arenarone, compounds with known antibacterial and/or antitumor activity. We then obtained X-ray crystal structures of HsFPPS with taxodione+zoledronate, arenarone+zoledronate, and taxodione alone. In the zoledronate-containing structures, taxodione and arenarone bound solely to the homoallylic (isopentenyl diphosphate, IPP) site, not to the allosteric site, whereas zoledronate bound via Mg2+ to the same site as seen in other bisphosphonate-containing structures. In the taxodione-alone structure, one taxodione bound to the same site as seen in the taxodione+zoledronate structure, but the second located to a more surface-exposed site. In differential scanning calorimetry experiments, taxodione and arenarone broadened the native-to-unfolded thermal transition (Tm), quite different to the large increases in ΔTm seen with biphosphonate inhibitors. The results identify new classes of FPPS inhibitors, diterpenoids and sesquiterpenoids, that bind to the IPP site and may be of interest as anticancer and antiinfective drug leads. PMID:24927548

  1. Crenarchaeal Arginine Decarboxylase Evolved from an S-Adenosylmethionine Decarboxylase Enzyme*S⃞

    PubMed Central

    Giles, Teresa N.; Graham, David E.

    2008-01-01

    The crenarchaeon Sulfolobus solfataricus uses arginine to produce putrescine for polyamine biosynthesis. However, genome sequences from S. solfataricus and most crenarchaea have no known homologs of the previously characterized pyridoxal 5′-phosphate or pyruvoyl-dependent arginine decarboxylases that catalyze the first step in this pathway. Instead they have two paralogs of the S-adenosylmethionine decarboxylase (AdoMetDC). The gene at locus SSO0585 produces an AdoMetDC enzyme, whereas the gene at locus SSO0536 produces a novel arginine decarboxylase (ArgDC). Both thermostable enzymes self-cleave at conserved serine residues to form amino-terminal β-domains and carboxyl-terminal α-domains with reactive pyruvoyl cofactors. The ArgDC enzyme specifically catalyzed arginine decarboxylation more efficiently than previously studied pyruvoyl enzymes. α-Difluoromethylarginine significantly reduced the ArgDC activity of purified enzyme, and treating growing S. solfataricus cells with this inhibitor reduced the cells' ratio of spermidine to norspermine by decreasing the putrescine pool. The crenarchaeal ArgDC had no AdoMetDC activity, whereas its AdoMetDC paralog had no ArgDC activity. A chimeric protein containing the β-subunit of SSO0536 and the α-subunit of SSO0585 had ArgDC activity, implicating residues responsible for substrate specificity in the amino-terminal domain. This crenarchaeal ArgDC is the first example of alternative substrate specificity in the AdoMetDC family. ArgDC activity has evolved through convergent evolution at least five times, demonstrating the utility of this enzyme and the plasticity of amino acid decarboxylases. PMID:18650422

  2. Characterization of ribulose diphosphate carboxylase and phosphoribulokinase from Thiobacillus thioparus and Thiobacillus neapolitanus.

    NASA Technical Reports Server (NTRS)

    Johnson, E. J.; Johnson, M. K.; Macelroy, R. D.

    1968-01-01

    Ribulose diphosphate carboxylase and phosphoribulokinase activity in chemosynthetic autotrophs Thiobacillus thioparus and Thiobacillus neapolitanus, noting sedimentation and gel filtration characteristics

  3. A review on the chemical synthesis of pyrophosphate bonds in bioactive nucleoside diphosphate analogs.

    PubMed

    Xu, Zhihong

    2015-09-15

    Currently, there is an ongoing interest in the synthesis of nucleoside diphosphate analogs as important regulators in catabolism/anabolism, and their potential applications as mechanistic probes and chemical tools for bioassays. However, the pyrophosphate bond formation step remains as the bottleneck. In this Digest, the chemical synthesis of the pyrophosphate bonds of representative bioactive nucleoside diphosphate analogs, i.e. phosphorus-modified analogs, nucleoside cyclic diphosphates, and nucleoside diphosphate conjugates, will be described.

  4. Non-enzymatic synthesis of the coenzymes, uridine diphosphate glucose and cytidine diphosphate choline, and other phosphorylated metabolic intermediates

    NASA Technical Reports Server (NTRS)

    Mar, A.; Dworkin, J.; Oro, J.

    1987-01-01

    Using urea and cyanamide, the two condensing agents considered to have been present on the primitive earth, uridine diphosphate glucose (UDPG), cytidine diphosphate choline (CDP-choline), glucose-1-phosphate (G1P), and glucose-6-phosphate (G6P) were synthesized under simulated prebiotic conditions. The reaction products were separated and identified using paper chromatography, thin layer chromatography, enzymatic analyses, and ion-pair reverse-phase high performance liquid chromatography. The possibility of nonenzymatic synthesis of metabolic intermediates on the primitive earth from simple precursors was thus demonstrated.

  5. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway.

    PubMed

    Cárdenas, Pablo D; Sonawane, Prashant D; Pollier, Jacob; Vanden Bossche, Robin; Dewangan, Veena; Weithorn, Efrat; Tal, Lior; Meir, Sagit; Rogachev, Ilana; Malitsky, Sergey; Giri, Ashok P; Goossens, Alain; Burdman, Saul; Aharoni, Asaph

    2016-01-01

    Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosynthesis. GAME9 knockdown and overexpression in tomato and potato alters expression of SGAs and upstream mevalonate pathway genes including the cholesterol biosynthesis gene STEROL SIDE CHAIN REDUCTASE 2 (SSR2). Levels of SGAs, C24-alkylsterols and the upstream mevalonate and cholesterol pathways intermediates are modified in these plants. Δ(7)-STEROL-C5(6)-DESATURASE (C5-SD) in the hitherto unresolved cholesterol pathway is a direct target of GAME9. Transactivation and promoter-binding assays show that GAME9 exerts its activity either directly or cooperatively with the SlMYC2 transcription factor as in the case of the C5-SD gene promoter. Our findings provide insight into the regulation of SGA biosynthesis and means for manipulating these metabolites in crops. PMID:26876023

  6. Effect of mevalonic acid on cholesterol synthesis in bovine intramuscular and subcutaneous adipocytes.

    PubMed

    Liu, Xiaomu; You, Wei; Cheng, Haijian; Zhang, Qingfeng; Song, Enliang; Wan, Fachun; Han, Hong; Liu, Guifen

    2016-02-01

    Mevalonic acid (MVA) is a key material in the synthesis of cholesterol; indeed, intracellular cholesterol synthesis is also called the mevalonic acid pathway. 3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) is an essential enzyme in cholesterol biosynthesis. This study suggests that MVA may play an important role in the differentiation of bovine adipose tissue in vivo. We investigated differential mRNA expression in bovine intramuscular preadipocytes (BIPs) and bovine subcutaneous preadipocytes (BSPs) by culturing cells from the longissimus dorsi muscle and subcutaneous fat tissues of Luxi yellow cattle. The morphology of lipid accumulation of bovine preadipocytes was detected by Oil Red O staining, and total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), and high-density lipoprotein cholesterol (HDLC) levels were measured. Temporospatial expression of HMGR was investigated by real-time quantitative polymerase chain reaction (PCR). The TC, LDLC, and HDLC content did not significantly differ over time but increased slowly with increasing MVA concentration. HMGR expression increased over time and with increasing concentrations of MVA. MVA increased adipose cell proliferation in a dose-dependent and time-dependent manner. MVA stimulated HMGR expression in two cell types and its influence on adipocyte differentiation.

  7. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway

    PubMed Central

    Cárdenas, Pablo D.; Sonawane, Prashant D.; Pollier, Jacob; Vanden Bossche, Robin; Dewangan, Veena; Weithorn, Efrat; Tal, Lior; Meir, Sagit; Rogachev, Ilana; Malitsky, Sergey; Giri, Ashok P.; Goossens, Alain; Burdman, Saul; Aharoni, Asaph

    2016-01-01

    Steroidal glycoalkaloids (SGAs) are cholesterol-derived molecules produced by solanaceous species. They contribute to pathogen defence but are toxic to humans and considered as anti-nutritional compounds. Here we show that GLYCOALKALOID METABOLISM 9 (GAME9), an APETALA2/Ethylene Response Factor, related to regulators of alkaloid production in tobacco and Catharanthus roseus, controls SGA biosynthesis. GAME9 knockdown and overexpression in tomato and potato alters expression of SGAs and upstream mevalonate pathway genes including the cholesterol biosynthesis gene STEROL SIDE CHAIN REDUCTASE 2 (SSR2). Levels of SGAs, C24-alkylsterols and the upstream mevalonate and cholesterol pathways intermediates are modified in these plants. Δ(7)-STEROL-C5(6)-DESATURASE (C5-SD) in the hitherto unresolved cholesterol pathway is a direct target of GAME9. Transactivation and promoter-binding assays show that GAME9 exerts its activity either directly or cooperatively with the SlMYC2 transcription factor as in the case of the C5-SD gene promoter. Our findings provide insight into the regulation of SGA biosynthesis and means for manipulating these metabolites in crops. PMID:26876023

  8. Three Distinct Glutamate Decarboxylase Genes in Vertebrates

    PubMed Central

    Grone, Brian P.; Maruska, Karen P.

    2016-01-01

    Gamma-aminobutyric acid (GABA) is a widely conserved signaling molecule that in animals has been adapted as a neurotransmitter. GABA is synthesized from the amino acid glutamate by the action of glutamate decarboxylases (GADs). Two vertebrate genes, GAD1 and GAD2, encode distinct GAD proteins: GAD67 and GAD65, respectively. We have identified a third vertebrate GAD gene, GAD3. This gene is conserved in fishes as well as tetrapods. We analyzed protein sequence, gene structure, synteny, and phylogenetics to identify GAD3 as a homolog of GAD1 and GAD2. Interestingly, we found that GAD3 was lost in the hominid lineage. Because of the importance of GABA as a neurotransmitter, GAD3 may play important roles in vertebrate nervous systems. PMID:27461130

  9. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    PubMed

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.

  10. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    DOEpatents

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  11. Structure of nucleoside diphosphate kinase from pacific shrimp (Litopenaeus vannamei) in binary complexes with purine and pyrimidine nucleoside diphosphates.

    PubMed

    López-Zavala, Alonso A; Quintero-Reyes, Idania E; Carrasco-Miranda, Jesús S; Stojanoff, Vivian; Weichsel, Andrzej; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R

    2014-09-01

    Nucleoside diphosphate kinase (NDK; EC 2.7.4.6) is an enzyme that catalyzes the third phosphorylation of nucleoside diphosphates, leading to nucleoside triphosphates for DNA replication. Expression of the NDK from Litopenaeus vannamei (LvNDK) is known to be regulated under viral infection. Also, as determined by isothermal titration calorimetry, LvNDK binds both purine and pyrimidine deoxynucleoside diphosphates with high binding affinity for dGDP and dADP and with no heat of binding interaction for dCDP [Quintero-Reyes et al. (2012), J. Bioenerg. Biomembr. 44, 325-331]. In order to investigate the differences in selectivity, LvNDK was crystallized as binary complexes with both acceptor (dADP and dCDP) and donor (ADP) phosphate-group nucleoside diphosphate substrates and their structures were determined. The three structures with purine or pyrimidine nucleotide ligands are all hexameric. Also, the binding of deoxy or ribonucleotides is similar, as in the former a water molecule replaces the hydrogen bond made by Lys11 to the 2'-hydroxyl group of the ribose moiety. This allows Lys11 to maintain a catalytically favourable conformation independently of the kind of sugar found in the nucleotide. Because of this, shrimp NDK may phosphorylate nucleotide analogues to inhibit the viral infections that attack this organism.

  12. The non-mevalonate isoprenoid biosynthesis of plants as a test system for drugs against malaria and pathogenic bacteria.

    PubMed

    Zeidler, J; Schwender, J; Mueller, C; Lichtenthaler, H K

    2000-12-01

    Two plant test systems are presented in the search for new inhibitors of the non-mevalonate isoprenoid pathway. A derivative of clomazone appears to be an inhibitor of the deoxyxylulose 5-phosphate/methylerythritol 4-phosphate (DOXP/MEP) pathway of isoprenoid formation.

  13. Expression of the cytoplasmic mevalonate pathway in chloroplasts to reduce substrate limitations for cytoplasmically-produced terpenoid secondary products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All products of isoprenoid metabolism originate with the C5 non-allylic substrate, isopentenyl pyrophosphate (IPP). IPP is produced in plants by two distinct pathways, the mevalonate pathway (MEV) in the cytosol and the 2 C methyl-D-erythritol 4 phosphate (MEP) pathway in plastids. A multi-gene a...

  14. Ornithine decarboxylase and S-adenosyl methionine decarboxylase in skin fibroblasts of normal and cystic fibrosis patients.

    PubMed

    Buehler, B; Wright, R; Schott, S; Darby, B; Rennert, O M

    1977-03-01

    The key enzymes in the synthesis of the naturally occurring polyamines, ornithine decarboxylase (ODC) and S-adenosyl methionine (SAM) decarboxylase, were investigated during cell growth and aging in fibroblast cultures from normal patients and patients with cystic fibrosis. A linear correlation between increased S-adenosyl methionine activity and putrescine concentration was apparent in all cell lines. A putrescine concentration of 0.8 mM was optimal for enhancement of SAM decarboxylase activity. The passage number of the cell line correlated inversely with maximal putrescine-stimulated SAM decarboxylase activity, earlier passage numbers having the highest specific activity (Fig. 1). No significant differences in basal or putrescine-stimulated SAM decarboxylase activity were noted between normal fibroblast cultures and cells from patients with cystic fibrosis (Fig. 2). SAM decarboxylase activity increased as the cell lines approached confluence. Activity was lowest during exponential growth (Fig. 3). ODC activity was increased during early exponential growth and fell as cells reached confluence (Fig. 4). No differences in ODC activity and putrescine inhibition between the normal and cystic fibrosis cell cultures at equivalent points of exponential growth were noted.

  15. Properties of oxaloacetate decarboxylase from Veillonella parvula.

    PubMed Central

    Ng, S K; Wong, M; Hamilton, I R

    1982-01-01

    Oxaloacetate decarboxylase was purified to 136-fold from the oral anaerobe Veillonella parvula. The purified enzyme was substantially free of contaminating enzymes or proteins. Maximum activity of the enzyme was exhibited at pH 7.0 for both carboxylation and decarboxylation. At this pH, the Km values for oxaloacetate and Mg2+ were at 0.06 and 0.17 mM, respectively, whereas the Km values for pyruvate, CO2, and Mg2+ were 3.3, 1.74, and 1.85 mM, respectively. Hyperbolic kinetics were observed with all of the aforementioned compounds. The Keq' was 2.13 X 10(-3) mM-1 favoring the decarboxylation of oxaloacetate. In the carboxylation step, avidin, acetyl coenzyme A, biotin, and coenzyme A were not required. ADP and NADH had no effect on either the carboxylation or decarboxylation step, but ATP inhibited the carboxylation step competitively and the decarboxylation step noncompetitively. These types of inhibition fitted well with the overall lactate metabolism of the non-carbohydrate-fermenting anaerobe. PMID:7076619

  16. Cysteinesulfinate decarboxylase: Characterization, inhibition, and metabolic role in taurine formation

    SciTech Connect

    Weinstein, C.L.

    1988-01-01

    Cysteinesulfinate decarboxylase, an enzyme that plays a major role in the formation of taurine from cysteine, has been purified from rat liver to homogeneity and characterized. The physical properties of the enzyme were studied, along with its substrate specificity. Multiple forms of the enzyme were found in rat liver, kidney, and brain with isoelectric points ranging from pH 5.6 to 4.9. These multiple forms did not differ in their substrate specificity. It was found by using gel electrofocusing and polyclonal antibodies raised to the liver enzyme that the different forms of cysteinesulfinate decarboxylase are identical in the various rat tissues studied. Various inhibitors of the enzyme were tested both in vitro and in vivo in order to evaluate the role of cysteinesulfinate decarboxylase in taurine formation in mammalian tissues. In in vitro studies, cysteinesulfinate decarboxylase was irreversibly inhibited by {beta}-ethylidene-DL-aspartate (Ki = 10 mM), and competitive inhibition was found using mercaptomethylsuccinate (Ki = 0.1 mM) and D-cysteinesulfinate (Ki = 0.32 mM) when L-cysteinesulfinate was used as a substrate. In order to be able to test these inhibitors in vivo, L-(1-{sup 14}C)cysteinesulfonate was evaluated as a probe for the in vivo measurement of cysteinesulfinate decarboxylase activity. The metabolism of cysteinesulfonate and the product of its transamination, {beta}-sulfopyruvate, was studied, and it was found that L-(1-{sup 14}C)cysteinesulfonate is an accurate and convenient probe for cysteinesulfinate decarboxylase activity. Using L-(1-{sup 14}C)cysteinesulfonate, it was found that D-cysteinesulfinate inhibits cysteinesulfinate decarboxylase activity by greater than 90% in the intact mouse and that inhibition lasts for up to fifteen hours.

  17. Solvent-derived protons in catalysis by brewers' yeast pyruvate decarboxylase.

    PubMed

    Harris, T K; Washabaugh, M W

    1995-10-31

    Catalysis of proton transfer to thiamin diphosphate (TDP) and 2-(1-hydroxyethyl)thiamin diphosphate (HETDP) by pyruvate decarboxylase isozymes (PDC; EC 4.1.1.1) from Saccharomyces carlsbergensis was investigated by determining the solvent discrimination tritium isotope effect, (kH/kT)disc, on the reaction of pyruvate to form acetaldehyde in the presence of the nonsubstrate allosteric effector pyruvamide. The fractionation factors for TDP C(2)-L (phi C(2) = 0.98 +/- 0.06) and HETDP C(alpha)-L (phi C(alpha) = 1.01 +/- 0.07) (L = H or D) do not contribute significantly to observed enzymic isotopic discrimination. The value of (kH/kT)disc = 1.0 for reprotonation of TDP C(2)-L under single-turnover conditions ([E] > [S]) is consistent with C(2)-hydron transfer via a catalytic group (phi = 1) equilibrated with solvent. [1-L]Acetaldehyde formation under transient steady-state ([E] < [S]) conditions shows solvent discrimination tritium isotope effects that increase over the range (kH/kT)disc = 0.39 (single turnover) to 0.86 (ten turnovers). The 2-fold increase in the value of (kH/kT)disc for the [1-L]acetaldehyde product under steady-state compared to single-turnover conditions is attributed to a fractionation factor of phi 1 = 0.88 +/- 0.06 for the residue(s) involved in C(alpha)-hydron transfer to form HETDP. This provides evidence that catalysis of acetaldehyde formation by PDC involves specific protonation of both HETDP C(alpha)-L and TDP C(2)-L (phi 2 = 1.0 +/- 0.1) and requires at least two catalytic groups. Values of phi < or = 1 for protonation of TDP C(2)-L and HETDP C(alpha)-L provide no evidence that the exocyclic 4'-amino or -imino group (phi > or = 1.2) provides significant intramolecular catalysis in the enzyme-bound coenzyme.

  18. Shrimp oncoprotein nm23 is a functional nucleoside diphosphate kinase.

    PubMed

    Quintero-Reyes, Idania E; Garcia-Orozco, Karina D; Sugich-Miranda, Rocio; Arvizu-Flores, Aldo A; Velazquez-Contreras, Enrique F; Castillo-Yañez, Francisco J; Sotelo-Mundo, Rogerio R

    2012-06-01

    Biosynthesis of nucleoside triphosphates is critical for bioenergetics and nucleic acid replication, and this is achieved by nucleoside diphosphate kinase (NDK). As an emerging biological model and the global importance of shrimp culture, we have addressed the study of the Pacific whiteleg shrimp (Litopenaeus vannamei) NDK. We demonstrated its activity and affinity towards deoxynucleoside diphosphates. Also, the quaternary structure obtained by gel filtration chromatography showed that shrimp NDK is a trimer. Affinity was in the micro-molar range for dADP, dGDP, dTDP and except for dCDP, which presented no detectable interaction by isothermal titration calorimetry, as described previously for Plasmodium falciparum NDK. This information is particularly important, as this enzyme could be used to test nucleotide analogs that can block white spot syndrome virus (WSSV) viral replication and to study its bioenergetics role during hypoxia and fasting.

  19. A continuous fluorescent assay for protein prenyltransferases measuring diphosphate release.

    PubMed

    Pais, June E; Bowers, Katherine E; Stoddard, Andrea K; Fierke, Carol A

    2005-10-15

    Protein farnesyltransferase and protein geranylgeranyltransferase type I catalyze the transfer of a 15- and a 20-carbon prenyl group, respectively, from a prenyl diphosphate to a cysteine residue at the carboxyl terminus of target proteins, with the concomitant release of diphosphate. Common substrates include oncogenic Ras proteins, which are implicated in up to 30% of all human cancers, making prenyltransferases a viable target for chemotherapeutic drugs. A coupled assay has been developed to measure the rate constant of diphosphate (PPi) dissociation during the prenyltransferase reaction under both single and multiple turnover conditions. In this assay, the PPi group produced in the prenyltransferase reaction is rapidly cleaved by inorganic pyrophosphatase to form phosphate (Pi), which is then bound by a coumarin-labeled phosphate binding protein from Escherichia coli, resulting in a fluorescence increase. The observed rate constant for PPi release is equal to the rate constant of prenylation of the peptide, as measured by other assays, so that this nonradioactive assay can be used to measure prenyltransferase activity under either single or multiple turnover conditions. This assay can be adapted for high-throughput screening for potential prenyltransferase substrates and inhibitors.

  20. 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda.

    PubMed

    Kim, Sang-Min; Kuzuyama, Tomohisa; Kobayashi, Akio; Sando, Tomoki; Chang, Yung-Jin; Kim, Soo-Un

    2008-01-01

    Isoprenoids are synthesized through the condensation of five-carbon intermediates, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), derived from two distinct biosynthetic routes: cytosolic mevalonate (MVA) and plastidial 2-C-methyl-D: -erythritol 4-phosphate (MEP) pathways. 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS; EC 1.17.1.2), which catalyzes the last step of MEP pathway, was cloned as a multicopy gene from gymnosperms Ginkgo biloba (GbIDS1, GbIDS2, and GbIDS2-1) and Pinus taeda (PtIDS1 and PtIDS2), and characterized. Phylogenetic tree constructed with other plant IDSs demonstrated gymnosperm IDSs were distinctively different from angiosperm IDSs. The gymnosperm IDS clade contained two subclades, one composed of GbIDS1 and PtIDS1, and the other composed of GbIDS2, GbIDS2-1, and PtIDS2. G. biloba IDSs, except GbIDS2-1, successfully complemented Escherichia coli DLYT1, a lytB disruptant, confirming the in vivo competency of isozymes. During the 4 weeks study period, although transcript levels of GbIDS1s were similar both in roots and leaves of cultured G. biloba embryo, the transcripts of GbIDS2 predominantly occurred in the embryo roots, where diterpene ginkgolides are biosynthesized. Levels of PtIDS2 transcripts in the diterpenoid resin-producing wood were 4-5 times higher than those in other tissues. Higher levels of GbIDS1 transcripts were induced by light, whereas those of GbIDS2 were increased by methyl jasmonate treatment. These results strongly imply GbIDS2 and PtIDS2 have high correlation with secondary metabolism. In Arabidopsis transient expression system, N-terminal 100 amino acid residues of GbIDS1 delivered fused GFP protein into chloroplast as well as cytosol and nucleus, whereas those of GbIDS2, GbIDS2-1, and two PtIDSs delivered GFP only into chloroplast.

  1. Secondary. beta. -deuterium isotope effects in decarboxylation and elimination reactions of. cap alpha. -lactylthiamin: intrinsic isotope effects of pyruvate decarboxylase

    SciTech Connect

    Kluger, R.; Brandl, M.

    1986-11-26

    The reactions of the adduct of pyruvate and thiamine, lactylthiamin (2-(lact-2-yl)thiamine), are accurate nonenzymic models for reactions of intermediates formed during catalysis by pyruvate decarboxylase. The enzymatic reaction generates lactylthiamin diphosphate from pyruvate and thiamine diphosphate. ..beta..-Deuterium isotope effects were determined for the nonenzymic reactions, and the results were related to isotope effects on the enzymic reaction. 2-(Lact-2-yl-..beta..-d/sub 3/) thiamine was prepared by condensation of methyl pyruvate-d/sub 3/ with thiamine followed by hydrolysis. The isotope effect for decarboxylation of lactylthiamin in acidic solution at 25/sup 0/C (k/sub H3//k/sub D3/) is 1.09 (standard deviation (SD) 0.015) in pH 3.8, 0.5 M sodium acetate: isotope effect = 1.095 (SD 0.014) in 0.001 M HCl. The reaction was also studied using 38% ethanolic aqueous sodium acetate (pH 3.8 before mixing with ethanol) since the enzymic sites are less polar than water and the reaction is significantly accelerated by the cosolvent. The isotope effect is within statistical range of that for the reaction in water, 1.105 (SD 0.016), indicating that acceleration by the solvent does not change the extent of hyperconjugative stabilization of the transition state relative to the ground state. The isotope effect for the base-catalyzed elimination of pyruvate from lactylthiamin was determined from kinetic studies by using multiwavelength analysis for reactions in pH 11 sodium carbonate solution. The isotope effect (k/sub H3//k/sub D3/) is 1.12 (SD 0.01), which is slightly higher than the effect on decarboxylation.

  2. Glycine decarboxylase in Rhodopseudomonas spheroides and in rat liver mitochondria

    PubMed Central

    Tait, G. H.

    1970-01-01

    1. Glycine decarboxylase and glycine–bicarbonate exchange activities were detected in extracts of Rhodopseudomonas spheroides and in rat liver mitochondria and their properties were studied. 2. The glycine decarboxylase activity from both sources is stimulated when glyoxylate is added to the assay system. 3. Several proteins participate in these reactions and a heat-stable low-molecular-weight protein was purified from both sources. 4. These enzyme activities increase markedly when R. spheroides is grown in the presence of glycine, glyoxylate, glycollate, oxalate or serine. 5. All the enzymes required to catalyse the conversion of glycine into acetyl-CoA via serine and pyruvate were detected in extracts of R. spheroides; of these glycine decarboxylase has the lowest activity. 6. The increase in the activity of glycine decarboxylase on illumination of R. spheroides in a medium containing glycine, and the greater increase when ATP is also present in the medium, probably accounts for the increased incorporation of the methylene carbon atom of glycine into fatty acids found previously under these conditions (Gajdos, Gajdos-Török, Gorchein, Neuberger & Tait, 1968). 7. The results are compared with those obtained by other workers on the glycine decarboxylase and glycine–bicarbonate exchange activities in other systems. PMID:5476725

  3. Ornithine Decarboxylase, Polyamines, and Pyrrolizidine Alkaloids in Senecio and Crotalaria

    PubMed Central

    Birecka, Helena; Birecki, Mieczyslaw; Cohen, Eric J.; Bitonti, Alan J.; McCann, Peter P.

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence. PMID:16665870

  4. Formation of a Novel Macrocyclic Alkaloid from the Unnatural Farnesyl Diphosphate Analogue Anilinogeranyl Diphosphate by 5-Epi-Aristolochene Synthase

    PubMed Central

    Rising, Kathleen A.; Crenshaw, Charisse M.; Koo, Hyun Jo; Subramanian, Thangaiah; Chehade, Kareem A. H.; Starks, Courtney; Allen, Keith D.; Andres, Douglas A.; Spielmann, H. Peter; Noel, Joseph P.; Chappell, Joe

    2015-01-01

    As part of an effort to identify substrate analogs suitable for helping to resolve structural features important for terpene synthases, the inhibition of 5-epi-aristolochene biosynthesis from farnesyl diphosphate (FPP) by the tobacco 5-epi-aristolochene synthase incubated with anilinogeranyl diphosphate (AGPP) was examined. The apparent noncompetitive nature of the inhibition supported further assessment of how AGPP might be bound to crystallographic forms of the enzyme. Surprisingly, the bound form of the inhibitor appeared to have undergone a cyclization event consistent with the native mechanism associated with FPP catalysis. Biocatalytic formation of a novel 13-membered macrocyclic paracyclophane alkaloid was confirmed by high-resolution GC-MS and NMR analysis. This work provides insights into new biosynthetic means for generating novel, functionally diversified, medium-sized terpene alkaloids. PMID:25897591

  5. Snapshot of a Reaction Intermediate: Analysis of Benzoylformate Decarboxylase in Complex with a Benzoylphosphonate Inhibitor

    SciTech Connect

    Brandt, Gabriel S.; Kneen, Malea M.; Chakraborty, Sumit; Baykal, Ahmet T.; Nemeria, Natalia; Yep, Alejandra; Ruby, David I.; Petsko, Gregory A.; Kenyon, George L.; McLeish, Michael J.; Jordan, Frank; Ringe, Dagmar

    2009-04-22

    Benzoylformate decarboxylase (BFDC) is a thiamin diphosphate- (ThDP-) dependent enzyme acting on aromatic substrates. In addition to its metabolic role in the mandelate pathway, BFDC shows broad substrate specificity coupled with tight stereo control in the carbon-carbon bond-forming reverse reaction, making it a useful biocatalyst for the production of chiral-hydroxy ketones. The reaction of methyl benzoylphosphonate (MBP), an analogue of the natural substrate benzoylformate, with BFDC results in the formation of a stable analogue (C2{alpha}-phosphonomandelyl-ThDP) of the covalent ThDP-substrate adduct C2{alpha}-mandelyl-ThDP. Formation of the stable adduct is confirmed both by formation of a circular dichroism band characteristic of the 1',4'-iminopyrimidine tautomeric form of ThDP (commonly observed when ThDP forms tetrahedral complexes with its substrates) and by high-resolution mass spectrometry of the reaction mixture. In addition, the structure of BFDC with the MBP inhibitor was solved by X-ray crystallography to a spatial resolution of 1.37 {angstrom} (PDB ID 3FSJ). The electron density clearly shows formation of a tetrahedral adduct between the C2 atom of ThDP and the carbonyl carbon atom of the MBP. This adduct resembles the intermediate from the penultimate step of the carboligation reaction between benzaldehyde and acetaldehyde. The combination of real-time kinetic information via stopped-flow circular dichroism with steady-state data from equilibrium circular dichroism measurements and X-ray crystallography reveals details of the first step of the reaction catalyzed by BFDC. The MBP-ThDP adduct on BFDC is compared to the recently solved structure of the same adduct on benzaldehyde lyase, another ThDP-dependent enzyme capable of catalyzing aldehyde condensation with high stereospecificity.

  6. Unexpected reactivity of 2-fluorolinalyl diphosphate in the active site of crystalline 2-methylisoborneol synthase

    PubMed Central

    Köksal, Mustafa; Chou, Wayne K. W.; Cane, David E.; Christianson, David W.

    2013-01-01

    The crystal structure of 2-methylisoborneol synthase (MIBS) from Streptomyces coelicolor A3(2) has been determined in its unliganded state and in complex with 2 Mg2+ ions and cis-2-fluorogeranyl diphosphate at 1.85 Å and 2.00 Å resolution, respectively. Under normal circumstances, MIBS catalyzes the cyclization of the naturally-occurring, non-canonical 11-carbon isoprenoid substrate, 2-methylgeranyl diphosphate, which first undergoes an ionization-isomerization-ionization sequence through the tertiary diphosphate intermediate 2-methyllinalyl diphosphate to enable subsequent cyclization chemistry. MIBS does not exhibit catalytic activity with 2-fluorogeranyl diphosphate, and we recently reported the crystal structure of MIBS complexed with this unreactive substrate analogue [Köksal, M., Chou, W. K. W., Cane, D. E., Christianson, D. W. (2012) Biochemistry 51, 3011–3020]. However, cocrystallization of MIBS with the fluorinated analogue of the tertiary allylic diphosphate intermediate, 2-fluorolinalyl diphosphate, reveals unexpected reactivity for the intermediate analogue and yields the crystal structure of the complex with the primary allylic diphosphate, 2-fluoroneryl diphosphate. Comparison with the structure of the unliganded enzyme reveals that the crystalline enzyme active site remains partially open, presumably due to the binding of only 2 Mg2+ ions. Assays in solution indicate that MIBS catalyzes the generation of (1R)-(+)-camphor from the substrate 2-fluorolinalyl diphosphate, suggesting that both 2-fluorolinalyl diphosphate and 2-methyllinalyl diphosphate follow the identical cyclization mechanism leading to 2-substituted isoborneol products; however, the initially generated 2-fluoroisoborneol cyclization product is unstable and undergoes elimination of hydrogen fluoride to yield (1R)-(+)-camphor. PMID:23844678

  7. Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots.

    PubMed

    Hao, Yu-Jin; Kitashiba, Hiroyasu; Honda, Chikako; Nada, Kazuyoshi; Moriguchi, Takaya

    2005-04-01

    Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) are two important enzymes responsible for putrescine biosynthesis. In this study, a full-length ADC cDNA (MdADC) was isolated from apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. Meanwhile, a partial ODC (pMdODC) could be amplified only by a second RCR from the RT-PCR products, whereas a full-length ODC could not be obtained by either cDNA library screening or 5'- and 3'-RACEs, suggesting quite low expression. Moreover, D-arginine, an ADC inhibitor, caused a decrease in ADC activity and severely inhibited the growth of apple callus, which could be partially resumed by exogenous addition of putrescine, whereas alpha-difluoromethylornithine (DFMO), an inhibitor for ODC, caused the incomplete repression of callus growth without changing ODC activity. RNA gel blot showed that the expression level of MdADC was high in young tissues/organs with rapid cell division and was positively induced by chilling, salt, and dehydration, implying its involvement in both cell growth and these stress responses. By contrast, the transcript of ODC could not be detected by RNA gel blot analysis. Based on the present study, it is possible to conclude that (i) the ODC pathway is active in apple, although the expression level of the pMdODC gene homologous with its counterparts found in other plant species is quite low; and (ii) MdADC expression correlates with cell growth and stress responses to chilling, salt, and dehydration, suggesting that ADC is a primary biosynthetic pathway for putrescine biosynthesis in apple.

  8. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis.

    PubMed

    Kasahara, Hiroyuki; Hanada, Atsushi; Kuzuyama, Tomohisa; Takagi, Motoki; Kamiya, Yuji; Yamaguchi, Shinjiro

    2002-11-22

    Gibberellins (GAs) are diterpene plant hormones essential for many developmental processes. Although the GA biosynthesis pathway has been well studied, our knowledge on its early stage is still limited. There are two possible routes for the biosynthesis of isoprenoids leading to GAs, the mevalonate (MVA) pathway in the cytosol and the methylerythritol phosphate (MEP) pathway in plastids. To distinguish these possibilities, metabolites from each isoprenoid pathway were selectively labeled with (13)C in Arabidopsis seedlings. Efficient (13)C-labeling was achieved by blocking the endogenous pathway chemically or genetically during the feed of a (13)C-labeled precursor specific to the MVA or MEP pathways. Gas chromatography-mass spectrometry analyses demonstrated that both MVA and MEP pathways can contribute to the biosyntheses of GAs and campesterol, a cytosolic sterol, in Arabidopsis seedlings. While GAs are predominantly synthesized through the MEP pathway, the MVA pathway plays a major role in the biosynthesis of campesterol. Consistent with some crossover between the two pathways, phenotypic defects caused by the block of the MVA and MEP pathways were partially rescued by exogenous application of the MEP and MVA precursors, respectively. We also provide evidence to suggest that the MVA pathway still contributes to GA biosynthesis when this pathway is limiting.

  9. P53- and mevalonate pathway–driven malignancies require Arf6 for metastasis and drug resistance

    PubMed Central

    Hashimoto, Ari; Oikawa, Tsukasa; Hashimoto, Shigeru; Sugino, Hirokazu; Yoshikawa, Ayumu; Otsuka, Yutaro; Handa, Haruka; Onodera, Yasuhito; Nam, Jin-Min; Oneyama, Chitose; Okada, Masato; Fukuda, Mitsunori

    2016-01-01

    Drug resistance, metastasis, and a mesenchymal transcriptional program are central features of aggressive breast tumors. The GTPase Arf6, often overexpressed in tumors, is critical to promote epithelial–mesenchymal transition and invasiveness. The metabolic mevalonate pathway (MVP) is associated with tumor invasiveness and known to prenylate proteins, but which prenylated proteins are critical for MVP-driven cancers is unknown. We show here that MVP requires the Arf6-dependent mesenchymal program. The MVP enzyme geranylgeranyl transferase II (GGT-II) and its substrate Rab11b are critical for Arf6 trafficking to the plasma membrane, where it is activated by receptor tyrosine kinases. Consistently, mutant p53, which is known to support tumorigenesis via MVP, promotes Arf6 activation via GGT-II and Rab11b. Inhibition of MVP and GGT-II blocked invasion and metastasis and reduced cancer cell resistance against chemotherapy agents, but only in cells overexpressing Arf6 and components of the mesenchymal program. Overexpression of Arf6 and mesenchymal proteins as well as enhanced MVP activity correlated with poor patient survival. These results provide insights into the molecular basis of MVP-driven malignancy. PMID:27044891

  10. [In vitro study over statins effects on cellular growth curves and its reversibility with mevalonate].

    PubMed

    Millan Núñez-Cortés, Jesús; Alvarez Rodriguez, Ysmael; Alvarez Novés, Granada; Recarte Garcia-Andrade, Carlos; Alvarez-Sala Walther, Luis

    2014-01-01

    HMG-CoA-Reductase inhibitors, also known as statins, are currently the most powerful cholesterol-lowering drugs available on the market. Clinical trials and experimental evidence suggest that statins have heavy anti-atherosclerotic effects. These are in part consequence of lipid lowering but also result from pleiotropic actions of the drugs. These so-called pleiotropic properties affect various aspects of cell function, inflammation, coagulation, and vasomotor activity. These effects are mediated either indirectly through LDL-c reduction or via a direct effect on cellular functions. Although many of the pleiotropic properties of statins may be a class effect, some may be unique to certain agents and account for differences in their pharmacological activity. So, although statins typically have similar effects on LDL-c levels, differences in chemical structure and pharmacokinetic profile can lead to variations in pleiotropic effects. In this paper we analize the in vitro effects of different statins over different cell lines from cells implicated in atherosclerotic process: endothelial cells, fibroblasts, and vascular muscular cells. In relation with our results we can proof that the effects of different dosis of different statins provides singular effects over growth curves of different cellular lines, a despite of a class-dependent effects. So, pleiotropic effects and its reversibility with mevalonate are different according with the molecule and the dosis. PMID:24126321

  11. A role for the mevalonate pathway in early plant symbiotic signaling

    PubMed Central

    Venkateshwaran, Muthusubramanian; Jayaraman, Dhileepkumar; Chabaud, Mireille; Genre, Andrea; Balloon, Allison J.; Maeda, Junko; Forshey, Kari; den Os, Désirée; Kwiecien, Nicholas W.; Coon, Joshua J.; Barker, David G.; Ané, Jean-Michel

    2015-01-01

    Rhizobia and arbuscular mycorrhizal fungi produce signals that are perceived by host legume receptors at the plasma membrane and trigger sustained oscillations of the nuclear and perinuclear Ca2+ concentration (Ca2+ spiking), which in turn leads to gene expression and downstream symbiotic responses. The activation of Ca2+ spiking requires the plasma membrane-localized receptor-like kinase Does not Make Infections 2 (DMI2) as well as the nuclear cation channel DMI1. A key enzyme regulating the mevalonate (MVA) pathway, 3-Hydroxy-3-Methylglutaryl CoA Reductase 1 (HMGR1), interacts with DMI2 and is required for the legume–rhizobium symbiosis. Here, we show that HMGR1 is required to initiate Ca2+ spiking and symbiotic gene expression in Medicago truncatula roots in response to rhizobial and arbuscular mycorrhizal fungal signals. Furthermore, MVA, the direct product of HMGR1 activity, is sufficient to induce nuclear-associated Ca2+ spiking and symbiotic gene expression in both wild-type plants and dmi2 mutants, but interestingly not in dmi1 mutants. Finally, MVA induced Ca2+ spiking in Human Embryonic Kidney 293 cells expressing DMI1. This demonstrates that the nuclear cation channel DMI1 is sufficient to support MVA-induced Ca2+ spiking in this heterologous system. PMID:26199419

  12. Bis(benzyl­ammonium) di­hydrogen diphosphate

    PubMed Central

    Saad, Ahlem Ben; Elboulali, Adel; Ratel-Ramond, Nicolas; Mohamed, Rzaigui; Toumi, Samah Akriche

    2014-01-01

    The asymmetric unit of the title salt, 2C6H5CH2NH3 +·H2P2O7 2−, contains two independent benzyl­ammonium cations and a di­hydrogen diphosphate dianion. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the cations and anions, forming a two-dimensional network parallel to (010). Within this network, weak C—H⋯O hydrogen bonds are observed. PMID:24526977

  13. Dissolution of phosphate matrices based on the thorium phosphate diphosphate

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Thomas, A. C.; Brandel, V.; Genet, M.

    2000-07-01

    Several authors have reported the use of phosphate matrices like apatites, monazites or NZP for the immobilization of actinides coming from an advanced reprocessing or for the final disposal of the excess plutonium from dismantled nuclear weapons. The thorium phosphate diphosphate Th4(PO4)4P2O7 (namely TPD) was also proposed for this purpose. Indeed, its structure allows the replacement of large amounts of tetravalent actinides like uranium, neptunium or plutonium leading to the obtention of solid solutions. The maximum weight loading was estimated to be equal to about 48% for uranium, 33% for neptunium and 26% for plutonium.

  14. Nuclear magnetic resonance-based quantification of organic diphosphates.

    PubMed

    Lenevich, Stepan; Distefano, Mark D

    2011-01-15

    Phosphorylated compounds are ubiquitous in life. Given their central role, many such substrates and analogs have been prepared for subsequent evaluation. Prior to biological experiments, it is typically necessary to determine the concentration of the target molecule in solution. Here we describe a method where concentrations of stock solutions of organic diphosphates and bisphosphonates are quantified using (31)P nuclear magnetic resonance (NMR) spectroscopy with standard instrumentation using a capillary tube with a secondary standard. The method is specific and is applicable down to a concentration of 200 μM. The capillary tube provides the reference peak for quantification and deuterated solvent for locking. PMID:20833124

  15. Assaying Ornithine and Arginine Decarboxylases in Some Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    A release of 14CO2 not related to ornithine decarboxylase activity was found in crude leaf extracts from Lycopersicon esculentum, Avena sativa, and especially from the pyrrolizidine alkaloid-bearing Heliotropium angiospermum when incubated with [1-14C]- or [U-14C]ornithine. The total 14CO2 produced was about 5- to 100-fold higher than that due to ornithine decarboxylase activities calculated from labeled putrescine (Put) found by thin-layer electrophoresis in the incubation mixtures. Partial purification with (NH4)2SO4 did not eliminate completely the interfering decarboxylation. When incubated with labeled arginine, a very significant 14CO2 release not related to arginine decarboxylase activity was observed only in extracts from H. angiospermum leaves, especially in Tris·HCl buffer. Under the assay conditions, these extracts exhibited oxidative degradation of added Put and agmatine (Agm) and also revealed a high arginase activity. Amino-guanidine at 0.1 to 0.2 millimolar prevented Put degradation and greatly decreased oxidative degradation of Agm; ornithine at 15 to 20 millimolar significantly inhibited arginase activity. A verification of the reliability of the standard 14CO2-based method by assessing labeled Put and/or Agm—formed in the presence of added aminoguanidine and/or ornithine when needed—is recommended especially when crude or semicrude plant extracts are assayed. When based on Put and/or Agm formed at 1.0 to 2.5 millimolar of substrate, the activities of ornithine decarboxylase and arginine decarboxylase in the youngest leaves of the tested species ranged between 1.1 and 3.6 and 1 and 1600 nanomoles per hour per gram fresh weight, respectively. The enzyme activities are discussed in relation to the biosynthesis of pyrrolizidine alkaloids. PMID:16664441

  16. Cerebellar Ataxia and Glutamic Acid Decarboxylase Antibodies

    PubMed Central

    Ariño, Helena; Gresa-Arribas, Nuria; Blanco, Yolanda; Martínez-Hernández, Eugenia; Sabater, Lidia; Petit-Pedrol, Mar; Rouco, Idoia; Bataller, Luis; Dalmau, Josep O.; Saiz, Albert; Graus, Francesc

    2016-01-01

    IMPORTANCE Current clinical and immunologic knowledge on cerebellar ataxia (CA) with glutamic acid decarboxylase 65 antibodies (GAD65-Abs) is based on case reports and small series with short-term follow-up data. OBJECTIVE To report the symptoms, additional antibodies, prognostic factors, and long-term outcomes in a cohort of patients with CA and GAD65-Abs. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study and laboratory investigations at a center for autoimmune neurologic disorders among 34 patients with CA and GAD65-Abs, including 25 with long-term follow-up data (median, 5.4 years; interquartile range, 3.1-10.3 years). MAIN OUTCOMES AND MEASURES Analysis of clinicoimmunologic features and predictors of response to immunotherapy. Immunochemistry on rat brain, cultured neurons, and human embryonic kidney cells expressing GAD65, GAD67, α1-subunit of the glycine receptor, and a repertoire of known cell surface autoantigens were used to identify additional antibodies. Twenty-eight patients with stiff person syndrome and GAD65-Abs served as controls. RESULTS The median age of patients was 58 years (range, 33-80 years); 28 of 34 patients (82%) were women. Nine patients (26%) reported episodes of brainstem and cerebellar dysfunction or persistent vertigo several months before developing CA. The clinical presentation was subacute during a period of weeks in 13 patients (38%). Nine patients (26%) had coexisting stiff person syndrome symptoms. Systemic organ-specific autoimmunities (type 1 diabetes mellitus and others) were present in 29 patients (85%). Twenty of 25 patients with long-term follow-up data received immunotherapy (intravenous immunoglobulin in 10 and corticosteroids and intravenous immunoglobulin or other immunosuppressors in 10), and 7 of them (35%) improved. Predictors of clinical response included subacute onset of CA (odds ratio [OR], 0.50; 95% CI, 0.25-0.99; P = .047) and prompt immunotherapy (OR, 0.98; 95% CI, 0.96-0.99; P = .01). Similar

  17. Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism.

    PubMed Central

    Lu, Q; Inouye, M

    1996-01-01

    Nucleoside diphosphate (NDP) kinase is a ubiquitous nonspecific enzyme that evidently is designed to catalyze in vivo ATP-dependent synthesis of ribo- and deoxyribonucleoside triphosphates from the corresponding diphosphates. Because Escherichia coli contains only one copy of ndk, the structural gene for this enzyme, we were surprised to find that ndk disruption yields bacteria that are still viable. These mutant cells contain a protein with a small amount NDP kinase activity. The protein responsible for this activity was purified and identified as adenylate kinase. This enzyme, also called myokinase, catalyzes the reversible ATP-dependent synthesis of ADP from AMP. We found that this enzyme from E. coli as well as from higher eukaryotes has a broad substrate specificity displaying dual enzymatic functions. Among the nucleoside monophosphate kinases tested, only adenylate kinase was found to have NDP kinase activity. To our knowledge, this is the first report of NDP kinase activity associated with adenylate kinase. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8650159

  18. Silver indium diphosphate, AgInP(2)O(7).

    PubMed

    Zouihri, Hafid; Saadi, Mohamed; Jaber, Boujemaa; El Ammari, Lehcen

    2010-01-01

    Polycrystalline material of the title compound, AgInP(2)O(7), was synthesized by traditional high-temperature solid-state methods and single crystals were grown from the melt of a mixture of AgInP(2)O(7) and B(2)O(3) as flux in a platinium crucible. The structure consists of InO(6) octa-hedra, which are corner-shared to PO(4) tetra-hedra into a three-dimensional network with hexa-gonal channels running parallel to the c axis. The silver cation, located in the channel, is bonded to seven O atoms of the [InP(2)O(7)] framework with Ag-O distances ranging from 2.370 (2) to 3.015 (2) Å. The P(2)O(7) diphosphate anion is characterized by a P-O-P angle of 137.27 (9) and a nearly eclipsed conformation. AgInP(2)O(7) is isotypic with the M(I)FeP(2)O(7) (M(I) = Na, K, Rb, Cs and Ag) diphosphate family. PMID:21522510

  19. A procedure for the preparation and isolation of nucleoside-5’-diphosphates

    PubMed Central

    Korhonen, Heidi J; Bolt, Hannah L

    2015-01-01

    Summary Tris[bis(triphenylphosphoranylidene)ammonium] pyrophosphate (PPN pyrophosphate) was used in the SN2 displacements of the tosylate ion from 5’-tosylnucleosides to afford nucleoside-5’-diphosphates. Selective precipitation permitted the direct isolation of nucleoside-5’-diphosphates from crude reaction mixtures. PMID:25977720

  20. A Mononuclear Zinc Complex for Selective Detection of Diphosphate via Fluorescence ESIPT Turn-On

    PubMed Central

    Wang, Junfeng; Chen, Weihua; Liu, Xiumin; Wesdemiotis, Chrys

    2014-01-01

    A mononuclear zinc complex has been found to exhibit unexpected selectivity for biologically important diphosphate anions (PPi and ADP). The diphosphate binding could turn-on the ESIPT, whose study reveals mechanistic insight to aid the future design of new sensors. PMID:24999430

  1. Structure and Function of a "Head-to-Middle" Prenyltransferase: Lavandulyl Diphosphate Synthase.

    PubMed

    Liu, Meixia; Chen, Chun-Chi; Chen, Lu; Xiao, Xiansha; Zheng, Yingying; Huang, Jian-Wen; Liu, Weidong; Ko, Tzu-Ping; Cheng, Ya-Shan; Feng, Xinxin; Oldfield, Eric; Guo, Rey-Ting; Ma, Yanhe

    2016-04-01

    We report the first X-ray structure of the unique "head-to-middle" monoterpene synthase, lavandulyl diphosphate synthase (LPPS). LPPS catalyzes the condensation of two molecules of dimethylallyl diphosphate (DMAPP) to form lavandulyl diphosphate, a precursor to the fragrance lavandulol. The structure is similar to that of the bacterial cis-prenyl synthase, undecaprenyl diphosphate synthase (UPPS), and contains an allylic site (S1) in which DMAPP ionizes and a second site (S2) which houses the DMAPP nucleophile. Both S-thiolo-dimethylallyl diphosphate and S-thiolo-isopentenyl diphosphate bind intact to S2, but are cleaved to (thio)diphosphate, in S1. His78 (Asn in UPPS) is essential for catalysis and is proposed to facilitate diphosphate release in S1, while the P1 phosphate in S2 abstracts a proton from the lavandulyl carbocation to form the LPP product. The results are of interest since they provide the first structure and structure-based mechanism of this unusual prenyl synthase. PMID:26922900

  2. Elevated guanosine 5'-diphosphate 3'-diphosphate level inhibits bacterial growth and interferes with FtsZ assembly.

    PubMed

    Yamaguchi, Takayoshi; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2015-12-01

    FtsZ, a protein essential for prokaryotic cell division, forms a ring structure known as the Z-ring at the division site. FtsZ has a GTP binding site and is assembled into linear structures in a GTP-dependent manner in vitro. We assessed whether guanosine 5'-diphosphate 3'-diphosphate (ppGpp), a global regulator of gene expression in starved bacteria, affects cell division in Salmonella Paratyphi A. Elevation of intracellular ppGpp levels by using the relA expression vector induced repression of bacterial growth and incorrect FtsZ assembly. We found that FtsZ forms helical structures in the presence of ppGpp by using the GTP binding site; however, ppGpp levels required to form helical structures were at least 20-fold higher than the required GTP levels in vitro. Furthermore, once formed, helical structures did not change to the straight form even after GTP addition. Our data indicate that elevation of the ppGpp level leads to inhibition of bacterial growth and interferes with FtsZ assembly.

  3. Synthesis of the coenzymes adenosine diphosphate glucose, guanosine diphosphate glucose, and cytidine diphosphoethanolamine under primitive Earth conditions

    NASA Technical Reports Server (NTRS)

    Mar, A.; Oro, J.

    1991-01-01

    The nonenzymatic synthesis of the coenzymes adenosine diphosphate glucose (ADPG), guanosine diphosphate glucose (GDPG), and cytidine diphosphoethanolamine (CDP-ethanolamine) has been carried out under conditions considered to have been prevalent on the early Earth. The production of these compounds was performed by allowing simple precursor molecules to react under aqueous solutions, at moderate temperatures and short periods of time, with mediation by cyanamide or urea. These two condensing agents are considered to have been present in significant amounts on the primitive Earth and have been previously used in the nonenzymatic synthesis of several other important biochemical compounds. In our experiments, ADPG was obtained by heating glucose-1-phosphate (G1P) and ATP in the presence of cyanamide for 24 h at 70 degrees C. The reaction of G1P and GTP under the same conditions yielded GDPG. The cyanamide-mediated production of CDP-ethanolamine was carried out by reacting a mixture of ethanolamine phosphate and CTP for 24 h at 70 degrees C. The separation and identification of the reaction products was carried out by paper chromatography, thin-layer chromatography, high performance thin-layer chromatography, high performance liquid chromatography, both normal and reverse-phase, UV spectroscopy, enzymatic assays, and acid hydrolysis. Due to the mild conditions employed, and to the relative ease of these reactions, these studies offer a simple attractive system for the nonenzymatic synthesis of phosphorylated high-energy metabolic intermediates under conditions considered to have been prevalent on the ancient Earth.

  4. Regulation of RNA synthesis in Escherichia coli. III. Degradation of guanosine 5'-diphosphate 3'-diphosphate in cold-shocked cells.

    PubMed

    Raué, H A; Cashel, M

    1975-03-21

    Cold-shocked cells of Escherichia coli can degrade intracellularly accumulated guanosine 5'-diphosphate 3'-diphosphate (ppGpp). The rate of ppGpp degradation is governed, as in whole cells, by the spoT gene; a rapid breakdown reaction is associated with the presence of the spoT+ allele and at least a five-fold slower decay occurs in spoT-minus mutants. The two degradation reactions in shocked cells display the following similarities: (i) the rates of degradation are equivalent to whole cell estimates, (ii) both require a full complement of activated amino acids, (iii) both are dependent upon supplements in the reaction mixture which stimulate the availability of energy-rich compounds and (iv) neither is inhibited by concentrations of ribosomal antibiotics which severely restrict protein synthesis. Apart from characteristic rate differences, decay of ppGpp in shocked cells derived from spoT-minus strains is discerned from spoT+ mediated decay in shocked cells by sensitivity to high concentrations of tetracycline and by manganese ion dependence.

  5. Mevalonosomes: specific vacuoles containing the mevalonate pathway in Plocamium brasiliense cortical cells (Rhodophyta).

    PubMed

    Paradas, Wladimir Costa; Crespo, Thalita Mendes; Salgado, Leonardo Tavares; de Andrade, Leonardo Rodrigues; Soares, Angélica Ribeiro; Hellio, Claire; Paranhos, Ricardo Rogers; Hill, Lilian Jorge; de Souza, Geysa Marinho; Kelecom, Alphonse Germaine Albert Charles; Da Gama, Bernardo Antônio Perez; Pereira, Renato Crespo; Amado-Filho, Gilberto Menezes

    2015-04-01

    This paper has identified, for the first time in a member of the Rhodophyta, a vacuolar organelle containing enzymes that are involved in the mevalonate pathway-an important step in red algal isoprenoid biosynthesis. These organelles were named mevalonosomes (Mev) and were found in the cortical cells (CC) of Plocamium brasiliense, a marine macroalgae that synthesizes several halogenated monoterpenes. P. brasiliense specimens were submitted to a cytochemical analysis of the activity of the 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS). Using transmission electron microscopy (TEM), we confirmed the presence of HMGS activity within the Mev. Because HMGS is necessary for the biosynthesis of halogenated monoterpenes, we isolated a hexanic fraction (HF) rich in halogenated monoterpenes from P. brasiliense that contained a pentachlorinated monoterpene as a major metabolite. Because terpenes are often related to chemical defense, the antifouling (AF) activity of pentachlorinated monoterpene was tested. We found that the settlement of the mussel Perna perna was reduced by HF treatment (2.25 times less than control; 40% and 90% of fouled surface, respectively; P = 0.001; F9,9 = 1.13). The HF (at 10 μg · mL(-1) ) also inhibited three species of fouling microalgae (Chlorarachnion reptans, Cylindrotheca cloisterium, and Exanthemachrysis gayraliae), while at a higher concentration (50 μg · mL(-1) ), it inhibited the bacteria Halomonas marina, Polaribacter irgensii, Pseudoalteromonas elyakovii, Shewanella putrefaciens, and Vibrio aestuarianus. The AF activity of P. brasiliense halogenated monoterpenes and the localization of HMGS activity inside Mev suggest that this cellular structure found in CC may play a role in thallus protection against biofouling. PMID:26986518

  6. Complete blockage of the mevalonate pathway results in male gametophyte lethality.

    PubMed

    Suzuki, Masashi; Nakagawa, Shoko; Kamide, Yukiko; Kobayashi, Keiko; Ohyama, Kiyoshi; Hashinokuchi, Hiromi; Kiuchi, Reiko; Saito, Kazuki; Muranaka, Toshiya; Nagata, Noriko

    2009-01-01

    Plants have two isoprenoid biosynthetic pathways: the cytosolic mevalonate (MVA) pathway and the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Since the discovery of the MEP pathway, possible metabolic cross-talk between these pathways has prompted intense research. Although many studies have shown the existence of such cross-talk using feeding experiments, it remains to be determined if native cross-talk, rather than exogenously applied metabolites, can compensate for complete blockage of the MVA pathway. Previously, Arabidopsis mutants for HMG1 and HMG2 encoding HMG-CoA reductase (HMGR) were isolated. Although it was shown that HMGR1 is a functional HMGR, the enzyme activity of HMGR2 has not been confirmed. It is demonstrated here that HMG2 encodes a functional reductase with similar activity to HMGR1, using enzyme assays and complementation experiments. To estimate the contribution of native cross-talk, an attempt was made to block the MVA pathway by making double mutants lacking both HMG1 and HMG2, but no double homozygotes were detected in the progeny of self-pollinated HMG1/hmg1 hmg2/hmg2 plants. hmg1 hmg2 male gametophytes appeared to be lethal based on crossing experiments, and microscopy indicated that approximately 50% of the microspores from the HMG1/hmg1 hmg2/hmg2 plant appeared shrunken and exhibited poorly defined endoplasmic reticulum membranes. In situ hybridization showed that HMG1 transcripts were expressed in both the tapetum and microspores, while HMG2 mRNA appeared only in microspores. It is concluded that native cross-talk from the plastid cannot compensate for complete blockage of the MVA pathway, at least during male gametophyte development, because either HMG1 or HMG2 is required for male gametophyte development.

  7. Targeting the Mevalonate Cascade as a New Therapeutic Approach in Heart Disease, Cancer and Pulmonary Disease

    PubMed Central

    Yeganeh, Behzad; Wiechec, Emmilia; Ande, Sudharsana R; Sharma, Pawan; Moghadam, Adel Rezaei; Post, Martin; Freed, Darren H.; Hashemi, Mohammad; Shojaei, Shahla; Zeki, Amir A.; Ghavami, Saeid

    2014-01-01

    The cholesterol biosynthesis pathway, also known as the mevalonate (MVA) pathway, is an essential cellular pathway that is involved in diverse cell functions. The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) is the rate-limiting step in cholesterol biosynthesis and catalyzes the conversion of HMG-CoA to MVA. Given its role in cholesterol and isoprenoid biosynthesis, the regulation of HMGCR has been intensely investigated. Because all cells require a steady supply of MVA, both the sterol (i.e. cholesterol) and non-sterol (i.e. isoprenoid) products of MVA metabolism exert coordinated feedback regulation on HMGCR through different mechanisms. The proper functioning of HMGCR as the proximal enzyme in the MVA pathway is essential under both normal physiologic conditions and in many diseases given its role in cell cycle pathways and cell proliferation, cholesterol biosynthesis and metabolism, cell cytoskeletal dynamics and stability, cell membrane structure and fluidity, mitochondrial function, proliferation, and cell fate. The blockbuster statin drugs (‘statins’) directly bind to and inhibit HMGCR, and their use for the past thirty years has revolutionized the treatment of hypercholesterolemia and cardiovascular diseases, in particular coronary heart disease. Initially thought to exert their effects through cholesterol reduction, recent evidence indicates that statins also have pleiotropic immunomodulatory properties independent of cholesterol lowering. In this review we will focus on the therapeutic applications and mechanisms involved in the MVA cascade including Rho GTPase and Rho kinase (ROCK) signaling, statin inhibition of HMGCR, geranylgeranyltransferase (GGTase) inhibition, and farnesyltransferase (FTase) inhibition in cardiovascular disease, pulmonary diseases (e.g. asthma and chronic obstructive pulmonary disease (COPD), and cancer. PMID:24582968

  8. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease.

    PubMed

    Yeganeh, Behzad; Wiechec, Emilia; Ande, Sudharsana R; Sharma, Pawan; Moghadam, Adel Rezaei; Post, Martin; Freed, Darren H; Hashemi, Mohammad; Shojaei, Shahla; Zeki, Amir A; Ghavami, Saeid

    2014-07-01

    The cholesterol biosynthesis pathway, also known as the mevalonate (MVA) pathway, is an essential cellular pathway that is involved in diverse cell functions. The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase (HMGCR) is the rate-limiting step in cholesterol biosynthesis and catalyzes the conversion of HMG-CoA to MVA. Given its role in cholesterol and isoprenoid biosynthesis, the regulation of HMGCR has been intensely investigated. Because all cells require a steady supply of MVA, both the sterol (i.e. cholesterol) and non-sterol (i.e. isoprenoid) products of MVA metabolism exert coordinated feedback regulation on HMGCR through different mechanisms. The proper functioning of HMGCR as the proximal enzyme in the MVA pathway is essential under both normal physiologic conditions and in many diseases given its role in cell cycle pathways and cell proliferation, cholesterol biosynthesis and metabolism, cell cytoskeletal dynamics and stability, cell membrane structure and fluidity, mitochondrial function, proliferation, and cell fate. The blockbuster statin drugs ('statins') directly bind to and inhibit HMGCR, and their use for the past thirty years has revolutionized the treatment of hypercholesterolemia and cardiovascular diseases, in particular coronary heart disease. Initially thought to exert their effects through cholesterol reduction, recent evidence indicates that statins also have pleiotropic immunomodulatory properties independent of cholesterol lowering. In this review we will focus on the therapeutic applications and mechanisms involved in the MVA cascade including Rho GTPase and Rho kinase (ROCK) signaling, statin inhibition of HMGCR, geranylgeranyltransferase (GGTase) inhibition, and farnesyltransferase (FTase) inhibition in cardiovascular disease, pulmonary diseases (e.g. asthma and chronic obstructive pulmonary disease (COPD)), and cancer.

  9. Overexpression of erg20 gene encoding farnesyl pyrophosphate synthase has contrasting effects on activity of enzymes of the dolichyl and sterol branches of mevalonate pathway in Trichoderma reesei.

    PubMed

    Piłsyk, Sebastian; Perlińska-Lenart, Urszula; Górka-Nieć, Wioletta; Graczyk, Sebastian; Antosiewicz, Beata; Zembek, Patrycja; Palamarczyk, Grażyna; Kruszewska, Joanna S

    2014-07-10

    The mevalonate pathway is the most diverse metabolic route resulting in the biosynthesis of at least 30,000 isoprenoid compounds, many of which, such as sterols or dolichols, are indispensable for living cells. In the filamentous fungus Trichoderma of major biotechnological interest isoprenoid metabolites are also involved in the biocontrol processes giving the mevalonate pathway an additional significance. On the other hand, little is known about genes coding for enzymes of the mevalonate pathway in Trichoderma. Here, we present cloning and functional analysis of the erg20 gene from Trichoderma reesei coding for farnesyl pyrophosphate (FPP) synthase (EC 2.5.1.10), an enzyme located at the branching point of the mevalonate pathway. Expression of the gene in a thermosensitive erg20-2 mutant of Saccharomyces cerevisiae impaired in the FPP synthase activity suppressed the thermosensitive phenotype. The same gene overexpressed in T. reesei significantly enhanced the FPP synthase activity and also stimulated the activity of cis-prenyltransferase, an enzyme of the dolichyl branch of the mevalonate pathway. Unexpectedly, the activity of squalene synthase from the other, sterol branch, was significantly decreased without, however, affecting ergosterol level.

  10. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles

    PubMed Central

    Llorens, Eugenio; Camañes, Gemma; Lapeña, Leonor; García-Agustín, Pilar

    2016-01-01

    Hexanoic acid (Hx) is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of Hx in response to the challenge pathogen A. alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than 200 molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by Hx. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of Hx this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application. PMID:27148319

  11. Farnesyl Diphosphate Synthase Inhibitors With Unique Ligand-Binding Geometries

    PubMed Central

    2015-01-01

    Farnesyl diphosphate synthase (FPPS) is an important drug target for bone resorption, cancer, and some infectious diseases. Here, we report five new structures including two having unique bound ligand geometries. The diamidine inhibitor 7 binds to human FPPS close to the homoallylic (S2) and allosteric (S3) sites and extends into a new site, here called S4. With the bisphosphonate inhibitor 8, two molecules bind to Trypanosoma brucei FPPS, one molecule in the allylic site (S1) and the other close to S2, the first observation of two bisphosphonate molecules bound to FPPS. We also report the structures of apo-FPPS from T. brucei, together with two more bisphosphonate-bound structures (2,9), for purposes of comparison. The diamidine structure is of particular interest because 7 could represent a new lead for lipophilic FPPS inhibitors, while 8 has low micromolar activity against T. brucei, the causative agent of human African trypanosomiasis. PMID:25815158

  12. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  13. Binding of nucleotides to nucleoside diphosphate kinase: a calorimetric study.

    PubMed

    Cervoni, L; Lascu, I; Xu, Y; Gonin, P; Morr, M; Merouani, M; Janin, J; Giartosio, A

    2001-04-17

    The source of affinity for substrates of human nucleoside diphosphate (NDP) kinases is particularly important in that its knowledge could be used to design more effective antiviral nucleoside drugs (e.g., AZT). We carried out a microcalorimetric study of the binding of enzymes from two organisms to various nucleotides. Isothermal titration calorimetry has been used to characterize the binding in terms of Delta G degrees, Delta H degrees and Delta S degrees. Thermodynamic parameters of the interaction of ADP with the hexameric NDP kinase from Dictyostelium discoideum and with the tetrameric enzyme from Myxococcus xanthus, at 20 degrees C, were similar and, in both cases, binding was enthalpy-driven. The interactions of ADP, 2'deoxyADP, GDP, and IDP with the eukaryotic enzyme differed in enthalpic and entropic terms, whereas the Delta G degrees values obtained were similar due to enthalpy--entropy compensation. The binding of the enzyme to nonphysiological nucleotides, such as AMP--PNP, 3'deoxyADP, and 3'-deoxy-3'-amino-ADP, appears to differ in several respects. Crystallography of the protein bound to 3'-deoxy-3'-amino-ADP showed that the drug was in a distorted position, and was unable to interact correctly with active site side chains. The interaction of pyrimidine nucleoside diphosphates with the hexameric enzyme is characterized by a lower affinity than that with purine nucleotides. Titration showed the stoichiometry of the interaction to be abnormal, with 9--12 binding sites/hexamer. The presence of supplementary binding sites might have physiological implications. PMID:11294625

  14. Optical properties of lutetium diphosphates powders doped by ytterbium

    NASA Astrophysics Data System (ADS)

    Béjaoui, A.; Horchani-Naifer, K.; Hraiech, S.; Férid, M.

    2013-12-01

    Sodium lutetium diphosphates doped with Yb3+ ions, NaLu1-xYbxP2O7 (x = 0.5%, 2%, 5% and 10%), were synthesized by solid state reaction. These samples were characterized by X-ray diffraction, Raman and infrared spectroscopies. The obtained powders are formed by single monoclinic phase of condensed diphosphate NaLuP2O7 crystallized with P21/n space group. The evolution of crystal lattice parameters varied as a function of the ytterbium concentration in these host lattices. Near infrared (NIR) and UV-Visible spectroscopies of Yb3+ in NaLuP2O7 powders, at room temperature (RT), are carried out. In the IR range, a broad band relative to the Stark levels of the Yb 4f configuration. Four Stark levels of the ground 2F7/2 state are located on the emission spectra between 970 nm and 1060 nm. It was shown that spectroscopic properties of investigated samples depend on the concentration ratio of Yb3+ ions. The decay times of infrared Yb3+ (2F5/2 excited state) fluorescence were in the range of 2.78-2.91 ms. The registered decay times of the emission at 1006 nm, under excitation with length 925 nm showed low sensibility to the Yb3+ concentration in NaLuP2O7. In the UV-Visible spectra, double band emission for the charge transfer band (CTB) luminescence of Yb3+ are observed under 266 nm excitation.

  15. Mevalonate regulates polysome distribution and blocks translation-dependent suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA: relationship to translational control.

    PubMed

    Peffley, D M; Gayen, A K

    1995-05-01

    We reported previously that 3-hydroxy-3-methylglutaryl coenzyme A reductase synthesis is regulated at the translational level by mevalonate. To determine at what stage mevalonate affects reductase synthesis, we examined the distribution of reductase mRNA in polysomes from cells treated with lovastatin alone; lovastatin and 25-hydroxycholesterol; or lovastatin, 25-hydroxycholesterol, and mevalonate. In lovastatin-treated cells, reductase mRNA was primarily associated with heavy polysome fractions. When 25-hydroxycholesterol was added to lovastatin-treated cells, reductase mRNA levels were reduced approximately fourfold in all polysome fractions, with no accompanying redistribution of reductase mRNA into lighter polysome fractions. However, addition of both 25-hydroxycholesterol and mevalonate to lovastatin-treated cells shifted reductase mRNA from heavier to lighter polysome fractions. No change in the distribution of control beta-actin or ribosomal protein S17 mRNA occurred with any of the treatments. These results suggest that mevalonate suppresses reductase synthesis at the level of initiation. When the translation inhibitor cycloheximide was added to all three regimens, reductase mRNA shifted into heavy polysome fractions. Treatment with either lovastatin alone or lovastatin plus 25-hydroxycholesterol resulted in a 50% greater loss of reductase mRNA from the heavy polysome fractions compared to the same fractions from noncycloheximide-treated cells. No loss of reductase mRNA occurred when cycloheximide was added to cells treated with both 25-hydroxycholesterol and mevalonate. beta-Actin mRNA levels and polysome distribution were not significantly changed by cycloheximide under any of these conditions. Translationally mediated suppression of reductase mRNA did not occur when protein synthesis was inhibited with puromycin. Our results indicate that regulation of reductase mRNA levels is translation-dependent and is linked to the rate of elongation.

  16. Structures, mechanisms and inhibitors of undecaprenyl diphosphate synthase: a cis-prenyltransferase for bacterial peptidoglycan biosynthesis.

    PubMed

    Teng, Kuo-Hsun; Liang, Po-Huang

    2012-08-01

    Isoprenoids are an intensive group of compounds made from isopentenyl diphosphate (IPP), catalyzed by prenyltransferases such as farnesyl diphosphate (FPP) cyclases, squalene synthase, protein farnesyltransferases and geranylgeranyltransferases, aromatic prenyltransferases as well as a group of prenyltransferases (cis- and trans-types) catalyzing consecutive condensation reactions of FPP with specific numbers of IPP to generate linear products with designate chain lengths. These prenyltransferases play significant biological functions and some of them are drug targets. In this review, structures, mechanisms, and inhibitors of a cis-prenyltransferase, undecaprenyl diphosphate synthase (UPPS) that mediates bacterial peptidoglycan biosynthesis, are summarized for comparison with the most related trans-prenyltransferases and other prenyltransferases.

  17. Development of ribulose-1,5-diphosphate carboxylase in castor bean cotyledons.

    PubMed

    Dockerty, A; Lord, J M; Merrett, M J

    1977-06-01

    Light was not essential for the development of ribulose-1,5-diphosphate carboxylase protein or catalytic activity in the photosynthetic cotyledons of germinating castor beans (Ricinus communis). Cotyledons developing in the dark showed higher activity than those in the light. Returning cotyledons developing in the light to darkness resulted in a significant increase in ribulose-1,5-diphosphate carboxylase activity compared to cotyledons in continuous light.

  18. Ribulose diphosphate carboxylase synthesis in euglena: increased enzyme activity after transferring regreening cells to darkness.

    PubMed

    Lord, J M; Merrett, M J

    1975-05-01

    The transfer of dark-grown cultures of Euglena gracilis Klebs strain Z regreening in the light back into darkness resulted in a dramatic increase in ribulose diphosphate carboxylase activity. On a culture volume basis activity increased 4-fold over a 24-hour dark period, although on a protein basis activity declined because of rapid cell division. Mixed assays with light- and dark-growing cell extracts provided no evidence for the removal of an inhibitor of ribulose diphosphate carboxylase upon transferring regreening cells back to darkness. Although ribulose diphosphate carboxylase activity increased over a 24-hour dark period, there was no concomitant increase in the potential of the cells for photosynthetic carbon dioxide fixation.Higher light intensities than the optimum for ribulose diphosphate carboxylase synthesis during regreening resulted in a greater relative rate of synthesis on transfer to darkness so that the maximum activity of ribulose diphosphate carboxylase reached in the dark was constant, regardless of light intensity during regreening. A tentative hypothesis to explain these results is that the synthesis of the large and small subunits of ribulose diphosphate carboxylase occur at different stages of cell development, light being necessary for the synthesis of the large subunit and also for regulating the synthesis of the small subunit.

  19. Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer.

    PubMed

    Jiang, Pei-Du; Zhao, Ying-Lan; Deng, Xiao-Qiang; Mao, Yong-Qiu; Shi, Wei; Tang, Qing-Qing; Li, Zheng-Guang; Zheng, Yu-Zhu; Yang, Sheng-Yong; Wei, Yu-Quan

    2010-11-01

    Metastatic breast cancers are hard to treat and almost always fatal. Chloroquine diphosphate, a derivative of quinine, has long been used as a potent and commonly used medicine against different human diseases. We therefore investigated the effects of chloroquine diphosphate on a highly metastatic mouse mammary carcinoma cell line. In vitro treatment of 4T1 mouse breast cancer cells with chloroquine diphosphate resulted in significant inhibition of cellular proliferation and viability, and induction of apoptosis in 4T1 cells in a time- and dose-dependent manner. Further analysis indicated that induction of apoptosis was associated with the loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase-9 and caspase-3, and cleavage of poly(ADP-ribose) polymerase. The effect of chloroquine diphosphate was then examined using a mice model in which 4T1 cells were implanted subcutaneously. Chloroquine diphosphate (25mg/kg and 50mg/kg, respectively) significantly inhibited the growth of the implanted 4T1 tumor cells and induced apoptosis in the tumor microenvironment. Moreover, the metastasis of tumor cells to the lungs was inhibited significantly and the survival of the mice enhanced. These data suggested that chloroquine diphosphate might have chemotherapeutic efficacy against breast cancer including inhibition of metastasis. PMID:20888174

  20. Asymmetric Stetter reactions catalyzed by thiamine diphosphate-dependent enzymes.

    PubMed

    Kasparyan, Elena; Richter, Michael; Dresen, Carola; Walter, Lydia S; Fuchs, Georg; Leeper, Finian J; Wacker, Tobias; Andrade, Susana L A; Kolter, Geraldine; Pohl, Martina; Müller, Michael

    2014-12-01

    The intermolecular asymmetric Stetter reaction is an almost unexplored transformation for biocatalysts. Previously reported thiamine diphosphate (ThDP)-dependent PigD from Serratia marcescens is the first enzyme identified to catalyze the Stetter reaction of α,β-unsaturated ketones (Michael acceptor substrates) and α-keto acids. PigD is involved in the biosynthesis of the potent cytotoxic agent prodigiosin. Here, we describe the investigation of two new ThDP-dependent enzymes, SeAAS from Saccharopolyspora erythraea and HapD from Hahella chejuensis. Both show a high degree of homology to the amino acid sequence of PigD (39 and 51 %, respectively). The new enzymes were heterologously overproduced in Escherichia coli, and the yield of soluble protein was enhanced by co-expression of the chaperone genes groEL/ES. SeAAS and HapD catalyze intermolecular Stetter reactions in vitro with high enantioselectivity. The enzymes possess a characteristic substrate range with respect to Michael acceptor substrates. This provides support for a new type of ThDP-dependent enzymatic activity, which is abundant in various species and not restricted to prodigiosin biosynthesis in different strains. Moreover, PigD, SeAAS, and HapD are also able to catalyze asymmetric carbon-carbon bond formation reactions of aldehydes and α-keto acids, resulting in 2-hydroxy ketones.

  1. Trans, trans-farnesol as a mevalonate-derived inducer of murine 3T3-F442A pre-adipocyte differentiation

    PubMed Central

    Torabi, Sheida

    2015-01-01

    Based on our finding that depletion of mevalonate-derived metabolites inhibits adipocyte differentiation, we hypothesize that trans, trans-farnesol (farnesol), a mevalonate-derived sesquiterpene, induces adipocyte differentiation. Farnesol dose-dependently (25–75 μmol/L) increased intracellular triglyceride content of murine 3T3-F442A pre-adipocytes measured by AdipoRed™ Assay and Oil Red-O staining. Concomitantly, farnesol dose-dependently increased glucose uptake and glucose transport protein 4 (GLUT4) expression without affecting cell viability. Furthermore, quantitative real-time polymerase chain reaction and Western blot showed that farnesol increased the mRNA and protein levels of peroxisome proliferator-activated receptor γ (PPARγ), a key regulator of adipocyte differentiation, and the mRNA levels of PPARγ-regulated fatty acid-binding protein 4 and adiponectin; in contrast, farnesol downregulated Pref-1 gene, a marker of pre-adipocytes. GW9662 (10 µmol/L), an antagonist of PPARγ, reversed the effects of farnesol on cellular lipid content, suggesting that PPARγ signaling pathway may mediate the farnesol effect. Farnesol (25–75 μmol/L) did not affect the mRNA level of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme in the mevalonate pathway. Farnesol may be the mevalonate-derived inducer of adipocyte differentiation and potentially an insulin sensitizer via activation of PPARγ and upregulation of glucose uptake. PMID:26660152

  2. Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartate 1-decarboxylase (ADC) and dopa decarboxylase (DDC) provide b–alanine and dopamine used in insect cuticle tanning. Beta-alanine is conjugated with dopamine to yield N-b-alanyldopamine (NBAD), a substrate for the phenoloxidase laccase that catalyzes the synthesis of cuticle protein cross-li...

  3. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    SciTech Connect

    Lowe, N.J.; Breeding, J.

    1982-02-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study.

  4. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  5. Resolution of brewers' yeast pyruvate decarboxylase into two isozymes.

    PubMed

    Kuo, D J; Dikdan, G; Jordan, F

    1986-03-01

    A novel purification method was developed for brewers' yeast pyruvate decarboxylase (EC 4.1.1.1) that for the first time resolved the enzyme into two isozymes on DEAE-Sephadex chromatography. The isozymes were found to be distinct according to sodium dodecyl sulfate polyacrylamide gel electrophoresis: the first one to be eluted gave rise to one band, the second to two bands. The isozymes were virtually the same so far as specific activity, KM, inhibition kinetics and irreversible binding properties by the mechanism-based inhibitor (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid are concerned. This finding resolves a longstanding controversy concerning the quaternary structure of this enzyme.

  6. Decarboxylases involved in polyamine biosynthesis and their inactivation by nitric oxide.

    PubMed

    Hillary, Rebecca A; Pegg, Anthony E

    2003-04-11

    Polyamines are ubiquitous cellular components that are involved in normal and neoplastic growth. Polyamine biosynthesis is very highly regulated in mammalian cells by the activities of two key decarboxylases acting on ornithine and S-adenosylmethionine. Recent studies, which include crystallographic analysis of the recombinant human proteins, have provided a detailed knowledge of their structure and function. Ornithine decarboxylase is a PLP-requiring decarboxylase, whereas S-adenosylmethionine decarboxylase (AdoMetDC) contains a covalently bound pyruvate prosthetic group. Both enzymes have a key cysteine residue, which is involved in protonation of the Schiff base intermediate C(alpha) to form the product. These residues, Cys360 in ornithine decarboxylase (ODC) and Cys82 in AdoMetDC, react readily with nitric oxide (NO), which is therefore a potent inactivator of polyamine synthesis. The inactivation of these enzymes may mediate some of the antiproliferative actions of NO.

  7. Properties and inhibition of the first two enzymes of the non-mevalonate pathway of isoprenoid biosynthesis.

    PubMed

    Mueller, C; Schwender, J; Zeidler, J; Lichtenthaler, H K

    2000-12-01

    Enzymes of the 1-deoxy-D-xylulose 5-phosphate/2-C-methylerythritol 4-phosphate (DOXP/MEP) pathway are targets for new herbicides and antibacterial drugs. Until now, no inhibitors for the DOXP synthase have been known of. We show that one of the breakdown products of the herbicide clomazone affects the DOXP synthase. One inhibitor of the non-mevalonate pathway, fosmidomycin, blocks the DOXP reductoisomerase (DXR) of plants and bacteria. The I(50) values of plants are, however, higher than those found for the DXR of Escherichia coli. The DXR of plants, isolated from barley seedlings, shows a pH optimum of 8.1, which is typical for enzymes active in the chloroplast stroma.

  8. Crystal structure of pyruvate decarboxylase from Zymobacter palmae.

    PubMed

    Buddrus, Lisa; Andrews, Emma S V; Leak, David J; Danson, Michael J; Arcus, Vickery L; Crennell, Susan J

    2016-09-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg(2+) ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and Rr.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were Rwork = 0.186 (0.271 in the highest resolution bin) and Rfree = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  9. Mammalian Dopa decarboxylase: structure, catalytic activity and inhibition.

    PubMed

    Bertoldi, Mariarita

    2014-03-15

    Mammalian Dopa decarboxylase catalyzes the conversion of L-Dopa and L-5-hydroxytryptophan to dopamine and serotonin, respectively. Both of them are biologically active neurotransmitters whose levels should be finely tuned. In fact, an altered concentration of dopamine is the cause of neurodegenerative diseases, such as Parkinson's disease. The chemistry of the enzyme is based on the features of its coenzyme pyridoxal 5'-phosphate (PLP). The cofactor is highly reactive and able to perform multiple reactions, besides decarboxylation, such as oxidative deamination, half-transamination and Pictet-Spengler cyclization. The structure resolution shows that the enzyme has a dimeric arrangement and provides a molecular basis to identify the residues involved in each catalytic activity. This information has been combined with kinetic studies under steady-state and pre-steady-state conditions as a function of pH to shed light on residues important for catalysis. A great effort in DDC research is devoted to design efficient and specific inhibitors in addition to those already used in therapy that are not highly specific and are responsible for the side effects exerted by clinical approach to either Parkinson's disease or aromatic amino acid decarboxylase deficiency. PMID:24407024

  10. Crystal structure of pyruvate decarboxylase from Zymobacter palmae

    PubMed Central

    Buddrus, Lisa; Andrews, Emma S. V.; Leak, David J.; Danson, Michael J.; Arcus, Vickery L.; Crennell, Susan J.

    2016-01-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg2+ ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and R r.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were R work = 0.186 (0.271 in the highest resolution bin) and R free = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  11. Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine

    PubMed Central

    Zhu, Meng-Yang; Iyo, Abiye; Piletz, John E.; Regunathan, Soundar

    2011-01-01

    Agmatine, an amine formed by decarboxylation of L-arginine by arginine decarboxylase (ADC), has been recently discovered in mammalian brain and other tissues. While the cloning and sequencing of ADC from plant and bacteria have been reported extensively, the structure of mammalian enzyme is not known. Using homology screening approach, we have identified a human cDNA clone that exhibits ADC activity when expressed in COS-7 cells. The cDNA and deduced amino acid sequence of this human ADC clone is distinct from ADC of other forms. Human ADC is a 460-amino acid protein that shows about 48% identity to mammalian ornithine decarboxylase (ODC) but has no ODC activity. While naive COS-7 cells do not make agmatine, these cells are able to produce agmatine, as measured by HPLC, when transfected with ADC cDNA. Northern blot analysis using the cDNA probe indicated the expression of ADC message in selective human brain regions and other human tissues. PMID:14738999

  12. Intestinal alkaline phosphatase inhibits the proinflammatory nucleotide uridine diphosphate

    PubMed Central

    Hamarneh, Sulaiman R.; Mohamed, Mussa M. Rafat; Ramasamy, Sundaram; Yammine, Halim; Patel, Palak; Kaliannan, Kanakaraju; Alam, Sayeda N.; Muhammad, Nur; Moaven, Omeed; Teshager, Abeba; Malo, Nondita S.; Narisawa, Sonoko; Millán, José Luis; Warren, H. Shaw; Hohmann, Elizabeth; Malo, Madhu S.; Hodin, Richard A.

    2013-01-01

    Uridine diphosphate (UDP) is a proinflammatory nucleotide implicated in inflammatory bowel disease. Intestinal alkaline phosphatase (IAP) is a gut mucosal defense factor capable of inhibiting intestinal inflammation. We used the malachite green assay to show that IAP dephosphorylates UDP. To study the anti-inflammatory effect of IAP, UDP or other proinflammatory ligands (LPS, flagellin, Pam3Cys, or TNF-α) in the presence or absence of IAP were applied to cell cultures, and IL-8 was measured. UDP caused dose-dependent increase in IL-8 release by immune cells and two gut epithelial cell lines, and IAP treatment abrogated IL-8 release. Costimulation with UDP and other inflammatory ligands resulted in a synergistic increase in IL-8 release, which was prevented by IAP treatment. In vivo, UDP in the presence or absence of IAP was instilled into a small intestinal loop model in wild-type and IAP-knockout mice. Luminal contents were applied to cell culture, and cytokine levels were measured in culture supernatant and intestinal tissue. UDP-treated luminal contents induced more inflammation on target cells, with a greater inflammatory response to contents from IAP-KO mice treated with UDP than from WT mice. Additionally, UDP treatment increased TNF-α levels in intestinal tissue of IAP-KO mice, and cotreatment with IAP reduced inflammation to control levels. Taken together, these studies show that IAP prevents inflammation caused by UDP alone and in combination with other ligands, and the anti-inflammatory effect of IAP against UDP persists in mouse small intestine. The benefits of IAP in intestinal disease may be partly due to inhibition of the proinflammatory activity of UDP. PMID:23306083

  13. Examination of the thiamin diphosphate binding site in yeast transketolase by site-directed mutagenesis.

    PubMed

    Meshalkina, L; Nilsson, U; Wikner, C; Kostikowa, T; Schneider, G

    1997-03-01

    The role of two conserved amino acid residues in the thiamin diphosphate binding site of yeast transketolase has been analyzed by site-directed mutagenesis. Replacement of E162, which is part of a cluster of glutamic acid residues at the subunit interface, by alanine or glutamine results in mutant enzymes with most catalytic properties similar to wild-type enzyme. The two mutant enzymes show, however, significant increases in the K0.5 values for thiamin diphosphate in the absence of substrate and in the lag of the reaction progress curves. This suggests that the interaction of E162 with residue E418, and possibly E167, from the second subunit is important for formation and stabilization of the transketolase dimer. Replacement of the conserved residue D382, which is buried upon binding of thiamin diphosphate, by asparagine and alanine, results in mutant enzymes severely impaired in thiamin diphosphate binding and catalytic efficiency. The 25-80-fold increase in K0.5 for thiamin diphosphate suggests that D382 is involved in cofactor binding, probably by electrostatic compensation of the positive charge of the thiazolium ring and stabilization of a flexible loop at the active site. The decrease in catalytic activities in the D382 mutants indicates that this residue might also be important in subsequent steps in catalysis.

  14. A corpora allata farnesyl diphosphate synthase in mosquitoes displaying a metal ion dependent substrate specificity

    PubMed Central

    Rivera-Perez, Crisalejandra; Nyati, Pratik; Noriega, Fernando G.

    2015-01-01

    Farnesyl diphosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis, it catalyzes the head-to-tail condensation of dimethylallyl diphosphate (DMAPP) with two molecules of isopentenyl diphosphate (IPP) to generate farnesyl diphosphate (FPP), a precursor of juvenile hormone (JH). In this study, we functionally characterized an Aedes aegypti FPPS (AaFPPS) expressed in the corpora allata. AaFPPS is the only FPPS gene present in the genome of the yellow fever mosquito, it encodes a 49.6 kDa protein exhibiting all the characteristic conserved sequence domains on prenyltransferases. AaFPPS displays its activity in the presence of metal cofactors; and the product condensation is dependent of the divalent cation. Mg2+ ions lead to the production of FPP, while the presence of Co2+ ions lead to geranyl diphosphate (GPP) production. In the presence of Mg2+ the AaFPPS affinity for allylic substrates is GPP>DMAPP>IPP. These results suggest that AaFPPS displays “catalytic promiscuity”, changing the type and ratio of products released (GPP or FPP) depending on allylic substrate concentrations and the presence of different metal cofactors. This metal ion-dependent regulatory mechanism allows a single enzyme to selectively control the metabolites it produces, thus potentially altering the flow of carbon into separate metabolic pathways. PMID:26188328

  15. Activities of Arginine and Ornithine Decarboxylases in Various Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species. No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed. In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum. PMID:16664442

  16. Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation.

    PubMed

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de Las Rivas, Blanca; Muñoz, Rosario

    2013-07-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases.

  17. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    PubMed Central

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  18. Cyclohexane-1,2-dione hydrolase from denitrifying Azoarcus sp. strain 22Lin, a novel member of the thiamine diphosphate enzyme family.

    PubMed

    Steinbach, Alma K; Fraas, Sonja; Harder, Jens; Tabbert, Anja; Brinkmann, Henner; Meyer, Axel; Ermler, Ulrich; Kroneck, Peter M H

    2011-12-01

    Alicyclic compounds with hydroxyl groups represent common structures in numerous natural compounds, such as terpenes and steroids. Their degradation by microorganisms in the absence of dioxygen may involve a C-C bond ring cleavage to form an aliphatic intermediate that can be further oxidized. The cyclohexane-1,2-dione hydrolase (CDH) (EC 3.7.1.11) from denitrifying Azoarcus sp. strain 22Lin, grown on cyclohexane-1,2-diol as a sole electron donor and carbon source, is the first thiamine diphosphate (ThDP)-dependent enzyme characterized to date that cleaves a cyclic aliphatic compound. The degradation of cyclohexane-1,2-dione (CDO) to 6-oxohexanoate comprises the cleavage of a C-C bond adjacent to a carbonyl group, a typical feature of reactions catalyzed by ThDP-dependent enzymes. In the subsequent NAD(+)-dependent reaction, 6-oxohexanoate is oxidized to adipate. CDH has been purified to homogeneity by the criteria of gel electrophoresis (a single band at ∼59 kDa; calculated molecular mass, 64.5 kDa); in solution, the enzyme is a homodimer (∼105 kDa; gel filtration). As isolated, CDH contains 0.8 ± 0.05 ThDP, 1.0 ± 0.02 Mg(2+), and 1.0 ± 0.015 flavin adenine dinucleotide (FAD) per monomer as a second organic cofactor, the role of which remains unclear. Strong reductants, Ti(III)-citrate, Na(+)-dithionite, and the photochemical 5-deazaflavin/oxalate system, led to a partial reduction of the FAD chromophore. The cleavage product of CDO, 6-oxohexanoate, was also a substrate; the corresponding cyclic 1,3- and 1,4-diones did not react with CDH, nor did the cis- and trans-cyclohexane diols. The enzymes acetohydroxyacid synthase (AHAS) from Saccharomyces cerevisiae, pyruvate oxidase (POX) from Lactobacillus plantarum, benzoylformate decarboxylase from Pseudomonas putida, and pyruvate decarboxylase from Zymomonas mobilis were identified as the closest relatives of CDH by comparative amino acid sequence analysis, and a ThDP binding motif and a 2-fold Rossmann fold

  19. Cyclohexane-1,2-Dione Hydrolase from Denitrifying Azoarcus sp. Strain 22Lin, a Novel Member of the Thiamine Diphosphate Enzyme Family▿†

    PubMed Central

    Steinbach, Alma K.; Fraas, Sonja; Harder, Jens; Tabbert, Anja; Brinkmann, Henner; Meyer, Axel; Ermler, Ulrich; Kroneck, Peter M. H.

    2011-01-01

    Alicyclic compounds with hydroxyl groups represent common structures in numerous natural compounds, such as terpenes and steroids. Their degradation by microorganisms in the absence of dioxygen may involve a C—C bond ring cleavage to form an aliphatic intermediate that can be further oxidized. The cyclohexane-1,2-dione hydrolase (CDH) (EC 3.7.1.11) from denitrifying Azoarcus sp. strain 22Lin, grown on cyclohexane-1,2-diol as a sole electron donor and carbon source, is the first thiamine diphosphate (ThDP)-dependent enzyme characterized to date that cleaves a cyclic aliphatic compound. The degradation of cyclohexane-1,2-dione (CDO) to 6-oxohexanoate comprises the cleavage of a C—C bond adjacent to a carbonyl group, a typical feature of reactions catalyzed by ThDP-dependent enzymes. In the subsequent NAD+-dependent reaction, 6-oxohexanoate is oxidized to adipate. CDH has been purified to homogeneity by the criteria of gel electrophoresis (a single band at ∼59 kDa; calculated molecular mass, 64.5 kDa); in solution, the enzyme is a homodimer (∼105 kDa; gel filtration). As isolated, CDH contains 0.8 ± 0.05 ThDP, 1.0 ± 0.02 Mg2+, and 1.0 ± 0.015 flavin adenine dinucleotide (FAD) per monomer as a second organic cofactor, the role of which remains unclear. Strong reductants, Ti(III)-citrate, Na+-dithionite, and the photochemical 5-deazaflavin/oxalate system, led to a partial reduction of the FAD chromophore. The cleavage product of CDO, 6-oxohexanoate, was also a substrate; the corresponding cyclic 1,3- and 1,4-diones did not react with CDH, nor did the cis- and trans-cyclohexane diols. The enzymes acetohydroxyacid synthase (AHAS) from Saccharomyces cerevisiae, pyruvate oxidase (POX) from Lactobacillus plantarum, benzoylformate decarboxylase from Pseudomonas putida, and pyruvate decarboxylase from Zymomonas mobilis were identified as the closest relatives of CDH by comparative amino acid sequence analysis, and a ThDP binding motif and a 2-fold Rossmann fold for

  20. Antiinflammatory drug effects on ultraviolet light-induced epidermal ornithine decarboxylase and DNA synthesis

    SciTech Connect

    Lowe, N.J.; Breeding, J.

    1980-06-01

    Epidermal ornithine decarboxylase activity is greatly elevated in response to tumor promoting agents and ultraviolet light. The purpose of this paper is to report modification of ultraviolet-induced epidermal ornithine decarboxylase activity by antiinflammatory agents. Topical triamoinolone acetonide and indomethacin were found to significantly inhibit the UV-B induction of epidermal ornithine decarboxylase in hairless mice when applied following ultraviolet light irradiation. The corticosteroid also showed inhibition of ultraviolet light increased epidermal DNA synthesis. Indomethacin failed to show any inhibition of DNA synthesis.

  1. Structural features of mammalian histidine decarboxylase reveal the basis for specific inhibition

    PubMed Central

    Moya-García, AA; Pino-Ángeles, A; Gil-Redondo, R; Morreale, A; Sánchez-Jiménez, F

    2009-01-01

    For a long time the structural and molecular features of mammalian histidine decarboxylase (EC 4.1.1.22), the enzyme that produces histamine, have evaded characterization. We overcome the experimental problems for the study of this enzyme by using a computer-based modelling and simulation approach, and have now the conditions to use histidine decarboxylase as a target in histamine pharmacology. In this review, we present the recent (last 5 years) advances in the structure–function relationship of histidine decarboxylase and the strategy for the discovery of new drugs. PMID:19413567

  2. Structural and Enzymatic Characterization of a Nucleoside Diphosphate Sugar Hydrolase from Bdellovibrio bacteriovorus

    PubMed Central

    Duong-ly, Krisna C.; Schoeffield, Andrew J.; Pizarro-Dupuy, Mario A.; Zarr, Melissa; Pineiro, Silvia A.; Amzel, L. Mario; Gabelli, Sandra B.

    2015-01-01

    Given the broad range of substrates hydrolyzed by Nudix (nucleoside diphosphate linked to X) enzymes, identification of sequence and structural elements that correctly predict a Nudix substrate or characterize a family is key to correctly annotate the myriad of Nudix enzymes. Here, we present the structure determination and characterization of Bd3179 –- a Nudix hydrolase from Bdellovibrio bacteriovorus–that we show localized in the periplasmic space of this obligate Gram-negative predator. We demonstrate that the enzyme is a nucleoside diphosphate sugar hydrolase (NDPSase) and has a high degree of sequence and structural similarity to a canonical ADP-ribose hydrolase and to a nucleoside diphosphate sugar hydrolase (1.4 and 1.3 Å Cα RMSD respectively). Examination of the structural elements conserved in both types of enzymes confirms that an aspartate-X-lysine motif on the C-terminal helix of the α-β-α NDPSase fold differentiates NDPSases from ADPRases. PMID:26524597

  3. Molecular cloning and characterization of a geranyl diphosphate-specific aromatic prenyltransferase from lemon.

    PubMed

    Munakata, Ryosuke; Inoue, Tsuyoshi; Koeduka, Takao; Karamat, Fazeelat; Olry, Alexandre; Sugiyama, Akifumi; Takanashi, Kojiro; Dugrand, Audray; Froelicher, Yann; Tanaka, Ryo; Uto, Yoshihiro; Hori, Hitoshi; Azuma, Jun-Ichi; Hehn, Alain; Bourgaud, Frédéric; Yazaki, Kazufumi

    2014-09-01

    Prenyl residues confer divergent biological activities such as antipathogenic and antiherbivorous activities on phenolic compounds, including flavonoids, coumarins, and xanthones. To date, about 1,000 prenylated phenolics have been isolated, with these compounds containing various prenyl residues. However, all currently described plant prenyltransferases (PTs) have been shown specific for dimethylallyl diphosphate as the prenyl donor, while most of the complementary DNAs encoding these genes have been isolated from the Leguminosae. In this study, we describe the identification of a novel PT gene from lemon (Citrus limon), ClPT1, belonging to the homogentisate PT family. This gene encodes a PT that differs from other known PTs, including flavonoid-specific PTs, in polypeptide sequence. This membrane-bound enzyme was specific for geranyl diphosphate as the prenyl donor and coumarin as the prenyl acceptor. Moreover, the gene product was targeted to plastid in plant cells. To our knowledge, this is the novel aromatic PT specific to geranyl diphosphate from citrus species.

  4. Localization and properties of ribulose diphosphate carboxylase from castor bean endosperm.

    PubMed

    Osmond, C B; Akazawa, T; Beevers, H

    1975-02-01

    A substantial portion of the ribulose 1,5-diphosphate carboxylase activity in the endosperm of germinating castor beans (Ricinus communis var. Hale) is recovered in the proplastid fraction. The partially purified enzyme shows homology with the enzyme from spinach (Spinacia oleracea) leaves, as evidenced by its reaction against antibodies to the native spinach enzyme and to its catalytic subunit. The enzyme from the endosperm of castor beans has a molecular weight of about 500,000 and, with the exception of a higher affinity for ribulose 1,5-diphosphate, has similar kinetic properties to the spinach enzyme. The castor bean carboxylase is inhibited by oxygen and also displays ribulose 1,5-diphosphate oxygenase activity with an optimum at pH 7.5.

  5. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    SciTech Connect

    Nilsson, Tatjana . E-mail: Tatjana.Nilsson@ki.se; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-06-02

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm.

  6. An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids

    SciTech Connect

    Frossard, Mariana Lins; Seabra, Sergio Henrique; Matta, Renato Augusto da; Souza, Wanderley de; Garcia de Mello, Fernando; Motta, Maria Cristina Machado . E-mail: motta@biof.ufrj.br

    2006-05-05

    Summary: Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism.

  7. Bioconversion of lactose/whey to fructose diphosphate with recombinant Saccharomyces cerevisiae cells

    SciTech Connect

    Compagno, C.; Tura, A.; Ranzi, B.M.; Martegani, E. )

    1993-07-01

    Genetically engineered Saccharomyces cerevisiae strains that express Escherichia coli [beta]-galactosidase gene are able to bioconvert lactose or whey into fructose-1,6-diphosphate (FDP). High FDP yields from whey were obtained with an appropriate ratio between cell concentration and inorganic phosphate. The biomass of transformed cells can be obtained from different carbon sources, according to the expression vector bearing the lacZ gene. The authors showed that whey can be used as the carbon source for S. cerevisiae growth and as the substrate for bioconversion to fructose diphosphate.

  8. Heteromeric geranyl diphosphate synthase from mint: construction of a functional fusion protein and inhibition by bisphosphonate substrate analogs.

    PubMed

    Burke, Charles; Klettke, Karin; Croteau, Rodney

    2004-02-01

    Geranyl diphosphate synthase catalyzes the condensation of dimethylallyl diphosphate (C(5)) with isopentenyl diphosphate (C(5)) to produce geranyl diphosphate (C(10)), the essential precursor of monoterpenes. The enzyme from peppermint and spearmint (Menthaxpiperita and Mentha spicata, respectively) functions as a heterodimer or heterotetramer consisting of a 40kDa subunit and 33kDa subunit. The DNAs encoding each subunit were joined with different sized linkers and in both possible orders, and expressed in Escherichia coli to yield the corresponding fused protein. The properties of the recombinant fused version, in which the small subunit was followed by the large subunit with a 10 amino acid linker, resembled those of the native heteromeric enzyme in kinetics, product chain-length specificity, and architecture, and this form thus provided a suitable single gene transcript for biotechnological purposes. Bisphosphonate substrate analogs of the type that inhibit farnesyl diphosphate synthase (C(15)) and geranylgeranyl diphosphate synthase (C(20)) also inhibited the fused geranyl diphosphate synthase, apparently by interacting at both the allylic and homoallylic co-substrate binding sites. The results of inhibition studies, along with the previously established role of the small subunit and related mutagenesis experiments, suggest that geranyl diphosphate synthase employs a different mechanism for chain-length determination than do other short-chain prenyltransferases.

  9. CO2 as main carbon source for isoprenoid biosynthesis via the mevalonate-independent methylerythritol 4-phosphate route in the marine diatoms Phaeodactylum tricornutum and Nitzschia ovalis.

    PubMed

    Cvejić, J H; Rohmer, M

    2000-01-01

    Isoprenoid biosynthesis was investigated in the two diatoms Phaeodactylum tricornutum and Nitzschia ovalis by labeling experiments performed in mixotrophic growth conditions with sodium [1-(13)C]acetate, 13CO2, [1-(13)C]glucose, sodium [3-(13)C]pyruvate and 1-deoxy-D-[5,5-(2)H2]xylulose. A clear dichotomy was found. Acetate was the preferred carbon source for the formation of the sterols in the cytoplasm via the mevalonate pathway. Carbon dioxide was the main source for phytol biosynthesis in the chloroplasts via the mevalonate-independent methylerythritol 4-phosphate pathway. The two diatoms showed the same compartmentation for isoprenoid biosynthesis as that previously found in higher plants, the red alga Porphyridium cruentum and the Chrysophyte Ochromonas danica.

  10. The electrochemical investigation of the catalytic power of pyruvate decarboxylase and its coenzyme.

    PubMed

    Bell, Patrick; Hoyt, Kathryn; Shabangi, Masangu

    2006-05-01

    The change in the energy barriers for the heterogeneous reduction of pyruvate decarboxylase (PDC) relative to its coenzyme, thiamin pyrophosphate (ThPP), was determined experimentally using square wave voltammetry (SWV) to be 5.3 kcal/mol. These results are in agreement with those of reaction rate acceleration provided by thiamin-dependent decarboxylases relative to their coenzyme as determined kinetically based on the pK(a) suppression by the enzyme environment.

  11. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice. PMID:26643381

  12. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  13. Unique behavior of Trypanosoma cruzi mevalonate kinase: A conserved glycosomal enzyme involved in host cell invasion and signaling

    PubMed Central

    Ferreira, Éden Ramalho; Horjales, Eduardo; Bonfim-Melo, Alexis; Cortez, Cristian; da Silva, Claudio Vieira; De Groote, Michel; Sobreira, Tiago José Paschoal; Cruz, Mário Costa; Lima, Fabio Mitsuo; Cordero, Esteban Mauricio; Yoshida, Nobuko; da Silveira, José Franco; Mortara, Renato Arruda; Bahia, Diana

    2016-01-01

    Mevalonate kinase (MVK) is an essential enzyme acting in early steps of sterol isoprenoids biosynthesis, such as cholesterol in humans or ergosterol in trypanosomatids. MVK is conserved from bacteria to mammals, and localizes to glycosomes in trypanosomatids. During the course of T. cruzi MVK characterization, we found that, in addition to glycosomes, this enzyme may be secreted and modulate cell invasion. To evaluate the role of TcMVK in parasite-host cell interactions, TcMVK recombinant protein was produced and anti-TcMVK antibodies were raised in mice. TcMVK protein was detected in the supernatant of cultures of metacyclic trypomastigotes (MTs) and extracellular amastigotes (EAs) by Western blot analysis, confirming its secretion into extracellular medium. Recombinant TcMVK bound in a non-saturable dose-dependent manner to HeLa cells and positively modulated internalization of T. cruzi EAs but inhibited invasion by MTs. In HeLa cells, TcMVK induced phosphorylation of MAPK pathway components and proteins related to actin cytoskeleton modifications. We hypothesized that TcMVK is a bifunctional enzyme that in addition to playing a classical role in isoprenoid synthesis in glycosomes, it is secreted and may modulate host cell signaling required for T. cruzi invasion. PMID:27113535

  14. Analysis of the Impact of Rosuvastatin on Bacterial Mevalonate Production Using a UPLC-Mass Spectrometry Approach.

    PubMed

    Nolan, J A; Kinsella, M; Hill, C; Joyce, S A; Gahan, C G M

    2016-07-01

    Statins are widely prescribed cholesterol-lowering medications and act through inhibition of the human enzyme 3-methylglutaryl coenzyme A reductase (HMG-R) which produces mevalonate (MVAL), a key substrate for cholesterol biosynthesis. Some important microbial species also express an isoform of HMG-R; however, the nature of the interaction between statins and bacteria is currently unclear and studies would benefit from protocols to quantify MVAL in complex microbial environments. The objective of this study was to develop a protocol for the analytical quantification of MVAL in bacterial systems and to utilise this approach to analyse the effects of Rosuvastatin (RSV) on bacterial MVAL formation. To determine the effective concentration range of RSV, we examined the dose-dependent inhibition of growth in the HMG-R(+) bacterial pathogens Listeria monocytogenes, Staphylococcus aureus and Enterococcus faecium at various concentrations of pure RSV. Growth inhibition generally correlated with a reduction in bacterial MVAL levels, particularly in culture supernatants at high RSV concentrations, as determined using our ultra-performance liquid chromatography mass spectrometry protocol. This work therefore outlines a refined protocol for the analysis of MVAL in microbial cultures and provides evidence for statin-mediated inhibition of bacterial HMG-R. Furthermore, we show that MVAL is readily transported and secreted from bacterial cells into the growth media. PMID:26960292

  15. Unique behavior of Trypanosoma cruzi mevalonate kinase: A conserved glycosomal enzyme involved in host cell invasion and signaling.

    PubMed

    Ferreira, Éden Ramalho; Horjales, Eduardo; Bonfim-Melo, Alexis; Cortez, Cristian; da Silva, Claudio Vieira; De Groote, Michel; Sobreira, Tiago José Paschoal; Cruz, Mário Costa; Lima, Fabio Mitsuo; Cordero, Esteban Mauricio; Yoshida, Nobuko; da Silveira, José Franco; Mortara, Renato Arruda; Bahia, Diana

    2016-01-01

    Mevalonate kinase (MVK) is an essential enzyme acting in early steps of sterol isoprenoids biosynthesis, such as cholesterol in humans or ergosterol in trypanosomatids. MVK is conserved from bacteria to mammals, and localizes to glycosomes in trypanosomatids. During the course of T. cruzi MVK characterization, we found that, in addition to glycosomes, this enzyme may be secreted and modulate cell invasion. To evaluate the role of TcMVK in parasite-host cell interactions, TcMVK recombinant protein was produced and anti-TcMVK antibodies were raised in mice. TcMVK protein was detected in the supernatant of cultures of metacyclic trypomastigotes (MTs) and extracellular amastigotes (EAs) by Western blot analysis, confirming its secretion into extracellular medium. Recombinant TcMVK bound in a non-saturable dose-dependent manner to HeLa cells and positively modulated internalization of T. cruzi EAs but inhibited invasion by MTs. In HeLa cells, TcMVK induced phosphorylation of MAPK pathway components and proteins related to actin cytoskeleton modifications. We hypothesized that TcMVK is a bifunctional enzyme that in addition to playing a classical role in isoprenoid synthesis in glycosomes, it is secreted and may modulate host cell signaling required for T. cruzi invasion. PMID:27113535

  16. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    PubMed

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids.

  17. Chrysanthemyl diphosphate synthase operates in planta as a bifunctional enzyme with chrysanthemol synthase activity.

    PubMed

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A

    2014-12-26

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 μg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.

  18. [Formation of ribuloso-1,5-diphosphate carboxylase by Thiocapsa roseopersicina under different growth conditions].

    PubMed

    Zhukov, V G

    1976-01-01

    Contrary to other photosynthetic and some chemoautotrophic bacteria, formation of ribuloso-1,5-diphosphate carboxylase by the cells of Thiocapsa roseopersicina, strain BBS, is not inhibited by oxygen which is present in the medium. The intensity of light and the presence of organic substances in the medium produce only a minor effect on synthesis of the enzyme by the microorganism. PMID:1004280

  19. Chrysanthemyl Diphosphate Synthase Operates in Planta as a Bifunctional Enzyme with Chrysanthemol Synthase Activity*

    PubMed Central

    Yang, Ting; Gao, Liping; Hu, Hao; Stoopen, Geert; Wang, Caiyun; Jongsma, Maarten A.

    2014-01-01

    Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1′-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 μm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 μm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12–0.16 μg h−1 g−1 fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate. PMID:25378387

  20. Cytosolic monoterpene biosynthesis is supported by plastid-generated geranyl diphosphate substrate in transgenic tomato fruits.

    PubMed

    Gutensohn, Michael; Orlova, Irina; Nguyen, Thuong T H; Davidovich-Rikanati, Rachel; Ferruzzi, Mario G; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia

    2013-08-01

    Geranyl diphosphate (GPP), the precursor of most monoterpenes, is synthesized in plastids from dimethylallyl diphosphate and isopentenyl diphosphate by GPP synthases (GPPSs). In heterodimeric GPPSs, a non-catalytic small subunit (GPPS-SSU) interacts with a catalytic large subunit, such as geranylgeranyl diphosphate synthase, and determines its product specificity. Here, snapdragon (Antirrhinum majus) GPPS-SSU was over-expressed in tomato fruits under the control of the fruit ripening-specific polygalacturonase promoter to divert the metabolic flux from carotenoid formation towards GPP and monoterpene biosynthesis. Transgenic tomato fruits produced monoterpenes, including geraniol, geranial, neral, citronellol and citronellal, while exhibiting reduced carotenoid content. Co-expression of the Ocimum basilicum geraniol synthase (GES) gene with snapdragon GPPS-SSU led to a more than threefold increase in monoterpene formation in tomato fruits relative to the parental GES line, indicating that the produced GPP can be used by plastidic monoterpene synthases. Co-expression of snapdragon GPPS-SSU with the O. basilicum α-zingiberene synthase (ZIS) gene encoding a cytosolic terpene synthase that has been shown to possess both sesqui- and monoterpene synthase activities resulted in increased levels of ZIS-derived monoterpene products compared to fruits expressing ZIS alone. These results suggest that re-direction of the metabolic flux towards GPP in plastids also increases the cytosolic pool of GPP available for monoterpene synthesis in this compartment via GPP export from plastids. PMID:23607888

  1. Lactose and D-galactose metabolism in Staphylococcus aureus. IV. Isolation and properties of a class I D-ketohexose-1,6-diphosphate aldolase that catalyzes the cleavage of D-tagatose 1,6-diphosphate.

    PubMed

    Bissett, D L; Anderson, R L

    1980-09-25

    The inducible D-ketohexose-1,6-diphosphate aldolase that functions in the metabolism of lactose and D-galactose in Staphylococcus aurues was purified to electrophoretic homogeneity from an extract of D-galactose-grown cells. At saturating substrate concentrations, D-tagatose 1,6-diphosphate was cleaved to dihydroxyacetone phosphate plus D-glyceraldehyde 3-phosphate at twice the rate of D-fructose 1,6-diphosphate; Km values for D-tagatose 1,6-diphosphate and D-fructose 12,6-diphosphate were 1.5 mM and 2.5 mM, respectively. The enzyme catalyzed the aldol condensation of dihydroxyacetone phosphate and D-glyceraldehyde 3-phosphate to yield a mixture of the 1,6-diphosphate derivatives of D-tagatose, D-fructose, D-sorbose, and D-psicose, indicating that it also catalyzes the cleavage of all four D-2-ketohexose 1,6-diphosphates. The enzyme was not inhibited by EDTA and it had no divalent metal ion requirement, but it did exhibit substrate-dependent inactivation by NaBH4, indicating that it is a Class I (Schiff's base) aldolase. Density gradient centrifugation and gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the enzyme exists as a monomer with amolecular weight of about 37,000 and a sedimentation coefficient of 3.4 S. Data on the stability, pH optimum, and inducibility of the enzyme are also presented.

  2. Two solanesyl diphosphate synthases with different subcellular localizations and their respective physiological roles in Oryza sativa

    PubMed Central

    Ohara, Kazuaki; Sasaki, Kanako; Yazaki, Kazufumi

    2010-01-01

    Long chain prenyl diphosphates are crucial biosynthetic precursors of ubiquinone (UQ) in many organisms, ranging from bacteria to humans, as well as precursors of plastoquinone in photosynthetic organisms. The cloning and characterization of two solanesyl diphosphate synthase genes, OsSPS1 and OsSPS2, in Oryza sativa is reported here. OsSPS1 was highly expressed in root tissue whereas OsSPS2 was found to be high in both leaves and roots. Enzymatic characterization using recombinant proteins showed that both OsSPS1 and OsSPS2 could produce solanesyl diphosphates as their final product, while OsSPS1 showed stronger activity than OsSPS2. However, an important biological difference was observed between the two genes: OsSPS1 complemented the yeast coq1 disruptant, which does not form UQ, whereas OsSPS2 only very weakly complemented the growth defect of the coq1 mutant. HPLC analyses showed that both OsSPS1 and OsSPS2 yeast transformants produced UQ9 instead of UQ6, which is the native yeast UQ. According to the complementation study, the UQ9 levels in OsSPS2 transformants were much lower than that of OsSPS1. Green fluorescent protein fusion analyses showed that OsSPS1 localized to mitochondria, while OsSPS2 localized to plastids. This suggests that OsSPS1 is involved in the supply of solanesyl diphosphate for ubiquinone-9 biosynthesis in mitochondria, whereas OsSPS2 is involved in providing solanesyl diphosphate for plastoquinone-9 formation. These findings indicate that O. sativa has a different mechanism for the supply of isoprenoid precursors in UQ biosynthesis from Arabidopsis thaliana, in which SPS1 provides a prenyl moiety for UQ9 at the endoplasmic reticulum. PMID:20421194

  3. Nitrogen isotope effects on glutamate decarboxylase from Escherichia coli

    SciTech Connect

    Abell, L.M.; O'Leary, M.H.

    1988-05-03

    The nitrogen isotope effect on the decarboxylation of glutamic acid by glutamate decarboxylase from Escherichia coli has been measured by comparison of the isotopic composition of the amino nitrogen of the product ..gamma..-aminobutyric acid isolated after 10-20% reaction with that of the starting glutamic acid. At pH 4.7, 37 /sup 0/C, the isotope effect is k/sup 14//k/sup 15/ = 0.9855 +/- 0.0006 when compared to unprotonated glutamic acid. Interpretation of this result requires knowledge of the equilibrium nitrogen isotope effect for Schiff base formation. This equilibrium isotope effect is K/sup 14//K/sup 15/ - 0.9824 for the formation of the unprotonated Schiff base between unprotonated valine and salicylaldehyde. Analysis of the nitrogen isotope effect on decarboxylation of glutamic acid and of the previously measured carbon isotope effect on this same reaction shows that decarboxylation and Schiff base formation are jointly rate limiting. The enzyme-bound Schiff base between glutamate and pyridoxal 5'-phosphate partitions approximately 2:1 between decarboxylation and return to the starting state. The nitrogen isotope effect also reveals that the Schiff base nitrogen is protonated in this intermediate.

  4. The DOPA decarboxylase (DDC) gene is associated with alerting attention.

    PubMed

    Zhu, Bi; Chen, Chuansheng; Moyzis, Robert K; Dong, Qi; Chen, Chunhui; He, Qinghua; Li, Jin; Li, Jun; Lei, Xuemei; Lin, Chongde

    2013-06-01

    DOPA decarboxylase (DDC) is involved in the synthesis of dopamine, norepinephrine and serotonin. It has been suggested that genes involved in the dopamine, norepinephrine, and cholinergic systems play an essential role in the efficiency of human attention networks. Attention refers to the cognitive process of obtaining and maintaining the alert state, orienting to sensory events, and regulating the conflicts of thoughts and behavior. The present study tested seven single nucleotide polymorphisms (SNPs) within the DDC gene for association with attention, which was assessed by the Attention Network Test to detect three networks of attention, including alerting, orienting, and executive attention, in a healthy Han Chinese sample (N=451). Association analysis for individual SNPs indicated that four of the seven SNPs (rs3887825, rs7786398, rs10499695, and rs6969081) were significantly associated with alerting attention. Haplotype-based association analysis revealed that alerting was associated with the haplotype G-A-T for SNPs rs7786398-rs10499695-rs6969081. These associations remained significant after correcting for multiple testing by max(T) permutation. No association was found for orienting and executive attention. This study provides the first evidence for the involvement of the DDC gene in alerting attention. A better understanding of the genetic basis of distinct attention networks would allow us to develop more effective diagnosis, treatment, and prevention of deficient or underdeveloped alerting attention as well as its related prevalent neuropsychiatric disorders.

  5. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking

    SciTech Connect

    Kanerva, Kristiina; Maekitie, Laura T.; Baeck, Nils; Andersson, Leif C.

    2010-07-01

    Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.

  6. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    PubMed Central

    Alkan, Manal; Machavoine, François; Rignault, Rachel; Dam, Julie; Dy, Michel; Thieblemont, Nathalie

    2015-01-01

    Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response. PMID:26090474

  7. Amiloride inhibits rat mucosal ornithine decarboxylase activity and DNA synthesis

    SciTech Connect

    Ulrich-Baker, M.G.; Wang, P.; Fitzpatrick, L.; Johnson, L.R. )

    1988-03-01

    Refeeding fasted rats induces a dramatic trophic response in gastrointestinal mucosa and is associated with elevations in both rate of DNA synthesis and ornithine decarboxylase (ODC) activity. The signal for these increases is unknown. Amiloride prevents cell alkalinization by blocking Na{sup +}-H{sup +} exchange at apical epithelial cell membranes. In study 1, rats were fasted 48 h, treated with amiloride (0.5 to 500 mg/kg), and refed for 4 h. Refeeding increased ODC activities in the jejunal mucosa (X8) and liver (X19) but not in the oxyntic gland mucosa. In the jejunum, but not the liver, the activation of ODC was completely abolished by 100 mg/kg amiloride. In study 2, the rate of DNA synthesis was determine by measuring the rate of ({sup 3}H)thymidine incorporation 16 h after refeeding. Refeeding resulted in significantly increased rates of DNA synthesis over fasted levels, and amiloride at 100 mg/kg significantly reduced the elevations in the jejenum and liver. In conclusion, amiloride inhibits the postprandial increases in jejunal ODC activity and DNA synthesis in the jejunum and liver. The results indicate that (1) the Na{sup +}-H{sup +} antiport is essential to the increased ODC activity in the jejunum and liver after a meal and (2) increases in DNA synthesis and their suppression by amiloride are not necessary linked to ODC activity.

  8. Studies on uroporphyrinogen decarboxylase from Chlorella kessleri (Trebouxiophyceae, Chlorophyta).

    PubMed

    Juárez, Angela B; Aldonatti, Carmen; Vigna, María S; Ríos de Molina, María Del C

    2007-02-01

    Uroporphyrinogen decarboxylase (UroD) (EC 4.1.1.37) is an enzyme from the tetrapyrrole biosynthetic pathway, in which chlorophyll is the main final product in algae. This is the first time that a study on UroD activity has been performed in a green alga (Chlorella). We isolated and partially purified the enzyme from a Chlorella kessleri (Trebouxiophyceae, Chlorophyta) strain (Copahue, Neuquén, Argentina), and describe for the first time some of its properties. In C. kessleri, the decarboxylation of uroporphyrinogen III occurs in two stages, via 7 COOH and then 6 and 5 COOH intermediates, with the decarboxylation of the 7 COOH compound being the rate-limiting step for the reaction. Cultures in the exponential growth phase showed the highest specific activity values. The most suitable conditions to measure UroD activity in C. kessleri were as follows: 0.23-0.3 mg protein/mL, approximately 6-8 micromol/L uroporphyrinogen III, and 20 min incubation time. Gel filtration chromatography and Western blot assays indicated that UroD from C. kessleri is a dimer of approximately 90 kDa formed by species of lower molecular mass, which conserves enzymatic activity.

  9. Characterization of a second ornithine decarboxylase isolated from Morganella morganii.

    PubMed

    De Las Rivas, Blanca; González, Ramón; Landete, José María; Muñoz, Rosario

    2008-03-01

    The genes involved in the putrescine formation by Morganella morganii were investigated because putrescine is an indicator of food process deterioration. We report here on the existence of a new gene for ornithine decarboxylase (ODC) in M. morganii. The sequenced 5,311-bp DNA region showed the presence of four complete and one partial open reading frame. Putative functions have been assigned to several gene products by sequence comparison with the proteins included in the databases. The third open reading frame (speC) encoded a 722-amino acid protein showing 70.9% identity to the M. morganii ODC previously characterized (SpeF). The speC gene has been expressed in Escherichia coli, resulting in ODC activity. The presence of a functional promoter (PspeC) located upstream of speC has been demonstrated. Quantitative real-time reverse transcription PCR assay was used to quantify expression of both M. morganii ODC-encoding genes, speC and speF, under different growth conditions. This assay allows us to identify SpeF as the inducible M. morganii ODC, since it was highly expressed in the presence of ornithine.

  10. Anti-glutamic acid decarboxylase antibody positive neurological syndromes.

    PubMed

    Tohid, Hassaan

    2016-07-01

    A rare kind of antibody, known as anti-glutamic acid decarboxylase (GAD) autoantibody, is found in some patients. The antibody works against the GAD enzyme, which is essential in the formation of gamma aminobutyric acid (GABA), an inhibitory neurotransmitter found in the brain. Patients found with this antibody present with motor and cognitive problems due to low levels or lack of GABA, because in the absence or low levels of GABA patients exhibit motor and cognitive symptoms. The anti-GAD antibody is found in some neurological syndromes, including stiff-person syndrome, paraneoplastic stiff-person syndrome, Miller Fisher syndrome (MFS), limbic encephalopathy, cerebellar ataxia, eye movement disorders, and epilepsy. Previously, excluding MFS, these conditions were calledhyperexcitability disorders. However, collectively, these syndromes should be known as "anti-GAD positive neurological syndromes." An important limitation of this study is that the literature is lacking on the subject, and why patients with the above mentioned neurological problems present with different symptoms has not been studied in detail. Therefore, it is recommended that more research is conducted on this subject to obtain a better and deeper understanding of these anti-GAD antibody induced neurological syndromes. PMID:27356651

  11. Localization of histidine decarboxylase mRNA in rat brain.

    PubMed

    Bayliss, D A; Wang, Y M; Zahnow, C A; Joseph, D R; Millhorn, D E

    1990-08-01

    The recent cloning of a cDNA encoding fetal rat liver histidine decarboxylase (HDC), the synthesizing enzyme for histamine, allows the study of the central histaminergic system at the molecular level. To this end, Northern blot and in situ hybridization analyses were used to determine the regional and cellular distribution of neurons which express HDC mRNA in rat brain. Three hybridizing species which migrate as 1.6-, 2.6-, and 3.5-kb RNA were identified with Northern blots. The major (2.6 kb) and minor (3.5 kb) species, characteristic of HDC mRNA in fetal liver, were expressed at high levels in diencephalon and at just detectable levels in hippocampus, but not in other brain regions. In contrast, the 1.6-kb species was present in all brain regions examined except the olfactory bulb. Cells which contain HDC mRNA were found by in situ hybridization in the hypothalamus; HDC mRNA-containing cells were not detected in other areas, including the hippocampus. Hypothalamic neurons which express HDC mRNA were localized to all aspects of the tuberomammillary nucleus, a result consistent with previous immunohistochemical findings. PMID:19912749

  12. Chloroform induction of ornithine decarboxylase activity in rats.

    PubMed Central

    Savage, R E; Westrich, C; Guion, C; Pereira, M A

    1982-01-01

    Chloroform is a drinking water contaminant that has been demonstrated to be carcinogenic to mice and rats resulting in an increased incidence of liver and kidney tumors, respectively. The mechanism of chloroform carcinogenicity might be by tumor initiation and/or promotion. Since induction of ornithine decarboxylase (ODC) activity has been proposed as a molecular marker for tumor promoters, we have investigated the effect of chloroform on ODC activity in rats. Chloroform induced a dose-dependent increase of hepatic ODC with an apparent threshold at 100 mg/kg body weight. Female rats were two to four times more susceptible to to chloroform. Upon daily dosing of chloroform for 7 days the liver became less susceptible, with the last dose of chloroform resulting in only 10% of the activity observed after a single dose. Nuclear RNA polymerase I activity was also induced by chloroform. Chloroform, rather than increasing the activity of renal ODC, resulted in a 35% reduction. The induction by chloroform of hepatic ODC activity might be associated with regenerative hyperplasia while the renal carcinogenicity of chloroform could not be demonstrated to be associated with ODC induction. PMID:7151757

  13. Observational Study of a French and Belgian Multicenter Cohort of 23 Patients Diagnosed in Adulthood With Mevalonate Kinase Deficiency

    PubMed Central

    Durel, Cécile-Audrey; Aouba, Achille; Bienvenu, Boris; Deshayes, Samuel; Coppéré, Brigitte; Gombert, Bruno; Acquaviva-Bourdain, Cécile; Hachulla, Eric; Lecomte, Frédéric; Touitou, Isabelle; Ninet, Jacques; Philit, Jean-Baptiste; Messer, Laurent; Brouillard, Marc; Girard-Madoux, Marie-Hélène; Moutschen, Michel; Raison-Peyron, Nadia; Hutin, Pascal; Duffau, Pierre; Trolliet, Pierre; Hatron, Pierre-Yves; Heudier, Philippe; Cevallos, Ramiro; Lequerré, Thierry; Brousse, Valentine; Lesire, Vincent; Audia, Sylvain; Maucort-Boulch, Delphine; Cuisset, Laurence; Hot, Arnaud

    2016-01-01

    Abstract The aim of this study was to describe the clinical and biological features of Mevalonate kinase deficiency (MKD) in patients diagnosed in adulthood. This is a French and Belgian observational retrospective study from 2000 to 2014. To constitute the cohort, we cross-check the genetic and biochemical databases. The clinical, enzymatic, and genetic data were gathered from medical records. Twenty-three patients were analyzed. The mean age at diagnosis was 40 years, with a mean age at onset of symptoms of 3 years. All symptomatic patients had fever. Febrile attacks were mostly associated with arthralgia (90.9%); lymphadenopathy, abdominal pain, and skin lesions (86.4%); pharyngitis (63.6%); cough (59.1%); diarrhea, and hepatosplenomegaly (50.0%). Seven patients had psychiatric symptoms (31.8%). One patient developed recurrent seizures. Three patients experienced renal involvement (13.6%). Two patients had angiomyolipoma (9.1%). All but one tested patients had elevated serum immunoglobulin (Ig) D level. Twenty-one patients had genetic diagnosis; most of them were compound heterozygote (76.2%). p.Val377Ile was the most prevalent mutation. Structural articular damages and systemic AA amyloidosis were the 2 most serious complications. More than 65% of patients displayed decrease in severity and frequency of attacks with increasing age, but only 35% achieved remission. MKD diagnosed in adulthood shared clinical and genetic features with classical pediatric disease. An elevated IgD concentration is a good marker for MKD in adults. Despite a decrease of severity and frequency of attacks with age, only one-third of patients achieved spontaneous remission. PMID:26986117

  14. Observational Study of a French and Belgian Multicenter Cohort of 23 Patients Diagnosed in Adulthood With Mevalonate Kinase Deficiency.

    PubMed

    Durel, Cécile-Audrey; Aouba, Achille; Bienvenu, Boris; Deshayes, Samuel; Coppéré, Brigitte; Gombert, Bruno; Acquaviva-Bourdain, Cécile; Hachulla, Eric; Lecomte, Frédéric; Touitou, Isabelle; Ninet, Jacques; Philit, Jean-Baptiste; Messer, Laurent; Brouillard, Marc; Girard-Madoux, Marie-Hélène; Moutschen, Michel; Raison-Peyron, Nadia; Hutin, Pascal; Duffau, Pierre; Trolliet, Pierre; Hatron, Pierre-Yves; Heudier, Philippe; Cevallos, Ramiro; Lequerré, Thierry; Brousse, Valentine; Lesire, Vincent; Audia, Sylvain; Maucort-Boulch, Delphine; Cuisset, Laurence; Hot, Arnaud

    2016-03-01

    The aim of this study was to describe the clinical and biological features of Mevalonate kinase deficiency (MKD) in patients diagnosed in adulthood. This is a French and Belgian observational retrospective study from 2000 to 2014. To constitute the cohort, we cross-check the genetic and biochemical databases. The clinical, enzymatic, and genetic data were gathered from medical records. Twenty-three patients were analyzed. The mean age at diagnosis was 40 years, with a mean age at onset of symptoms of 3 years. All symptomatic patients had fever. Febrile attacks were mostly associated with arthralgia (90.9%); lymphadenopathy, abdominal pain, and skin lesions (86.4%); pharyngitis (63.6%); cough (59.1%); diarrhea, and hepatosplenomegaly (50.0%). Seven patients had psychiatric symptoms (31.8%). One patient developed recurrent seizures. Three patients experienced renal involvement (13.6%). Two patients had angiomyolipoma (9.1%). All but one tested patients had elevated serum immunoglobulin (Ig) D level. Twenty-one patients had genetic diagnosis; most of them were compound heterozygote (76.2%). p.Val377Ile was the most prevalent mutation. Structural articular damages and systemic AA amyloidosis were the 2 most serious complications. More than 65% of patients displayed decrease in severity and frequency of attacks with increasing age, but only 35% achieved remission. MKD diagnosed in adulthood shared clinical and genetic features with classical pediatric disease. An elevated IgD concentration is a good marker for MKD in adults. Despite a decrease of severity and frequency of attacks with age, only one-third of patients achieved spontaneous remission. PMID:26986117

  15. Identification of the Enterococcus faecalis Tyrosine Decarboxylase Operon Involved in Tyramine Production

    PubMed Central

    Connil, Nathalie; Le Breton, Yoann; Dousset, Xavier; Auffray, Yanick; Rincé, Alain; Prévost, Hervé

    2002-01-01

    Screening of a library of Enterococcus faecalis insertional mutants allowed isolation of a mutant affected in tyramine production. The growth of this mutant was similar to that of the wild-type E. faecalis JH2-2 strain in Maijala broth, whereas high-performance liquid chromatography analyses showed that tyramine production, which reached 1,000 μg ml−1 for the wild-type strain, was completely abolished. Genetic analysis of the insertion locus revealed a gene encoding a decarboxylase with similarity to eukaryotic tyrosine decarboxylases. Sequence analysis revealed a pyridoxal phosphate binding site, indicating that this enzyme belongs to the family of amino acid decarboxylases using this cofactor. Reverse transcription-PCR analyses demonstrated that the gene (tdc) encoding the putative tyrosine decarboxylase of E. faecalis JH2-2 is cotranscribed with the downstream gene encoding a putative tyrosine-tyramine antiporter and with the upstream tyrosyl-tRNA synthetase gene. This study is the first description of a tyrosine decarboxylase gene in prokaryotes. PMID:12089039

  16. DL-a-Monofluoromethylputrescine is a potent irreversible inhibitor of Escherichia coli ornithine decarboxylase.

    PubMed Central

    Kallio, A; McCann, P P; Bey, P

    1982-01-01

    DL-alpha-Monofluoromethylputrescine (compound R.M.I. 71864) is an enzyme-activated irreversible inhibitor of the biosynthetic enzyme ornithine decarboxylase from Escherichia coli. This compound, however, has much less effect in vitro on ornithine decarboxylase obtained from Pseudomonas aeruginosa. These findings are in contrast with those previously found with the substrate analogue DL-alpha-difluoromethylornithine (compound R.M.I. 71782). The K1 of the DL-alpha-monofluoromethylputrescine for the E. coli ornithine decarboxylase is 110 microM, and the half-life (t1/2) calculated for an infinite concentration of inhibitor is 2.1 min. When DL-alpha-monofluoromethylputrescine is used in combination with DL-alpha-difluoromethylarginine (R.M.I. 71897), an irreversible inhibitor of arginine decarboxylase, in vivo in E. coli, both decarboxylase activities are inhibited (greater than 95%) but putrescine levels are only decreased to about one-third of control values and spermidine levels are slightly increased. PMID:6812566

  17. Inhibition of the mevalonate pathway and activation of p38 MAP kinase are independently regulated by nitrogen-containing bisphosphonates in breast cancer cells.

    PubMed

    Merrell, Melinda A; Wakchoure, Savita; Lehenkari, Petri P; Harris, Kevin W; Selander, Katri S

    2007-09-10

    Bisphosphonates are widely used inhibitors of bone resorption. They also inhibit the growth of various cancer cells in vitro, but the clinical significance of this effect is unclear. The cancer growth inhibitory effects of nitrogen-containing bisphosphonates, (i.e. zoledronate) have been attributed to their ability to inhibit the mevalonate pathway. We have shown that bisphosphonates also induce p38 activation, which signals resistance against the drug-induced growth inhibition through an unknown mechanism. We show here that zoledronate induces a G1/S cell cycle arrest in human MDA-MB-231 breast cancer cells. Furthermore, p38 inhibitor augments bisphosphonate-induced growth inhibition by inducing an additional G2-phase cell cycle arrest. We also show that the nitrogen-containing bisphosphonate-induced effects on p38 phosphorylation occur before accumulation of unprenylated Rap1A or Rac1 activation. Geranylgeranyl pyrophosphate, an end-product of the mevalonate pathway, reversed the accumulation of unprenylated Rap1A but not phosphorylation of p38. Geranylgeranyl pyrophosphate also reversed n-BP induced growth inhibition, but the completeness of this reversal was nitrogen-containing bisphosphonate concentration dependent. Also mevastatin induced the accumulation of unprenylated Rap1A, but it did not induce p38 phosphorylation. In conclusion, our results suggest that in addition to the previously reported effects on apoptosis, nitrogen-containing bisphosphonates also inhibit the growth of MDA-MB-231 breast cancer cells by inducing G1/S cell cycle arrest. The bisphosphonate-induced p38 activation signals for resistance against these drugs, by promoting progression through the G2/M-checkpoint. Of these pathways only growth inhibition is mediated via inhibition of the mevalonate pathway in MDA-MB-231 cells. Combining p38 inhibitors with bisphosphonates may result in increased anti-cancer efficacy.

  18. Ultraviolet radiation induction of ornithine decarboxylase in rat keratinocytes

    SciTech Connect

    Rosen, C.F.; Gajic, D.; Drucker, D.J. )

    1990-05-01

    UV radiation plays an important role in the induction of cutaneous malignancy, including basal cell and squamous cell carcinomas and malignant melanoma. In addition to its effects on DNA damage and repair mechanisms, UV radiation has been shown to modulate the expression of specific genes, altering the levels of their mRNAs and the synthesis of their corresponding proteins. In order to gain further information about the molecular effects of UV radiation, we have studied the regulation of ornithine decarboxylase (ODC) gene expression in response to UVB radiation. ODC is the rate-limiting enzyme in polyamine biosynthesis, is involved in growth and differentiation, and has been implicated in carcinogenesis. Keratinocytes grown in culture were either sham-irradiated or exposed to increasing doses of UVB (1-5 mJ/cm2). Northern blot analysis of keratinocyte RNA under basal conditions demonstrated the presence of two ODC mRNA transcripts. Increasing exposure to UVB resulted in a dose-dependent increase in the levels of both ODC mRNA transcripts. The induction of ODC gene expression following UVB was noted 2 h after UVB exposure, and ODC mRNA levels continued to increase up to 24 h after UVB exposure. The UVB-induced increase in ODC gene expression was not serum dependent, despite the ability of serum alone to induce ODC gene expression. The mRNA transcripts for actin and hexosaminidase A were not induced after UVB exposure. These studies show that the UVB-induced increase in ODC activity is due, at least in part, to an increase in ODC gene expression and they provide a useful model for the analysis of the molecular effects of UVB radiation.

  19. Dynamic Structure and Inhibition of a Malaria Drug Target: Geranylgeranyl Diphosphate Synthase.

    PubMed

    G Ricci, Clarisse; Liu, Yi-Liang; Zhang, Yonghui; Wang, Yang; Zhu, Wei; Oldfield, Eric; McCammon, J Andrew

    2016-09-13

    We report a molecular dynamics investigation of the structure, function, and inhibition of geranylgeranyl diphosphate synthase (GGPPS), a potential drug target, from the malaria parasite Plasmodium vivax. We discovered several GGPPS inhibitors, benzoic acids, and determined their structures crystallographically. We then used molecular dynamics simulations to investigate the dynamics of three such inhibitors and two bisphosphonate inhibitors, zoledronate and a lipophilic analogue of zoledronate, as well as the enzyme's product, GGPP. We were able to identify the main motions that govern substrate binding and product release as well as the molecular features required for GGPPS inhibition by both classes of inhibitor. The results are of broad general interest because they represent the first detailed investigation of the mechanism of action, and inhibition, of an important antimalarial drug target, geranylgeranyl diphosphate synthase, and may help guide the development of other, novel inhibitors as new drug leads. PMID:27564465

  20. Linear free energy relationships demonstrate a catalytic role for the flavin mononucleotide coenzyme of the type II isopentenyl diphosphate:dimethylallyl diphosphate isomerase.

    PubMed

    Thibodeaux, Christopher J; Chang, Wei-chen; Liu, Hung-wen

    2010-07-28

    The type II isopentenyl diphosphate:dimethylallyl diphosphate isomerase (IDI-2) catalyzes the reversible isomerization of the two ubiquitous isoprene units, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are required to initiate the biosynthesis of all isoprenoid compounds found in nature. The overall chemical transformation catalyzed by IDI-2 involves a net 1,3-proton addition/elimination reaction. Surprisingly, IDI-2 requires a reduced flavin mononucleotide (FMN) coenzyme to carry out this redox neutral isomerization. The exact function of FMN in catalysis has not yet been clearly defined. To provide mechanistic insight into the role of the reduced flavin in IDI-2 catalysis, several FMN analogues with altered electronic properties were chemoenzymatically prepared, and their effects on the kinetic properties of the IDI-2 catalyzed reaction were investigated. Linear free energy relationships (LFERs) between the electronic properties of the flavin and the steady state kinetic parameters of the IDI-2 catalyzed reaction were observed. The LFER studies are complemented with kinetic isotope effect studies and kinetic characterization of an active site mutant enzyme (Q154N). Cumulatively, the data presented in this work (and in other studies) suggest that the reduced FMN coenzyme of IDI-2 functions as an acid/base catalyst, with the N5 atom of the flavin likely playing a critical role in the deprotonation of IPP en route to DMAPP formation. Several potential chemical mechanisms involving the reduced flavin as an acid/base catalyst are presented and discussed.

  1. Tyrosine O-prenyltransferases TyrPT and SirD displaying similar behavior toward unnatural alkyl or benzyl diphosphate as their natural prenyl donor dimethylallyl diphosphate.

    PubMed

    Yu, Huili; Liebhold, Mike; Xie, Xiulan; Li, Shu-Ming

    2015-09-01

    Prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily are involved in the biosynthesis of secondary metabolites and contribute as modification enzymes significantly to structural diversity of natural products. They show usually broad specificity toward their aromatic substrates with regiospecific prenylations on aromatic rings. However, most members of this superfamily exhibit a high specificity toward their prenyl donors and usually accept exclusively dimethylallyl diphosphate (DMAPP). Recently, several indole prenyltransferases from this family were also demonstrated to accept unnatural DMAPP analogs such as methylallyl, 2-pentenyl and benzyl diphosphate for alkylation, or benzylation of the indole ring. Partial or complete shift of the substitution position was observed for these enzymes. In this study, we report the acceptance of these DMAPP analogs by two tyrosine O-prenyltransferases TyrPT from Aspergillus niger and SirD from Leptosphaeria maculans for alkylation or benzylation of tyrosine and derivatives. NMR and mass spectrometry (MS) analyses of nine isolated enzyme products confirmed the regiospecific O- or N-alkylation or benzylation at position C-4 of the aromatic ring, which is the same prenylation position of these enzymes in the presence of DMAPP.

  2. Enantioselective Inhibition of Squalene Synthase by Aziridine Analogues of Presqualene Diphosphate

    PubMed Central

    Koohang, Ali; Bailey, Jessica L.; Erickson, Hans K.; Owen, David; Poulter, C. Dale

    2013-01-01

    Squalene synthase catalyzes the conversion of two molecules of (E,E)-farnesyl diphosphate to squalene via the cyclopropylcarbinyl intermediate, presqualene diphosphate (PSPP). Since this novel reaction constitutes the first committed step in sterol biosynthesis, there has been considerable interest and research on the stereochemistry and mechanism of the process and in the design of selective inhibitors of the enzyme. This paper reports the synthesis and characterization of five racemic and two enantiopure aziridine analogues of PSPP and the evaluation of their potencies as inhibitors of recombinant yeast squalene synthase. The key aziridine-2-methanol intermediates (6-OH, 7-OH, and 8-OH) were obtained by N-alkylations or by an N-acylation–reduction sequence of (±)-, (2R,3S)-, and (2S,3R)-2,3-aziridinofarnesol (9-OH) protected as tert-butyldi-methylsilyl ethers. SN2 displacements of the corresponding methanesulfonates with pyrophosphate and methanediphosphonate anions afforded aziridine 2-methyl diphosphates and methanediphosphonates bearing N-undecyl, N-bishomogeranyl, and N-(α-methylene)bishomogeranyl substituents as mimics for the 2,6,10-trimethylundeca-2,5,9-trienyl side chain of PSPP. The 2R,3S diphosphate enantiomer bearing the N-bishomogeranyl substituent corresponding in absolute stereochemistry to PSPP proved to be the most potent inhibitor (IC50 1.17 ± 0.08 μM in the presence of inorganic pyrophosphate), a value 4-fold less than that of its 2S,3R stereoisomer. The other aziridine analogues bearing the N-(α-methylene)bishomogeranyl and N-undecyl substituents, and the related methanediphosphonates, exhibited lower affinities for recombinant squalene synthase. PMID:20545375

  3. A cesium copper vanadyl-diphosphate: Synthesis, crystal structure and physical properties

    SciTech Connect

    Shvanskaya, Larisa; Yakubovich, Olga; Bychkov, Andrey; Shcherbakov, Vasiliy; Golovanov, Alexey; Zvereva, Elena; Volkova, Olga; Vasiliev, Alexander

    2015-02-15

    A non-centrosymmetric orthorhombic diphosphate, Cs{sub 2}Cu{sub 1+x}(VO){sub 2−x}(P{sub 2}O{sub 7}){sub 2} (x=0.1) with a=13.7364(2) Å, b=9.2666(2) Å, c=11.5678(2) Å, Z=4, has been isolated. Its 3D framework is built from Cu atoms in square pyramidal and square planar coordination, VO{sub 5} tetragonal pyramids and P{sub 2}O{sub 7} diphosphate groups, sharing vertices. Large channels are fulfilled by cesium atoms. The ESR study reveals a similarity in behaviour of two paramagnetic (Cu and V) subsystems. The temperature dependences of the ESR linewidth and static magnetic susceptibility data present evidences for a cluster type magnetic ordering in the title compound at T⁎=22 K. The weakness of the relevant anomalies reflects presumably obvious Cu{sup 2+} ions and (VO){sup 2+} units disorder in the system. It is supposed that the charge and geometry of the framework are controlled by the Cu{sup 2+}/(VO){sup 2+} ratio; its variation may lead to a design of new materials. - Graphical abstract: A microporous 3D anionic framework of the first copper vanadium-diphosphate Cs{sub 2}Cu{sub 1.1}(VO){sub 1.9}(P{sub 2}O{sub 7}){sub 2}. The similarity in behaviour of Cu and V paramagnetic subsystems revealed by ESR study. - Highlights: • The first copper vanadium-diphosphate Cs{sub 2}Cu{sub 1.1}(VO){sub 1.9}(P{sub 2}O{sub 7}){sub 2} is reported. • A 3D anionic framework is characterized by disorder in distribution of Cu and V atoms. • Structural relations with topologically similar compounds are discussed. • The similarity in behaviour of Cu and V paramagnetic subsystems has been revealed.

  4. Structure and Mechanism of the Diterpene Cyclase ent-Copalyl Diphosphate Synthase

    PubMed Central

    Köksal, Mustafa; Hu, Huayou; Coates, Robert M.; Peters, Reuben J.; Christianson, David W.

    2011-01-01

    The structure of ent-copalyl diphosphate synthase (CPS) reveals three α-helical domains (α, β, γ), as also observed in the related diterpene cyclase taxadiene synthase. However, active sites are located at the interface of the βγ domains in CPS but exclusively in the α domain of taxadiene synthase. Modular domain architecture in plant diterpene cyclases enables the evolution of alternative active sites and chemical strategies for catalyzing isoprenoid cyclization reactions. PMID:21602811

  5. Expression pattern of the coparyl diphosphate synthase gene in developing rice anthers.

    PubMed

    Fukuda, Ari; Nemoto, Keisuke; Chono, Makiko; Yamaguchi, Shinjiro; Nakajima, Masatoshi; Yamagishi, Junko; Maekawa, Masahiko; Yamaguchi, Isomaro

    2004-08-01

    Rice anthers contain high concentrations of gibberellins A(4) and A(7). To understand their physiological roles, we examined the site of their biosynthesis by analyzing the expression pattern of a gene (OsCPS) encoding coparyl diphosphate synthase in developing rice flowers. Expression was apparent in the anthers 1-2 days before flowering, and CPS mRNA accumulated in the maturing pollen.

  6. Role of arginine-304 in the diphosphate-triggered active site closure mechanism of trichodiene synthase.

    PubMed

    Vedula, L Sangeetha; Cane, David E; Christianson, David W

    2005-09-27

    The X-ray crystal structures of R304K trichodiene synthase and its complexes with inorganic pyrophosphate (PP(i)) and aza analogues of the bisabolyl carbocation intermediate are reported. The R304K substitution does not cause large changes in the overall structure in comparison with the wild-type enzyme. The complexes with (R)- and (S)-azabisabolenes and PP(i) bind three Mg2+ ions, and each undergoes a diphosphate-triggered conformational change that caps the active site cavity. This conformational change is only slightly attenuated compared to that of the wild-type enzyme complexed with Mg2+(3)-PP(i), in which R304 donates hydrogen bonds to PP(i) and D101. In R304K trichodiene synthase, K304 does not engage in any hydrogen bond interactions in the unliganded state and it donates a hydrogen bond to only PP(i) in the complex with (R)-azabisabolene; K304 makes no hydrogen bond contacts in its complex with PP(i) and (S)-azabisabolene. Thus, although the R304-D101 hydrogen bond interaction stabilizes diphosphate-triggered active site closure, it is not required for Mg2+(3)-PP(i) binding. Nevertheless, since R304K trichodiene synthase generates aberrant cyclic terpenoids with a 5000-fold reduction in kcat/KM, it is clear that a properly formed R304-D101 hydrogen bond is required in the enzyme-substrate complex to stabilize the proper active site contour, which in turn facilitates cyclization of farnesyl diphosphate for the exclusive formation of trichodiene. Structural analysis of the R304K mutant and comparison with the monoterpene cyclase (+)-bornyl diphosphate synthase suggest that the significant loss in activity results from compromised activation of the PP(i) leaving group. PMID:16171386

  7. Role of Arginine-304 in the Diphosphate-Triggered Active Site Closure Mechanism of Trichodiene Synthase

    SciTech Connect

    Vedula,L.; Cane, D.; Christianson, D.

    2005-01-01

    The X-ray crystal structures of R304K trichodiene synthase and its complexes with inorganic pyrophosphate (PPi) and aza analogues of the bisabolyl carbocation intermediate are reported. The R304K substitution does not cause large changes in the overall structure in comparison with the wild-type enzyme. The complexes with (R)- and (S)-azabisabolenes and PPi bind three Mg2+ ions, and each undergoes a diphosphate-triggered conformational change that caps the active site cavity. This conformational change is only slightly attenuated compared to that of the wild-type enzyme complexed with Mg{sup 2+}{sub 3-}PP{sub i}, in which R304 donates hydrogen bonds to PP{sub i} and D101. In R304K trichodiene synthase, K304 does not engage in any hydrogen bond interactions in the unliganded state and it donates a hydrogen bond to only PP{sub i} in the complex with (R)-azabisabolene; K304 makes no hydrogen bond contacts in its complex with PP{sub i} and (S)-azabisabolene. Thus, although the R304-D101 hydrogen bond interaction stabilizes diphosphate-triggered active site closure, it is not required for Mg{sup 2+}{sub 3-}PP{sub i} binding. Nevertheless, since R304K trichodiene synthase generates aberrant cyclic terpenoids with a 5000-fold reduction in kcat/KM, it is clear that a properly formed R304-D101 hydrogen bond is required in the enzyme-substrate complex to stabilize the proper active site contour, which in turn facilitates cyclization of farnesyl diphosphate for the exclusive formation of trichodiene. Structural analysis of the R304K mutant and comparison with the monoterpene cyclase (+)-bornyl diphosphate synthase suggest that the significant loss in activity results from compromised activation of the PP{sub i} leaving group.

  8. Retina maturation following administration of thyroxine in developing rats: effects on polyamine metabolism and glutamate decarboxylase.

    PubMed

    Macaione, S; Di Giorgio, R M; Nicotina, P A; Ientile, R

    1984-08-01

    The effects of subcutaneous daily treatment with thyroxine on cell proliferation, differentiation, polyamines, and gamma-aminobutyric acid metabolism in the rat retina were studied during the first 20 postnatal days. The retinal layers of the treated rats displayed an enhanced cell differentiation which reached its maximum 9-12 days from birth; but this effect stopped very quickly and was finished by the 20th postnatal day. Primarily there was an increase in ornithine decarboxylase activity which was accompanied by an increase in putrescine, spermidine, and spermine levels. S-Adenosylmethionine decarboxylase was induced later than ODC; corresponding with the enhanced synaptogenesis, glutamate decarboxylase increased 15-fold between the fourth and 15th days. Our data are consistent with the hypothesis that thyroxine may exert some of its effects by inducing the enzymes which regulate polyamine metabolism and synaptogenesis.

  9. Inhibition of Ornithine Decarboxylase and Growth of the Fungus Helminthosporium maydis1

    PubMed Central

    Birecka, Helena; Garraway, Michael O.; Baumann, Russell J.; McCann, Peter P.

    1986-01-01

    α-dl-Difluoromethylornithine (DFMO), a specific enzyme-activated inhibitor of ornithine decarboxylase, at 0.5 to 2.0 millimolar significantly inhibited mycelial growth and especially sporulation of Helminthosporium maydis in the dark; its inhibitory effect on sporulation was greatly increased under light conditions. Putrescine at 0.25 millimolar fully prevented the inhibitory effects of DFMO; the inhibition caused by the latter could not be prevented by cadaverine or CaCl2. α-dl-Difluoromethylarginine, a specific enzyme-activated inhibitor of arginine decarboxylase, at 0.1 to 2.0 millimolar had a weak inhibitory effect on the fungus. The effect was not dependent on the inhibitor concentration and there was no detectable arginine decarboxylase activity in the fungus. PMID:16664707

  10. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase.

    PubMed

    Ignea, Codruta; Trikka, Fotini A; Nikolaidis, Alexandros K; Georgantea, Panagiota; Ioannou, Efstathia; Loupassaki, Sofia; Kefalas, Panagiotis; Kanellis, Angelos K; Roussis, Vassilios; Makris, Antonios M; Kampranis, Sotirios C

    2015-01-01

    Terpenes have numerous applications, ranging from pharmaceuticals to fragrances and biofuels. With increasing interest in producing terpenes sustainably and economically, there has been significant progress in recent years in developing methods for their production in microorganisms. In Saccharomyces cerevisiae, production of the 20-carbon diterpenes has so far proven to be significantly less efficient than production of their 15-carbon sesquiterpene counterparts. In this report, we identify the modular structure of geranylgeranyl diphosphate synthesis in yeast to be a major limitation in diterpene yields, and we engineer the yeast farnesyl diphosphate synthase Erg20p to produce geranylgeranyl diphosphate. Using a combination of protein and genetic engineering, we achieve significant improvements in the production of sclareol and several other isoprenoids, including cis-abienol, abietadiene and β-carotene. We also report the development of yeast strains carrying the engineered Erg20p, which support efficient isoprenoid production and can be used as a dedicated chassis for diterpene production or biosynthetic pathway elucidation. The design developed here can be applied to the production of any GGPP-derived isoprenoid and is compatible with other yeast terpene production platforms.

  11. Adaptive evolution of the chrysanthemyl diphosphate synthase gene involved in irregular monoterpene metabolism

    PubMed Central

    2012-01-01

    Background Chrysanthemyl diphosphate synthase (CDS) is a key enzyme in biosynthetic pathways producing pyrethrins and irregular monoterpenes. These compounds are confined to plants of the tribe Anthemideae of the Asteraceae, and play an important role in defending the plants against herbivorous insects. It has been proposed that the CDS genes arose from duplication of the farnesyl diphosphate synthase (FDS) gene and have different function from FDSs. However, the duplication time toward the origin of CDS and the evolutionary force behind the functional divergence of the CDS gene are still unknown. Results Two duplication events were detected in the evolutionary history of the FDS gene family in the Asteraceae, and the second duplication led to the origin of CDS. CDS occurred after the divergence of the tribe Mutisieae from other tribes of Asteraceae but before the birth of the Anthemideae tribe. After its origin, CDS accumulated four mutations in sites homologous to the substrate-binding and catalysis sites of FDS. Of these, two sites were involved in the binding of the nucleophilic substrate isopentenyl diphosphate in FDS. Maximum likelihood analyses showed that some sites in CDS were under positive selection and were scattered throughout primary sequences, whereas in the three-dimensional structure model they clustered in the large central cavity. Conclusion Positive selection associated with gene duplication played a major role in the evolution of CDS. PMID:23137178

  12. Biosynthesis of polysaccharides in Acetobacter xylinum. Sequential synthesis of a heptasaccharide diphosphate prenol.

    PubMed

    Couso, R O; Ielpi, L; Garcia, R C; Dankert, M A

    1982-04-01

    The sequential synthesis in vitro of a heptasaccharide diphosphate prenol, containing glucose, mannose, glucuronic acid and rhamnose in the ratio 4:1:1:1 is described. The enzyme preparation consisted of EDTA-treated Acetobacter xylinum cells and UDP-glucose, GDP-mannose, UDP-glucuronic acid and TDP-rhamnose were employed as sugar donors. The compounds soluble in chloroform/methanol/water (1:2:0.3) formed from incubations carried out under different conditions in the presence of a variety of combinations of the donors labeled with 14C, 3H or 32P were analysed by DEAE-cellulose column chromatography, gel filtration, partial acid hydrolysis, acetolysis, periodate oxidation, etc. The following structure is proposed for the most complex compound characterized: rhamnosyl-(1 leads to 6)-beta-glucosyl-(1 leads to 6)-alpha-glucosyl-(1 leads to 4)-beta-glucuronyl-(1 leads to 6)-beta-mannosyl-(1 leads to 3)-beta-glucosyl-(1 leads to 4)-alpha-glucosyl diphosphate prenol. The smaller oligosaccharide diphosphate prenols formed as intermediate steps are also characterized in this or in previous work [Garcia, R. C., Recondo, E. and Dankert, M. A. (1974) Eur. J. Biochem. 43, 93-105; Couso, R. O., Ielpi, L., and Dankert, M. A. (1980) Arch. Biochem. Biophys. 204, 434-443]. The role of these compounds in the biosynthesis of a complex exopolysaccharide that this microorganism forms in addition to cellulose is discussed.

  13. A photoactive isoprenoid diphosphate analogue containing a stable phosphonate linkage: synthesis and biochemical studies with prenyltransferases.

    PubMed

    DeGraw, Amanda J; Zhao, Zongbao; Strickland, Corey L; Taban, A Huma; Hsieh, John; Jefferies, Michael; Xie, Wenshuang; Shintani, David K; McMahan, Colleen M; Cornish, Katrina; Distefano, Mark D

    2007-06-22

    A number of biochemical processes rely on isoprenoids, including the post-translational modification of signaling proteins and the biosynthesis of a wide array of compounds. Photoactivatable analogues have been developed to study isoprenoid utilizing enzymes such as the isoprenoid synthases and prenyltransferases. While these initial analogues proved to be excellent structural analogues with good cross-linking capability, they lack the stability needed when the goals include isolation of cross-linked species, tryptic digestion, and subsequent peptide sequencing. Here, the synthesis of a benzophenone-based farnesyl diphosphate analogue containing a stable phosphonophosphate group is described. Inhibition kinetics, photolabeling experiments, as well as X-ray crystallographic analysis with a protein prenyltransferase are described, verifying this compound as a good isoprenoid mimetic. In addition, the utility of this new analogue was explored by using it to photoaffinity label crude protein extracts obtained from Hevea brasiliensis latex. Those experiments suggest that a small protein, rubber elongation factor, interacts directly with farnesyl diphosphate during rubber biosynthesis. These results indicate that this benzophenone-based isoprenoid analogue will be useful for identifying enzymes that utilize farnesyl diphosphate as a substrate.

  14. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate.

    PubMed

    Gamat, Melissa; Malinowski, Rita L; Parkhurst, Linnea J; Steinke, Laura M; Marker, Paul C

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating

  15. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate

    PubMed Central

    Gamat, Melissa; Malinowski, Rita L.; Parkhurst, Linnea J.; Steinke, Laura M.; Marker, Paul C.

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating

  16. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  17. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

    PubMed

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Saito, Kazuki; Yamazaki, Mami

    2016-08-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  18. Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor

    DOEpatents

    Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL

    2008-02-05

    The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.

  19. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase.

    PubMed

    Lin, Fengming; Ferguson, Kyle L; Boyer, David R; Lin, Xiaoxia Nina; Marsh, E Neil G

    2015-04-17

    The decarboxylation of antimicrobial aromatic acids such as phenylacrylic acid (cinnamic acid) and ferulic acid by yeast requires two enzymes described as phenylacrylic acid decarboxylase (PAD1) and ferulic acid decarboxylase (FDC). These enzymes are of interest for various biotechnological applications, such as the production of chemical feedstocks from lignin under mild conditions. However, the specific role of each protein in catalyzing the decarboxylation reaction remains unknown. To examine this, we have overexpressed and purified both PAD1 and FDC from E. coli. We demonstrate that PAD1 is a flavin mononucleotide (FMN)-containing protein. However, it does not function as a decarboxylase. Rather, PAD1 catalyzes the formation of a novel, diffusible cofactor required by FDC for decarboxylase activity. Coexpression of FDC and PAD1 results in the production of FDC with high levels cofactor bound. Holo-FDC catalyzes the decarboxylation of phenylacrylic acid, coumaric acid and ferulic acid with apparent kcat ranging from 1.4-4.6 s(-1). The UV-visible and mass spectra of the cofactor indicate that it appears to be a novel, modified form of reduced FMN; however, its instability precluded determination of its structure. The E. coli enzymes UbiX and UbiD are related by sequence to PAD1 and FDC respectively and are involved in the decarboxylation of 4-hydroxy-3-octaprenylbenzoic acid, an intermediate in ubiquinone biosynthesis. We found that endogenous UbiX can also activate FDC. This implies that the same cofactor is required for decarboxylation of 4-hydroxy-3-polyprenylbenzoic acid by UbiD and suggests a wider role for this cofactor in metabolism.

  20. Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity.

    PubMed

    Hwang, In-Wook; Makishima, Yu; Suzuki, Tomohiro; Kato, Tatsuya; Park, Sungjo; Terzic, Andre; Chung, Shin-Kyo; Park, Enoch Y

    2015-11-01

    Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is a vital catalytic reaction of lipid metabolism. While it is established that phosphorylation of MCD modulates the enzymatic activity, the specific phosphorylation sites associated with the catalytic function have not been documented due to lack of sufficient production of MCD with proper post-translational modifications. Here, we used the silkworm-based Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system to express human MCD (hMCD) and mapped phosphorylation effects on enzymatic function. Purified MCD from silkworm displayed post-translational phosphorylation and demonstrated coherent enzymatic activity with high yield (-200 μg/silkworm). Point mutations in putative phosphorylation sites, Ser-204 or Tyr-405 of hMCD, identified by bioinformatics and proteomics analyses reduced the catalytic activity, underscoring the functional significance of phosphorylation in modulating decarboxylase-based catalysis. Identified phosphorylated residues are distinct from the decarboxylation catalytic site, implicating a phosphorylation-induced global conformational change of MCD as responsible in altering catalytic function. We conclude that phosphorylation of Ser-204 and Tyr-405 regulates the decarboxylase function of hMCD leveraging the silkworm-based BmNPV bacmid expression system that offers a fail-safe eukaryotic production platform implementing proper post-translational modification such as phosphorylation.

  1. A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase.

    PubMed

    Wu, Fang; Christen, Philipp; Gehring, Heinz

    2011-07-01

    Pyridoxal-5'-phosphate (vitamin B(6))-dependent enzymes play central roles in the metabolism of amino acids. Moreover, the synthesis of polyamines, which are essential for cell growth, and of biogenic amines, such as histamine and other signal transmitters, relies on these enzymes. Certain B(6) enzymes thus are prime targets for pharmacotherapeutic intervention. We have devised a novel, in principle generally applicable strategy for obtaining small-molecule cell-permeant inhibitors of specific B(6) enzymes. The imine adduct of pyridoxal-5'-phosphate and the specific amino acid substrate, the first intermediate in all pyridoxal-5'-phosphate-dependent reactions of amino acids, was reduced to a stable secondary amine. This coenzyme-substrate-conjugate was modified further to make it membrane-permeant and, guided by structure-based modeling, to boost its affinity to the apoform of the target enzyme. Inhibitors of this type effectively decreased the respective intracellular enzymatic activity (IC(50) in low micromolar range), providing lead compounds for inhibitors of human ornithine decarboxylase (hODC), plasmodium ornithine decarboxylase, and human histidine decarboxylase. The inhibitors of hODC interfere with the metabolism of polyamines and efficiently prevent the proliferation of tumor cell lines (IC(50)∼ 25 μM). This approach to specific inhibition of intracellular B(6) enzymes might be applied in a straightforward manner to other B(6) enzymes of emerging medicinal interest. PMID:21454364

  2. Structure of trihydrated rare-earth acid diphosphates LnHP 2O 7·3H 2O ( Ln=La, Er)

    NASA Astrophysics Data System (ADS)

    Ben Moussa, S.; Ventemillas, S.; Cabeza, A.; Gutierrez-Puebla, E.; Sanz, J.

    2004-06-01

    In trihydrated lanthanum acid-diphosphates LnHP 2O 7·3H 2O, prepared from acid LnCl 3 and Na 4P 2O 7 solutions (pH=1), two crystal forms were obtained. Layered structures of two representative members of this family have been determined by single-crystal X-ray diffraction (XRD) technique. In the case of orthorhombic LaHP 2O 7·3H 2O (type I), lanthanum cations are ninefold coordinated and diphosphate groups adopt a staggered (alternated) configuration. In the case of triclinic ErHP 2O 7·3H 2O (type II), erbium cations are eightfold coordinated and diphosphate groups adopt an eclipsed configuration. In agreement with Infrared (IR) spectroscopic data, a bended configuration for diphosphate groups has been deduced. In both structures, one-dimensional chains of edge-sharing rare-earth polyhedra are linked together by diphosphate groups to form the phosphate layers. In both diphosphates, PO 4 and HPO 4 environments have been identified by 31P MAS-NMR technique. In the two compounds, OH groups of HPO 4 tetrahedra point out of diphosphate planes interacting with adjacent layers. In La-diphosphate, the interaction between HPO 4 groups and water molecules of adjacent layers is favored; however, in Er-diphosphate, the interaction between phosphate acid groups of contiguous layers is produced. Based on structural information deduced, differences detected in IR and NMR spectra of two disphosphates are discussed.

  3. Competence of Thiamin Diphosphate-Dependent Enzymes with 2'-Methoxythiamin Diphosphate Derived from Bacimethrin, a Naturally Occurring Thiamin Anti-vitamin.

    PubMed

    Nemeria, Natalia S; Shome, Brateen; DeColli, Alicia A; Heflin, Kathryn; Begley, Tadhg P; Meyers, Caren Freel; Jordan, Frank

    2016-02-23

    Bacimethrin (4-amino-5-hydroxymethyl-2-methoxypyrimidine), a natural product isolated from some bacteria, has been implicated as an inhibitor of bacterial and yeast growth, as well as in inhibition of thiamin biosynthesis. Given that thiamin biosynthetic enzymes could convert bacimethrin to 2'-methoxythiamin diphosphate (MeOThDP), it is important to evaluate the effect of this coenzyme analogue on thiamin diphosphate (ThDP)-dependent enzymes. The potential functions of MeOThDP were explored on five ThDP-dependent enzymes: the human and Escherichia coli pyruvate dehydrogenase complexes (PDHc-h and PDHc-ec, respectively), the E. coli 1-deoxy-D-xylulose 5-phosphate synthase (DXPS), and the human and E. coli 2-oxoglutarate dehydrogenase complexes (OGDHc-h and OGDHc-ec, respectively). Using several mechanistic tools (fluorescence, circular dichroism, kinetics, and mass spectrometry), it was demonstrated that MeOThDP binds in the active centers of ThDP-dependent enzymes, however, with a binding mode different from that of ThDP. While modest activities resulted from addition of MeOThDP to E. coli PDHc (6-11%) and DXPS (9-14%), suggesting that MeOThDP-derived covalent intermediates are converted to the corresponding products (albeit with rates slower than that with ThDP), remarkably strong activity (up to 75%) resulted upon addition of the coenzyme analogue to PDHc-h. With PDHc-ec and PDHc-h, the coenzyme analogue could support all reactions, including communication between components in the complex. No functional substitution of MeOThDP for ThDP was in evidence with either OGDH-h or OGDH-ec, shown to be due to tight binding of ThDP.

  4. Evidence for the involvement of acid/base chemistry in the reaction catalyzed by the type II isopentenyl diphosphate/dimethylallyl diphosphate isomerase from Staphylococcus aureus.

    PubMed

    Thibodeaux, Christopher J; Mansoorabadi, Steven O; Kittleman, William; Chang, Wei-chen; Liu, Hung-wen

    2008-02-26

    The type II isopentenyl diphosphate/dimethylallyl diphosphate isomerase (IDI-2) is a flavin mononucleotide (FMN)-dependent enzyme that catalyzes the reversible isomerization of isopentenyl pyrophosphate (IPP) to dimethylallyl pyrophosphate (DMAPP), a reaction with no net change in redox state of the coenzyme or substrate. Here, UV-vis spectral analysis of the IDI-2 reaction revealed the accumulation of a reduced neutral dihydroflavin intermediate when the reduced enzyme was incubated with IPP or DMAPP. When IDI-2 was reconstituted with 1-deazaFMN and 5-deazaFMN, similar reduced neutral forms of the deazaflavin analogues were observed in the presence of IPP. Single turnover stopped-flow absorbance experiments indicated that this flavin intermediate formed and decayed at kinetically competent rates in the pre-steady-state and, thus, most likely represents a true intermediate in the catalytic cycle. UV-vis spectra of the reaction mixtures reveal trace amounts of a neutral semiquinone, but evidence for the presence of IPP-based radicals could not be obtained by EPR spectroscopy. Rapid-mix chemical quench experiments show no burst in DMAPP formation, suggesting that the rate determining step in the forward direction (IPP to DMAPP) occurs prior to DMAPP formation. A solvent deuterium kinetic isotope effect (D2OVmax = 1.5) was measured on vo in steady-state kinetic experiments at saturating substrate concentrations. A substrate deuterium kinetic isotope effect was also measured on the initital velocity (DVmax = 1.8) and on the decay rate of the flavin intermediate (Dks = 2.3) in single-turnover stopped-flow experiments using (R)-[2-2H]-IPP. Taken together, these data suggest that the C2-H bond of IPP is cleaved in the rate determining step and that general acid/base catalysis may be involved during turnover. Possible mechanisms for the IDI-2 catalyzed reaction are presented and discussed in terms of the available X-ray crystal structures.

  5. Putrescine and spermidine control degradation and synthesis of ornithine decarboxylase in Neurospora crassa

    SciTech Connect

    Barnett, G.R.; Seyfzadeh, M.; Davis, R.H.

    1988-07-15

    Neurospora crassa mycelia, when starved for polyamines, have 50-70-fold more ornithine decarboxylase activity and enzyme protein than unstarved mycelia. Using isotopic labeling and immunoprecipitation, we determined the half-life and the synthetic rate of the enzyme in mycelia differing in the rates of synthesis of putrescine, the product of ornithine decarboxylase, and spermidine, the main end-product of the polyamine pathway. When the pathway was blocked between putrescine and spermidine, ornithine decarboxylase synthesis rose 4-5-fold, regardless of the accumulation of putrescine. This indicates that spermidine is a specific signal for the repression of enzyme synthesis. When both putrescine and spermidine synthesis were reduced, the half-life of the enzyme rapidly increased 10-fold. The presence of either putrescine or spermidine restored the normal enzyme half-life of 55 min. Tests for an ornithine decarboxylase inhibitory protein (antizyme) were negative. The regulatory mechanisms activated by putrescine and spermidine account for most or all of the regulatory amplitude of this enzyme in N. crassa.

  6. Pyruvate decarboxylase from Pisum sativum. Properties, nucleotide and amino acid sequences.

    PubMed

    Mücke, U; Wohlfarth, T; Fiedler, U; Bäumlein, H; Rücknagel, K P; König, S

    1996-04-15

    To study the molecular structure and function of pyruvate decarboxylase (PDC) from plants the protein was isolated from pea seeds and partially characterised. The active enzyme which occurs in the form of higher oligomers consists of two different subunits appearing in SDS/PAGE and mass spectroscopy experiments. For further experiments, like X-ray crystallography, it was necessary to elucidate the protein sequence. Partial cDNA clones encoding pyruvate decarboxylase from seeds of Pisum sativum cv. Miko have been obtained by means of polymerase chain reaction techniques. The first sequences were found using degenerate oligonucleotide primers designated according to conserved amino acid sequences of known pyruvate decarboxylases. The missing parts of one cDNA were amplified applying the 3'- and 5'-rapid amplification of cDNA ends systems. The amino acid sequence deduced from the entire cDNA sequence displays strong similarity to pyruvate decarboxylases from other organisms, especially from plants. A molecular mass of 64 kDa was calculated for this protein correlating with estimations for the smaller subunit of the oligomeric enzyme. The PCR experiments led to at least three different clones representing the middle part of the PDC cDNA indicating the existence of three isozymes. Two of these isoforms could be confirmed on the protein level by sequencing tryptic peptides. Only anaerobically treated roots showed a positive signal for PDC mRNA in Northern analysis although the cDNA from imbibed seeds was successfully used for PCR.

  7. Structural and Mechanistic Studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2010-11-12

    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.

  8. Draft Genome Sequence of Bordetella bronchiseptica KU1201, the First Isolation Source of Arylmalonate Decarboxylase.

    PubMed

    Yoshida, Shosuke; Enoki, Junichi; Hemmi, Risa; Kourist, Robert; Kawakami, Norifumi; Miyamoto, Kenji

    2015-01-01

    The analysis of the 6.8-Mbp draft genome sequence of the phenylmalonate-assimilating bacterium Bordetella bronchiseptica KU1201 identified 6,358 protein-coding sequences. This will give us an insight into the catabolic variability of this strain for aromatic compounds, along with the roles of arylmalonate decarboxylases in nature. PMID:25953178

  9. Aerobically incubated medium for decarboxylase testing of Enterobacteriaceae by replica-plating methods.

    PubMed

    Maccani, J E

    1979-12-01

    An aerobically incubated, agar-based medium was developed for amino acid decarboxylase testing of Enterobacteriaceae family members by replica-plating methods. Results with the new medium agreed 97 to 99% with the reference broth method of Moeller, and no false-positive reactions were encountered.

  10. The Ornithine Decarboxylase Gene of Caenorhabditis Elegans: Cloning, Mapping and Mutagenesis

    PubMed Central

    Macrae, M.; Plasterk, RHA.; Coffino, P.

    1995-01-01

    The gene (odc-1) encoding ornithine decarboxylase, a key enzyme in polyamine biosynthesis, was cloned and characterized. Two introns interrupt the coding sequence of the gene. The deduced protein contains 422 amino acids and is homologous to ornithine decarboxylases of other eukaryotic species. In vitro translation of a transcript of the cDNA yielded an enzymatically active product. The mRNA is 1.5 kb in size and is formed by trans-splicing to SL1, a common 5' RNA segment. odc-1 maps to the middle of LG V, between dpy-11 and unc-42 and near a breakpoint of the nDf32 deficiency strain. Enzymatic activity is low in starved stage 1 (L1) larva and, after feeding, rises progressively as the worms develop. Targeted gene disruption was used to create a null allele. Homozygous mutants are normally viable and show no apparent defects, with the exception of a somewhat reduced brood size. In vitro assays for ornithine decarboxylase activity, however, show no detectable enzymatic activity, suggesting that ornithine decarboxylase is dispensible for nematode growth in the laboratory. PMID:7498733

  11. Detection and transfer of the glutamate decarboxylase gene in Streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA (gamma-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermen...

  12. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA ('-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermented da...

  13. The ornithine decarboxylase gene of Caenorhabditis elegans: Cloning, mapping and mutagenesis

    SciTech Connect

    Macrae, M.; Coffino, P.; Plasterk, R.H.A.

    1995-06-01

    The gene (odc-1) encoding ornithine decarboxylase, a key enzyme in polyamine biosynthesis, was cloned and characterized. Two introns interrupt the coding sequence of the gene. The deduced protein contains 442 amino acids and is homologous to ornithine decarboxylases of other eukaryotic species. In vitro translation of a transcript of the cDNA yielded an enzymatically active product. The mRNA is 1.5 kb in size and is formed by trans-splicing to SL1, a common 5{prime} RNA segment. odc-1 maps to the middle of LG V, between dpy-11 and unc-42 and near a breakpoint of the nDf32 deficiency strain. Enzymatic activity is low in starved 1 (L1) larva and, after feeding, rises progressively as the worms develop. Targeted gene disruption was used to create a null allele. Homozygous mutants are normally viable and show no apparent defects, with the exception of a somewhat reduced brood size. In vitro assays for ornithine decarboxylase activity, however, show no detectable enzymatic activity, suggesting that ornithine decarboxylase is dispensible for nematode growth in the laboratory. 37 refs., 6 figs., 1 tab.

  14. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  15. Draft Genome Sequence of Bordetella bronchiseptica KU1201, the First Isolation Source of Arylmalonate Decarboxylase.

    PubMed

    Yoshida, Shosuke; Enoki, Junichi; Hemmi, Risa; Kourist, Robert; Kawakami, Norifumi; Miyamoto, Kenji

    2015-01-01

    The analysis of the 6.8-Mbp draft genome sequence of the phenylmalonate-assimilating bacterium Bordetella bronchiseptica KU1201 identified 6,358 protein-coding sequences. This will give us an insight into the catabolic variability of this strain for aromatic compounds, along with the roles of arylmalonate decarboxylases in nature.

  16. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH. PMID:21957966

  17. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.

  18. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    PubMed

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  19. Substrate Specificity of Thiamine Pyrophosphate-Dependent 2-Oxo-Acid Decarboxylases in Saccharomyces cerevisiae

    PubMed Central

    Romagnoli, Gabriele; Luttik, Marijke A. H.; Kötter, Peter; Pronk, Jack T.

    2012-01-01

    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols. PMID:22904058

  20. Selective derivatization of nucleotide diphosphate (NDP)-4-keto sugars for electrospray ionization-mass spectrometry (ESI-MS).

    PubMed

    Kim, Yun-Gon; Park, Hyung-Yeon; Yoo, Dongwon; Sung, Changmin; Song, Eunjung; Lee, Jae-Hun; Choi, Yun-Hui; Kim, Yong-Hyun; Lee, Chang-Soo; Park, Kyungmoon; Kim, Byung-Gee; Yang, Yung-Hun

    2012-04-15

    Nucleotide diphosphate (NDP) sugars are widely present in antibiotics and glycoconjugates, such as protein- and lipid-linked oligosaccharides, where they act as substrates for glycosyltransferase in eukaryotes and prokaryotes. Among NDP sugars, NDP-4-keto sugars are key intermediates in the synthesis of structurally diverse NDP sugars with different functional groups. However, the structural identification of the NDP-4-keto sugars via mass spectrometry (electrospray ionization-mass spectrometry (ESI-MS)) continues to be a challenge because of the carbonyl group in these sugars interferes with ionization process. In this study, we evaluated various hydroxylamine compounds for the derivatization of NDP-4-keto sugars, so that the detection of the sugars by ESI-MS is more efficient. As a result, O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine was found to be the most effective tagging molecule for the detection of NDP-4-keto sugars without being interfered by original MS. This method can be used for identifying NDP-4-keto sugars such as thymidine diphosphate (TDP)-, adenosine diphosphate (ADP)-, uridine diphosphate (UDP)-, and cytosine diphosphate (CDP)-4-keto sugars as well as new NDP-4-keto-dehydratases.

  1. Structure of geranyl diphosphate C-methyltransferase from Streptomyces coelicolor and implications for the mechanism of isoprenoid modification†

    PubMed Central

    Köksal, Mustafa; Chou, Wayne K. W.; Cane, David E.; Christianson, David W.

    2012-01-01

    Geranyl diphosphate C-methyltransferase (GPPMT) from Streptomyces coelicolor A3(2) is the first methyltransferase discovered that modifies an acyclic isoprenoid diphosphate, geranyl diphosphate (GPP), to yield a non-canonical acyclic allylic diphosphate product, 2-methylgeranyl diphosphate, which serves as the substrate for a subsequent cyclization reaction catalyzed by a terpenoid cyclase, methylisoborneol synthase. Here, we report the crystal structures of GPPMT in complex with GPP or the substrate analogue geranyl-S-thiolodiphosphate (GSPP) along with S-adenosyl-l-homocysteine in the cofactor binding site, resulting from in situ demethylation of S-adenosyl-l-methionine, at 2.05 Å and 1.82 Å resolution, respectively. These structures suggest that both GPP and GSPP can undergo catalytic methylation in crystalline GPPMT, followed by dissociation of the isoprenoid product. S-adenosyl-l-homocysteine remains bound in the active site, however, and does not exchange with a fresh molecule of cofactor S-adenosyl-l-methionine. These structures provide important clues regarding the molecular mechanism of the reaction, especially with regard to the face of the 2,3 double bond of GPP that is methylated as well as the stabilization of the resulting carbocation intermediate through cation-π interactions. PMID:22455498

  2. Reaction of uridine diphosphate galactose 4-epimerase with a suicide inactivator

    SciTech Connect

    Flentke, G.R.; Frey, P.A. )

    1990-03-06

    UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5{prime}-diphosphate chloroacetol (UDC) and uridine 5{prime}-diphosphate bromoacetol (UCB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a K{sub D} of 0.110 mM and k{sub inact} of 0.84 min{sup {minus}1} at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD{sup +}. The inactivation of epimerase by uridine 5{prime}-diphosphate ({sup 2}H{sub 2})chloroacetol proceeds with a primary kinetic isotope effect (k{sub H}/k{sub D}) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD{sup +} at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD{sup +} is proposed to be the chromophore with {lambda}{sub max} at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction.

  3. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  4. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle.

    PubMed

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G; Köllner, Tobias G

    2016-03-15

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene-producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon-intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors.

  5. Novel family of terpene synthases evolved from trans-isoprenyl diphosphate synthases in a flea beetle

    PubMed Central

    Beran, Franziska; Rahfeld, Peter; Luck, Katrin; Nagel, Raimund; Vogel, Heiko; Wielsch, Natalie; Irmisch, Sandra; Ramasamy, Srinivasan; Gershenzon, Jonathan; Heckel, David G.; Köllner, Tobias G.

    2016-01-01

    Sesquiterpenes play important roles in insect communication, for example as pheromones. However, no sesquiterpene synthases, the enzymes involved in construction of the basic carbon skeleton, have been identified in insects to date. We investigated the biosynthesis of the sesquiterpene (6R,7S)-himachala-9,11-diene in the crucifer flea beetle Phyllotreta striolata, a compound previously identified as a male-produced aggregation pheromone in several Phyllotreta species. A (6R,7S)-himachala-9,11-diene–producing sesquiterpene synthase activity was detected in crude beetle protein extracts, but only when (Z,E)-farnesyl diphosphate [(Z,E)-FPP] was offered as a substrate. No sequences resembling sesquiterpene synthases from plants, fungi, or bacteria were found in the P. striolata transcriptome, but we identified nine divergent putative trans-isoprenyl diphosphate synthase (trans-IDS) transcripts. Four of these putative trans-IDSs exhibited terpene synthase (TPS) activity when heterologously expressed. Recombinant PsTPS1 converted (Z,E)-FPP to (6R,7S)-himachala-9,11-diene and other sesquiterpenes observed in beetle extracts. RNAi-mediated knockdown of PsTPS1 mRNA in P. striolata males led to reduced emission of aggregation pheromone, confirming a significant role of PsTPS1 in pheromone biosynthesis. Two expressed enzymes showed genuine IDS activity, with PsIDS1 synthesizing (E,E)-FPP, whereas PsIDS3 produced neryl diphosphate, (Z,Z)-FPP, and (Z,E)-FPP. In a phylogenetic analysis, the PsTPS enzymes and PsIDS3 were clearly separated from a clade of known coleopteran trans-IDS enzymes including PsIDS1 and PsIDS2. However, the exon–intron structures of IDS and TPS genes in P. striolata are conserved, suggesting that this TPS gene family evolved from trans-IDS ancestors. PMID:26936952

  6. Impact of protease inhibitors on intracellular concentration of tenofovir-diphosphate among HIV-1 infected patients

    PubMed Central

    Lahiri, Cecile D.; Tao, Sijia; Jiang, Yong; Sheth, Anandi N.; Acosta, Edward P.; Marconi, Vincent C.; Armstrong, Wendy S.; Schinazi, Raymond F.; Vunnava, Aswani; Sanford, Sara; Ofotokun, Ighovwerha

    2015-01-01

    Intracellular nucleoside reverse transcriptase inhibitor (NRTI) concentrations are associated with plasma HIV-1 response. Coadministration of protease inhibitors with NRTIs can affect intra-cellular concentrations due to protease inhibitor inhibition of efflux transporters. Tenofovir-diphosphate (TFV-DP) concentrations within peripheral blood mononuclear cells were compared among individuals receiving either atazanavir or darunavir-based regimens. There was a trend towards higher TFV-DP concentrations among women and among participants receiving atazanavir. TFV-DP intracellular concentrations were positively associated with undetectable plasma HIV-1 RNA. PMID:25870991

  7. Strength Characteristics of Resorbable Osteoconductive Ceramics Based on Diphosphates of Calcium and Alkali Metals

    NASA Astrophysics Data System (ADS)

    Putlayev, V. I.; Evdokimov, P. V.; Garshev, A. V.; Prosvirin, D. V.; Klimashina, E. S.; Safronova, T. V.; Ivanov, V. K.

    2014-02-01

    An investigation into the strength characteristics of ceramics based on diphosphates Ca(3- x)М2 x (PO4)2 ( x = 0-1 and М = Na, K) provides evidence of composition strengthening in the range х = 0.6-0.8 containing the greatest amount of the supercooled high-temperature modification α-СаМРО4. The method of high-temperature x-ray diffractometry is used to examine thermal expansion of rhenanite phases of СаМРО4.

  8. K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells.

    PubMed

    Beech, D J; Zhang, H; Nakao, K; Bolton, T B

    1993-10-01

    1. Whole-cell and inside-out patch recordings were made from single smooth muscle cells that had been isolated enzymatically and mechanically from the rabbit portal vein. 2. In whole-cells the inclusion in the recording pipette solution of nucleotide diphosphates (NDPs), but not tri- or monophosphates, induced a K-current that developed gradually over 5 to 15 min. Intracellular 1 mM guanosine 5'-diphosphate (GDP) induced a slowly developing outward K-current at -37 mV that reached a maximum on average of 72 +/- 4 pA (n = 40). Half maximal effect was estimated to occur with about 0.2 mM GDP. Except for ADP, other NDPs had comparable effects. At 0.1 mM, ADP was equivalent to GDP but at higher concentration ADP was less effective. ADP induced its maximum effect at 1 mM but had almost no effect at 10 mM. 3. In 14% of inside-out patches exposed to 1 mM GDP at the intracellular surface, characteristic K channel activity was observed which showed long (> 1 s) bursts of openings separated by longer closed periods. The current-voltage relationship for the channel was linear in a 60 mM:130 mM K-gradient and the unitary conductance was 24 pS. 4. Glibenclamide applied via the extracellular solution was found to be a potent inhibitor of GDP-induced K-current (IK(GDP)) in the whole-cell. The Kd was 25 nM and the inhibition was fully reversible on wash-out. 5. IK(GDP) was not evoked if Mg ions were absent from the pipette solution. In contrast the omission of extracellular Mg ions had no effect on outward or inward IK(GDP). 6. Inclusion of 1 mM ATP in the recording pipette solution reduced IK(GDP) and also attenuated its decline during long (25 min) recordings. 7. When perforated-patch whole-cell recording was used, metabolic poisoning with cyanide and 2-deoxy-D-glucose induced a glibenclamide-sensitive K-current. This current was not observed when conventional whole-cell recording was used. Possible reasons for this difference are discussed. 8. These K channels appear similar to

  9. A pathway where polyprenyl diphosphate elongates in prenyltransferase. Insight into a common mechanism of chain length determination of prenyltransferases.

    PubMed

    Ohnuma, S; Hirooka, K; Tsuruoka, N; Yano, M; Ohto, C; Nakane, H; Nishino, T

    1998-10-01

    Prenyltransferases catalyze the consecutive condensations of isopentenyl diphosphate to produce linear polyprenyl diphosphates. Each enzyme forms the final product with a specific chain length. The product specificity of an enzyme is thought to be determined by the structure around the unknown path through which the product elongates in the enzyme. To explore the path, we introduced a few mutations at the 5th, the 8th, and/or the 11th positions before the first aspartate-rich motif of geranylgeranyl-diphosphate synthase or farnesyl-diphosphate synthase. The side chains of these amino acids are situated on the same side of an alpha-helix. In geranylgeranyl-diphosphate synthase, a single mutated enzyme (F77S) mainly produces a C25 product (Ohnuma, S.-I., Hirooka, K., Hemmi, H., Ishida, C., Ohto, C., and Nishino, T. (1996) J. Biol. Chem. 271, 18831-18837). A double mutated enzyme (L74G and F77G) mainly produces a C35 compound with significant amounts of C30 and C40. A triple mutated enzyme (I71G, L74G, and F77G) mainly produces a C40 compound with C35 and C45. Mutated farnesyl-diphosphate synthases also show similar patterns. These findings indicate that the elongating product passages on a surface of the side chains of the mutated amino acids, the original bulky amino acids had blocked the elongation, and the path is conserved in prenyltransferases. Moreover, the fact that some double and triple mutated enzymes can also form small amounts of products longer than C50 indicates that the paths in these mutated enzymes can partially access the outer surface of the enzymes.

  10. Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging

    NASA Astrophysics Data System (ADS)

    Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.

    2016-03-01

    Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes.

  11. Mevalonate-derived quinonemethide triterpenoid from in vitro roots of Peritassa laevigata and their localization in root tissue by MALDI imaging

    PubMed Central

    Pina, Edieidia S.; Silva, Denise B.; Teixeira, Simone P.; Coppede, Juliana S.; Furlan, Maysa; França, Suzelei C.; Lopes, Norberto P.; Pereira, Ana Maria S.; Lopes, Adriana A.

    2016-01-01

    Biosynthetic investigation of quinonemethide triterpenoid 22β-hydroxy-maytenin (2) from in vitro root cultures of Peritassa laevigata (Celastraceae) was conducted using 13C-precursor. The mevalonate pathway in P. laevigata is responsible for the synthesis of the quinonemethide triterpenoid scaffold. Moreover, anatomical analysis of P. laevigata roots cultured in vitro and in situ showed the presence of 22β-hydroxy-maytenin (2) and maytenin (1) in the tissues from transverse or longitudinal sections with an intense orange color. MALDI-MS imaging confirmed the distribution of (2) and (1) in the more distal portions of the root cap, the outer cell layers, and near the vascular cylinder of P. laevigata in vitro roots suggesting a role in plant defense against infection by microorganisms as well as in the root exudation processes. PMID:26943243

  12. Oritavancin Diphosphate

    PubMed Central

    Cada, Dennis J.; Baker, Danial E.

    2014-01-01

    Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are sent in print and are also available on-line. Monographs can be customized to meet the needs of a facility. A drug class review is now published monthly with The Formulary Monograph Service. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, call The Formulary at 800-322-4349. The December 2014 monograph topics are olodaterol, peginterferon beta-1a, testosterone nasal gel, ferric citrate corredination complex, and safinamide. The Safety MUE is on olodaterol. PMID:25673895

  13. Nucleoside Diphosphate Sugar-Starch Glucosyl Transferase Activity of wx Starch Granules 1

    PubMed Central

    Nelson, Oliver E.; Chourey, Prem S.; Chang, Ming Tu

    1978-01-01

    Starch granule preparations from the endosperm tissue of all waxy maize (Zea mays L.) mutants tested have low and approximately equal capability to incorporate glucose from adenosine diphosphate glucose into starch. As the substrate concentration is reduced, however, the activity of waxy preparations relative to nonmutant increases until, at the lowest substrate concentration utilized (0.1 μM), the activity of the waxy preparations is nearly equal to that of the nonmutant preparation. The apparent Km (adenosine diphosphate glucose) for starch granule preparations from wx-C/wx-C/wx-C endosperms was 7.1 × 10−5 M, which is compared to 3 × 10−3 M for preparations from nonwaxy endosperms. Starch granule preparations from three other waxy mutants of independent mutational origin have levels of enzymic activity approximately equal to wx-C at a given substrate concentration giving rise to similar apparent Km estimates. We conclude that there is in maize endosperm starch granules a second starch granule-bound glycosyl transferase, whose presence is revealed when mutation eliminates activity of the more active glucosyl transferase catalyzing the same reaction. PMID:16660522

  14. The genes and enzymes involved in the biosynthesis of thiamin and thiamin diphosphate in yeasts.

    PubMed

    Kowalska, Ewa; Kozik, Andrzej

    2008-01-01

    Thiamin (vitamin B1) is an essential molecule for all living organisms. Its major biologically active derivative is thiamin diphosphate, which serves as a cofactor for several enzymes involved in carbohydrate and amino acid metabolism. Important new functions for thiamin and its phosphate esters have recently been suggested, e.g. in gene expression regulation by influencing mRNA structure, in DNA repair after UV illumination, and in the protection of some organelles against reactive oxygen species. Unlike higher animals, which rely on nutritional thiamin intake, yeasts can synthesize thiamin de novo. The biosynthesis pathways include the separate synthesis of two precursors, 4-amino-5-hydroxymethyl-2-methylpyrimidine diphosphate and 5-(2-hydroxyethyl)-4-methylthiazole phosphate, which are then condensed into thiamin monophosphate. Additionally, yeasts evolved salvage mechanisms to utilize thiamin and its dephosphorylated late precursors, 4-amino-5-hydroxymethyl-2-methylpyrimidine and 5-(2-hydroxyethyl)-4-methylthiazole, from the environment. The current state of knowledge on the discrete steps of thiamin biosynthesis in yeasts is far from satisfactory; many intermediates are postulated only by analogy to the much better understood biosynthesis process in bacteria. On the other hand, the genetic mechanisms regulating thiamin biosynthesis in yeasts are currently under extensive exploration. Only recently, the structures of some of the yeast enzymes involved in thiamin biosynthesis, such as thiamin diphosphokinase and thiazole synthase, were determined at the atomic resolution, and mechanistic proposals for the catalysis of particular biosynthetic steps started to emerge.

  15. Tracer studies on the incorporation of [2-14C]-DL-mevalonate into chlorophylls a and b, alpha-chaconine, and alpha-solanine of potato sprouts.

    PubMed

    Kozukue, N; Tsuchida, H; Friedman, M

    2001-01-01

    Chlorophyll and glycoalkaloids are synthesized in different parts of the potato plant including leaves, tubers, and sprouts. Although light stimulates the biosynthesis of both constituents, the question of whether the two biosynthetic pathways are under the same genetic control has not been resolved. This study investigated the dynamics of incorporation of labeled [2-(14)C]-DL-mavalonate into chlorophyll a, chlorophyll b, and the glycoalkaloids alpha-chaconine and alpha-solanine in potato sprouts after 7 and 14 days of storage in the light and in the dark. No chlorophyll synthesis occurred in the dark. Fractionation of the "glycoalkaloid" extract followed by high-performance liquid chromatography produced four peaks. The fractions were collected and analyzed for radioactivity. About 80% of the radioactivity resided in fraction 1, the composition of which is unknown. Two of the fractions, with 1-14% of the original label, were alpha-chaconine and alpha-solanine. The radioactivity derived from mevalonate largely resides in unidentified compound(s) eluting as a single peak on the HPLC column before the peaks associated with the glycoalkaloids. The specific radioactivity of alpha-chaconine and alpha-solanine increased approximately 2-fold in going from 7 to 14 days of exposure in the light and in the dark. These and additional observations point to the near identity of the dynamics of biosynthesis of the two glycoalkaloids. These data also implicate a non-mevalonate pathway for the synthesis of both chlorophylls and the glycoalkaloids and are consistent with independent genetic control of the concurrent formation of the two classes of compounds during greening of potatoes.

  16. Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies).

    PubMed

    Schmidt, Axel; Nagel, Raimund; Krekling, Trygve; Christiansen, Erik; Gershenzon, Jonathan; Krokene, Paal

    2011-12-01

    Norway spruce (Picea abies) defends itself against herbivores and pathogens by formation of traumatic resin ducts filled with terpenoid-based oleoresin. An important group of enzymes in terpenoid biosynthesis are the short-chain isoprenyl diphosphate synthases which produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of monoterpenes, sesquiterpenes, and diterpene resin acids, respectively. After treatment with methyl jasmonate (MJ) we investigated the expression of all isoprenyl diphosphate synthase genes characterized to date from Norway spruce and correlated this with formation of traumatic resin ducts and terpene accumulation. Formation of traumatic resin ducts correlated with higher amounts of monoterpenes, sesquiterpenes and diterpene resin acids and an upregulation of isoprenyl diphosphate synthase genes producing geranyl diphosphate or geranylgeranyl diphosphate. Among defense hormones, jasmonate and jasmonate-isoleucine conjugate accumulated to higher levels in trees with extensive traumatic resin duct formation, whereas salicylate did not. Jasmonate and ethylene are likely to both be involved in formation of traumatic resin ducts based on elevated transcripts of genes encoding lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase associated with resin duct formation. Other genes involved in defense signalling in other systems, mitogen-activated protein kinase3 and nonexpressor of pathogenesis-related gene1, were also associated with traumatic resin duct formation. These responses were detected not only at the site of MJ treatment, but also systemically up to 60 cm above the site of treatment on the trunk.

  17. Effect of the hexapeptide dalargin on ornithine decarboxylase activity in the duodenal mucosa of rats with experimental duodenal ulcer

    SciTech Connect

    Yarygin, K.N.; Shitin, A.G.; Polonskii, V.M.; Vinogradov, V.A.

    1987-08-01

    The authors study the effect of dalargin on ornithine decarboxylase in homogenates of the duodenal ulcer from rats with experimental duodenal ulcer induced by cysteamine. Activity of the enzyme was expressed in pmoles /sup 14/CO/sub 2//mg protein/h. Protein was determined by Lowry's method. The findings indicate that stimulation of ornithine decarboxylase and the antiulcerative effect of dalargin may be due to direct interaction of the peptide with cells of the intestinal mucosa and with enterocytes.

  18. Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice.

    PubMed

    Castellan Baldan, Lissandra; Williams, Kyle A; Gallezot, Jean-Dominique; Pogorelov, Vladimir; Rapanelli, Maximiliano; Crowley, Michael; Anderson, George M; Loring, Erin; Gorczyca, Roxanne; Billingslea, Eileen; Wasylink, Suzanne; Panza, Kaitlyn E; Ercan-Sencicek, A Gulhan; Krusong, Kuakarun; Leventhal, Bennett L; Ohtsu, Hiroshi; Bloch, Michael H; Hughes, Zoë A; Krystal, John H; Mayes, Linda; de Araujo, Ivan; Ding, Yu-Shin; State, Matthew W; Pittenger, Christopher

    2014-01-01

    Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine (DA) D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal DA levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. DA D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm histidine decarboxylase deficiency as a rare cause of TS and identify HA-DA interactions in the basal ganglia as an important locus of pathology. PMID:24411733

  19. Evidence for PQQ as cofactor in 3,4-dihydroxyphenylalanine (dopa) decarboxylase of pig kidney.

    PubMed

    Groen, B W; van der Meer, R A; Duine, J A

    1988-09-12

    Pig kidney 3,4-dihydroxyphenylalanine (dopa) decarboxylase (EC 4.1.1.28) was purified to homogeneity. Treatment of the enzyme with phenylhydrazine (PH) according to a procedure developed for analysis of quinoproteins gave products which were identified as the hydrazone of pyridoxal phosphate (PLP) and the C(5)-hydrazone of pyrroloquinoline quinone (PQQ). This method failed, however, in quantifying the amounts of cofactor. Direct hydrolysis of the enzyme by refluxing with hexanol and concentrated HCl led to detachment of PQQ from the protein in a quantity of 1 PQQ per enzyme molecule. In view of the reactivity of PQQ towards amines and amino acids, we postulate that it participates as a covalently bound cofactor in the catalytic cycle of the enzyme, in interplay with PLP. Since several other enzymes have been reported to show the atypical behaviour of dopa decarboxylase, it seems that the PLP-containing group of enzymes can be subdivided into pyridoxoproteins and pyridoxo-quinoproteins.

  20. Volatile Organic Compounds Derived from 2-Keto-Acid Decarboxylase in Microcystis aeruginosa

    PubMed Central

    Hasegawa, Masateru; Nishizawa, Akito; Tsuji, Kiyomi; Kimura, Shigenobu; Harada, Ken-ichi

    2012-01-01

    Volatile organic compounds (VOCs), 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol, were detected together with β-cyclocitral from the cyanobacterium Microcystis aeruginosa NIES-843. These alcohols were optimally produced after 35 d of culture, during which nitrate nitrogen in the cultured broth became exhausted. Additionally, these alcohols were definitely produced using the 2-keto-acid decarboxylase (MaKDC) in Microcystis strains. These results suggested that these VOCs from Microcystis are significant for their lifecycle, because these compounds are not produced by any other genus of cyanobacteria. This is the first report of 2-keto-acid decarboxylase producing 3-methyl-1-butanol and 2-phenylethanol by an oxygenic photosynthetic microorganism. PMID:23047148

  1. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    DOE PAGES

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed.more » Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.« less

  2. Unusual space-group pseudo symmetry in crystals of human phosphopantothenoylcysteine decarboxylase

    SciTech Connect

    Manoj, N.; Ealick, S.E.

    2010-12-01

    Phosphopantothenoylcysteine (PPC) decarboxylase is an essential enzyme in the biosynthesis of coenzyme A and catalyzes the decarboxylation of PPC to phosphopantetheine. Human PPC decarboxylase has been expressed in Escherichia coli, purified and crystallized. The Laue class of the diffraction data appears to be {bar 3}m, suggesting space group R32 with two monomers per asymmetric unit. However, the crystals belong to the space group R3 and the asymmetric unit contains four monomers. The structure has been solved using molecular replacement and refined to a current R factor of 29%. The crystal packing can be considered as two interlaced lattices, each consistent with space group R32 and with the corresponding twofold axes parallel to each other but separated along the threefold axis. Thus, the true space group is R3 with four monomers per asymmetric unit.

  3. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics.

  4. HemQ: an iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    PubMed Central

    Dailey, Harry A.; Gerdes, Svetlana

    2015-01-01

    Genes for chlorite dismutase-like proteins are found widely among hemesynthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. The heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Thus, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis. PMID:25711532

  5. Observation of superoxide production during catalysis of Bacillus subtilis oxalate decarboxylase at pH 4.

    PubMed

    Twahir, Umar T; Stedwell, Corey N; Lee, Cory T; Richards, Nigel G J; Polfer, Nicolas C; Angerhofer, Alexander

    2015-03-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin-trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion, both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping are similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  6. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    SciTech Connect

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.

  7. Observation of Superoxide Production During Catalysis of Bacillus subtilis Oxalate Decarboxylase at pH4

    PubMed Central

    Twahir, Umar T.; Stedwell, Corey N.; Lee, Cory T.; Richards, Nigel G. J.; Polfer, Nicolas C.; Angerhofer, Alexander

    2015-01-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping is similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  8. Analysis of quinocide in unprocessed primaquine diphosphate and primaquine diphosphate tablets using gas chromatography-mass spectrometry with supersonic molecular beams.

    PubMed

    Brondz, Ilia; Fialkov, Alexander B; Amirav, Aviv

    2009-01-30

    Malaria is one of the most widespread and deadly diseases on the planet. Every year, about 500 million new cases are diagnosed, and the annual death toll is about 3 million. Primaquine has strong antiparasitic effects against gametocytes and can therefore prevent the spread of the parasite from treated patients to mosquitoes. It is also used in radical cures and prevents relapse. Consequently, primaquine is an often-used drug. In this study the separation of unprocessed primaquine from the contaminant quinocide based on gas chromatography-mass spectrometry with supersonic molecular beam (SMB) is presented and 7.5 mg primaquine diphosphate tablets were analyzed. We present a novel method for fast determination of quinocide which is an isomer of primaquine as the main contaminant in unprocessed primaquine and in its medical form as tablets by gas chromatography-mass spectrometry with SMB (also named supersonic GC-MS). Supersonic GC-MS provides enhanced molecular ion without any ion source related peak tailing plus extended range of compounds amenable for GC-MS analysis. In addition, major isomer mass spectral effects were revealed in the mass spectra of primaquine and quinocide which facilitated the unambiguous identification of quinocide in primaquine tablets. Fast GC-MS analysis is demonstrated with less then 2 min elution time of the drug and its main contaminants.

  9. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.

    PubMed

    Liu, Pingyang; Torrens-Spence, Michael P; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2013-02-01

    Animal aspartate decarboxylase (ADC), glutamate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldimine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development. PMID:22718265

  10. Autoradiographic measurement of relative changes in ornithine decarboxylase in axotomized superior cervical ganglion neurons

    SciTech Connect

    Wells, M.R.

    1986-05-01

    An autoradiographic method is described for detecting changes in ornithine decarboxylase in axotomized superior cervical ganglion neurons of rats using (3H)difluoromethylornithine. An increase in binding to neurons was seen at 12 h and 1 day after crushing the postganglionic nerves. Binding returned to control values between 3 and 5 days postoperation. The patterns found using this method were in general agreement with prior reports of enzymatic changes in whole ganglia.

  11. A defect in pyruvate decarboxylase in a child with an intermittent movement disorder

    PubMed Central

    Blass, John P.; Avigan, Joel; Uhlendorf, B. William

    1970-01-01

    A patient with an intermittent movement disorder has been found to have an inherited defect in pyruvate decarboxylase ((2-oxo-acid carboxy-lyase, E.C. 4.1.1.1.). The patient is a 9 yr old boy who since infancy has had repeated episodes of a combined cerebellar and choreoathetoid movement disorder. He has an elevated level of pyruvic acid in his blood, an elevated urinary alanine content, and less marked elevations in blood alanine and lactate. Methods were developed to study his metabolic abnormality in dilute suspensions of white blood cells and cultured skin fibroblasts, as well as in cell-free sonicates of fibroblasts. Oxidation of pyruvic acid-1-14C and pyruvic acid-2-14C by his cells and pyruvate decarboxylase activity in sonicates of his cells were less than 20% of those in cells from control subjects. Oxidation of glutamic acid-U-14C, acetate-1-14C, and palmitate-1-14C was normal, as was incorporation of alanine-U-14C into protein. The rate of oxidation of pyruvic acid by the father's cells and the activity of pyruvate decarboxylase in the father's sonicated fibroblasts were intermediate between those of the patient and those of controls. Values for the mother were at or just below the lower limits of the ranges in controls. Kinetic data suggested the posibility of several forms of pyruvate decarboxylase in this family. Possible mechanisms relating the chemical abnormality and the clinical symptoms in this patient are discussed. PMID:4313434

  12. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.

    PubMed

    Liu, Pingyang; Torrens-Spence, Michael P; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2013-02-01

    Animal aspartate decarboxylase (ADC), glutamate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldimine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development.

  13. A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site.

    PubMed

    Gallego, P P; Whotton, L; Picton, S; Grierson, D; Gray, J E

    1995-03-01

    A tomato fruit cDNA library was differentially screened to identify mRNAs present at higher levels in fruit of the tomato ripening mutant rin (ripening inhibitor). Complete sequencing of a unique clone ERT D1 revealed an open reading frame with homology to several glutamate decarboxylases. The deduced polypeptide sequence has 80% overall amino acid sequence similarity to a Petunia hybrida glutamate decarboxylase (petGAD) which carries a calmodulin-binding site at its carboxyl terminus and ERT D1 appears to have a similar domain. ERT D1 mRNA levels peaked at the first visible sign of fruit colour change during normal tomato ripening and then declined, whereas in fruit of the ripening impaired mutant, rin, accumulation of this mRNA continued until at least 14 days after the onset of ripening. This mRNA was present at much lower levels in other tissues, such as leaves, roots and stem, and was not increased by wounding. Possible roles for GAD, and its product gamma-aminobutyric acid (GABA) in fruit, are discussed.

  14. Novel protein–protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani

    SciTech Connect

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J. Venkatesh

    2015-01-09

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.

  15. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    SciTech Connect

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario; Mancheño, José M.

    2007-04-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.

  16. Tissue and regional distribution of cysteic acid decarboxylase. A new assay method.

    PubMed

    Wu, J Y; Moss, L G; Chen, M S

    1979-04-01

    A sensitive and rapid assay method method for cysteic acid decarboxylase was develped which combined the selectivity of ion exchange resin (a complete retention of the substrate, cysteic acid, and exclusion of the product, taurine) with the speed of a vacuum filtration. The synthesis and purification of 35S-labeled cysteic acid were described. The validity of the assay was established by the identification of the reaction product as taurine. With this new method, the decarboxylase activity was measured in discrete regions of bovine brain. Putamen had the highest activity, 172 pmol taurine formed/min/mg protein (100%), followed by caudate nucleus, 90%; cerebral cortex, 82%; hypothalamus, 81%; cerebellar cortex, 79%; cerebellar peduncle, 59%; thalamus, 42%; brain stem, 25%; pons, 10%; and corpus callosum, 3%. The decarboxylase activity in various mouse tissues was also determined as follows: liver, 403; brain, 145; kidney, 143; spinal cord, 59; lung, 21; and spleen, 10 pmol taurine formed/min/mg. No activity could be detected in skeleton muscle and heart, suggesting a different biosynthetic pathway for taurine synthesis in these tissues. The advantages and disadvantages of the new assay method are also discussed.

  17. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis.

    PubMed

    Bouché, Nicolas; Fait, Aaron; Zik, Moriyah; Fromm, Hillel

    2004-05-01

    In plants, as in most eukaryotes, glutamate decarboxylase catalyses the synthesis of GABA. The Arabidopsis genome contains five glutamate decarboxylase genes and one of these genes (glutamate decarboxylase1; i.e. GAD1 ) is expressed specifically in roots. By isolating and analyzing three gad1 T-DNA insertion alleles, derived from two ecotypes, we investigated the potential role of GAD1 in GABA production. We also analyzed a promoter region of the GAD1 gene and show that it confers root-specific expression when fused to reporter genes. Phenotypic analysis of the gad1 insertion mutants revealed that GABA levels in roots were drastically reduced compared with those in the wild type. The roots of the wild type contained about sevenfold more GABA than roots of the mutants. Disruption of the GAD1 gene also prevented the accumulation of GABA in roots in response to heat stress. Our results show that the root-specific calcium/calmodulin-regulated GAD1 plays a major role in GABA synthesis in plants under normal growth conditions and in response to stress.

  18. Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of Escherichia coli.

    PubMed Central

    Canellakis, E S; Paterakis, A A; Huang, S C; Panagiotidis, C A; Kyriakidis, D A

    1993-01-01

    The ornithine decarboxylase antizyme gene of Escherichia coli was identified by immunological screening of an E. coli genomic library. A 6.4-kilobase fragment containing the antizyme gene was subcloned and sequenced. The open reading frame encoding the antizyme was identified on the basis of its ability to direct the synthesis of immunoreactive antizyme. Antizyme shares significant homology with bacterial transcriptional activators of the two-component regulatory system family; these systems consist of a "sensor" kinase and a transcriptional regulator. The open reading frame next to antizyme is homologous to sensor kinases. Antizyme overproduction inhibits the activities of both ornithine and arginine decarboxylases without affecting their protein levels. Extracts from E. coli bearing an antizyme gene-containing plasmid exhibit increased antizyme activity. These data strongly suggest that (i) the cloned gene encodes the ornithine decarboxylase antizyme and (ii) antizyme is a bifunctional protein serving as both an inhibitor of polyamine biosynthesis as well as a transcriptional regulator of an as yet unknown set of genes. Images Fig. 2 Fig. 4 Fig. 6 PMID:8346225

  19. Sequencing, characterization, and gene expression analysis of the histidine decarboxylase gene cluster of Morganella morganii.

    PubMed

    Ferrario, Chiara; Borgo, Francesca; de Las Rivas, Blanca; Muñoz, Rosario; Ricci, Giovanni; Fortina, Maria Grazia

    2014-03-01

    The histidine decarboxylase gene cluster of Morganella morganii DSM30146(T) was sequenced, and four open reading frames, named hdcT1, hdc, hdcT2, and hisRS were identified. Two putative histidine/histamine antiporters (hdcT1 and hdcT2) were located upstream and downstream the hdc gene, codifying a pyridoxal-P dependent histidine decarboxylase, and followed by hisRS gene encoding a histidyl-tRNA synthetase. This organization was comparable with the gene cluster of other known Gram negative bacteria, particularly with that of Klebsiella oxytoca. Recombinant Escherichia coli strains harboring plasmids carrying the M. morganii hdc gene were shown to overproduce histidine decarboxylase, after IPTG induction at 37 °C for 4 h. Quantitative RT-PCR experiments revealed the hdc and hisRS genes were highly induced under acidic and histidine-rich conditions. This work represents the first description and identification of the hdc-related genes in M. morganii. Results support the hypothesis that the histidine decarboxylation reaction in this prolific histamine producing species may play a role in acid survival. The knowledge of the role and the regulation of genes involved in histidine decarboxylation should improve the design of rational strategies to avoid toxic histamine production in foods.

  20. Different mRNAs code for dopa decarboxylase in tissues of neuronal and nonneuronal origin

    SciTech Connect

    Krieger, M.; Coge, F.; Gros, F.; Thibault, J. )

    1991-03-15

    A cDNA clone for dopa decarboxylase has been isolated from a rat pheochromocytoma cDNA library and the cDNA sequence has been determined. It corresponds to an mRNA of 2094 nucleotides. The length of the mRNA was measured by primer-extension of rat pheochromocytoma RNA and the 5{prime} end of the sequence of the mRNA was confirmed by the PCR. A probe spanning the translation initiation site of the mRNA was used to hybridize with mRNAs from various organs of the rat. S1 nuclease digestion of the mRNAs annealed with this probe revealed two classes of mRNAs. The comparison of the cDNA sequence and published sequences for rat liver, human pheochromocytoma, and Droxophila dopa decarboxylase supported the conclusion that two mRNAs are produced: one is specific for tissue of neuronal origin and the other is specific for tissues of nonneuronal (mesodermal or endodermal) origin. The neuronal mRNA contains a 5{prime} untranslated sequence that is highly conserved between human and rat pheochromocytoma including a GA stretch. The coding sequence and the 3{prime} untranslated sequence of mRNAs from rat liver and pheochromocytoma are identical. The rat mRNA differs only in the 5{prime} untranslated region. Thus a unique gene codes for dopa decarboxylase and this gene gives rise to at least two transcripts presumably in response to different signals during development.

  1. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA.

    PubMed Central

    Michael, A J; Furze, J M; Rhodes, M J; Burtin, D

    1996-01-01

    A cDNA for a plant ornithine decarboxylase (ODC), a key enzyme in putrescine and polyamine biosynthesis, has been isolated from root cultures of the solanaceous plant Datura stramonium. Reverse transcription-PCR employing degenerate oligonucleotide primers representing conserved motifs from other eukaryotic ODCs was used to isolate the cDNA. The longest open reading frame potentially encodes a peptide of 431 amino acids and exhibits similarity to other eukaryotic ODCs, prokaryotic and eukaryotic arginine decarboxylases (ADCs), prokaryotic meso-diaminopimelate decarboxylases and the product of the tabA gene of Pseudomonas syringae cv. tabaci. Residues involved at the active site of the mouse ODC are conserved in the plant enzyme. The plant ODC does not possess the C-terminal extension found in the mammalian enzyme, implicated in rapid turnover of the protein, suggesting that the plant ODC may have a longer half-life. Expression of the plant ODC in Escherichia coli and demonstration of ODC activity confirmed that the cDNA encodes an active ODC enzyme. This is the first description of the primary structure of a eukaryotic ODC isolated from an organism where the alternative ADC routine to putrescine is present. PMID:8660289

  2. Distribution of prenyltransferases in rat tissues. Evidence for a cytosolic all-trans-geranylgeranyl diphosphate synthase.

    PubMed

    Ericsson, J; Runquist, M; Thelin, A; Andersson, M; Chojnacki, T; Dallner, G

    1993-01-15

    The present study describes the presence of two different geranylgeranyl diphosphate (GGPP) synthase activities, one cytosolic and one membrane-associated, in a number of rat tissues. Both enzymes utilize farnesyl diphosphate (FPP) and isopentenyl diphosphate (IPP) as substrates, but they give rise to different products. The membrane-associated activity produces trans,trans,cis-(E,E,Z)-GGPP, involved in the biosynthesis of long-chain polyprenols. The cytosolic activity produces only the all-trans-(E,E,E) isomer of GGPP, which is utilized as substrate in cytosolic protein prenylation reactions. All-trans-GGPP synthase activity was recovered in the cytosolic fraction from all tissues investigated, but the specific activities varied. The highest specific activities were found in brain, spleen, and testis, followed by kidney and liver. The enzyme activity in rat brain cytosol was further characterized and found to exhibit a narrow pH optimum around 5.0-6.0 and to be highly stimulated by Zn2+. Maximal stimulation was attained with 1 mM Zn2+, whereas Mg2+ had no effect on the enzyme activity. The all-trans-GGPP synthase activity exhibited high affinities for its substrates, i.e. the apparent Km values for FPP and IPP were found to be 0.6 and 3.5 microM, respectively. When rats were fed mevinolin (lovastatin), FPP and all-trans-GGPP synthase activities were affected differently in certain tissues. Mevinolin treatment resulted in an increase in FPP but a decrease in all-trans-GGPP synthase activity in rat liver and kidney. In spleen mevinolin treatment caused a greater than 70% decrease in all-trans-GGPP synthase activity, while FPP synthase was almost unaffected. The presence of two different GGPP synthase activities in the cell, together with the fact that FPP and all-trans-GGPP synthesis in the cytosol are regulated independently, may be of significance in the regulation of isoprenoid biosynthesis, as well as of protein isoprenylation.

  3. A functional (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase exhibits diurnal regulation of expression in Stevia rebaudiana (Bertoni).

    PubMed

    Kumar, Hitesh; Kumar, Sanjay

    2013-09-15

    The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 ara<>ispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia.

  4. Enzymatic synthesis of acyclic nucleoside thiophosphonate diphosphates: effect of the α-phosphorus configuration on HIV-1 RT activity.

    PubMed

    Priet, Stéphane; Roux, Loic; Saez-Ayala, Magali; Ferron, François; Canard, Bruno; Alvarez, Karine

    2015-05-01

    The acyclic nucleosides thiophosphonates (9-[2-(thiophosphonomethoxy)ethyl]adenine (S-PMEA) and (R)-9-[2-(thiophosphonomethoxy)propyl]adenine (S-PMPA), exhibit antiviral activity against HIV-1, -2 and HBV. Their diphosphate forms S-PMEApp and S-PMPApp, synthesized as stereoisomeric mixture, are potent inhibitors of wild-type (WT) HIV-1 RT. Understanding HIV-1 RT stereoselectivity, however, awaits resolution of the diphosphate forms into defined stereoisomers. To this aim, thiophosphonate monophosphates S-PMEAp and S-PMPAp were synthesized and used in a stereocontrolled enzyme-catalyzed phosphoryl transfer reaction involving either nucleoside diphosphate kinase (NDPK) or creatine kinase (CK) to obtain thiophosphonate diphosphates as separated isomers. We then quantified substrate preference of recombinant WT HIV-1 RT toward pure stereoisomers using in vitro steady-state kinetic analyses. The crystal structure of a complex between Dictyostelium NDPK and S-PMPApp at 2.32Å allowed to determine the absolute configuration at the α-phosphorus atom in relation to the stereo-preference of studied enzymes. The RP isomer of S-PMPApp and S-PMEApp are the preferred substrate over SP for both NDPK and HIV-1 RT. PMID:25766862

  5. Production of geranylgeraniol on overexpression of a prenyl diphosphate synthase fusion gene in Saccharomyces cerevisiae.

    PubMed

    Ohto, Chikara; Muramatsu, Masayoshi; Obata, Shusei; Sakuradani, Eiji; Shimizu, Sakayu

    2010-07-01

    An acyclic diterpene alcohol, (E,E,E)-geranylgeraniol (GGOH), is one of the important compounds used as perfume and pharmacological agents. A deficiency of squalene (SQ) synthase activity allows yeasts to accumulate an acyclic sesquiterpene alcohol, (E,E)-farnesol, in their cells. Since sterols are essential for the growth of yeasts, a deficiency of SQ synthase activity makes the addition of supplemental sterols to the culture media necessary. To develop a GGOH production method not requiring any supplemental sterols, we overexpressed HMG1 encoding hydroxymethylglutaryl-CoA reductase and the genes of two prenyl diphosphate synthases, ERG20 and BTS1, in Saccharomyces cerevisiae. A prototrophic diploid coexpressing HMG1 and the ERG20-BTS1 fusion accumulated GGOH with neither disruption of the SQ synthase gene nor the addition of any supplemental sterols. The GGOH content on the diploid cultivation in a 5-l jar fermenter reached 138.8 mg/l under optimal conditions.

  6. Synthetic Pathway for Production of Five-Carbon Alcohols from Isopentenyl Diphosphate

    PubMed Central

    Chou, Howard H.

    2012-01-01

    Synthetic biological pathways could enhance the development of novel processes to produce chemicals from renewable resources. On the basis of models that describe the evolution of metabolic pathways and enzymes in nature, we developed a framework to rationally identify enzymes able to catalyze reactions on new substrates that overcomes one of the major bottlenecks in the assembly of a synthetic biological pathway. We verified the framework by implementing a pathway with two novel enzymatic reactions to convert isopentenyl diphosphate into 3-methyl-3-butenol, 3-methyl-2-butenol, and 3-methylbutanol. To overcome competition with native pathways that share the same substrate, we engineered two bifunctional enzymes that redirect metabolic flux toward the synthetic pathway. Taken together, our work demonstrates a new approach to the engineering of novel synthetic pathways in the cell. PMID:22941086

  7. Structure of uridine diphosphate N-acetylglucosamine pyrophosphorylase from Entamoeba histolytica.

    PubMed

    Edwards, Thomas E; Gardberg, Anna S; Phan, Isabelle Q H; Zhang, Yang; Staker, Bart L; Myler, Peter J; Lorimer, Donald D

    2015-05-01

    Uridine diphosphate N-acetylglucosamine pyrophosphorylase (UAP) catalyzes the final step in the synthesis of UDP-GlcNAc, which is involved in cell-wall biogenesis in plants and fungi and in protein glycosylation. Small-molecule inhibitors have been developed against UAP from Trypanosoma brucei that target an allosteric pocket to provide selectivity over the human enzyme. A 1.8 Å resolution crystal structure was determined of UAP from Entamoeba histolytica, an anaerobic parasitic protozoan that causes amoebic dysentery. Although E. histolytica UAP exhibits the same three-domain global architecture as other UAPs, it appears to lack three α-helices at the N-terminus and contains two amino acids in the allosteric pocket that make it appear more like the enzyme from the human host than that from the other parasite T. brucei. Thus, allosteric inhibitors of T. brucei UAP are unlikely to target Entamoeba UAPs.

  8. Structure Conservation and Differential Expression of Farnesyl Diphosphate Synthase Genes in Euphorbiaceous Plants

    PubMed Central

    Guo, Dong; Li, Hui-Liang; Peng, Shi-Qing

    2015-01-01

    Farnesyl diphosphate synthase (FPS) is a key enzyme of isoprenoids biosynthesis. However, knowledge of the FPSs of euphorbiaceous species is limited. In this study, ten FPSs were identified in four euphorbiaceous plants. These FPSs exhibited similar exon/intron structure. The deduced FPS proteins showed close identities and exhibited the typical structure of plant FPS. The members of the FPS family exhibit tissue expression patterns that vary among several euphorbiaceous plant species under normal growth conditions. The expression profiles reveal spatial and temporal variations in the expression of FPSs of different tissues from Euphorbiaceous plants. Our results revealed wide conservation of FPSs and diverse expression in euphorbiaceous plants during growth and development. PMID:26389894

  9. [Synthesis of D-ribulose-1,5-diphosphate with immobilized enzymes of Thiobacillus].

    PubMed

    Khaga, M E; Mikel'saar, P Ch; Liaene, A E; Aaviksaar, A A; Peenema, E V

    1979-01-01

    Preparative synthesis of D-ribulose-1,5-diphosphate (RuDP) from ribose-5-phosphate and ATP was carried out, using as a catalyst a crude extract of Thiobacillus thiooxidans 58 R immobilized on porous glass. The methods for immobiliztion of crude bacterial extracts, synthesis of RuDP and purification of the resultant product by means of column chromatography on activated charcoal and anionites were developed. The structure of RuDP was identified by 13C-NMR spectroscopy. Stability of two phosphate groups of RuDP during acid and alkaline hydrolysis proved to be different: both phosphate groups were completely removed in 1 N H2SO4 at 100 degrees C whereas only one phosphate group was hydrolysed in 1 N NaOH at 25 degrees C. This finding is at variance with the earlier results of Horecker et al. (1956).

  10. Additional diterpenes from Physcomitrella patens synthesized by copalyl diphosphate/kaurene synthase (PpCPS/KS).

    PubMed

    Zhan, Xin; Bach, Søren Spanner; Hansen, Nikolaj Lervad; Lunde, Christina; Simonsen, Henrik Toft

    2015-11-01

    The bifunctional diterpene synthase, copalyl diphosphate/kaurene synthase from the moss Physcomitrella patens (PpCPS/KS), catalyses the formation of at least four diterpenes, including ent-beyerene, ent-sandaracopimaradiene, ent-kaur-16-ene, and 16-hydroxy-ent-kaurene. The enzymatic activity has been confirmed through generation of a targeted PpCPS/KS knock-out mutant in P. patens via homologous recombination, through transient expression of PpCPS/KS in Nicotiana benthamiana, and expression of PpCPS/KS in E. coli. GC-MS analysis of the knock-out mutant shows that it lacks the diterpenoids, supporting that all are products of PpCPS/KS as observed in N. benthamiana and E. coli. These results provide additional knowledge of the mechanism of this bifunctional diterpene synthase, and are in line with proposed reaction mechanisms in kaurene biosynthesis.

  11. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGES

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; Smith, Holly; Peterson, Darren J.; Beckham, Gregg T.

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  12. The liquidlike ordering of lipid A-diphosphate colloidal crystals: The influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Faunce, C. A.; Reichelt, H.; Paradies, H. H.; Quitschau, P.; Zimmermann, K.

    2005-06-01

    A comprehensive study was performed on electrostatically stabilized aqueous dispersion of lipid A-diphosphate in the presence of bound Ca2+, Mg2+, K+, and Na+ ions at low ionic strength (0.10-10.0-mM NaCl, 25°C) over a range of volume fraction of 1.0×10-4⩽ϕ⩽4.95×10-4. These suspensions were characterized by light scattering (LS), quasielastic light scattering, small-angle x-ray scattering, transmission electron microscopy, scanning electron microscopy, conductivity measurements, and acid-base titrations. LS and electron microscopy yielded similar values for particle sizes, particle size distributions, and polydispersity. The measured static structure factor, S(Q), of lipid A-diphosphate was seen to be heavily dependent on the nature and concentration of the counterions, e.g., Ca2+ at 5.0nM, Mg2+ at 15.0μM, and K+ at 100.0μM (25°C). The magnitude and position of the S(Q ) peaks depend not only on the divalent ion concentration (Ca2+ and Mg2+) but also on the order of addition of the counterions to the lipid A-diphosphate suspension in the presence of 0.1-μM NaCl. Significant changes in the rms radii of gyration (RG2¯)1/2 of the lipid A-diphosphate particles were observed in the presence of Ca2+ (24.8±0.8nm), Mg2+ (28.5±0.7nm), and K+ (25.2±0.6nm), whereas the Na+ salt (29.1±0.8nm) has a value similar to the one found for the de-ionized lipid A-diphosphate suspensions (29.2±0.8nm). Effective particle charges were determined by fits of the integral equation calculations of the polydisperse static structure factor, S¯(Q), to the light-scattering data and they were found to be in the range of Z*=700-750 for the lipid A-diphosphate salts under investigation. The light-scattering data indicated that only a small fraction of the ionizable surface sites (phosphate) of the lipid A-diphosphate was partly dissociated (˜30%). It was also discovered that a given amount of Ca2+ (1.0-5.0nM) or K+ (100μM) influenced the structure much more than Na+ (0.1-10.0-m

  13. Expression of the mevalonate pathway enzymes in the Lutzomyia longipalpis (Diptera: Psychodidae) sex pheromone gland demonstrated by an integrated proteomic approach

    PubMed Central

    González-Caballero, Natalia; Rodríguez-Vega, Andrés; Dias-Lopes, Geovane; Valenzuela, Jesus G.; Ribeiro, Jose M.C.; Carvalho, Paulo Costa; Valente, Richard H.; Brazil, Reginaldo P.; Cuervo, Patricia

    2014-01-01

    In Latin America, Lutzomyia longipalpis is the main vector of the protozoan parasite Leishmania infantum, which is the causal agent of American Visceral Leishmaniasis. This insect uses male-produced pheromones for mate recognition. Elucidation of pheromone biogenesis or its regulation may enable molecular strategies for mating disruption and, consequently, the vector's population management. Motivated by our recent results of the transcriptomic characterization of the L. longipalpis pheromone gland, we performed a proteomic analysis of this tissue combining SDS-PAGE, and mass spectrometry followed by an integrative data analysis. Considering that annotated genome sequences of this sand fly are not available, we designed an alternative workflow searching MS/MS data against two customized databases using three search engines: Mascot, OMSSA and ProLuCID. A total of 542 proteins were confidently characterized, 445 of them using a Uniref100-insect protein database, and 97 using a transcript translated database. In addition, use of PEAKS for de novo peptide sequencing of MS/MS data confirmed ∼90% identifications made with the combination of the three search engines. Our results include the identification of six of the seven enzymes of the mevalonate-pathway, plus the enzymes involved in sesquiterpenoid biosynthesis, all of which are proposed to be involved in pheromone production in L. longipalpis. Biological significance L. longipalpis is the main vector of the protozoan parasite L. infantum, which is the causal agent of American Visceral Leishmaniasis. One of the control measures of such disease is focused on vector population control. As this insect uses male-produced pheromones for mate recognition, the elucidation of pheromone biogenesis or its regulating process may enable molecular strategies for mating disruption and, consequently, this vector's population management. On this regard, in this manuscript we report expression evidence, at the protein level, of

  14. Regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA contents in human hepatoma cell line Hep G2 by distinct classes of mevalonate-derived metabolites.

    PubMed Central

    Cohen, L H; Griffioen, M

    1988-01-01

    Hep G2 cells were incubated under conditions known to influence the HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase activity, e.g. in the presence of compactin (a competitive inhibitor of HMG-CoA reductase itself) and U18666A (a squalene-2,3-epoxide cyclase inhibitor). We studied the effects of these conditions both on the HMG-CoA reductase activity and on the reductase mRNA content. In the presence of compactin the mRNA content increased, but less than the enzyme activity, as determined after removal of the inhibitor. The increase in mRNA could be prevented by addition of mevalonate or by a combination of low-density lipoprotein (LDL) plus a low concentration of mevalonate. LDL alone prevented the compactin-induced increases in mRNA and activity only partially. The effect of U18666A on reductase mRNA content and activity was biphasic, i.e. a slight decrease at low (0.3-0.5 microM) concentrations, with a concomitant formation of polar sterols [Boogaard, Griffioen & Cohen (1987) Biochem. J. 241, 345-351], and an increase at high (20-30 microM) concentrations, with complete blockage of sterol formation. At these high concentrations of U18666A, additional compactin (2 microM) increased the reductase activity, but not the mRNA content. We conclude that non-sterol metabolites of mevalonate regulate exclusively at the enzyme level, whereas sterol metabolites regulate at the reductase mRNA level. In the latter group of regulators we distinguish mevalonate metabolites which can, and metabolites which cannot, be replaced by exogenous LDL. Images Fig. 1. PMID:2848511

  15. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae.

    PubMed

    Richard, Peter; Viljanen, Kaarina; Penttilä, Merja

    2015-01-01

    The S. cerevisiae PAD1 gene had been suggested to code for a cinnamic acid decarboxylase, converting trans-cinnamic acid to styrene. This was suggested for the reason that the over-expression of PAD1 resulted in increased tolerance toward cinnamic acid, up to 0.6 mM. We show that by over-expression of the PAD1 together with the FDC1 the cinnamic acid decarboxylase activity can be increased significantly. The strain over-expressing PAD1 and FDC1 tolerated cinnamic acid concentrations up to 10 mM. The cooperation of Pad1p and Fdc1p is surprising since the PAD1 has a mitochondrial targeting sequence and the FDC1 codes for a cytosolic protein. The cinnamic acid decarboxylase activity was also seen in the cell free extract. The activity was 0.019 μmol per minute and mg of extracted protein. The overexpression of PAD1 and FDC1 resulted also in increased activity with the hydroxycinnamic acids ferulic acid, p-coumaric acid and caffeinic acid. This activity was not seen when FDC1 was overexpressed alone. An efficient cinnamic acid decarboxylase is valuable for the genetic engineering of yeast strains producing styrene. Styrene can be produced from endogenously produced L-phenylalanine which is converted by a phenylalanine ammonia lyase to cinnamic acid and then by a decarboxylase to styrene.

  16. An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme A biosynthesis.

    PubMed

    Tomita, Hiroya; Yokooji, Yuusuke; Ishibashi, Takuya; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-03-01

    β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5'-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4'-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.

  17. Kinetic, mutational, and structural analysis of malonate semialdehyde decarboxylase from Coryneform bacterium strain FG41: mechanistic implications for the decarboxylase and hydratase activities.

    PubMed

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J; Johnson, William H; Hackert, Marvin L; Whitman, Christian P

    2013-07-16

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal ion-independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide and a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. In terms of pairwise sequence, MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) is 38% identical with the Pseudomonas enzyme, including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. To determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of the enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for Pp MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily.

  18. Crystal structures of the wild-type, P1A mutant, and inactivated malonate semialdehyde decarboxylase: a structural basis for the decarboxylase and hydratase activities.

    PubMed

    Almrud, Jeffrey J; Poelarends, Gerrit J; Johnson, William H; Serrano, Hector; Hackert, Marvin L; Whitman, Christian P

    2005-11-15

    Malonate semialdehyde decarboxylase (MSAD) from Pseudomonas pavonaceae 170 is a tautomerase superfamily member that converts malonate semialdehyde to acetaldehyde by a mechanism utilizing Pro-1 and Arg-75. Pro-1 and Arg-75 have also been implicated in the hydratase activity of MSAD in which 2-oxo-3-pentynoate is processed to acetopyruvate. Crystal structures of MSAD (1.8 A resolution), the P1A mutant of MSAD (2.7 A resolution), and MSAD inactivated by 3-chloropropiolate (1.6 A resolution), a mechanism-based inhibitor activated by the hydratase activity of MSAD, have been determined. A comparison of the P1A-MSAD and MSAD structures reveals little geometric alteration, indicating that Pro-1 plays an important catalytic role but not a critical structural role. The structures of wild-type MSAD and MSAD covalently modified at Pro-1 by 3-oxopropanoate, the adduct resulting from the incubation of MSAD and 3-chloropropiolate, implicate Asp-37 as the residue that activates a water molecule for attack at C-3 of 3-chloropropiolate to initiate a Michael addition of water. The interactions of Arg-73 and Arg-75 with the C-1 carboxylate group of the adduct suggest these residues polarize the alpha,beta-unsaturated acid and facilitate the addition of water. On the basis of these structures, a mechanism for the inactivation of MSAD by 3-chloropropiolate can be formulated along with mechanisms for the decarboxylase and hydratase activities. The results also provide additional evidence supporting the hypothesis that MSAD and trans-3-chloroacrylic acid dehalogenase, a tautomerase superfamily member preceding MSAD in the trans-1,3-dichloropropene degradation pathway, diverged from a common ancestor but retained the key elements for the conjugate addition of water.

  19. Kinetic, Mutational, and Structural Analysis of Malonate Semialdehyde Decarboxylase from Coryneform bacterium strain FG41: Mechanistic Implications for the Decarboxylase and Hydratase Activities

    PubMed Central

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J.; Johnson, William H.; Hackert, Marvin L.; Whitman, Christian P.

    2013-01-01

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal-ion independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide, as well as a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) shares 38% pairwise sequence identity with the Pseudomonas enzyme including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. In order to determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity, but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily. PMID:23781927

  20. Homozygosity for the V377I mutation in mevalonate kinase causes distinct clinical phenotypes in two sibs with hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS)

    PubMed Central

    Messer, Laurent; Alsaleh, Ghada; Georgel, Philippe; Carapito, Raphael; Waterham, Hans R; Dali-Youcef, Nassim; Bahram, Siamak; Sibilia, Jean

    2016-01-01

    Objective Mevalonate kinase (MVK) deficiency is a rare autosomal recessive auto-inflammatory disorder characterised by recurring episodes of fever associated with multiple non-specific inflammatory symptoms and caused by mutations in the MVK gene. The phenotypic spectrum is wide and depends mostly on the nature of the mutations. Hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS) is a relatively mild presentation and predominantly associated with a c.1129G>A (p.V377I) mutation in the MVK gene. We report cases of two sisters homozygous for this mutation but exhibiting distinct (symptomatic vs asymptomatic) phenotypes. Methods Patient history was obtained; physical and clinical examination and laboratory tests were performed; lipopolysaccharide (LPS) response of peripheral blood mononuclear cells was quantified. Results Low MVK enzymatic activity is not necessarily associated with inflammatory symptoms. Increased inflammatory cytokine secretion in response to LPS is associated with symptomatic MVK deficiency. Conclusions Individuals who are homozygous for the common p.V377I mutation in the MVK gene may not display the characteristic inflammatory episodes diagnostic of MKD and thus may be lost for correct and timely diagnosis. PMID:26977311

  1. Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the 'yellow pigment' and other apocarotenoids.

    PubMed

    Walter, M H; Fester, T; Strack, D

    2000-03-01

    Plants and certain bacteria use a non-mevalonate alternative route for the biosynthesis of many isoprenoids, including carotenoids. This route has been discovered only recently and has been designated the deoxyxylulose phosphate pathway or methylerythritol phosphate (MEP) pathway. We report here that colonisation of roots from wheat, maize, rice and barley by the arbuscular mycorrhizal fungal symbiont Glomus intraradices involves strong induction of transcript levels of two of the pivotal enzymes of the MEP pathway, 1-deoxy-D-xylulose 5-phosphate synthase (DXS) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR). This induction is temporarily and spatially correlated with specific and concomitant accumulation of two classes of apocarotenoids, namely glycosylated C13 cyclohexenone derivatives and mycorradicin (C14) conjugates, the latter being a major component of the long-known 'yellow pigment'. A total of six cyclohexenone derivatives were characterised from mycorrhizal wheat and maize roots. Furthermore, the acyclic structure of mycorradicin described previously only from maize has been identified from mycorrhizal wheat roots after alkaline treatment of an 'apocarotenoid complex' of yellow root constituents. We propose a hypothetical scheme for biogenesis of both types of apocarotenoids from a common oxocarotenoid (xanthophyll) precursor. This is the first report demonstrating (i) that the plastidic MEP pathway is active in plant roots and (ii) that it can be induced by a fungus. PMID:10758508

  2. FR-900098, an antimalarial development candidate that inhibits the non-mevalonate isoprenoid biosynthesis pathway, shows no evidence of acute toxicity and genotoxicity

    PubMed Central

    Wiesner, Jochen; Ziemann, Christina; Hintz, Martin; Reichenberg, Armin; Ortmann, Regina; Schlitzer, Martin; Fuhst, Rainer; Timmesfeld, Nina; Vilcinskas, Andreas; Jomaa, Hassan

    2016-01-01

    ABSTRACT FR-900098 is an inhibitor of 1-deoxy-d-xylulose-5-phosphate (DXP) reductoisomerase, the second enzyme in the non-mevalonate isoprenoid biosynthesis pathway. In previous studies, FR-900098 was shown to possess potent antimalarial activity in vitro and in a murine malaria model. In order to provide a basis for further preclinical and clinical development, we studied the acute toxicity and genotoxicity of FR-900098. We observed no acute toxicity in rats, i.e. there were no clinical signs of toxicity and no substance-related deaths after the administration of a single dose of 3000 mg/kg body weight orally or 400 mg/kg body weight intravenously. No mutagenic potential was detected in the Salmonella typhimurium reverse mutation assay (Ames test) or an in vitro mammalian cell gene mutation test using mouse lymphoma L5178Y/TK+/− cells (clone 3.7.2C), both with and without metabolic activation. In addition, FR-900098 demonstrated no clastogenic or aneugenic capability or significant adverse effects on blood formation in an in vivo micronucleus test with bone marrow erythrocytes from NMRI mice. We conclude that FR-900098 lacks acute toxicity and genotoxicity, supporting its further development as an antimalarial drug. PMID:27260413

  3. Development of petri net-based dynamic model for improved production of farnesyl pyrophosphate by integrating mevalonate and methylerythritol phosphate pathways in yeast.

    PubMed

    Baadhe, Rama Raju; Mekala, Naveen Kumar; Palagiri, Satwik Reddy; Parcha, Sreenivasa Rao

    2012-07-01

    In this case study, we designed a farnesyl pyrophosphate (FPP) biosynthetic network using hybrid functional Petri net with extension (HFPNe) which is derived from traditional Petri net theory and allows easy modeling with graphical approach of various types of entities in the networks together. Our main objective is to improve the production of FPP in yeast, which is further converted to amorphadiene (AD), a precursor of artemisinin (antimalarial drug). Natively, mevalonate (MEV) pathway is present in yeast. Methyl erythritol phosphate pathways (MEP) are present only in higher plant plastids and eubacteria, but not present in yeast. IPP and DAMP are common isomeric intermediate in these two pathways, which immediately yields FPP. By integrating these two pathways in yeast, we augmented the FPP synthesis approximately two folds higher (431.16 U/pt) than in MEV pathway alone (259.91 U/pt) by using HFPNe technique. Further enhanced FPP levels converted to AD by amorphadiene synthase gene yielding 436.5 U/pt of AD which approximately two folds higher compared to the AD (258.5 U/pt) synthesized by MEV pathway exclusively. Simulation and validation processes performed using these models are reliable with identified biological information and data. PMID:22350871

  4. Enhanced isoprene biosynthesis in Saccharomyces cerevisiae by engineering of the native acetyl-CoA and mevalonic acid pathways with a push-pull-restrain strategy.

    PubMed

    Lv, Xiaomei; Xie, Wenping; Lu, Wenqiang; Guo, Fei; Gu, Jiali; Yu, Hongwei; Ye, Lidan

    2014-09-30

    To explore the capacity of isoprene production in Saccharomyces cerevisiae, a rational push-pull-restrain strategy was proposed to engineer the mevalonic acid (MVA) and acetyl-CoA pathways. The strategy can be decomposed into the up-regulation of precursor supply in the acetyl-CoA module and the MVA pathway (push-strategy), increase of the isoprene branch flux (pull-strategy), and down-regulation of the competing pathway (restrain-strategy). Furthermore, to reduce the production cost arising from galactose addition and meanwhile maintain the high expression of Gal promoters, the galactose regulatory network was modulated by Gal80p deletion. Finally, the engineered strain YXM10-ispS-ispS could accumulate up to 37 mg/L isoprene (about 782-fold increase compared to the parental strain) under aerobic conditions with glycerol-sucrose as carbon source. In this way, a new potential platform for isoprene production was established via metabolic engineering of the yeast native pathways.

  5. Combination treatment for allergic conjunctivitis - Plant derived histidine decarboxylase inhibitor and H1 antihistaminic drug.

    PubMed

    Bakrania, Anita K; Patel, Snehal S

    2015-08-01

    Aim of present investigation was to study the effect of catechin and the combination of catechin and cetirizine in ovalbumin induced animal model of allergic conjunctivitis. Guinea pigs were divided into 5 groups: normal control, disease control, disease treated with catechin 100 mg/kg, disease treated with cetirizine 10 mg/kg, disease treated with combination of catechin and cetirizine, 50 mg/kg & 5 mg/kg respectively. Sensitization was carried out by intraperitoneal injection of ovalbumin for the period of 14 day. Simultaneously, catechin was administered orally for 14 days while, cetirizine was administered at the day of experiment. Determination of clinical scoring, mast cell and blood histamine content, histidine decarboxylase activity from stomach was carried out. Vascular permeability was measured by dye leakage after secondary challenge of allergen and conjunctival tissues were subjected for histopathological examinations. Treatment with catechin, cetirizine and combination showed significant (P < 0.05) decrease in clinical scoring and vascular permeability. While, catechin 100 mg/kg and catechin 50 mg/kg showed significant (P < 0.05) decrease in histamine content in mast and blood. The treatment also showed significant (P < 0.05) decrease in the histidine decarboxylase enzyme activity. However, cetirizine group did not show any difference in enzyme activity as well as histamine content. Histopathological examination also showed improvement in ulceration and decrease in edema and inflammation in all treatment groups. From the present study, we can conclude that catechin exhibits potent anti-allergic activity by histidine decarboxylase enzyme inhibition and combination shown significant anti-allergic activity at reduced dose by both enzyme inhibition as well as inhibition of histamine receptors.

  6. Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.

    PubMed

    Pudlik, Agata M; Lolkema, Juke S

    2011-08-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of L-lactate, indicating exchange between oxaloacetate and L-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate.

  7. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli.

    PubMed

    Le Vo, Tam Dinh; Kim, Tae Wan; Hong, Soon Ho

    2012-05-01

    Gamma-aminobutyric acid (GABA) is a non-essential amino acid and a precursor of pyrrolidone, a monomer of nylon 4. GABA can be biosynthesized through the decarboxylation of L: -glutamate by glutamate decarboxylase. In this study, the effects of glutamate decarboxylase (gadA, gadB), glutamate/GABA antiporter (gadC) and GABA aminotransferase (gabT) on GABA production were investigated in Escherichia coli. Glutamate decarboxylase was overexpressed alone or with the glutamate/GABA antiporter to enhance GABA synthesis. GABA aminotransferase, which redirects GABA into the TCA cycle, was knock-out mutated. When gadB and gadC were co-overexpressed in the gabT mutant strain, a final GABA concentration of 5.46 g/l was obtained from 10 g/l of monosodium glutamate (MSG), which corresponded to a GABA yield of 89.5%.

  8. Partial purification and characterization of the short-chain prenyltransferases, gernayl diphospate synthase and farnesyl diphosphate synthase, from Abies grandis (grand fir).

    PubMed

    Tholl, D; Croteau, R; Gershenzon, J

    2001-02-15

    In the conifer Abies grandis (grand fir), a secreted oleoresin rich in mono-, sesqui-, and diterpenes serves as a constitutive and induced defense against insects and pathogenic fungi. Geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) synthase, two enzymes which form the principal precursors of the oleoresin mono- and sesquiterpenes, were isolated from the stems of 2-year-old grand fir saplings. These enzymes were partially purified by sequential chromatography on DEAE-Sepharose, Mono-Q, and phenyl-Sepharose to remove competing phosphohydrolase and isopentenyl diphosphate (IPP) isomerase activities. GPP and FPP synthase formed GPP and E,E-FPP, respectively, as the sole products of the enzymatic condensation of IPP and dimethylallyl diphosphate (DMAPP). The properties of both enzymes are broadly similar to those of other prenyltransferases. The apparent native molecular masses are 54 +/- 3 kDa for GPP synthase and 110 +/- 6 kDa fo

  9. Trehalose Phosphate Synthesis in Streptomyces hygroscopicus: Purification of Guanosine Diphosphate d-Glucose: d-Glucose-6-Phosphate 1-Glucosyl-Transferase

    PubMed Central

    Elbein, Alan D.

    1968-01-01

    Guanosine diphosphate d-glucose:d-glucose-6-phosphate 1-glucosyl-transferase was purified approximately 100-fold from extracts of Streptomyces hygroscopicus. The purified enzyme catalyzed the transfer of glucose from guanosine diphosphate-d-glucose to glucose-6-phosphate to form trehalose phosphate and guanosine diphosphate. The enzyme was specific for these two substrates and was stimulated by the addition of magnesium ions. The product was characterized as α-α-trehalose-6-phosphate by its physical and chemical properties. The enzyme was present in a large number of Streptomyces species, suggesting that this group of organisms synthesized trehalose phosphate in a unique manner. This enzyme was not detected in fungi, since these organisms utilized uridine diphosphate-d-glucose as the glucosyl donor. PMID:5726304

  10. Cloning, expression and characterization of the ornithine decarboxylase gene from Dictyostelium discoideum.

    PubMed

    Kumar, Rishikesh; Rafia, Sheikh; Saran, Shweta

    2014-01-01

    Ornithine decarboxylase (ODC) is a rate limiting enzyme in polyamine synthesis that decarboxylates ornithine to form the diamine putrescine. We report here the isolation, expression and characterization of a homolog of ODC from Dictyostelium discoideum. DdODC is conserved and shows sequence and structural homology with that from human. Both ODC transcript and protein are expressed at all stages of development and show high expression in prestalk/stalk cells. It is cytosolic and predominantly perinuclear in localization. Both overexpression of DdODC and putrescine treatment resulted in inhibition of cell proliferation. PMID:25896203

  11. Fusion of pyruvate decarboxylase and alcohol dehydrogenase increases ethanol production in Escherichia coli.

    PubMed

    Lewicka, Aleksandra J; Lyczakowski, Jan J; Blackhurst, Gavin; Pashkuleva, Christiana; Rothschild-Mancinelli, Kyle; Tautvaišas, Dainius; Thornton, Harry; Villanueva, Hugo; Xiao, Weike; Slikas, Justinas; Horsfall, Louise; Elfick, Alistair; French, Christopher

    2014-12-19

    Ethanol is an important biofuel. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) increases ethanol production in Escherichia coli. A fusion of PDC and ADH was generated and expressed in E. coli. The fusion enzyme was demonstrated to possess both activities. AdhB activity was significantly lower when fused to PDC than when the two enzymes were expressed separately. However, cells expressing the fusion protein generated ethanol more rapidly and to higher levels than cells coexpressing Pdc and AdhB, suggesting a specific rate enhancement due to the fusion of the two enzymes.

  12. Alternating skew deviation in association with anti-glutamic acid decarboxylase antibodies

    PubMed Central

    Farooq, Asim V.; Soin, Ketki; Moss, Heather E.

    2015-01-01

    The presence of an elevated anti-glutamic acid decarboxylase (GAD) antibody level has been associated with a number of eye movement abnormalities, as well as other findings including cerebellar ataxia and insulin dependent diabetes mellitus. Skew deviation in association with anti-GAD antibodies has not been previously reported. Here we report a case of alternating skew deviation along with cerebellar-brainstem signs in a patient with an elevated anti-GAD antibody titer. Follow-up neurologic evaluation after treatment with intravenous immunoglobulin revealed improvement in cerebellar-brainstem signs, while ophthalmic evaluation was stable. PMID:26594078

  13. Endogenous Inactivators of Arginase, l-Arginine Decarboxylase, and Agmatine Amidinohydrolase in Evernia prunastri Thallus 1

    PubMed Central

    Legaz, María Estrella; Vicente, Carlos

    1983-01-01

    Arginase (EC 3.5.3.1), l-arginine decarboxylase (EC 4.1.1.19), and agmatine amidinohydrolase (EC 3.5.3.11) activities spontaneously decay in Evernia prunastri thalli incubated on 40 millimolar l-arginine used as inducer of the three enzymes if dithiothreitol is not added to the media. Lichen thalli accumulate both chloroatranorin and evernic acid in parallel to the loss of activity. These substances behave as inactivators of the enzymes at a range of concentrations between 2 and 20 micromolar, whereas several concentrations of dithiothreitol reverse, to some extent, the in vitro inactivation. PMID:16662821

  14. Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase.

    PubMed

    Turner, Glenn W; Croteau, Rodney

    2004-12-01

    We present immunocytochemical localizations of four enzymes involved in p-menthane monoterpene biosynthesis in mint: the large and small subunits of peppermint (Mentha x piperita) geranyl diphosphate synthase, spearmint (Mentha spicata) (-)-(4S)-limonene-6-hydroxylase, peppermint (-)-trans-isopiperitenol dehydrogenase, and peppermint (+)-pulegone reductase. All were localized to the secretory cells of peltate glandular trichomes with abundant labeling corresponding to the secretory phase of gland development. Immunogold labeling of geranyl diphosphate synthase occurred within secretory cell leucoplasts, (-)-4S-limonene-6-hydroxylase labeling was associated with gland cell endoplasmic reticulum, (-)-trans-isopiperitenol dehydrogenase labeling was restricted to secretory cell mitochondria, while (+)-pulegone reductase labeling occurred only in secretory cell cytoplasm. We discuss this pathway compartmentalization in relation to possible mechanisms for the intracellular movement of monoterpene metabolites, and for monoterpene secretion into the extracellular essential oil storage cavity.

  15. Lipophilic Bisphosphonates as Dual Farnesyl/Geranylgeranyl Diphosphate Synthase Inhibitors: An X-ray and NMR Investigation

    SciTech Connect

    Zhang, Y.; Cao, R; Yin, F; Hudock, M; Guo, R; Song, Y; No, J; Bergan, K; Leon, A; et al,

    2009-01-01

    Considerable effort has focused on the development of selective protein farnesyl transferase (FTase) and protein geranylgeranyl transferase (GGTase) inhibitors as cancer chemotherapeutics. Here, we report a new strategy for anticancer therapeutic agents involving inhibition of farnesyl diphosphate synthase (FPPS) and geranylgeranyl diphosphate synthase (GGPPS), the two enzymes upstream of FTase and GGTase, by lipophilic bisphosphonates. Due to dual site targeting and decreased polarity, the compounds have activities far greater than do current bisphosphonate drugs in inhibiting tumor cell growth and invasiveness, both in vitro and in vivo. We explore how these compounds inhibit cell growth and how cell activity can be predicted based on enzyme inhibition data, and using X-ray diffraction, solid state NMR, and isothermal titration calorimetry, we show how these compounds bind to FPPS and/or GGPPS.

  16. Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate.

    PubMed

    Gutensohn, Michael; Nguyen, Thuong T H; McMahon, Richard D; Kaplan, Ian; Pichersky, Eran; Dudareva, Natalia

    2014-07-01

    Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism.

  17. Polyamine formation by arginine decarboxylase as a transducer of hormonal, environmental and stress stimuli in higher plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.

    1982-01-01

    Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.

  18. Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway

    PubMed Central

    Su, Ping; Tong, Yuru; Cheng, Qiqing; Hu, Yating; Zhang, Meng; Yang, Jian; Teng, Zhongqiu; Gao, Wei; Huang, Luqi

    2016-01-01

    Salvia miltiorrhiza Bunge is highly valued in traditional Chinese medicine for its roots and rhizomes. Its bioactive diterpenoid tanshinones have been reported to have many pharmaceutical activities, including antibacterial, anti-inflammatory, and anticancer properties. Previous studies found four different diterpenoid biosynthetic pathways from the universal diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate (GGPP) in S. miltiorrhiza. Here, we describe the functional characterization of ent-copalyl diphosphate synthase (SmCPSent), kaurene synthase (SmKS) and kaurene oxidase (SmKO) in the gibberellin (GA) biosynthetic pathway. SmCPSent catalyzes the cyclization of GGPP to ent-copalyl diphosphate (ent-CPP), which is converted to ent-kaurene by SmKS. Then, SmKO catalyzes the three-step oxidation of ent-kaurene to ent-kaurenoic acid. Our results show that the fused enzyme SmKS-SmCPSent increases ent-kaurene production by several fold compared with separate expression of SmCPSent and SmKS in yeast strains. In this study, we clarify the GA biosynthetic pathway from GGPP to ent-kaurenoic acid and provide a foundation for further characterization of the subsequent enzymes involved in this pathway. These insights may allow for better growth and the improved accumulation of bioactive tanshinones in S. miltiorrhiza through the regulation of the expression of these genes during developmental processes. PMID:26971881

  19. Analysis of ubiquinones, dolichols, and dolichol diphosphate-oligosaccharides by liquid chromatography-electrospray ionization-mass spectrometry.

    PubMed

    Garrett, Teresa A; Guan, Ziqiang; Raetz, Christian R H

    2007-01-01

    Prenols, a class of lipids formed by the condensation of five carbon isoprenoids, have important roles in numerous metabolic pathways of the eukaryotic cell. Prenols are found in the cell as free alcohols, such as dolichol, or can be attached to vitamins, as with the fat soluble vitamins. In addition, prenols such as farnesyl- and geranylgeranyl-diphosphate are substrates for the transfer of farnesyl and geranylgeranyl units to proteins with important implications for signal transduction within the cell. Dolichol phosphate- and dolichol diphosphate-linked sugars are central to the formation of the lipid-linked branched oligosaccharide, Dol-PP-(GlcNAc)2(Man)9(Glc)3, used for co-translational en bloc protein N-glycosylation in the lumen of the endoplasmic reticulum. Toward furthering our understanding of the role of prenol lipids in the cell, we have developed a method for the detection and quantification of dolichol and coenzyme Q by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). These methods, developed using the mouse macrophage RAW 264.7 tumor cells, are broadly applicable to other cell lines, tissues, bacteria, and yeast. We also present a new MS-based method for the detection and structural characterization of the intact dolichol diphosphate oligosaccharide Dol-PP-(GlcNAc)2 (Man)9(Glc)3 from porcine pancreas.

  20. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis.

    PubMed

    Dong, Ting; Xu, Zheng-Yi; Park, Youngmin; Kim, Dae Heon; Lee, Yongjik; Hwang, Inhwan

    2014-05-01

    The phytohormone abscisic acid (ABA) is crucial for plant growth and adaptive responses to various stress conditions. Plants continuously adjust the ABA level to meet physiological needs, but how ABA homeostasis occurs is not fully understood. This study provides evidence that UGT71B6, an ABA uridine diphosphate glucosyltransferase (UGT), and its two closely related homologs, UGT71B7 and UGT71B8, play crucial roles in ABA homeostasis and in adaptation to dehydration, osmotic stress, and high-salinity stresses in Arabidopsis (Arabidopsis thaliana). UGT RNA interference plants that had low levels of these three UGT transcripts displayed hypersensitivity to exogenous ABA and high-salt conditions during germination and exhibited a defect in plant growth. However, the ectopic expression of UGT71B6 in the atbg1 (for β-glucosidase) mutant background aggravated the ABA-deficient phenotype of atbg1 mutant plants. In addition, modulation of the expression of the three UGTs affects the expression of CYP707A1 to CYP707A4, which encode ABA 8'-hydroxylases; four CYP707As were expressed at higher levels in the UGT RNA interference plants but at lower levels in the UGT71B6:GFP-overexpressing plants. Based on these data, this study proposes that UGT71B6 and its two homologs play a critical role in ABA homeostasis by converting active ABA to an inactive form (abscisic acid-glucose ester) depending on intrinsic cellular and environmental conditions in plants. PMID:24676855

  1. Solubility of triuranyl diphosphate tetrahydrate (TDT) and Na autunite at 23 and 50 degrees C

    SciTech Connect

    Armstrong, Christopher R.; Felmy, Andrew R.; Clark, Sue B.

    2010-11-01

    In this report we present experimental solubility data for well-characterized triuranyl diphosphate tetrahydrate (TDT: (UO2)(3)(PO4)(2)center dot 4H(2)O) and Na autunite (Na[UO2PO4]center dot xH(2)O) at 23 and 50 degrees C in NaClO4-HClO4 solutions at pC(H+) = 2. Duplicate samples of TDT in 0.1, 0.5, 1.0, 2.0 and 5.0 in solutions were equilibrated at 23 and 50 degrees C. TDT solid was synthesized and characterized with ICP-OES, ATR-IR and powder XRD before and after solubility experiments. The pH of the suspensions were monitored throughout the experiments. Equilibrium was achieved from undersaturation with respect to TDT and oversaturation for Na autunite. Steady-state conditions were achieved in all cases within 82 d. TDT was unstable at ionic strengths above 0.1 m, where its complete conversion to Na autunite was observed. The ion-interaction model was used to interpret the experimental solubility data. The solubility product, log K-sp, for TDT was determined to be -49.7 and -51.3 at 23 and 50 degrees C respectively. log K for Na autunite was determined to be -24.4 (23 degrees C) and -24.1 +/- 0.2 (50 degrees C).

  2. Fibrillin 5 Is Essential for Plastoquinone-9 Biosynthesis by Binding to Solanesyl Diphosphate Synthases in Arabidopsis

    PubMed Central

    Kim, Eun-Ha; Lee, Yongjik

    2015-01-01

    Fibrillins are lipid-associated proteins in plastids and are ubiquitous in plants. They accumulate in chromoplasts and sequester carotenoids during the development of flowers and fruits. However, little is known about the functions of fibrillins in leaf tissues. Here, we identified fibrillin 5 (FBN5), which is essential for plastoquinone-9 (PQ-9) biosynthesis in Arabidopsis thaliana. Homozygous fbn5-1 mutations were seedling-lethal, and XVE:FBN5-B transgenic plants expressing low levels of FBN5-B had a slower growth rate and were smaller than wild-type plants. In chloroplasts, FBN5-B specifically interacted with solanesyl diphosphate synthases (SPSs) 1 and 2, which biosynthesize the solanesyl moiety of PQ-9. Plants containing defective FBN5-B accumulated less PQ-9 and its cyclized product, plastochromanol-8, but the levels of tocopherols were not affected. The reduced PQ-9 content of XVE:FBN5-B transgenic plants was consistent with their lower photosynthetic performance and higher levels of hydrogen peroxide under cold stress. These results indicate that FBN5-B is required for PQ-9 biosynthesis through its interaction with SPS. Our study adds FBN5 as a structural component involved in the biosynthesis of PQ-9. FBN5 binding to the hydrophobic solanesyl moiety, which is generated by SPS1 and SPS2, in FBN5-B/SPS homodimeric complexes stimulates the enzyme activity of SPS1 and SPS2. PMID:26432861

  3. Structure of Mycobacterium tuberculosis nucleoside diphosphate kinase R80N mutant in complex with citrate

    PubMed Central

    Georgescauld, Florian; Moynié, Lucile; Habersetzer, Johann; Dautant, Alain

    2014-01-01

    The crystal structure of the wild-type nucleoside diphosphate kinase from Mycobacterium tuberculosis at 2.6 Å resolution revealed that the intersubunit salt bridge Arg80–Asp93 contributes to the thermal stability of the hexamer (T m = 76°C). On mutating Asp93 to Asn to break the salt bridge, the thermal stability dramatically decreased by 27.6°C. Here, on mutating Arg80 to Asn, the thermal stability also significantly decreased by 8.0°C. In the X-ray structure of the R80N mutant solved at 1.9 Å resolution the salt bridge was replaced by intersubunit hydrogen bonds that contribute to the thermal stability of the hexamer. A citrate anion from the crystallization buffer was bound at the bottom of the nucleotide-binding site via electrostatic and hydrogen-bonding interactions with six conserved residues involved in nucleotide binding. Structural analysis shows that the citrate is present at the location of the nucleotide phosphate groups. PMID:24419614

  4. Fructose-1,6-diphosphate: potential protection in cyclosporine-induced renal impairment.

    PubMed

    Cardoso, L R; Santos, O F; Boim, M A; Barros, E G; Ajzen, H; Schor, N

    1996-01-01

    There is evidence that fructose-1,6-diphosphate (FDP) provides protection from hepatic and cardiac toxic-induced damage and ischemic renal insult. To determine if FDP also protects against cyclosporine (CsA)-induced nephrotoxicity, two groups of adult male Wistar rats were studied for whole kidney clearance rates. After two initial control periods, group 1 received only CsA (CsA, n = 8). Group 2 received FDP 350 mg/kg, followed by CsA 50 mg/kg (FDP-CsA, n = 6). In both groups, after a 30-min equilibration period, two additional clearance rates were measured (Post 1 and Post 2). A significant reduction in clearance rates was observed after drug infusion in both groups (approximately 58 and 64% in CsA and FDP-CsA groups, respectively, p < 0.05) with a recovery to control values in the Post 2 period in the FDP-CsA group. These data suggest a protective effect of FDP on CsA-induced renal impairment. PMID:8903863

  5. Regulation of uridine diphosphate-glucuronosyltransferase 1A3 activity by protein phosphorylation.

    PubMed

    Xiao, Yongsheng; Yao, Yan; Jiang, Huidi; Lu, Chuan; Zeng, Su; Yu, Lushan

    2015-11-01

    Protein phosphorylation is a vital post-translational modification. This study investigated the effect of phosphorylation on human uridine diphosphate (UDP)-glucuronosyltransferase 1A3 (UGT1A3) activity. Curcumin and calphostin C suppressed the activity and phosphorylation of recombinant UGT1A3 expressed in Sf9 cells. These results indicate that UGT1A3 undergoes phosphorylation, which is required for its catalytic activity. Calphostin C is a highly specific protein kinase C (PKC) inhibitor, so three predicted PKC phosphorylation sites in UGT1A3 were examined. Site-directed mutation analysis at residues 28, 43 and 436 (from serine to glycine) was conducted. Compared with the wild-type, the S43G-mutant showed significantly decreased UGT1A3 catalytic activity. Furthermore, the UGT1A3 activity of wild-type and S43G-mutant was down-regulated by calphostin C, whereas the calphostin C inhibitory effect was much weaker on the S43G-mutant than the wild-type. In conclusion, phosphorylation plays an important role in UGT1A3 activity, and the serine at site 43 in UGT1A3 is most likely a phosphorylation site. PMID:26094731

  6. Evaluation of serum nucleoside diphosphate kinase A for the detection of colorectal cancer

    PubMed Central

    Otero-Estévez, Olalla; De Chiara, Loretta; Barcia-Castro, Leticia; Páez de la Cadena, María; Rodríguez-Berrocal, Francisco Javier; Cubiella, Joaquín; Hernández, Vicent; Martínez-Zorzano, Vicenta Soledad

    2016-01-01

    We previously described the over-expression of nucleoside diphosphate kinase A (NDKA) in tumours and serum from colorectal cancer (CRC) patients, suggesting its use as biomarker. In this study we evaluated the diagnostic accuracy of serum NDKA to detect advanced neoplasia (CRC or advanced adenomas). Furthermore, the performance of NDKA was compared with the faecal immunochemical test (FIT). The study population included a case-control cohort and a screening cohort (511 asymptomatic first-degree relatives of CRC patients that underwent a colonoscopy and a FIT). Serum NDKA was elevated in CRC patients in the case-control cohort (p = 0.002). In the screening cohort, NDKA levels were higher for advanced adenomas (p = 0.010) and advanced neoplasia (p = 0.006) compared to no neoplasia. Moreover, elevated NDKA was associated with severe characteristics of adenomas (≥3 lesions, size ≥ 1 cm or villous component). Setting specificity to 85%, NDKA showed a sensitivity of 30.19% and 29.82% for advanced adenomas and advanced neoplasia, respectively. NDKA combined with FIT (100 ng/mL cut-off) detected advanced adenomas and advanced neoplasia with 45.28% and 49.12% sensitivity, with specificity close to 90%. The combination of serum NDKA and FIT can improve the detection of advanced neoplasia, mainly for lesions located on the proximal colon, in asymptomatic individuals with CRC family-risk. PMID:27222072

  7. A new lithium vanadyl diphosphate Li 2VOP 2O 7: Synthesis and electrochemical study

    NASA Astrophysics Data System (ADS)

    Kishore, M. Satya; Pralong, V.; Caignaert, V.; Varadaraju, U. V.; Raveau, B.

    2008-10-01

    A new vanadium diphosphate, Li 2VOP 2O 7, has been synthesized by ion exchange from Na 2VOP 2O 7, using an eutectic mixture of {0.4LiOH·H 2O-0.6LiNO 3} at 200 °C. It crystallizes in space group P2 1/ c, with the lattice parameters a = 7.4674(8) Å, b = 12.442(2) Å, c = 6.2105(7) Å and β = 97.79(1)°. The crystal structure of Li 2VOP 2O 7, refined by powder X-ray diffraction data, shows that the structure of the parent Na-phase is retained but a prominent decrease in the layer spacing is observed. Li 2VOP 2O 7 has been tested as a cathode material for Li-ion battery. One lithium is deintercalated by charging to 4.6 V, however, on discharge only about 0.5 Li is re-intercalated.

  8. Cloning and sequence analysis of the Blumea balsamifera DC farnesyl diphosphate synthase gene.

    PubMed

    Pang, Y X; Guan, L L; Wu, L F; Chen, Z X; Wang, K; Xie, X L; Yu, F L; Chen, X L; Zhang, Y B; Jiang, Q

    2014-01-01

    Blumea balsamifera DC is a member of the Compositae family and is frequently used as traditional Chinese medicine. Blumea balsamifera is rich in monoterpenes, which possess a variety of pharmacological activities, such as antioxidant, anti-bacteria, and anti-viral activities. Farnesyl diphosphate synthase (FPS) is a key enzyme in the biosynthetic pathway of terpenes, playing an important regulatory role in plant growth, such as resistance and secondary metabolism. Based on the conserved oligo amino acid residues of published FPS genes from other higher plant species, a cDNA sequence, designated BbFPS, was isolated from B. balsamifera DC using polymerase chain reaction. The clones were an average of 1.6 kb and contained an open reading frame that predicted a polypeptide of 342 amino acids with 89.07% identity to FPS from other plants. The deduced amino acid sequence was dominated by hydrophobic regions and contained 2 highly conserved DDxxD motifs that are essential for proper functioning of FPS. Phylogenetic analysis indicated that FPS grouped with other composite families. Prediction of secondary structure and subcellular localization suggested that alpha helices made up 70% of the amino acids of the sequence. PMID:25501197

  9. Inhibition of poly(adenosine diphosphate-ribose) polymerase using quinazolinone nucleus.

    PubMed

    Hemalatha, K; Madhumitha, G

    2016-09-01

    Poly(adenosine diphosphate-ribose) polymerase (PARP) is a group of enzymes with several subtypes and it manages various ailment such as cancer, inflammatory disorders, diabetes mellitus, neuronal injury, HIV infection, Parkinsonism, aging, and ischemia-reperfusion injury. Various PARP inhibitors share a common property of bicyclic lactam in its main structural frame. The core moiety containing bicyclic lactam rings are isoquinolinones, dihydroisoquinolinones, quinazolinediones, phthalazinones, quinazolinones, and phenanthridones. The quinazolinone with diverse substituents displayed low nanomolar inhibition. Quinazolinone is an important and vital molecule in the field of medicinal chemistry possessing multitude pharmacological actions. Though the chemistry of quinazolinones has been discussed through centuries, its concise role on PARP inhibition needed a special consideration. The aim of this review is to discover the effect of quinazolinone substitutents and its role in PARP inhibition. This precise review will discuss the effect of quinazolinones on PARP subtypes such as PARP-1, PARP-2, PARP-5a, and PARP-5b. In addition to its pharmacological actions, PARP inhibitors can also act as a chemosensitizing agent, and it is used in combination with the other anticancer agents. This summarization will definitely be a supportive report for the scientist working toward the novelty in the quinazolinone nucleus and its role in PARP inhibition. PMID:27470142

  10. In vitro synthesis and characterization of guanosine 3',5'-bis(diphosphate).

    PubMed

    Hardiman, Timo; Windeisen, Volker; Ewald, Jennifer C; Zibek, Susanne; Schlack, Petra; Rebell, Jochen; Reuss, Matthias; Siemann-Herzberg, Martin

    2008-12-15

    The intracellular alarmone guanosine 3',5'-bis(diphosphate) (ppGpp) has been thoroughly investigated over the past 40 years and has become one of the best-known effectors in bacterial physiology. ppGpp is also of great importance for biotechnological applications. Systems biology research, involving experimental and mathematical approaches, has contributed a great deal to uncovering the alarmone's complex regulatory effects. HPLC analysis and UV detection are used to quantify intracellular ppGpp. The samples analyzed also contain other phosphorylated guanine nucleotides and, therefore, are spiked with a standard ppGpp solution. A rapidly growing number of laboratories are turning to synthesizing the nucleotide in vitro involving time-consuming protocols and yielding only low amounts of ppGpp. The current article provides a protocol for the preparation of large quantities of a ribosome extract that contains high ppGpp synthesis activity. The demonstrated upscaling from shaking flask to bioreactor cultivation involves the continuous and refrigerated harvest of the biomass. (13)C NMR analysis enabled the structural characterization of the synthesis product and was complemented by mass spectrometry and methods that are commonly used to identify ppGpp.

  11. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase

    PubMed Central

    Farha, Maya A.; Czarny, Tomasz L.; Myers, Cullen L.; Worrall, Liam J.; French, Shawn; Conrady, Deborah G.; Wang, Yang; Oldfield, Eric; Strynadka, Natalie C. J.; Brown, Eric D.

    2015-01-01

    Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery. PMID:26283394

  12. Ribulose Diphosphate Carboxylase from Freshly Ruptured Spinach Chloroplasts Having an in Vivo Km[CO(2)].

    PubMed

    Bahr, J T; Jensen, R G

    1974-01-01

    The properties of a form of ribulose diphosphate carboxylase having a high affinity for CO(2) have been studied. Its apparent Km(HCO(3) (-)) of 0.5 to 0.8 mm (pH 7.8) and calculated Km(CO(2)) of 11 to 18 mum are comparable to the values exhibited by intact chloroplasts during photosynthesis. This form of the enzyme was released from chloroplasts in hypotonic media and was unstable, rapidly converting to a form having a high Km(HCO(3) (-)) of 20 to 25 mm similar to that for the purified enzyme. Incubation of the enzyme with MgCl(2) and HCO(3) (-) yielded a third form with an intermediate Km(HCO(3) (-)) of 2.5 to 3.0 mm.The low Km form had sufficient activity both at air levels of CO(2) and at saturating CO(2) to account for the rates of photosynthesis by intact chloroplasts. The low Km form could be stabilized in the presence of ribose 5-phosphate, adenosine triphosphate, and MgCl(2), at low temperatures for up to 2 hours.

  13. Antagonism screen for inhibitors of bacterial cell wall biogenesis uncovers an inhibitor of undecaprenyl diphosphate synthase.

    PubMed

    Farha, Maya A; Czarny, Tomasz L; Myers, Cullen L; Worrall, Liam J; French, Shawn; Conrady, Deborah G; Wang, Yang; Oldfield, Eric; Strynadka, Natalie C J; Brown, Eric D

    2015-09-01

    Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery. PMID:26283394

  14. A Small-Molecule Screening Platform for the Discovery of Inhibitors of Undecaprenyl Diphosphate Synthase.

    PubMed

    Czarny, Tomasz L; Brown, Eric D

    2016-07-01

    The bacterial cell wall has long been a celebrated target for antibacterial drug discovery due to its critical nature in bacteria and absence in mammalian systems. At the heart of the cell wall biosynthetic pathway lies undecaprenyl phosphate (Und-P), the lipid-linked carrier upon which the bacterial cell wall is built. This study exploits recent insights into the link between late-stage wall teichoic acid inhibition and Und-P production, in Gram-positive organisms, to develop a cell-based small-molecule screening platform that enriches for inhibitors of undecaprenyl diphosphate synthase (UppS). Screening a chemical collection of 142,000 small molecules resulted in the identification of 6 new inhibitors of UppS. To date, inhibitors of UppS have generally shown off-target effects on membrane potential due to their physical-chemical characteristics. We demonstrate that MAC-0547630, one of the six inhibitors identified, exhibits selective, nanomolar inhibition against UppS without off-target effects on membrane potential. Such characteristics make it a unique chemical probe for exploring the inhibition of UppS in bacterial cell systems. PMID:27626101

  15. Enhanced poly(adenosine diphosphate ribose) polymerase activity and gene expression in Ewing's sarcoma cells

    SciTech Connect

    Prasad, S.C.; Thraves, P.J.; Bhatia, K.G.; Smulson, M.E.; Dritschilo, A. )

    1990-01-01

    Ewing's sarcoma (ES) is a highly malignant childhood bone tumor and is considered curable by moderate doses of radiotherapy. The addition of chemical inhibitors of the activity of the nuclear enzyme poly(adenosine diphosphate ribose) (poly(ADPR)) polymerase to ES cells in culture results in increased cell killing, a phenomenon called inhibitor sensitization. Since poly(ADPR) polymerase is thought to be associated with DNA repair, it has been suggested that ES cells and other inhibitor-sensitized cells may have a reduced capacity for polymer synthesis resulting in deficient postirradiation recovery. We present here the unexpected observation that in comparison to other cell lines tested, ES cells exhibit a high enzyme activity, higher constitutive levels of the protein, and elevated levels of its mRNA transcript for poly(ADPR) polymerase. No gross amplifications or rearrangements of the gene were observed; however, regulation of poly(ADPR) polymerase in these tumor cells takes place at the level of the gene transcript.

  16. Isotope effect studies of the pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii

    SciTech Connect

    Abell, L.M.; O'Leary, M.H.

    1988-08-09

    The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9770 +/- 0.0021, a carbon isotope effect k/sup 12//k/sup 13/ = 1.0308 +/- 0.0006, and a carbon isotope effect for L-(..cap alpha..-/sup 2/H)histidine of 1.0333 +/- 0.0001 at pH 6.3, 37/sup 0/C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli, the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken.

  17. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase.

    PubMed

    Taylor, Nicolas L; Day, David A; Millar, A Harvey

    2002-11-01

    A cytotoxic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), rapidly inhibited glycine, malate/pyruvate, and 2-oxoglutarate-dependent O2 consumption by pea leaf mitochondria. Dose- and time-dependence of inhibition showed that glycine oxidation was the most severely affected with a K(0.5) of 30 microm. Several mitochondrial proteins containing lipoic acid moieties differentially lost their reactivity to a lipoic acid antibody following HNE treatment. The most dramatic loss of antigenicity was seen with the 17-kDa glycine decarboxylase complex (GDC) H-protein, which was correlated with the loss of glycine-dependent O2 consumption. Paraquat treatment of pea seedlings induced lipid peroxidation, which resulted in the rapid loss of glycine-dependent respiration and loss of H-protein reactivity with lipoic acid antibodies. Pea plants exposed to chilling and water deficit responded similarly. In contrast, the damage to other lipoic acid-containing mitochondrial enzymes was minor under these conditions. The implication of the acute sensitivity of glycine decarboxylase complex H-protein to lipid peroxidation products is discussed in the context of photorespiration and potential repair mechanisms in plant mitochondria.

  18. The effective molarity of the substrate phosphoryl group in the transition state for yeast OMP decarboxylase.

    PubMed

    Sievers, Annette; Wolfenden, Richard

    2005-02-01

    The second order rate constant (k(cat)/K(m)) for decarboxylation of orotidine by yeast OMP decarboxylase (ODCase), measured by trapping (14)CO(2) released during the reaction, is 2 x 10(-4)M(-1)s(-1). This very low activity may be compared with a value of 3 x 10(7)M(-1)s(-1) for the action of yeast OMP decarboxylase on the normal substrate OMP. Both activities are strongly inhibited by 6-hydroxy UMP (BMP), and abrogated by mutation of Asp-96 to alanine. These results, in conjunction with the binding affinity of inorganic phosphate as a competitive inhibitor (K(i)=7 x 10(-4)M), imply an effective concentration of 1.1 x 10(9)M for the substrate phosphoryl group in stabilizing the transition state for enzymatic decarboxylation of OMP. The observed difference in rate (1.5 x 10(11)-fold) is the largest effect of a simple substituent that appears to have been reported for an enzyme reaction.

  19. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.

    PubMed

    Lee, Won-Heong; Seo, Seung-Oh; Bae, Yi-Hyun; Nan, Hong; Jin, Yong-Su; Seo, Jin-Ho

    2012-11-01

    Engineering of Saccharomyces cerevisiae to produce advanced biofuels such as isobutanol has received much attention because this yeast has a natural capacity to produce higher alcohols. In this study, construction of isobutanol production systems was attempted by overexpression of effective 2-keto acid decarboxylase (KDC) and combinatorial overexpression of valine biosynthetic enzymes in S. cerevisiae D452-2. Among the six putative KDC enzymes from various microorganisms, 2-ketoisovalerate decarboxylase (Kivd) from L. lactis subsp. lactis KACC 13877 was identified as the most suitable KDC for isobutanol production in the yeast. Isobutanol production by the engineered S. cerevisiae was assessed in micro-aerobic batch fermentations using glucose as a sole carbon source. 93 mg/L isobutanol was produced in the Kivd overexpressing strain, which corresponds to a fourfold improvement as compared with the control strain. Isobutanol production was further enhanced to 151 mg/L by additional overexpression of acetolactate synthase (Ilv2p), acetohydroxyacid reductoisomerase (Ilv5p), and dihydroxyacid dehydratase (Ilv3p) in the cytosol.

  20. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    SciTech Connect

    Han, Q.; Ding, H; Robinson, H; Christensen, B; Li, J

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  1. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved. PMID:26588105

  2. A glutamic acid decarboxylase (CgGAD) highly expressed in hemocytes of Pacific oyster Crassostrea gigas.

    PubMed

    Li, Meijia; Wang, Lingling; Qiu, Limei; Wang, Weilin; Xin, Lusheng; Xu, Jiachao; Wang, Hao; Song, Linsheng

    2016-10-01

    Glutamic acid decarboxylase (GAD), a rate-limiting enzyme to catalyze the reaction converting the excitatory neurotransmitter glutamate to inhibitory neurotransmitter γ-aminobutyric acid (GABA), not only functions in nervous system, but also plays important roles in immunomodulation in vertebrates. However, GAD has rarely been reported in invertebrates, and never in molluscs. In the present study, one GAD homologue (designed as CgGAD) was identified from Pacific oyster Crassostrea gigas. The full length cDNA of CgGAD was 1689 bp encoding a polypeptide of 562 amino acids containing a conserved pyridoxal-dependent decarboxylase domain. CgGAD mRNA and protein could be detected in ganglion and hemocytes of oysters, and their abundance in hemocytes was unexpectedly much higher than those in ganglion. More importantly, CgGAD was mostly located in those granulocytes without phagocytic capacity in oysters, and could dynamically respond to LPS stimulation. Further, after being transfected into HEK293 cells, CgGAD could promote the production of GABA. Collectively, these findings suggested that CgGAD, as a GABA synthase and molecular marker of GABAergic system, was mainly distributed in hemocytes and ganglion and involved in neuroendocrine-immune regulation network in oysters, which also provided a novel insight to the co-evolution between nervous system and immune system. PMID:27208883

  3. The hydratase activity of malonate semialdehyde decarboxylase: mechanistic and evolutionary implications.

    PubMed

    Poelarends, Gerrit J; Serrano, Hector; Johnson, William H; Hoffman, David W; Whitman, Christian P

    2004-12-01

    Malonate semialdehyde decarboxylase (MSAD) is a member of the tautomerase superfamily, a group of structurally homologous proteins that have a characteristic beta-alpha-beta-fold and a catalytic amino-terminal proline. In addition to its physiological decarboxylase activity, the conversion of malonate semialdehyde to acetaldehyde and carbon dioxide, the enzyme has now been found to display a promiscuous hydratase activity, converting 2-oxo-3-pentynoate to acetopyruvate, with a kcat/Km value of 6.0 x 102 M-1 s-1. Pro-1 and Arg-75 are critical for both activities, and the pKa of Pro-1 was determined to be approximately 9.2 by a direct 15N NMR titration. These observations implicate a decarboxylation mechanism in which Pro-1 polarizes the carbonyl oxygen of substrate by hydrogen bonding and/or an electrostatic interaction. Arg-75 may position the carboxylate group into a favorable orientation for decarboxylation. Both the hydratase activity and the pKa value of Pro-1 are shared with trans-3-chloroacrylic acid dehalogenase, another tautomerase superfamily member that precedes MSAD in a bacterial degradation pathway for trans-1,3-dichloropropene. Hence, MSAD and CaaD could have evolved by divergent evolution from a common ancestral protein, retaining the necessary catalytic components for the conjugate addition of water.

  4. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening

    PubMed Central

    Choi, Jae-Yeon; Lawres, Lauren; Toh, Justin Y.; Voelker, Dennis R.; Ben Mamoun, Choukri

    2016-01-01

    Summary Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity PMID:26585333

  5. Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions.

    PubMed

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children. PMID:23940784

  6. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes

    PubMed Central

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  7. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes

    PubMed Central

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species. PMID:27602045

  8. Immunological Detection and Quantitation of Tryptophan Decarboxylase in Developing Catharanthus roseus Seedlings 1

    PubMed Central

    Fernandez, Jesus Alvarez; Owen, Terence G.; Kurz, Wolfgang G. W.; De Luca, Vincenzo

    1989-01-01

    l-Tryptophan decarboxylase (TDC) (EC 4.2.1.27) enzyme activity was induced in cell suspension cultures of Catharanthus roseus after treatment with a Pythium aphanidermatum elicitor preparation. The enzyme was extracted from lyophilized cells containing high levels of TDC and the protein was purified to homogeneity. The pure protein was used to produce highly specific polyclonal antibodies, and an enzyme-linked immunosorbent assay (ELISA) was developed to quantitate the level of TDC antigen during seedling development and in leaves of the mature plant. Western immunoblotting of proteins after SDS-PAGE with anti-TDC antibodies detected several immunoreactive proteins (40, 44, 54.8, 55, and 67 kilodaltons) which appeared at different stages during seedling development and in leaves of the mature plant. The major 54.8 and 55 kilodalton antigenic proteins in immunoblots appeared transiently between days 1 to 5 and 5 to 8 of seedling development, respectively. The 54.8 kilodalton protein was devoid of TDC enzyme activity, whereas the appearance of the 55 kilodalton protein coincided with the appearance of this decarboxylase activity. The minor immunoreactive proteins (40, 44, and 67 kilodaltons) appeared after day 5 of seedling development and in older leaves of the mature plant, and their relationship, if any, to TDC is presently unknown. Results suggest that the synthesis and degradation of TDC protein is highly regulated in Catharanthus roseus and that this regulation follows a preset developmental program. Images Figure 3 Figure 5 PMID:16667047

  9. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved.

  10. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    PubMed

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-02-15

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed.

  11. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    PubMed Central

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-01-01

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed. PMID:3297044

  12. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    PubMed

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species. PMID:27602045

  13. Stereochemistry of 4-carboxymuconolactone decarboxylase and muconolactone isomerase in the. beta. -ketoadipate pathway

    SciTech Connect

    Whitman, C.P.; Chari, R.V.J.; Ngai, K.L.; Kozarich, J.W.

    1986-05-01

    The protocatechuate and catechol pathways, two separate and parallel branches of the ..beta..-ketoadipate pathway in Pseudomonas putida, converge at a common intermediate - ..beta..-ketoadipate enol-lactone. The enol-lactone is generated by 4-carboxymuconolactone decarboxylase in the protocatechuate pathway while muconolactone isomerase produces it in the catechol pathway. The presence of these enzymes as well as ..beta..-carboxymuconate cycloisomerase and its substrate, ..beta..-carboxy-cis,cis-muconate, in a NMR tube, leads to the following sequence of events. Lactonization of ..beta..-carboxy-cis,cis-muconate produces 4-carboxymuconolactone which decarboxylates enzymatically with deuteration by D/sub 2/O to afford 2-(/sup 2/H)-4-ketoadipate enol-lactone - the substrate for muconolactone isomerase. Further conversion of the monodeuterated enol-lactone by muconolactone isomerase affords muconolactone which is nearly completely deuterated at the 4 position. The proton ricochets between the 2 and 4 positions with concurrent washout while in the 2 position. Based on the known absolute stereochemistry of 4-carboxymuconolactone and muconolactone, these results suggest that both the decarboxylase and isomerase proceed by syn mechanisms, but operate on opposite faces of the common enol-lactone substrate.

  14. Panobinostat synergizes with zoledronic acid in prostate cancer and multiple myeloma models by increasing ROS and modulating mevalonate and p38-MAPK pathways

    PubMed Central

    Bruzzese, F; Pucci, B; Milone, M R; Ciardiello, C; Franco, R; Chianese, M I; Rocco, M; Di Gennaro, E; Leone, A; Luciano, A; Arra, C; Santini, D; Caraglia, M; Budillon, A

    2013-01-01

    Patients with advanced prostate cancer (PCa) and multiple myeloma (MM) have limited long-term responses to available therapies. The histone deacetylase inhibitor panobinostat has shown significant preclinical and clinical anticancer activity in both hematological and solid malignancies and is currently in phase III trials for relapsed MM. Bisphosphonates (BPs), such as zoledronic acid (ZOL), inhibit osteoclast-mediated bone resorption and are indicated for the treatment of bone metastasis. BPs, including ZOL, have also shown anticancer activity in several preclinical and clinical studies. In the present report, we found a potent synergistic antiproliferative effect of panobinostat/ZOL treatment in three PCa and three MM cell lines as well as in a PCa ZOL-resistant subline, independently of p53/KRAS status, androgen dependency, or the schedule of administration. The synergistic effect was also observed in an anchorage-independent agar assay in both ZOL-sensitive and ZOL-resistant cells and was confirmed in vivo in a PCa xenograft model. The co-administration of the antioxidant N-acetyl-L-cysteine blocked the increased reactive oxygen species generation and apoptosis observed in the combination setting compared with control or single-agent treatments, suggesting that oxidative injury plays a functional role in the synergism. Proapoptotic synergy was also partially antagonized by the addition of geranyl-geraniol, which bypasses the inhibition of farnesylpyrophosphate synthase by ZOL in the mevalonate pathway, supporting the involvement of this pathway in the synergy. Finally, at the molecular level, the inhibition of basal and ZOL-induced activation of p38-MAPK by panobinostat in sensitive and ZOL-resistant cells and in tumor xenografts could explain, at least in part, the observed synergism. PMID:24157872

  15. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    PubMed

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-08-10

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.

  16. Arginine decarboxylase (ADC) and agmatinase (AGMAT): an alternative pathway for synthesis of polyamines in pig conceptuses and uteri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine, a precursor for the synthesis of nitric oxide (NO) and polyamines, is critical for implantation and development of the conceptus. We first reported that the arginine decarboxylase (ADC)/agmatinase(AGMAT) pathway as an alternative pathway for synthesis of polyamines in the ovine conceptuses...

  17. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) and 1 CFR part 51. Copies may be obtained from the National Academy Press, 2101 Constitution Ave. NW... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115...

  18. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  19. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  20. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  1. CONFIRMATIONAL IDENTIFICATION OF ESCHERICHIA COLI, A COMPARISON OF GENOTYPIC AND PHENOTYPIC ASSAYS FOR GLUTAMATE DECARBOXYLASE AND B-D-GLUCURONIDASE

    EPA Science Inventory

    Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and B-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E.coli, three major...

  2. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    PubMed

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-01-01

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene. PMID:27506494

  3. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute pharmacological inhibition of cardiac malonyl coenzyme A decarboxylase (MCD) protects the heart from ischemic damage by inhibiting fatty acid oxidation and stimulating glucose oxidation. However, it is unknown whether chronic inhibition of MCD results in altered cardiac function, energy metabo...

  4. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and... Bacillus subtilis. The food additive alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation, may be safely used in accordance with the following conditions: (a) The food additive is the enzyme...

  5. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Feng, Yang-Zheng; Regunathan, Soundar; Bissette, Garth

    2008-01-01

    Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to two hour immobilization stress daily for seven days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Likewise, endogenous agmatine levels measured by high performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92% to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism. PMID:18832001

  6. Insulin and phorbol myristic acetate induce ornithine decarboxylase in Reuber H35 rat hepatoma cells by different mechanisms.

    PubMed

    Goodman, S A; Esau, B; Koontz, J W

    1988-11-01

    Reuber H35 rat hepatoma cells respond to insulin or to tumor promoting phorbol esters with an increase in ornithine decarboxylase enzyme activity. This occurs in a time- and dose-dependent manner with both types of agonist. We report here that the increase in ornithine decarboxylase activity with optimal concentrations of both agonists is additive. Furthermore, the initial increase is dependent on continued RNA and protein synthesis. We also find that both of these agonists cause an increase in mRNA coding for ornithine decarboxylase in a time- and dose-dependent manner which suggests that the increase in enzyme activity can be accounted for by the increase in transcript levels. The difference in the time course of induction by the agonists, the additivity of induction by the two agonists, the differential sensitivity of induction to cycloheximide and RNA synthesis inhibitors, and the observation that phorbol myristic acetate causes a further increase in ornithine decarboxylase activity and transcript levels in cells already maximally induced by insulin suggest that these two agonists act through separate mechanisms.

  7. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    PubMed Central

    Zargar, K.; Saville, R.; Phelan, R. M.; Tringe, S. G.; Petzold, C. J.; Keasling, J. D.; Beller, H. R.

    2016-01-01

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene. PMID:27506494

  8. Control by Ethylene of Arginine Decarboxylase Activity in Pea Seedlings and Its Implication for Hormonal Regulation of Plant Growth 1

    PubMed Central

    Apelbaum, Akiva; Goldlust, Arie; Icekson, Isaac

    1985-01-01

    Activity of arginine decarboxylase in etiolated pea seedlings appears 24 hours after seed imbibition, reaches its highest level on the 4th day, and levels off until the 7th day. This activity was found in the apical and subapical tissue of the roots and shoots where intensive DNA synthesis occurs. Exposure of the seedlings to ethylene greatly reduced the specific activity of this enzyme. The inhibition was observed within 30 min of the hormone application, and maximal effect—90% inhibition—after 18 hours. Ethylene at physiological concentrations affected the enzyme activity; 50% inhibitory rate was recorded at 0.12 microliters per liter ethylene and maximal response at 1.2 microliters per liter. Ethylene provoked a 5-fold increase in the Kmapp of arginine decarboxylase for its substrate and reduced the Vmaxapp by 10-fold. However, the enzyme recovered from the inhibition and regained control activity 7 hours after transferral of the seedlings to ethylene-free atmosphere. Reducing the endogenous level of ethylene in the tissue by hypobaric pressure, or by exposure to light, as well as interfering with ethylene action by treatment with silver thiosulfate or 2,5-norbornadiene, caused a gradual increase in the specific activity of arginine decarboxylase in the apical tissue of the etiolated seedlings. On the basis of these findings, the possible control of arginine decarboxylase activity by endogenous ethylene, and its implication for the hormone effect on plant growth, are discussed. PMID:16664464

  9. The ornithine decarboxylase gene odc is required for alcaligin siderophore biosynthesis in Bordetella spp.: putrescine is a precursor of alcaligin.

    PubMed Central

    Brickman, T J; Armstrong, S K

    1996-01-01

    Chromosomal insertions defining Bordetella bronchiseptica siderophore phenotypic complementation group III mutants BRM3 and BRM5 were found to reside approximately 200 to 300 bp apart by restriction mapping of cloned genomic regions associated with the insertion markers. DNA hybridization analysis using B. bronchiseptica genomic DNA sequences flanking the cloned BRM3 insertion marker identified homologous Bordetella pertussis UT25 cosmids that complemented the siderophore biosynthesis defect of the group III B. bronchiseptica mutants. Subcloning and complementation analysis localized the complementing activity to a 2.8-kb B. pertussis genomic DNA region. Nucleotide sequencing identified an open reading frame predicted to encode a polypeptide exhibiting strong similarity at the primary amino acid level with several pyridoxal phosphate-dependent amino acid decarboxylases. Alcaligin production was fully restored to group III mutants by supplementation of iron-depleted culture media with putrescine (1,4-diaminobutane), consistent with defects in an ornithine decarboxylase activity required for alcaligin siderophore biosynthesis. Concordantly, the alcaligin biosynthesis defect of BRM3 was functionally complemented by the heterologous Escherichia coli speC gene encoding an ornithine decarboxylase activity. Enzyme assays confirmed that group III B. bronchiseptica siderophore-deficient mutants lack an ornithine decarboxylase activity required for the biosynthesis of alcaligin. Siderophore production by an analogous mutant of B. pertussis constructed by allelic exchange was undetectable. We propose the designation odc for the gene defined by these mutations that abrogate alcaligin siderophore production. Putrescine is an essential precursor of alcaligin in Bordetella spp. PMID:8550442

  10. The Response of Dopa Decarboxylase Activity to Variations in Gene Dosage in Drosophila: A Possible Location of the Structural Gene

    PubMed Central

    Hodgetts, Ross B.

    1975-01-01

    A location of the structural gene(s) for dopa decarboxylase (EC 4.1.1.26) is proposed on the basis of enzyme determinations in a set of duplication-bearing aneuploids, which revealed only one dosage-sensitive region in the Drosophila genome. This region lies between 36EF and 37D on the left arm of chromosome 2. PMID:1126620

  11. Chain length determination of prenyltransferases: both heteromeric subunits of medium-chain (E)-prenyl diphosphate synthase are involved in the product chain length determination.

    PubMed

    Zhang, Y W; Li, X Y; Koyama, T

    2000-10-17

    Among prenyltransferases, medium-chain (E)-prenyl diphosphate synthases are unusual because of their heterodimeric structures. The larger subunit has highly conserved regions typical of (E)-prenyltransferases. The smaller one has recently been shown to be involved in the binding of allylic substrate as well as determining the chain length of the reaction product [Zhang, Y.-W., et al. (1999) Biochemistry 38, 14638-14643]. To better understand the product chain length determination mechanism of these enzymes, several amino acid residues in the larger subunits of Micrococcus luteus B-P 26 hexaprenyl diphosphate synthase and Bacillus subtilis heptaprenyl diphosphate synthase were selected for substitutions by site-directed mutagenesis and examined by combination with the corresponding wild-type or mutated smaller subunits. Replacement of the Ala at the fifth position upstream to the first Asp-rich motif with bulky amino acids in both larger subunits resulted in shortening the chain lengths of the major products, and a double combination of mutant subunits of the heptaprenyl diphosphate synthase, I-D97A/II-A79F, yielded exclusively geranylgeranyl diphosphate. However, the combination of a mutant subunit and the wild-type, I-Y103S/II-WT or I-WT/II-I76G, produced a C(40) prenyl diphosphate, and the double combination of the mutants, I-Y103S/II-I76G, gave a reaction product with longer prenyl chain up to C(50). These results suggest that medium-chain (E)-prenyl diphosphate synthases take a novel mode for the product chain length determination, in which both subunits cooperatively participate in maintaining and determining the product specificity of each enzyme.

  12. Bacterial-injection-induced syntheses of N-beta-alanyldopamine and Dopa decarboxylase in the hemolymph of coleopteran insect, Tenebrio molitor larvae.

    PubMed

    Kim, M H; Joo, C H; Cho, M Y; Kwon, T H; Lee, K M; Natori, S; Lee, T H; Lee, B L

    2000-05-01

    Injection of Escherichia coli into larvae of the coleopteran Tenebrio molitor resulted in the appearance of a dopamine-like substance on the electrochemical detector. To characterize this dopamine-like substance, we purified it to homogeneity from the immunized hemolymph and determined its molecular structure to be N-beta-alanyldopamine using the liquid chromatographic/tandem mass spectrometric method. Chemically synthesized N-beta-alanyldopamine showed the same retention time on HPLC as the purified N-beta-alanyldopamine from immunized larvae. To elucidate the molecular mechanism of N-beta-alanyldopamine synthesis in vivo, we examined the enzyme activity of Dopa decarboxylase against E. coli-injected hemolymph of T. molitor larvae. The enzyme activity of Dopa decarboxylase increased dramatically approximately 8 h after injection; Dopa decarboxylase activity of injected larvae being 10-times higher than naive larvae after 24 h. To evaluate the extent of quantitative changes of Dopa decarboxylase in response to bacterial challenge, Tenebrio Dopa decarboxylase was purified to homogeneity from the whole larvae and a cDNA clone for Tenebrio Dopa decarboxylase was isolated. RNA blot hybridization revealed that expression of the Dopa decarboxylase gene was activated transiently 3-8 h after E. coli challenge. Immunoprecipitation experiments showed that Tenebrio Dopa decarboxylase was detected from 8 to 24 h in E. coli-injected larval extract. Thus, bacterial injection into T. molitor larvae might induce transcriptional activation of a Dopa decarboxylase gene, and then synthesis of N-beta-alanyldopamine. The synthesized N-beta-alanyldopamine might be used as a substrate by phenoloxidase during melanin synthesis in the humoral defense response or the melanotic encapsulation reaction of the cellular defense response.

  13. Uridine Diphosphate-Glucuronosyltransferase (UGT) Xenobiotic Metabolizing Activity and Genetic Evolution in Pinniped Species.

    PubMed

    Kakehi, Mayu; Ikenaka, Yoshinori; Nakayama, Shouta M M; Kawai, Yusuke K; Watanabe, Kensuke P; Mizukawa, Hazuki; Nomiyama, Kei; Tanabe, Shinsuke; Ishizuka, Mayumi

    2015-10-01

    There are various interspecies differences in xenobiotic-metabolizing enzymes. It is known that cats show slow glucuronidation of drugs such as acetaminophen and strong side effects due to the UGT1A6 pseudogene. Recently, the UGT1A6 pseudogene was found in the Northern elephant seal and Otariidae was suggested to be UGT1A6-deficient. From the results of measurements of uridine diphosphate-glucuronosyltransferase (UGT) activity using liver microsomes, the Steller sea lion, Northern fur seal, and Caspian seal showed UGT activity toward 1-hydroxypyrene and acetaminophen as low as in cats, which was significantly lower than in rat and dog. Furthermore, UGT1A6 pseudogenes were found in Steller sea lion and Northern fur seal, and all Otariidae species were suggested to have the UGT1A6 pseudogene. The UGT1 family genes appear to have undergone birth-and-death evolution based on a phylogenetic and synteny analysis of the UGT1 family in mammals including Carnivora. UGT1A2-1A5 and UGT1A7-1A10 are paralogous genes to UGT1A1 and UGTA6, respectively, and their numbers were lower in cat, ferret and Pacific walrus than in human, rat, and dog. Felidae and Pinnipedia, which are less exposed to natural xenobiotics such as plant-derived toxins due to their carnivorous diet, have experienced fewer gene duplications of xenobiotic-metabolizing UGT genes, and even possess UGT1A6 pseudogenes. Artificial environmental pollutants and drugs conjugated by UGT are increasing dramatically, and their elimination to the environment can be of great consequence to cat and Pinnipedia species, whose low xenobiotic glucuronidation capacity makes them highly sensitive to these compounds. PMID:26179383

  14. Three types of geranylgeranyl diphosphate synthases from the medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes).

    PubMed

    Lian, Tiantian; Dong, Cai-Hong; Yang, Tao; Sun, Junde

    2014-01-01

    Geranylgeranyl diphosphate synthase (GGPPS) is a key enzyme in the carotenoid biosynthetic pathway, catalyzing the synthesis of its C20 precursor. In the present study, three types of ggpps genes were cloned and analyzed from the Caterpillar Medicinal Fungus Cordyceps militaris, a valued carotenoid-producing species. The sequences were named as ggpps727, ggpps191, and ggpps595. The open reading frame codes for predicted polypeptides of 464, 550, and 431 aa. Three predicted GGPPSs had a high similarity to that from Beauveria bassiana ARSEF 2860 with identity of 73%, 71%, and 56%, respectively. Homology comparison of the deduced peptide sequences of the various GGPPSs revealed highly conserved domains. Both GGPPS727 and GGPPS191 from C. militaris contained all five domains highly conserved among prenyltransferases as well as two aspartate-rich DDXX(XX)D motifs in domains II and V, which have been proven essential for prenyltransferase activity. By constructing the phylogenetic tree of fungal GGPPSs, it was found that fungi-derived GGPPSs could be divided into three clusters, suggesting there were three types of GGPPSs in fungi. Each type may be responsible for a different metabolism. Three types of GGPPSs from C. militaris belonged to the different clusters separately. Expression analysis of three ggpps genes during the fruit body cultivation of C. militaris by real-time polymerase chain reaction (PCR) suggested the ggpps 191 gene may be involved in the synthesis of carotenoids and ggpps 727 may be responsible for primary metabolism. This is the first report of the GGPPS from C. militaris, a valued edible and medicinal fungus. PMID:24941033

  15. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.

    PubMed

    Bunik, Victoria I; Tylicki, Adam; Lukashev, Nikolay V

    2013-12-01

    Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed.

  16. Analysis of uridine diphosphate glucuronosyl transferase 1A1 gene mutations in neonates with unconjugated hyperbilirubinemia.

    PubMed

    Guo, X H; Sun, Y F; Cui, M; Wang, J B; Han, S Z; Miao, J

    2016-01-01

    This study was carried out to analyze uridine diphosphate (UDP)-glucuronosyltransferase 1A1 (UGT1A1) gene mutations in neonates with unconjugated hyperbilirubinemia, from two different ethnic groups. Polymerase chain reaction and gene sequencing were used to analyze the differences in genotypes and allele frequencies of different gene mutations among the ethnic groups; this was followed by checking their correlation with the serum bilirubin level and the occurrence of unconjugated hyperbilirubinemia in neonates. Our results reveal that the UGT1A1 mutant genotype, 211G>A, is distributed differently in the case vs control groups, as well as in the Zhuang vs Han ethnic groups. Moreover, this difference is statistically significant (P < 0.05); the total serum bilirubin (TSB) and unconjugated bilirubin (UCB) levels in patients carrying the single homozygous mutation, 211G>A, were markedly higher than that in patients without the mutation (P < 0.05). Furthermore, the TSB and UCB levels were significantly different between patients carrying single or compound 211G>A heterozygous mutation, (TA)6/7, and 1941C>G/2042C>G heterozygous mutation, and patients without mutation (P > 0.05). Our findings suggest that the 211G>A mutation in the first exon may be a risk factor for unconjugated hyperbilirubinemia in Zhuang and Han neonates. The serum bilirubin levels seem to be affected by the homozygosity or heterozygosity of the UGT1A1 gene mutation; 211G>A homozygous mutation is an important factor that causes a rise in bilirubin in neonates with unconjugated hyperbilirubinemia. PMID:27323053

  17. Uridine Diphosphate-Glucuronosyltransferase (UGT) Xenobiotic Metabolizing Activity and Genetic Evolution in Pinniped Species.

    PubMed

    Kakehi, Mayu; Ikenaka, Yoshinori; Nakayama, Shouta M M; Kawai, Yusuke K; Watanabe, Kensuke P; Mizukawa, Hazuki; Nomiyama, Kei; Tanabe, Shinsuke; Ishizuka, Mayumi

    2015-10-01

    There are various interspecies differences in xenobiotic-metabolizing enzymes. It is known that cats show slow glucuronidation of drugs such as acetaminophen and strong side effects due to the UGT1A6 pseudogene. Recently, the UGT1A6 pseudogene was found in the Northern elephant seal and Otariidae was suggested to be UGT1A6-deficient. From the results of measurements of uridine diphosphate-glucuronosyltransferase (UGT) activity using liver microsomes, the Steller sea lion, Northern fur seal, and Caspian seal showed UGT activity toward 1-hydroxypyrene and acetaminophen as low as in cats, which was significantly lower than in rat and dog. Furthermore, UGT1A6 pseudogenes were found in Steller sea lion and Northern fur seal, and all Otariidae species were suggested to have the UGT1A6 pseudogene. The UGT1 family genes appear to have undergone birth-and-death evolution based on a phylogenetic and synteny analysis of the UGT1 family in mammals including Carnivora. UGT1A2-1A5 and UGT1A7-1A10 are paralogous genes to UGT1A1 and UGTA6, respectively, and their numbers were lower in cat, ferret and Pacific walrus than in human, rat, and dog. Felidae and Pinnipedia, which are less exposed to natural xenobiotics such as plant-derived toxins due to their carnivorous diet, have experienced fewer gene duplications of xenobiotic-metabolizing UGT genes, and even possess UGT1A6 pseudogenes. Artificial environmental pollutants and drugs conjugated by UGT are increasing dramatically, and their elimination to the environment can be of great consequence to cat and Pinnipedia species, whose low xenobiotic glucuronidation capacity makes them highly sensitive to these compounds.

  18. Enhanced subunit interactions with gemcitabine-5′-diphosphate inhibit ribonucleotide reductases

    PubMed Central

    Wang, Jun; Lohman, Gregory J. S.; Stubbe, JoAnne

    2007-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. The class I RNRs are composed of two subunits, α and β, with proposed quaternary structures of α2β2, α6β2, or α6β6, depending on the organism. The α subunits bind the nucleoside diphosphate substrates and the dNTP/ATP allosteric effectors that govern specificity and turnover. The β2 subunit houses the diferric Y• (1 radical per β2) cofactor that is required to initiate nucleotide reduction. 2′,2′-Difluoro-2′-deoxycytidine (F2C) is presently used clinically in a variety of cancer treatments and the 5′-diphosphorylated F2C (F2CDP) is a potent inhibitor of RNRs. The studies with [1′-3H]-F2CDP and [5-3H]-F2CDP have established that F2CDP is a substoichiometric mechanism based inhibitor (0.5 eq F2CDP/α) of both the Escherichia coli and the human RNRs in the presence of reductant. Inactivation is caused by covalent labeling of RNR by the sugar of F2CDP (0.5 eq/α) and is accompanied by release of 0.5 eq cytosine/α. Inactivation also results in loss of 40% of β2 activity. Studies using size exclusion chromatography reveal that in the E. coli RNR, an α2β2 tight complex is generated subsequent to enzyme inactivation by F2CDP, whereas in the human RNR, an α6β6 tight complex is generated. Isolation of these complexes establishes that the weak interactions of the subunits in the absence of nucleotides are substantially increased in the presence of F2CDP and ATP. This information and the proposed asymmetry between the interactions of αnβn provide an explanation for complete inactivation of RNR with substoichiometric amounts of F2CDP. PMID:17726094

  19. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates

    PubMed Central

    Deddouche, Safia; Pruijssers, Andrea J.; Zillinger, Thomas; Goldeck, Marion; Schuberth, Christine; Van der Veen, Annemarthe G.; Fujimura, Tsutomu; Rehwinkel, Jan; Iskarpatyoti, Jason A.; Barchet, Winfried; Ludwig, Janos; Dermody, Terence S.; Hartmann, Gunther; Reis e Sousa, Caetano

    2014-01-01

    SUMMARY Mammalian cells possess mechanisms to detect and defend themselves from invading viruses. In the cytosol, the RIG-I-like receptors (RLRs), RIG-I (retinoic acid-inducible gene I; encoded by DDX58) and MDA5 (melanoma differentiation-associated gene 5; encoded by IFIH1) sense atypical RNAs associated with virus infection1,2. Detection triggers a signalling cascade via the adaptor MAVS that culminates in the production of type I interferons (IFN-α/β; hereafter IFN), key antiviral cytokines. RIG-I and MDA5 are activated by distinct viral RNA structures and much evidence indicates that RIG-I responds to RNAs bearing a triphosphate (ppp) moiety in conjunction with a blunt-ended, base-paired region at the 5′-end (reviewed in 1-3). Here we show that RIG-I also mediates antiviral responses to RNAs bearing 5′-diphosphates (5′pp). Genomes from mammalian reoviruses with 5′pp termini, 5′pp-RNA isolated from yeast L-A virus, and base-paired 5′pp-RNAs made by in vitro transcription or chemical synthesis, all bind to RIG-I and serve as RIG-I agonists. Furthermore, a RIG-I-dependent response to 5′pp-RNA is essential for controlling reovirus infection in cultured cells and in mice. Thus, the minimal determinant for RIG-I recognition is a base-paired RNA with 5′pp. Such RNAs are found in some viruses but not uninfected cells, indicating that recognition of 5′pp-RNA, like that of 5′ppp-RNA, acts as a powerful means of self/non-self discrimination by the innate immune system. PMID:25119032

  20. Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis.

    PubMed

    Hasnain, Ghulam; Roje, Sanja; Sa, Na; Zallot, Rémi; Ziemak, Michael J; de Crécy-Lagard, Valérie; Gregory, Jesse F; Hanson, Andrew D

    2016-01-15

    The penultimate step of thiamin diphosphate (ThDP) synthesis in plants and many bacteria is dephosphorylation of thiamin monophosphate (ThMP). Non-specific phosphatases have been thought to mediate this step and no genes encoding specific ThMP phosphatases (ThMPases) are known. Comparative genomic analysis uncovered bacterial haloacid dehalogenase (HAD) phosphatase family genes (from subfamilies IA and IB) that cluster on the chromosome with, or are fused to, thiamin synthesis genes and are thus candidates for the missing phosphatase (ThMPase). Three typical candidates (from Anaerotruncus colihominis, Dorea longicatena and Syntrophomonas wolfei) were shown to have efficient in vivo ThMPase activity by expressing them in an Escherichia coli strain engineered to require an active ThMPase for growth. In vitro assays confirmed that these candidates all preferred ThMP to any of 45 other phosphate ester substrates tested. An Arabidopsis thaliana ThMPase homologue (At4g29530) of unknown function whose expression pattern and compartmentation fit with a role in ThDP synthesis was shown to have in vivo ThMPase activity in E. coli and to prefer ThMP to any other substrate tested. However, insertional inactivation of the At4g29530 gene did not affect growth or the levels of thiamin or its phosphates, indicating that Arabidopsis has at least one other ThMPase gene. The Zea mays orthologue of At4g29530 (GRMZM2G035134) was also shown to have ThMPase activity. These data identify HAD genes specifying the elusive ThMPase activity, indicate that ThMPases are substrate-specific rather than general phosphatases and suggest that different evolutionary lineages have recruited ThMPases independently from different branches of the HAD family.

  1. Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis.

    PubMed

    Hasnain, Ghulam; Roje, Sanja; Sa, Na; Zallot, Rémi; Ziemak, Michael J; de Crécy-Lagard, Valérie; Gregory, Jesse F; Hanson, Andrew D

    2016-01-15

    The penultimate step of thiamin diphosphate (ThDP) synthesis in plants and many bacteria is dephosphorylation of thiamin monophosphate (ThMP). Non-specific phosphatases have been thought to mediate this step and no genes encoding specific ThMP phosphatases (ThMPases) are known. Comparative genomic analysis uncovered bacterial haloacid dehalogenase (HAD) phosphatase family genes (from subfamilies IA and IB) that cluster on the chromosome with, or are fused to, thiamin synthesis genes and are thus candidates for the missing phosphatase (ThMPase). Three typical candidates (from Anaerotruncus colihominis, Dorea longicatena and Syntrophomonas wolfei) were shown to have efficient in vivo ThMPase activity by expressing them in an Escherichia coli strain engineered to require an active ThMPase for growth. In vitro assays confirmed that these candidates all preferred ThMP to any of 45 other phosphate ester substrates tested. An Arabidopsis thaliana ThMPase homologue (At4g29530) of unknown function whose expression pattern and compartmentation fit with a role in ThDP synthesis was shown to have in vivo ThMPase activity in E. coli and to prefer ThMP to any other substrate tested. However, insertional inactivation of the At4g29530 gene did not affect growth or the levels of thiamin or its phosphates, indicating that Arabidopsis has at least one other ThMPase gene. The Zea mays orthologue of At4g29530 (GRMZM2G035134) was also shown to have ThMPase activity. These data identify HAD genes specifying the elusive ThMPase activity, indicate that ThMPases are substrate-specific rather than general phosphatases and suggest that different evolutionary lineages have recruited ThMPases independently from different branches of the HAD family. PMID:26537753

  2. Inhibition of chemically-induced neoplastic transformation by a novel tetrasodium diphosphate astaxanthin derivative.

    PubMed

    Hix, Laura M; Frey, Dean A; McLaws, Mark D; Østerlie, Marianne; Lockwood, Samuel F; Bertram, John S

    2005-09-01

    Carotenoids have been implicated in numerous epidemiological studies as being protective against cancer at many sites, and their chemopreventive properties have been confirmed in laboratory studies. Astaxanthin (AST), primarily a carotenoid of marine origin, responsible for the pink coloration of salmon, shrimp and lobster, has received relatively little attention. As with other carotenoids, its highly lipophilic properties complicate delivery to model systems. To overcome this issue we have synthesized a novel tetrasodium diphosphate astaxanthin (pAST) derivative with aqueous dispersibility of 25.21 mg/ml. pAST was delivered to C3H/10T1/2 cells in an aqueous/ethanol solution and compared with non-esterified AST dissolved in tetrahydrofuran. We show pAST to (i) upregulate connexin 43 (Cx43) protein expression; (ii) increase the formation of Cx43 immunoreactive plaques; (iii) upregulate gap junctional intercellular communication (GJIC); and (iv) cause 100% inhibition of methylcholanthrene-induced neoplastic transformation at 10(-6) M. In all these assays, pAST was superior to non-esterified AST itself; in fact, pAST exceeded the potency of all other previously tested carotenoids in this model system. Cleavage of pAST to non-esterified (free) AST and uptake into cells was also verified by HPLC; however, levels of free AST were approximately 100-fold lower than in cells treated with AST itself, suggesting that pAST possesses intrinsic activity. The dual properties of water dispersibility (enabling parenteral administration in vivo) and increased potency should prove extremely useful in the future development of cancer chemopreventive agents. PMID:15888493

  3. Flagellar Radial Spokes Contain a Ca2+-stimulated Nucleoside Diphosphate Kinase

    PubMed Central

    Patel-King, Ramila S.; Gorbatyuk, Oksana; Takebe, Sachiko; King, Stephen M.

    2004-01-01

    The radial spokes are required for Ca2+-initiated intraflagellar signaling, resulting in modulation of inner and outer arm dynein activity. However, the mechanochemical properties of this signaling pathway remain unknown. Here, we describe a novel nucleoside diphosphate kinase (NDK) from the Chlamydomonas flagellum. This protein (termed p61 or RSP23) consists of an N-terminal catalytic NDK domain followed by a repetitive region that includes three IQ motifs and a highly acidic C-terminal segment. We find that p61 is missing in axonemes derived from the mutants pf14 (lacks radial spokes) and pf24 (lacks the spoke head and several stalk components) but not in those from pf17 (lacking only the spoke head). The p61 protein can be extracted from oda1 (lacks outer dynein arms) and pf17 axonemes with 0.5 M KI, and copurifies with radial spokes in sucrose density gradients. Furthermore, p61 contains two classes of calmodulin binding site: IQ1 interacts with calmodulin-Sepharose beads in a Ca2+-independent manner, whereas IQ2 and IQ3 show Ca2+-sensitive associations. Wild-type axonemes exhibit two distinct NDKase activities, at least one of which is stimulated by Ca2+. This Ca2+-responsive enzyme, which accounts for ∼45% of total axonemal NDKase, is missing from pf14 axonemes. We found that purified radial spokes also exhibit NDKase activity. Thus, we conclude that p61 is an integral component of the radial spoke stalk that binds calmodulin and exhibits Ca2+-controlled NDKase activity. These observations suggest that nucleotides other than ATP may play an important role in the signal transduction pathway that underlies the regulatory mechanism defined by the radial spokes. PMID:15194815

  4. Molecular recognition of the substrate diphosphate group governs product diversity in trichodiene synthase mutants.

    PubMed

    Vedula, L Sangeetha; Rynkiewicz, Michael J; Pyun, Hyung-Jung; Coates, Robert M; Cane, David E; Christianson, David W

    2005-04-26

    The X-ray crystal structures of Y305F trichodiene synthase and its complex with coproduct inorganic pyrophosphate (PP(i)) and of Y305F and D100E trichodiene synthases in ternary complexes with PP(i) and aza analogues of the bisabolyl carbocation intermediate are reported. The Y305F substitution in the basic D(302)RRYR motif does not cause large changes in the overall structure in comparison with the wild-type enzyme in either the uncomplexed enzyme or its complex with PP(i). However, the loss of the Y305F-PP(i) hydrogen bond appears to be compensated by a very slight shift in the position of the side chain of R304. The putative bisabolyl carbocation mimic, R-azabisabolene, binds in a conformation and orientation that does not appear to mimic that of the actual carbocation intermediate, suggesting that the avid inhibition by R- and S-azabisabolenes arises more from favorable electrostatic interactions with PP(i) rather than any special resemblance to a reaction intermediate. Greater enclosed active-site volumes result from the Y305F and D100E mutations that appear to confer greater variability in ligand-binding conformations and orientations, which results in the formation of aberrant cyclization products. Because the binding conformations and orientations of R-azabisabolene to Y305F and D100E trichodiene synthases do not correspond to binding conformations required for product formation and because the binding conformations and orientations of diverse substrate and carbocation analogues to other cyclases such as 5-epi-aristolochene synthase and bornyl diphosphate synthase generally do not correspond to catalytically productive complexes, we conclude that the formation of transient carbocation intermediates in terpene cyclization reactions is generally under kinetic rather than thermodynamic control. PMID:15835903

  5. Inhibition of chemically-induced neoplastic transformation by a novel tetrasodium diphosphate astaxanthin derivative.

    PubMed

    Hix, Laura M; Frey, Dean A; McLaws, Mark D; Østerlie, Marianne; Lockwood, Samuel F; Bertram, John S

    2005-09-01

    Carotenoids have been implicated in numerous epidemiological studies as being protective against cancer at many sites, and their chemopreventive properties have been confirmed in laboratory studies. Astaxanthin (AST), primarily a carotenoid of marine origin, responsible for the pink coloration of salmon, shrimp and lobster, has received relatively little attention. As with other carotenoids, its highly lipophilic properties complicate delivery to model systems. To overcome this issue we have synthesized a novel tetrasodium diphosphate astaxanthin (pAST) derivative with aqueous dispersibility of 25.21 mg/ml. pAST was delivered to C3H/10T1/2 cells in an aqueous/ethanol solution and compared with non-esterified AST dissolved in tetrahydrofuran. We show pAST to (i) upregulate connexin 43 (Cx43) protein expression; (ii) increase the formation of Cx43 immunoreactive plaques; (iii) upregulate gap junctional intercellular communication (GJIC); and (iv) cause 100% inhibition of methylcholanthrene-induced neoplastic transformation at 10(-6) M. In all these assays, pAST was superior to non-esterified AST itself; in fact, pAST exceeded the potency of all other previously tested carotenoids in this model system. Cleavage of pAST to non-esterified (free) AST and uptake into cells was also verified by HPLC; however, levels of free AST were approximately 100-fold lower than in cells treated with AST itself, suggesting that pAST possesses intrinsic activity. The dual properties of water dispersibility (enabling parenteral administration in vivo) and increased potency should prove extremely useful in the future development of cancer chemopreventive agents.

  6. Mycobacterium tuberculosis Nucleoside Diphosphate Kinase Inactivates Small GTPases Leading to Evasion of Innate Immunity

    PubMed Central

    Sun, Jim; Singh, Vijender; Lau, Alice; Stokes, Richard W.; Obregón-Henao, Andrés; Orme, Ian M.; Wong, Dennis; Av-Gay, Yossef; Hmama, Zakaria

    2013-01-01

    Defining the mechanisms of Mycobacterium tuberculosis (Mtb) persistence in the host macrophage and identifying mycobacterial factors responsible for it are keys to better understand tuberculosis pathogenesis. The emerging picture from ongoing studies of macrophage deactivation by Mtb suggests that ingested bacilli secrete various virulence determinants that alter phagosome biogenesis, leading to arrest of Mtb vacuole interaction with late endosomes and lysosomes. While most studies focused on Mtb interference with various regulators of the endosomal compartment, little attention was paid to mechanisms by which Mtb neutralizes early macrophage responses such as the NADPH oxidase (NOX2) dependent oxidative burst. Here we applied an antisense strategy to knock down Mtb nucleoside diphosphate kinase (Ndk) and obtained a stable mutant (Mtb Ndk-AS) that displayed attenuated intracellular survival along with reduced persistence in the lungs of infected mice. At the molecular level, pull-down experiments showed that Ndk binds to and inactivates the small GTPase Rac1 in the macrophage. This resulted in the exclusion of the Rac1 binding partner p67phox from phagosomes containing Mtb or Ndk-coated latex beads. Exclusion of p67phox was associated with a defect of both NOX2 assembly and production of reactive oxygen species (ROS) in response to wild type Mtb. In contrast, Mtb Ndk-AS, which lost the capacity to disrupt Rac1-p67phox interaction, induced a strong ROS production. Given the established link between NOX2 activation and apoptosis, the proportion of Annexin V positive cells and levels of intracellular active caspase 3 were significantly higher in cells infected with Mtb Ndk-AS compared to wild type Mtb. Thus, knock down of Ndk converted Mtb into a pro-apoptotic mutant strain that has a phenotype of increased susceptibility to intracellular killing and reduced virulence in vivo. Taken together, our in vitro and in vivo data revealed that Ndk contributes significantly to

  7. Synthesis of DNA and Poly(Adenosine Diphosphate Ribose) in Normal and Chronic Lymphocytic Leukemia Lymphocytes

    PubMed Central

    Berger, Nathan A.; Adams, Jessie W.; Sikorski, Georgina W.; Petzold, Shirley J.; Shearer, William T.

    1978-01-01

    Peripheral blood lymphocytes were isolated from 9 patients with chronic lymphocytic leukemia (CLL) and 12 normal control donors. The cells were assayed for synthesis of DNA and poly-(adenosine diphosphate ribose) (poly[ADPR]) immediately after isolation and on successive days following their treatment with phytohemagglutinin (PHA). Two different techniques were used to measure DNA synthesis. In the standard technique, DNA synthesis was measured by incubating intact cells with [3H]deoxythymidine. In the new technique, the lymphocytes were first rendered permeable to nucleotides, then DNA synthesis was measured by incubating them with [3H]deoxythymidine triphosphate in the presence of deoxyATP, deoxyGTP, deoxyCTP, ATP, and Mg++. Both assays showed the anticipated rise in DNA synthesis after PHA stimulation of normal cells. PHA-stimulated lymphocytes from patients with CLL demonstrated low levels of DNA synthesis in both assay systems. The initial levels of poly(ADPR) synthesis were greater in CLL lymphocytes than in normal cells. Studies with a T-cell-depleted population of normal cells showed the same activity for poly(ADPR) synthesis that was demonstrated by the original population of normal cells. PHA stimulation produced an increase in poly(ADPR) synthesis in both the normal and CLL cells. The increase in poly(ADPR) synthesis in normal cells was coincident with the increase in DNA synthesis. The increase in poly(ADPR) synthesis in the CLL cells was dissociated from the delayed and diminished increase in DNA synthesis. Thus, CLL cells have higher than normal initial levels of poly(ADPR) synthesis. Poly(ADPR) synthesis is dissociated from DNA synthesis in CLL cells whereas it varies directly with DNA synthesis in normal lymphocytes. PMID:659624

  8. Photoaffinity labeling of mitochondrial adenosinetriphosphatase by 2-azidoadenosine 5'-(alpha-32P)diphosphate

    SciTech Connect

    Boulay, F.; Dalbon, P.; Vignais, P.V.

    1985-12-03

    2-Azidoadenosine 5'-diphosphate (2-azido-ADP) labeled with 32P in the alpha-position was prepared and used to photolabel the nucleotide binding sites of beef heart mitochondrial F1-ATPase. The native F1 prepared by the procedure of Knowles and Penefsky (Knowles, A. F., and Penefsky, H. S. (1972)) contained an average of 2.9 mol of tightly bound ADP plus ATP per mole of enzyme. Short-term incubation of F1 with micromolar concentrations of (alpha-32P)-2-azido-ADP in the dark in a Mg2+-supplemented medium resulted in the rapid supplementary binding of 3 mol of label/mol of F1, consistent with the presence of six nucleotide binding sites per F1. The Kd relative to the reversible binding of (alpha-32P)-2-azido-ADP to mitochondrial F1 in the dark was 5 microM in the presence of MgCl2 and 30 microM in the presence of ethylenediaminetetraacetic acid. A linear relationship between the percentage of inactivation of F1 and the extent of covalent photolabeling by (alpha-32P)-2-azido-ADP was observed for percentages of inactivation up to 90%, extrapolating to 2 mol of covalently bound (alpha-32P)-2-azido-ADP/mol of F1. Under these conditions, only the beta subunit was photolabeled. Covalent binding of one photolabel per beta subunit was ascertained by electrophoretic separation of labeled and unlabeled beta subunits based on charge differences and by mapping studies showing one major radioactive peptide segment per photolabeled beta subunit.

  9. Observation of an Acryloyl–Thiamin Diphosphate Adduct in the First Step of Clavulanic Acid Biosynthesis

    PubMed Central

    Merski, Matthew

    2011-01-01

    The first committed biosynthetic step toward clavulanic acid, the clinically-important β-lactamase inhibitor, is catalyzed by the thiamin diphosphate (ThDP)-dependent enzyme N2-(2-carboxyethyl)arginine synthase (CEAS). This protein carries out a unique reaction among ThDP-dependent processes in which a C–N bond is formed, and an electrophilic acryloyl–thiazolium intermediate of ThDP is proposed to be involved, unlike the nucleophilic enamine species typically generated by this class of enzymes. Here we present evidence for the existence of the putative acryloyl adduct, and report the unexpected observation of a long-wavelength chromophore (λ = 433 nm), which we attribute to this enzyme bound species. Chemical models were synthesized that both confirm its expected absorption (λ = 310–320 nm), and exclude self-condensation and intramolecular imine formation with the cofactor as its cause. Circular dichroism experiments and others discount charge transfer as a likely explanation for the ~120 nm red shift of the chromophore (~25 kcal). Examples are well-known of charged molecules that exhibit significantly red-shifted UV-visible spectra compared to their neutral forms as, for example, polyene cations and dyes such as indigo and the cyanines. Rhodopsin is the classic biochemical example where the protein (opsin)-bound protonated Schiff base of retinal displays a remarkable range of red-shifted absorptions modulated by the protein environment. Similar tuning of the chromophoric behavior of the enzyme-bound CEAS acryloyl•ThDP species may be occurring. PMID:18052280

  10. Simvastatin-induced breast cancer cell death and deactivation of PI3K/Akt and MAPK/ERK signalling are reversed by metabolic products of the mevalonate pathway

    PubMed Central

    Wang, Tingting; Seah, Serena; Loh, Xinyi; Chan, Ching-Wan; Hartman, Mikael; Goh, Boon-Cher; Lee, Soo-Chin

    2016-01-01

    Statins purportedly exert anti-tumoral effects on breast cancer. However, the biologic mechanisms for these actions are not fully elucidated. The aims of this study were 1) to explore the effects of simvastatin on apoptosis, proliferation as well as PI3K/Akt/mTOR and MAPK/ERK pathway in a window-of-opportunity breast cancer trial; 2) to further confirm findings from the clinical trial by functional studies; 3) to explore the regulatory role of mevalonate pathway on the anti-tumoral effects of simvastatin. In clinical samples, simvastatin led to increase in cleaved caspase-3 (p = 0.002) and decreased trend for Ki67 (p = 0.245). Simvastatin markedly suppressed PI3K/Akt/mTOR signalling by activating PTEN (p = 0.005) and by dephosphorylating Akt (p = 0.002) and S6RP (p = 0.033); it also inhibited MAPK/ERK pathway by dephosphorylating c-Raf (p = 0.018) and ERK1/2 (p = 0.002). In ER-positive (MCF-7, T47D) and ER-negative (MDA-MB-231, BT-549) breast cancer cells, simvastatin treatment consistently induced apoptosis and inhibited proliferation by deregulating caspase cascades and cell cycle proteins in a dose dependent manner. Concordantly, simvastatin strongly suppressed PI3K/Akt/mTOR pathway by enhancing PTEN expression and by further sequentially dephosphorylating downstream cascades including Akt, mTOR, p70S6K, S6RP and 4E-BP1. Furthermore, simvastatin significantly inhibited MAPK/ERK pathway by dephosphorylating sequential cascades such as c-Raf, MEK1/2 and ERK1/2. These simvastatin anti-tumoral effects were reversed by metabolic products of the mevalonate pathway, including mevalonate, farnesyl pyrophosphate and geranylgeranyl pyrophosphate. These findings shed light on the biological and potential anti-tumoral effects of simvastatin in breast cancer. PMID:26565813

  11. Histidine decarboxylase deficiency causes Tourette syndrome: parallel findings in humans and mice

    PubMed Central

    Baldan, Lissandra Castellan; Rapanelli, Maximiliano; Crowley, Michael; Anderson, George M.; Loring, Erin; Gorczyca, Roxanne; Billingslea, Eileen; Wasylink, Suzanne; Panza, Kaitlyn E.; Ercan-Sencicek, A. Gulhan; Krusong, Kuakarun; Leventhal, Bennett L.; Ohtsu, Hiroshi; Bloch, Michael H.; Hughes, Zoë A.; Krystal, John H.; Mayes, Linda; de Araujo, Ivan; Ding, Yu-Shin; State, Matthew W.; Pittenger, Christopher

    2013-01-01

    Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal dopamine (DA) levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. Dopamine D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm HDC deficiency as a rare cause of TS and identify histamine-dopamine interactions in the basal ganglia as an important locus of pathology. PMID:24411733

  12. Suppression of ornithine decarboxylase promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    PubMed

    Tsai, Yo-Hsian; Lin, Kuan-Lian; Huang, Yuan-Pin; Hsu, Yi-Chiang; Chen, Chung-Hwan; Chen, Yuhsin; Sie, Min-Hua; Wang, Gwo-Jaw; Lee, Mon-Juan

    2015-07-22

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme for polyamine biosynthesis. Suppression of ODC by its irreversible inhibitor, α-difluoromethylornithine (DFMO), or by RNA interference through siRNA, enhanced osteogenic gene expression and alkaline phosphatase activity, and accelerated matrix mineralization of human bone marrow-derived mesenchymal stem cells (hBMSCs). Besides, adipogenic gene expression and lipid accumulation was attenuated, indicating that the enhanced osteogenesis was accompanied by down-regulation of adipogenesis when ODC was suppressed. A decrease in the intracellular polyamine content of hBMSCs during osteogenic induction was observed, suggesting that the level of endogenous polyamines is regulated during differentiation of hBMSCs. This study elucidates the role of polyamine metabolism in the lineage commitment of stem cells and provides a potential new indication for DFMO as bone-stimulating drug. PMID:26140984

  13. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    SciTech Connect

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P.

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  14. Some Aspects of Yeast Anaerobic Metabolism Examined by the Inhibition of Pyruvate Decarboxylase

    NASA Astrophysics Data System (ADS)

    Martin, Earl V.

    1998-10-01

    Incubation of yeast cells with various sugars in aqueous alkaline phosphate solutions under anaerobic conditions results in the accumulation of pyruvate in the cell medium after short periods of up to 15 minutes. This accumulation of pyruvate as the end product of glycolysis results from the inhibition of pyruvate decarboxylase under the conditions. This pyruvate production can be readily measured in the cell-free medium by a spectrophotometric assay using lactic dehydrogenase and NADH. The production of pyruvate can be directly related to the ability of the yeast cells to metabolize particular carbon sources provided. Comparison of pyruvate production by yeast from a variety of common sugars, for example, provides students with a means to assess what sugars are readily utilized by this organism. An additional advantage for student laboratory studies is the availability of Sacchromyces cerevisiae at minimal cost as dry granules which are easily weighed and quickly activated.

  15. Genetic Confirmation of the Role of Sulfopyruvate Decarboxylase in Coenzyme M Biosynthesis in Methanococcus maripaludis

    DOE PAGES

    Sarmiento, Felipe; Ellison, Courtney K.; Whitman, William B.

    2013-01-01

    Coenzyme M is an essential coenzyme for methanogenesis. The proposed biosynthetic pathway consists of five steps, of which the fourth step is catalyzed by sulfopyruvate decarboxylase (ComDE). Disruption of the gene comE by transposon mutagenesis resulted in a partial coenzyme M auxotroph, which grew poorly in the absence of coenzyme M and retained less than 3% of the wild type level of coenzyme M biosynthesis. Upon coenzyme M addition, normal growth of the mutant was restored. Moreover, complementation of the mutation with the wild type comE gene in trans restored full growth in the absence of coenzyme M. Thesemore » results confirm that ComE plays an important role in coenzyme M biosynthesis. The inability to yield a complete CoM auxotroph suggests that either the transposon insertion failed to completely inactivate the gene or M. maripaludis possesses a promiscuous activity that partially complemented the mutation.« less

  16. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop.

    PubMed

    Fenalti, Gustavo; Law, Ruby H P; Buckle, Ashley M; Langendorf, Christopher; Tuck, Kellie; Rosado, Carlos J; Faux, Noel G; Mahmood, Khalid; Hampe, Christiane S; Banga, J Paul; Wilce, Matthew; Schmidberger, Jason; Rossjohn, Jamie; El-Kabbani, Ossama; Pike, Robert N; Smith, A Ian; Mackay, Ian R; Rowley, Merrill J; Whisstock, James C

    2007-04-01

    Gamma-aminobutyric acid (GABA) is synthesized by two isoforms of the pyridoxal 5'-phosphate-dependent enzyme glutamic acid decarboxylase (GAD65 and GAD67). GAD67 is constitutively active and is responsible for basal GABA production. In contrast, GAD65, an autoantigen in type I diabetes, is transiently activated in response to the demand for extra GABA in neurotransmission, and cycles between an active holo form and an inactive apo form. We have determined the crystal structures of N-terminal truncations of both GAD isoforms. The structure of GAD67 shows a tethered loop covering the active site, providing a catalytic environment that sustains GABA production. In contrast, the same catalytic loop is inherently mobile in GAD65. Kinetic studies suggest that mobility in the catalytic loop promotes a side reaction that results in cofactor release and GAD65 autoinactivation. These data reveal the molecular basis for regulation of GABA homeostasis.

  17. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine

    PubMed Central

    Williams, Brianna B.; Van Benschoten, Andrew H.; Cimermancic, Peter; Donia, Mohamed S.; Zimmermann, Michael; Taketani, Mao; Ishihara, Atsushi; Kashyap, Purna C.; Fraser, James S.; Fischbach, Michael A.

    2014-01-01

    Summary Several recent studies describe the influence of the gut microbiota on host brain and behavior. However, the mechanisms responsible for microbiota-nervous system interactions are unknown. Using a combination of genetics, biochemistry, and crystallography, we identify and characterize two phylogenetically distinct enzymes found in the human microbiome that decarboxylate tryptophan to form the β-arylamine neurotransmitter tryptamine. Although this enzymatic activity is exceedingly rare among bacteria more broadly, analysis of the Human Microbiome Project data demonstrates that at least 10% of the human population harbors at least one bacterium encoding a tryptophan decarboxylase in their gut community. Our results uncover a previously unrecognized enzymatic activity that can give rise to host-modulatory compounds and suggests a potential direct mechanism by which gut microbiota can influence host physiology, including behavior. PMID:25263219

  18. [Simultaneous demonstration of glutamate decarboxylase and synaptophysin in paraffin sections of rat cerebellum].

    PubMed

    Korzhevskiy, D E; Gilerovich, Ye G; Kirik, O V; Alekseyeva, O S; Grigoriyev, I P

    2015-01-01

    The article presents highly reproducible and inexpensive protocol for simultaneous demonstration of glutamate decarboxylase (GAD67), the key enzyme of gamma-aminobutyric acid (GABA) synthesis and synaptophysin (SYP), a marker protein of synaptic vesicles using confocal laser microscopy. In the cerebellar cortex, GAD labels Purkinje cells and pinceaux in their basal parts and is unevenly distributed in the neuropil of molecular and granular layers. SYP clearly marks the contours of large dendrites of Purkinje cells in molecular layer, while in the granular layers it labels parts of cerebellar glomeruli--the terminals of the mossy fibers. GAD-immunopositive structures (GABA-ergic axons of stellate cells--Golgi cells) are often located at periphery of the glomeruli. In the peripheral zone of the glomeruli, colocalization of GAD- and SYP-immunopositive structures was observed, suggesting the presence of GABA-ergic synapses in this zone.

  19. Oral putrescine restores virulence of ornithine decarboxylase-deficient Leishmania donovani in mice

    PubMed Central

    Olenyik, Tamara; Gilroy, Caslin; Ullman, Buddy

    2011-01-01

    Administration of putrescine as a 1% solution in the drinking water ameliorated the profound loss of virulence exhibited by ornithine decarboxylase (ODC) deficient Leishmania donovani in mice. Furthermore, supplying α-difluoromethylornithine, an ODC inhibitor, at 2% in the drinking water reduced but did not eliminate infection with wild type L. donovani in the mouse model. Taken collectively, these findings: 1) demonstrate that oral putrescine can access the phagolysosome of macrophages in which the parasite resides in mice; 2) establish that the loss of virulence due to the Δodc lesion is a consequence of the inability of the mutant parasite to synthesize sufficient polyamines de novo; 3) imply that the L. donovani amastigote cannot access host polyamines in sufficient amounts for survival and growth; 4) and validate ODC as a drug target, although oral administration of DFMO is an unlikely therapeutic paradigm for visceral leishmaniasis. PMID:21182873

  20. Immunotherapy-responsive limbic encephalitis with antibodies to glutamic acid decarboxylase.

    PubMed

    Markakis, Ioannis; Alexopoulos, Harry; Poulopoulou, Cornelia; Akrivou, Sofia; Papathanasiou, Athanasios; Katsiva, Vassiliki; Lyrakos, Georgios; Gekas, Georgios; Dalakas, Marinos C

    2014-08-15

    Glutamic acid decarboxylase (GAD) has been recently identified as a target of humoral autoimmunity in a small subgroup of patients with non-paraneoplastic limbic encephalitis (NPLE). We present a patient with NPLE and positive anti-GAD antibodies who showed significant improvement after long-term immunotherapy. A 48-year old female was admitted with a two-year history of anterograde amnesia and seizures. Brain MRI revealed bilateral lesions of medial temporal lobes. Screening for anti-neuronal antibodies showed high anti-GAD titers in both serum and cerebrospinal fluid (CSF) with strong evidence of intrathecal production. The patient received treatment with prednisolone and long-term plasma exchange. During a 12-month follow-up, she exhibited complete seizure remission and an improvement in memory and visuo-spatial skills. Anti-GAD antibodies may serve as a useful marker to identify a subset of NPLE patients that respond to immunoregulatory treatment.

  1. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species.

    PubMed

    Schulze, Stefanie; Westhoff, Peter; Gowik, Udo

    2016-06-01

    The glycine decarboxylase complex (GDC) plays a central role in photorespiration. GDC is localized in the mitochondria and together with serine hydroxymethyltransferase it converts two molecules of glycine to one molecule of serine, CO2 and NH3. Overexpression of GDC subunits in the C3 species Arabidopsis thaliana can increase the metabolic flux through the photorespiratory pathway leading to enhanced photosynthetic efficiency and consequently to an enhanced biomass production of the transgenic plants. Changing the spatial expression patterns of GDC subunits was an important step during the evolution of C3-C4 intermediate and likely also C4 plants. Restriction of the GDC activity to the bundle sheath cells led to the establishment of a photorespiratory CO2 pump. PMID:27038285

  2. Intrathecal-specific glutamic acid decarboxylase antibodies at low titers in autoimmune neurological disorders.

    PubMed

    Sunwoo, Jun-Sang; Chu, Kon; Byun, Jung-Ick; Moon, Jangsup; Lim, Jung-Ah; Kim, Tae-Joon; Lee, Soon-Tae; Jung, Keun-Hwa; Park, Kyung-Il; Jeon, Daejong; Jung, Ki-Young; Kim, Manho; Lee, Sang Kun

    2016-01-15

    Autoantibodies to glutamic acid decarboxylase (Gad-Abs) are implicated in various neurological syndromes. The present study aims to identify intrathecal-specific GAD-Abs and to determine clinical manifestations and treatment outcomes. Nineteen patients had GAD-Abs in cerebrospinal fluid but not in paired serum samples. Neurological syndromes included limbic encephalitis, temporal lobe epilepsy, cerebellar ataxia, autonomic dysfunction, and stiff-person syndrome. Immunotherapy had beneficial effects in 57.1% of patients, and the patients with limbic encephalitis responded especially well to immunotherapy. Intrathecal-specific antibodies to GAD at low titers may appear as nonspecific markers of immune activation within the central nervous system rather than pathogenic antibodies causing neuronal dysfunction. PMID:26711563

  3. Heterologous expression of a plant arginine decarboxylase gene in Trypanosoma cruzi.

    PubMed

    Carrillo, Carolina; Serra, María P; Pereira, Claudio A; Huber, Alejandra; González, Nélida S; Algranati, Israel D

    2004-11-01

    Wild-type Trypanosoma cruzi epimastigotes lack arginine decarboxylase (ADC) enzymatic activity. However, the transformation of these parasites with a recombinant plasmid containing the oat ADC cDNA coding region gave rise to the transient heterologous expression of the enzyme, suggesting the absence of endogenous mechanisms that could inhibit the expression of a hypothetical own ADC gene or the assay used to measure its enzymatic activity. The foreign ADC enzyme expressed in the transgenic T. cruzi was characterized by identification of the products, the stoichiometry of the catalysed reaction, the specific inhibition by alpha-difluoromethylarginine (DFMA) and the study of its metabolic turnover. The half-life of the heterologous ADC activity in T. cruzi was about 150 min. Bioinformatics studies and polymerase chain reaction (PCR) analyses seem to indicate the absence of ADC-like DNA sequences in the wild-type T. cruzi genome.

  4. Diphosphates at the 5' end of the positive strand of yeast L-A double-stranded RNA virus as a molecular self-identity tag.

    PubMed

    Fujimura, Tsutomu; Esteban, Rosa

    2016-10-01

    The 5'end of RNA conveys important information on self-identity. In mammalian cells, double-stranded RNA (dsRNA) with 5'di- or triphosphates generated during virus infection is recognized as foreign and elicits the host innate immune response. Here, we analyze the 5' ends of the dsRNA genome of the yeast L-A virus. The positive strand has largely diphosphates with a minor amount of triphosphates, while the negative strand has only diphosphates. Although the virus can produce capped transcripts by cap snatching, neither strand carried a cap structure, suggesting that only non-capped transcripts serve as genomic RNA for encapsidation. We also found that the 5' diphosphates of the positive but not the negative strand within the dsRNA genome are crucial for transcription in vitro. Furthermore, the presence of a cap structure in the dsRNA abrogated its template activity. Given that the 5' diphosphates of the transcripts are also essential for cap acquisition and that host cytosolic RNAs (mRNA, rRNA, and tRNA) are uniformly devoid of 5' pp-structures, the L-A virus takes advantage of its 5' terminal diphosphates, using them as a self-identity tag to propagate in the host cytoplasm.

  5. Overexpression of an Isoprenyl Diphosphate Synthase in Spruce Leads to Unexpected Terpene Diversion Products That Function in Plant Defense1[W][OPEN

    PubMed Central

    Nagel, Raimund; Berasategui, Aileen; Paetz, Christian; Gershenzon, Jonathan; Schmidt, Axel

    2014-01-01

    Spruce (Picea spp.) and other conifers employ terpenoid-based oleoresin as part of their defense against herbivores and pathogens. The short-chain isoprenyl diphosphate synthases (IDS) are situated at critical branch points in terpene biosynthesis, producing the precursors of the different terpenoid classes. To determine the role of IDS and to create altered terpene phenotypes for assessing the defensive role of terpenoids, we overexpressed a bifunctional spruce IDS, a geranyl diphosphate and geranylgeranyl diphosphate synthase in white spruce (Picea glauca) saplings. While transcript level (350-fold), enzyme activity level (7-fold), and in planta geranyl diphosphate and geranylgeranyl diphosphate levels (4- to 8-fold) were significantly increased in the needles of transgenic plants, there was no increase in the major monoterpenes and diterpene acids of the resin and no change in primary isoprenoids, such as sterols, chlorophylls, and carotenoids. Instead, large amounts of geranylgeranyl fatty acid esters, known from various gymnosperm and angiosperm plant species, accumulated in needles and were shown to act defensively in reducing the performance of larvae of the nun moth (Lymantria monacha), a conifer pest in Eurasia. These results show the impact of overexpression of an IDS and the defensive role of an unexpected accumulation product of terpenoid biosynthesis with the potential for a broader function in plant protection. PMID:24346420

  6. Isopentenyl diphosphate isomerase catalyzed reactions in D2O: product release limits the rate of this sluggish enzyme-catalyzed reaction.

    PubMed

    Jonnalagadda, Venkatadurga; Toth, Krisztina; Richard, John P

    2012-04-18

    The E. coli isopentenyl diphosphate isomerase (IDI) catalyzed reaction of isopentenyl diphosphate (IPP) in D(2)O gives a 66% yield of dimethylallyl diphosphate labeled with deuterium at the (E)-methyl group (d-DMAPP) and a 34% yield of IPP labeled with 1 mol of deuterium at C-2 (d-IPP). This shows that the release to D(2)O of the initial product of the IDI-catalyzed reaction (d-DMAPP) is slower than its conversion to d-IPP. Product dissociation is therefore rate determining for isomerization of IPP with a rate constant k(dis) ≈ k(cat) = 0.08 s(-1). The data provide an estimated rate constant of k(as) = 6 × 10(3) M(-1) s(-1) for binding of DMAPP to E. coli IDI that is similar to rate constants determined for the binding of N-protonated 2-amino ethyl diphosphate intermediate analogs to IDI from yeast [Reardon, J. E.; Abeles, R. H. Biochemistry1986, 25, 5609-5616]. We propose that ligand binding to IDI is relatively slow because there is a significant kinetic barrier to reorganization of the initial encounter complex between enzyme, substrate, and an essential Mg(2+) to form the Michaelis complex where the metal cation bridges the protein and the substrate diphosphate group.

  7. Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae

    PubMed Central

    Bhuiya, Mohammad Wadud; Lee, Soon Goo

    2015-01-01

    The nonoxidative decarboxylation of aromatic acids occurs in a range of microbes and is of interest for bioprocessing and metabolic engineering. Although phenolic acid decarboxylases provide useful tools for bioindustrial applications, the molecular bases for how these enzymes function are only beginning to be examined. Here we present the 2.35-Å-resolution X-ray crystal structure of the ferulic acid decarboxylase (FDC1; UbiD) from Saccharomyces cerevisiae. FDC1 shares structural similarity with the UbiD family of enzymes that are involved in ubiquinone biosynthesis. The position of 4-vinylphenol, the product of p-coumaric acid decarboxylation, in the structure identifies a large hydrophobic cavity as the active site. Differences in the β2e-α5 loop of chains in the crystal structure suggest that the conformational flexibility of this loop allows access to the active site. The structure also implicates Glu285 as the general base in the nonoxidative decarboxylation reaction catalyzed by FDC1. Biochemical analysis showed a loss of enzymatic activity in the E285A mutant. Modeling of 3-methoxy-4-hydroxy-5-decaprenylbenzoate, a partial structure of the physiological UbiD substrate, in the binding site suggests that an ∼30-Å-long pocket adjacent to the catalytic site may accommodate the isoprenoid tail of the substrate needed for ubiquinone biosynthesis in yeast. The three-dimensional structure of yeast FDC1 provides a template for guiding protein engineering studies aimed at optimizing the efficiency of aromatic acid decarboxylation reactions in bioindustrial applications. PMID:25862228

  8. Inactivation of malonate semialdehyde decarboxylase by 3-halopropiolates: evidence for hydratase activity.

    PubMed

    Poelarends, Gerrit J; Serrano, Hector; Johnson, William H; Whitman, Christian P

    2005-07-01

    Malonate semialdehyde decarboxylase (MSAD) from Pseudomonas pavonaceae 170 catalyzes the metal ion-independent decarboxylation of malonate semialdehyde and represents one of three known enzymatic activities in the tautomerase superfamily. The characterized members of this superfamily are structurally homologous proteins that share a beta-alpha-beta fold and a catalytic amino-terminal proline. Sequence analysis, chemical labeling studies, site-directed mutagenesis, and NMR studies of MSAD identified Pro-1 as a key active site residue in which the amino group has a pKa value of 9.2. The available evidence suggests a mechanism involving polarization of the C-3 carbonyl group of malonate semialdehyde by the cationic Pro-1. A second critical active site residue, Arg-75, could assist in the reaction by placing the substrate's carboxylate group in a favorable conformation for decarboxylation. In addition to the decarboxylase activity, MSAD has a hydratase activity as demonstrated by the MSAD-catalyzed conversion of 2-oxo-3-pentynoate to acetopyruvate. In view of this activity, MSAD was incubated with 3-bromo- and 3-chloropropiolate, and the subsequent reactions were characterized. Both compounds result in the irreversible inactivation of MSAD, making them the first identified inhibitors of MSAD. Inactivation by 3-chloropropiolate occurs in a time- and concentration-dependent manner and is due to the covalent modification of Pro-1. The proposed mechanism for inactivation involves the initial hydration of the 3-halopropiolate followed by a rearrangement to an alkylating agent, either an acyl halide or a ketene. The results provide additional evidence for the hydratase activity of MSAD and further support for the hypothesis that MSAD and trans-3-chloroacrylic acid dehalogenase, the preceding enzyme in the trans-1,3-dichloropropene catabolic pathway, diverged from a common ancestor but conserved the necessary catalytic machinery for the conjugate addition of water.

  9. Molecular and Functional Analyses of Amino Acid Decarboxylases Involved in Cuticle Tanning in Tribolium castaneum*

    PubMed Central

    Arakane, Yasuyuki; Lomakin, Joseph; Beeman, Richard W.; Muthukrishnan, Subbaratnam; Gehrke, Stevin H.; Kanost, Michael R.; Kramer, Karl J.

    2009-01-01

    Aspartate 1-decarboxylase (ADC) and 3,4-dihydroxyphenylalanine decarboxylase (DDC) provide β-alanine and dopamine used in insect cuticle tanning. β-Alanine is conjugated with dopamine to yield N-β-alanyldopamine (NBAD), a substrate for the phenol oxidase laccase that catalyzes the synthesis of cuticle protein cross-linking agents and pigment precursors. We identified ADC and DDC genes in the red flour beetle, Tribolium castaneum (Tc), and investigated their functions. TcADC mRNA was most abundant prior to the pupal-adult molt. Injection of TcADC double-stranded (ds) RNA (dsTcADC) into mature larvae resulted in depletion of NBAD in pharate adults, accumulation of dopamine, and abnormally dark pigmentation of the adult cuticle. Injection of β-alanine, the expected product of ADC, into dsTcADC-treated pupae rescued the pigmentation phenotype, resulting in normal rust-red color. A similar pattern of catechol content consisting of elevated dopamine and depressed NBAD was observed in the genetic black mutants of Tribolium, in which levels of TcADC mRNA were drastically reduced. Furthermore, from the Tribolium black mutant and dsTcADC-injected insects both exhibited similar changes in material properties. Dynamic mechanical analysis of elytral cuticle from beetles with depleted TcADC transcripts revealed diminished cross-linking of cuticular components, further confirming the important role of oxidation products of NBAD as cross-linking agents during cuticle tanning. Injection of dsTcDDC into larvae produced a lethal pupal phenotype, and the resulting grayish pupal cuticle exhibited many small patches of black pigmentation. When dsTcDDC was injected into young pupae, the resulting adults had abnormally dark brown body color, but there was little mortality. Injection of dsTcDDC resulted in more than a 5-fold increase in levels of DOPA, indicating that lack of TcDDC led to accumulation of its substrate, DOPA. PMID:19366687

  10. Effect of methionine deprivation on S-adenosylmethionine decarboxylase of tumour cells.

    PubMed

    Tisdale, M J

    1981-07-17

    Transference of Walker carcinoma and TLX5 lymphoma from normal L-methionine-containing medium to medium containing limiting amounts of L-methionine, or L-homocysteine only, caused a 2-fold increase of S-adenosylmethionine decarboxylase activity. Kinetic analysis showed an increase in the V value of the enzyme from 22 to 53 pmol/min per mg protein in media containing only 0.1 mM L-homocysteine, without any alteration in the Km value (0.1 mM). The increase in enzyme activity does not result from (a) a reduction of the intracellular level of S-adenosylmethionine, since cycloleucine, an inhibitor of methionine adenosyltransferase, had no effect on enzyme activity; (b) an increase in intracellular adenosine 3',5' monophosphate (cyclic AMP), since high extracellular concentrations of N6-monobutyryl cyclic AMP had no effect on enzyme activity; (c) an alteration of polyamine levels, since addition of micromolar concentrations of exogenous putrescine, spermidine and spermine did not prevent the induction of S-adenosylmethionine decarboxylase activity in methionine-free media containing 0.1 mM L-homocysteine. The increased enzyme activity appears to be mainly due to enhanced stabilization, since the half-life was increased from 2.45 to 5.0 h in media containing only 0.1 mM L-homocysteine. Induction of enzyme activity is specific to the removal of L-methionine, since no increase occurred in the absence of L-serine or L-glycine, or both, or by reduction of the serum concentrations in the medium.

  11. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    PubMed

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance.

  12. Evidence for the presence of phosphoriboisomerase and ribulose-1,5-diphosphate carboxylase in extracts of Desulfovibrio vulgaris.

    PubMed

    Alvarez, M; Barton, L L

    1977-07-01

    Cell extracts of Desulfovibrio vulgaris were found to incorporate 14CO2 into acid-stable products when ribose-5-phosphate or ribulose-1,5-diphosphate was used as a substrate. This CO2 fixation required adenosine triphosphate and produced 3-phosphoglyceric acid as one of the products. The assimilation of CO2 by pentose phosphates was unrelated to the pyruvate-CO2 exchange reaction. The pyruvate-CO2 exchange did not require adenosine triphosphate, did not produce phosphorylated compounds, and, unlike the pentose phosphate system, required an acidic protein fraction for activity.

  13. Kinetic and thermodynamic studies of the dissolution of thorium-uranium (IV) phosphate-diphosphate solid solutions

    NASA Astrophysics Data System (ADS)

    Thomas, A. C.; Dacheux, N.; Le Coustumer, P.; Brandel, V.; Genet, M.

    2001-06-01

    The dissolution of thorium-uranium (IV) phosphate-diphosphate solid solutions (TUPD) was studied as a function of the temperature and leachate acidity. The dependence of the normalized dissolution rate on the temperature leads to an activation energy equal to about 40 kJ mol -1, close to that obtained for the pure thorium phosphate-diphosphate ( 42±3 kJ mol-1) and for thorium-plutonium (IV) phosphate-diphosphate solid solutions ( 41±1 kJ mol-1). The normalized dissolution rate of TUPD slightly increases with the leachate acidity. The partial order related to the proton concentration, n, is equal to 0.40±0.02 while the apparent normalized dissolution rate constant, k'T,I, reaches (2.8±0.7)×10 -4 g m-2 d-1 at 90°C and for [ H3O+]=1 M. When the saturation of the leachate is reached, the concentration of thorium, uranium and phosphate ions measured in the solution are controlled by the precipitation of the uranyl phosphate pentahydrate (UO 2) 3(PO 4) 2·5H 2O and the thorium phosphate-hydrogenphosphate Th 2(PO 4) 2(HPO 4)·H 2O. Both solids were extensively characterized using XRD, infrared and UV-visible spectroscopies or electron probe microanalysis (EPMA). Their solubility products, K°S,0, were determined and extrapolated to I=0. They are equal to 10 -55.2±0.5 and 10 -66.6±1.2, respectively. All the samples leached were characterized using EPMA, SEM and TEM. These techniques showed that during the dissolution process, thorium and uranium are completely separated as (UO 2) 3(PO 4) 2·5H 2O, on one hand, and Th 2(PO 4) 2(HPO 4)·H 2O, on the other hand. In the first days of leaching tests, an amorphous additional phase, identified as Th 2(PO 4) 2(HPO 4)· nH 2O was also observed. Several leaching tests performed on sintered TUPD samples revealed that the dissolution rates measured in 10 -1 M HNO3 is very low (6.5×10 -5 g d-1) by comparison to other ceramics studied in the same objective. In these conditions, the thorium phosphate-diphosphate (TPD) appears as

  14. Enthalpy versus entropy-driven binding of bisphosphonates to farnesyl diphosphate synthase.

    PubMed

    Yin, Fenglin; Cao, Rong; Goddard, Amanda; Zhang, Yonghui; Oldfield, Eric

    2006-03-22

    We report the results of an ITC (isothermal titration calorimetry) investigation of the binding of six bisphosphonates to the enzyme farnesyl diphosphate synthase (FPPS; EC 2.5.1.10) from Trypanosoma brucei. The bisphosphonates investigated were zoledronate, risedronate, ibandronate, pamidronate, 2-phenyl-1-hydroxyethane-1,1-bisphosphonate, and 1-(2,2-bisphosphonoethyl)-3-iodo pyridinium. At pH = 7.4, both risedronate and the phenylethane bisphosphonate bind in an enthalpy-driven manner (DeltaH approximately -9 to 10 kcal mol-1), but the other four bisphosphonates bind in an entropy-driven manner (DeltaS varying from 31.2 to 55.1 cal K-1 mol-1). However, at pH = 8.5, zoledronate binding switches from entropy to enthalpy-driven. The DeltaG results are highly correlated with FPPS inhibition results obtained using a radiochemical assay (R2 = 0.85, N = 11, P < 0.001). The DeltaH and DeltaS results are interpreted in terms of a model in which bisphosphonates with charged side chains have positive DeltaH values, due to the enthalpic cost of desolvation (due to strong ion-dipole interactions) and, likewise, a positive DeltaS, due to an increase in water entropy (both ligand and protein associated) on ligand binding to FPPS: the hydrophobic effect. For the neutral side chains (risedronate at pH 7.4, 8.5 and zoledronate at pH 8.5, as well as the phenylethane bisphosphonate), binding is overwhelmingly enthalpy-driven, with the enhanced activity of the basic side chain containing species being attributable to their becoming protonated in the active site. Given the large size of the bisphosphonate market and the potential importance of the development of these compounds for cancer immunotherapy and anti-parasitic chemotherapy, these results are of broad general interest in the context of the development of new, potent, and selective FPPS inhibitors.

  15. An industrial process for selective synthesis of 7-methyl guanosine 5'-diphosphate: versatile synthon for synthesis of mRNA cap analogues.

    PubMed

    Kore, Anilkumar R; Parmar, Gaurang

    2006-03-01

    We report an industrial scale facile synthesis of 7-methyl guanosine 5'-diphosphate, which plays an important role in synthesis of various mRNA cap analogs. An efficient and selective methylation at position 7 of guanosine 5'-diphosphate was achieved by dissolving guanosine 5'-diphosphate in water and drops wise addition of dimethyl sulfate over a period of 1 h at room temperature. The reaction was completed within 2 h and resulted in more than a 96% yield. The desired product, 7-methyl GDP was purified by using BPG column on AKTA Purifier 100. Certainly, this method has advantages over the known methylation method, in terms of yield, economy, safety, and environmental concerns. PMID:16629126

  16. The occurrence of uridine diphosphate N-acetylgalactosamine 6-sulfate in quail egg white and characteristic distribution of sulfated sugar nucleotides in different avian eggs.

    PubMed

    Nakanishi, Y; Okuda, S; Tsuji, M; Suzuki, S

    1979-08-29

    A sulfated sugar nucleotide has been isolated from quail egg white, and accounts for nearly 80% of the total sugar nucleotides found in the egg white. Evidence is presented that this nucleotide is uridine diphosphate N-acetylgalactosamine 6-sulfate, an isomer of the 4-sulfated derivative of uridine diphosphate N-acetylgalactosamine previously found in chicken egg white. Further studies on the distribution of sulfated sugar nucleotides in egg white of various birds (chicken, quail, pheasant, peafowl, turkey, goose, and duck) demonstrate that each species has a characteristic composition, differing from one another regarding the relative amounts of 4-sulfated, 6-sulfated, and 4,6-bissulfated derivatives of uridine diphosphate N-acetylgalactosamine.

  17. The occurrence of uridine diphosphate N-acetylgalactosamine 6-sulfate in quail egg white and characteristic distribution of sulfated sugar nucleotides in different avian eggs.

    PubMed

    Nakanishi, Y; Okuda, S; Tsuji, M; Suzuki, S

    1979-08-29

    A sulfated sugar nucleotide has been isolated from quail egg white, and accounts for nearly 80% of the total sugar nucleotides found in the egg white. Evidence is presented that this nucleotide is uridine diphosphate N-acetylgalactosamine 6-sulfate, an isomer of the 4-sulfated derivative of uridine diphosphate N-acetylgalactosamine previously found in chicken egg white. Further studies on the distribution of sulfated sugar nucleotides in egg white of various birds (chicken, quail, pheasant, peafowl, turkey, goose, and duck) demonstrate that each species has a characteristic composition, differing from one another regarding the relative amounts of 4-sulfated, 6-sulfated, and 4,6-bissulfated derivatives of uridine diphosphate N-acetylgalactosamine. PMID:534643

  18. Plastidic Isoprenoid Synthesis during Chloroplast Development 1

    PubMed Central

    Heintze, Adolf; Görlach, Jörn; Leuschner, Carola; Hoppe, Petra; Hagelstein, Petra; Schulze-Siebert, Detlef; Schultz, Gernot

    1990-01-01

    The chloroplast isoprenoid synthesis of very young leaves is supplied by the plastidic CO2 → pyruvate → acetyl-coenzyme A (C3 → C2) metabolism (D Schulze-Siebert, G Schultz [1987] Plant Physiol 84: 1233-1237) and occurs via the plastidic mevalonate pathway. The plastidic C3 → C2 metabolism and/or plastidic mevalonate pathway of barley (Hordeum vulgare L.) seedlings changes from maximal activity at the leaf base (containing developing chloroplasts with incomplete thylakoid stacking but a considerable rate of photosynthetic CO2-fixation) almost to ineffectivity at the leaf tip (containing mature chloroplasts with maximal photosynthetic activity). The ability to import isopentenyl diphosphate from the extraplastidic space gradually increases to substitute for the loss of endogenous intermediate supply for chloroplast isoprenoid synthesis (change from autonomic to division-of-labor stage). Fatty acid synthesis from NaH14CO3 decreases in the same manner as shown for leaf sections and chloroplasts isolated from these. Evidence has been obtained for a drastic decrease of pyruvate decarboxylase-dehydrogenase activity during chloroplast development compared with other anabolic chloroplast pathways (synthesis of aromatic amino acid and branched chain amino acids). The noncompetition of pyruvate and acetate in isotopic dilution studies indicates that both a pyruvate-derived and an acetate-derived compound are simultaneously needed to form introductory intermediates of the mevalonate pathway, presumably acetoacetyl-coenzyme A. PMID:16667567

  19. The Genetics of Dopa Decarboxylase in DROSOPHILA MELANOGASTER I. Isolation and Characterization of Deficiencies That Delete the Dopa-Decarboxylase-Dosage-Sensitive Region and the α-Methyl-Dopa-Hypersensitive Locus

    PubMed Central

    Wright, Theodore R. F.; Hodgetts, Ross B.; Sherald, Allen F.

    1976-01-01

    A detailed cytogenetic investigation of 16 overlapping deficiencies in the 36C-40A region on the left arm of the second chromosome (2L) in Drosophila melanogaster is reported. These deficiencies permit a localization of both the dopa-decarboxylase-dosage-sensitive region and the α-methyl-dopa-hypersensitive locus, l(2)amd, to the same region, 37B10-37C7. PMID:826447

  20. The maize An2 gene is induced by Fusarium attack and encodes an ent-copalyl diphosphate synthase.

    PubMed

    Harris, L J; Saparno, A; Johnston, A; Prisic, S; Xu, M; Allard, S; Kathiresan, A; Ouellet, T; Peters, R J

    2005-12-01

    Using the technique of differential display, a maize transcript was identified whose silk tissue expression is induced in the presence of the ear rot pathogen Fusarium graminearum. The 3445 nt transcript includes a 727 nt 5' untranslated leader with the potential for extensive secondary structure and represents the maize gene An2. An2 encodes a copalyl diphosphate synthase (CPS)-like protein with 60% amino acid sequence identity with the maize An1 gene product involved in gibberellin (GA) biosynthesis. Recombinant expression and functional analysis demonstrated that both AN1 and AN2 are ent-copalyl diphosphate (ent-CPP) synthases (ent-CPS). Notably, the presence of an additional ent-CPS gene is consistent with previous reports that maize GA biosynthesis can proceed in the absence of An1. In addition, northern blot analysis showed that An2 transcript levels were strongly up-regulated by Fusarium attack, with an increase in silk, husk and ear tip tissues as early as 6 h after inoculation of silk channels with spore suspensions of various Fusarium sp. Gene expression of a third maize CPS-like gene, Cpsl1, is not affected by Fusarium infection. The Fusarium-inducible nature of An2 is also consistent with a previous report that cell-free extracts from maize seedlings produce ent-CPP derived diterpenes in response to Fusarium infection. However, it is not known whether An2 is involved in defense-related secondary metabolism in addition to GA synthesis.

  1. Molecular cloning and catalytic activity of a membrane-bound prenyl diphosphate phosphatase from Croton stellatopilosus Ohba.

    PubMed

    Nualkaew, Natsajee; Guennewich, Nils; Springob, Karin; Klamrak, Anuwatchakit; De-Eknamkul, Wanchai; Kutchan, Toni M

    2013-07-01

    Geranylgeraniol (GGOH), a bioactive acyclic diterpene with apoptotic induction activity, is the immediate precursor of the commercial anti-peptic, plaunotol (18-hydroxy geranylgeraniol), which is found in Croton stellatopilosus (Ohba). From this plant, a cDNA encoding a prenyl diphosphate phosphatase (CsPDP), which catalyses the dephosphorylation of geranylgeranyl diphosphate (GGPP) to GGOH, was isolated using a PCR approach. The full-length cDNA contained 888bp and encoded a 33.6 kDa protein (295 amino acids) that was phylogenetically grouped into the phosphatidic acid phosphatase (PAP) enzyme family. The deduced amino acid sequence showed 6 hydrophobic transmembrane regions with 57-85% homology to the sequences of other plant PAPs. The recombinant CsPDP and its 4 truncated constructs exhibited decreasing dephosphorylation activities relative to the lengths of the N-terminal deletions. While the full-length CsPDP successfully performed the two sequential monodephosphorylation steps on GGPP to form GGOH, the larger N-terminal deletion in the truncated enzymes appeared to specifically decrease the catalytic efficiency of the second monodephosphorylation step. The information presented here on the CsPDP cDNA and factors affecting the dephosphorylation activity of its recombinant protein may eventually lead to the discovery of the specific GGPP phosphatase gene and enzyme that are involved in the formation of GGOH in the biosynthetic pathway of plaunotol in C. stellatopilosus.

  2. Binding of nitrogen-containing bisphosphonates (N-BPs) to the Trypanosoma cruzi farnesyl diphosphate synthase homodimer

    SciTech Connect

    Huang, Chuan-Hsiang; Gabelli, Sandra B.; Oldfield, Eric; Amzel, L. Mario

    2010-11-15

    Bisphosphonates (BPs) are a class of compounds that have been used extensively in the treatment of osteoporosis and malignancy-related hypercalcemia. Some of these compounds act through inhibition of farnesyl diphosphate synthase (FPPS), a key enzyme in the synthesis of isoprenoids. Recently, nitrogen-containing bisphosphonates (N-BPs) used in bone resorption therapy have been shown to be active against Trypanosoma cruzi, the parasite that causes American trypanosomiasis (Chagas disease), suggesting that they may be used as anti-trypanosomal agents. The crystal structures of TcFPPS in complex with substrate (isopentenyl diphosphate, IPP) and five N-BP inhibitors show that the C-1 hydroxyl and the nitrogen-containing groups of the inhibitors alter the binding of IPP and the conformation of two TcFPPS residues, Tyr94 and Gln167. Isothermal titration calorimetry experiments suggest that binding of the first N-BPs to the homodimeric TcFPPS changes the binding properties of the second site. This mechanism of binding of N-BPs to TcFPPS is different to that reported for the binding of the same compounds to human FPPS.

  3. Silver vanadium diphosphate Ag{sub 2}VP{sub 2}O{sub 8}: Electrochemistry and characterization of reduced material providing mechanistic insights

    SciTech Connect

    Takeuchi, Esther S.; Lee, Chia-Ying; Cheng, Po-Jen; Menard, Melissa C.; Marschilok, Amy C.; Takeuchi, Kenneth J.

    2013-04-15

    Silver vanadium phosphorous oxides (Ag{sub w}V{sub x}P{sub y}O{sub z}) are notable battery cathode materials due to their high energy density and demonstrated ability to form in-situ Ag metal nanostructured electrically conductive networks within the cathode. While analogous silver vanadium diphosphate materials have been prepared, electrochemical evaluations of these diphosphate based materials have been limited. We report here the first electrochemical study of a silver vanadium diphosphate, Ag{sub 2}VP{sub 2}O{sub 8}, where the structural differences associated with phosphorous oxides versus diphosphates profoundly affect the associated electrochemistry. Reminiscent of Ag{sub 2}VO{sub 2}PO{sub 4} reduction, in-situ formation of silver metal nanoparticles was observed with reduction of Ag{sub 2}VP{sub 2}O{sub 8}. However, counter to Ag{sub 2}VO{sub 2}PO{sub 4} reduction, Ag{sub 2}VP{sub 2}O{sub 8} demonstrates a significant decrease in conductivity upon continued electrochemical reduction. Structural analysis contrasting the crystallography of the parent Ag{sub 2}VP{sub 2}O{sub 8} with that of the proposed Li{sub 2}VP{sub 2}O{sub 8} reduction product is employed to gain insight into the observed electrochemical reduction behavior, where the structural rigidity associated with the diphosphate anion may be associated with the observed particle fracturing upon deep electrochemical reduction. Further, the diphosphate anion structure may be associated with the high thermal stability of the partially reduced Ag{sub 2}VP{sub 2}O{sub 8} materials, which bodes well for enhanced safety of batteries incorporating this material. - Graphical abstract: Structure and galvanostatic intermittent titration-type test data for silver vanadium diphosphate, Ag{sub 2}VP{sub 2}O{sub 8}. Highlights: ► First electrochemical study of a silver vanadium diphosphate, Ag{sub 2}VP{sub 2}O{sub 8}. ► In-situ formation of Ag{sup 0} nanoparticles was observed upon electrochemical reduction.

  4. Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation.

    PubMed

    Hamill, J D; Robins, R J; Parr, A J; Evans, D M; Furze, J M; Rhodes, M J

    1990-07-01

    Transformed root cultures of Nicotiana rustica have been generated in which the gene from the yeast Saccharomyces cerevisiae coding for ornithine decarboxylase has been integrated. The gene, driven by the powerful CaMV35S promoter with an upstream duplicated enhancer sequence, shows constitutive expression throughout the growth cycle of some lines, as demonstrated by the analysis of mRNA and enzyme activity. The presence of the yeast gene and enhanced ornithine decarboxylase activity is associated with an enhanced capacity of cultures to accumulate both putrescine and the putrescine-derived alkaloid, nicotine. Even, however, with the very powerful promoter used in this work the magnitude of the changes seen is typically only in the order of 2-fold, suggesting that regulatory factors exist which limit the potential increase in metabolic flux caused by these manipulations. Nevertheless, it is demonstrated that flux through a pathway to a plant secondary product can be elevated by means of genetic manipulation. PMID:2103440

  5. Selective loss of Purkinje cells in a patient with anti‐glutamic acid decarboxylase antibody‐associated cerebellar ataxia

    PubMed Central

    Ishida, Kazuyuki; Mitoma, Hiroshi; Wada, Yoshiaki; Oka, Teruaki; Shibahara, Junji; Saito, Yuko; Murayama, Shigeo; Mizusawa, Hidehiro

    2007-01-01

    Anti‐glutamic acid decarboxylase antibody is associated with the development of progressive cerebellar ataxia and slowly progressive insulin‐dependent diabetes mellitus. Previously, the neurophysiological characteristics of IgG in the cerebrospinal fluid of a patient with anti‐glutamic acid decarboxylase antibody‐associated progressive cerebellar ataxia and slowly progressive insulin‐dependent diabetes mellitus were reported. Using a voltage‐gated whole‐cell recording technique, it was observed that the IgG in the cerebrospinal fluid of the patient selectively suppressed the inhibitory postsynaptic currents in the Purkinje cells. The patient died from aspiration pneumonia. Postmortem examination showed almost complete depletion of the Purkinje cells with Bergmann gliosis. Therefore, the main cause of cerebellar ataxia observed in this case may be attributed to the near‐complete depletion of the Purkinje cells. In this paper, the pathomechanisms underlying Purkinje cell damage are discussed. PMID:17119008

  6. Increase in S-adenosyl-L-methionine decarboxylase activity during the transformation of chick embroy fibroblasts by Rous sarcoma virus.

    PubMed

    Bachrach, U; Weiner, H

    1980-07-15

    The increase in S-adenosyl-L-methionine decarboxylase activity in chick embryo fibroblasts after infection with Rous sarcoma virus has been studied. It has been shown that enzyme levels in transformed cells were two or three times higher than those of the non-infected controls. The activity of this enzyme was not elevated in chick embryo fibroblasts infected with a temperature sensitive mutant of Rous sarcoma virus (RSV-T5) at 42 degrees C, the non-permissive temperature. When the temperature of these infected cultures was shifted from 42 degrees C to 37 degrees C a two- or three-fold increase in decarboxlase activity was detected after 10 to 12 h. The half-live of S-adenosyl-L-methionine decarboxylase was practically identical in normal and RSV-transformed fibroblasts.

  7. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D

    2016-05-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  8. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed Central

    Dalton, Heidi L.; Blomstedt, Cecilia K.; Neale, Alan D.; Gleadow, Ros; DeBoer, Kathleen D.; Hamill, John D.

    2016-01-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  9. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D

    2016-05-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.

  10. Arginine decarboxylase inhibitors reduce the capacity of Trypanosoma cruzi to infect and multiply in mammalian host cells.

    PubMed Central

    Kierszenbaum, F; Wirth, J J; McCann, P P; Sjoerdsma, A

    1987-01-01

    The capacity of blood (trypomastigote) forms of Trypanosoma cruzi to infect mouse peritoneal macrophages or rat heart myoblasts in vitro was inhibited by treatment of the trypomastigotes with DL-alpha-difluoromethylarginine (F2Me Arg), monofluoromethylagmatine, or (E)-alpha-monofluoromethyl-3-4-dehydroarginine--all irreversible inhibitors of arginine decarboxylase. Similar results were obtained when F2MeArg-treated parasites were incubated with rat heart myoblasts. The inhibitory effects were characterized by marked reductions in both the proportion of infected cells and the number of parasites per 100 host cells. The concentrations of the arginine decarboxylase inhibitors that affected infectivity had no detectable effect on either the concentration or motility of the parasite and, therefore, could not have affected the collision frequency. F2MeArg appeared to inhibit the ability of T. cruzi to penetrate the host cells since the drug had no significant effect on the extent of parasite binding to the surface of the host cells. The inhibitory effect of F2MeArg was markedly reduced or abrogated in the presence of either agmatine or putrescine, as would have been expected if F2MeArg acted by inhibiting arginine decarboxylase. Addition of F2MeArg to macrophage or myoblast cultures immediately after infection or at a time when virtually all of the intracellular parasites had transformed into the multiplicative amastigote form, resulted in a markedly reduced parasite growth rate. This effect was also prevented by exogenous agmatine. These results indicate the importance of polyamines and polyamine biosynthesis in the following two important functions of T. cruzi: invasion of host cells and intracellular multiplication. Furthermore, concentrations of the inhibitors tested that affected the parasite did not alter the viability of the host cells, the cellular density of the cultures, or the ability of uninfected myoblasts to grow. Thus, arginine decarboxylase inhibitors may

  11. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    PubMed Central

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  12. Analysis of Mammalian Histidine Decarboxylase Dimerization Interface Reveals an Electrostatic Hotspot Important for Catalytic Site Topology and Function.

    PubMed

    Moya-García, Aurelio A; Rodríguez-Agudo, Daniel; Hayashi, Hideyuki; Medina, Miguel Angel; Urdiales, José Luis; Sánchez-Jiménez, Francisca

    2011-06-14

    Selective intervention of mammalian histidine decarboxylase (EC 4.1.1.22) could provide a useful antihistaminic strategy against many different pathologies. It is known that global conformational changes must occur during reaction that involves the monomer-monomer interface of the enzyme. Thus, the dimerization surface is a promising target for histidine decarboxylase inhibition. In this work, a rat apoenzyme structural model is used to analyze the interface of the dimeric active HDC. The dimerization surface mainly involves the fragments 1-213 and 308-371 from both subunits. Part of the overlapping surfaces conforms each catalytic site entrance and the substrate-binding sites. In addition, a cluster of charged residues is located in each overlapping surface, so that both electrostatic hotspots mediate in the interaction between the catalytic sites of the dimeric enzyme. It is experimentally demonstrated that the carboxyl group of aspartate 315 is critical for the proper conformation of the holoenzyme and the progression of the reaction. Comparison to the available information on other evolutionary related enzymes also provides new insights for characterization and intervention of homologous l-amino acid decarboxylases. PMID:26596454

  13. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    PubMed

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs.

  14. Increased Putrescine Biosynthesis through Transfer of Mouse Ornithine Decarboxylase cDNA in Carrot Promotes Somatic Embryogenesis.

    PubMed Central

    Bastola, D. R.; Minocha, S. C.

    1995-01-01

    Carrot (Daucus carota L.) cells were transformed with Agrobacterium tumefaciens strains containing 3[prime]-truncated mouse ornithine decarboxylase (ODC) cDNA under the control of a cauliflower mosaic virus 35S promoter. A neomycin phosphotransferase gene linked with a nopaline synthase promoter was used to select transformed cell lines on kanamycin. Although the nontransformed cells contained no ODC, high amounts of mouse-specific ODC activity were observed in the transformed cells. Transgenic cells showed a significant increase in the cellular content of putrescine compared to control cells. Spermidine, however, remained unaffected. Not only did the transformed cells exhibit improved somatic embryogenesis in the auxin-free medium, they also regenerated some embryos in the presence of inhibitory concentrations of 2,4-dichlorophenoxyacetic acid. These cells acquired tolerance to [alpha]-difluoromethylarginine (a potent inhibitor of arginine decarboxylase) at concentrations that inhibit growth as well as embryogenesis in nontransformed carrot cells, showing that the mouse ODC can replace the carrot arginine decarboxylase for putrescine biosynthesis in the transgenic cells. PMID:12228581

  15. Cloning and expression of pig kidney dopa decarboxylase: comparison of the naturally occurring and recombinant enzymes.

    PubMed Central

    Moore, P S; Dominici, P; Borri Voltattorni, C

    1996-01-01

    L-Aromatic amino acid decarboxylase (dopa decarboxylase; DDC) is a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme that catalyses the decarboxylation of L-dopa and other L-aromatic amino acids. To advance structure-function studies with the enzyme, a cDNA that codes for the protein from pig kidney has been cloned by joining a partial cDNA obtained by library screening with a synthetic portion constructed by the annealing and extension of long oligonucleotides. The hybrid cDNA was then expressed in Escherichia coli to produce recombinant protein. During characterization of the recombinant enzyme it was unexpectedly observed that it possesses certain differences from the enzyme purified from pig kidney. Whereas the later protein binds 1 molecule of PLP per dimer, the recombinant enzyme was found to bind two molecules of coenzyme per dimer. Moreover, the Vmax was twice that of the protein purified from tissue. On addition of substrate, the absorbance changes accompanying transaldimination were likewise 2-fold greater in the recombinant enzyme. Examination of the respective apoenzymes by absorbance, CD and fluorescence spectroscopy revealed distinct differences. The recombinant apoprotein has no significant absorbance at 335 nm, unlike the pig kidney apoenzyme; in the latter case this residual absorbance is associated with a positive dichroic signal. When excited at 335 nm the pig kidney apoenzyme has a pronounced emission maximum at 385 nm, in contrast with its recombinant counterpart, which shows a weak broad emission at about 400 nm. However, the holoenzyme-apoenzyme transition did not markedly alter the respective fluorescence properties of either recombinant or pig kidney DDC when excited at 335 nm. Taken together, these findings indicate that recombinant pig kidney DDC has two active-site PLP molecules and therefore displays structural characteristics typical of PLP-dependent homodimeric enzymes. The natural enzyme contains one active-site PLP molecule

  16. Comparative pharmacokinetics and pharmacodynamics of platelet adenosine diphosphate receptor antagonists and their clinical implications.

    PubMed

    Floyd, Christopher N; Passacquale, Gabriella; Ferro, Albert

    2012-07-01

    Over the last two decades or more, anti-platelet therapy has become established as a cornerstone in the treatment of patients with ischaemic cardiovascular disease, since such drugs effectively reduce arterial thrombotic events. The original agent used in this context was aspirin (acetylsalicylic acid) but, with the advent of adenosine diphosphate (ADP) receptor antagonists, the use of dual anti-platelet therapy has resulted in further improvement in cardiovascular outcomes when compared with aspirin alone. The first group of platelet ADP receptor antagonists to be developed was the thienopyridine class, which comprise inactive pro-drugs that require in vivo metabolism to their active metabolites before exerting their inhibitory effect on the P2Y(12) receptor. Clopidogrel has been the principal ADP receptor antagonist in use over the past decade, but is limited by variability in its in vivo inhibition of platelet aggregation (IPA). The pharmacokinetics of clopidogrel are unpredictable due to their vulnerability to multiple independent factors including genetic polymorphisms. Expression of the 3435T/T genetic variant encoding the MDR1 gene for the P-glycoprotein efflux transporter results in a significantly reduced maximum drug concentration and area under the plasma concentration-time curve as intestinal absorption of clopidogrel is reduced; and the expression of the mutant *2 allele of CYP2C19 results in similar pharmacokinetic effects as the two cytochrome P450 (CYP)-mediated steps required for the production of the active metabolite of clopidogrel are impaired. These variable pharmacokinetics lead to erratic pharmacodynamics and cannot reliably be overcome with increased dosing. Both prasugrel, a third-generation thienopyridine, and ticagrelor, a cyto-pentyl-triazolo-pyrimidine, have more predictable pharmacokinetics and enhanced pharmacodynamics than clopidogrel. Neither appears to be affected by the same genetic polymorphisms as clopidogrel; prasugrel requires

  17. Chronic alcoholism in rats induces a compensatory response, preserving brain thiamine diphosphate, but the brain 2-oxo acid dehydrogenases are inactivated despite unchanged coenzyme levels.

    PubMed

    Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I

    2011-06-01

    Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability.

  18. A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C25) Formation in the Glandular Trichomes of the Mint Species Leucosceptrum canum.

    PubMed

    Liu, Yan; Luo, Shi-Hong; Schmidt, Axel; Wang, Guo-Dong; Sun, Gui-Ling; Grant, Marcus; Kuang, Ce; Yang, Min-Jie; Jing, Shu-Xi; Li, Chun-Huan; Schneider, Bernd; Gershenzon, Jonathan; Li, Sheng-Hong

    2016-03-01

    Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-D-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms. PMID:26941091

  19. New role of flavin as a general acid-base catalyst with no redox function in type 2 isopentenyl-diphosphate isomerase.

    PubMed

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-Ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-04-01

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes.

  20. A Geranylfarnesyl Diphosphate Synthase Provides the Precursor for Sesterterpenoid (C25) Formation in the Glandular Trichomes of the Mint Species Leucosceptrum canum.

    PubMed

    Liu, Yan; Luo, Shi-Hong; Schmidt, Axel; Wang, Guo-Dong; Sun, Gui-Ling; Grant, Marcus; Kuang, Ce; Yang, Min-Jie; Jing, Shu-Xi; Li, Chun-Huan; Schneider, Bernd; Gershenzon, Jonathan; Li, Sheng-Hong

    2016-03-01

    Plant sesterterpenoids, an important class of terpenoids, are widely distributed in various plants, including food crops. However, little is known about their biosynthesis. Here, we cloned and functionally characterized a plant geranylfarnesyl diphosphate synthase (Lc-GFDPS), the enzyme producing the C25 prenyl diphosphate precursor to all sesterterpenoids, from the glandular trichomes of the woody plant Leucosceptrum canum. GFDPS catalyzed the formation of GFDP after expression in Escherichia coli. Overexpressing GFDPS in Arabidopsis thaliana also gave an extract catalyzing GFDP formation. GFDPS was strongly expressed in glandular trichomes, and its transcript profile was completely in accordance with the sesterterpenoid accumulation pattern. GFDPS is localized to the plastids, and inhibitor studies indicated its use of isoprenyl diphosphate substrates supplied by the 2-C-methyl-D-erythritol 4-phosphate pathway. Application of a jasmonate defense hormone induced GFDPS transcript and sesterterpenoid accumulation, while reducing feeding and growth of the generalist insect Spodoptera exigua, suggesting that these C25 terpenoids play a defensive role. Phylogenetic analysis suggested that GFDPS probably evolved from plant geranylgeranyl diphosphate synthase under the influence of positive selection. The isolation of GFDPS provides a model for investigating sesterterpenoid formation in other species and a tool for manipulating the formation of this group in plants and other organisms.

  1. Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors.

    PubMed

    Botella-Pavía, Patricia; Besumbes, Oscar; Phillips, Michael A; Carretero-Paulet, Lorenzo; Boronat, Albert; Rodríguez-Concepción, Manuel

    2004-10-01

    Carotenoids are isoprenoid pigments that function as photoprotectors, precursors of the hormone abscisic acid (ABA), colorants and nutraceuticals. A major problem for the metabolic engineering of high carotenoid levels in plants is the limited supply of their isoprenoid precursor geranylgeranyl diphosphate (GGPP), formed by condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) units usually synthesized by the methylerythritol phosphate (MEP) pathway in plastids. Our earlier work with three of the seven MEP pathway enzymes suggested that the first reaction of the pathway catalyzed by deoxyxylulose 5-phosphate synthase (DXS) is limiting for carotenoid biosynthesis during tomato (Lycopersicon esculentum) fruit ripening. Here we investigate the contribution of the enzyme hydroxymethylbutenyl diphosphate reductase (HDR), which simultaneously synthesizes IPP and DMAPP in the last step of the pathway. A strong upregulation of HDR gene expression was observed in correlation with carotenoid production during both tomato fruit ripening and Arabidopsis thaliana seedling deetiolation. Constitutive overexpression of the tomato cDNA encoding HDR in Arabidopsis did not increase carotenoid levels in etioplasts. By contrast, light-grown transgenic plants showed higher carotenoid levels and an enhanced seed dormancy phenotype suggestive of increased ABA levels. The analysis of double transgenic Arabidopsis plants overproducing both the enzyme taxadiene synthase (which catalyzes the production of the non-native isoprenoid taxadiene from GGPP) and either HDR or DXS showed a twofold stronger effect of HDR in increasing taxadiene levels. Together, the data support a major role for HDR in controlling the production of MEP-derived precursors for plastid isoprenoid biosynthesis.

  2. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.

    PubMed

    Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F

    2014-10-01

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells. PMID:25027024

  3. Ribulose 1,5-Diphosphate Carboxylase Synthesis in Euglena: II. Effect of Inhibitors on Enzyme Synthesis during Regreening and Subsequent Transfer to Darkness.

    PubMed

    Lord, J M; Armitage, T L; Merrett, M J

    1975-11-01

    Dark-grown Euglena gracilis Klebs strain Z Pringsheim cells, which have been partially regreened in the light, show a striking, continued synthesis of the chloroplast enzyme ribulose 1,5-diphosphate carboxylase on transfer back into darkness. This dark synthesis of the enzyme was completely prevented by the addition of 15 mug/ml of cycloheximide to the culture medium but was unaffected, for at least 8 hours, by the addition of 1 mg/ml of d-threo-chloramphenicol. The addition of either cycloheximide or d-threo-chloramphenicol to dark-grown cultures at the onset of illumination completely inhibited the light-induced synthesis of ribulose 1,5-diphosphate carboxylase. When cells which had been illuminated in the presence of d-threo-chloramphenicol, and hence were unable to synthesize ribulose 1,5-diphosphate carboxylase, were transferred to darkness in the absence of this inhibitor, synthesis of the carboxylase then occurred. Dark-grown cells which had been illuminated in the presence of cycloheximide failed to synthesize the enzyme when placed in the dark in the absence of cycloheximide. The addition of 5-fluorouracil to regreening cultures to prevent light-induced transcriptional steps completely blocked the synthesis of ribulose 1,5-diphosphate carboxylase.

  4. Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a

    SciTech Connect

    Abell, L.M.; O'Leary, M.H.

    1988-08-09

    The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30 a shows a carbon isotope effect k/sup 12//k/sup 13/ = 1.0334 +/- 0.0005 and a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9799 +/- 0.0006 at pH 4.8, 37/sup 0/C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D/sub 2/O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capable of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine.

  5. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  6. Differential roles of pyruvate decarboxylase in aerial and embedded mycelia of the ascomycete Gibberella zeae.

    PubMed

    Son, Hokyoung; Min, Kyunghun; Lee, Jungkwan; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2012-04-01

    The pyruvate-acetaldehyde-acetate (PAA) pathway has diverse roles in eukaryotes. Our previous study on acetyl-coenzyme A synthetase 1 (ACS1) in Gibberella zeae suggested that the PAA pathway is important for lipid production, which is required for perithecia maturation. In this study, we deleted all three pyruvate decarboxylase (PDC) genes, which encode enzymes that function upstream of ACS1 in the PAA pathway. Results suggest PDC1 is required for lipid accumulation in the aerial mycelia, and deletion of PDC1 resulted in highly wettable mycelia. However, the total amount of lipids in the PDC1 deletion mutants was similar to that of the wild-type strain, likely due to compensatory lipid production processes in the embedded mycelia. PDC1 was expressed both in the aerial and embedded mycelia, whereas ACS1 was observed only in the aerial mycelia in a PDC1-dependent manner. PDC1 is also involved in vegetative growth of embedded mycelia in G. zeae, possibly through initiating the ethanol fermentation pathway. Thus, PDC1 may function as a key metabolic enzyme crucial for lipid production in the aerial mycelia, but play a different role in the embedded mycelia, where it might be involved in energy generation by ethanol fermentation.

  7. Characterization of Glutamate Decarboxylase (GAD) from Lactobacillus sakei A156 Isolated from Jeot-gal.

    PubMed

    Sa, Hyun Deok; Park, Ji Yeong; Jeong, Seon-Ju; Lee, Kang Wook; Kim, Jeong Hwan

    2015-05-01

    A gamma-aminobutyric acid (GABA)-producing microorganism was isolated from jeot-gal (anchovy), a Korean fermented seafood. The isolate, A156, produced GABA profusely when incubated in MRS broth with monosodium glutamate (3% (w/v)) at 37°C for 48 h. A156 was identified as Lactobacillus sakei by 16S rRNA gene sequencing. The GABA conversion yield was 86% as determined by GABase enzyme assay. The gadB gene encoding glutamate decarboxylase (GAD) was cloned by PCR. gadC encoding a glutamate/GABA antiporter was located immediately upstream of gadB. The operon structure of gadCB was confirmed by RT-PCR. gadB was overexpressed in Escherichia coli BL21(DE3) and recombinant GAD was purified. The purified GAD was 54.4 kDa in size by SDS-PAGE. Maximum GAD activity was observed at pH 5.0 and 55°C and the activity was dependent on pyridoxal 5'-phosphate. The Km and Vmax of GAD were 0.045 mM and 0.011 mM/min, respectively, when glutamate was used as the substrate.

  8. Complexes of Thermotoga maritima S-adenosylmethionine decarboxylase provide insights into substrate specificity

    SciTech Connect

    Bale, Shridhar; Baba, Kavita; McCloskey, Diane E.; Pegg, Anthony E.; Ealick, Steven E.

    2010-06-25

    The polyamines putrescine, spermidine and spermine are ubiquitous aliphatic cations and are essential for cellular growth and differentiation. S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical pyruvoyl-dependent enzyme in the polyamine-biosynthetic pathway. The crystal structures of AdoMetDC from humans and plants and of the AdoMetDC proenzyme from Thermotoga maritima have been obtained previously. Here, the crystal structures of activated T. maritima AdoMetDC (TmAdoMetDC) and of its complexes with S-adenosylmethionine methyl ester and 5{prime}-deoxy-5{prime}-dimethylthioadenosine are reported. The results demonstrate for the first time that TmAdoMetDC autoprocesses without the need for additional factors and that the enzyme contains two complete active sites, both of which use residues from both chains of the homodimer. The complexes provide insights into the substrate specificity and ligand binding of AdoMetDC in prokaryotes. The conservation of the ligand-binding mode and the active-site residues between human and T. maritima AdoMetDC provides insight into the evolution of AdoMetDC.

  9. Effects of feeding, fasting, and caerulein treatment on ornithine decarboxylase in rat pancreas.

    PubMed

    Langlois, A; Morisset, J

    1991-09-01

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme in polyamine biosynthesis. We examined circadian variations in pancreatic ODC activity and time-course effects of caerulein in fed and fasted rats. Significant circadian variations in amount of ODC activity were observed. The highest values were obtained during the dark period (1855 +/- 406 pmoles CO2/h), and the lowest during the light period (359 +/- 84 pmoles CO2/h). Caerulein treatment induced hypertrophy and hyperplasia of the pancreas in fed rats; increases in pancreatic ODC activity preceded the rise in protein and DNA contents (447 +/- 44 pmoles CO2/h and 5573 +/- 893 pmoles CO2/h, 6 and 12 h after the first injection of caerulein, respectively). In fasted rats, pancreatic ODC activity was very low (149 +/- 37 pmoles CO2/h) and caerulein treatment induced a transient increase in this activity 12 h after the first injection; hypertrophy but not hyperplasia of the pancreas was observed. In caerulein-treated fasted rats, refeeding during the night following a 48 h fasting period was not enough to increase either ODC activity or DNA content. These findings demonstrate that nutritional status is an important factor in the regulation of ODC activity and, thereby, in caerulein-induced pancreatic growth.

  10. Mutational Analysis of Substrate Interactions with the Active Site of Dialkylglycine Decarboxylase

    PubMed Central

    Fogle, Emily J.; Toney, Michael D.

    2010-01-01

    Pyridoxal phosphate (PLP) dependent enzymes catalyze many different types of reactions at the α-, β-, and γ-carbons of amine and amino acid substrates. Dialkylglycine decarboxylase (DGD) is an unusual PLP dependent enzyme that catalyzes two reaction types, decarboxylation and transamination, in the same active site. A structurally-based, functional model has been proposed for the DGD active site, which maintains that R406 is important in determining substrate specificity through interactions with the substrate carboxylate while W138 provides specificity for short-chain alkyl groups. The mechanistic roles of R406 and W138 were investigated using site directed mutagenesis, alternate substrates, and analysis of steady-state and half-reaction kinetics. Experiments on the R406M and R406K mutants confirm the importance of R406 in substrate binding. Surprisingly, this work also shows that the positive charge of R406 facilitates catalysis of decarboxylation. The W138F mutant demonstrates that W138 indeed acts to limit the size of the subsite C binding pocket, determining specificity for 2,2-dialkylglycines with small side chains as predicted by the model. Finally, work with the double mutant W138F/M141R shows that these mutations expand substrate specificity to include L-glutamate and lead to an increase in specificity for L-glutamate over 2-aminoisobutyrate of approximately eight orders of magnitude compared to WT DGD. PMID:20540501

  11. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10

    SciTech Connect

    Karlsen, A.E.; Hagopian, W.A.; Grubin, C.E.; Dube, S.; Disteche, C.M.; Adler, D.A.; Baermeier, H.; Lernmark, A. ); Mathewes, S.; Grant, F.J.; Foster, D. )

    1991-10-01

    Glutamic acid decarboxylase which catalyzes formation of {gamma}-aminobutyric acid from L-glutamic acid, is detectable in different isoforms with distinct electrophoretic and kinetic characteristics. GAD has also been implicated as an autoantigen in the vastly differing autoimmune disease stiff-man syndrome and insulin-dependent diabetes mellitus. Despite the differing GAD isoforms, only one type of GAD cDNA (GAD-1), localized to a syntenic region of chromosome 2, has been isolated from rat, mouse, and cat. Using sequence information from GAD-1 to screen a human pancreatic islet cDNA library, the authors describe the isolation of an additional GAD cDNA (GAD-2), which was mapped to the short arm of human chromosome 10. Genomic Southern blotting with GAD-2 demonstrated a hybridization pattern different form that detected by GAD-1. GAD-2 recognizes a 5.6-kilobase transcript in both islets and brain, in contrast to GAD-1, which detects a 3.7-kilobase transcript in brain only. The deduced 585-amino acid sequence coded for by GAD-2 shows < 65% identify to previously published, highly conserved GAD-1 brain sequences, which show > 96% deduced amino acid sequence homology among the three species.

  12. Expression and localization of cysteine sulfinate decarboxylase in major salivary glands of male mice.

    PubMed

    Liu, Shengnan; Liu, Ying; Ma, Qiwang; Cui, Sheng; Liu, Jiali

    2015-04-01

    Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in mammalian cells. It plays a significant role in cell development, nutrition, and survival, such as in the regulation of ion transport and osmoregulation. Cysteine sulfinate decarboxylase (CSD) is the rate-limiting biosynthetic enzyme of taurine. Recently, the synthesis of taurine has been observed in the central nervous system, kidney, liver, and muscle. However, the synthesis of taurine in the salivary glands has still not been described in detail. We have detected CSD expression in the major salivary glands of adult male mice by real-time polymerase chain reaction (RT-PCR), Western blot, and immunofluorescence. In addition, we determined the content of taurine by high-performance liquid chromatography (HPLC). The results show that taurine is present in high concentrations in the major salivary glands of male mice. CSD messenger RNA (mRNA) and protein are expressed in the major salivary glands of male mice. The relative levels of CSD mRNA increase from the submandibular gland (SMG) to the sublingual gland (SLG) and parotid gland (PG), but the levels of the CSD protein are the opposite. The immunofluorescence results indicate that CSD is mainly located in the excretory ducts (EDs) and interlobular duct (IL) of SMG and ED in SLG, respectively. These results suggest that the major salivary glands of male mice produce taurine through the CSD pathway, and the synthesis of taurine might be related to sodium reabsorption in the salivary glands. PMID:25645459

  13. Partial purification and characterization of arginine decarboxylase from avocado fruit, a thermostable enzyme.

    PubMed

    Winer, L; Vinkler, C; Apelbaum, A

    1984-09-01

    A partially purified preparation of arginine decarboxylase (EC 4.1.1.19), a key enzyme in polyamine metabolism in plants, was isolated from avocado (Persea americana Mill. cv Fuerte) fruit. The preparation obtained from the crude extract after ammonium sulfate precipitation, dialysis, and heat treatment, had maximal activity between pH 8.0 and 9.0 at 60 degrees C, in the presence of 1.2 millimolar MnCl(2), 2 millimolar dithiothreitol, and 0.06 millimolar pyridoxal phosphate. The K(m), of arginine for the decarboxylation reaction was determined for enzymes prepared from the seed coat of both 4-week-old avocado fruitlet and fully developed fruit, and was found to have a value of 1.85 and 2.84 millimolar, respectively. The value of V(app) (max) of these enzymes was 1613 and 68 nanomoles of CO(2) produced per milligram of protein per hour for the fruitlet and the fully developed fruit, respectively. Spermine, an end product of polyamine metabolism, caused less than 5% inhibition of the enzyme from fully developed fruit and 65% inhibition of the enzyme from the seed coat of 4-week-old fruitlets at 1 millimolar under similar conditions. The effect of different inhibitors on the enzyme and the change in the nature of the enzyme during fruit development are discussed. PMID:16663805

  14. Herbacetin Is a Novel Allosteric Inhibitor of Ornithine Decarboxylase with Antitumor Activity.

    PubMed

    Kim, Dong Joon; Roh, Eunmiri; Lee, Mee-Hyun; Oi, Naomi; Lim, Do Young; Kim, Myoung Ok; Cho, Yong-Yeon; Pugliese, Angelo; Shim, Jung-Hyun; Chen, Hanyong; Cho, Eun Jin; Kim, Jong-Eun; Kang, Sun Chul; Paul, Souren; Kang, Hee Eun; Jung, Ji Won; Lee, Sung-Young; Kim, Sung-Hyun; Reddy, Kanamata; Yeom, Young Il; Bode, Ann M; Dong, Zigang

    2016-03-01

    Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis that is associated with cell growth and tumor formation. Existing catalytic inhibitors of ODC have lacked efficacy in clinical testing or displayed unacceptable toxicity. In this study, we report the identification of an effective and nontoxic allosteric inhibitor of ODC. Using computer docking simulation and an in vitro ODC enzyme assay, we identified herbacetin, a natural compound found in flax and other plants, as a novel ODC inhibitor. Mechanistic investigations defined aspartate 44 in ODC as critical for binding. Herbacetin exhibited potent anticancer activity in colon cancer cell lines expressing high levels of ODC. Intraperitoneal or oral administration of herbacetin effectively suppressed HCT116 xenograft tumor growth and also reduced the number and size of polyps in a mouse model of APC-driven colon cancer (ApcMin/+). Unlike the well-established ODC inhibitor DFMO, herbacetin treatment was not associated with hearing loss. Taken together, our findings defined the natural product herbacetin as an allosteric inhibitor of ODC with chemopreventive and antitumor activity in preclinical models of colon cancer, prompting its further investigation in clinical trials. PMID:26676750

  15. Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans.

    PubMed

    Peters, Björn; Junker, Anja; Brauer, Katharina; Mühlthaler, Bernadette; Kostner, David; Mientus, Markus; Liebl, Wolfgang; Ehrenreich, Armin

    2013-03-01

    Gluconobacter oxydans, a biotechnologically relevant species which incompletely oxidizes a large variety of carbohydrates, alcohols, and related compounds, contains a gene for pyruvate decarboxylase (PDC). This enzyme is found only in very few species of bacteria where it is normally involved in anaerobic ethanol formation via acetaldehyde. In order to clarify the role of PDC in the strictly oxidative metabolism of acetic acid bacteria, we developed a markerless in-frame deletion system for strain G. oxydans 621H which uses 5-fluorouracil together with a plasmid-encoded uracil phosphoribosyltransferase as counter selection method and used this technique to delete the PDC gene (GOX1081) of G. oxydans 621H. The PDC deletion mutant accumulated large amounts of pyruvate but almost no acetate during growth on D-mannitol, D-fructose or in the presence of L-lactate. This suggested that in G. oxydans acetate formation occurs by decarboxylation of pyruvate and subsequent oxidation of acetaldehyde to acetate. This observation and the efficiency of the markerless deletion system were confirmed by constructing deletion mutants of two acetaldehyde dehydrogenases (GOX1122 and GOX2018) and of the acetyl-CoA-synthetase (GOX0412). Acetate formation during growth of these mutants on mannitol did not differ significantly from the wild-type strain.

  16. Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain.

    PubMed

    Bessho, Yuki; Iwakoshi-Ukena, Eiko; Tachibana, Tetsuya; Maejima, Sho; Taniuchi, Shusuke; Masuda, Keiko; Shikano, Kenshiro; Kondo, Kunihiro; Furumitsu, Megumi; Ukena, Kazuyoshi

    2014-08-22

    In mammals, it is established that histamine is a neurotransmitter and/or neuromodulator in the central nervous system. It is produced by the enzyme histidine decarboxylase (HDC) in the tuberomammillary nucleus of the posterior hypothalamus. However, HDC as well as histaminergic neurons have not yet been characterized in the avian brain. We have cloned the cDNA for HDC from the chicken hypothalamus and demonstrated that the chicken HDC sequence is highly homologous to the mammalian counterpart, and that the expressed protein shows high enzymatic activity. The expression of HDC mRNA at various sites in the brain was investigated using quantitative RT-PCR. The results showed that the HDC mRNA was highly expressed in the hypothalamic infundibulum. In situ hybridization analyses revealed that the cells containing HDC mRNA were localized in the medial mammillary nucleus of the hypothalamic infundibulum. Intracerebroventricular injection of histamine in chicks resulted in inhibition of feeding behavior. This is the first report of the characterization of histaminergic neurons in the avian brain, and our findings indicate that neuronal histamine exerts anorexigenic effects in chicks.

  17. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma.

    PubMed

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling.

  18. Relation of polymorphism of the histidine decarboxylase gene to chronic heart failure in Han Chinese.

    PubMed

    He, Gong-Hao; Cai, Wen-Ke; Meng, Jing-Ru; Ma, Xue; Zhang, Fan; Lu, Jun; Xu, Gui-Li

    2015-06-01

    Histidine decarboxylase (HDC) is a key determinant of the levels of endogenous histamine that has long been recognized to play important pathophysiological roles during development of chronic heart failure (CHF). Meanwhile, certain genetic variants in HDC gene were reported to affect the function of HDC and associated with histamine-related diseases. However, the relation between polymorphisms of HDC gene and CHF risk remains unclear. This study aims to investigate the associations between 2 nonsynonymous HDC polymorphisms (rs17740607 and rs2073440) and CHF. We designed a 2-stage case-control study, in which we genotyped 439 patients with CHF and 467 healthy controls recruited in Xi'an, China, and replicated this study in 413 patients with CHF and 452 healthy subjects in Kunming, China. We also performed in vitro experiments to further validate the functional consequences of variants positively associated with CHF. The rs17740607 polymorphism showed replicated associations with all-cause CHF according to genotype and allele distribution and also under a dominant and additive genetic model after adjusted for traditional cardiovascular-related factors. Functional experiments further demonstrated that rs17740607 polymorphism decreased the HDC activity. In conclusion, HDC rs17740607 polymorphism is at least a partial loss-of-function variant and acts as a protective factor against CHF, which provides novel highlights for investigating the contribution of CHF.

  19. Structural requirements for novel coenzyme-substrate derivatives to inhibit intracellular ornithine decarboxylase and cell proliferation.

    PubMed

    Wu, Fang; Gehring, Heinz

    2009-02-01

    Creating transition-state mimics has proven to be a powerful strategy in developing inhibitors to treat malignant diseases in several cases. In the present study, structurally diverse coenzyme-substrate derivatives mimicking this type for pyridoxal 5'-phosphate-dependent human ornithine decarboxylase (hODC), a potential anticancer target, were designed, synthesized, and tested to elucidate the structural requirements for optimal inhibition of intracellular ODC as well as of tumor cell proliferation. Of 23 conjugates, phosphopyridoxyl- and pyridoxyl-L-tryptophan methyl ester (pPTME, PTME) proved significantly more potent in suppression proliferation (IC(50) up to 25 microM) of glioma cells (LN229) than alpha-DL-difluoromethylornithine (DFMO), a medically used irreversible inhibitor of ODC. In agreement with molecular modeling predictions, the inhibitory action of pPTME and PTME toward intracellular ODC of LN229 cells exceeded that of the previous designed lead compound POB. The inhibitory active compounds feature hydrophobic side chain fragments and a kind of polyamine motif (-NH-(CH(X))(4)-NH-). In addition, they induce, as polyamine analogs often do, the activity of the polyamine catabolic enzymes polyamine oxidase and spermine/spermidine N(1)-acetyltransferase up to 250 and 780%, respectively. The dual-action mode of these compounds in LN229 cells affects the intracellular polyamine metabolism and might underlie the more favorable cell proliferation inhibition in comparison with DFMO.

  20. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    SciTech Connect

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-10-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by {alpha}-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  1. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    SciTech Connect

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  2. Partial purification and characterization of arginine decarboxylase from avocado fruit, a thermostable enzyme.

    PubMed

    Winer, L; Vinkler, C; Apelbaum, A

    1984-09-01

    A partially purified preparation of arginine decarboxylase (EC 4.1.1.19), a key enzyme in polyamine metabolism in plants, was isolated from avocado (Persea americana Mill. cv Fuerte) fruit. The preparation obtained from the crude extract after ammonium sulfate precipitation, dialysis, and heat treatment, had maximal activity between pH 8.0 and 9.0 at 60 degrees C, in the presence of 1.2 millimolar MnCl(2), 2 millimolar dithiothreitol, and 0.06 millimolar pyridoxal phosphate. The K(m), of arginine for the decarboxylation reaction was determined for enzymes prepared from the seed coat of both 4-week-old avocado fruitlet and fully developed fruit, and was found to have a value of 1.85 and 2.84 millimolar, respectively. The value of V(app) (max) of these enzymes was 1613 and 68 nanomoles of CO(2) produced per milligram of protein per hour for the fruitlet and the fully developed fruit, respectively. Spermine, an end product of polyamine metabolism, caused less than 5% inhibition of the enzyme from fully developed fruit and 65% inhibition of the enzyme from the seed coat of 4-week-old fruitlets at 1 millimolar under similar conditions. The effect of different inhibitors on the enzyme and the change in the nature of the enzyme during fruit development are discussed.

  3. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori

    PubMed Central

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-01-01

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera. PMID:26077025

  4. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex.

    PubMed

    Peña, A; Reddy, C D; Wu, S; Hickok, N J; Reddy, E P; Yumet, G; Soprano, D R; Soprano, K J

    1993-12-25

    The presence of a CACGTG element within a region of the human ornithine decarboxylase (ODC) promoter located at -491 to -474 base pairs 5' to the start site of transcription suggested that the c-Myc.Max protein complex may play a role in the regulation of ODC expression during growth. Electrophoretic mobility shift assays and methylation interference analysis showed that the nuclei of WI-38 cells expressing ODC contained proteins that bound to this region of the ODC gene in a manner that correlated with growth-associated ODC expression. Also, use of antibodies against c-Myc and Max and purified recombinant c-Myc and Max protein in the electrophoretic mobility shift assay confirmed that these proteins can specifically bind this portion of the human ODC promoter. Transient transfection studies showed that increase in the level of c-Myc and/or Max led to a significant enhancement of expression of a human ODC promoter-CAT reporter construct. Moreover, treatment of actively growing WI-38 cells with an antisense oligomer to c-Myc reduced the amount of endogenous protein complex formed and the amount of endogenous ODC mRNA expressed. These studies show that the c-Myc.Max protein complex plays a role in the transcriptional regulation of human ODC in vivo.

  5. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics.

    PubMed

    Poduch, Ewa; Bello, Angelica M; Tang, Sishi; Fujihashi, Masahiro; Pai, Emil F; Kotra, Lakshmi P

    2006-08-10

    Inhibitors of orotidine monophosphate decarboxylase (ODCase) have applications in RNA viral, parasitic, and other infectious diseases. ODCase catalyzes the decarboxylation of orotidine monophosphate (OMP), producing uridine monophosphate (UMP). Novel inhibitors 6-amino-UMP and 6-cyano-UMP were designed on the basis of the substructure volumes in the substrate OMP and in an inhibitor of ODCase, barbituric acid monophosphate, BMP. A new enzyme assay method using isothermal titration calorimetry (ITC) was developed to investigate the inhibition kinetics of ODCase. The reaction rates were measured by monitoring the heat generated during the decarboxylation reaction of orotidine monophosphate. Kinetic parameters (k(cat) = 21 s(-1) and KM = 5 microM) and the molar enthalpy (DeltaH(app) = 5 kcal/mol) were determined for the decarboxylation of the substrate by ODCase. Competitive inhibition of the enzyme was observed and the inhibition constants (Ki) were determined to be 12.4 microM and 29 microM for 6-aza-UMP and 6-cyano-UMP, respectively. 6-Amino-UMP was found to be among the potent inhibitors of ODCase, having an inhibition constant of 840 nM. We reveal here the first inhibitors of ODCase designed by the principles of bioisosterism and a novel method of using isothermal calorimetry for enzyme inhibition studies.

  6. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis

    PubMed Central

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I.; Rodríguez-Hernández, Aída A.; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F.

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes. PMID:27014322

  7. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase.

    PubMed

    Yu, Kai; Hu, Sheng; Huang, Jun; Mei, Le-He

    2011-08-10

    A pH-sensitive colorimetric assay has been established to quantitatively measure glutamate decarboxylase (GAD) activity in bacterial cell extracts using a microplate format. GAD catalyzes the irreversible α-decarboxylation of L-glutamate to γ-aminobutyrate. The assay is based on the color change of bromocresol green due to an increase in pH as protons are consumed during the enzyme-catalyzed reaction. Bromocresol green was chosen as the indicator because it has a similar pK(a) to the acetate buffer used. The corresponding absorbance change at 620 nm was recorded with a microplate reader as the reaction proceeded. A difference in the enzyme preparation pH and optimal pH for GAD activity of 2.5 did not prevent this method from successfully allowing the determination of reaction kinetic parameters and the detection of improvements in enzymatic activity with a low coefficient of variance. Our assay is simple, rapid, requires minimal sample concentration and can be carried out in robotic high-throughput devices used as standard in directed evolution experiments. In addition, it is also applicable to other reactions that involve a change in pH.

  8. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.

    PubMed

    Torrens-Spence, Michael P; Gillaspy, Glenda; Zhao, Bingyu; Harich, Kim; White, Robert H; Li, Jianyong

    2012-02-10

    Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine.

  9. Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum.

    PubMed

    Min, Kyoungseon; Kim, Seil; Yum, Taewoo; Kim, Yunje; Sang, Byoung-In; Um, Youngsoon

    2013-06-01

    In this study, a novel system for synthesis of 2-butanone from levulinic acid (γ-keto-acid) via an enzymatic reaction was developed. Acetoacetate decarboxylase (AADC; E.C. 4.1.1.4) from Clostridium acetobutylicum was selected as a biocatalyst for decarboxylation of levulinic acid. The purified recombinant AADC from Escherichia coli successfully converted levulinic acid to 2-butanone with a conversion yield of 8.4-90.3 % depending on the amount of AADC under optimum conditions (30 °C and pH 5.0) despite that acetoacetate, a β-keto-acid, is a natural substrate of AADC. In order to improve the catalytic efficiency, an AADC-mediator system was tested using methyl viologen, methylene blue, azure B, zinc ion, and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as mediators. Among them, methyl viologen showed the best performance, increasing the conversion yield up to 6.7-fold in comparison to that without methyl viologen. The results in this study are significant in the development of a renewable method for the synthesis of 2-butanone from biomass-derived chemical, levulinic acid, through enzymatic decarboxylation. PMID:23624707

  10. Glutamate Decarboxylase 67 Deficiency in a Subset of GABAergic Neurons Induces Schizophrenia-Related Phenotypes

    PubMed Central

    Fujihara, Kazuyuki; Miwa, Hideki; Kakizaki, Toshikazu; Kaneko, Ryosuke; Mikuni, Masahiko; Tanahira, Chiyoko; Tamamaki, Nobuaki; Yanagawa, Yuchio

    2015-01-01

    Decreased expression of the GABA synthetic enzyme glutamate decarboxylase 67 (GAD67) in a subset of GABAergic neurons, including parvalbumin (PV)-expressing neurons, has been observed in postmortem brain studies of schizophrenics and in animal models of schizophrenia. However, it is unclear whether and how the perturbations of GAD67-mediated GABA synthesis and signaling contribute to the pathogenesis of schizophrenia. To address this issue, we generated the mice lacking GAD67 primarily in PV neurons and characterized them with focus on schizophrenia-related parameters. We found that heterozygous mutant mice exhibited schizophrenia-related behavioral abnormalities such as deficits in prepulse inhibition, MK-801 sensitivity, and social memory. Furthermore, we observed reduced inhibitory synaptic transmission, altered properties of NMDA receptor-mediated synaptic responses in pyramidal neurons, and increased spine density in hippocampal CA1 apical dendrites, suggesting a possible link between GAD67 deficiency and disturbed glutamatergic excitatory synaptic functions in schizophrenia. Thus, our results indicate that the mice heterozygous for GAD67 deficiency primarily in PV neurons share several neurochemical and behavioral abnormalities with schizophrenia, offering a novel tool for addressing the underlying pathophysiology of schizophrenia. PMID:25904362

  11. Structural basis of Ornithine Decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1

    PubMed Central

    Wu, Donghui; Kaan, Hung Yi Kristal; Zheng, Xiaoxia; Tang, Xuhua; He, Yang; Vanessa Tan, Qianmin; Zhang, Neng; Song, Haiwei

    2015-01-01

    Ornithine decarboxylase (ODC) catalyzes the first and rate-limiting step of polyamine biosynthesis in humans. Polyamines are essential for cell proliferation and are implicated in cellular processes, ranging from DNA replication to apoptosis. Excessive accumulation of polyamines has a cytotoxic effect on cells and elevated level of ODC activity is associated with cancer development. To maintain normal cellular proliferation, regulation of polyamine synthesis is imposed by Antizyme1 (AZ1). The expression of AZ1 is induced by a ribosomal frameshifting mechanism in response to increased intracellular polyamines. AZ1 regulates polyamine homeostasis by inactivating ODC activity and enhancing its degradation. Here, we report the structure of human ODC in complex with N-terminally truncated AZ1 (cAZ1). The structure shows cAZ1 binding to ODC, which occludes the binding of a second molecule of ODC to form the active homodimer. Consequently, the substrate binding site is disrupted and ODC is inactivated. Structural comparison shows that the binding of cAZ1 to ODC causes a global conformational change of ODC and renders its C-terminal region flexible, therefore exposing this region for degradation by the 26S proteasome. Our structure provides the molecular basis for the inactivation of ODC by AZ1 and sheds light on how AZ1 promotes its degradation. PMID:26443277

  12. Taurine homeostasis requires de novo synthesis via cysteine sulfinic acid decarboxylase during zebrafish early embryogenesis.

    PubMed

    Chang, Yen-Chia; Ding, Shih-Torng; Lee, Yen-Hua; Wang, Ya-Ching; Huang, Ming-Feng; Liu, I-Hsuan

    2013-02-01

    Cysteine sulfinic acid decarboxylase (Csad) is the rate-limiting enzyme in the de novo biosynthesis of taurine. There are a number of physiological roles of taurine, such as bile salt synthesis, osmoregulation, lipid metabolism, and oxidative stress inhibition. To investigate the role of de novo synthesis of taurine during embryonic development, zebrafish csad was cloned and functionally analyzed. Semi-quantitative RT-PCR showed that csad transcripts are maternally deposited, while whole-mount in situ hybridization demonstrated that csad is expressed in yolk syncytial layer and various embryonic tissues such as notochord, brain, retina, pronephric duct, liver, and pancreas. Knockdown of csad significantly reduced the embryonic taurine level, and the affected embryos had increased early mortality and cardiac anomalies. mRNA coinjection and taurine supplementation rescued the cardiac phenotypes suggesting that taurine originating from the de novo synthesis pathway plays a role in cardiac development. Our findings indicated that the de novo synthesis pathway via Csad plays a critical role in taurine homeostasis and cardiac development in zebrafish early embryos. PMID:22907836

  13. Glutamate Decarboxylase 67 Deficiency in a Subset of GABAergic Neurons Induces Schizophrenia-Related Phenotypes.

    PubMed

    Fujihara, Kazuyuki; Miwa, Hideki; Kakizaki, Toshikazu; Kaneko, Ryosuke; Mikuni, Masahiko; Tanahira, Chiyoko; Tamamaki, Nobuaki; Yanagawa, Yuchio

    2015-09-01

    Decreased expression of the GABA synthetic enzyme glutamate decarboxylase 67 (GAD67) in a subset of GABAergic neurons, including parvalbumin (PV)-expressing neurons, has been observed in postmortem brain studies of schizophrenics and in animal models of schizophrenia. However, it is unclear whether and how the perturbations of GAD67-mediated GABA synthesis and signaling contribute to the pathogenesis of schizophrenia. To address this issue, we generated the mice lacking GAD67 primarily in PV neurons and characterized them with focus on schizophrenia-related parameters. We found that heterozygous mutant mice exhibited schizophrenia-related behavioral abnormalities such as deficits in prepulse inhibition, MK-801 sensitivity, and social memory. Furthermore, we observed reduced inhibitory synaptic transmission, altered properties of NMDA receptor-mediated synaptic responses in pyramidal neurons, and increased spine density in hippocampal CA1 apical dendrites, suggesting a possible link between GAD67 deficiency and disturbed glutamatergic excitatory synaptic functions in schizophrenia. Thus, our results indicate that the mice heterozygous for GAD67 deficiency primarily in PV neurons share several neurochemical and behavioral abnormalities with schizophrenia, offering a novel tool for addressing the underlying pathophysiology of schizophrenia. PMID:25904362

  14. Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain.

    PubMed

    Bessho, Yuki; Iwakoshi-Ukena, Eiko; Tachibana, Tetsuya; Maejima, Sho; Taniuchi, Shusuke; Masuda, Keiko; Shikano, Kenshiro; Kondo, Kunihiro; Furumitsu, Megumi; Ukena, Kazuyoshi

    2014-08-22

    In mammals, it is established that histamine is a neurotransmitter and/or neuromodulator in the central nervous system. It is produced by the enzyme histidine decarboxylase (HDC) in the tuberomammillary nucleus of the posterior hypothalamus. However, HDC as well as histaminergic neurons have not yet been characterized in the avian brain. We have cloned the cDNA for HDC from the chicken hypothalamus and demonstrated that the chicken HDC sequence is highly homologous to the mammalian counterpart, and that the expressed protein shows high enzymatic activity. The expression of HDC mRNA at various sites in the brain was investigated using quantitative RT-PCR. The results showed that the HDC mRNA was highly expressed in the hypothalamic infundibulum. In situ hybridization analyses revealed that the cells containing HDC mRNA were localized in the medial mammillary nucleus of the hypothalamic infundibulum. Intracerebroventricular injection of histamine in chicks resulted in inhibition of feeding behavior. This is the first report of the characterization of histaminergic neurons in the avian brain, and our findings indicate that neuronal histamine exerts anorexigenic effects in chicks. PMID:24993302

  15. Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Alexopoulos, Eftichia; Zhao, Boyu; El Bakkouri, Majida; Thibault, Guillaume; Liu, Kaiyin; Ramachandran, Shaliny; Snider, Jamie; Pai, Emil F; Houry, Walid A

    2011-03-01

    The Escherichia coli inducible lysine decarboxylase, LdcI/CadA, together with the inner-membrane lysine-cadaverine antiporter, CadB, provide cells with protection against mild acidic conditions (pH∼5). To gain a better understanding of the molecular processes underlying the acid stress response, the X-ray crystal structure of LdcI was determined. The structure revealed that the protein is an oligomer of five dimers that associate to form a decamer. Surprisingly, LdcI was found to co-crystallize with the stringent response effector molecule ppGpp, also known as the alarmone, with 10 ppGpp molecules in the decamer. ppGpp is known to mediate the stringent response, which occurs in response to nutrient deprivation. The alarmone strongly inhibited LdcI enzymatic activity. This inhibition is important for modulating the consumption of lysine in cells during acid stress under nutrient limiting conditions. Hence, our data provide direct evidence for a link between the bacterial acid stress and stringent responses. PMID:21278708

  16. Molecular characterization of Mtb-OMP decarboxylase by modeling, docking and dynamic studies.

    PubMed

    Madhusudana, P; Babajan, B; Chaitanya, M; Anuradha, C M; Shobharani, C; Chikati, Rajasekar; Kumar, Chitta Suresh; Rao, K R S Sambasiva; Poda, Sudhakar

    2012-06-01

    Tuberculosis (TB), the second most deadly disease in the world is caused by Mycobacterium tuberculosis (Mtb). In the present work a unique enzyme of Mtb orotidine 5' monophosphate decarboxylase (Mtb-OMP Decase) is selected as drug target due to its indispensible role in biosynthesis of pyrimidines. The present work is focused on understanding the structural and functional aspects of Mtb-OMP Decase at molecular level. Due to absence of crystal structure, the 3D structure of Mtb-OMP Decase was predicted by MODELLER9V7 using a known structural template 3L52. Energy minimization and refinement of the developed 3D model was carried out with Gromacs 3.2.1 and the optimized homology model was validated by PROCHECK,WHAT-IF and PROSA2003. Further, the surface active site amino acids were quantified by WHAT-IF pocket. The exact binding interactions of the ligands, 6-idiouridine 5' monophosphate and its designed analogues with the receptor Mtb-OMP Decase were predicted by docking analysis with AUTODOCK 4.0. This would be helpful in understanding the blockade mechanism of OMP Decase and provide a candidate lead for the discovery of Mtb-OMP Decase inhibitors, which may bring insights into outcome new therapy to treat drug resistant Mtb.

  17. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice

    PubMed Central

    Pai, Yun Jin; Leung, Kit-Yi; Savery, Dawn; Hutchin, Tim; Prunty, Helen; Heales, Simon; Brosnan, Margaret E.; Brosnan, John T.; Copp, Andrew J.; Greene, Nicholas D.E.

    2015-01-01

    Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the rela