Sample records for mexican tropical dry

  1. Molecular phylogenetics and species delimitation of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) throughout the Mexican tropical dry forest.

    PubMed

    Blair, Christopher; Méndez de la Cruz, Fausto R; Law, Christopher; Murphy, Robert W

    2015-03-01

    Methods and approaches for accurate species delimitation continue to be a highly controversial subject in the systematics community. Inaccurate assessment of species' limits precludes accurate inference of historical evolutionary processes. Recent evidence suggests that multilocus coalescent methods show promise in delimiting species in cryptic clades. We combine multilocus sequence data with coalescence-based phylogenetics in a hypothesis-testing framework to assess species limits and elucidate the timing of diversification in leaf-toed geckos (Phyllodactylus) of Mexico's dry forests. Tropical deciduous forests (TDF) of the Neotropics are among the planet's most diverse ecosystems. However, in comparison to moist tropical forests, little is known about the mode and tempo of biotic evolution throughout this threatened biome. We find increased speciation and substantial, cryptic molecular diversity originating following the formation of Mexican TDF 30-20million years ago due to orogenesis of the Sierra Madre Occidental and Mexican Volcanic Belt. Phylogenetic results suggest that the Mexican Volcanic Belt, the Rio Fuerte, and Isthmus of Tehuantepec may be important biogeographic barriers. Single- and multilocus coalescent analyses suggest that nearly every sampling locality may be a distinct species. These results suggest unprecedented levels of diversity, a complex evolutionary history, and that the formation and expansion of TDF vegetation in the Miocene may have influenced subsequent cladogenesis of leaf-toed geckos throughout western Mexico. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Natural History and Ecology of Soldier Beetles (Coleoptera: Cantharidae) in the Mexican Tropical Dry Forests.

    PubMed

    Pérez-Hernández, Cisteil X

    2018-06-06

    Until today, most information about the natural history and ecology of soldier beetles came from temperate zones, mainly from Holarctic areas, while tropical regions have been poorly studied. The aim of this contribution is to compile and synthesize information concerning the natural history and ecology of Cantharidae (Coleoptera) from the Mexican tropical dry forest (TDF), to serve as a starting point for more in-depth study of the group in one of the Mexico's most endangered ecosystems. All compiled data on the family have been organized into the following topics: distributional patterns and habitat preferences, feeding behavior and host plants, and daily and seasonal activity cycles. For the first time, it was provided a list of host plants for TDF Cantharidae genera and species, and it was also observed a high ecological diversity in the phenology and behavior of TDF Cantharidae assemblages. Further research concerning cantharids and other TDF insects needs to have a more comprehensive and integrated approach toward understanding the patterns of distribution and diversity, and elucidating the role that cantharids play in ecosystems, especially in TDF, which is one of the most endangered ecosystem in the world.

  3. Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation.

    PubMed

    Prieto-Torres, David A; Navarro-Sigüenza, Adolfo G; Santiago-Alarcon, Diego; Rojas-Soto, Octavio R

    2016-01-01

    Assuming that co-distributed species are exposed to similar environmental conditions, ecological niche models (ENMs) of bird and plant species inhabiting tropical dry forests (TDFs) in Mexico were developed to evaluate future projections of their distribution for the years 2050 and 2070. We used ENM-based predictions and climatic data for two Global Climate Models, considering two Representative Concentration Pathway scenarios (RCP4.5/RCP8.5). We also evaluated the effects of habitat loss and the importance of the Mexican system of protected areas (PAs) on the projected models for a more detailed prediction of TDFs and to identify hot spots that require conservation actions. We identified four major distributional areas: the main one located along the Pacific Coast (from Sonora to Chiapas, including the Cape and Bajío regions, and the Balsas river basin), and three isolated areas: the Yucatán peninsula, central Veracruz, and southern Tamaulipas. When considering the effect of habitat loss, a significant reduction (~61%) of the TDFs predicted area occurred, whereas climate-change models suggested (in comparison with the present distribution model) an increase in area of 3.0-10.0% and 3.0-9.0% for 2050 and 2070, respectively. In future scenarios, TDFs will occupy areas above its current average elevational distribution that are outside of its present geographical range. Our findings show that TDFs may persist in Mexican territory until the middle of the XXI century; however, the challenges about long-term conservation are partially addressed (only 7% unaffected within the Mexican network of PAs) with the current Mexican PAs network. Based on our ENM approach, we suggest that a combination of models of species inhabiting present TDFs and taking into account change scenarios represent an invaluable tool to create new PAs and ecological corridors, as a response to the increasing levels of habitat destruction and the effects of climate change on this ecosystem. © 2015

  4. Dry and Semi-Dry Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  5. Reconstructing the Mexican Tropical Dry Forests via an Autoecological Niche Approach: Reconsidering the Ecosystem Boundaries

    PubMed Central

    Prieto-Torres, David A.; Rojas-Soto, Octavio R.

    2016-01-01

    We used Ecological Niche Modeling (ENM) of individual species of two taxonomic groups (plants and birds) in order to reconstruct the climatic distribution of Tropical Dry Forests (TDFs) in Mexico and to analyze their boundaries with other terrestrial ecosystems. The reconstruction for TDFs’ distribution was analyzed considering the prediction and omission errors based upon the combination of species, obtained from the overlap of individual models (only plants, only birds, and all species combined). Two verifications were used: a primary vegetation map and 100 independent TDFs localities. We performed a Principal Component (PCA) and Discriminant Analysis (DA) to evaluate the variation in the environmental variables and ecological overlap among ecosystems. The modeling strategies showed differences in the ecological patterns and prediction areas, where the “all species combined” model (with a threshold of ≥10 species) was the best strategy to use in the TDFs reconstruction. We observed a concordance of 78% with the primary vegetation map and a prediction of 98% of independent locality records. Although PCA and DA tests explained 75.78% and 97.9% of variance observed, respectively, we observed an important overlap among the TDFs with other adjacent ecosystems, confirming the existence of transition zones among them. We successfully modeled the distribution of Mexican TDFs using a number of bioclimatic variables and co-distributed species. This autoecological niche approach suggests the necessity of rethinking the delimitations of ecosystems based on the recognition of transition zones among them in order to understand the real nature of communities and association patterns of species. PMID:26968031

  6. Tropical savannas and dry forests.

    PubMed

    Pennington, R Toby; Lehmann, Caroline E R; Rowland, Lucy M

    2018-05-07

    In the tropics, research, conservation and public attention focus on rain forests, but this neglects that half of the global tropics have a seasonally dry climate. These regions are home to dry forests and savannas (Figures 1 and 2), and are the focus of this Primer. The attention given to rain forests is understandable. Their high species diversity, sheer stature and luxuriance thrill biologists today as much as they did the first explorers in the Age of Discovery. Although dry forest and savanna may make less of a first impression, they support a fascinating diversity of plant strategies to cope with stress and disturbance including fire, drought and herbivory. Savannas played a fundamental role in human evolution, and across Africa and India they support iconic megafauna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Emergence of nutrient limitation in tropical dry forests: hypotheses from simulation models

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Waring, B. G.; Xu, X.; Trierweiler, A.; Werden, L. K.; Wang, G.; Zhu, Q.; Powers, J. S.

    2017-12-01

    It is unclear to what extent tropical dry forest productivity may be limited by nutrients. Direct assessment of nutrient limitation through fertilization experiments has been rare, and paradigms pertaining to other ecosystems may not extend to tropical dry forests. For example, because dry tropical forests have a lower water supply than moist tropical forests, dry forests can have lower decomposition rates, higher soil carbon and nitrogen concentrations, and a more open nitrogen cycle than moist forests. We used a mechanistic, numerical model to generate hypotheses about nutrient limitation in tropical dry forests. The model dynamically couples ED2 (vegetation dynamics), MEND (biogeochemistry), and N-COM (plant-microbe competition for nutrients). Here, the MEND-component of the model has been extended to include nitrogen (N) and phosphorus (P) cycles. We focus on simulation of sixteen 25m x 25m plots in Costa Rica where a fertilization experiment has been underway since 2015. Baseline simulations are characterized by both nitrogen and phosphorus limitation of vegetation. Fertilization with N and P increased vegetation biomass, with N fertilization having a somewhat stronger effect. Nutrient limitation was also sensitive to climate and was more pronounced during drought periods. Overflow respiration was identified as a key process that mitigated nutrient limitation. These results suggest that, despite often having richer soils than tropical moist forests, tropical dry forests can also become nutrient-limited. If the climate becomes drier in the next century, as is expected for Central America, drier soils may decrease microbial activity and exacerbate nutrient limitation. The importance of overflow respiration underscores the need for appropriate treatment of microbial dynamics in ecosystem models. Ongoing and new nutrient fertilization experiments will present opportunities for testing whether, and how, nutrient limitation may indeed be emerging in tropical dry

  8. Towards restoration of Hawaiian tropical dry forests: the Kaupulehu outplanting programme

    Treesearch

    Susan Cordell; Moana McClellan; Yvonne Yarber Carter; Lisa J. Hadway

    2008-01-01

    Hawaiian tropical dry forests contain diverse assemblages of woody canopy species, including many endemic and endangered species that warrant conservation attention before completely disappearing. Today, tropical dry forests in Hawaii are not viable ecosystems. Poor land use practices, fragmentation, non-native plant invasions, and inadequate native vegetation...

  9. Quantifying tropical dry forest type and succession: substantial improvement with LiDAR

    Treesearch

    Sebastian Martinuzzi; William A. Gould; Lee A. Vierling; Andrew T. Hudak; Ross F. Nelson; Jeffrey S. Evans

    2012-01-01

    Improved technologies are needed to advance our knowledge of the biophysical and human factors influencing tropical dry forests, one of the world’s most threatened ecosystems. We evaluated the use of light detection and ranging (LiDAR) data to address two major needs in remote sensing of tropical dry forests, i.e., classification of forest types and delineation of...

  10. Utilization of geothermal heat in tropical fruit-drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.H.; Lopez, L.P.; King, R.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits producedmore » on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.« less

  11. [Diversity, structure and regeneration of the seasonally dry tropical forest of Yucatán Peninsula, Mexico].

    PubMed

    Hernández-Ramírez, Angélica María; García-Méndez, Socorro

    2015-09-01

    Seasonally dry tropical forests are considered as the most endangered ecosystem in lowland tropics. The aim of this study was to characterize the floristic composition, richness, diversity, structure and regeneration of a seasonally dry tropical forest landscape constituted by mature forest, secondary forest and seasonally inundated forest located in the Northeastern part of the Yucatán Peninsula, Mexico. We used the Gentry's standard inventory plot methodology (0.1 ha per forest type in 2007) for facilitating comparison with other Mesoamerican seasonally dry tropical forests. A total of 77 species belonging to 32 families were observed in the study area. Fabaceae and Euphorbiaceae were the families with the largest taxonomic richness in the three forest types. Low levels of β diversity were observed among forest types (0.19-0.40), suggesting a high turnover of species at landscape level. The non-regenerative species were dominant (50-51 %), followed by regenerative species (30- 28 %), and colonizer species (14-21 %) in the three forest types. Zoochory was the most common dispersal type in the study area. The 88 % of the observed species in the study area were distributed in Central America. Some floristic attributes of the seasonally dry tropical forest of the Yucatán Peninsula, fall into the values reported for Mesoamerican seasonally dry tropical forests. Natural disturbances contributed to explain the high number of individuals, the low number of liana species, as well as the low values of basal area observed in this study. Our results suggested that the seasonally dry tropical forest of Yucatán Peninsula seems to be resilient to natural disturbances (hurricane) in terms of the observed number of species and families, when compared with the reported values in Mesoamerican seasonally dry tropical forests. Nonetheless, the recovery and regeneration of vegetation in long-term depends on animal-dispersed species. This study highlights the importance of

  12. Propagation of dry tropical forest trees in Mexico

    Treesearch

    Martha A. Cervantes Sanchez

    2002-01-01

    There is a distinct lack of technical information on the propagation of native tree species from the dry tropical forest ecosystem in Mexico. This ecosystem has come under heavy human pressures to obtain several products such as specialty woods for fuel, posts for fences and construction, forage, edible fruits, stakes for horticulture crops, and medicinal products. The...

  13. Review of Mexican species of Podogaster Brullé (Hymenoptera: Ichneumonidae: Anomaloninae) with description of two new species.

    PubMed

    González-Moreno, A; Bordera, S

    2013-02-01

    Two new species of Podogaster Brullé, Podogaster brunneus n. sp. and Podogaster lagartensis n. sp., are described. The material was collected with Malaise traps operated for a year in the Ría Lagartos Biosphere Reserve, a dry tropical area of Southeast Mexico. Podogaster rosteri Gauld & Bradshaw is synonymized with Podogaster mexicanus (Cresson). A key to the Mexican species is also provided.

  14. SRTM-DEM and Landsat ETM+ data for mapping tropical dry forest cover and biodiversity assessment in Nicaragua

    Treesearch

    S.E. Sesnie; S.E. Hagell; S.M. Otterstrom; C.L. Chambers; B.G. Dickson

    2008-01-01

    Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but has received far less attention than forest in wet tropical areas. Land use change threatens to greatly reduce the extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentation may further endanger arboreal mammals that play...

  15. The Impact of Dry Saharan Air on Tropical Cyclone Intensification

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.

    2012-01-01

    The controversial role of the dry Saharan Air Layer (SAL) on tropical storm intensification in the Atlantic will be addressed. The SAL has been argued in previous studies to have potential positive influences on storm development, but most recent studies have argued for a strong suppressing influence on storm intensification as a result of dry air, high stability, increased vertical wind shear, and microphysical impacts of dust. Here, we focus on observations of Hurricane Helene (2006), which occurred during the NASA African Monsoon Multidisciplinary Activities (NAMMA) experiment. Satellite and airborne observations, combined with global meteorological analyses depict the initial environment of Helene as being dominated by the SAL, although with minimal evidence that the SAL air actually penetrated to the core of the disturbance. Over the next several days, the SAL air quickly moved westward and was gradually replaced by a very dry, dust-free layer associated with subsidence. Despite the wrapping of this very dry air around the storm, Helene intensified steadily to a Category 3 hurricane suggesting that the dry air was unable to significantly slow storm intensification. Several uncertainties remain about the role of the SAL in Helene (and in tropical cyclones in general). To better address these uncertainties, NASA will be conducting a three year airborne campaign called the Hurricane and Severe Storm Sentinel (HS3). The HS3 objectives are: To obtain critical measurements in the hurricane environment in order to identify the role of key factors such as large-scale wind systems (troughs, jet streams), Saharan air masses, African Easterly Waves and their embedded critical layers (that help to isolate tropical disturbances from hostile environments). To observe and understand the three-dimensional mesoscale and convective-scale internal structures of tropical disturbances and cyclones and their role in intensity change. The mission objectives will be achieved using

  16. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    NASA Astrophysics Data System (ADS)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  17. Dry kiln schedules for commercial woods : temperate and tropical

    Treesearch

    R. Sidney Boone; Charles J. Kozlik; Paul J. Bois; Eugene M. Wengert

    1988-01-01

    This report contains suggested dry kiln schedules for over 500 commercial woods, both temperate and tropical. Kiln schedules are completely assembled and written out for easy use. Schedules for several thicknesses and specialty products (e.g. squares, handle stock, gunstock blanks) are given for many species. The majority of the schedules are from the world literature...

  18. Water flow and energy balance for a tropical dry semideciduous forest

    NASA Astrophysics Data System (ADS)

    Andrade, J. L.; Garruña-Hernandez, R.; Leon-Palomo, M.; Us-Santamaria, R.; Sima, J. L.

    2013-05-01

    Tropical forests cool down locally because increase water evaporation from the soil to the atmosphere, reduce albedo and help forming clouds that reflect solar radiation back to the atmosphere; this, aligned to the carbon catchment, increase forests value. We will present an estimation of the sap flow and energy balance for the tropical dry semideciduous forest at Kiuic, Yucatan, Mexico during a year. We use a meteorological tower equipped with a rain gauge, temperature and relative humidity, heat flow plates, thermocouples and volumetric soil water content. We recorded net radiation and soil heat flux and estimated sensible heat and latent heat. Besides, we estimated latent heat by measuring sap flow directly in tres using disispation constant heat probes during the rainy season. Results show the influence of the seasonality on net radiation, air temperatura and vapor pressure deficit, because during the dry season his variables were higher and with more duation than during the rainy and early dry season. Sap flow was different for trees belonging to the family Fabaceae compared to trees from other families.

  19. A warming tropical central Pacific dries the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Ding, Qinghua; Fu, Qiang

    2018-04-01

    The amount of water vapor in the tropical lower stratosphere (TLS), which has an important influence on the radiative energy budget of the climate system, is modulated by the temperature variability of the tropical tropopause layer (TTL). The TTL temperature variability is caused by a complex combination of the stratospheric quasi-biennial oscillation (QBO), tropospheric convective processes in the tropics, and the Brewer-Dobson circulation (BDC) driven by mid-latitude and subtropical atmospheric waves. In 2000, the TLS water vapor amount exhibited a stepwise transition to a dry phase, apparently caused by a change in the BDC. In this study, we present observational and modeling evidence that the epochal change of water vapor between the periods of 1992-2000 and 2001-2005 was also partly caused by a concurrent sea surface temperature (SST) warming in the tropical central Pacific. This SST warming cools the TTL above by enhancing the equatorial wave-induced upward motion near the tropopause, which consequently reduces the amount of water vapor entering the stratosphere. The QBO affects the TLS water vapor primarily on inter-annual timescales, whereas a classical El Niño southern oscillation (ENSO) event has small effect on tropical mean TLS water vapor because its responses are longitudinally out of phase. This study suggests that the tropical central Pacific SST is another driver of TLS water vapor variability on inter-decadal timescales and the tropical SST changes could contribute to about 30% of the step-wise drop of the lower stratospheric water vapor from 1992-2000 to 2001-2005.

  20. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests

    DOE PAGES

    Waring, Bonnie G.; Powers, Jennifer S.

    2016-10-14

    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO 2) upon rewetting, the mechanisms underlying the so-called 'Birch effect' are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO 2 pulses with two soil carbon models: a conventional model assuming first-ordermore » decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis–Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO 2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO 2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Lastly, our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.« less

  1. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waring, Bonnie G.; Powers, Jennifer S.

    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO 2) upon rewetting, the mechanisms underlying the so-called 'Birch effect' are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO 2 pulses with two soil carbon models: a conventional model assuming first-ordermore » decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis–Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO 2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO 2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Lastly, our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.« less

  2. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests

    NASA Astrophysics Data System (ADS)

    Waring, Bonnie G.; Powers, Jennifer S.

    2016-10-01

    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO2) upon rewetting, the mechanisms underlying the so-called ‘Birch effect’ are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO2 pulses with two soil carbon models: a conventional model assuming first-order decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis-Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.

  3. Rainfall and labile carbon availability control litter nitrogen dynamics in a tropical dry forest.

    PubMed

    Anaya, Carlos A; García-Oliva, Felipe; Jaramillo, Víctor J

    2007-01-01

    N cycling in tropical dry forests is driven by rainfall seasonality but the mechanisms involved are not well understood. We studied the seasonal variation in N dynamics and microbial biomass in the surface litter of a tropical dry forest ecosystem in Mexico over a 2-year period. Litter was collected at 4 different times of the year to determine changes in total, soluble, and microbial C and N concentrations. Additionally, litter from each sampling date was incubated under laboratory conditions to determine potential C mineralization rate, net N mineralization, net C and N microbial immobilization, and net nitrification. Litter C concentrations were highest in the early-dry season and lowest in the rainy season, while the seasonal changes in N concentrations varied between years. Litter P was higher in the rainy than in the early-dry season. Water-soluble organic C (WSOC) and water-soluble N concentrations were highest during the early- and late-dry seasons and represented up to 4.1 and 5.9% of the total C and N, respectively. NH (4) (+) and NO (3) (-) showed different seasonal and annual variations. They represented an average 23% of soluble N. Microbial C was generally higher in the dry than in the wet seasons, while microbial N was lowest in the late-dry and highest in the early-rainy seasons. Incubations showed that lowest potential C mineralization rates and C and N microbial immobilization occurred in rainy season litter, and were positively correlated to WSOC. Net nitrification was highest in rainy season litter. Our results showed that the seasonal pattern in N dynamics was influenced by rainfall seasonality and labile C availability, and not by microbial biomass. We propose a conceptual model to hypothesize how N dynamics in the litter layer of the Chamela tropical dry forest respond to the seasonal variation in rainfall.

  4. Short dry spells in the wet season increase mortality of tropical pioneer seedlings.

    PubMed

    Engelbrecht, Bettina M J; Dalling, James W; Pearson, Timothy R H; Wolf, Robert L; Gálvez, David A; Koehler, Tobias; Tyree, Melvin T; Kursar, Thomas A

    2006-06-01

    Variation in plant species performance in response to water availability offers a potential axis for temporal and spatial habitat partitioning and may therefore affect community composition in tropical forests. We hypothesized that short dry spells during the wet season are a significant source of mortality for the newly emerging seedlings of pioneer species that recruit in treefall gaps in tropical forests. An analysis of a 49-year rainfall record for three forests across a rainfall gradient in central Panama confirmed that dry spells of > or = 10 days during the wet season occur on average once a year in a deciduous forest, and once every other year in a semi-deciduous moist and an evergreen wet forest. The effect of wet season dry spells on the recruitment of pioneers was investigated by comparing seedling survival in rain-protected dry plots and irrigated control plots in four large artificially created treefall gaps in a semi-deciduous tropical forest. In rain-protected plots surface soil layers dried rapidly, leading to a strong gradient in water potential within the upper 10 cm of soil. Seedling survival for six pioneer species was significantly lower in rain-protected than in irrigated control plots after only 4 days. The strength of the irrigation effect differed among species, and first became apparent 3-10 days after treatments started. Root allocation patterns were significantly, or marginally significantly, different between species and between two groups of larger and smaller seeded species. However, they were not correlated with seedling drought sensitivity, suggesting allocation is not a key trait for drought sensitivity in pioneer seedlings. Our data provide strong evidence that short dry spells in the wet season differentially affect seedling survivorship of pioneer species, and may therefore have important implications to seedling demography and community dynamics.

  5. FPL design for lumber dry kiln using solar/wood energy in tropical latitudes

    Treesearch

    J. L. Tschernitz; W. T. Simpson

    1985-01-01

    Developing countries with a timber resource that can be manufactured into finished products either for local use or export often lack the capital to build high-cost dry kilns. Many of these countries are in the tropics where solar radiation and ambient temperatures are high. The low-cost solar/wood energy lumber dry kiln described in this report was designed and tested...

  6. Biological Nitrogen Fixation In Tropical Dry Forests Of Costa Rica

    NASA Astrophysics Data System (ADS)

    Gei, M. G.; Powers, J. S.

    2012-12-01

    Evidence suggests that tropical dry forests (TDF) are not nitrogen (N) deficient. This evidence includes: high losses of gaseous nitrogen during the rainy season, high ecosystem soil N stocks and high N concentrations in leaves and litterfall. Its been commonly hypothesized that biological nitrogen fixation is responsible for the high availability of N in tropical soils. However, the magnitude of this flux has rarely if ever been measured in tropical dry forests. Because of the high cost of fixing N and the ubiquity of N fixing legume trees in the TDF, at the individual tree level symbiotic fixation should be a strategy down-regulated by the plant. Our main goal was to determine the rates of and controls over symbiotic N fixation. We hypothesized that legume tree species employ a facultative strategy of nitrogen fixation and that this process responds to changes in light availability, soil moisture and nutrient supply. We tested this hypothesis both on naturally established trees in a forest and under controlled conditions in a shade house by estimating the quantities of N fixed annually using the 15N natural abundance method, counting nodules, and quantifying (field) or manipulating (shade house) the variation in important environmental variables (soil nutrients, soil moisture, and light). We found that in both in our shade house experiment and in the forest, nodulation varied among different legume species. For both settings, the 15N natural abundance approach successfully detected differences in nitrogen fixation among species. The legume species that we studied were able to regulate fixation depending on the environmental conditions. They showed to have different strategies of nitrogen fixation that follow a gradient of facultative to obligate fixation. Our data suggest that there exists a continuum of nitrogen fixation strategies among species. Any efforts to define tropical legume trees as a functional group need to incorporate this variation.

  7. [Regenerative morphological traits in a woody species community in Tumbesian tropical dry forest].

    PubMed

    Romero-Saritama, José Miguel; Pérez-Rúuz, César

    2016-06-01

    The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary

  8. The Dry Season Shuffle: Gorges Provide Refugia for Animal Communities in Tropical Savannah Ecosystems

    PubMed Central

    Doody, J. Sean; Clulow, Simon; Kay, Geoff; D’Amore, Domenic; Rhind, David; Wilson, Steve; Ellis, Ryan; Castellano, Christina; McHenry, Colin; Quayle, Michelle; Hands, Kim; Sawyer, Graeme; Bass, Michael

    2015-01-01

    In the wet-dry tropics, animal species face the major challenges of acquiring food, water or shelter during an extended dry season. Although large and conspicuous animals such as ungulates and waterfowl migrate to wetter areas during this time, little is known of how smaller and more cryptic animal species with less mobility meet these challenges. We fenced off the entire entrance of a gorge in the Australian tropical savanna, offering the unique opportunity to determine the composition and seasonal movement patterns of the small vertebrate community. The 1.7 km-long fence was converted to a trapline that was deployed for 18-21 days during the early dry season in each of two years, and paired traps on both sides of the fence allowed us to detect the direction of animal movements. We predicted that semi-aquatic species (e.g., frogs and turtles) would move upstream into the wetter gorge during the dry season, while more terrestrial species (e.g., lizards, snakes, mammals) would not. The trapline captured 1590 individual vertebrates comprising 60 species. There was a significant bias for captures on the outside of the fence compared to the inside for all species combined (outside/inside = 5.2, CI = 3.7-7.2), for all vertebrate classes, and for specific taxonomic groups. The opposite bias (inside/outside = 7.3, N= 25) for turtles during the early wet season suggested return migration heading into the wet season. Our study revealed that the small vertebrate community uses the gorge as a dry season refuge. The generality of this unreplicated finding could be tested by extending this type of survey to tropical savannahs worldwide. A better understanding of how small animals use the landscape is needed to reveal the size of buffer zones around wetlands required to protect both semi-aquatic and terrestrial fauna in gorges in tropical savannah woodland, and thus in ecosystems in general. PMID:26135472

  9. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Treesearch

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  10. Diameter distribution in a Brazilian tropical dry forest domain: predictions for the stand and species.

    PubMed

    Lima, Robson B DE; Bufalino, Lina; Alves, Francisco T; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Currently, there is a lack of studies on the correct utilization of continuous distributions for dry tropical forests. Therefore, this work aims to investigate the diameter structure of a brazilian tropical dry forest and to select suitable continuous distributions by means of statistic tools for the stand and the main species. Two subsets were randomly selected from 40 plots. Diameter at base height was obtained. The following functions were tested: log-normal; gamma; Weibull 2P and Burr. The best fits were selected by Akaike's information validation criterion. Overall, the diameter distribution of the dry tropical forest was better described by negative exponential curves and positive skewness. The forest studied showed diameter distributions with decreasing probability for larger trees. This behavior was observed for both the main species and the stand. The generalization of the function fitted for the main species show that the development of individual models is needed. The Burr function showed good flexibility to describe the diameter structure of the stand and the behavior of Mimosa ophthalmocentra and Bauhinia cheilantha species. For Poincianella bracteosa, Aspidosperma pyrifolium and Myracrodum urundeuva better fitting was obtained with the log-normal function.

  11. The Predictability of Dry-Season Precipitation in Tropical West Africa

    NASA Astrophysics Data System (ADS)

    Knippertz, P.; Davis, J.; Fink, A. H.

    2012-04-01

    Precipitation during the boreal winter dry season in tropical West Africa is rare but occasionally connected to high-impacts for the local population. Previous work has shown that these events are usually connected to a trough over northwestern Africa, an extensive cloud plume on its eastern side, unusual precipitation at the northern and western fringes of the Sahara, and reduced surface pressure over the southern Sahara and Sahel, which allows an inflow of moist southerlies from the Gulf of Guinea to feed the unusual dry-season rainfalls. These results also suggest that the extratropical influence enhances the predictability of these events on the synoptic timescale. Here we further investigate this question for the 11 dry seasons (November-March) 1998/99-2008/09 using rainfall estimates from TRMM (Tropical Rainfall Measuring Mission) and GPCP (Global Precipitation Climatology Project), and operational ensemble predictions from the European Centre for Medium-Range Forecasts (ECMWF). All fields are averaged over the study area 7.5-15°N, 10°W-10°E that spans most of southern West Africa. For each 0000 UTC analysis time, the daily precipitation estimates are accumulated to pentads and compared with 120-hour predictions starting at the same time. Compared to TRMM, the ensemble mean shows a weak positive bias, whereas there is a substantial negative bias with regard to GPCP. Temporal correlations reach a high value of 0.8 for both datasets, showing similar synoptic variability despite the differences in total amount. Standard probabilistic evaluation methods such as relative operating characteristic (ROC) diagrams indicate remarkably good reliability, resolution and skill, particularly for lower precipitation thresholds. Not surprisingly, forecasts cluster at low probabilities for higher thresholds, but the reliability and ROC score are still reasonably high. The results show that global ensemble prediction systems are capable to predict dry-season rainfall events

  12. Extrapolating carbon dynamics of tropical dry forests into future climates: improving simulation models with empirical observations

    NASA Astrophysics Data System (ADS)

    Medvigy, David; Waring, Bonnie; Vargas, German; Xu, Xiangtao; Smith, Christina; Becknell, Justin; Trierweiler, Annette; Brodribb, Timothy; Powers, Jennifer

    2017-04-01

    Tropical dry forests occur in areas with warm temperatures and a pronounced dry season with little to no rainfall that lasts 3 to 7 months. The potential area covered by this biome is vast: globally, 47% of all forest occurs in tropical and subtropical latitudes, and of all tropical forests approximately 42% are classified as dry forests. Throughout the last several centuries, the area covered by tropical dry forests has been dramatically reduced through conversion to grazing and croplands, and they are now considered the most threatened tropical biome. However, in many regions, tropical dry forests are now growing back. There is growing concern that this recovery process will be strongly impacted by climate variability and change. Observations show that climate is changing in the seasonal tropics, and climate models forecast that neotropical dry forests will receive significantly less rainfall in the 21st century than in the 20th century. Rates of nitrogen deposition are also changing rapidly in this sector, and the fertility of some soils may still be recovering from past land use. We are engaged in several efforts to understand how water and nutrients limit the productivity of these forests, including manipulative experiments, modeling, and investigation of responses to natural climate variability. In 2015, at a well-characterized site in Guanacaste, Costa Rica, we established a full-factorial fertilization experiment with N and P in diverse mature forest stands. Initial responses highlight stronger ecosystem sensitivity to P addition than to N addition. Intriguingly, pre-experiment numerical simulations with a mechanistic ecosystem model had indicated the reverse. Work is ongoing to use field observations to better represent critical processes in the model, and ultimately to improve the model's sensitivity to nutrients and water. In addition, in 2016, we established a full factorial nutrient addition and drought experiment in plantations. Thus far, soil

  13. Toward a Mexican eddy covariance network for carbon cycle science

    NASA Astrophysics Data System (ADS)

    Vargas, Rodrigo; Yépez, Enrico A.

    2011-09-01

    First Annual MexFlux Principal Investigators Meeting; Hermosillo, Sonora, Mexico, 4-8 May 2011; The carbon cycle science community has organized a global network, called FLUXNET, to measure the exchange of energy, water, and carbon dioxide (CO2) between the ecosystems and the atmosphere using the eddy covariance technique. This network has provided unprecedented information for carbon cycle science and global climate change but is mostly represented by study sites in the United States and Europe. Thus, there is an important gap in measurements and understanding of ecosystem dynamics in other regions of the world that are seeing a rapid change in land use. Researchers met under the sponsorship of Red Temática de Ecosistemas and Consejo Nacional de Ciencia y Tecnologia (CONACYT) to discuss strategies to establish a Mexican eddy covariance network (MexFlux) by identifying researchers, study sites, and scientific goals. During the meeting, attendees noted that 10 study sites have been established in Mexico with more than 30 combined years of information. Study sites span from new sites installed during 2011 to others with 9 to 6 years of measurements. Sites with the longest span measurements are located in Baja California Sur (established by Walter Oechel in 2002) and Sonora (established by Christopher Watts in 2005); both are semiarid ecosystems. MexFlux sites represent a variety of ecosystem types, including Mediterranean and sarcocaulescent shrublands in Baja California; oak woodland, subtropical shrubland, tropical dry forest, and a grassland in Sonora; tropical dry forests in Jalisco and Yucatan; a managed grassland in San Luis Potosi; and a managed pine forest in Hidalgo. Sites are maintained with an individual researcher's funds from Mexican government agencies (e.g., CONACYT) and international collaborations, but no coordinated funding exists for a long-term program.

  14. Effect of Extreme Drought on Tropical Dry Forests

    NASA Astrophysics Data System (ADS)

    Castro, Saulo; Sanchez-Azofeifa, Arturo; Sato, Hiromitsu; Cowling, Sharon; Vega-Araya, Mauricio

    2017-04-01

    Tropical dry forests (TDFs) hold a strong economic and cultural connection to human development in the Neotropics. Historically, TDFs not only represent a source of agricultural and urban land but also an important source of goods and ecosystem services for the communities that live around them. Such is the close connection of TDFs to human activity that they are considered the most heavily utilized and disturbed ecosystem in the world. However, TDF have been largely understudied and represent only a fraction of research devoted to globally tropical ecosystems. Thus we lack the framework to properly project how predicted increases in drought events due to climate change will impact TDFs and human society which depend on its services. Our study aims to show the effect of extreme drought on water, food security, and tropical dry forest productivity in the Guanacaste province of Costa Rica. Two pre-ENSO years (2013-2014) and an ENSO year (2015) were compared. The 2013 and 2014 pre-ENSO years were classified as a normal precipitation (1470 mm) and drought year (1027mm), respectively. The 2015 ENSO year was classified as a severe drought (654mm), with amplified effects resulting by the drought experienced during the previous (2014) growing cycle. Effects of the ENSO drought on agriculture and livestock sectors in the province included losses of US13million and US6.5million, respectively. Crop land losses equaled 2,118 hectares and 11,718 hectares were affected. Hydroelectricity generation decreased by 10% and potable water shortages were observed. The Agriculture and Livestock Ministry (MAG) and the National Emergency Commission (CNE) distributed animal feed and supplies to 4,000 farmers affected by the extreme droughts. Eddy covariance flux measurements were used to identify productivity changes during the extreme drought. Changes in phenologic stages and the transitions between CO2 sink to source during mid-growing cycle were observed. Drought significantly delayed

  15. Light Diffusion in the Tropical Dry Forest of Costa Rica

    NASA Astrophysics Data System (ADS)

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.

    2016-06-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  16. Incised channel fills containing conifers indicate that seasonally dry vegetation dominated Pennsylvanian tropical lowlands

    USGS Publications Warehouse

    Falcon-Lang, H. J.; Nelson, W.J.; Elrick, S.; Looy, C.V.; Ames, P.R.; DiMichele, W.A.

    2009-01-01

    The idea that the Pennsylvanian tropical lowlands were temporally dominated by rainforest (i.e., the Coal Forest) is deeply ingrained in the literature. Here we challenge two centuries of research by suggesting that this concept is based on a taphonomic artifact, and that seasonally dry vegetation dominated instead. This controversial finding arises from the discovery of a new middle Pennsylvanian (Moscovian) fossil plant assemblage in southeast Illinois, United States. The assemblage, which contains xerophytic walchian conifers, occurs in channels incised into a calcic Vertisol below the Baker Coal. These plants grew on seasonally dry tropical lowlands inferred to have developed during a glacial phase. This xerophytic flora differs markedly from that of the typical clubmoss-dominated Coal Forest developed during deglaciation events. Although preserved only very rarely, we argue that such xerophytic floras were temporally as dominant, and perhaps more dominant, than the iconic Coal Forests, which are overrepresented in the fossil record due to taphonomic megabias. These findings require the iconography of Pennsylvanian tropical lowlands to be redrawn. ?? 2009 Geological Society of America.

  17. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Treesearch

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  18. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    PubMed

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  19. Observed effects of an exceptional drought on tree mortality in a tropical dry forest

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Vargas, G.; Xu, X.; Smith, C. M.; Becknell, J.; Brodribb, T.; Powers, J. S.

    2016-12-01

    Climate models predict that the coming century will bring reduced rainfall to Neotropical dry forests. It is unknown how tropical dry forest trees will respond to such rainfall reductions. Will there be increased mortality? If so, what will be the dominant mechanism of mortality? Will certain functional groups or size classes be more susceptible to unusually dry conditions and do functional traits underlie these patterns? With these questions in mind, we analyzed the response of trees from 18 Costa Rican tropical dry forest inventory plots and from additional transects to the exceptional 2015 drought that coincided with a strong ENSO event. We compared stand-level mortality rates observed during pre-drought years (2008-2014) and during the drought year of 2015 in the inventory plots. For both inventory plots and transects, we analyzed whether particular functional groups or size classes experienced exceptional mortality after the drought. We found that mortality rates were two to three times higher during the drought than before the drought. In contrast to observations at moist tropical forests, tree size had little influence on mortality. In terms of functional groups, mortality rates of evergreen oaks growing on nutrient-poor soils particularly increased during drought. Legumes seemed less affected by the drought than non-legumes. However, elevated mortality rates were not clearly correlated with commonly-measured traits like wood density or specific leaf area. Instead, hydraulic traits like P50 or turgor loss point may be better predictors of drought-driven mortality. In addition, trees that died during the drought tended to have smaller relative growth rate prior to the drought than trees that survived the drought.

  20. Insect herbivores associated with an evergreen tree Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) in a tropical dry forest.

    PubMed

    Silva, J O; Neves, F S

    2014-08-01

    Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) is a tree species found in Brazilian tropical dry forests that retain their leaves during the dry season. That being, we addressed the following question: i) How do insect diversity (sap-sucking and chewing), leaf herbivory and defensive traits (tannin and leaf sclerophylly) vary on the evergreen tree species G. marginata between seasons? The abundance of sap-sucking insects was higher in the dry season than in the rainy season. However, we did not verify any difference in the species richness and abundance of chewing insects between seasons. Leaf herbivory was higher in the rainy season, whereas leaf sclerophylly was higher in the dry season. However, herbivory was not related to sclerophylly. Insect herbivores likely decrease their folivory activity during the dry season due to life history patterns or changes in behaviour, possibly entering diapause or inactivity during this period. Therefore, G. marginata acts as a likely keystone species, serving as a moist refuge for the insect fauna during the dry season in tropical dry forest, and the presence of this evergreen species is crucial to conservation strategies of this threatened ecosystem.

  1. How Dry is the Tropical Free Troposphere? Implications for Global Warming Theory

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.

    1997-01-01

    The humidity of the free troposphere is being increasingly scrutinized in climate research due to its central role in global warming theory through positive water vapor feedback. This feedback is the primary source of global warming in general circulation models (GCMs). Because the loss of infrared energy to space increases nonlinearly with decreases in relative humidity, the vast dry zones in the Tropics are of particular interest. These dry zones are nearly devoid of radiosonde stations, and most of those stations have, until recently, ignored the low humidity information from the sondes. This results in substantial uncertainty in GCM tuning and validation based on sonde data. While satellite infrared radiometers are now beginning to reveal some information about the aridity of the tropical free troposphere, the authors show that the latest microwave humidity sounder data suggests even drier conditions than have been previously reported. This underscores the importance of understanding how these low humidity levels are controlled in order to tune and validate GCMs, and to predict the magnitude of water vapor feedback and thus the magnitude of global warming.

  2. Effect of rainfall seasonality on carbon storage in tropical dry ecosystems

    NASA Astrophysics Data System (ADS)

    Rohr, Tyler; Manzoni, Stefano; Feng, Xue; Menezes, Rômulo S. C.; Porporato, Amilcare

    2013-07-01

    seasonally dry conditions are typical of large areas of the tropics, their biogeochemical responses to seasonal rainfall and soil carbon (C) sequestration potential are not well characterized. Seasonal moisture availability positively affects both productivity and soil respiration, resulting in a delicate balance between C deposition as litterfall and C loss through heterotrophic respiration. To understand how rainfall seasonality (i.e., duration of the wet season and rainfall distribution) affects this balance and to provide estimates of long-term C sequestration, we develop a minimal model linking the seasonal behavior of the ensemble soil moisture, plant productivity, related C inputs through litterfall, and soil C dynamics. A drought-deciduous caatinga ecosystem in northeastern Brazil is used as a case study to parameterize the model. When extended to different patterns of rainfall seasonality, the results indicate that for fixed annual rainfall, both plant productivity and soil C sequestration potential are largely, and nonlinearly, dependent on wet season duration. Moreover, total annual rainfall is a critical driver of this relationship, leading at times to distinct optima in both production and C storage. These theoretical predictions are discussed in the context of parameter uncertainties and possible changes in rainfall regimes in tropical dry ecosystems.

  3. Trait Variation Along a Forest Successional Gradient in Dry Tropical Forest, Florida Keys

    NASA Astrophysics Data System (ADS)

    Subedi, S.; Ross, M. S.

    2016-12-01

    In most part of South Florida tropical dry forests, the early colonized trees on disturbed uplands are mostly deciduous species cable of surviving for several years after establishment. However, trees in mature forests are generally characterized by a suite of evergreen species, most of which are completely absent in younger stands even in seedling stage. This complete transition from one functional group to another in the course of stand development suggests a distinct change in the underlying environment during the course of succession. Such change in hammock functional groups as a function of the changing environmental drivers during succession in tropical dry forests is unknown and addressing this question may help to understand which drivers of change act as filters that select for and against particular groups of species and traits. In this study, we evaluate number of important functional traits (specific leaf area, wood density, leaf d13C, leaf N:P ratio, and architectural traits such as height, crown dimensions, diameter at breast height) for woody plant species occurring along a successional gradient across three ecological scales, community, species, and individual. A significant change in the overall trait distribution across the successional gradient is found. Intraspecific trait variation within the community is increased with increase in forest age. Most of these traits have shown correlation with stand age and showed preference to a certain environment. Stand age is the most important variable explaining the distribution of community characteristics. It is found that early successional forest are mostly shaped by environmental driven processes, and as forest get older and structurally more complex, they are increasingly shaped by competitively driven processes leading to limiting similarity. This study has shown that the patterns of trait shift can be predictable and can be used to characterize habitats and stage of forest succession in dry tropical

  4. Dispersal, isolation and diversification with continued gene flow in an Andean tropical dry forest.

    PubMed

    Toby Pennington, R; Lavin, Matt

    2017-07-01

    The Andes are the world's longest mountain chain, and the tropical Andes are the world's richest biodiversity hot spot. The origin of the tropical Andean cordillera is relatively recent because the elevation of the mountains was relatively low (400-2500 m palaeoelevations) only 10 MYA with final uplift being rapid. These final phases of the Andean orogeny are thought to have had a fundamental role in shaping processes of biotic diversification and biogeography, with these effects reaching far from the mountains themselves by changing the course of rivers and deposition of mineral-rich Andean sediments across the massive Amazon basin. In a recent issue of Molecular Ecology, Oswald, Overcast, Mauck, Andersen, and Smith (2017) investigate the biogeography and diversification of bird species in the Andes of Peru and Ecuador. Their study is novel in its focus on tropical dry forests (Figure 1) rather than more mesic biomes such as rain forests, cloud forests and paramos, which tend to be the focus of science and conservation in the Andean hot spot. It is also able to draw powerful conclusions via the first deployment of genomic approaches to a biogeographic question in the threatened dry forests of the New World. © 2017 John Wiley & Sons Ltd.

  5. Modeling multiple resource limitation in tropical dry forests

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Xu, X.; Zarakas, C.

    2015-12-01

    Tropical dry forests (TDFs) are characterized by a long dry season when little rain falls. At the same time, many neotropical soils are highly weathered and relatively nutrient poor. Because TDFs are often subject to both water and nutrient constraints, the question of how they will respond to environmental perturbations is both complex and highly interesting. Models, our basic tools for projecting ecosystem responses to global change, can be used to address this question. However, few models have been specifically parameterized for TDFs. Here, we present a new version of the Ecosystem Demography 2 (ED2) model that includes a new parameterization of TDFs. In particular, we focus on the model's framework for representing limitation by multiple resources (carbon, water, nitrogen, and phosphorus). Plant functional types are represented in terms of a dichotomy between "acquisitive" and "conservative" resource acquisition strategies. Depending on their resource acquisition strategy and basic stoichiometry, plants can dynamically adjust their allocation to organs (leaves, stem, roots), symbionts (e.g. N2-fixing bacteria), and mycorrhizal fungi. Several case studies are used to investigate how resource acquisition strategies affect ecosystem responses to environmental perturbations. Results are described in terms of the basic setting (e.g., rich vs. poor soils; longer vs. shorter dry season), and well as the type and magnitude of environmental perturbation (e.g., changes in precipitation or temperature; changes in nitrogen deposition). Implications for ecosystem structure and functioning are discussed.

  6. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest.

    PubMed

    Victoriano-Romero, Elizabeth; Valencia-Díaz, Susana; Toledo-Hernández, Víctor Hugo; Flores-Palacios, Alejandro

    2017-01-01

    Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4-5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds.

  7. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    PubMed

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  8. A Late Holocene Record of Human Impact in the Tropical Lowlands of the Mexican Gulf Coast: Lago Verde.

    NASA Astrophysics Data System (ADS)

    Socorro, L.; Sosa, S.; Caballero, M.; Rodriguez, A.; Ortega, B.

    2005-05-01

    Lago Verde is a maar lake (18 36 43 N; 95 20 52 W) located on the Gulf Coast of Mexico in "Los Tuxtlas" region. The area was cover by tropical rain forest and is part of the core area of the earliest Mesoamerican cultures. A 6 m sediment core was obtained in order to document vegetation and lake level history of this area. Lago Verde is a shallow, eutrophic lake (max. 4 m), the natural vegetation has been removed and grasslands with some tropical trees such Bursera grows around the lake. According with the radiocarbon chronology the sequence covers the last 2500 yr BP. At the base of the sequence low abundance of tropical trees is record, with intermediate lake levels. A sudden change in the pollen stratigraphy occurs at ca. 2000 yr BP, with important presence of Poaceae, Ambrosia and Cheno.-Am. along with Zea mays indicating human activity in the area. This is associated with a change in limnological conditions, recording turbid, shallow environments. This pollen signals correlates with dry phases in Yucatan, suggesting that this dry climatic signal probably had effect on an ample area of Mexico. However, at 1200 yr BP, no more Zea mays pollen is recovered suggesting the abandonment of the area. Lake levels recover as well as the tropical forest. The last 150 yr BP is characterized by the reduction in the pollen of tropical forest trees, presence of Zea mays, increased erosion rates, turbidity and eutrophication in the lake, all related to deforestation.

  9. The establishment of Central American migratory corridors and the biogeographic origins of seasonally dry tropical forests in Mexico

    PubMed Central

    Willis, Charles G.; Franzone, Brian F.; Xi, Zhenxiang; Davis, Charles C.

    2014-01-01

    Biogeography and community ecology can mutually illuminate the formation of a regional species pool or biome. Here, we apply phylogenetic methods to a large and diverse plant clade, Malpighiaceae, to characterize the formation of its species pool in Mexico, and its occupancy of the seasonally dry tropical forest (SDTF) biome that occurs there. We find that the ~162 species of Mexican Malpighiaceae represent ~33 dispersals from South America beginning in the Eocene and continuing until the Pliocene (~46.4–3.8 Myr). Furthermore, dispersal rates between South America and Mexico show a significant six-fold increase during the mid-Miocene (~23.9 Myr). We hypothesize that this increase marked the availability of Central America as an important corridor for Neotropical plant migration. We additionally demonstrate that this high rate of dispersal contributed substantially more to the phylogenetic diversity of Malpighiaceae in Mexico than in situ diversification. Finally, we show that most lineages arrived in Mexico pre-adapted with regard to one key SDTF trait, total annual precipitation. In contrast, these lineages adapted to a second key trait, precipitation seasonality, in situ as mountain building in the region gave rise to the abiotic parameters of extant SDTF. The timing of this in situ adaptation to seasonal precipitation suggests that SDTF likely originated its modern characteristics by the late Oligocene, but was geographically more restricted until its expansion in the mid-Miocene. These results highlight the complex interplay of dispersal, adaptation, and in situ diversification in the formation of tropical biomes. Our results additionally demonstrate that these processes are not static, and their relevance can change markedly over evolutionary time. This has important implications for understanding the origin of SDTF in Mexico, but also for understanding the temporal and spatial origin of biomes and regional species pools more broadly. PMID:25566320

  10. Relative drying times of 650 tropical woods : estimation by green moisture content, specific gravity, and green weight density

    Treesearch

    William T. Simpson; John A. Sagoe

    1991-01-01

    Many tropical species are underutilized because of their varied and frequently unknown drying properties. When handling a large number of species, harvesting and processing the species individually is impractical, and grouping species by similar drying properties is difficult. This report examines the relationship between green moisture content and specific gravity of...

  11. Traditional and formal ecological knowledge to assess harvesting and conservation of a Mexican Tropical Dry Forest.

    PubMed

    Monroy-Ortiz, Columba; García-Moya, Edmundo; Romero-Manzanares, Angélica; Luna-Cavazos, Mario; Monroy, Rafael

    2018-05-15

    This research integrates Traditional and Formal Ecological Knowledge (TEK / FEK) of a Tropical Dry Forest in central Mexico, in order to assess harvesting and conservation of the non-timber forest species. We were interested in: knowing the structure and diversity of the forest community; identifying which are the tree resources of common interest to the users through participatory workshops. A further interest was to identify those resources which are important to local people in terms of preservation; explaining the relationship of the species with some environmental factors; and visualizing which management practices endanger or facilitate the conservation of species. Studied areas were defined and labelled on a map drawn by local informants, where they indicated those plant species of common interest for preservation. Ethnobotanical techniques were used to reveal the TEK and assess harvesting and conservation of the species. With the FEK through community and population ecology, we detected the importance of five environmental factors, obtained various ecological indicators of the vegetation, and studied the population structure of the relevant species. The FEK was analyzed using descriptive and multivariate statistics. As a result, low density and small basal area of trees were registered. Species richness and diversity index were similar to other natural protected areas in Mexico. Tree species harvested shown an asymmetric distribution of diameters. Harvesting, elevation, and accessibility were the most influential factors on tree density. FEK demonstrated that TEK is helpful for the assessment of forest harvesting. Ecological analysis complemented the local knowledge detecting that Lysiloma tergemina is a species non-identified for the people as interesting, although we discover that it is a threatened species by over-harvesting. Haematoxylum brasiletto was identified as important for conservation due to its scarcity and medicinal use. Our results advanced

  12. Analysis of carbon and nutrient storage of dry tropical forest of chhattisgarh using satellite data

    NASA Astrophysics Data System (ADS)

    Thakur, T. K.

    2014-11-01

    The purpose of this study was to characterize the carbon, nitrogen, phosphorus and potassium in the Barnowpara Sanctuary, Raipur district, Chhattisgarh, India through the use of satellite remote sensing and GIS The total storage of nutrients in vegetation (OS + US + GS) varied from 105.1 to 560.69 kg ha-1 in N, 4.09 kg ha-1 to 49.59 kg ha-1 in P, 24.59 kg ha-1 to 255.58 kg ha-1 for K and 7310 to 4836 kg ha-1 for C in different forest types. They were highest in Dense mixed forest and lowest in Degraded mixed forest. The study also showed that NDVI and carbon storage was strongly correlated to Shannon Index and species richness thus it indicates that the diversity of forest type play a vital role in carbon accumulation. The study also developed reliable regression model for the estimation of LAI, biomass, NPP, C & N storage in dry tropical forests by using NDVI and different vegetation indices, which can be derived from fine resolution satellite data. The study shows that dry tropical forests of Central India are quite immature and not in standing state and have strong potential for carbon sequestration. Both quantitative and qualitative information derived in the study helped in evolving key strategies for maintaining existing C pools and also improving the C sequestration in different forest types. The study explores the scope and potential of dry tropical forests for improving C sequestration and mitigating the global warming and climatic change.

  13. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics

    PubMed Central

    Ilstedt, U.; Bargués Tobella, A.; Bazié, H. R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; Sheil, D.; Malmer, A.

    2016-01-01

    Water scarcity contributes to the poverty of around one-third of the world’s people. Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability. Yet relevant studies from the tropics are scarce, and the impacts of intermediate tree cover remain unexplored. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density. Below this optimal tree density the benefits from any additional trees on water percolation exceed their extra water use, leading to increased groundwater recharge, while above the optimum the opposite occurs. Our results, based on groundwater budgets calibrated with measurements of drainage and transpiration in a cultivated woodland in West Africa, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. We evaluate the necessary conditions for these results to hold and suggest that they are likely to be common in the seasonally dry tropics, offering potential for widespread tree establishment and increased benefits for hundreds of millions of people. PMID:26908158

  14. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics

    NASA Astrophysics Data System (ADS)

    Ilstedt, U.; Bargués Tobella, A.; Bazié, H. R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; Sheil, D.; Malmer, A.

    2016-02-01

    Water scarcity contributes to the poverty of around one-third of the world’s people. Despite many benefits, tree planting in dry regions is often discouraged by concerns that trees reduce water availability. Yet relevant studies from the tropics are scarce, and the impacts of intermediate tree cover remain unexplored. We developed and tested an optimum tree cover theory in which groundwater recharge is maximized at an intermediate tree density. Below this optimal tree density the benefits from any additional trees on water percolation exceed their extra water use, leading to increased groundwater recharge, while above the optimum the opposite occurs. Our results, based on groundwater budgets calibrated with measurements of drainage and transpiration in a cultivated woodland in West Africa, demonstrate that groundwater recharge was maximised at intermediate tree densities. In contrast to the prevailing view, we therefore find that moderate tree cover can increase groundwater recharge, and that tree planting and various tree management options can improve groundwater resources. We evaluate the necessary conditions for these results to hold and suggest that they are likely to be common in the seasonally dry tropics, offering potential for widespread tree establishment and increased benefits for hundreds of millions of people.

  15. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest

    PubMed Central

    2017-01-01

    Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4–5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds. PMID:28158320

  16. Diurnal thermoregulatory responses in pregnant Yankasa ewes to the dry season in a tropical Savannah.

    PubMed

    Yaqub, Lukuman Surakat; Ayo, Joseph Olusegun; Kawu, Muhammad Umar; Rekwot, Peter Ibrahim

    2017-08-01

    The study investigated concomitant effect of gestation and high ambient temperature under a tropical environment on rectal temperature (RT), respiratory rate (RR) and heart rate (HR) responses in Yankasa ewes. Twenty Yankasa ewes, consisting of ten pregnant and ten non-pregnant ewes, were used for the study. Ewes were synchronised and bred, such that each gestation phase coincided with different periods of the dry-seasons, early-gestation (cold/harmattan), mid-gestation (peak hot-dry) and late-gestation (late hot-dry). The RT, RR and HR were recorded thrice, 2 days apart at middle of each gestation period at 06:00, 14:00 and 18:00 h, concurrently with dry- (DBT) and wet-bulb temperatures of the experimental pen. The DBT was positively correlated with RT, RR during the different gestation stages. The RT significantly (P < 0.001) increased with the hour of day, regardless of the physiological status of the ewes, with peak at 14:00 h. Values of RT and RR were higher (P < 0.05) in pregnant than non-pregnant ewes at mid- and late-gestation, respectively. Mean RT was lower (P < 0.001) at 06:00 h in pregnant than non-pregnant ewes at early-gestation (cold-dry). The HR was (P < 0.05) higher in pregnant than non-pregnant ewes during the different gestation phases. In conclusion, ambient temperature and gestation concomitantly modulate diurnal thermoregulatory responses of the ewes to hot-dry season. Adequate measures should be adopted to mitigate adverse impact of prolonged high RR on the dam and the foetus during the peak of ambient temperature prevailing in the tropical Savannah environment.

  17. Spatial variability of soils in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman

    2016-04-01

    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  18. Spread of common native and invasive grasses and ruderal trees following anthropogenic disturbances in a tropical dry forest

    Treesearch

    Xavier A. Jaime; Skip J. Van Bloem; Frank H. Koch; Stacy A. C. Nelson

    2017-01-01

    Introduction: A fundamental challenge to the integrity of tropical dry forest ecosystems is the invasion of nonnative grass species. These grasses compete for resources and fuel anthropogenic wildfires. In 2012, a bulldozer from the Puerto Rico Electric Power Authority cleared a 570-m trail from a state road into a mature dry forest section...

  19. Shift from ecosystem P to N limitation at precipitation gradient in tropical dry forests at Yucatan, Mexico

    NASA Astrophysics Data System (ADS)

    Campo, Julio

    2016-09-01

    The effect of precipitation regime on N and P cycles in tropical forests is poorly understood, despite global climate models project total precipitation reductions during the 21st Century. I investigated the influence of variation in annual precipitation (1240-642 mm yr-1) on N and P intra-system cycling along a precipitation regime gradient at Yucatan including 12 mature, tropical dry forests (TDFs) growing under otherwise similar conditions (similar annual temperature, rainfall seasonality and geological substrate). I analyzed N and P storage and turnover in the forest floor and mineral soil and explored the dependence of these processes and pools on precipitation level. The study findings indicate that with decreasing precipitation the litterfall decreases slightly (10%), while nutrient use efficiency increases by 20% for N, and by 40% for P. Decomposition rate and nutrient release was smallest in the dry extremity of precipitation regime. The difference between N and P turnover times in the forest floor and in organic matter indicates that different nutrients control the ecosystem function across the precipitation gradient. The data from this study reveals a pattern of limitation shifting from P towards N with decreasing annual precipitation. I suggest that the long-term consequences of the expected decrease in precipitation in many tropical dry regions would changes N and P supply could have long-term negative effects on primary productivity and future carbon storage in TDFs.

  20. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    PubMed

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  1. Forest Structure in Low-Diversity Tropical Forests: A Study of Hawaiian Wet and Dry Forests

    PubMed Central

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P.; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai‘i forests were characterized by low species richness and very high relative dominance. The two Hawai‘i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5–>50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai‘i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15–1182 species), six-fold variation in mean annual rainfall (835–5272 mm yr−1) and 1.8-fold variation in mean annual temperature (16.0–28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of

  2. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest

    PubMed Central

    de Novais, Samuel Matos Antunes; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; de Faria, Maurício Lopes; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. PMID:27271969

  3. Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico

    Treesearch

    Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen Richardson

    2014-01-01

    The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...

  4. Collective action in the management of a tropical dry forest ecosystem: effects of Mexico's property rights regime.

    PubMed

    Schroeder, Natalia Mariel; Castillo, Alicia

    2013-04-01

    Dilemmas of natural resources governance have been a central concern for scholars, policy makers, and users. Major debates occur over the implications of property rights for common resources management. After the Mexican Revolution (1910-1917), land was distributed mainly as ejidos conceived as a hereditary but unalienable collective form of property. In 1992, a new Agrarian Law was decreed that allows individual ownership by removing various restrictions over the transfer of land. Scholars have examined the reform mainly focusing on land-tenure changes and environmental fragmentation. This study examines how the new ownership regime is affecting collective decision-making in ejidos located in a tropical dry forest (TDF) ecosystem. Information on decision-making processes before and after the 1992 reform was gathered through 52 interviews conducted in four ejidos selected along a gradient including agricultural, cattle-raising, and TDF use. The new individualized land property system reduced collective action in ejidos but did not trigger it. Collective action responses to the 1992 reform were buffered by self-organization each ejido already had. Heterogeneous users who shared a short history and showed little understanding of TDF and low dependence on its resources seemed to explain why ejidos have not been able to share a sense of community that would shape the construction of institutions for the collective management of forest resources. However, when a resource is scarce and highly valuable such as water the same users showed capacities for undertaking costly co-operative activities.

  5. Collective Action in the Management of a Tropical Dry Forest Ecosystem: Effects of Mexico's Property Rights Regime

    NASA Astrophysics Data System (ADS)

    Schroeder, Natalia Mariel; Castillo, Alicia

    2013-04-01

    Dilemmas of natural resources governance have been a central concern for scholars, policy makers, and users. Major debates occur over the implications of property rights for common resources management. After the Mexican Revolution (1910-1917), land was distributed mainly as ejidos conceived as a hereditary but unalienable collective form of property. In 1992, a new Agrarian Law was decreed that allows individual ownership by removing various restrictions over the transfer of land. Scholars have examined the reform mainly focusing on land-tenure changes and environmental fragmentation. This study examines how the new ownership regime is affecting collective decision-making in ejidos located in a tropical dry forest (TDF) ecosystem. Information on decision-making processes before and after the 1992 reform was gathered through 52 interviews conducted in four ejidos selected along a gradient including agricultural, cattle-raising, and TDF use. The new individualized land property system reduced collective action in ejidos but did not trigger it. Collective action responses to the 1992 reform were buffered by self-organization each ejido already had. Heterogeneous users who shared a short history and showed little understanding of TDF and low dependence on its resources seemed to explain why ejidos have not been able to share a sense of community that would shape the construction of institutions for the collective management of forest resources. However, when a resource is scarce and highly valuable such as water the same users showed capacities for undertaking costly co-operative activities.

  6. Diversity and Phenology of Wild Bees in a Highly Disturbed Tropical Dry Forest "Desierto de la Tatacoa", Huila-Colombia.

    PubMed

    Poveda-Coronel, C A; Riaño-Jiménez, D; Cure, J R

    2018-01-12

    Colombian tropical dry forest is considered the most endangered tropical biome due to anthropic activities. Desierto de la Tatacoa (DsT) is an example of high disturbed tropical dry forest which still maintains a high biodiversity. The objective of the study was to record the diversity and phenology of wild bees in this place by monthly sampling between December 2014 and December 2016 in a 9-km 2 area. During the study, there was a prolonged El Niño-Southern Oscillation period. Bees were collected by entomological nets, malaise traps, eugenol scent trapping, and nest traps. Shannon index was calculated to estimate diversity and Simpson index to determine dominance of a species. The effect of environmental conditions (wet and dry season) in richness and abundance was analyzed by paired T tests. A total of 3004 bee specimens were collected, belonging to 80 species from Apidae, Megachilidae, Halictidae, and Colletidae. Apidae was the most diverse. Shannon index value was 2.973 (discarding Apis mellifera Linnaeus 1758 data); thus, DsT can be considered as a zone of high wild bee diversity. Dry and rainy season showed differences in diversity (p < 0.05). Rainy season showed larger blooming periods and higher bee diversity than dry season. In both seasons, social species were dominant (e.g., A. mellifera or Trigona fulviventris Guérin 1844). Although DsT is a highly disturbed ecosystem, this study found it has the second highest number of genera and the fourth highest number of species reported in Colombia.

  7. Deforestation trends of tropical dry forests in central Brazil

    USGS Publications Warehouse

    Bianchi, Carlos A.; Haig, Susan M.

    2013-01-01

    Tropical dry forests are the most threatened forest type in the world yet a paucity of research about them stymies development of appropriate conservation actions. The Paranã River Basin has the most significant dry forest formations in the Cerrado biome of central Brazil and is threatened by intense land conversion to pastures and agriculture. We examined changes in Paranã River Basin deforestation rates and fragmentation across three time intervals that covered 31 yr using Landsat imagery. Our results indicated a 66.3 percent decrease in forest extent between 1977 and 2008, with an annual rate of forest cover change of 3.5 percent. Landscape metrics further indicated severe forest loss and fragmentation, resulting in an increase in the number of fragments and reduction in patch sizes. Forest fragments in flatlands have virtually disappeared and the only significant forest remnants are mostly found over limestone outcrops in the eastern part of the basin. If current patterns persist, we project that these forests will likely disappear within 25 yr. These patterns may be reversed with creation of protected areas and involvement of local people to preserve small fragments that can be managed for restoration.

  8. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    PubMed

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  9. Structural effects of liana presence in secondary tropical dry forests using ground LiDAR

    NASA Astrophysics Data System (ADS)

    Sánchez-Azofeifa, A.; Portillo-Quintero, C.; Durán, S. M.

    2015-10-01

    Lianas, woody vines, are a key component of tropical forest because they may reduce carbon storage potential. Lianas are increasing in density and biomass in tropical forests, but it is unknown what the potential consequences of these increases are for forest dynamics. Lianas may proliferate in disturbed areas, such as regenerating forests, but little is known about the role of lianas in secondary succession. In this study, we evaluated the potential of the ground LiDAR to detect differences in the vertical structure of stands of different ages with and without lianas in tropical dry forests. Specifically, we used a terrestrial laser scanner called VEGNET to assess whether liana presence influences the vertical signature of stands of different ages, and whether successional trajectories as detected by the VEGNET could be altered by liana presence. We deployed the VEGNET ground LiDAR system in 15 secondary forests of different ages early (21 years old since land abandonment), intermediate (32-35 years old) and late stages (> 80 years old) with and without lianas. We compared laser-derived vegetation components such as Plant Area Index (PAI), plant area volume density (PAVD), and the radius of gyration (RG) across forest stands between liana and no-liana treatments. In general forest stands without lianas show a clearer distinction of vertical strata and the vertical height of accumulated PAVD. A significant increase of PAI was found from intermediate to late stages in stands without lianas, but in stands where lianas were present there was not a significant trend. This suggests that lianas may be influencing successional trajectories in secondary forests, and these effects can be captured by terrestrial laser scanners such as the VEGNET. This research contributes to estimate the potential effects of lianas in secondary dry forests and highlight the role of ground LiDAR to monitor structural changes in tropical forests due to liana presence.

  10. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides).

    PubMed

    Ramírez-Valiente, Jose A; Cavender-Bares, Jeannine

    2017-07-01

    In seasonally dry tropical forest regions, drought avoidance during the dry season coupled with high assimilation rates in the wet season is hypothesized to be an advantageous strategy for forest trees in regions with severe and long dry seasons. In contrast, where dry seasons are milder, drought tolerance coupled with a conservative resource-use strategy is expected to maximize carbon assimilation throughout the year. Tests of this hypothesis, particularly at the intraspecific level, have been seldom conducted. In this study, we tested the extent to which drought resistance mechanisms and rates of carbon assimilation have evolved under climates with varying dry season length and severity within Quercus oleoidesCham. and Schlect., a tropical dry forest species that is widely distributed in Central America. For this purpose, we conducted a greenhouse experiment where seedlings originating from five populations that vary in rainfall patterns were grown under different watering treatments. Our results revealed that populations from xeric climates with more severe dry seasons exhibited large mesophyllous leaves (with high specific leaf area, SLA), and leaf abscission in response to drought, consistent with a drought-avoidance strategy. In contrast, populations from more mesic climates with less severe dry seasons had small and thick sclerophyllous leaves with low SLA and reduced water potential at the turgor loss point (πtlp), consistent with a drought-tolerance strategy. Mesic populations also showed high plasticity in πtlp in response to water availability, indicating that osmotic adjustment to drought is an important component of this strategy. However, populations with mesophyllous leaves did not have higher maximum carbon assimilation rates under well-watered conditions. Furthermore, SLA was negatively associated with mass-based photosynthetic rates, contrary to expectations of the leaf economics spectrum, indicating that drought-resistance strategies are not

  11. Hot temperatures during the dry season reduce survival of a resident tropical bird.

    PubMed

    Woodworth, Bradley K; Norris, D Ryan; Graham, Brendan A; Kahn, Zachary A; Mennill, Daniel J

    2018-05-16

    Understanding how climate change will shape species distributions in the future requires a functional understanding of the demographic responses of animals to their environment. For birds, most of our knowledge of how climate influences population vital rates stems from research in temperate environments, even though most of Earth's avian diversity is concentrated in the tropics. We evaluated effects of Southern Oscillation Index (SOI) and local temperature and rainfall at multiple temporal scales on sex-specific survival of a resident tropical bird, the rufous-and-white wren Thryophilus rufalbus , studied over 15 years in the dry forests of northwestern Costa Rica. We found that annual apparent survival of males was 8% higher than females, more variable over time, and responded more strongly to environmental variation than female survival, which did not vary strongly with SOI or local weather. For males, mean and maximum local temperatures were better predictors of survival than either rainfall or SOI, with high temperatures during the dry season and early wet season negatively influencing survival. These results suggest that, even for species adapted to hot environments, further temperature increases may threaten the persistence of local populations in the absence of distributional shifts. © 2018 The Author(s).

  12. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.

    PubMed

    Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  13. Tropospheric dry layers in the tropical western Pacific: comparisons of GPS radio occultation with multiple data sets

    NASA Astrophysics Data System (ADS)

    Rieckh, Therese; Anthes, Richard; Randel, William; Ho, Shu-Peng; Foelsche, Ulrich

    2017-03-01

    We use GPS radio occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the tropical western Pacific during the 6-week period of the CONTRAST (CONvective TRansport of Active Species in the Tropics) experiment (January and February 2014). Our analyses are aimed at testing whether the RO method is capable of detecting these extremely dry layers and evaluating comparisons with in situ measurements, satellite observations, and model analyses. We use multiple data sources as comparisons, including CONTRAST research aircraft profiles, radiosonde profiles, AIRS (Atmospheric Infrared Sounder) satellite retrievals, and profiles extracted from the ERA (ERA-Interim reanalysis) and the GFS (US National Weather Service Global Forecast System) analyses, as well as MTSAT-2 satellite images. The independent and complementary radiosonde, aircraft, and RO data provide high vertical resolution observations of the dry layers. However, they all have limitations. The coverage of the radiosonde data is limited by having only a single station in this oceanic region; the aircraft data are limited in their temporal and spatial coverage; and the RO data are limited in their number and horizontal resolution over this period. However, nearby observations from the three types of data are highly consistent with each other and with the lower-vertical-resolution AIRS profiles. They are also consistent with the ERA and GFS data. We show that the RO data, used here for the first time to study this phenomenon, contribute significant information on the water vapor content and are capable of detecting layers in the tropics and subtropics with extremely low humidity (less than 10 %), independent of the retrieval used to extract moisture information. Our results also verify the quality of the ERA and GFS data sets, giving confidence to the reanalyses and their use in diagnosing the full four

  14. The Relation Between Dry Vortex Merger and Tropical Cyclone Genesis over the Atlantic Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shu-Hua; Liu, Yi-Chin

    2014-10-27

    A strong, convective African tropical disturbance has a greater chance to develop into a Tropical 23 Depression (TD) if it merges with a shallow, dry vortex (D-vortex) from the north of the African 24 easterly jet (AEJ) after leaving the western coast. Using 11-year reanalysis data we found that the 25 western tip of a vortex strip at northwestern Africa can serve as dry vortices for the D-vortex 26 merger if it shifts southward. Another source of D-vortices is the westward propagating lows 27 along the southern edge of the Saharan air. The D-vortex merger process occurred for 63.5% ofmore » 28 tropical cyclones (TCs) or developing systems over the main development region of the Atlantic 29 Ocean, while it occurred for 54% of non-developing systems. TC genesis could be largely 30 controlled by the large-scale environment, but the differences in characteristics of vortices 31 associated with the D-vortex merger between developing and non-developing systems could 32 potentially help determine their destinies; in general, developing systems were dominated by a 33 more intense and moist south vortex, while non-developing systems were dominated by a north 34 vortex which was more intense, drier, and larger in size. Analysis also shows that 74% of intense 35 developing systems were involved with the D-vortex merger process. More attention needs to be 36 paid to the D-vortex merger and the characteristics of those vortices as they can play significant 37 roles or have a strong indication in Atlantic TC genesis.« less

  15. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Treesearch

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  16. Impact of livestock on a mosquito community (Diptera: Culicidae) in a Brazilian tropical dry forest.

    PubMed

    Santos, Cleandson Ferreira; Borges, Magno

    2015-01-01

    This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil. Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models. Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition. This is the first study to evaluate the impact of cattle removal on Culicidae community structure in Brazil and demonstrates the importance of assessing ecological parameters such as community species composition.

  17. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest.

    PubMed

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C; Angeles, Guillermo

    2016-02-01

    In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees of a tropical dry forest, and identified biophysical traits most closely associated with plant water-use strategies. We also explored whether early and late secondary successional species occupy different portions of trade-off axes. As predicted, species that maintained carbon capture, hydraulic function and leaf area at higher plant water deficits during drought had low photosynthetic rates, xylem hydraulic conductivity and growth rate under non-limiting water supply. Drought tolerance was associated with more dense leaf, stem and root tissues, whereas rapid resource acquisition was associated with greater stem water storage, larger vessel diameter and larger leaf area per mass invested. We offer evidence that the water exploitation versus drought tolerance trade-off drives species differentiation in the ability of tropical dry forest trees to deal with alternating water-drought pulses. However, we detected no evidence of strong functional differentiation between early and late successional species along the proposed trade-off axes, suggesting that the environmental gradient of water availability across secondary successional habitats in the dry tropics does not filter out physiological strategies of water use among species, at least at the seedling stage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Modeling seasonal surface temperature variations in secondary tropical dry forests

    NASA Astrophysics Data System (ADS)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  19. Ant diversity in Brazilian tropical dry forests across multiple vegetation domains

    NASA Astrophysics Data System (ADS)

    Figueiredo Silva, Luciana; Mello Souza, Rayana; Solar, Ricardo R. C.; de Siqueira Neves, Frederico

    2017-03-01

    Understanding the environmental drivers of biodiversity persistence and community organization in natural ecosystems is of great importance for planning the conservation of those ecosystems. This comprehension is even more important in severely threatened ecosystems. In this context, we analyzed ant communities in tropical dry forests (TDFs) in Brazil. These forests are embedded within other biomes, such as Cerrado and Caatinga. In this study, we asked whether (i) ant species richness and composition changes between TDFs within different vegetation domains; (ii) whether ant species richness and β-diversity increase north-to-south, possibly related to changes in tree richness and tree density; and (iii) species replacement contributes relatively more to β-diversity than does nestedness. We found that species composition is unique to each TDF within different biomes, and that species richness and β-diversity differ among the vegetation domains, being smaller in the Caatinga. We also found that replacement contributes most to β-diversity, although this contribution is lower in Caatinga than in Cerrado. We show that regional context is the main driver of species diversity, which is likely to be driven by both historical and ecological mechanisms. By analyzing large spatial scale variation in TDF environmental characteristics, we were able to evaluate how ant diversity changes along an environmental gradient. The high levels of species replacement and unique species composition of each region indicates that, to fully conserve TDFs, we need to have various conservation areas distributed across the entire range of vegetation domains in which these forests can be found. Thus, we demonstrate that a landscape-wise planning is urgent and necessary in order to preserve tropical dry forests.

  20. Comparison of torula yeast and various grape juice products as attractants for Mexican fruit fly (Diptera: Tephritidae)

    USDA-ARS?s Scientific Manuscript database

    Early research during the 1930’s focused on attractants for the Mexican fruit fly indicated that fermentation products were effective attractants for Mexican fruit flies and other tropical Tephritidae, but that attraction to fruit components was only of academic interest. Tests reported here were ca...

  1. High Density of Tree-Cavities and Snags in Tropical Dry Forest of Western Mexico Raises Questions for a Latitudinal Gradient

    PubMed Central

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters. PMID:25615612

  2. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    PubMed

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  3. Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations.

    PubMed

    Lima, Robson B DE; Alves, Francisco T; Oliveira, Cinthia P DE; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005) generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005) is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance.

  4. Decomposition of New Woody Inputs as a Dry Tropical Forest Regenerates

    NASA Astrophysics Data System (ADS)

    Schilling, J. S.; Powers, J. S.; Ayres, A.; Kaffenberger, J. T.

    2015-12-01

    Modeling deadwood dynamics is limited by our empirical understanding of decomposition patterns and drivers. This gap is significant in dry tropical forests (and in the tropics, broadly) where forest regeneration is a management priority but where decision-making lacks resources. Our goal was to track decomposition and its biological drivers in tree boles added to the forest floor of a regenerating dry forest. We cut and then placed logs (~18 cm dia) of eight representative tree species in ground contact at two different sites (n=8, per site). We tracked density loss and element import/export in both sapwood and heartwood each 6 months over two years. We measured initial and final lignin, structural carbohydrates, nitrogen, and extractives. We also quantified insect gallery volumes, and used two residue 'signatures' to determine dominant fungal rot type: 1) dilute alkali solubility (DAS) and lignin:glucan loss. By year 2, mean density losses in sapwood were 11.6 - 44.4% among tree species, excluding one species that decomposed completely. The best predictor of density loss in sapwood was initial pH, but the correlation was negative rather than positive, as has been reported in temperate systems. Decay was consistently more advanced in sapwood than in heartwood, and although extractives were as high as 16.4% in heartwood, trait-density loss correlations were insignificant. Insects contributed little at this stage to density loss (<3%), and both lignin:glucan loss and DAS confirmed that white rot fungi dominated decomposition. Although element import dynamics broadly resembled those from temperate studies (e.g., Ca gain, P, K loss), there was high spatial variability. This perhaps related to zone line (spalting) complexity, suggesting intense competition among fungi colonizing small territories within the wood. Estimated CO2 fluxes from the test logs ranged from ~25 to 75% of the annual fluxes from litter fall at these sites. Collectively, these results implicate wood

  5. Species biogeography predicts drought responses in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Powers, J. S.; Vargas, G.; Xu, X.; Smith, C. M.; Brodribb, T.; Werden, L. K.; Becknell, J.; Medvigy, D.

    2017-12-01

    The timing, distribution, and amount of rainfall in the seasonal tropics have shifted in recent years, with consequences for seasonally dry tropical forests (SDTF). SDTF are sensitive to changing rainfall regimes and drought conditions, but sensitivity to drought varies substantially across species. One potential explanation of species differences is that species that experience dry conditions more frequently throughout their range will be better able to cope with drought than species from wetter climates, because species from drier climates will be better adapted to drought. An El-Niño induced drought in 2015 presented an opportunity to assess species-level differences in mortality in SDTF, and to ask whether the ranges of rainfall conditions species experience and the average rainfall regimes in species' ranges predict differences in mortality rates in Costa Rican SDTF. We used field plot data from northwest Costa Rica to determine species' level mortality rates. Mortality rates ranged substantially across species, with some species having no dead individuals to as high as 50% mortality. To quantify rainfall conditions across species' ranges, we used species occurrence data from the Global Biodiversity Information Facility, and rainfall data from the Chelsa climate dataset. We found that while the average and range of mean annual rainfall across species ranges did not predict drought-induced mortality in the field plots, across-range averages of the seasonality index, a measure of rainfall seasonality, was strongly correlated with species-level drought mortality (r = -0.62, p < 0.05), with species from more strongly seasonal climates experiencing less severe drought mortality. Furthermore, we found that the seasonality index was a stronger predictor of mortality than any individual functional trait we considered. This result shows that species' biogeography may be an important factor for how species will respond to future drought, and may be a more integrative

  6. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest.

    PubMed

    Waring, Bonnie G; Becknell, Justin M; Powers, Jennifer S

    2015-07-01

    Plants on infertile soils exhibit physiological and morphological traits that support conservative internal nutrient cycling. However, potential trade-offs among use efficiencies for N, P, and cations are not well explored in species-rich habitats where multiple elements may limit plant production. We examined uptake efficiency and use efficiency of N, P, K, Ca, Mg, Al, and Na in plots of regenerating tropical dry forests spanning a gradient of soil fertility. Our aim was to determine whether plant responses to multiple elements are correlated, or whether there are trade-offs among exploitation strategies across stands varying in community composition, soil quality, and successional stage. For all elements, both uptake efficiency and use efficiency decreased as availability of the corresponding element increased. Plant responses to N, Na, and Al were uncoupled from uptake and use efficiencies for P and essential base cations, which were tightly correlated. N and P use efficiencies were associated with shifts in plant species composition along the soil fertility gradient, and there was also a trend towards increasing N use efficiency with stand age. N uptake efficiency was positively correlated with the abundance of tree species that associate with ectomycorrhizal fungi. Taken together, our results suggest that successional processes and local species composition interact to regulate plant responses to availability of multiple resources. Successional tropical dry forests appear to employ different strategies to maximize response to N vs. P and K.

  7. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    PubMed

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.

  8. Tropical Drosophila ananassae of wet-dry seasons show cross resistance to heat, drought and starvation

    PubMed Central

    Lambhod, Chanderkala; Pathak, Ankita; Munjal, Ashok K.

    2017-01-01

    ABSTRACT Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation, and changes in trehalose, proline and body lipids in Drosophila ananassae flies reared under wet or dry season-specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry-season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization as well as rates of metabolic change for each energy metabolite were significantly higher in wet-season flies than dry-season flies. Energy metabolite changes due to inter-related stressors (heat versus desiccation or starvation) resulted in possible maintenance of energetic homeostasis in wet- or dry-season flies. Thus, low or high humidity-induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors. PMID:29141954

  9. Decay of aspen (Populus tremuloides Michx.) wood in moist and dry boreal, temperate, and tropical forest fragments

    Treesearch

    Grizelle Gonzalez; William Gould; Andrew T. Hudak; Teresa Nettleton Hollingsworth

    2008-01-01

    In this study, we set up a wood decomposition experiment to i) quantify the percent of mass remaining, decay constant and performance strength of aspen stakes (Populus tremuloides) in dry and moist boreal (Alaska and Minnesota, USA), temperate (Washington and Idaho, USA), and tropical (Puerto Rico) forest types, and ii) determine the effects of...

  10. Solar drying and organoleptic characteristics of two tropical African fish species using improved low-cost solar driers.

    PubMed

    Mustapha, Moshood K; Ajibola, Taiye B; Salako, Abdulbashir F; Ademola, Sunmola K

    2014-05-01

    This study was done to evaluate the drying performance, efficiency, and effectiveness of five different types of improved low-cost solar driers in terms of moisture loss from two tropical African fish species Clarias gariepinus (African sharp tooth catfish) and Oreochromis niloticus (Nile tilapia) and testing the organoleptic characteristics of the dried samples. The driers used were made from plastic, aluminum, glass, glass with black igneous stone, and mosquito net, with traditional direct open-sun drying as a control. A significant (P < 0.05) decrease in weight resulting from moisture loss in the two fish species was observed in all the driers, with the highest reduction occurring in the glass drier containing black stone. The rate of weight loss was faster in the first 4 days of drying with black stone-inserted glass drier showing the fastest drying rate with a constant weight in C. gariepinus attained on the 11th day and in O. niloticus on the eighth day. The slowest drier was plastic where a constant weight of the species were recorded on and 13th day and 11th day, respectively. Volunteers were used to assess the organoleptic characteristics of the dried samples and they showed lowest acceptability for the open-sun drying, while samples from the glass drier containing black stone had the highest acceptability in terms of the taste, flavor, appearance, texture, odor, palatability, and shelf-life. The low-cost solar driers were effective found in removing water from the fish resulting in significant loss of weight and moisture. The highest drying time, efficient performance, drying effectiveness, and high acceptability of the organoleptic parameters of the dried products from the black stone-inserted glass drier were due to the ability of the glass and the black stone to retain, transmit, and radiate heat to the fish sample all the time (day and night). These low-cost driers are simple to construct, materials for its construction readily available, easy to

  11. Tropical land-cover change alters biogeochemical inputs to ecosystems in a Mexican montane landscape.

    PubMed

    Ponette-González, A G; Weathers, K C; Curran, L M

    2010-10-01

    In tropical regions, the effects of land-cover change on nutrient and pollutant inputs to ecosystems remain poorly documented and may be pronounced, especially in montane areas exposed to elevated atmospheric deposition. We examined atmospheric deposition and canopy interactions of sulfate-sulfur (SO4(2-)-S), chloride (Cl-), and nitrate-nitrogen (NO(3-)-N) in three extensive tropical montane land-cover types: clearings, forest, and coffee agroforest. Bulk and fog deposition to clearings was measured as well as throughfall (water that falls through plant canopies) ion fluxes in seven forest and five coffee sites. Sampling was conducted from 2005 to 2008 across two regions in the Sierra Madre Oriental, Veracruz, Mexico. Annual throughfall fluxes to forest and coffee sites ranged over 6-27 kg SO4(2-)-S/ha, 12-69 kg Cl-/ha, and 2-6 kg NO(3-)-N/ha. Sulfate-S in forest and coffee throughfall was higher or similar to bulk S deposition measured in clearings. Throughfall Cl- inputs, however, were consistently higher than Cl- amounts deposited to cleared areas, with net Cl- fluxes enhanced in evergreen coffee relative to semi-deciduous forest plots. Compared to bulk nitrate-N deposition, forest and coffee canopies retained 1-4 kg NO(3-)-N/ha annually, reducing NO(3-)-N inputs to soils. Overall, throughfall fluxes were similar to values reported for Neotropical sites influenced by anthropogenic emissions, while bulk S and N deposition were nine- and eightfold greater, respectively, than background wet deposition rates for remote tropical areas. Our results demonstrate that land-cover type significantly alters the magnitude and spatial distribution of atmospheric inputs to tropical ecosystems, primarily through canopy-induced changes in fog and dry deposition. However, we found that land cover interacts with topography and climate in significant ways to produce spatially heterogeneous patterns of anion fluxes, and that these factors can converge to create deposition hotspots

  12. Mapping tropical dry forest habitats integrating landsat NDVI, Ikonos imagery, and topographic information in the Caribbean island of Mona.

    PubMed

    Martinuzzi, Sebastiáin; Gould, William A; Ramos Gonzalez, Olga M; Martinez Robles, Alma; Calle Maldonado, Paulina; Pérez-Buitrago, Néstor; Fumero Caban, José J

    2008-06-01

    Assessing the status of tropical dry forest habitats using remote sensing technologies is one of the research priorities for Neotropical forests. We developed a simple method for mapping vegetation and habitats in a tropical dry forest reserve, Mona Island, Puerto Rico, by integrating the Normalized Difference Vegetation Index (NDVI) from Landsat, topographic information, and high-resolution Ikonos imagery. The method was practical for identifying vegetation types in areas with a great variety of plant communities and complex relief, and can be adapted to other dry forest habitats of the Caribbean Islands. NDVI was useful for identifying the distribution of forests, woodlands, and shrubland, providing a natural representation of the vegetation patterns on the island. The use of Ikonos imagery allowed increasing the number of land cover classes. As a result, sixteen land-cover types were mapped over the 5500 ha area, with a kappa coefficient of accuracy equal to 79%. This map is a central piece for modeling vertebrate species distribution and biodiversity patterns by the Puerto Rico Gap Analysis Project, and it is of great value for assisting research and management actions in the island.

  13. Ecological Speciation in Nolina parviflora (Asparagaceae): Lacking Spatial Connectivity along of the Trans-Mexican Volcanic Belt

    PubMed Central

    Ruiz-Sanchez, Eduardo; Specht, Chelsea D.

    2014-01-01

    The hypothesis of ecological speciation states that as populations diverge in different niches, reproductive isolation evolves as a by-product of adaptation to these different environments. In this context, we used Nolina parviflora as a model to test if this species evolved via ecological speciation and to explore current and historical gene flow among its populations. Nolina parviflora is a montane species endemic to Mexico with its geographical distribution restricted largely to the Trans-Mexican Volcanic Belt. This mountain range is one of the most complex geological regions in Mexico, having undergone volcanism from the mid-Miocene to the present. Ecologically, the Trans-Mexican Volcanic Belt possesses different types of vegetation, including tropical dry forest; oak, pine, pine-oak, and pine-juniper forests; and xerophytic scrub - all of which maintain populations of N. parviflora. Using species distribution models, climatic analyses, spatial connectivity and morphological comparisons, we found significant differences in climatic and morphological variables between populations of N. parviflora in two distinct Trans-Mexican Volcanic Belt regions (east vs. west). This could mean that the geographically isolated populations diverged from one another via niche divergence, indicating ecological speciation. Spatial connectivity analysis revealed no connectivity between these regions under the present or last glacial maximum climate models, indicating a lack of gene flow between the populations of the two regions. The results imply that these populations may encompass more than a single species. PMID:24905911

  14. Ecological speciation in Nolina parviflora (Asparagaceae): lacking spatial connectivity along of the Trans-Mexican Volcanic Belt.

    PubMed

    Ruiz-Sanchez, Eduardo; Specht, Chelsea D

    2014-01-01

    The hypothesis of ecological speciation states that as populations diverge in different niches, reproductive isolation evolves as a by-product of adaptation to these different environments. In this context, we used Nolina parviflora as a model to test if this species evolved via ecological speciation and to explore current and historical gene flow among its populations. Nolina parviflora is a montane species endemic to Mexico with its geographical distribution restricted largely to the Trans-Mexican Volcanic Belt. This mountain range is one of the most complex geological regions in Mexico, having undergone volcanism from the mid-Miocene to the present. Ecologically, the Trans-Mexican Volcanic Belt possesses different types of vegetation, including tropical dry forest; oak, pine, pine-oak, and pine-juniper forests; and xerophytic scrub--all of which maintain populations of N. parviflora. Using species distribution models, climatic analyses, spatial connectivity and morphological comparisons, we found significant differences in climatic and morphological variables between populations of N. parviflora in two distinct Trans-Mexican Volcanic Belt regions (east vs. west). This could mean that the geographically isolated populations diverged from one another via niche divergence, indicating ecological speciation. Spatial connectivity analysis revealed no connectivity between these regions under the present or last glacial maximum climate models, indicating a lack of gene flow between the populations of the two regions. The results imply that these populations may encompass more than a single species.

  15. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community

  16. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits

    PubMed Central

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p < 0.05) differences, for the amounts of total phenolic compounds (TPC), were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested. PMID:21845104

  17. Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits.

    PubMed

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p < 0.05) differences, for the amounts of total phenolic compounds (TPC), were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.

  18. Seasonality in the dung beetle community in a Brazilian tropical dry forest: Do small changes make a difference?

    PubMed

    Medina, Anderson Matos; Lopes, Priscila Paixão

    2014-01-01

    Dung beetle (Coleoptera: Scarabaeoidea: Scarabaeinae) activity is influenced by rainfall seasonality. We hypothesized that rainfall might also play a major role in regulating the community structure of this group. In this study, we describe seasonal changes in the richness, composition, and structure of the Scarabaeinae community in a Brazilian tropical dry forest. A fragment of arboreal Caatinga was sampled using baited pitfall traps during the early dry season (EDS), late dry season (LDS), early wet season (EWS), and middle wet season (MWS). We compared the dung beetle community in each season in relationship to species richness, rank-dominance, curves, and composition. We collected 1352 Scarabaeinae individuals , belonging to 15 species. Dichotomius aff. laevicollis Felsche (Coleoptera: Scarabaeidae) was the dominant species, representing 73.89% of the individuals. There were no seasonal changes in the rank dominance curves; all had a single dominant species and a few species with low abundance, typical for arid areas. Estimated richness was highest in MWS, followed by EWS. Dry-season samples (EDS and LDS) had lower richness, with no significant difference between the dry seasons. Although species richness increased as the habitat became wetter, the difference between the wet and dry seasons was small, which differs completely from the findings of other studies in Neotropical dry forests, where almost all species cease activities in the dry season. Species composition changes were found in non-metric multidimensional scaling and sustained by analysis of similarity. All the seasons had pairwise differences in composition, with the exception of EDS and MWS, which indicates that the dung beetle community in this fragment requires more than three months of drought to trigger changes in species composition; this is probably due to small changes in the forest canopy. There was no difference in composition between EDS and MWS. As in other tropical dry forests, although

  19. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape

    Treesearch

    Mark W. Chynoweth; Christopher A. Lepczyk; Creighton M. Litton; Steven C. Hess; James R. Kellner; Susan Cordell; Lalit Kumar

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the...

  20. Light-dependent leaf trait variation in 43 tropical dry forest tree species.

    PubMed

    Markesteijn, Lars; Poorter, Lourens; Bongers, Frans

    2007-04-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun-shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small trees. For each species, leaves were taken from five of the most and five of the least illuminated crowns. Trees were selected based on the percentage of the hemisphere uncovered by other crowns. We examined leaf trait variation and the relation between trait plasticity and light demand, maximum adult stature, and ontogenetic changes in crown exposure of the species. Leaf trait variation was mainly related to differences among species and to a minor extent to differences in light availability. Traits related to the palisade layer, thickness of the outer cell wall, and N(area) and P(area) had the greatest plasticity, suggesting their importance for leaf function in different light environments. Short-lived pioneers had the highest trait plasticity. Overall plasticity was modest and rarely associated with juvenile light requirements, adult stature, or ontogenetic changes in crown exposure. Dry forest tree species had a lower light-related plasticity than wet forest species, probably because wet forests cast deeper shade. In dry forests light availability may be less limiting, and low water availability may constrain leaf trait plasticity in response to irradiance.

  1. In Vitro Evaluation of the Probiotic Potential of Halotolerant Lactobacilli Isolated from a Ripened Tropical Mexican Cheese.

    PubMed

    Melgar-Lalanne, Guiomar; Rivera-Espinoza, Yadira; Reyes Méndez, Ana Itzel; Hernández-Sánchez, Humberto

    2013-12-01

    Three halotolerant lactobacilli (Lactobacillus plantarum, L. pentosus, and L. acidipiscis) isolated from a ripened Mexican tropical cheese (double cream Chiapas cheese) were evaluated as potential probiotics and compared with two commercial probiotic strains (L. casei Shirota and L. plantarum 299v) from human origin. All the strains survived the in vitro gastrointestinal simulation from the oral cavity to the ileum. During the stomach simulation, all the strains survived in satiety conditions (60 min, pH 3.0, 3 g/L pepsin, 150 rpm) and only L. pentosus could not survive under fasting conditions (60 min, pH 2.0, 3 g/L pepsin, 150 rpm). All the strains showed a strong hydrophilic character with low n-hexadecane and a variable chloroform affinity. L. plantarum showed a mucin adhesion rate similar to that of L. plantarum 299v and L. casei Shirota, while L. pentosus and L. acidipiscis had a lower mucin adhesion. The isolated halotolerant lactobacilli exhibited similar antimicrobial activity against some gram-positive and gram-negative pathogens in comparison with the two commercial strains. In addition, the proteinaceous character of the antimicrobial agents against the most pathogenic strains was demonstrated. The compounds showed a low molecular weight (less than 10 kDa). Besides, L. plantarum and L. acidipiscis were able to produce the enzyme β-galactosidase. Finally, L. pentosus was able to deconjugate taurocholic, taurodeoxycholic, glycocholic, and glycodeoxycholic acids better than the two commercial strains analyzed. All these results suggest that the halotolerant lactobacilli isolated from this ripened Mexican cheese could be potentially probiotic. This is the first time that halotolerant lactic acid bacteria have been shown to have probiotic properties.

  2. The impact of an invasive African bunchgrass (Pennisetum setaceum) on water availability and productivity of canopy trees within a tropical dry forest in Hawaii

    Treesearch

    Susan Cordell; D. R. Sandquist

    2008-01-01

    Tropical dry forests are among the Earth's most threatened ecosystems. On the Island of Hawaii the African bunchgrass Pennisetum setaceum (fountain grass) dominates the understorey of the few remaining fragments of native dry forests and is contributing to the degradation of this once diverse ecosystem. In this study, we...

  3. X-ray fluorescence analysis of Mexican varieties of dried chili peppers II: Commercial and home-grown specimens

    NASA Astrophysics Data System (ADS)

    Romero-Dávila, E.; Miranda, J.; Pineda, J. C.

    2015-07-01

    Elemental analyses of samples of Mexican varieties of dried chili peppers were carried out using X-ray Fluorescence (XRF). Several specimens of Capsicum annuum L., Capsicum chinense, and Capsicum pubescens were analyzed and the results compared to previous studies of elemental contents in other varieties of Capsicum annuum (ancho, morita, chilpotle, guajillo, pasilla, and árbol). The first set of samples was bought packaged in markets. In the present work, the study focuses on home-grown samples of the árbol and chilpotle varieties, commercial habanero (Capsicum chinense), as well as commercial and home-grown specimens of manzano (Capsicum pubescencs). Samples were freeze dried and pelletized. XRF analyses were carried out using a spectrometer based on an Rh X-ray tube, using a Si-PIN detector. The system detection calibration was performed through the analysis of the NIST certified reference materials 1547 (peach leaves) and 1574 (tomato leaves), while accuracy was checked with the reference material 1571 (orchard leaves). Elemental contents of all elements in the new set of samples were similar to those of the first group. Nevertheless, it was found that commercial samples contain high amounts of Br, while home-grown varieties do not.

  4. Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition

    NASA Astrophysics Data System (ADS)

    Santiago, L. S.; Silvera, K.; Andrade, J. L.; Dawson, T. E.

    2017-11-01

    Tropical dry forests (TDFs) undergo a substantial dry season in which plant species must endure several months of drought. Although TDFs support a diverse array of plant growth forms, it is not clear how they vary in mechanisms for coping with seasonal drought. We measured organic tissue stable isotopic composition of carbon (δ13C) and nitrogen (δ15N) across six plant growth forms including epiphytes, terrestrial succulents, trees, shrubs, herbs, and vines, and oxygen (δ18O) of four growth forms, to distinguish among patterns of resource acquisition and evaluate mechanisms for surviving annual drought in a lowland tropical dry forest in Yucatan, Mexico. Terrestrial succulent and epiphyte δ13C was around -14‰, indicating photosynthesis through the Crassulacean acid metabolism pathway, and along with one C4 herb were distinct from mean values of all other growth forms, which were between -26 and -29‰ indicating C3 photosynthesis. Mean tissue δ15N across epiphytes was -4.95‰ and was significantly lower than all other growth forms, which had values around +3‰. Tissue N concentration varied significantly among growth forms with epiphytes and terrestrial succulents having significantly lower values of about 1% compared to trees, shrubs, herbs and vines, which were around 3%. Tissue C concentration was highest in trees, shrubs and vines, intermediate in herbs and epiphytes and lowest in terrestrial succulents. δ18O did not vary among growth forms. Overall, our results suggest several water-saving aspects of resource acquisition, including the absolute occurrence of CAM photosynthesis in terrestrial succulents and epiphytes, high concentrations of leaf N in some species, which may facilitate CO2 drawdown by photosynthetic enzymes for a given stomatal conductance, and potentially diverse N sources ranging from atmospheric N in epiphytes with extremely depleted δ15N values, and a large range of δ15N values among trees, many of which are legumes and dry season

  5. Summer circulation in the Mexican tropical Pacific

    NASA Astrophysics Data System (ADS)

    Trasviña, A.; Barton, E. D.

    2008-05-01

    The main components of large-scale circulation of the eastern tropical Pacific were identified in the mid 20th century, but the details of the circulation at length scales of 10 2 km or less, the mesoscale field, are less well known particularly during summer. The winter circulation is characterized by large mesoscale eddies generated by intense cross-shore wind pulses. These eddies propagate offshore to provide an important source of mesoscale variability for the eastern tropical Pacific. The summer circulation has not commanded similar attention, the main reason being that the frequent generation of hurricanes in the area renders in situ observations difficult. Before the experiment presented here, the large-scale summer circulation of the Gulf of Tehuantepec was thought to be dominated by a poleward flow along the coast. A drifter-deployment experiment carried out in June 2000, supported by satellite altimetry and wind data, was designed to characterize this hypothesized Costa Rica Coastal Current. We present a detailed comparison between altimetry-estimated geostrophic and in situ currents estimated from drifters. Contrary to expectation, no evidence of a coherent poleward coastal flow across the gulf was found. During the 10-week period of observations, we documented a recurrent pattern of circulation within 500 km of shore, forced by a combination of local winds and the regional-scale flow. Instead of the Costa Rica Coastal Current, we found a summer eddy field capable of influencing large areas of the eastern tropical Pacific. Even in summer, the cross-isthmus wind jet is capable of inducing eddy formation.

  6. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests.

    PubMed

    Rodrigues, P M S; Silva, J O; Eisenlohr, P V; Schaefer, C E G R

    2015-08-01

    The aim of this study was to evaluate the ecological niche models (ENMs) for three specialist trees (Anadenanthera colubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva) in seasonally dry tropical forests (SDTFs) in Brazil, considering present and future pessimist scenarios (2080) of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent).We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%), although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity). Long-term multidisciplinary studies are necessary to make reliable predictions of the plant's adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly.

  7. Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India.

    PubMed

    Nath, Cheryl D; Dattaraja, H S; Suresh, H S; Joshi, N V; Sukumar, R

    2006-12-01

    Tree diameter growth is sensitive to environmental fluctuations and tropical dry forests experience high seasonal and inter-annual environmental variation. Tree growth rates in a large permanent plot at Mudumalai, southern India, were examined for the influences of rainfall and three intrinsic factors (size, species and growth form) during three 4-year intervals over the period 1988-2000. Most trees had lowest growth during the second interval when rainfall was lowest, and skewness and kurtosis of growth distributions were reduced during this interval. Tree diameter generally explained less than 10% of growth variation and had less influence on growth than species identity or time interval. Intraspecific variation was high, yet species identity accounted for up to 16% of growth variation in the community. There were no consistent differences between canopy and understory tree growth rates; however, a few subgroups of species may potentially represent canopy and understory growth guilds. Environmentally-induced temporal variations in growth generally did not reduce the odds of subsequent survival. Growth rates appear to be strongly influenced by species identity and environmental variability in the Mudumalai dry forest. Understanding and predicting vegetation dynamics in the dry tropics thus also requires information on temporal variability in local climate.

  8. Litter decomposition, N2-fixer abundance, and microbial dynamics govern tropical dry forest recovery to land use change

    NASA Astrophysics Data System (ADS)

    Trierweiler, A.; Powers, J. S.; Xu, X.; Gei, M. G.; Medvigy, D.

    2017-12-01

    As one of the most threatened tropical biomes, Seasonal Dry Tropical Forests (TDF) have undergone extensive land-use change. However, some areas are undergoing recovery into secondary forests. Despite their broad distribution (42% of tropical forests), they are under-studied compared to wet tropical forests and our understanding of their biogeochemical cycling and belowground processes are limited. Here, we use models along with field measurements to improve our understanding of nutrient cycling and limitation in secondary TDFs. We ask (1) Is there modeling evidence that tropical dry forests can become nutrient limited? (2) What are the most important mechanisms employed to avoid nutrient limitation? (3) How might climate change alter biogeochemical cycling and nutrient limitation in recovering TDF? We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs and incorporates a range of plant functional groups (including deciduousness and N2-fixation) and multiple resource constraints (carbon, nitrogen, phosphorus, and water). In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies using N2-fixing bacteria and mycorrhizal fungi according to the nutrient limitation status. We ran the model for a nutrient gradient of field sites in Costa Rica and explored the sensitivity of nutrient limitation to key mechanisms including litter respiration, N resorption, N2-fixation, and overflow respiration. Future runs will evaluate how CO2 and climate change affect recovering TDFs. We found increasing nutrient limitation across the nutrient gradient of sites. Nitrogen limitation dominated the nutrient limitation signal. In the model, forest litter accumulation was negatively correlated with site fertility in Costa Rican forests. Our sensitivity analyses indicate that N2-fixer abundance, decomposition rates, and adding more explicit microbial dynamics are key factors in overcoming

  9. Inventorying and Monitoring of Tropical Dry Forests Tree Diversity in Jalisco, Mexico Using a Geographical Information System

    Treesearch

    Efren Hernandez-Alvarez; Dieter R. Pelz; Carlos Rodriguez Franco

    2006-01-01

    Tropical dry forests in Mexico are an outstanding natural resource, due to the large surface area they cover. This ecosystem can be found from Baja California Norte to Chiapas on the eastern coast of the country. On the Gulf of Mexico side it grows from Tamaulipas to Yucatan. This is an ecosystem that is home to a wide diversity of plants, which include 114 tree...

  10. Carbohydrate storage and light requirements of tropical moist and dry forest tree species.

    PubMed

    Poorter, Lourens; Kitajima, Kaoru

    2007-04-01

    In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients.

  11. Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS)

    USDA-ARS?s Scientific Manuscript database

    To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique...

  12. Home Range Use and Movement Patterns of Non-Native Feral Goats in a Tropical Island Montane Dry Landscape

    PubMed Central

    Chynoweth, Mark W.; Lepczyk, Christopher A.; Litton, Creighton M.; Hess, Steven C.; Kellner, James R.; Cordell, Susan

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world’s most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities. PMID:25807275

  13. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    PubMed

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  14. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape.

    PubMed

    Chynoweth, Mark W; Lepczyk, Christopher A; Litton, Creighton M; Hess, Steven C; Kellner, James R; Cordell, Susan

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world's most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.

  15. Home range use and movement patterns of non-native feral goats in a tropical island montane dry landscape

    USGS Publications Warehouse

    Chynoweth, Mark W.; Lepczyk, Christopher A.; Litton, Creighton M.; Hess, Steve; Kellner, James; Cordell, Susan

    2015-01-01

    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world’s most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities.

  16. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India.

    PubMed

    Gandhi, Durai Sanjay; Sundarapandian, Somaiah

    2017-04-01

    Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among

  17. Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia

    NASA Astrophysics Data System (ADS)

    González-M, Roy; García, Hernando; Isaacs, Paola; Cuadros, Hermes; López-Camacho, René; Rodríguez, Nelly; Pérez, Karen; Mijares, Francisco; Castaño-Naranjo, Alejandro; Jurado, Rubén; Idárraga-Piedrahíta, Álvaro; Rojas, Alicia; Vergara, Hernando; Pizano, Camila

    2018-04-01

    Tropical dry forests (TDFs) have been defined as a single biome occurring mostly in the lowlands where there is a marked period of drought during the year. In the Neotropics, dry forests occur across contrasting biogeographical regions that contain high beta diversity and endemism, but also strong anthropogenic pressures that threaten their biodiversity and ecological integrity. In Colombia, TDFs occur across six regions with contrasting soils, climate, and anthropogenic pressures, therefore being ideal for studying how these variables relate to dry forest species composition, successional stage and conservation status. Here, we explore the variation in climate and soil conditions, floristic composition, forest fragment size and shape, successional stage and anthropogenic pressures in 571 dry forest fragments across Colombia. We found that TDFs should not be classified solely on rainfall seasonality, as high variation in precipitation and temperature were correlated with soil characteristics. In fact, based on environmental factors and floristic composition, the dry forests of Colombia are clustered in three distinctive groups, with high species turnover across and within regions, as reported for other TDF regions of the Neotropics. Widely distributed TDF species were found to be generalists favored by forest disturbance and the early successional stages of dry forests. On the other hand, TDF fragments were not only small in size, but highly irregular in shape in all regions, and comprising mostly early and intermediate successional stages, with very little mature forest left at the national level. At all sites, we detected at least seven anthropogenic disturbances with agriculture, cattle ranching and human infrastructure being the most pressing disturbances throughout the country. Thus, although environmental factors and floristic composition of dry forests vary across regions at the national level, dry forests are equally threatened by deforestation, degradation

  18. Anomalously Strong and Rapid Drying of the Tropical Lower Stratosphere in 2016: Connections to Both the QBO and ENSO

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Davis, S. M.; Rosenlof, K. H.; Lambert, A.; Read, W. G.; Hall, E.; Jordan, A. F.

    2017-12-01

    Variations in tropical lower stratospheric water vapor are generally attributable to annual cycles in the Brewer-Dobson circulation and inter-annual phenomenon like the quasi-biennial oscillation (QBO) and the El Niño Southern Oscillation (ENSO). Extremes in tropical lower stratospheric water vapor (SWV) occur when these annual and inter-annual changes are constructively superimposed. The atypical progression of the 2015-16 QBO led to a strong and rapid cooling of the tropical lower stratosphere during 2016. From December 2015 to November 2016, monthly tropical mean (15°S-15°N) coldpoint temperature (CPT) anomalies decreased 3.2°C, from 1.1 to -2.1°C. Accordingly, monthly tropical mean SWV anomalies at 83 hPa dropped 1.9 ppm, from 0.85 to -1.05 ppm. This decline in SWV anomalies is equivalent to 40% of the long-term December average tropical abundance of SWV at 83 hPa. The 2016 decreases in tropical anomalies of both CPTs and SWV were not zonally uniform, with average Eastern Hemisphere reductions greater by 2°C and 0.9 ppm (50%), respectively. Since the QBO typically has a zonally uniform effect on tropical CPTs, this implies a zonally non-uniform mechanism like ENSO also influenced CPTs during 2016. The transition of ENSO from strong El Niño to weak La Niña conditions in 2016 would induce this zonal non-uniformity by shifting convective activity from the Eastern Pacific to the Western Pacific and Indian Ocean regions. Evidence indicates the simultaneous cooling of tropical CPTs by both the QBO and ENSO during 2016 rapidly dried the tropical lower stratosphere with anomalous strength, especially in the Eastern Hemisphere.

  19. Diurnal flight behavior of Ichneumonoidea (Insecta: Hymenoptera) related to environmental factors in a tropical dry forest.

    PubMed

    González-Moreno, A; Bordera, S; Leirana-Alcocer, J; Delfín-González, H

    2012-06-01

    The biology and behavior of insects are strongly influenced by environmental conditions such as temperature and precipitation. Because some of these factors present a within day variation, they may be causing variations on insect diurnal flight activity, but scant information exists on the issue. The aim of this work was to describe the patterns on diurnal variation of the abundance of Ichneumonoidea and their relation with relative humidity, temperature, light intensity, and wind speed. The study site was a tropical dry forest at Ría Lagartos Biosphere Reserve, Mexico; where correlations between environmental factors (relative humidity, temperature, light, and wind speed) and abundance of Ichneumonidae and Braconidae (Hymenoptera: Ichneumonoidea) were estimated. The best regression model for explaining abundance variation was selected using the second order Akaike Information Criterion. The optimum values of temperature, humidity, and light for flight activity of both families were also estimated. Ichneumonid and braconid abundances were significantly correlated to relative humidity, temperature, and light intensity; ichneumonid also showed significant correlations to wind speed. The second order Akaike Information Criterion suggests that in tropical dry conditions, relative humidity is more important that temperature for Ichneumonoidea diurnal activity. Ichneumonid wasps selected toward intermediate values of relative humidity, temperature and the lowest wind speeds; while Braconidae selected for low values of relative humidity. For light intensity, braconids presented a positive selection for moderately high values.

  20. A 400-year tree-ring chronology from the tropical treeline of North America.

    PubMed

    Biondi, F

    2001-05-01

    High-elevation sites in the tropics may be particularly sensitive to rapid climate change. By sampling treeline populations, I have developed the first extensive (> 300 years) tree-ring chronology in tropical North America. The site is Nevado de Colima, at the western end of the Mexican Neovolcanic Belt, and the species studied is Mexican mountain pine (Pinus hartwegii). Despite past logging in the area, 300 to 500-year old pines were found at 3600-3700 m elevation, about 300 m below the present treeline. The Nevado de Colima tree-ring chronology is well replicated from 1600 to 1997. Calibration with Colima climatic records points to summer monsoon precipitation as the strongest dendroclimatic signal. Most trees also exhibit extremely low growth in 1913 and 1914, following the January 1913 Plinian eruption of the Volcan de Colima. Because P. hartwegii is found on top of high mountains from Mexico to Guatemala, there is potential for developing a network of tropical treeline chronologies.

  1. Plant sexual systems and a review of the breeding system studies in the Caatinga, a Brazilian tropical dry forest.

    PubMed

    Machado, Isabel Cristina; Lopes, Ariadna Valentina; Sazima, Marlies

    2006-02-01

    The reproductive biology of a community can provide answers to questions related to the maintenance of the intraspecific pollen flow and reproductive success of populations, sharing and competition for pollinators and also questions on conservation of natural habitats affected by fragmentation processes. This work presents, for the first time, data on the occurrence and frequency of plant sexual systems for Caatinga communities, and a review of the breeding system studies of Caatinga species. The sexual systems of 147 species from 34 families and 91 genera occurring in three Caatinga areas in north-eastern Brazil were analysed and compared with worldwide studies focusing on reproductive biology of different tropical communities. The frequency of hermaphrodite species was 83.0 % (122 species), seven of these (or 4.8 % of the total) being heterostylous. Monoecy occurred in 9.5 % (14) of the species, and andromonoecy in 4.8 % (seven). Only 2.7 % (four) of the species were dioecious. A high percentage of hermaphrodite species was expected and has been reported for other tropical ecosystems. With respect to the breeding system studies with species of the Caatinga, the authors' data for 21 species and an additional 18 species studied by others (n = 39) revealed a high percentage (61.5 %) of obligatory self-incompatibility. Agamospermy was not recorded among the Caatinga studied species. The plant sexual systems in the Caatinga, despite the semi-arid climate, are similar to other tropical dry and wet forest communities, including those with high rainfall levels, except for the much lower percentage of dioecious species. The high frequency of self-incompatible species is similar to that reported for Savanna areas in Brazil, and also for dry (deciduous and semideciduous) and humid tropical forest communities.

  2. Plant Sexual Systems and a Review of the Breeding System Studies in the Caatinga, a Brazilian Tropical Dry Forest

    PubMed Central

    MACHADO, ISABEL CRISTINA; LOPES, ARIADNA VALENTINA; SAZIMA, MARLIES

    2006-01-01

    • Backgrounds and Aims The reproductive biology of a community can provide answers to questions related to the maintenance of the intraspecific pollen flow and reproductive success of populations, sharing and competition for pollinators and also questions on conservation of natural habitats affected by fragmentation processes. This work presents, for the first time, data on the occurrence and frequency of plant sexual systems for Caatinga communities, and a review of the breeding system studies of Caatinga species. • Methods The sexual systems of 147 species from 34 families and 91 genera occurring in three Caatinga areas in north-eastern Brazil were analysed and compared with worldwide studies focusing on reproductive biology of different tropical communities. • Key Results The frequency of hermaphrodite species was 83·0 % (122 species), seven of these (or 4·8 % of the total) being heterostylous. Monoecy occurred in 9·5 % (14) of the species, and andromonoecy in 4·8 % (seven). Only 2·7 % (four) of the species were dioecious. A high percentage of hermaphrodite species was expected and has been reported for other tropical ecosystems. With respect to the breeding system studies with species of the Caatinga, the authors' data for 21 species and an additional 18 species studied by others (n = 39) revealed a high percentage (61·5 %) of obligatory self-incompatibility. Agamospermy was not recorded among the Caatinga studied species. • Conclusions The plant sexual systems in the Caatinga, despite the semi-arid climate, are similar to other tropical dry and wet forest communities, including those with high rainfall levels, except for the much lower percentage of dioecious species. The high frequency of self-incompatible species is similar to that reported for Savanna areas in Brazil, and also for dry (deciduous and semideciduous) and humid tropical forest communities. PMID:16377654

  3. Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics.

    PubMed

    Singh, Ashutosh Kumar; Rai, Apurva; Pandey, Vivek; Singh, Nandita

    2017-05-01

    Glomalin related soil protein (GRSP) is a hydrophobic glycoprotein that is significant for soil organic carbon (SOC) persistence and sequestration, owing to its large contribution to SOC pool and long turnover time. However, the contribution of GRSP to dissolve OC (DOC) leach from soil is not yet comprehensively explored, though it could have implication in understanding SOC dynamics. We, therefore, aim to measure the contribution of GRSP to DOC, in a range of land uses and climatic seasons in the dry tropical ecosystem. Our results demonstrated that a significant proportion of GRSP (water soluble GRSP; WS-GRSP) leached with DOC (7.9-21.9 mg kg -1 ), which accounts for 0.2-0.23% of soils total GRSP (T-GRSP). Forest exhibited significantly higher WS-GRSP and DOC leaching than fallow and agriculture. WS-GRSP and DOC accumulations were higher in the dry season (summer and winter) than in rainy. The extent of seasonal variations was higher in forest than in other two land uses, indicating the role of vegetation and biological activity in soil dissolve organic matter (DOM) dynamics. The regression analysis among WS-GRSP, T-GRSP, DOC and SOC prove that the accumulations and leaching of GRSP and other soil OM (SOM) depend on similar factors. The ratio of WS-GRSP-C to DOC was higher in agriculture soil than in forest and fallow, likely a consequence of altered soil chemistry, and organic matter quantity and quality due to soil management practices. Multivariate analysis reflects a strong linkage among GRSP and SOC storage and leaching, soil nutrients (nitrogen and phosphorus) and other important soil properties (pH and bulk density), suggesting that improving GRSP and other SOM status is an urgent need for the both SOC sequestration and soil health in dry tropical agro-ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An Overview of a Decade of the Floo Project (fluxes Linking the Offshore and the Onshore): Ecological Implications of the Internal Tide on the Mexican Coastline in Temperate, Subtropical and Tropical Ecosystems

    NASA Astrophysics Data System (ADS)

    Valencia, A.; Ladah, L. B.

    2016-02-01

    High-frequency internal waves and the internal tide have been shown to have strong effects on nearshore ecology and productivity along the Mexican coastline over the past decade of the FLOO (Fluxes Linking the Offshore and the Onshore) project. I will review examples of these effects, ranging from the long term importance of internal wave supply-side ecology of invertebrate larvae to the coast and their post-settlement fate after competition and predation, to nutrient provision at small temporal and spatial scales for different species of macroalgae, to food provision for mussels and corals from various sites along the Mexican Pacific. Internal waves may also alleviate coral bleaching events in areas of strong internal tidal forcing. Temperate, subtropical and tropical sites will be discussed. Solitons, high-frequency internal waves and the internal tide have all been shown to have a stronger and faster than predicted effect on nearshore ecology and productivity, and may be more ecologically important than upwelling for transport of scalars and coastal productivity in certain areas of the Mexican Pacific. Implications of these results will be discussed and speculation of their importance in a future ocean climate will be presented.

  5. Mexican Perspectives on Mexican-U.S. Relations

    DTIC Science & Technology

    1993-04-01

    while serving in the United States military, working in the Bracero program and in American factories. By working with Americans, Mexicans learned that...Mexican government blames the problem on the United States. During the history of the Bracero Program (1942 -1964) 4.6 million Mexicans traveled to...and became familiar to Mexican migrants.ŕ The termination of the Bracero Program did not discourage Mexican agricultural workers from entering the

  6. Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raghubanshi, A. S.

    2011-08-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.

  7. Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia

    Treesearch

    Deborah K. Kennard

    2002-01-01

    Stand structure, species richness and population structures of tree species were characterized in 12 stands representing 50 y of succession following slash-and-burn agriculture in a tropical dry forest in lowland Bolivia. Estimates of tree species richness, canopy cover and basal area reached or surpassed 75% of mature forest levels in the 5-, 8-, and 23-y-old stands...

  8. Physiological plasticity of epiphytic orchids from two contrasting tropical dry forests

    NASA Astrophysics Data System (ADS)

    de la Rosa-Manzano, Edilia; Andrade, José Luis; Zotz, Gerhard; Reyes-García, Casandra

    2017-11-01

    An enormous variation in light, both temporally and spatially, exists in tropical forests, which represents a potential driver for plant physiological plasticity. The physiological plasticity of epiphytic orchids from two tropical dry forests in response to different light environments was experimentally investigated. Plants of five species were growing in a shade-house under three different light regimes (photosynthetic photon flux density; PPFD of 20, 50 and 70% of total daily incident radiation) under watered and drought conditions. Orchids with similar leaf morphology but from different forests responded differently to the same light environment. Linear leaves of Encyclia nematocaulon avoided drought stress through stomata control and had a notable increase of photosynthesis, lower osmotic potential, and high photosynthetic efficiency under 50% daily PPFD during both drought and watered periods. In contrast, orchids with cylindrical and oval leaves had a marked decrease of these physiological parameters under 50 and 70% of PPFD during the drought period, but then recovered after rewatering. Oval leaves of Lophiaris oerstedii were more sensitive to high light and water availability because they had a strong decrease of their physiological parameters at 70% of PPFD, even during the rewatering period. Contrary to our predictions, E. nematocaulon had low plasticity and Laelia rubescens, from the deciduous forest, was the most able to acclimate. In general, orchids from the drier forest had higher plasticity than those from the more humid forest, which might help them to tolerate the higher fluctuations of light and water availability that occur there.

  9. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.

    PubMed

    Campo, Julio; Merino, Agustín

    2016-05-01

    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1), while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained. © 2016 John Wiley & Sons Ltd.

  10. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India.

    PubMed

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km(2) (4.4%) of India, whereas according to the MODIS fire product about 2200 km(2) (1.4%) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  11. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India

    NASA Astrophysics Data System (ADS)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km2 (4.4 %) of India, whereas according to the MODIS fire product about 2200 km2 (1.4 %) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  12. [Potentially toxic and harmful phytoflagellates from the Mexican Pacific coasts].

    PubMed

    Bravo-Sierra, Ernesto

    2004-09-01

    The phytoflagellates are a heterogeneous group of autotrophic, heterotrophic and mixothrophic flagellates of trophic importance in several ecosystems. As in the rest of Latin America, the phytoflagellates that occur in the Mexican Pacific coasts are virtually unknown except for a few records. Their study require complicated collection and analysis methods, a probable cause for the scarce knowledge of this group in tropical and subtropical areas. Material recently collected from various localities along the Mexican Pacific coasts was used to study phytoflagellates, including toxic and potentially toxic species. Plankton samples were treated by gravity and pump filtration, using different methods for fixation and analysis. The phyla Euglenophyta, Heterokontophyta and Haptophyta were found. They occur as plankton in oceanic and shallow coastal waters.

  13. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.

    PubMed

    Poorter, Lourens

    2009-03-01

    Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.

  14. Caribbean dry forest networking: an opportunity for conservation

    Treesearch

    K. Banda-Rodriguez; J. Weintritt; R.T. Pennington

    2016-01-01

    Seasonally dry tropical forest is the most threatened tropical forest in the world. Though its overall plant species diversity is lower than in neighboring biomes such as rain forest, species endemism can be high, and its conservation has often been neglected. Caribbean dry forests face diverse threats including tourism, agriculture, and climate change. The Latin...

  15. Regionalization and Evaluation of Impacts of Climate Change on Mexican Coasts

    NASA Astrophysics Data System (ADS)

    Nava-Sanchez, E. H.; Murillo-Jimenez, J. M.; Godinez-Orta, L.; Morales-Perez, R. A.

    2009-04-01

    Mexican coasts exhibit a high variety of geoforms and processes, and consequently, are exposed to a variability of types and impact levels of geological hazards. Tropical cyclones are the most devastating hazards for the Mexican coast, although, impact levels are higher on the southern coast of both Atlantic and Pacific oceans. The second dangerous geo-hazards are earthquakes and tsunamis, which affect all Pacific coast, causing more damage the earthquakes generated in the Cocos Trench. For seismic hazards, there is a regionalization of the Mexican territory, however, even though the high levels of damages caused by other natural hazards, there is a lack of initiatives for performing atlas of natural hazards or coastal management plans. Exceptions are the local scale atlas of natural hazards by the Mexican Geological Survey or some other local scale atlas made with several errors by non experience private consultant companies. Our work shows results of analyses of coastal geological hazards associated to global warming such as the sea level rise, and the increase in strength of some coastal processes. Initially, due to the high diversity in coastal environments for the Mexican coast, it was considered that, a regional characterization of the coastal zone, and the gathering of environmental data for determining levels of impact of the various coastal hazards, as an evaluation of coastal vulnerability. Thus, the basic criteria for defining Coastal Regions, in order of importance, were the following: geomorphology, climate, geology, tectonics, and oceanography. Also, some anthropogenic factors were taken in account for the coastal regionalization, such as civil construction along the coastline, land used and modification of the fluvial system. The analysis of such criteria, allows us to classify the Mexican coasts in 10 Coastal Regions. On the Pacific coast regions are: (I) Pacific Coast of Baja California, (II) Gulf Coast of Baja California, (III) Coastal Plain of

  16. Interactions between tropical cyclones and mid-latitude systems in the Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Lugo, A.; Abarca, S. F.; Raga, G. B.; Vargas, D. C.

    2014-12-01

    Major challenges in tropical meteorology include the short-term forecast of tropical cyclone (TC) intensity, which is defined as the maximum tangential wind. Several efforts have been made in order to reach this goal over the last decade: Among these efforts, the study of lightning in the TC inner core (the region inside a disc of 100 km radius from the center) as a proxy to deep convection, has the potential to be used as a predictor to forecast intensity (DeMaria et al, 2012, Mon. Wea. Rev., 140, 1828-1842).While most studies focus their objectives in studying the lightning flash density in the inner core, we study the probability of flash occurrence for intensifying and weakening cyclones. We have analyzed the trajectories of the observed 62 tropical cyclones that developed in the basin from 2006 to 2009, and classified them into separate clusters according to their trajectories. These clusters can broadly be described as having trajectories mostly oriented: East-West, towards the central Pacific, NW far from the Mexican coast, parallel to the Mexican coast and recurving towards the Mexican coast.We estimate that probability of inner core lightning occurrence increases as cyclones intensify but the probability rapidly decrease as the systems weaken. This is valid for cyclones in most of the clusters. However, the cyclones that exhibit trajectories that recurve towards the Mexican coast, do not present the same relationship between intensity and inner-core lightning probability, these cyclones show little or no decrease in the lightning occurrence probability as they weaken.We hypothesize that one of the reasons for this anomalous behavior is likely the fact that these cyclones interact with mid-latitude systems. Mid-latitude systems are important in determining the recurving trajectory but they may also influence the TC by advecting mid-level moisture towards the TC inner core. This additional supply of moisture as the system is approaching land may enhance deep

  17. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    PubMed

    Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W

    2013-01-01

    Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  18. Tropical forecasting - Predictability perspective

    NASA Technical Reports Server (NTRS)

    Shukla, J.

    1989-01-01

    Results are presented of classical predictability studies and forecast experiments with observed initial conditions to show the nature of initial error growth and final error equilibration for the tropics and midlatitudes, separately. It is found that the theoretical upper limit of tropical circulation predictability is far less than for midlatitudes. The error growth for a complete general circulation model is compared to a dry version of the same model in which there is no prognostic equation for moisture, and diabatic heat sources are prescribed. It is found that the growth rate of synoptic-scale errors for the dry model is significantly smaller than for the moist model, suggesting that the interactions between dynamics and moist processes are among the important causes of atmospheric flow predictability degradation. Results are then presented of numerical experiments showing that correct specification of the slowly varying boundary condition of SST produces significant improvement in the prediction of time-averaged circulation and rainfall over the tropics.

  19. Wet-to-dry shift over Southwest China in 1994 tied to the warming of tropical warm pool

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Huang, Gang; Chen, Wen; Zhou, Wen; Wang, Weiqiang

    2018-01-01

    The autumn climate in Southwest China (SWC) experienced a notable wet-to-dry shift in 1994. Associated with this change in precipitation, decadal signatures of large-scale atmospheric circulation and SST identify a likely dynamical origin: the tropical warm pool (TWP) consisting of tropical northwest Pacific (TNWP, 3°S-12°N and 110°E-150°E) sector and tropical east Indian Ocean (TEI, 10°S-3°N and 80°E-110°E) sector. A cold-to-warm phase switch of TWP SST occurred in 1994, coinciding exactly with the timing of the regime transition of SWC precipitation. During post-1994 period, warm states in the TNWP and TEI sectors plays in a synergistic fashion to invoke dry decades in SWC. On the one side, warm SST over the TNWP sector excites an anomalous cyclone centered on the South China Sea directed opposite to the climatological moisture transport and strengthened zonal wind to its west accompanied by a weakening of the poleward flux; on the other side, warm SST over the TEI sector acts to intensify inflow into TEI with less concurrent transfer of moisture to SWC and to steer moisture to the northern Arabic Sea and away from the SWC-oriented track. Meanwhile, the troposphere over SWC is capped by subsidence, which is jointly contributed by TNWP and TEI. It then follows a reduced moisture supply, suppressed convective activity, and anomalous divergence in SWC, bringing a precipitation deficit there. In contrast, cold TWP SST during 1961-1994 favors wet conditions in SWC, given a perfectly symmetrical circulation pattern. Further, the dominant role of TWP is confirmed, because the modeled response to TWP SST forcing alone bears a great resemblance to the observed evidence. Finally, it is also found that the teleconnected influence induced by TWP is stronger in southern SWC than in northern SWC, which explains the south-north gradient of interdecadal signal of SWC precipitation.

  20. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    DOE PAGES

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.; ...

    2017-02-03

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are alreadymore » limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.« less

  1. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are alreadymore » limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.« less

  2. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    NASA Astrophysics Data System (ADS)

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.; Hulshof, Catherine; Medvigy, David; Pizano, Camila; Salgado-Negret, Beatriz; Smith, Christina M.; Trierweiler, Annette; Van Bloem, Skip J.; Waring, Bonnie G.; Xu, Xiangtao; Powers, Jennifer S.

    2017-02-01

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are already limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.

  3. Natural and near natural tropical forest values

    Treesearch

    Daniel H. Henning

    2011-01-01

    This paper identifies and describes some of the values associated with tropical rain forests in their natural and near-natural conditions. Tropical rain forests are moist forests in the humid tropics where temperature and rainfall are high and the dry season is short. These closed (non-logged) and broad-leaved forests are a global resource. Located almost entirely in...

  4. Sensitivity of South American tropical climate to Last Glacial Maximum boundary conditions: focus on teleconnections with tropics and extratropics (Invited)

    NASA Astrophysics Data System (ADS)

    Khodri, M.; Kageyama, M.; Roche, D. M.

    2009-12-01

    Proxy data over tropical latitudes for the Last Glacial Maximum (LGM) has been interpreted as a southward shift of the Inter Tropical Convergence Zone (ITCZ) and so far linked to a mechanism analogous to the modern day “meridional-mode” in the Atlantic Ocean. Here we have explored alternative mechanisms, related to the direct impact of the LGM global changes in the dry static stability on tropical moist deep convection. We have used a coupled ocean-atmosphere model capable of capturing the thermodynamical structure of the atmosphere and the tropical component of the Hadley and Walker circulations. In each experiment, we have applied either all the LGM forcings, or the individual contributions of greenhouse gases (GHG) concentrations, ice sheet topography and/or albedo to explore the hydrological response over tropical latitudes with a focus on South America. The dominant forcing for the LGM tropical temperature and precipitation changes is found to be due to the reduced GHG, through the direct effect of reduced radiative heating (Clausius-Clapeyron relationship). The LGM GHG is also responsible for increased extra-tropical static stability which strengthens the Hadley Cell. Stronger subsidence over northern tropics then produces an amplification of the northern tropics drying initially due to the direct cooling effect. The land ice sheet is also able to promote the Hadley cell feedback mostly via the topographic effect on the extra-tropical dry static stability and on the position of the subtropical jets. Our results therefore suggest that the communication between the extratropics and the tropics is tighter during LGM and does not necessarily rely on the “meridional-mode” mechanism. The Hadley cell response is constrained by the requirement that diabatic heating in the tropics balances cooling in subtropics. We show that such extratropics-tropics dependence is stronger at the LGM because of the stronger perturbation of northern extra tropical thermal and

  5. Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter?

    PubMed

    Stahl, Clément; Hérault, Bruno; Rossi, Vivien; Burban, Benoit; Bréchet, Claude; Bonal, Damien

    2013-12-01

    Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.

  6. Influence of matrix type on tree community assemblages along tropical dry forest edges.

    PubMed

    Benítez-Malvido, Julieta; Gallardo-Vásquez, Julio César; Alvarez-Añorve, Mariana Y; Avila-Cabadilla, Luis Daniel

    2014-05-01

    • Anthropogenic habitat edges have strong negative consequences for the functioning of tropical ecosystems. However, edge effects on tropical dry forest tree communities have been barely documented.• In Chamela, Mexico, we investigated the phylogenetic composition and structure of tree assemblages (≥5 cm dbh) along edges abutting different matrices: (1) disturbed vegetation with cattle, (2) pastures with cattle and, (3) pastures without cattle. Additionally, we sampled preserved forest interiors.• All edge types exhibited similar tree density, basal area and diversity to interior forests, but differed in species composition. A nonmetric multidimensional scaling ordination showed that the presence of cattle influenced species composition more strongly than the vegetation structure of the matrix; tree assemblages abutting matrices with cattle had lower scores in the ordination. The phylogenetic composition of tree assemblages followed the same pattern. The principal plant families and genera were associated according to disturbance regimes as follows: pastures and disturbed vegetation (1) with cattle and (2) without cattle, and (3) pastures without cattle and interior forests. All habitats showed random phylogenetic structures, suggesting that tree communities are assembled mainly by stochastic processes. Long-lived species persisting after edge creation could have important implications in the phylogenetic structure of tree assemblages.• Edge creation exerts a stronger influence on TDF vegetation pathways than previously documented, leading to new ecological communities. Phylogenetic analysis may, however, be needed to detect such changes. © 2014 Botanical Society of America, Inc.

  7. Relations between water balance, wood traits and phenological behavior of tree species from a tropical dry forest in Costa Rica--a multifactorial study.

    PubMed

    Worbes, Martin; Blanchart, Sofie; Fichtler, Esther

    2013-05-01

    Drought tolerance is a key factor for the establishment and survival of tree species in tropical ecosystems. Specific mechanisms of drought resistance can be grouped into four functional ecotypes based on differences in leaf fall behavior: deciduous, brevi-deciduous, stem succulent and evergreen. To identify the key factors influencing phenology and cambial activity and thus drought tolerance, we tested the stomatal conductance, leaf water potential and stable carbon isotopes in the leaves and wood of 12 species from a tropical dry forest in Costa Rica. With wood anatomical techniques, we further studied seasonal cambial activity and a suite of wood traits related to water transport for each of the functional ecotypes. Using a principal component analysis, we identified two groups of variables that can be related to (i) hydraulic conductivity and (ii) control of transpiration and water loss. Hydraulic conductivity is controlled by vessel size as the limiting variable, water potential as the driving force and wood density as the stabilizing factor of the anatomical structure of an effective water transport system. Stomatal control plays a major role in terms of water loss or saving and is the dominant factor for differences in phenological behavior. Stem succulent species in particular developed a rarely identified but highly effective strategy against drought stress, which makes it a successful pioneer species in tropical dry forests.

  8. Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture-recapture sampling

    USGS Publications Warehouse

    Karanth, K.Ullas; Chundawat, Raghunandan S.; Nichols, James D.; Kumar, N. Samba

    2004-01-01

    Tropical dry-deciduous forests comprise more than 45% of the tiger (Panthera tigris) habitat in India. However, in the absence of rigorously derived estimates of ecological densities of tigers in dry forests, critical baseline data for managing tiger populations are lacking. In this study tiger densities were estimated using photographic capture–recapture sampling in the dry forests of Panna Tiger Reserve in Central India. Over a 45-day survey period, 60 camera trap sites were sampled in a well-protected part of the 542-km2 reserve during 2002. A total sampling effort of 914 camera-trap-days yielded photo-captures of 11 individual tigers over 15 sampling occasions that effectively covered a 418-km2 area. The closed capture–recapture model Mh, which incorporates individual heterogeneity in capture probabilities, fitted these photographic capture history data well. The estimated capture probability/sample, p̂= 0.04, resulted in an estimated tiger population size and standard error (N̂(SÊN̂)) of 29 (9.65), and a density (D̂(SÊD̂)) of 6.94 (3.23) tigers/100 km2. The estimated tiger density matched predictions based on prey abundance. Our results suggest that, if managed appropriately, the available dry forest habitat in India has the potential to support a population size of about 9000 wild tigers.

  9. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico.

    PubMed

    Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  10. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico

    PubMed Central

    Escalera-Vázquez, Luis H.; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2) than in riparian forests (0.022 and 0.027 trees/m2), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2) than in larger class sizes (0–0.02 trees/m2). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil. PMID:29785342

  11. Energetics and environmental costs of agriculture in a dry tropical region of India

    NASA Astrophysics Data System (ADS)

    Singh, V. P.; Singh, J. S.

    1992-07-01

    The present article, based on a study of five village ecosystems, assesses the energy efficiency of rain-fed agriculture in a dry tropical environment and the impact of agricultural activity on the surrounding natural ecosystems. Agronomic yield is insufficient to meet the food requirement of the human population, hence 11.5%-49.7% of the required amount of food grains are imported from the market. Energy requirements of five studied agroecosystems are subsidized considerably by the surrounding forest in the form of fodder and firewood. Natural ecosystems supply about 80%-95% of fodder needs and 81%-100% of fuelwood needs. The output-input ratio of agriculture indicated that, on average, 4.1 units of energy are expended to obtain one unit of agronomic energy. Of this, 3.9 units are supplied by the natural ecosystem. In addition, 38% of the extracted firewood is marketed. The illegal felling and lopping of trees result in ever-increasing concentric circles of forest destruction around the villages and together with excessive grazing results in savannization. The forests can be conserved by encouraging fuelwood plantations (0.7 ha/ha cultivated land) and developing village pastures (1.6 ha/ha cultivated land) and reducing the livestock numbers. Agricultural production in the region can be stabilized by introducing improved dry farming techniques such as intercropping, planned rainwater management, and adequate use of fertilizers.

  12. Spatial patterns and recent trends in the climate of tropical rainforest regions.

    PubMed

    Malhi, Yadvinder; Wright, James

    2004-03-29

    We present an analysis of the mean climate and climatic trends of tropical rainforest regions over the period 1960-1998, with the aid of explicit maps of forest cover and climatological databases. Until the mid-1970s most regions showed little trend in temperature, and the western Amazon experienced a net cooling probably associated with an interdecadal oscillation. Since the mid-1970s, all tropical rainforest regions have experienced a strong warming at a mean rate of 0.26 +/- 0.05 degrees C per decade, in synchrony with a global rise in temperature that has been attributed to the anthropogenic greenhouse effect. Over the study period, precipitation appears to have declined in tropical rainforest regions at a rate of 1.0 +/- 0.8% per decade (p < 5%), declining sharply in northern tropical Africa (at 3-4% per decade), declining marginally in tropical Asia and showing no significant trend in Amazonia. There is no evidence so far of a decline in precipitation in eastern Amazonia, a region thought vulnerable to climate-change-induced drying. The strong drying trend in Africa suggests that this should be a priority study region for understanding the impact of drought on tropical rainforests. We develop and use a dry-season index to study variations in the length and intensity of the dry season. Only African and Indian tropical rainforests appear to have seen a significant increase in dry-season intensity. In terms of interannual variability, the El Niño-Southern Oscillation (ENSO) is the primary driver of temperature variations across the tropics and of precipitation fluctuations for large areas of the Americas and southeast Asia. The relation between ENSO and tropical African precipitation appears less direct.

  13. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico.

    PubMed

    de la Rosa-Manzano, Edilia; Andrade, José Luis; García-Mendoza, Ernesto; Zotz, Gerhard; Reyes-García, Casandra

    2015-12-01

    Epiphytic orchids from dry forests of Yucatán show considerable photoprotective plasticity during the dry season, which depends on leaf morphology and host tree deciduousness. Nocturnal retention of antheraxanthin and zeaxanthin was detected for the first time in epiphytic orchids. In tropical dry forests, epiphytes experience dramatic changes in light intensity: photosynthetic photon flux density may be up to an order of magnitude higher in the dry season compared to the wet season. To address the seasonal changes of xanthophyll cycle (XC) pigments and photosynthesis that occur throughout the year, leaves of five epiphytic orchid species were studied during the early dry, dry and wet seasons in a deciduous and a semi-deciduous tropical forests at two vertical strata on the host trees (3.5 and 1.5 m height). Differences in XC pigment concentrations and photosynthesis (maximum quantum efficiency of photosystem II; F v/F m) were larger among seasons than between vertical strata in both forests. Antheraxanthin and zeaxanthin retention reflected the stressful conditions of the epiphytic microhabitat, and it is described here in epiphytes for the first time. During the dry season, both XC pigment concentrations and photosystem II heat dissipation of absorbed energy increased in orchids in the deciduous forest, while F v/F m and nocturnal acidification (ΔH(+)) decreased, clearly as a response to excessive light and drought. Concentrations of XC pigments were higher than those in orchids with similar leaf shape in semi-deciduous forest. There, only Encyclia nematocaulon and Lophiaris oerstedii showed somewhat reduced F v/F m. No changes in ΔH(+) and F v/F m were detected in Cohniella ascendens throughout the year. This species, which commonly grows in forests with less open canopies, showed leaf tilting that diminished light interception. Light conditions in the uppermost parts of the canopy probably limit the distribution of epiphytic orchids and the retention of

  14. Causes and implications of dry season control of tropical wet forest tree growth at very high water levels: direct vs. indirect limitations

    NASA Astrophysics Data System (ADS)

    Dierick, D.; Oberbauer, S. F.; O'Brien, J. J.

    2012-12-01

    Despite the importance of tropical rain forests in the global carbon cycle, uncertainty remains on how these ecosystems will be affected by climate change. Previous studies in a Costa Rican lowland tropical rain forest (La Selva Biological Station, Sarapiqui, Costa Rica) revealed a significant, positive relationship between tree diameter increment and January to April dry season precipitation that extended up to high rainfall totals (Clark et al. 2010). Proposed mechanisms include a direct limitation of water availability or closely linked indirect controls such as altered micrometeorological conditions (direct vs. diffuse light, atmospheric humidity) and changes in plant phenology or C-allocation. Using an experimental approach we aim to test the hypothesis that water availability in the dry season directly controls tree diameter growth despite the high precipitation levels normally encountered (long term average for Jan-Apr is 890 mm). At three sites within the La Selva Biological Station a paired experimental and control plot were established. Each plot was 900 m2 in size and had at least 20 trees with diameter at breast height (dbh) over 10 cm. In the experimental plots we used irrigation to simulate a minimum daily precipitation equivalent to 10 mm.d-1 during the dry seasons of 2011 and 2012. This simulated precipitation amount matches the highest dry season total recorded for the years 1998 to 2009. The main response variables measured in experimental and control plots were monthly dendrometer-band diameter growth of trees above 10 cm dbh, sap flux density of a subset of trees and bi-weekly leaf litter production. Belowground variables included soil moisture, fine root production and soil respiration. Soil moisture data confirmed that experimental plots experienced consistently high water availability in the top 30 cm of the soil profile during the dry season, while control plots experienced repeated drying and rewetting of the soil. This difference in water

  15. Associations between soil variables and vegetation structure and composition of Caribbean dry forests

    Treesearch

    Elvia M. Melendez-Ackerman; Julissa Rojas-Sandoval; Danny S. Fernandez; Grizelle Gonzalez; Hana Lopez; Jose Sustache; Mariely Morales; Miguel Garcia-Bermudez; Susan Aragon

    2016-01-01

    Soil–vegetation associations have been understudied in tropical dry forests when compared to the amount of extant research on this issue in tropical wet forests. Recent studies assert that vegetation in tropical dry forests is highly heterogeneous and that soil variability may be a contributing factor. In this study, we evaluated the relationship between soil variables...

  16. Explanatory Emotion Talk in Mexican Immigrant and Mexican American Families.

    ERIC Educational Resources Information Center

    Cervantes, Christi A.

    2002-01-01

    Mother-child conversations during story-telling play were analyzed for patterns of emotion talk. Subjects were 48 Mexican immigrant and Mexican American mothers and their children aged 3-4. Contrary to previous findings, Mexican immigrant mothers used more explanations of emotions than labels. Mexican American mothers used both, equally. Results…

  17. Persistent drying in the tropics linked to natural forcing.

    PubMed

    Winter, Amos; Zanchettin, Davide; Miller, Thomas; Kushnir, Yochanan; Black, David; Lohmann, Gerrit; Burnett, Allison; Haug, Gerald H; Estrella-Martínez, Juan; Breitenbach, Sebastian F M; Beaufort, Luc; Rubino, Angelo; Cheng, Hai

    2015-07-14

    Approximately half of the world's population lives in the tropics, and future changes in the hydrological cycle will impact not just the freshwater supplies but also energy production in areas dependent upon hydroelectric power. It is vital that we understand the mechanisms/processes that affect tropical precipitation and the eventual surface hydrological response to better assess projected future regional precipitation trends and variability. Paleo-climate proxies are well suited for this purpose as they provide long time series that pre-date and complement the present, often short instrumental observations. Here we present paleo-precipitation data from a speleothem located in Mesoamerica that reveal large multi-decadal declines in regional precipitation, whose onset coincides with clusters of large volcanic eruptions during the nineteenth and twentieth centuries. This reconstruction provides new independent evidence of long-lasting volcanic effects on climate and elucidates key aspects of the causal chain of physical processes determining the tropical climate response to global radiative forcing.

  18. Modeling Soil Water in the Caatinga Tropical Dry Forest of Northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Wright, C.; Wilcox, B.; Souza, E.; Lima, J. R. D. S.; West, J. B.

    2015-12-01

    The Caatinga is a tropical dry forest unique to northeastern Brazil. It has a relatively high degree of endism and supports a population of about 20 million subsistence farmers. However, it is poorly understood, under-researched and often over-looked in regards to other Brazilian ecosystems. It is a highly perturbed system that suffers from deforestation, land use change, and may be threatened by climate change. How these perturbations affect hydrology is unknown, but may have implications for biodiversity and ecosystem services and resiliency. Therefore, understanding key hydrological processes is critical, particularly as related to deforestation. In this study, Hydrus 1D, which is based on van Genuchten parameters to describe the soil water curve and Richard's Equation to describe flow in the vadose zone, was used to model soil moisture in the Caatinga ecosystem. The aim was 1) to compare hydraulic characterization between a forested Caatinga site and a deforested pasture site, 2) to analyze inter-annual variability, and 3) to compare with observed soil moisture data. Hydraulic characterization included hydraulic conductivity, infiltration, water content and pressure head trends. Van Genuchten parameters were derived using the Beerkan method, which is based on soil texture, particle distribution, as well as in-situ small-scale infiltration experiments. Observational data included soil moisture and precipitation logged every half-hour from September 2013 to April 2014 to include the dry season and rainy season. It is expected that the forested Caatinga site will have a higher hydraulic conductivity as well as retain higher soil moisture values. These differences may be amplified during the dry season, as water resources become scarce. Deviations between modeled data and observed data will allow for further hypothesis to be proposed, especially those related to soil water repellency. Hence, these results may indicate difference in soil water dynamics between a

  19. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

    PubMed

    Gotsch, Sybil G; Asbjornsen, Heidi; Holwerda, Friso; Goldsmith, Gregory R; Weintraub, Alexis E; Dawson, Todd E

    2014-01-01

    The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia. © 2013 John Wiley & Sons Ltd.

  20. Post-fire regeneration in seasonally dry tropical forest fragments in southeastern Brazil.

    PubMed

    Costa, Mayke B; Menezes, Luis Fernando T DE; Nascimento, Marcelo T

    2017-01-01

    Seasonally dry tropical forest is one of the highly threatened biome. However, studies on the effect of fire on these tree communities are still scarce. In this context, a floristic and structural survey in three forest areas in the southeast of Brazil that were affected by fire between 14 and 25 years ago was performed with the objective of evaluating post-fire regeneration. In each site, five systematically placed plots (25 m x 25 m each) were established. The more recently burnt site had significantly lower values of richness and diversity than the other two sites. However, the sites did not differ in density and basal area. Annona dolabripetala, Astronium concinnum, Joannesia princeps and Polyandrococos caudescens were within the 10 most important species for the three sites. Comparing these data with adjacent mature forests, the results indicated differences both in structural and floristic aspects, suggesting that the time after fire was not sufficient for recuperation of these areas. The recovery process indicate at least 190 years for areas return to basal area values close to those observed in mature forests nearby.

  1. Dry Season Impact on Physiological Functioning of Two Tropical Tree Species in the Daintree Rainforest, Northeast Australia

    NASA Astrophysics Data System (ADS)

    Cernusak, L. A.; Dempsey, R.; Cheesman, A.; Meir, P.; Laurance, S.

    2016-12-01

    We measured leaf gas exchange, leaf biochemistry, and stem growth in two tropical tree species in the Daintree rainforest. The site experiences an average dry season length of three months, with global climate change predictions indicating that this could increase. Of the two studied species, Elaeocarpus angustifolius is wide-spread and early-successional, whereas Endiandra microneura is locally endemic and late-successional. Measurements started in 2014 and ended in 2015, thus encompassing the 2014 dry season. Upper canopy foliage was accessed from a 48 m tall canopy crane. Photosynthetic rates were higher during the wet season in Elaeocarpus than in Endiandra, consistent with its pioneering habit. Elaeocarpus showed larger reductions in both photosynthesis and stomatal conductance in response to the dry season than did Endiandra. Dry season depression of photosynthesis was associated with reduced intercellular carbon dioxide concentrations in Endiandra, but not in Elaeocarpus, indicating a role for photo-inhibition in restricting photosynthesis during the dry season in the early successional species, but not in the late successional species. Consistently, Endiandra invested more heavily in photoprotective and anti-oxidative compounds in its upper canopy foliage than did Elaeocarpus. Stem growth rates were four-fold higher in Elaeocarpus than in Endiandra during the wet season, reflecting the successional status of the two species. Stem growth slowed in both species in response to the dry season, and all but ceased by the late dry season. With the onset of the early wet season, stem growth increased markedly, and Elaeocarpus again maintained much faster growth than Endiandra. Overall, our results indicate that at the leaf level, biochemical and physiological processes associated with photosynthesis were more vulnerable to dry season stress in Elaeocarpus than in Endiandra; however, at the whole-plant level, our measurements and the geographic distribution of

  2. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest.

    PubMed

    Power, M J; Whitney, B S; Mayle, F E; Neves, D M; de Boer, E J; Maclean, K S

    2016-06-05

    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  3. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest

    PubMed Central

    Power, M. J.; Whitney, B. S.; Mayle, F. E.; Neves, D. M.; de Boer, E. J.; Maclean, K. S.

    2016-01-01

    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216522

  4. Tropical dry forest trees and lianas differ in leaf economic spectrum traits but have overlapping water-use strategies.

    PubMed

    Werden, Leland K; Waring, Bonnie G; Smith-Martin, Christina M; Powers, Jennifer S

    2018-04-01

    Tree species in tropical dry forests employ a wide range of strategies to cope with seasonal drought, including regulation of hydraulic function. However, it is uncertain if co-occurring lianas also possess a diversity of strategies. For a taxonomically diverse group of 14 tree and 7 liana species, we measured morphological and hydraulic functional traits during an unusual drought and under non-drought conditions to determine (i) if trees have different water-use strategies than lianas and (ii) if relationships among these traits can be used to better understand how tree and liana species regulate diurnal leaf water potential (Ψdiurnal). In this Costa Rican tropical dry forest, lianas and trees had overlapping water-use strategies, but differed in many leaf economic spectrum traits. Specifically, we found that both lianas and trees employed a diversity of Ψdiurnal regulation strategies, which did not differ statistically. However, lianas and trees did significantly differ in terms of certain traits including leaf area, specific leaf area, petiole length, wood vessel diameter and xylem vessel density. All liana and tree species we measured fell along a continuum of isohydric (partial) to anisohydric (strict or extreme) Ψdiurnal regulation strategies, and leaf area, petiole length, stomatal conductance and wood vessel diameter correlated with these strategies. These findings contribute to a trait-based understanding of how plants regulate Ψdiurnal under both drought stress and sufficient water availability, and underscore that lianas and trees employ a similarly wide range of Ψdiurnal regulation strategies, despite having vastly different growth forms.

  5. Terrestrial Macrofungal Diversity from the Tropical Dry Evergreen Biome of Southern India and Its Potential Role in Aerobiology.

    PubMed

    Priyamvada, Hema; Akila, M; Singh, Raj Kamal; Ravikrishna, R; Verma, R S; Philip, Ligy; Marathe, R R; Sahu, L K; Sudheer, K P; Gunthe, S S

    2017-01-01

    Macrofungi have long been investigated for various scientific purposes including their food and medicinal characteristics. Their role in aerobiology as a fraction of the primary biological aerosol particles (PBAPs), however, has been poorly studied. In this study, we present a source of macrofungi with two different but interdependent objectives: (i) to characterize the macrofungi from a tropical dry evergreen biome in southern India using advanced molecular techniques to enrich the database from this region, and (ii) to assess whether identified species of macrofungi are a potential source of atmospheric PBAPs. From the DNA analysis, we report the diversity of the terrestrial macrofungi from a tropical dry evergreen biome robustly supported by the statistical analyses for diversity conclusions. A total of 113 macrofungal species belonging to 54 genera and 23 families were recorded, with Basidiomycota and Ascomycota constituting 96% and 4% of the species, respectively. The highest species richness was found in the family Agaricaceae (25.3%) followed by Polyporaceae (15.3%) and Marasmiaceae (10.8%). The difference in the distribution of commonly observed macrofungal families over this location was compared with other locations in India (Karnataka, Kerala, Maharashtra, and West Bengal) using two statistical tests. The distributions of the terrestrial macrofungi were distinctly different in each ecosystem. We further attempted to demonstrate the potential role of terrestrial macrofungi as a source of PBAPs in ambient air. In our opinion, the findings from this ecosystem of India will enhance our understanding of the distribution, diversity, ecology, and biological prospects of terrestrial macrofungi as well as their potential to contribute to airborne fungal aerosols.

  6. Ontogenetic and temporal variations in herbivory and defense of Handroanthus spongiosus (Bignoniaceae) in a Brazilian tropical dry forest.

    PubMed

    Oliveira, Karla N; Espírito-Santo, Mário M; Silva, Jhonathan O; Melo, Geraldo A

    2012-06-01

    We compared the richness and abundance of free-feeding herbivore insects (sap-sucking and leaf-chewing), leaf herbivory damage, leaf toughness and total phenolic content between two ontogenetic stages (juvenile and reproductive) of Handroanthus spongiosus (Rizzini) S. O. Grose (Bignoniaceae) throughout the rainy season in a Brazilian seasonally dry tropical forest. Twenty marked individuals of H. spongiosus were sampled per ontogenetic stage in each period of the rainy season (beginning, middle, and end). Herbivore richness and abundance did not differ between ontogenetic stages, but higher percentage of leaf damage, higher concentration of phenolic compounds, and lower leaf toughness were observed for juvenile individuals. The greatest morphospecies abundance was found at the beginning of the rainy season, but folivory increment was higher at the end, despite the fact that leaf toughness and total phenolic content increased in the same period. No significant relationships between leaf damage and both total phenolic content and leaf toughness were observed. These results suggest that insect richness and abundance do not track changes in foliage quality throughout plant ontogeny, but their decrease along rainy season confirms what was predicted for tropical dry forests. The general trends described in the current study corroborate those described in the literature about herbivores and plant ontogeny. However, the lack of relationship between herbivore damage and the two plant attributes considered here indicates that the analyses of multiple defensive traits (the defense syndrome) must be more enlightening to determine the mechanisms driving temporal and spatial patterns of herbivore attack.

  7. Ecohydrology and biogeochemistry of seasonally-dry ecosystems

    NASA Astrophysics Data System (ADS)

    Feng, X.; Porporato, A. M.

    2010-12-01

    The composition and the dynamic in various types of seasonally dry ecosystems are largely determined by rainfall seasonality and distribution. The intermittency of rainfall in these ecosystems has played a dominant role in the life cycle of native plants such that phenological events such as growth or reproduction have oftentimes become synchronized with the onset of the dry or the wet season. Characteristic amongst such types of ecosystems are the tropical dry and Mediterranean ecosystems, both of which receive similar amount of precipitation yet are markedly distinct in their synchronization of rainfall fluctuations and temperature. Seasonally dry ecosystems cover more than 16 million square kilometers in the tropics, with short but intense wet seasons followed by long dry seasons and elevated temperature throughout the year. Native vegetation grows during the wet season and adopts dormancy or seasonal deciduousness to cope with the dry season. In the Mediterranean climates, precipitations and temperature are out of phase, with wet temperate winters and hot dry summers. Dimorphic root systems are prevalent, where deep rooted plants exploit the winter recharge while the shallow rooted species take advantage of the infrequent summer rains. Using a stochastic soil moisture model we analyze how temporal shifts, or the lack thereof, in temperature and precipitation patterns affect the development of water stress during the dry season and its feedbacks on soil-plant biogeochemistry. We especially focus on the role of differences in temperature and seasonal potential evapotranspiration between tropical dry and Mediterranean climates. We also compare irrigation needs and the effects of projected climatic conditions in those regions. Understanding how plants adopt different water use strategies in the context of shifted climatic patterns will shed light on how these regions of high biodiversity may cope with rapidly-changing climatic conditions.

  8. Process and dynamics of traditional selling wild edible mushrooms in tropical Mexico

    PubMed Central

    Ruán-Soto, Felipe; Garibay-Orijel, Roberto; Cifuentes, Joaquín

    2006-01-01

    Background More than twelve temperate-inhabitant Mexican ethnic groups are considered to be mycophilic and to have extensive traditional mycological knowledge. In contrast, inhabitants of tropical lands have been studied only superficially and their mycological knowledge is less well known. In this paper, we report the results of an ethnomycological research in markets of a wide area of the Mexican tropics. Our aims were to describe the dynamics related to the traditional selling process of wild mushrooms and to determine the tendencies of informants toward mushrooms (mycophily vs. mycophoby). Methods We visited 25 markets of 12 different settlements in the states of Oaxaca, Tabasco and Veracruz and collected information by participant observation as well as by 291 non-structured and semi-structured interviews. Results Mushroom selling was observed in four towns in Oaxaca and in two in Tabasco. Women represented 81.82% of sellers, while indigenous people (Chinantecos, Chontales, Ch'oles and Zoques) comprised 68.18%. Mushroom commercialization took place in secondary mobile markets and only in peasant stands. Mushroom collectors gather the resource in places with secondary vegetation, farmed areas and cattle fields. Because of land tenure restrictions mushroom sellers did not normally collect mushrooms themselves. In Oaxaca, we observed economic dynamics not based on capitalism, such as exchange, reciprocity and barter. Conclusion The sale of some wild edible mushrooms, the large amounts of commercialization of Schizophyllum commune, the complicated intermediary process, as well as the insertion of mushrooms into different informal economic practices are all evidence of an existent mycophily in a sector of the population of this region of the Mexican tropics. Among our informants, urban mestizo people were mycophobic, rural mestizo people were non-mycophilic and indigenous people were true mycophilic. PMID:16393345

  9. Immigration and suicidal behavior among Mexicans and Mexican Americans.

    PubMed

    Borges, Guilherme; Breslau, Joshua; Su, Maxwell; Miller, Matthew; Medina-Mora, Maria Elena; Aguilar-Gaxiola, Sergio

    2009-04-01

    We examined migration to the United States as a risk factor for suicidal behavior among people of Mexican origin. We pooled data from 2 nationally representative surveys in the United States (2001-2003; n = 1284) and Mexico (2001-2002; n = 5782). We used discrete time survival models to account for time-varying and time-invariant characteristics, including psychiatric disorders. Risk for suicidal ideation was higher among Mexicans with a family member in the United States (odds ratio [OR] = 1.50; 95% confidence interval [CI] = 1.06, 2.11), Mexican-born immigrants who arrived in the United States at 12 years or younger (OR = 1.84; 95% CI = 1.09, 3.09), and US-born Mexican Americans (OR = 1.56; 95% CI = 1.03, 2.38) than among Mexicans with neither a history of migration to the United States nor a family member currently living there. Risk for suicide attempts was also higher among Mexicans with a family member in the United States (OR = 1.68; 95% CI = 1.13, 2.52) and US-born Mexican Americans (OR = 1.97; 95% CI = 1.06, 3.65). Selection bias caused by differential migration or differential return migration of persons at higher risk of suicidal ideation or attempt did not account for these findings. Public health efforts should focus on the impact of Mexico-US migration on family members of migrants and on US-born Mexican Americans.

  10. Immigration and Suicidal Behavior Among Mexicans and Mexican Americans

    PubMed Central

    Breslau, Joshua; Su, Maxwell; Miller, Matthew; Medina-Mora, Maria Elena; Aguilar-Gaxiola, Sergio

    2009-01-01

    Objectives. We examined migration to the United States as a risk factor for suicidal behavior among people of Mexican origin. Methods. We pooled data from 2 nationally representative surveys in the United States (2001–2003; n = 1284) and Mexico (2001–2002; n = 5782). We used discrete time survival models to account for time-varying and time-invariant characteristics, including psychiatric disorders. Results. Risk for suicidal ideation was higher among Mexicans with a family member in the United States (odds ratio [OR] = 1.50; 95% confidence interval [CI] = 1.06, 2.11), Mexican-born immigrants who arrived in the United States at 12 years or younger (OR = 1.84; 95% CI = 1.09, 3.09), and US-born Mexican Americans (OR = 1.56; 95% CI = 1.03, 2.38) than among Mexicans with neither a history of migration to the United States nor a family member currently living there. Risk for suicide attempts was also higher among Mexicans with a family member in the United States (OR = 1.68; 95% CI = 1.13, 2.52) and US-born Mexican Americans (OR = 1.97; 95% CI = 1.06, 3.65). Selection bias caused by differential migration or differential return migration of persons at higher risk of suicidal ideation or attempt did not account for these findings. Conclusions. Public health efforts should focus on the impact of Mexico–US migration on family members of migrants and on US-born Mexican Americans. PMID:19150909

  11. Factors Affecting Career Decision Making of Mexican and Mexican-American Students.

    ERIC Educational Resources Information Center

    Newlon, Betty J.; Borboa, Roman

    The purpose of this research was to identify the self-reported factors affecting the career decision making of Mexican and Mexican-American students. It was hypothesized that the factor clusters would differ between the two sample populations, Mexican and Mexican-American. It was also hypothesized that these clusters would differ from six clusters…

  12. Effect of drought on productivity in a Costa Rican tropical dry forest

    NASA Astrophysics Data System (ADS)

    Castro, S. M.; Sanchez-Azofeifa, G. A.; Sato, H.

    2018-04-01

    Climate models predict that precipitation patterns in tropical dry forests (TDFs) will change, with an overall reduction in rainfall amount and intensification of dry intervals, leading to greater susceptibility to drought. In this paper, we explore the effect of drought on phenology and carbon dynamics of a secondary TDF located in the Santa Rosa National Park (SRNP), Costa Rica. Through the use of optical sensors and an eddy covariance flux tower, seasonal phenology and carbon fluxes were monitored over a four-year period (2013-2016). Over this time frame, annual precipitation varied considerably. Total precipitation amounts for the 2013-2016 seasons equaled 1591.8 mm (+14.4 mm SD), 1112.9 mm (+9.9 mm SD), 600.8 mm (+7.6 mm SD), and 1762.2 mm (+13.9 mm SD), respectively. The 2014 and 2015 (ENSO) seasonal precipitation amounts represent a 30% and 63% reduction in precipitation, respectively, and were designated as drought seasons. Phenology was affected by precipitation patterns and availability. The onset of green-up was closely associated with pre-seasonal rains. Drought events lead to seasonal NDVI minimums and changes in phenologic cycle length. Carbon fluxes, assimilation, and photosynthetic light use efficiency were negatively affected by drought. Seasonal minimums in photosynthetic rates and light use efficiency were observed during drought events, and gross primary productivity was reduced by 13% and 42% during drought seasons 2014 and 2015, respectively. However, all four growth seasons were net carbon sinks. Results from this study contribute towards a deeper understanding of the impact of drought on TDF phenology and carbon dynamics.

  13. What's Values Got to Do with It? Thriving among Mexican/Mexican American College Students

    ERIC Educational Resources Information Center

    Morgan Consoli, Melissa L.; Llamas, Jasmín; Consoli, Andrés J.

    2016-01-01

    The authors examined traditional Mexican/Mexican American and perceived U.S. mainstream cultural values as predictors of thriving. One hundred twenty-four (37 men, 87 women) self-identified Mexican/Mexican American college students participated in the study. The traditional Mexican/Mexican American cultural values of family support and religion…

  14. Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions.

    PubMed

    Brienen, Roel J W; Zuidema, Pieter A; Martínez-Ramos, Miguel

    2010-06-01

    Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees--those that have not attained the canopy--are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.

  15. Impacts of changing rainfall regime on the demography of tropical birds

    NASA Astrophysics Data System (ADS)

    Brawn, Jeffrey D.; Benson, Thomas J.; Stager, Maria; Sly, Nicholas D.; Tarwater, Corey E.

    2017-02-01

    Biodiversity in tropical regions is particularly high and may be highly sensitive to climate change. Unfortunately, a lack of long-term data hampers understanding of how tropical species, especially animals, may react to projected environmental changes. The amount and timing of rainfall is key to the function of tropical ecosystems and, although specific model predictions differ, there is general agreement that rainfall regimes will change over large areas of the tropics. Here, we estimate associations between dry season length (DSL) and the population biology of 20 bird species sampled in central Panama over a 33-year period. Longer dry seasons decreased the population growth rates and viability of nearly one-third of the species sampled. Simulations with modest increases in DSL suggest that consistently longer dry seasons will change the structure of tropical bird communities. Such change may occur even without direct loss of habitat--a finding with fundamental implications for conservation planning. Systematic changes in rainfall regime may threaten some populations and communities of tropical animals even in large tracts of protected habitat. These findings suggest the need for collaboration between climate scientists and conservation biologists to identify areas where rainfall regimes will be able to plausibly maintain wildlife populations.

  16. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    PubMed

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  17. Novelty and its ecological implications to dry forest functioning and conservation

    Treesearch

    Ariel Lugo; Heather Erickson

    2017-01-01

    Tropical and subtropical dry forest life zones support forests with lower stature and species richness than do tropical and subtropical life zones with greater water availability. The number of naturalized species that can thrive and mix with native species to form novel forests in dry forest conditions in Puerto Rico and the US Virgin Islands is lower than in other...

  18. Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers

    NASA Astrophysics Data System (ADS)

    Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain

    2017-10-01

    Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these

  19. Seasonal variability in physiological and anatomical traits contributes to invasion success of Prosopis juliflora in tropical dry forest.

    PubMed

    Oliveira, Marciel T; Souza, Gustavo M; Pereira, Silvia; Oliveira, Deborah A S; Figueiredo-Lima, Karla V; Arruda, Emília; Santos, Mauro G

    2017-03-01

    We investigated whether there were consistent differences in the physiological and anatomical traits and phenotypic variability of an invasive (Prosopis juliflora (Sw.) DC.) and native species (Anadenanthera colubrina (Vell.) Brenan) in response to seasonality in a tropical dry forest. The water potential, organic solutes, gas exchange, enzymes of the antioxidant system, products of oxidative stress and anatomical parameters were evaluated in both species in response to seasonality. An analysis of physiological responses indicated that the invasive P. juliflora exhibited higher response in net photosynthetic rate to that of the native species between seasons. Higher values of water potential of the invasive species than those of the native species in the dry season indicate a more efficient mechanism for water regulation in the invasive species. The invasive species exhibits a thicker cuticle and trichomes, which can reduce transpiration. In combination, the increased epidermal thickness and the decreased thickness of the parenchyma in the dry season may contribute to water saving. Our data suggest a higher variability in anatomical traits in the invasive species as a response to seasonality, whereas physiological traits did not present a clear pattern of response. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Terrestrial Macrofungal Diversity from the Tropical Dry Evergreen Biome of Southern India and Its Potential Role in Aerobiology

    PubMed Central

    Priyamvada, Hema; Akila, M.; Singh, Raj Kamal; Ravikrishna, R.; Verma, R. S.; Philip, Ligy; Marathe, R. R.; Sahu, L. K.; Sudheer, K. P.; Gunthe, S. S.

    2017-01-01

    Macrofungi have long been investigated for various scientific purposes including their food and medicinal characteristics. Their role in aerobiology as a fraction of the primary biological aerosol particles (PBAPs), however, has been poorly studied. In this study, we present a source of macrofungi with two different but interdependent objectives: (i) to characterize the macrofungi from a tropical dry evergreen biome in southern India using advanced molecular techniques to enrich the database from this region, and (ii) to assess whether identified species of macrofungi are a potential source of atmospheric PBAPs. From the DNA analysis, we report the diversity of the terrestrial macrofungi from a tropical dry evergreen biome robustly supported by the statistical analyses for diversity conclusions. A total of 113 macrofungal species belonging to 54 genera and 23 families were recorded, with Basidiomycota and Ascomycota constituting 96% and 4% of the species, respectively. The highest species richness was found in the family Agaricaceae (25.3%) followed by Polyporaceae (15.3%) and Marasmiaceae (10.8%). The difference in the distribution of commonly observed macrofungal families over this location was compared with other locations in India (Karnataka, Kerala, Maharashtra, and West Bengal) using two statistical tests. The distributions of the terrestrial macrofungi were distinctly different in each ecosystem. We further attempted to demonstrate the potential role of terrestrial macrofungi as a source of PBAPs in ambient air. In our opinion, the findings from this ecosystem of India will enhance our understanding of the distribution, diversity, ecology, and biological prospects of terrestrial macrofungi as well as their potential to contribute to airborne fungal aerosols. PMID:28072853

  1. Coastal Hazard due to Tropical Cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Silva-Casarin, R.; Mendoza-Baldwin, E.; Marino-Tapia, I.; Enriquez, C.; Ruiz, G.; Escalante-MAncera, E.; Ruíz-Rentería, F.

    2013-05-01

    The Mexican coast is hit every year by at least 3 cyclones and it is affected for nearly 59 hours a year on average; this induces undesirable consequences, such as coastal erosion and flooding. To evaluate the hazard to which the coastal zone is exposes, a historical characterization of atmospheric conditions (surface winds and pressure conditions of the storms), waves (wave heights and their associated wave periods) and flooding levels due to tropical storms for more than 60 years is presented. The atmospheric and wave conditions were evaluated using a modification of the original parametric Hydromet-Rankin Vortex Model by Bretschneider (1990) and Holland (1980) as presented by Silva, et al. (2002). The flooding levels caused by hurricanes were estimated using a two-dimensional, vertically averaged finite volume model to evaluate the storm surge, Posada et al. (2008). The cyclone model was compared to the data series of 29 cyclones recorded by buoys of the National Data Buoy Center-NOAA and some data recorded in shallow waters near Cancun, Mexico and the flooding model was compared with observed data from Cancun, Mexico; both models gave good results. For the extreme analyses of wind, wave heights and maximum flooding levels on the Mexican coasts, maps of the scale and location parameters used in the Weibull cumulative distribution function and numerical results for different return periods are provided. The historical occurrence of tropical storms is also revised as some studies indicate that the average intensity of tropical cyclones is increasing; no definite trends pointing to an increase in storm frequency or intensity were found. What was in fact found is that although there are more cyclones in the Pacific Ocean and these persist longer, the intensity of the cyclones in the Atlantic Ocean is greater affecting. In any case, the strong necessity of avoiding storm induced coastal damage (erosion and flooding) is reflected in numerous works, such as this one

  2. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest

    PubMed Central

    Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J.; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang

    2012-01-01

    Background and Aims The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. Methods A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure–volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. Key Results It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (Dh) and higher mass-based photosynthetic rate (Am); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π0) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, Am, and dry season π0. Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, Dh, as well as dry season π0. Both wood density and leaf density were closely correlated with leaf water-stress tolerance and Am. Conclusions The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves. PMID:22585930

  3. Mexico, Mexicans and Mexican Americans in Secondary-School United States History Textbooks.

    ERIC Educational Resources Information Center

    Salvucci, Linda K.

    1991-01-01

    Discusses coverage of Mexican history and Mexican Americans in 10 U.S. history textbooks approved for use in Texas. Criticizes the lack of complete information, ethnocentricity, and failure to present the Mexican point of view. Argues that U.S. history courses should cover topics of Mexican history, including Spanish colonialism, the Texas…

  4. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    PubMed

    Pulla, Sandeep; Riotte, Jean; Suresh, H S; Dattaraja, H S; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(-)-N nor NH4(+)-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  5. Controls of Soil Spatial Variability in a Dry Tropical Forest

    PubMed Central

    Pulla, Sandeep; Riotte, Jean; Suresh, H. S.; Dattaraja, H. S.; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3−-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088

  6. Above Canopy Emissions of Isoprene and Monoterpenes from a Southeast Asian Tropical Forest

    NASA Astrophysics Data System (ADS)

    Baker, B.; Johnson, C.; Cai, Z.; Guenther, A.; Greenberg, J.; Bai, J.; Li, Q.

    2003-12-01

    Fluxes of isoprene were measured using the eddy covariance technique and an ozone chemiluminescence isoprene sensor above a secondary tropical forest/rubber tree plantation located in the Xishuangbanna region of southern China during the wet and dry seasons. Fluxes of monoterpenes were inferred from ambient boundary layer concentrations (wet season) and from relaxed eddy accumulation measurements (dry season). Isoprene emissions were comparable to what has been observed from other tropical forests in Africa and South America. In this forest, monoterpene emissions were much higher during the wet season due to the senescence of the rubber trees during the dry season. These flux measurements represent the first ecosystem level flux measurements reported from Southeast Asian tropical forests.

  7. Diptera of Medico-Legal Importance Associated With Pig Carrion in a Tropical Dry Forest.

    PubMed

    Vasconcelos, S D; Salgado, R L; Barbosa, T M; Souza, J R B

    2016-06-20

    The diversity of necrophagous Diptera is largely unknown in seasonally dry tropical forests, despite their medical, veterinary, and forensic relevance. We performed a study in the dry Caatinga forest exclusive to Brazil in order to assess the diversity and temporal pattern of Diptera species using pig carcasses as substrates. Adults were collected daily until complete skeletonization. We collected 17,142 adults from 18 families, 10 of which comprise species with known necrophagous habits. The most abundant families were Calliphoridae (47.3% of specimens), Sarcophagidae (20.8%), and Muscidae (15.5%), whereas Sarcophagidae stood out in terms of richness with 21 species. The native Cochliomyia macellaria (F.) (Diptera: Calliphoridae) and the invasive Chrysomya albiceps (Wiedmann) (Calliphoridae) were the dominant species. A total of 18 species reached the carcass during the first 48 h postdeath. The bloated and active decay stages had the highest richness and abundance of dipterans. From a forensic standpoint, C. macellaria and C. albiceps are likely to aid in establishing postmortem interval due to their early arrival and high abundance on the carcass. Despite harsh environmental conditions, the Caatinga harbors a rich assemblage of dipterans that play a key role in carrion decomposition. Their medico-veterinary importance is strengthened by the poor local sanitary conditions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity.

    PubMed

    Bongers, Frans; Poorter, Lourens; Hawthorne, William D; Sheil, Douglas

    2009-08-01

    The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331,567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.

  9. Floral traits and pollination systems in the Caatinga, a Brazilian tropical dry forest.

    PubMed

    Machado, Isabel Cristina; Lopes, Ariadna Valentina

    2004-09-01

    Pollination is a critical stage in plant reproduction and thus in the maintenance and evolution of species and communities. The Caatinga is the fourth largest ecosystem in Brazil, but despite its great extent and its importance few studies providing ecological information are available, with a notable lack of work focusing on pollination biology. Here, general data are presented regarding the frequency of pollination systems within Caatinga communities, with the aim of characterizing patterns related to floral attributes in order to make possible comparisons with data for plant communities in other tropical areas, and to test ideas about the utility of syndromes. This paper also intends to provide a reference point for further studies on pollination ecology in this threatened ecosystem. The floral traits and the pollination systems of 147 species were analysed in three areas of Caatinga vegetation in northeastern Brazil, and compared with world-wide studies focusing on the same subject. For each species, floral attributes were recorded as form, size, colour, rewards and pollination units. The species were grouped into 12 guilds according to the main pollinator vector. Analyses of the frequencies of the floral traits and pollination systems were undertaken. Nectar and pollen were the most common floral resources and insect pollination was the most frequent, occurring in 69.9 % of the studied species. Of the entomophilous species, 61.7 % were considered to be melittophilous (43.1 % of the total). Vertebrate pollination occurred in 28.1 % of the species (ornithophily in 15.0 % and chiropterophily in 13.1 %), and anemophily was recorded in only 2.0 %. The results indicated that the pollination systems in Caatinga, despite climatic restrictions, are diversified, with a low percentage of generalist flowers, and similar to other tropical dry and wet forest communities, including those with high rainfall levels.

  10. Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions

    PubMed Central

    Zuidema, Pieter A.; Martínez-Ramos, Miguel

    2009-01-01

    Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees—those that have not attained the canopy—are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests. Electronic supplementary material The online version of this article (doi:10.1007/s

  11. Methyl Chloride Emission from Tropical Plants

    NASA Astrophysics Data System (ADS)

    Yokouchi, Y.; Ikeda, M.; Ikeda, M.; Inuzuka, Y.; Yukawa, T.

    2001-12-01

    We studied CH3Cl emissions from tropical plants in Tropical Rainforest Glasshouse (25 m x 20 m x 10-24 m high) in Tsukuba Botanical Gardens, where more than 200 representative species from lowland tropical forests of Southeast Asia grow. CH3Cl concentrations were always higher in the glasshouse than outside and increased significantly when the windows were closed. The fluxes of CH3Cl from the tropical rainforest system in the glasshouse were calculated from the averages of their accumulation rates when the windows were closed (average; 142 pptv”h-1) with the dimension of the glasshouse. Emission rates per unit area for CH3Cl was 5.4 mg m-2 h-1. In order to determine which of the plants or whether the soil is responsible for the increase of CH3Cl, flux measurements were done by using an enclosure method. The soil was found to take up CH3Cl at a small rate. On the other hand, some plants from the Marattiaceae, Cyatheaceae (tree fern), Dicksoniaceae, and Dipterocarpaceae families were found to significantly emit CH3Cl. The first three families are ferns commonly growing in tropical forests, and Dipterocarpaceae species are dominant in the tropical rainforests of Southeast Asia. The average CH3Cl emission rate from the 9 plants in these families was around 0.5 mg (g dry leaf)-1”h-1. As for Cyatheaceae, we conducted a flux measurement from Cyathea lepifera E.Copel. in a subtropical forest in Okinawa and detected high emissions of CH3Cl amounting to 1.1 mg (g dry leaf)-1”h-1. Strong emissions of CH3Cl from tropical forests raises questions about the trends of chlorine compounds in the future and in the past.

  12. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding

    Treesearch

    Fernando Pineda-Garcia; Horacio Paz; Frederick C. Meinzer

    2013-01-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early...

  13. DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of India.

    PubMed

    Nithaniyal, Stalin; Newmaster, Steven G; Ragupathy, Subramanyam; Krishnamoorthy, Devanathan; Vassou, Sophie Lorraine; Parani, Madasamy

    2014-01-01

    India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF) barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF) species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK) correctly identified 136 out of 143 species (95%). This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value.

  14. DNA Barcode Authentication of Wood Samples of Threatened and Commercial Timber Trees within the Tropical Dry Evergreen Forest of India

    PubMed Central

    Nithaniyal, Stalin; Newmaster, Steven G.; Ragupathy, Subramanyam; Krishnamoorthy, Devanathan; Vassou, Sophie Lorraine; Parani, Madasamy

    2014-01-01

    Background India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF) barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. Methodology/Principal Findings We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF) species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK) correctly identified 136 out of 143 species (95%). This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. Conclusions We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value. PMID:25259794

  15. Water-use advantage for lianas over trees in tropical seasonal forests.

    PubMed

    Chen, Ya-Jun; Cao, Kun-Fang; Schnitzer, Stefan A; Fan, Ze-Xin; Zhang, Jiao-Lin; Bongers, Frans

    2015-01-01

    Lianas exhibit peak abundance in tropical forests with strong seasonal droughts, the eco-physiological mechanisms associated with lianas coping with water deficits are poorly understood. We examined soil water partitioning, sap flow, and canopy eco-physiological properties for 99 individuals of 15 liana and 34 co-occurring tree species in three tropical forests that differed in soil water availability. In the dry season, lianas used a higher proportion of deep soil water in the karst forest (KF; an area with severe seasonal soil water deficit (SSWD)) and in the tropical seasonal forest (TSF, moderate SSWD), permitting them to maintain a comparable leaf water status than trees in the TSF or a better status than trees in the KF. Lianas exhibited strong stomatal control to maximize carbon fixation while minimizing dry season water loss. During the dry period, lianas significantly decreased water consumption in the TSF and the KF. Additionally, lianas had a much higher maximum photosynthetic rates and sap flux density in the wet season and a lower proportional decline in photosynthesis in the dry season compared with those of trees. Our results indicated that access to deep soil water and strong physiological adjustments in the dry season together with active wet-season photosynthesis may explain the high abundance of lianas in seasonally dry forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Response of Thalassia Testudinum Morphometry and Distribution to Environmental Drivers in a Pristine Tropical Lagoon

    PubMed Central

    2016-01-01

    This study was undertaken to determine the relationships between the biomass, morphometry, and density of short shoots (SS) of the tropical seagrass Thalassia testudinum and the physical-environmental forcing in the region. Seasonal sampling surveys were undertaken four times in Bahia de la Ascension, a shallow estuary in the western Mexican Caribbean, to measure plant morphology and environmental variables. The estuary has a fresh water-influenced inner bay, a large central basin and a marine zone featuring a barrier reef at the seaward margin. Leaf size was positively correlated with increasing salinity, but total biomass was not, being similar across most of the sites. Aboveground biomass exhibited seasonal differences in dry and rainy seasons along the bay, most markedly in the brackish inner bay where an abrupt decline in biomass coincided with the rainy season. The relationship between nutrients and biomass indicates that the aboveground/belowground biomass ratio increases as nutrient availability increases. Areal cover was inversely correlated with SS density during both dry and rainy seasons. Maximum SS recruitment coincided with the rainy season. Peaks in SS density were recorded in the freshwater-influenced inner bay during an ENSO cold phase in 2007 (“La Niña”) which is associated with a wetter dry season and following a strong storm (Hurricane Dean). The onset of the rainy season influences both shoot density and T. testudinum biomass by controlling the freshwater input to the bay and thus, the system’s salinity gradient and external nutrients supply from the coastal wetland. PMID:27736904

  17. Response of Thalassia Testudinum Morphometry and Distribution to Environmental Drivers in a Pristine Tropical Lagoon.

    PubMed

    Medina-Gómez, Israel; Madden, Christopher J; Herrera-Silveira, Jorge; Kjerfve, Björn

    2016-01-01

    This study was undertaken to determine the relationships between the biomass, morphometry, and density of short shoots (SS) of the tropical seagrass Thalassia testudinum and the physical-environmental forcing in the region. Seasonal sampling surveys were undertaken four times in Bahia de la Ascension, a shallow estuary in the western Mexican Caribbean, to measure plant morphology and environmental variables. The estuary has a fresh water-influenced inner bay, a large central basin and a marine zone featuring a barrier reef at the seaward margin. Leaf size was positively correlated with increasing salinity, but total biomass was not, being similar across most of the sites. Aboveground biomass exhibited seasonal differences in dry and rainy seasons along the bay, most markedly in the brackish inner bay where an abrupt decline in biomass coincided with the rainy season. The relationship between nutrients and biomass indicates that the aboveground/belowground biomass ratio increases as nutrient availability increases. Areal cover was inversely correlated with SS density during both dry and rainy seasons. Maximum SS recruitment coincided with the rainy season. Peaks in SS density were recorded in the freshwater-influenced inner bay during an ENSO cold phase in 2007 ("La Niña") which is associated with a wetter dry season and following a strong storm (Hurricane Dean). The onset of the rainy season influences both shoot density and T. testudinum biomass by controlling the freshwater input to the bay and thus, the system's salinity gradient and external nutrients supply from the coastal wetland.

  18. Reduced dry season transpiration is coupled with shallow soil water use in tropical montane forest trees.

    PubMed

    Muñoz-Villers, Lyssette E; Holwerda, Friso; Alvarado-Barrientos, M Susana; Geissert, Daniel R; Dawson, Todd E

    2018-06-25

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF ecohydrology remain poorly understood. To investigate functional responses of TMCF trees to reduced water availability, we conducted a study during the 2014 dry season in the lower altitudinal limit of TMCF in central Veracruz, Mexico. Temporal variations of transpiration, depth of water uptake and tree water sources were examined for three dominant, brevi-deciduous species using micrometeorological, sap flow and soil moisture measurements, in combination with oxygen and hydrogen stable isotope composition of rainfall, tree xylem, soil and stream water. Over the course of the dry season, reductions in crown conductance and transpiration were observed in canopy species (43 and 34%, respectively) and mid-story trees (23 and 8%), as atmospheric demand increased and soil moisture decreased. Canopy species consistently showed more depleted isotope values compared to mid-story trees. However, MixSIAR Bayesian model results showed that the evaporated (enriched) soil water pool was the main source for trees despite reduced soil moisture. Additionally, while increases in tree water uptake from deeper to shallower soil water sources occurred, concomitant decreases in transpiration were observed as the dry season progressed. A larger reduction in deep soil water use was observed for canopy species (from 79 ± 19 to 24 ± 20%) compared to mid-story trees (from 12 ± 17 to 10 ± 12%). The increase in shallower soil water sources may reflect a trade-off between water and nutrient requirements in this forest.

  19. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    PubMed

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans

    2014-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest

  20. Functional Trait Strategies of Trees in Dry and Wet Tropical Forests Are Similar but Differ in Their Consequences for Succession

    PubMed Central

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A.; Poorter, Lourens; Bongers, Frans

    2015-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest

  1. INVENTORY OF MOSQUITOES (DIPTERA: CULICIDAE) IN CONSERVATION UNITS IN BRAZILIAN TROPICAL DRY FORESTS.

    PubMed

    Santos, Cleandson Ferreira; Silva, Alex Chavier; Rodrigues, Raquel Andrade; de Jesus, Jamilli Sanndy Ramos; Borges, Magno Augusto Zazá

    2015-01-01

    In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF) fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.

  2. How Mexican Is a Spanish-Speaking Mexican American?

    ERIC Educational Resources Information Center

    Patella, Victoria M.

    To investigate the validity of language usage as an indicator of identification with the Mexican American subculture, this study hypothesized that greater use of Spanish than English would be correlated with characteristics consistent with the ideal, typical, Mexican American family in terms of family of orientation and aspirations for future…

  3. Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments

    PubMed Central

    Lüttge, Ulrich

    2010-01-01

    Background and aims Single stressors such as scarcity of water and extreme temperatures dominate the struggle for life in severely dry desert ecosystems or cold polar regions and at high elevations. In contrast, stress in the tropics typically arises from a dynamic network of interacting stressors, such as availability of water, CO2, light and nutrients, temperature and salinity. This requires more plastic spatio-temporal responsiveness and versatility in the acquisition and defence of ecological niches. Crassulacean acid metabolism The mode of photosynthesis of crassulacean acid metabolism (CAM) is described and its flexible expression endows plants with powerful strategies for both acclimation and adaptation. Thus, CAM plants are able to inhabit many diverse habitats in the tropics and are not, as commonly thought, successful predominantly in dry, high-insolation habitats. Tropical CAM habitats Typical tropical CAM habitats or ecosystems include exposed lava fields, rock outcrops of inselbergs, salinas, savannas, restingas, high-altitude páramos, dry forests and moist forests. Morphotypical and physiotypical plasticity of CAM Morphotypical and physiotypical plasticity of CAM phenotypes allow a wide ecophysiological amplitude of niche occupation in the tropics. Physiological and biochemical plasticity appear more responsive by having more readily reversible variations in performance than do morphological adaptations. This makes CAM plants particularly fit for the multi-factor stressor networks of tropical forests. Thus, while the physiognomy of semi-deserts outside the tropics is often determined by tall succulent CAM plants, tropical forests house many more CAM plants in terms of quantity (biomass) and quality (species diversity). PMID:22476063

  4. Tropical and subtropical humid forests

    Treesearch

    S.J. Hall

    2011-01-01

    Tropical humid forests of the United States are located below 1000 m in elevation and experience average year-round temperatures between 20 °C to 26 °C, receive more than 1500 mm of precipitation annually, and experience fewer than three dry months per year.

  5. Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments.

    PubMed

    Lüttge, Ulrich

    2010-01-01

    Single stressors such as scarcity of water and extreme temperatures dominate the struggle for life in severely dry desert ecosystems or cold polar regions and at high elevations. In contrast, stress in the tropics typically arises from a dynamic network of interacting stressors, such as availability of water, CO(2), light and nutrients, temperature and salinity. This requires more plastic spatio-temporal responsiveness and versatility in the acquisition and defence of ecological niches. The mode of photosynthesis of crassulacean acid metabolism (CAM) is described and its flexible expression endows plants with powerful strategies for both acclimation and adaptation. Thus, CAM plants are able to inhabit many diverse habitats in the tropics and are not, as commonly thought, successful predominantly in dry, high-insolation habitats. Typical tropical CAM habitats or ecosystems include exposed lava fields, rock outcrops of inselbergs, salinas, savannas, restingas, high-altitude páramos, dry forests and moist forests. Morphotypical and physiotypical plasticity of CAM phenotypes allow a wide ecophysiological amplitude of niche occupation in the tropics. Physiological and biochemical plasticity appear more responsive by having more readily reversible variations in performance than do morphological adaptations. This makes CAM plants particularly fit for the multi-factor stressor networks of tropical forests. Thus, while the physiognomy of semi-deserts outside the tropics is often determined by tall succulent CAM plants, tropical forests house many more CAM plants in terms of quantity (biomass) and quality (species diversity).

  6. Warm Water Pools of the Western Caribbean and Eastern Tropical Pacific: Their Influence on Intraseasonal Rainfall Regimes and Tropical Storm Activity in Mexico

    NASA Astrophysics Data System (ADS)

    Douglas, A. V.; Englehart, P. J.

    2007-05-01

    A dipole in tropical cyclone development between the Caribbean and the eastern tropical Pacific will be examined relative to its affect on southern Mexican rainfall. With the change over in the AMO and PDO in 1994 and 1998, respectively, tropical storm genesis has been increasing in the Caribbean while declining in the tropical east Pacific. This dipole in tropical cyclone development appears to be related to changes in the pre storm season heat content of the two ocean basins (data Scripps Institution of Oceanography). Preliminary work indicates that if the Caribbean is warmer than the Pacific by late May the dipole will be accentuated with a pronounced decrease in tropical storms in the east Pacific with an early and prolonged season in the Caribbean. In recent years there appears to have been an increase in the intensity and duration of midsummer drought (Canicula) in Mexico associated with changes in the PDO and AMO. These long term ocean oscillations appear to control the dipole in the strength of the Caribbean and East Pacific warm pools. Mid summer drought is a normal occurrence in much of Mexico and Central America, but the intensified droughts of the recent period have stressed the agricultural community of the region. Based on preliminary work, it appears that the recent increased frequency of midsummer drought can be linked to a shift in the warmest pool from the East Pacific to the Caribbean.

  7. Ant Foraging As an Indicator of Tropical Dry Forest Restoration.

    PubMed

    Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C

    2016-08-01

    Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Floral Traits and Pollination Systems in the Caatinga, a Brazilian Tropical Dry Forest

    PubMed Central

    Machado, Isabel Cristina; Lopes, Ariadna Valentina

    2004-01-01

    • Background and aims Pollination is a critical stage in plant reproduction and thus in the maintenance and evolution of species and communities. The Caatinga is the fourth largest ecosystem in Brazil, but despite its great extent and its importance few studies providing ecological information are available, with a notable lack of work focusing on pollination biology. Here, general data are presented regarding the frequency of pollination systems within Caatinga communities, with the aim of characterizing patterns related to floral attributes in order to make possible comparisons with data for plant communities in other tropical areas, and to test ideas about the utility of syndromes. This paper also intends to provide a reference point for further studies on pollination ecology in this threatened ecosystem. • Methods The floral traits and the pollination systems of 147 species were analysed in three areas of Caatinga vegetation in northeastern Brazil, and compared with world-wide studies focusing on the same subject. For each species, floral attributes were recorded as form, size, colour, rewards and pollination units. The species were grouped into 12 guilds according to the main pollinator vector. Analyses of the frequencies of the floral traits and pollination systems were undertaken. • Key Results Nectar and pollen were the most common floral resources and insect pollination was the most frequent, occurring in 69·9 % of the studied species. Of the entomophilous species, 61·7 % were considered to be melittophilous (43·1 % of the total). Vertebrate pollination occurred in 28·1 % of the species (ornithophily in 15·0 % and chiropterophily in 13·1 %), and anemophily was recorded in only 2·0 %. • Conclusions The results indicated that the pollination systems in Caatinga, despite climatic restrictions, are diversified, with a low percentage of generalist flowers, and similar to other tropical dry and wet forest communities, including those with high

  9. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico.

    PubMed

    Ceccon, Eliane; Hernández, Patricia

    2009-01-01

    In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest's capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E) of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE). We found a strong seasonality in seed rain (96% of seeds fell in the dry season) in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard's similarity index between E and WE sites was relatively low (0.57). Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%), followed by anemochory (39%) and zoochory (13%). In relation to seed density, anemochory was the most frequent dispersal mode (88%). Most species in the zone were categorized as small seeds (92%), and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the area; some

  10. Tropical Deforestation in the Bolivian Amazon

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.; Steininger, Marc K.; Townshend, John R. G.; Killeen, Timothy R.; Desch, Arthur

    2000-01-01

    Landsat satellite images from the mid-1980s and early 1990s were used to map tropical forest extent and deforestation in approximately 800,000 sq km of Amazonian Bolivia. Forest cover extent, including tropical deciduous forest, totalled 472,000 sq km while the area of natural non-forest formations totalled 298,000 sq km. The area deforested totalled 15,000 sq km in the middle 1980s and 28,800 sq km by the early 1990s. The rate of tropical deforestation in the >1,000 mm/y precipitation forest zone of Bolivia was 2,200 sq km/y from 1985-1986 to 1992-1994. We document a spatially-concentrated "deforestation zone" in Santa Cruz Department where >60% of the Bolivian deforestation is occurring at an accelerating rate in areas of tropical deciduous dry forest.

  11. The Evolution of the Mexican Military: From the Mexican Revolution In 1910 to 2014

    DTIC Science & Technology

    2015-03-01

    government, the Mexican army’s track record and SEDENA’s laissez - faire approach demonstrate that the sheltering of the military, which was...Changes to the Modern Military’s Leadership and Structure ......41 D. THE MEXICAN MILITARY AND THE HUMAN RIGHTS VIOLATIONS... leadership and structure of the contemporary Mexican military was directly shaped by the events and actions of the Mexican Revolution. Through the research

  12. African Swine Fever Diagnosis Adapted to Tropical Conditions by the Use of Dried-blood Filter Papers.

    PubMed

    Randriamparany, T; Kouakou, K V; Michaud, V; Fernández-Pinero, J; Gallardo, C; Le Potier, M-F; Rabenarivahiny, R; Couacy-Hymann, E; Raherimandimby, M; Albina, E

    2016-08-01

    The performance of Whatman 3-MM filter papers for the collection, drying, shipment and long-term storage of blood at ambient temperature, and for the detection of African swine fever virus and antibodies was assessed. Conventional and real-time PCR, viral isolation and antibody detection by ELISA were performed on paired samples (blood/tissue versus dried-blood 3-MM filter papers) collected from experimentally infected pigs and from farm pigs in Madagascar and Côte d'Ivoire. 3-MM filter papers were used directly in the conventional and real-time PCR without previous extraction of nucleic acids. Tests that performed better with 3-MM filter papers were in descending order: virus isolation, real-time UPL PCR and conventional PCR. The analytical sensitivity of real-time UPL PCR on filter papers was similar to conventional testing (virus isolation or conventional PCR) on organs or blood. In addition, blood-dried filter papers were tested in ELISA for antibody detection and the observed sensitivity was very close to conventional detection on serum samples and gave comparable results. Filter papers were stored up to 9 months at 20-25°C and for 2 months at 37°C without significant loss of sensitivity for virus genome detection. All tests on 3-MM filter papers had 100% specificity compared to the gold standards. Whatman 3-MM filter papers have the advantage of being cheap and of preserving virus viability for future virus isolation and characterization. In this study, Whatman 3-MM filter papers proved to be a suitable support for the collection, storage and use of blood in remote areas of tropical countries without the need for a cold chain and thus provide new possibilities for antibody testing and virus isolation. © 2014 Blackwell Verlag GmbH.

  13. Benthic amphipods (Amphipoda: Gammaridea and Corophiidea) from the Mexican southeast sector of the Gulf of Mexico: checklist, new records and zoogeographic comments.

    PubMed

    Paz-Ríos, Carlos E; Ardisson, Pedro-Luis

    2013-01-01

    The southeast region of the Gulf of Mexico is considered to be biologically important, because it is a connection and transition zone between the Caribbean and the Gulf of Mexico, harboring great marine biodiversity. Nevertheless, benthic amphipods have been poorly studied in the Mexican southeast sector of the Gulf of Mexico with few studies listing species. The aim of this study is to provide an update checklist of species for the Mexican southeast sector (based on literature review and records from the present study) as well as a brief zoogeographical analysis for the Gulf of Mexico amphipod fauna, putting them in context with the fauna on the tropical western Atlantic. Fifty-five species were listed for the Mexican southeast sector; 36 of them showed a geographical extension to the Yucatan continental shelf representing 23 new records for the Mexican southeast sector, nine for the southeast region and four for the Gulf of Mexico. Based on the zoogeographical analysis, there is support of the application of Carolinian and Caribbean zoogeographic provinces to amphipods in the Gulf of Mexico.

  14. Seasonal Precipitation Variability Effects on Carbon Exchange in a Tropical Dry Forest of Northwest Mexico

    NASA Astrophysics Data System (ADS)

    Verduzco, V.; Garatuza-Payan, J.; Yépez, E. A.; Watts, C. J.; Rodriguez, J. C.; Robles-Morua, A.; Vivoni, E. R.

    2015-12-01

    The Tropical Dry Forest (TDF) cover a large area in tropical and subtropical regions in the Americas and its productivity is thought to have an important contribution to the atmospheric carbon fluxes. However, due to this ecosystem complex dynamics, our understanding about the mechanisms controlling net ecosystem exchange is limited. In this study, five years of continue water and carbon fluxes measurements from eddy covariance complemented with remotely sensed vegetation greenness were used to investigate the ecosystem carbon balance of a TDF in the North American Monsoon region under different hydro climatic conditions. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer a predominant heterotrophic control owed to high decomposition of accumulated labile soil organic matter from prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production over the year, but can be overwhelmed by the strength of the primary productivity during the monsoon season. Precipitation characteristics during the monsoon have significant controls on sustaining carbon fixation in the TDF ecosystem into the fall season. A threshold of ~350 to 400 mm of summer precipitation was identify to switch the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This research points at the needs for understanding the potential effects of changing seasonal precipitation patterns on ecosystem dynamics and carbon sequestration in subtropical regions.

  15. Plant diversity patterns in neotropical dry forests and their conservation implications.

    PubMed

    Banda-R, Karina; Delgado-Salinas, Alfonso; Dexter, Kyle G; Linares-Palomino, Reynaldo; Oliveira-Filho, Ary; Prado, Darién; Pullan, Martin; Quintana, Catalina; Riina, Ricarda; Rodríguez M, Gina M; Weintritt, Julia; Acevedo-Rodríguez, Pedro; Adarve, Juan; Álvarez, Esteban; Aranguren B, Anairamiz; Arteaga, Julián Camilo; Aymard, Gerardo; Castaño, Alejandro; Ceballos-Mago, Natalia; Cogollo, Álvaro; Cuadros, Hermes; Delgado, Freddy; Devia, Wilson; Dueñas, Hilda; Fajardo, Laurie; Fernández, Ángel; Fernández, Miller Ángel; Franklin, Janet; Freid, Ethan H; Galetti, Luciano A; Gonto, Reina; González-M, Roy; Graveson, Roger; Helmer, Eileen H; Idárraga, Álvaro; López, René; Marcano-Vega, Humfredo; Martínez, Olga G; Maturo, Hernán M; McDonald, Morag; McLaren, Kurt; Melo, Omar; Mijares, Francisco; Mogni, Virginia; Molina, Diego; Moreno, Natalia Del Pilar; Nassar, Jafet M; Neves, Danilo M; Oakley, Luis J; Oatham, Michael; Olvera-Luna, Alma Rosa; Pezzini, Flávia F; Dominguez, Orlando Joel Reyes; Ríos, María Elvira; Rivera, Orlando; Rodríguez, Nelly; Rojas, Alicia; Särkinen, Tiina; Sánchez, Roberto; Smith, Melvin; Vargas, Carlos; Villanueva, Boris; Pennington, R Toby

    2016-09-23

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale. Copyright © 2016, American Association for the Advancement of Science.

  16. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    PubMed

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  17. Growth status among low-income Mexican and Mexican-American elementary school children.

    PubMed

    Winham, Donna M

    2012-01-01

    Childhood obesity remains a problem among Latino children in the United States. Acculturation to an American diet and sedentary lifestyle may be causative factors. The research purpose was to assess child growth status, including sitting height, in relation to acculturation among Mexican and Mexican-American children. Anthropometric measures of weight, height, and sitting height were taken in a cross-sectional survey of Mexican and Mexican-American elementary school children (N = 484) in Phoenix, Arizona. Height-for-age (HAZ), weight-for-age (WAZ), and body mass index (BMI) Z-scores were calculated based on the Centers for Disease Control 2000 growth reference. Sitting height Z-scores (SHZ) were determined from the NHANES III reference values. Questions about language usage were asked of the children as a proxy for acculturation. Differences in growth measures and acculturation between those born in the United States or Mexico were evaluated by chi-square or t-tests. The mean HAZ value (-0.23) was close to the reference median. There were no significant differences in HAZ or SHZ by birth country or gender. WAZ values for boys were significantly higher than for girls. More girls (64%) than boys (54%) had normal BMIs. More Mexican-born boys (28%) were obese than Mexican-born girls (17%; P = 0.026) in comparison to the US-born boys (31%) and girls (24%; P = n.s.). Acculturation scale score and male gender predicted a small percentage of the variation in BMIZ. Environmental and cultural factors that promote obesity among low-income Mexican and Mexican-American children are similar regardless of birth country but boys may be at greater risk of obesity than girls. Copyright © 2012 Wiley Periodicals, Inc.

  18. Effects of shifting seasonal rainfall patterns on net primary productivity and carbon storage in tropical seasonally dry ecosystems

    NASA Astrophysics Data System (ADS)

    Rohr, T.; Manzoni, S.; Feng, X.; Menezes, R.; Porporato, A. M.

    2013-12-01

    Although seasonally dry ecosystems (SDEs), identified by prolonged drought followed by a short, but intense, rainy season, cover large regions of the tropics, their biogeochemical response to seasonal rainfall and soil carbon (C) sequestration potential are not well characterized. Both productivity and soil respiration are positively affected by seasonal soil moisture availability, creating a delicate balance between C deposition through litterfall and C losses through heterotrophic respiration. As climate change projections for the tropics predict decreased annual rainfall and increased dry season length, it is critical to understand how variations in seasonal rainfall distributions control this balance. To address this question, we develop a minimal model linking the seasonal behavior of the ensemble soil moisture, plant productivity, the related soil C inputs through litterfall, and soil C dynamics. The model is parameterized for a case study from a drought-deciduous caatinga ecosystem in northeastern Brazil. Results indicate that when altering the seasonal rainfall patterns for a fixed annual rainfall, both plant productivity and soil C sequestration potential are largely, and nonlinearly, dependent on wet season duration. Moreover, total annual rainfall plays a dominant role in describing this relationship, leading at times to the emergence of distinct optima in both primary production and C sequestration. Examining these results in the context of climate-driven changes to wet season duration and mean annual precipitation indicate that the initial hydroclimatic regime of a particular ecosystem is an important factor to predict both the magnitude and direction of the effects of shifting seasonal distributions on productivity and C storage. Although highly productive ecosystems will likely experience declining C storage with predicted climate shifts, those currently operating well below peak production can potentially see improved C stocks with the onset of

  19. Mexican Parenting Questionnaire (MPQ)

    ERIC Educational Resources Information Center

    Halgunseth, Linda C.; Ispa, Jean M.

    2012-01-01

    The present study was conducted in four phases and constructed a self-report parenting instrument for use with Mexican immigrant mothers of children aged 6 to 10. The 14-item measure was based on semistructured qualitative interviews with Mexican immigrant mothers (N = 10), was refined by a focus group of Mexican immigrant mothers (N = 5), and was…

  20. Land application of mine water causes minimal uranium loss offsite in the wet-dry tropics: Ranger Uranium Mine, Northern Territory, Australia.

    PubMed

    Mumtaz, Saqib; Streten, Claire; Parry, David L; McGuinness, Keith A; Lu, Ping; Gibb, Karen S

    2015-11-01

    Ranger Uranium Mine (RUM) is situated in the wet-dry tropics of Northern Australia. Land application (irrigation) of stockpile (ore and waste) runoff water to natural woodland on the mine lease is a key part of water management at the mine. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium (U) and other metals concentrations. Knowledge of seasonal and temporal changes in soil U and physicochemical parameters at RUM LAAs is important to develop suitable management and rehabilitation strategies. Therefore, soil samples were collected from low, medium, high and very high U sites at RUM LAAs for two consecutive years and the effect of time and season on soil physicochemical parameters particularly U and other major solutes applied in irrigation water was measured. Concentrations of some of the solutes applied in the irrigation water such as sulphur (S), iron (Fe) and calcium (Ca) showed significant seasonal and temporal changes. Soil S, Fe and Ca concentration decreased from year 1 to year 2 and from dry to wet seasons during both years. Soil U followed the same pattern except that we recorded an increase in soil U concentrations at most of the RUM LAAs after year 2 wet season compared to year 2 dry season. Thus, these sites did not show a considerable decrease in soil U concentration from year 1 to year 2. Sites which contained elevated U after wet season 2 also had higher moisture content which suggests that pooling of U containing rainwater at these sites may be responsible for elevated U. Thus, U may be redistributed within RUM LAAs due to surface water movement. The study also suggested that a decrease in U concentrations in LAA soils at very high U (>900 mg kg(-1)) sites is most likely due to transport of particulate matter bound U by surface runoff and U may not be lost from the surface soil due to vertical movement through the soil profile. Uranium attached to particulate matter may reduce its potential for environmental

  1. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    NASA Astrophysics Data System (ADS)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  2. Tropical Hydroclimate Change during Heinrich Stadial 1: An Integrative Proxy-Model Synthesis

    NASA Astrophysics Data System (ADS)

    Lawman, A. E.; Sun, T.; Shanahan, T. M.; Di Nezio, P. N.; Gomez, K.; Piatrunia, N.; Sun, C.; Wu, X.; Kageyama, M.; Merkel, U.; Otto-Bliesner, B. L.; Abe-Ouchi, A.; Lohmann, G.; Singarayer, J. S.

    2017-12-01

    We explore the response of tropical climate to abrupt cooling of the North Atlantic (NA) during Heinrich Stadial 1 (HS1) combining paleoclimate proxies with model simulations. A total of 146 published paleoclimate records from tropical locations are used to categorize whether HS1 was wetter, drier, or unchanged relative to a deglacial baseline state. Only records with sufficient resolution to resolve HS1 and sufficient length to characterize the deglacial trend are considered. This synthesis reveals large-scale patterns of hydroclimate change relative to glacial conditions, confirming previously reported weaker Indian summer monsoon, a wetter southern Africa, and drying over the Caribbean. Our synthesis also reveals large-scale drying over the Maritime continent as well as wetter conditions in northern Australia and southern tropical South America. Our reinterpretation of the available proxy data reveals far more complexity and uncertainties for equatorial East Africa, a region that appears to straddle a pattern of dryer conditions to the north and wetter conditions to the south. Overall, these patterns of hydroclimate change depart from a southward shift of the Inter Tropical Convergence Zone (ITCZ), particularly outside the tropical Atlantic. We explore mechanisms driving these changes using a multi-model ensemble of "hosing" simulations performed relative to glacial conditions. The models show robust weakening of the Afro-Asian Monsoon, which we attribute to ventilation of colder mid-latitude air. Not all models simulate the remaining patterns inferred from the proxy data. The best-agreeing models indicate that cooling over the tropical NA and the Caribbean may be essential to communicate the response to the global tropics. This response can induce warming over the tropical South Atlantic via the wind-evaporation-SST feedback, driving wetter conditions in South Africa and tropical South America. Cooling over the Caribbean is communicated to the Pacific over the

  3. Botanical and ecological basis for the resilience of Antillean dry forests

    Treesearch

    A.E. Lugo; E. Medina; J. Carlos Trejo Torres; E. Helmer

    2006-01-01

    Dry forest environments limit the number of species that can survive there. Antillean dry forests have low floristic diversity and stature, high density of small and medium-sized trees, and are among the least conserved of the tropical forests. Their canopies are smooth with no emergent trees and have high species dominance. Antillean dry forests occur mostly on...

  4. Experimental defoliation affects male but not female reproductive performance of the tropical monoecious plant Croton suberosus (Euphorbiaceae).

    PubMed

    Narbona, Eduardo; Dirzo, Rodolfo

    2010-08-01

    Monoecious plants have the capacity to allocate resources separately to male and female functions more easily than hermaphrodites. This can be advantageous against environmental stresses such as leaf herbivory. However, studies showing effects of herbivory on male and female functions and on the interaction with the plant's pollinators are limited, particularly in tropical plants. Here, the effects of experimental defoliation were examined in the monoecious shrub Croton suberosus (Euphorbiaceae), a wasp-pollinated species from a Mexican tropical dry forest. Three defoliation treatments were applied: 0 % (control), 25 % (low) or 75 % (high) of plant leaf area removed. Vegetative (production of new leaves) and reproductive (pistillate and staminate flower production, pollen viability, nectar production, fruit set, and seed set) performance variables, and the abundance and activity of floral visitors were examined. Defoliated plants overcompensated for tissue loss by producing more new leaves than control plants. Production of staminate flowers gradually decreased with increasing defoliation and the floral sex ratio (staminate : pistillate flowers) was drastically reduced in high-defoliation plants. In contrast, female reproductive performance (pistillate flower production, fruit set and seed set) and pollinator visitation and abundance were not impacted by defoliation. The asymmetrical effects of defoliation on male and female traits of C. suberosus may be due to the temporal and spatial flexibility in the allocation of resources deployed by monoecious plants. We posit that this helps to maintain the plant's pollination success in the face of leaf herbivory stress.

  5. Dry bean genotype evaluation for growth, yield components and phosphorus use efficiency

    USDA-ARS?s Scientific Manuscript database

    Dry beans along with rice are staple food for populations of South America. In this tropical region beans are grown on Oxisols and phosphorus is one of the most yield limiting factors for dry bean production. A greenhouse experiment was conducted to evaluate P use efficiency in 20 promising dry bean...

  6. Effects of ENSO and Temporal Rainfall Variation on the Dynamics of Successional Communities in Old-Field Succession of a Tropical Dry Forest

    PubMed Central

    Maza-Villalobos, Susana; Poorter, Lourens; Martínez-Ramos, Miguel

    2013-01-01

    The effects of temporal variation of rainfall on secondary succession of tropical dry ecosystems are poorly understood. We studied effects of inter-seasonal and inter-year rainfall variation on the dynamics of regenerative successional communities of a tropical dry forest in Mexico. We emphasized the effects caused by the severe El Niño Southern Oscillation (ENSO) occurred in 2005. We established permanent plots in sites representing a chronosequence of Pasture (abandoned pastures, 0–1 years fallow age), Early (3–5), Intermediate (8–12), and Old-Growth Forest categories (n = 3 per category). In total, 8210 shrubs and trees 10 to 100-cm height were identified, measured, and monitored over four years. Rates of plant recruitment, growth and mortality, and gain and loss of species were quantified per season (dry vs. rainy), year, and successional category, considering whole communities and separating seedlings from sprouts and shrubs from trees. Community rates changed with rainfall variation without almost any effect of successional stage. Mortality and species loss rates peaked during the ENSO year and the following year; however, after two rainy years mortality peaked in the rainy season. Such changes could result from the severe drought in the ENSO year, and of the outbreak of biotic agents during the following rainy years. Growth, recruitment and species gain rates were higher in the rainy season but they were significantly reduced after the ENSO year. Seedlings exhibited higher recruitment and mortality rate than sprouts, and shrubs showed higher recruitment than trees. ENSO strongly impacted both the dynamics and trajectory of succession, creating transient fluctuations in the abundance and species richness of the communities. Overall, there was a net decline in plant and species density in most successional stages along the years. Therefore, strong drought events have critical consequences for regeneration dynamics, delaying the successional process

  7. Tropical Indian Ocean Variability Driving Southeast Australian Droughts

    NASA Astrophysics Data System (ADS)

    Ummenhofer, C. C.; England, M. H.; McIntosh, P. C.; Meyers, G. A.; Pook, M. J.; Risbey, J. S.; Sen Gupta, A.; Taschetto, A. S.

    2009-04-01

    Variability in the tropical Indian Ocean has widespread effects on rainfall in surrounding countries, including East Africa, India and Indonesia. The leading mode of tropical Indian Ocean variability, the Indian Ocean Dipole (IOD), is a coupled ocean-atmosphere mode characterized by sea surface temperature (SST) anomalies of opposite sign in the east and west of the basin with an associated large-scale atmospheric re-organisation. Earlier work has often focused on the positive phase of the IOD. However, we show here that the negative IOD phase is an important driver of regional rainfall variability and multi-year droughts. For southeastern Australia, we show that it is actually a lack of the negative IOD phase, rather than the positive IOD phase or Pacific variability, that provides the most robust explanation for recent drought conditions. Since 1995, a large region of Australia has been gripped by the most severe drought in living memory, the so-called "Big Dry". The ramifications for affected regions are dire, with acute water shortages for rural and metropolitan areas, record agricultural losses, the drying-out of two of Australia's major river systems and far-reaching ecosystem damage. Yet the drought's origins have remained elusive. For Southeast Australia, we show that the "Big Dry" and other iconic 20th Century droughts, including the Federation Drought (1895-1902) and World War II drought (1937-1945), are driven by tropical Indian Ocean variability, not Pacific Ocean conditions as traditionally assumed. Specifically, a conspicuous absence of characteristic Indian Ocean temperature conditions that are conducive to enhanced tropical moisture transport has deprived southeastern Australia of its normal rainfall quota. In the case of the "Big Dry", its unprecedented intensity is also related to recent above-average temperatures. Implications of recent non-uniform warming trends in the Indian Ocean and how that might affect ocean characteristics and climate in

  8. 2015-16 ENSO Drove Tropical Soil Moisture Dynamics and Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Aronson, E. L.; Dierick, D.; Botthoff, J.; Swanson, A. C.; Johnson, R. F.; Allen, M. F.

    2017-12-01

    The El Niño/Southern Oscillation Event (ENSO) cycle drives large-scale climatic trends globally. Within the new world tropics, El Niño brings dryer weather than the counterpart La Niña. Atmospheric methane growth rates have shown extreme variability over the past three decades. One proposed driver is the proportion of tropical land surface saturated, affecting methane production or consumption. We measured methane flux bimonthly through the transition of 2015-16 ENSO. The date of measurement, across El Niño and La Niña within the typical "rainy" and "dry" seasons, to be the most significant driver of methane flux. Soil moisture varied across this time period, and regulated methane flux. During the strong El Niño, extreme dry soil conditions occurred in a typical "rainy" season month reducing soil moisture. Wetter than usual soil conditions appeared during the "rainy" season month of the moderate La Niña. The dry El Niño soils corresponded to greater methane consumption by tropical forest soils, and a reduced local atmospheric column methane concentration. Conversely, the wet La Niña soils had lower methane consumption and higher local atmospheric column methane concentrations. The ENSO cycle is a strong driver of tropical terrestrial and wetland soil moisture conditions, and can regulate global atmospheric methane dynamics.

  9. Predictors of Arbuscular Mycorrhizal Fungal Communities in the Brazilian Tropical Dry Forest.

    PubMed

    Sousa, Natália M F; Veresoglou, Stavros D; Oehl, Fritz; Rillig, Matthias C; Maia, Leonor C

    2018-02-01

    Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi with a broad distribution, and many taxa have physiological and ecological adaptations to specific environments, including semiarid ecosystems. Our aim was to address regional distribution patterns of AMF communities in such semiarid environments based on spore morphological techniques. We assessed AMF spores at the bottom and top of inselbergs distributed throughout the tropical dry forest in the Northeast region of Brazil. Across 10 replicate inselbergs and the surrounding area, spanning a range of altitude between 140 and 2000 m, we scored the AMF soil diversity and properties in 52 plots. We fitted parsimonious ordination analyses and variance partitioning models to determine the environmental factors which explained the variation in AMF community, based on morphological spore analysis. The diversity of AMF was similar at the bottom and top of inselbergs; however, we detected high variation in abundance and richness across sites. We formulated a parsimonious richness model that used physical soil factors as predictors. The AMF community structure could be best explained through the variables coarse and total sand, iron, organic matter, potassium, silt, and sodium which together accounted for 17.8% of total variance. Several AMF species were indicators of either deficiency or high values of specific soil properties. We demonstrated that habitat isolation of the inselbergs compared with surrounding areas did not trigger differences in AMF communities in semiarid regions of Brazil. At the regional scale, soil predictors across sites drove the distribution of symbiotic mycorrhizal fungi.

  10. Mexican-American and Mexican National Farm Workers: A Literature Review.

    ERIC Educational Resources Information Center

    Miller, Michael V.

    This paper is concerned with the scholarly treatment accorded to Mexican American and Mexican National farm workers by historical, legal, social work, and social science journals. Only those articles published after the arbitrary date of 1960 are reviewed due to space and time limitations. Works published since then are briefly summarized and…

  11. Biogeochemical Relationships of a Subtropical Dry Forest on Karst

    Treesearch

    E. Medina; E. Cuevas; H. Marcano-Vega; E. Meléndez-Ackerman; E.H. Helmer

    2017-01-01

    Tropical dry forests on calcareous substrate constitute the main vegetation cover in many islands of the Caribbean. Dry climate and nutrient scarcity in those environments are ideal to investigate the potential role of high levels of soil calcium (Ca) in regulating plant selection and productivity. We analyzed the elemental composition of soil, loose litter, and leaf...

  12. Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, J.B.; Cummings, D.L.; Sanford, R.L. Jr.

    1993-01-01

    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of deforestation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest ([open quotes]Caatinga[close quotes]) near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was [approx]74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (

  13. Trajectories of Mexican American and Mainstream Cultural Values Among Mexican American Adolescents

    PubMed Central

    Knight, George P.; Basilio, Camille D.; Cham, Heining; Gonzales, Nancy A.; Liu, Yu; Umaña-Taylor, Adriana J.

    2013-01-01

    Mexican Americans are one of the largest and fastest growing ethnic groups in the United States, yet we have limited knowledge regarding changes (i.e., developmental trajectories) in cultural orientation based upon their exposure to the Mexican American and mainstream cultures. We examined the parallel trajectories of Mexican American and mainstream cultural values in a sample of 749 Mexican American adolescents (49% female) across assessments during the fifth grade (approximately 11 years of age), the seventh grade (approximately 13 years of age) and the tenth grade (approximately 16 years of age). We expected that these values would change over this developmental period and this longitudinal approach is more appropriate than the often used median split classification to identify distinct types of acculturation. We found four distinct acculturation trajectory groups: two trajectory groups that were increasing slightly with age in the endorsement of mainstream cultural values, one of which was relatively stable in Mexican American cultural values while the other was declining in their endorsement of these values; and two trajectory groups that were declining substantially with age in their endorsement of mainstream cultural values, one of which was also declining in Mexican American cultural values and the other which was stable in these values. These four trajectory groups differed in expected ways on a number of theoretically related cultural variables, but were not highly consistent with the median split classifications. The findings highlight the need to utilize longitudinal data to examine the developmental changes of Mexican American individual’s adaptation to the ethnic and mainstream culture in order to understand more fully the processes of acculturation and enculturation. PMID:23877194

  14. Trajectories of Mexican American and mainstream cultural values among Mexican American adolescents.

    PubMed

    Knight, George P; Basilio, Camille D; Cham, Heining; Gonzales, Nancy A; Liu, Yu; Umaña-Taylor, Adriana J

    2014-12-01

    Mexican Americans are one of the largest and fastest growing ethnic groups in the United States, yet we have limited knowledge regarding changes (i.e., developmental trajectories) in cultural orientation based upon their exposure to the Mexican American and mainstream cultures. We examined the parallel trajectories of Mexican American and mainstream cultural values in a sample of 749 Mexican American adolescents (49 % female) across assessments during the fifth grade (approximately 11 years of age), the seventh grade (approximately 13 years of age) and the tenth grade (approximately 16 years of age). We expected that these values would change over this developmental period and this longitudinal approach is more appropriate than the often used median split classification to identify distinct types of acculturation. We found four distinct acculturation trajectory groups: two trajectory groups that were increasing slightly with age in the endorsement of mainstream cultural values, one of which was relatively stable in Mexican American cultural values while the other was declining in their endorsement of these values; and two trajectory groups that were declining substantially with age in their endorsement of mainstream cultural values, one of which was also declining in Mexican American cultural values and the other which was stable in these values. These four trajectory groups differed in expected ways on a number of theoretically related cultural variables, but were not highly consistent with the median split classifications. The findings highlight the need to utilize longitudinal data to examine the developmental changes of Mexican American individual's adaptation to the ethnic and mainstream culture in order to understand more fully the processes of acculturation and enculturation.

  15. Going beyond the green: senesced vegetation material predicts basal area and biomass in remote sensing of tree cover conditions in an African tropical dry forest (miombo woodland) landscape

    NASA Astrophysics Data System (ADS)

    Mayes, Marc; Mustard, John; Melillo, Jerry; Neill, Christopher; Nyadzi, Gerson

    2017-08-01

    In sub-Saharan Africa (SSA), tropical dry forests and savannas cover over 2.5 million km2 and support livelihoods for millions in fast-growing nations. Intensifying land use pressures have driven rapid changes in tree cover structure (basal area, biomass) that remain poorly characterized at regional scales. Here, we posed the hypothesis that tree cover structure related strongly to senesced and non-photosynthetic (NPV) vegetation features in a SSA tropical dry forest landscape, offering improved means for satellite remote sensing of tree cover structure compared to vegetation greenness-based methods. Across regrowth miombo woodland sites in Tanzania, we analyzed relationships among field data on tree structure, land cover, and satellite indices of green and NPV features based on spectral mixture analyses and normalized difference vegetation index calculated from Landsat 8 data. From satellite-field data relationships, we mapped regional basal area and biomass using NPV and greenness-based metrics, and compared map performances at landscape scales. Total canopy cover related significantly to stem basal area (r 2 = 0.815, p < 0.01) and biomass (r 2 = 0.635, p < 0.01), and NPV dominated ground cover (> 60%) at all sites. From these two conditions emerged a key inverse relationship: skyward exposure of NPV ground cover was high at sites with low tree basal area and biomass, and decreased with increasing stem basal area and biomass. This pattern scaled to Landsat NPV metrics, which showed strong inverse correlations to basal area (Pearson r = -0.85, p < 0.01) and biomass (r = -0.86, p < 0.01). Biomass estimates from Landsat NPV-based maps matched field data, and significantly differentiated landscape gradients in woody biomass that greenness metrics failed to track. The results suggest senesced vegetation metrics at Landsat scales are a promising means for improved monitoring of tree structure across disturbance and ecological gradients

  16. Higher risk for obesity among Mexican-American and Mexican immigrant children and adolescents than among peers in Mexico.

    PubMed

    Hernández-Valero, María A; Bustamante-Montes, L Patricia; Hernández, Mike; Halley-Castillo, Elizabeth; Wilkinson, Anna V; Bondy, Melissa L; Olvera, Norma

    2012-08-01

    We conducted a cross-sectional study among 1,717 children and adolescents of Mexican origin ages 5-19 years living in Mexico and Texas to explore the influence of country of birth and country of longest residence on their overweight and obesity status. Descriptive statistics were used to compare demographic and anthropometric characteristics of participants born and raised in Mexico (Mexicans), born in Mexico and raised in the United States (Mexican immigrants), and born and raised in the United States (Mexican-Americans). Univariate and multivariate nominal logistic regression was used to determine the demographic predictors of obesity adjusted by country of birth, country of residence, age, and gender. Almost half (48.8%) of the Mexican-Americans and 43.2% of the Mexican immigrants had body mass index at the 85th percentile or above, compared to only 29.3% of the Mexicans (P < .001). Thus, Mexican-Americans and Mexican immigrants were more likely to be obese than their Mexican peers [Mexican-Americans: odds ratio (OR) = 2.5 (95% confidence interval [CI] 1.8-3.4); Mexican immigrants: OR = 2.2 (95% CI 1.6-3.0)]. In addition, males were more likely than females to be obese [OR = 1.6 (95% CI 1.2-2.1)], and adolescents 15-19 years of age were less likely than their younger counterparts [OR = 0.5 (95% CI 0.4-0.7)] to be obese. The high prevalence of obesity among children of Mexican origin in the United States is of great concern and underscores the urgent need to develop and implement obesity preventive interventions targeting younger children of Mexican origin, especially newly arrived immigrant children. In addition, future obesity research should take into consideration the country of origin of the study population to develop more culturally specific obesity interventions.

  17. Diversified Native Species Restoration for Recovery of Multiple Ecosystem Services in a Highly Disturbed Tropical Dry Forest Landscape of Southwestern Nicaragua

    NASA Astrophysics Data System (ADS)

    Williams-Guillen, K.; Otterstrom, S.; Perla, C.

    2015-12-01

    Tropical dry forests have been reduced to a fraction of their original extent in the Neotropics due to conversion to agriculture and cattle pasture. While TDF can recover via natural regeneration, resulting forests are dominated by wind-dispersed pioneer species of limited value for frugivorous wildlife. Additionally, passive restoration can be perceived as "abandonment" resulting in neighbors casually invading property to rear livestock and extract timber. In 2007, the NGO Paso Pacífico initiated restoration in a highly degraded tropical dry forest landscape of southwestern Nicaragua; funded by an ex-ante carbon purchase, the project was designed to integrate multiple native tree species known to provide resources used by local wildlife. We restored roughly 400 hectares spanning a rainfall gradient from dry to transitional moist forest, using reforestation (planting 70 species of tree seedlings in degraded pastures on a 4x4 m grid, leaving occurring saplings) and assisted regeneration (clearing vines and competing vegetation from saplings in natural regeneration and strategically managing canopy cover). In just over seven years, mean carbon increased nearly threefold, from to 21.5±5.0 to 57.9±9.6 SE tonnes/ha. Current carbon stocks match those of 20-year-old forests in the area, accumulated in less than a decade. Stem density per 15-m radius plot decreased from 16.3±2.3 to 12.5±0.9 SE, while species richness increased from 3.9±0.4 to 18.4±1.4 SE. Alpha richness of woody stems across plots increased from 36 to 94 species, and over 20 tree species established as a result of natural dispersal and recruitment. We have observed sensitive species such as spider monkeys and parrots foraging in restoration areas. Managed reforestation is a highly effective method for rapidly restoring the functionality of multiple ecosystem services in degraded TDF, particularly when social and political realities force restoration to coexist with human productive activities

  18. Heat- and humidity-induced plastic changes in body lipids and starvation resistance in the tropical fly Zaprionus indianus during wet and dry seasons.

    PubMed

    Girish, T N; Pradeep, B E; Parkash, Ravi

    2018-05-04

    Insects in tropical wet or dry seasons are likely to cope with starvation stress through plastic changes (developmental as well as adult acclimation) in energy metabolites. Control and experimental groups of Zaprionus indianus flies were reared under wet or dry conditions, but adults were acclimated at different thermal or humidity conditions. Adult flies of the control group were acclimated at 27°C and low (50%) or high (60%) relative humidity (RH). For experimental groups, adult flies were acclimated at 32°C for 1 to 6 days and under low (40%) or high (70%) RH. For humidity acclimation, adult flies were acclimated at 27°C but under low (40%) or high (70%) RH for 1 to 6 days. Plastic changes in experimental groups as compared with the control group (developmental as well as adult acclimation) revealed significant accumulation of body lipids owing to thermal or humidity acclimation of wet season flies, but low humidity acclimation did not change the level of body lipids in dry season flies. Starvation resistance and body lipids were higher in the males of dry season flies but in the females of wet season flies. Adults acclimated under different thermal or humidity conditions exhibited changes in the rate of utilization of body lipids, carbohydrates and proteins. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity; and a reduction in fecundity under starvation. Thus, thermal or humidity acclimation of adults revealed plastic changes in energy metabolites to support starvation resistance of wet or dry season flies. © 2018. Published by The Company of Biologists Ltd.

  19. The Microclimate of a Tropical Evergreen Forest.

    DTIC Science & Technology

    1980-08-01

    of Human Bioclimate - A Review. World Meteorological Organization Bulletin, Geneva, 56 pp. REFERENCES (con’t) Lee, R., 1978. Forest Micrometeorology...Geophysics, and Bioclimatology , Ser. B 24, 243-251. Pinker, R. (1980): The Microclimate of a dry tropical forest. (Accepted for publication in

  20. Functional regeneration and spectral reflectance of trees during succession in a highly diverse tropical dry forest ecosystem.

    PubMed

    Alvarez-Añorve, Mariana Y; Quesada, Mauricio; Sánchez-Azofeifa, G Arturo; Avila-Cabadilla, Luis Daniel; Gamon, John A

    2012-05-01

    The function of most ecosystems has been altered by human activities. To asses the recovery of plant communities, we must evaluate the recovery of plant functional traits. The seasonally dry tropical forest (SDTF), a highly threatened ecosystem, is assumed to recover relatively quickly from disturbance, but an integrated evaluation of recovery in floristic, structural, and functional terms has not been performed. In this study we aimed to (a) compare SDTF plant functional, floristic, and structural change along succession; (b) identify tree functional groups; and (c) explore the spectral properties of different successional stages. Across a SDTF successional gradient, we evaluated the change of species composition, vegetation structure, and leaf spectral reflectance and functional traits (related to water use, light acquisition, nutrient conservation, and CO(2) acquisition) of 25 abundant tree species. A complete recovery of SDTF takes longer than the time period inferred from floristic or structural data. Plant functional traits changed along succession from those that maximize photoprotection and heat dissipation in early succession, where temperature is an environmental constraint, to those that enhance light acquisition in late succession, where light may be limiting. A spectral indicator of plant photosynthetic performance (photochemical reflectance index) discriminated between early and late succession. This constitutes a foundation for further exploration of remote sensing technologies for studying tropical succession. A functional approach should be incorporated as a regular descriptor of forest succession because it provides a richer understanding of vegetation dynamics than is offered by either the floristic or structural approach alone.

  1. The Wealth of Mexican Americans

    ERIC Educational Resources Information Center

    Cobb-Clark, Deborah A.; Hildebrand, Vincent A.

    2006-01-01

    This paper analyzes the sources of disparities in the relative wealth position of Mexican Americans. Results reveal that--unlike the racial wealth gap--Mexican Americans' wealth disadvantage is in large part not the result of differences in wealth distributions conditional on the underlying determinants of wealth. Rather, Mexican Americans' wealth…

  2. Asynchronous response of tropical forest leaf phenology to seasonal and el Niño-driven drought.

    PubMed

    Pau, Stephanie; Okin, Gregory S; Gillespie, Thomas W

    2010-06-25

    The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO). Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI) from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (Delta(NDVI)) between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002-003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST) index during 2002-2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited.

  3. Asynchronous Response of Tropical Forest Leaf Phenology to Seasonal and El Niño-Driven Drought

    PubMed Central

    Pau, Stephanie; Okin, Gregory S.; Gillespie, Thomas W.

    2010-01-01

    The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO). Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI) from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (ΔNDVI) between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002–003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST) index during 2002–2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited. PMID:20593034

  4. Fair Start Program: Outreach to Mexican and Mexican American Farmworker Families.

    ERIC Educational Resources Information Center

    Winters-Smith, Carol; Larner, Mary

    This presentation describes a home visiting health education program serving Mexican and Mexican-American migrant farmworkers in Florida. The purposes of the program were to educate farmworker families about pregnancy, childbirth, nutrition, and child development, and to encourage the use of preventive health care services. Home visitors were…

  5. Characterization of clouds in Titan's tropical atmosphere

    USGS Publications Warehouse

    Griffith, C.A.; Penteado, P.; Rodriguez, S.; Le, Mouelic S.; Baines, K.H.; Buratti, B.; Clark, R.; Nicholson, P.; Jaumann, R.; Sotin, Christophe

    2009-01-01

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 ??m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8??-20?? S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape. ?? 2009. The American Astronomical Society.

  6. Identifying tropical dry forests extent and succession via the use of machine learning techniques

    NASA Astrophysics Data System (ADS)

    Li, Wei; Cao, Sen; Campos-Vargas, Carlos; Sanchez-Azofeifa, Arturo

    2017-12-01

    Information on ecosystem services as a function of the successional stage for secondary tropical dry forests (TDFs) is scarce and limited. Secondary TDFs succession is defined as regrowth following a complete forest clearance for cattle growth or agriculture activities. In the context of large conservation initiatives, the identification of the extent, structure and composition of secondary TDFs can serve as key elements to estimate the effectiveness of such activities. As such, in this study we evaluate the use of a Hyperspectral MAPper (HyMap) dataset and a waveform LIDAR dataset for characterization of different levels of intra-secondary forests stages at the Santa Rosa National Park (SRNP) Environmental Monitoring Super Site located in Costa Rica. Specifically, a multi-task learning based machine learning classifier (MLC-MTL) is employed on the first shortwave infrared (SWIR1) of HyMap in order to identify the variability of aboveground biomass of secondary TDFs along a successional gradient. Our paper recognizes that the process of ecological succession is not deterministic but a combination of transitional forests types along a stochastic path that depends on ecological, edaphic, land use, and micro-meteorological conditions, and our results provide a new way to obtain the spatial distribution of three main types of TDFs successional stages.

  7. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.

    PubMed

    Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo

    2017-01-01

    Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.

  8. Spatial and temporal distribution of tropical biomass burning

    NASA Astrophysics Data System (ADS)

    Hao, Wei Min; Liu, Mei-Huey

    1994-12-01

    A database for the spatial and temporal distribution of the amount of biomass burned in tropical America, Africa, and Asia during the late 1970s is presented with a resolution of 5° latitude × 5° longitude. The sources of burning in each grid cell have been quantified. Savanna fires, shifting cultivation, deforestation, fuel wood use, and burning of agricultural residues contribute about 50, 24, 10, 11, and 5%, respectively, of total biomass burned in the tropics. Savanna fires dominate in tropical Africa, and forest fires dominate in tropical Asia. A similar amount of biomass is burned from forest and savanna fires in tropical America. The distribution of biomass burned monthly during the dry season has been derived for each grid cell using the seasonal cycles of surface ozone concentrations. Land use changes during the last decade could have a profound impact on the amount of biomass burned and the amount of trace gases and aerosol particles emitted.

  9. Erasing Differences for the Sake of Inclusion: How Mexican/Mexican American Students Construct Historical Narratives

    ERIC Educational Resources Information Center

    Santiago, Maribel

    2017-01-01

    "Mendez v. Westminster," a case about 1940s Mexican American school segregation, is a new vehicle for including Mexican Americans into U.S. history classrooms. This study explores how a class of primarily Mexican American students, who because of their heritage might develop a personal connection to the case, made sense of…

  10. Soil Phosphorus and the Ecology of Tropical Forests

    NASA Astrophysics Data System (ADS)

    Turner, B. L.

    2016-12-01

    Phosphorus availability is commonly assumed to limit forest productivity on strongly weathered soils in the lowland tropics, but experimental evidence is scarce and equivocal. In this presentation I will explore the extent to which phosphorus influences the productivity and distribution of tree species in tropical forests. I will highlight the range of soils that occur in tropical forests and the associated variation in the amounts and forms of soil phosphorus. I will draw on data from a regional-scale network of forest dynamics plots in Panama to show that tree species distributions are determined primarily by dry season intensity and soil phosphorus availability. Finally, I will demonstrate that phosphorus limitation of tropical tree growth is widespread at the level of individual species, but is not observed at the community level in diverse forests due to species turnover across phosphorus gradients.

  11. Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants.

    PubMed

    Engelbrecht, Bettina M J; Kursar, Thomas A

    2003-08-01

    Quantifying plant drought resistance is important for understanding plant species' association to microhabitats with different soil moisture availability and their distribution along rainfall gradients, as well as for understanding the role of underlying morphological and physiological mechanisms. The effect of dry season drought on survival and leaf-area change of first year seedlings of 28 species of co-occurring woody tropical plants was experimentally quantified in the understory of a tropical moist forest. The seedlings were subjected to a drought or an irrigation treatment in the forest for 22 weeks during the dry season. Drought decreased survival and growth (assessed as leaf-area change) in almost all of the species. Both survival and leaf-area change in the dry treatment ranged fairly evenly from 0% to about 100% of that in the irrigated treatment. In 43% of the species the difference between treatments in survival was not significant even after 22 weeks. In contrast, only three species showed no significant effect of drought on leaf-area change. The effects of drought on species' survival and growth were not correlated with each other, reflecting different strategies in response to drought. Seedling size at the onset of the dry season had no significant effect on species' drought response. Our study is the first to comparatively assess seedling drought resistance in the habitat for a large number of tropical species, and underlines the importance of drought for plant population dynamics in tropical forests.

  12. Vegetation response to rainfall seasonality and interannual variability in tropical dry forests

    NASA Astrophysics Data System (ADS)

    Feng, X.; Silva Souza, R. M.; Souza, E.; Antonino, A.; Montenegro, S.; Porporato, A. M.

    2015-12-01

    We analyzed the response of tropical dry forests to seasonal and interannual rainfall variability, focusing on the caatinga biome in semi-arid in Northeast Brazil. We selected four sites across a gradient of rainfall amount and seasonality and analyzed daily rainfall and biweekly Normalized Difference Vegetation Index (NDVI) in the period 2000-2014. The seasonal and interannual rainfall statistics were characterized using recently developed metrics describing duration, location, and intensity of wet season and compared them with those of NDVI time series and modelled soil moisture. A model of NDVI was also developed and forced by different rainfall scenarios (combination amount of rainfall and duration of wet season). The results show that the caatinga tends to have a more stable response characterized by longer and less variable growing seasons (of duration 3.1±0.1 months) compared to the rainfall wet seasons (2.0±0.5 months). Even for more extreme rainfall conditions, the ecosystem shows very little sensitivity to duration of wet season in relation to the amount of rainfall, however the duration of wet season is most evident for wetter sites. This ability of the ecosystem in buffering the interannual variability of rainfall is corroborated by the stability of the centroid location of the growing season compared to the wet season for all sites. The maximal biomass production was observed at intermediate levels of seasonality, suggesting a possible interesting trade-off in the effects of intensity (i.e., amount) and duration of the wet season on vegetation growth.

  13. The Mexican American.

    ERIC Educational Resources Information Center

    Rowan, Helen

    The purpose of this paper, prepared for the U. S. Commission on Civil Rights, is to indicate the types and ranges of problems facing the Mexican American community and to suggest ways in which these problems are peculiar to Mexican Americans. Specific examples are cited to illustrate major problems and personal experiences. Topics covered in the…

  14. Do Rainfall Deficits Predict U.S.-bound Migration from Rural Mexico? Evidence from the Mexican Census

    PubMed Central

    Nawrotzki, Raphael J.; Riosmena, Fernando; Hunter, Lori M.

    2013-01-01

    Environmental and climatic changes have shaped human mobility for thousands of years and research on the migration-environment connection has proliferated in the past several years. Even so, little work has focused on Latin America or on international movement. Given rural Mexico’s dependency on primary sector activities involving various natural resources, and the existence of well-established transnational migrant networks, we investigate the association between rainfall patterns and U.S.-bound migration from rural locales, a topic of increasing policy relevance. The New Economics of Labor Migration (NELM) theory provides background, positing that migration represents a household-level risk management strategy. We use data from the year 2000 Mexican census for rural localities and socioeconomic and state-level precipitation data provided by the Mexican National Institute for Statistics and Geography. Multilevel models assess the impact of rainfall change on household-level international out-migration while controlling for relevant sociodemographic and economic factors. A decrease in precipitation is significantly associated with U.S.-bound migration, but only for dry Mexican states. This finding suggests that programs and policies aimed at reducing Mexico-U.S. migration should seek to diminish the climate/weather vulnerability of rural Mexican households, for example by supporting sustainable irrigation systems and subsidizing drought-resistant crops. PMID:23913999

  15. Do Rainfall Deficits Predict U.S.-bound Migration from Rural Mexico? Evidence from the Mexican Census.

    PubMed

    Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M

    2013-02-01

    Environmental and climatic changes have shaped human mobility for thousands of years and research on the migration-environment connection has proliferated in the past several years. Even so, little work has focused on Latin America or on international movement. Given rural Mexico's dependency on primary sector activities involving various natural resources, and the existence of well-established transnational migrant networks, we investigate the association between rainfall patterns and U.S.-bound migration from rural locales, a topic of increasing policy relevance. The New Economics of Labor Migration (NELM) theory provides background, positing that migration represents a household-level risk management strategy. We use data from the year 2000 Mexican census for rural localities and socioeconomic and state-level precipitation data provided by the Mexican National Institute for Statistics and Geography. Multilevel models assess the impact of rainfall change on household-level international out-migration while controlling for relevant sociodemographic and economic factors. A decrease in precipitation is significantly associated with U.S.-bound migration, but only for dry Mexican states. This finding suggests that programs and policies aimed at reducing Mexico-U.S. migration should seek to diminish the climate/weather vulnerability of rural Mexican households, for example by supporting sustainable irrigation systems and subsidizing drought-resistant crops.

  16. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    PubMed Central

    Allen, Michael F.; Santiago, Louis S.

    2010-01-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152

  17. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    PubMed

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.

  18. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    PubMed

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  19. Mulga, a major tropical dry open forest of Australia: recent insights to carbon and water fluxes

    NASA Astrophysics Data System (ADS)

    Eamus, Derek; Huete, Alfredo; Cleverly, James; Nolan, Rachael H.; Ma, Xuanlong; Tarin, Tonantzin; Santini, Nadia S.

    2016-12-01

    Mulga, comprised of a complex of closely related Acacia spp., grades from a low open forest to tall shrublands in tropical and sub-tropical arid and semi-arid regions of Australia and experiences warm-to-hot annual temperatures and a pronounced dry season. This short synthesis of current knowledge briefly outlines the causes of the extreme variability in rainfall characteristic of much of central Australia, and then discusses the patterns and drivers of variability in carbon and water fluxes of a central Australian low open Mulga forest. Variation in phenology and the impact of differences in the amount and timing of precipitation on vegetation function are then discussed. We use field observations, with particular emphasis on eddy covariance data, coupled with modelling and remote sensing products to interpret inter-seasonal and inter-annual patterns in the behaviour of this ecosystem. We show that Mulga can vary between periods of near carbon neutrality to periods of being a significant sink or source for carbon, depending on both the amount and timing of rainfall. Further, we demonstrate that Mulga contributed significantly to the 2011 global land sink anomaly, a result ascribed to the exceptional rainfall of 2010/2011. Finally, we compare and contrast the hydraulic traits of three tree species growing close to the Mulga and show how each species uses different combinations of trait strategies (for example, sapwood density, xylem vessel implosion resistance, phenological guild, access to groundwater and Huber value) to co-exist in this semi-arid environment. Understanding the inter-annual variability in functional behaviour of this important arid-zone biome and mechanisms underlying species co-existence will increase our ability to predict trajectories of carbon and water balances for future changing climates.

  20. No evidence that elevated CO2 gives tropical lianas an advantage over tropical trees.

    PubMed

    Marvin, David C; Winter, Klaus; Burnham, Robyn J; Schnitzer, Stefan A

    2015-05-01

    Recent studies indicate that lianas are increasing in size and abundance relative to trees in neotropical forests. As a result, forest dynamics and carbon balance may be altered through liana-induced suppression of tree growth and increases in tree mortality. Increasing atmospheric CO2 is hypothesized to be responsible for the increase in neotropical lianas, yet no study has directly compared the relative response of tropical lianas and trees to elevated CO2 . We explicitly tested whether tropical lianas had a larger response to elevated CO2 than co-occurring tropical trees and whether seasonal drought alters the response of either growth form. In two experiments conducted in central Panama, one spanning both wet and dry seasons and one restricted to the dry season, we grew liana (n = 12) and tree (n = 10) species in open-top growth chambers maintained at ambient or twice-ambient CO2 levels. Seedlings of eight individuals (four lianas, four trees) were grown in the ground in each chamber for at least 3 months during each season. We found that both liana and tree seedlings had a significant and positive response to elevated CO2 (in biomass, leaf area, leaf mass per area, and photosynthesis), but that the relative response to elevated CO2 for all variables was not significantly greater for lianas than trees regardless of the season. The lack of differences in the relative response between growth forms does not support the hypothesis that elevated CO2 is responsible for increasing liana size and abundance across the neotropics. © 2014 John Wiley & Sons Ltd.

  1. Cultural significance of the flora of a tropical dry forest in the Doche vereda (Villavieja, Huila, Colombia).

    PubMed

    Rosero-Toro, Jeison Herley; Romero-Duque, Luz Piedad; Santos-Fita, Dídac; Ruan-Soto, Felipe

    2018-03-22

    In Colombia, ethnobotanical studies regarding plant cultural significance (CS) in tropical dry forests are scarce and mainly focused on the Caribbean region. Different authors have indicated that the plants with the most uses are those of greater cultural importance. Additionally, gender differences in knowledge and interest in natural resources has been widely recorded. This study evaluated the cultural significance of plants in the Doche community, in the Department of Huila. Furthermore, it evaluates the richness of plant knowledge among local inhabitants, looking for testing the hypothesis that the CS of plants positively correlates to the number of uses people inform about, and that there are significant differences on the richness of ethnobotanical knowledge between men and women in this community. The ethnobotanical categories: "food," "condiment," "economy," "fodder," "firewood," "timber", "medicine," and "others" were established to carry out semi-structured interviews, social cartography, and ethnobotanical walks. The frequency of mention was calculated as a measure of CS. The richness of knowledge of each collaborator was obtained. Non-parametric tests were performed to determine whether differences between the numbers of mentioned species existed between genders and ethnobotanical categories. Finally, Pearson correlation tests determined the relationship between CS and the number of ethnobotanical categories. A hundred useful species were registered in crops and forests. The most abundant categories were medicinal (45 species), firewood (30), and fodder (28). The most culturally significant species according to frequency of mention were Pseudosamanea guachapele, Guazuma ulmifolia, Manihot esculenta, and Musa balbisiana. The species with the most registered uses (five) were Guazuma ulmifolia and Gliricidia sepium. We found a correlation between CS and the number of uses per ethnobotanical category, but no significant difference between genders regarding

  2. Environmental determinants of tropical forest and savanna distribution: A quantitative model evaluation and its implication

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenzhong; Chen, Anping; Piao, Shilong; Rabin, Sam; Shen, Zehao

    2014-07-01

    The distributions of tropical ecosystems are rapidly being altered by climate change and anthropogenic activities. One possible trend—the loss of tropical forests and replacement by savannas—could result in significant shifts in ecosystem services and biodiversity loss. However, the influence and the relative importance of environmental factors in regulating the distribution of tropical forest and savanna biomes are still poorly understood, which makes it difficult to predict future tropical forest and savanna distributions in the context of climate change. Here we use boosted regression trees to quantitatively evaluate the importance of environmental predictors—mainly climatic, edaphic, and fire factors—for the tropical forest-savanna distribution at a mesoscale across the tropics (between 15°N and 35°S). Our results demonstrate that climate alone can explain most of the distribution of tropical forest and savanna at the scale considered; dry season average precipitation is the single most important determinant across tropical Asia-Australia, Africa, and South America. Given the strong tendency of increased seasonality and decreased dry season precipitation predicted by global climate models, we estimate that about 28% of what is now tropical forest would likely be lost to savanna by the late 21st century under the future scenario considered. This study highlights the importance of climate seasonality and interannual variability in predicting the distribution of tropical forest and savanna, supporting the climate as the primary driver in the savanna biogeography.

  3. Myiarchus flycatchers are the primary seed dispersers of Bursera longipes in a Mexican dry forest

    PubMed Central

    Almazán-Núñez, R. Carlos; Eguiarte, Luis E.; Arizmendi, María del Coro

    2016-01-01

    We evaluated the seed dispersal of Bursera longipes by birds along a successional gradient of tropical dry forest (TDF) in southwestern Mexico. B. longipes is an endemic tree to the TDF in the Balsas basin. The relative abundance of frugivorous birds, their frequency of visits to B. longipes and the number of removed fruits were recorded at three study sites with different stages of forest succession (early, intermediate and mature) characterized by distinct floristic and structural elements. Flycatchers of the Myiarchus and Tyrannus genera removed the majority of fruits at each site. Overall, visits to B. longipes were less frequent at the early successional site. Birds that function as legitimate dispersers by consuming whole seeds and regurgitating or defecating intact seeds in the process also remove the pseudoaril from seeds, thereby facilitating the germination process. The highest germination percentages were recorded for seeds that passed through the digestive system of two migratory flycatchers: M. cinerascens and M. nutingii. Perch plants, mainly composed of legumes (e.g., Eysenhardtia polystachya, Acacia cochliacantha, Calliandra eryophylla, Mimosa polyantha), serve also as nurse plants since the number of young individuals recruited from B. longipes was higher under these than expected by chance. This study shows that Myiarchus flycatchers are the most efficient seed dispersers of B. longipes across all successional stages. This suggests a close mutualistic relationship derived from adaptive processes and local specializations throughout the distribution of both taxa, as supported by the geographic mosaic theory of coevolution. PMID:27326382

  4. Subjective Social Status, Mental and Psychosocial Health, and Birth Weight Differences in Mexican-American and Mexican Immigrant Women.

    PubMed

    Fleuriet, K Jill; Sunil, T S

    2015-12-01

    Recent Mexican immigrant women on average have an unexpectedly low incidence of low birth weight (LBW). Birth weights decline and LBW incidence increases in post-immigrant generations. This pilot project tested the hypothesis that subjective social status (SSS) of pregnant women predicts variation in birth weight between Mexican immigrant and Mexican-American women. 300 low-income pregnant Mexican immigrant and Mexican-American women in South Texas were surveyed for SSS, depression, pregnancy-related anxiety, perceived social stress and self-esteem and subsequent birth weight. No significant difference in SSS levels between pregnant Mexican immigrant and Mexican-American women were found. However, SSS better predicted variation in birth weight across both groups than mental and psychosocial health variables. Results suggest distinct relationships among SSS, mental and psychosocial health that could impact birth weight. They underscore the relevance of a multilevel, biopsychosocial analytical framework to studying LBW.

  5. Large rainfall changes consistently projected over substantial areas of tropical land

    NASA Astrophysics Data System (ADS)

    Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.

    2016-02-01

    Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.

  6. Mapping tropical dry forest height, foliage height profiles and disturbance type and age with a time series of cloud-cleared Landsat and ALI image mosaics to characterize avian habitat

    Treesearch

    E.H. Helmer; Thomas S. Ruzycki; Jr. Joseph M. Wunderle; Shannon Vogesser; Bonnie Ruefenacht; Charles Kwit; Thomas J. Brandeis; David N. Ewert

    2010-01-01

    Remote sensing of forest vertical structure is possible with lidar data, but lidar is not widely available. Here we map tropical dry forest height (RMSE=0.9 m, R2=0.84, range 0.6–7 m), and we map foliage height profiles, with a time series of Landsat and Advanced Land Imager (ALI) imagery on the island of Eleuthera, The Bahamas, substituting time for vertical canopy...

  7. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    PubMed

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.

  8. Legal Status and Wage Disparities for Mexican Immigrants

    PubMed Central

    Hall, Matthew; Greenman, Emily; Farkas, George

    2014-01-01

    This paper employs a unique method of imputing the legal status of Mexican immigrants in the 1996-1999 and 2001-2003 panels of the Survey of Income and Program Participation to provide new evidence of the role of legal authorization in the U.S. on workers’ wages. Using growth curve techniques, we estimate wage trajectories for four groups: documented Mexican immigrants, undocumented Mexican immigrants, U.S-born Mexican Americans, and native non-Latino whites. Our estimates reveal a 17 percent wage disparity between documented and undocumented Mexican immigrant men, and a 9 percent documented-undocumented wage disparity for Mexican immigrant women. We also find that in comparison to authorized Mexicans, undocumented Mexican immigrants have lower returns to human capital and slower wage growth. PMID:25414526

  9. Legal Status and Wage Disparities for Mexican Immigrants.

    PubMed

    Hall, Matthew; Greenman, Emily; Farkas, George

    2010-12-01

    This paper employs a unique method of imputing the legal status of Mexican immigrants in the 1996-1999 and 2001-2003 panels of the Survey of Income and Program Participation to provide new evidence of the role of legal authorization in the U.S. on workers' wages. Using growth curve techniques, we estimate wage trajectories for four groups: documented Mexican immigrants, undocumented Mexican immigrants, U.S-born Mexican Americans, and native non-Latino whites. Our estimates reveal a 17 percent wage disparity between documented and undocumented Mexican immigrant men, and a 9 percent documented-undocumented wage disparity for Mexican immigrant women. We also find that in comparison to authorized Mexicans, undocumented Mexican immigrants have lower returns to human capital and slower wage growth.

  10. Short and Long-Term Soil Moisture Effects of Liana Removal in a Seasonally Moist Tropical Forest

    PubMed Central

    Reid, Joseph Pignatello; Schnitzer, Stefan A.; Powers, Jennifer S.

    2015-01-01

    Lianas (woody vines) are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects soil moisture and hence competition with trees for water in tropical forests. To address this critical knowledge gap, we conducted a large-scale liana removal experiment in a seasonal tropical moist forest in central Panama. We monitored shallow and deep soil moisture over the course of three years to assess the effects of lianas in eight 0.64 ha removal plots and eight control plots. Liana removal caused short-term effects in surface soils. Surface soils (10 cm depth) in removal plots dried more slowly during dry periods and accumulated water more slowly after rainfall events. These effects disappeared within four months of the removal treatment. In deeper soils (40 cm depth), liana removal resulted in a multi-year trend towards 5–25% higher soil moisture during the dry seasons with the largest significant effects occurring in the dry season of the third year following treatment. Liana removal did not affect surface soil temperature. Multiple and mutually occurring mechanisms may be responsible for the effects of liana removal on soil moisture, including competition with trees, and altered microclimate, and soil structure. These results indicate that lianas influence hydrologic processes, which may affect tree community dynamics and forest carbon cycling. PMID:26545205

  11. The relationship between Mexican American cultural values and resilience among Mexican American college students: a mixed methods study.

    PubMed

    Morgan Consoli, Melissa L; Llamas, Jasmin D

    2013-10-01

    The current study investigated the role of cultural values in the resilience of Mexican American college students. Utilizing mixed methodology, 124 self-identified Mexican American college students were asked to complete an online survey, including a demographic questionnaire, the Resilience Scale, Mexican American Cultural Values Scale, and 2 open-ended questions concerning overcoming adversity and cultural values. As hypothesized, Mexican American traditional cultural values (Familismo, Respeto, Religiosidad, and Traditional Gender Roles) predicted resilience, with Familismo accounting for the majority of the variance. Consensual qualitative research (Hill, Thompson, & Nutt Williams, 1997) was used to identify emergent domains and themes within the open-ended question responses. Traditional Mexican American Value themes included Familismo, Ethnic Identity, Religiosidad, Perseverance, and Respeto. Results highlight the important role that certain Mexican American cultural values play in providing strength for overcoming adversities.

  12. Perceived social stress, pregnancy-related anxiety, depression and subjective social status among pregnant Mexican and Mexican American women in south Texas.

    PubMed

    Fleuriet, K Jill; Sunil, T S

    2014-05-01

    The purpose of this study was to determine differences in subjective social status, perceived social stress, depressive symptoms, and pregnancy-related anxiety between pregnant Mexican American and Mexican immigrant women. Three hundred pregnant Mexican immigrant and Mexican American women in South Texas were surveyed for pregnancy-related anxiety, perceived social stress, depressive symptoms, and subjective social status. Pregnant Mexican immigrant women had higher levels of pregnancy-related anxiety and lower levels of depression and perceived social stress than pregnant Mexican American women. Change in these variables among Mexican immigrant women was relatively linear as time of residence in the United States increased. Mexican immigrant and Mexican American women had significantly different correlations between subjective social status, self-esteem and perceived social stress. Results indicate that subjective social status is an important psychosocial variable among pregnant Hispanic women. Results contribute to ongoing efforts to provide culturally responsive prenatal psychosocial support services.

  13. A Six-Wave Study of the Consistency of Mexican/Mexican American Preadolescents' Lifetime Substance Use Reports

    ERIC Educational Resources Information Center

    Wagstaff, David A.; Kulis, Stephen; Elek, Elvira

    2009-01-01

    In the Fall of 2004, 1,948 5th grade students from Phoenix, AZ enrolled in an evaluation of a school-based, substance use prevention intervention. To assess the consistency of Mexican and Mexican-American students' self-reports of lifetime substance use, the present study analyzed data reported by 1,418 students who reported Mexican ancestry and…

  14. Land product validation of MODIS derived FPAR product over the tropical dry-forest of Santa Rosa National Park, Guanacaste, Costa Rica.

    NASA Astrophysics Data System (ADS)

    Sharp, Iain; Sanchez, Arturo

    2017-04-01

    Land-product validation of the MODIS derived FPAR product over the tropical dry-forest of Santa Rosa National Park, Guanacaste, Costa Rica. By Iain Sharp & Dr. Arturo Sanchez-Azofeifa In remote sensing, being able to ensure the accuracy of the satellite data being produced remains an issue; this is especially true for phenological variables such as the Fraction of Photosynthetically Active Radiation (FPAR). FPAR, which is considered an essential climate variable by the Global Terrestrial Observation System (GTOS), utilizes the 400-700 nm wavelength range to quantify the total amount of solar radiation available for photosynthetic use. It is a variable that is strongly influenced by the seasonal, diurnal, and optic properties of vegetation making it an accurate representation of vegetation health. Measurements of ground level FPAR can be completed using flux towers along with a limited number of wireless ground sensors, but due to the finite number and location of these towers, many research initiatives instead use the Moderate resolution Imaging Spectroradiometer (MODIS) FPAR product, which converts Leaf Area Index (LAI) to a FPAR value using Beer's Law. This is done despite there being little consensus on whether this is the best method to use for all ecosystems and vegetation types. One particular ecosystem that has had limited study to determine the accuracy of the MODIS derived FPAR products are the Tropical Dry Forests (TDFs) of Latin America. This ecosystem undergoes drastic seasonal changes from leaf off during the dry season to green-up during the wet seasons. This study aims to test the congruency between the MODIS derived FPAR values and ground-based FPAR values in relation to growing season length, growing season start and end dates, the peak and mean of FPAR values, and overall growth/phenological trends at the Santa Rosa National Park Environmental Monitoring Super Site (SR-EMSS) in Costa Rica and FPAR MODIS products. We derive our FPAR from a Wireless

  15. Ground Monitoring Neotropical Dry Forests: A Sensor Network for Forest and Microclimate Dynamics in Semi-Arid Environments (Enviro-Net°)

    NASA Astrophysics Data System (ADS)

    Rankine, C. J.; Sánchez-Azofeifa, G.

    2011-12-01

    In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data

  16. Mexican-American Cultural Assumptions and Implications.

    ERIC Educational Resources Information Center

    Carranza, E. Lou

    The search for presuppositions of a people's thought is not new. Octavio Paz and Samuel Ramos have both attempted to describe the assumptions underlying the Mexican character. Paz described Mexicans as private, defensive, and stoic, characteristics taken to the extreme in the "pachuco." Ramos, on the other hand, described Mexicans as…

  17. Another Mexican birthweight paradox? The role of residential enclaves and neighborhood poverty in the birthweight of Mexican-origin infants.

    PubMed

    Osypuk, Theresa L; Bates, Lisa M; Acevedo-Garcia, Dolores

    2010-02-01

    Examining whether contextual factors influence the birth outcomes of Mexican-origin infants in the US may contribute to assessing rival explanations for the so-called Mexican health paradox. We examined whether birthweight among infants born to Mexican-origin women in the US was associated with Mexican residential enclaves and exposure to neighborhood poverty, and whether these associations were modified by nativity (i.e. mother's place of birth). We calculated metropolitan indices of neighborhood exposure to Mexican-origin population and poverty for the Mexican-origin population, and merged with individual-level, year 2000 natality data (n=490,332). We distinguished between neighborhood exposure to US-born Mexican-origin population (i.e. ethnic enclaves) and neighborhood exposure to foreign-born (i.e. Mexico-born) Mexican-origin population (i.e. immigrant enclaves). We used 2-level hierarchical linear regression models adjusting for individual, metropolitan, and regional covariates and stratified by nativity. We found that living in metropolitan areas with high residential segregation of US-born Mexican-origin residents (i.e. high prevalence of ethnic enclaves) was associated with lower birthweight for infants of US-born Mexican-origin mothers before and after covariate adjustment. When simultaneously adjusting for exposure to ethnic and immigrant enclaves, the latter became positively associated with birthweight and the negative effect of the former increased, among US-born mothers. We found no contextual birthweight associations for mothers born in Mexico in adjusted models. Our findings highlight a differential effect of context by nativity, and the potential health effects of ethnic enclaves, which are possibly a marker of downward assimilation, among US-born Mexican-origin women. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. Treatment acceptability among mexican american parents.

    PubMed

    Borrego, Joaquin; Ibanez, Elizabeth S; Spendlove, Stuart J; Pemberton, Joy R

    2007-09-01

    There is a void in the literature with regard to Hispanic parents' views about common interventions for children with behavior problems. The purpose of this study was to examine the treatment acceptability of child management techniques in a Mexican American sample. Parents' acculturation was also examined to determine if it would account for differences in treatment acceptability. Mexican American parents found response cost, a punishment-based technique, more acceptable than positive reinforcement-based techniques (e.g., differential attention). Results suggest that Mexican American parents' acculturation has little impact on acceptability of child management interventions. No association was found between mothers' acculturation and treatment acceptability. However, more acculturated Mexican American fathers viewed token economy as more acceptable than less acculturated fathers. Results are discussed in the context of clinical work and research with Mexican Americans.

  19. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession.

    PubMed

    Bhaskar, Radika; Porder, Stephen; Balvanera, Patricia; Edwards, Erika J

    2016-05-01

    We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in N-related traits. We also expected ecological selection during succession for differences in nitrogen use strategies, and corresponding shifts in legume abundance. We used phylogenetic analyses to test for trait conservatism in foliar and litter N, C:N, and N resorption. We also evaluated differences in N-related traits between old-growth and secondary forests. We found a weak phylogenetic signal for all traits, partly explained by wide variation within legumes. Across taxa we observed a positive relationship between leaf and litter N, but no shift in resorption strategies along the successional gradient. Despite species turnover, N-resorption, and N-related traits showed little change across succession, suggesting that, at least for these traits, secondary forests rapidly recover ecosystem function. Collectively, our results also suggest that legumes should not be considered a single functional group from a biogeochemical perspective.

  20. Effects of land use change and seasonality of precipitation on soil nitrogen in a dry tropical forest area in the Western Llanos of Venezuela.

    PubMed

    González-Pedraza, Ana Francisca; Dezzeo, Nelda

    2014-01-01

    We evaluated changes of different soil nitrogen forms (total N, available ammonium and nitrate, total N in microbial biomass, and soil N mineralization) after conversion of semideciduous dry tropical forest in 5- and 18-year-old pastures (YP and OP, resp.) in the western Llanos of Venezuela. This evaluation was made at early rainy season, at end rainy season, and during dry season. With few exceptions, no significant differences were detected in the total N in the three study sites. Compared to forest soils, YP showed ammonium losses from 4.2 to 62.9% and nitrate losses from 20.0 to 77.8%, depending on the season of the year. In OP, the ammonium content increased from 50.0 to 69.0% at the end of the rainy season and decreased during the dry season between 25.0 and 55.5%, whereas the nitrate content increased significantly at early rainy season. The net mineralization and the potentially mineralizable N were significantly higher (P < 0.05) in OP than in forest and YP, which would indicate a better quality of the substrate in OP for mineralization. The mineralization rate constant was higher in YP than in forest and OP. This could be associated with a reduced capacity of these soils to preserve the available nitrogen.

  1. Mexican-American Women: Diversity in Depth.

    ERIC Educational Resources Information Center

    Weaver, Marleen E.

    Various literary views of the Mexican American woman have been presented over the past 150 years. Anglo treatment of Mexican American women in literature has varied from blatant prejudice or vague mystical eroticism in early portrayals to more realistic views of the Chicano in modern writing. The current identity crisis of Mexican Americans is…

  2. Diabetic nephropathy among Mexican Americans

    PubMed Central

    Debnath, Subrata; Thameem, Farook; Alves, Tahira; Nolen, Jacqueline; Al-Shahrouri, Hania; Bansal, Shweta; Abboud, Hanna E.; Fanti, Paolo

    2012-01-01

    The incidence of diabetic nephropathy (DN) is growing rapidly worldwide as a consequence of the rising prevalence of Type 2 diabetes mellitus (T2DM). Among U.S. ethnic groups, Mexican Americans have a disproportionately high incidence and prevalence of DN and associated end-stage renal disease (ESRD). In communities bordering Mexico, as many as 90% of Mexican American patients with ESRD also suffer from T2DM compared to only 50% of non-Hispanic Whites (NHW). Both socio-economic factors and genetic predisposition appear to have a strong influence on this association. In addition, certain pathogenetic and clinical features of T2DM and DN are different in Mexican Americans compared to NHW, raising questions as to whether the diagnostic and treatment strategies that are standard practice in the NHW patient population may not be applicable in Mexican Americans. This article reviews the epidemiology of DN in Mexican Americans, describes the pathophysiology and associated risk factors, and identifies gaps in our knowledge and understanding that needs to be addressed by future investigations. PMID:22445478

  3. Diabetic nephropathy among Mexican Americans.

    PubMed

    Debnath, Subrata; Thameem, Farook; Alves, Tahira; Nolen, Jacqueline; Al-Shahrouri, Hania; Bansal, Shweta; Abboud, Hanna E; Fanti, Paolo

    2012-04-01

    The incidence of diabetic nephropathy (DN) is growing rapidly worldwide as a consequence of the rising prevalence of Type 2 diabetes mellitus (T2DM). Among U.S. ethnic groups, Mexican Americans have a disproportionately high incidence and prevalence of DN and associated end-stage renal disease (ESRD). In communities bordering Mexico, as many as 90% of Mexican American patients with ESRD also suffer from T2DM compared to only 50% of non-Hispanic Whites (NHW). Both socio-economic factors and genetic predisposition appear to have a strong influence on this association. In addition, certain pathogenetic and clinical features of T2DM and DN are different in Mexican Americans compared to NHW, raising questions as to whether the diagnostic and treatment strategies that are standard practice in the NHW patient population may not be applicable in Mexican Americans. This article reviews the epidemiology of DN in Mexican Americans, describes the pathophysiology and associated risk factors, and identifies gaps in our knowledge and understanding that needs to be addressed by future investigations.

  4. Characterization of wet and dry deposition in the downwind of industrial sources in a dry tropical area.

    PubMed

    Singh, R K; Agrawal, M

    2001-12-19

    An atmospheric deposition study was conducted in the downwind of Shaktinagar Thermal Power Plant (STPP), Renusagar Thermal Power Plant (RTPP), and Anpara Thermal Power Plant (ATPP), at Singrauli region, Uttar Pradesh (UP), India to characterize dry and wet deposition in relation to different pollution loading. During the study period, dry and wet depositions and levels of gaseous pollutants (SO2 and NO2) were estimated across the sites. Dry deposition was collected on a monthly basis and wet deposition on an event basis. Depositions were analyzed for pH, nitrate (NO3-), ammonium (NH4+), and sulphate (SO4(2-)) contents. Dry deposition rate both collected as clearfall and throughfall varied between 0.15 to 2.28 and 0.33 to 3.48 g m(-2) day(-1), respectively, at control and maximally polluted sites. The pH of dry deposition varied from 5.81 to 6.89 during winter and 6.09 to 7.02 during summer across the sites. During the rainy season, the mean pH of clear wet deposition varied from 6.56 to 7.04 and throughfall varied from 6.81 to 7.22. The concentrations of NO2 and SO2 pollutants were highest during the winter season. Mean SO2 concentrations varied from 18 to 75 g m(-3) at control and differently polluted sites during the winter season. The variation in NO2 concentrations did not show a pattern similar to that of SO2. The highest NO2 concentration during the winter season was 50 g m(-3), observed near RTPP. NO2 concentration did not show much variation among different sites, suggesting that the sources of NO2 emission are evenly distributed along the sites. The concentrations of NH4+, NO3-, and SO4(2-) ions in dry deposition were found to be higher in summer as compared to the winter season. In dry deposition (clearfall) the concentrations of NH4+, NO3-, and SO4(2-) varied from 0.13 to 1.0, 0.81 to 1.95, and 0.82 to 3.27 mg l(-1), respectively, during winter. In wet deposition (clearfall), the above varied from 0.14 to 0.74, 0.81 to 1.82, and 0.67 to 2.70 mg l(-1

  5. An Instructional Model on Mexican Culture.

    ERIC Educational Resources Information Center

    Finer, Neal

    The document presents a content outline of Mexican and Mexican American culture in seven units. It is adaptable for use at elementary, secondary, and college levels in bilingual and multicultural-oriented classes. Two charts introduce the units: (1) a reverse time line of Mexican culture from 1979 back to 1000 B.C.; and (2) a cause-effect chart…

  6. Effect of land cover and use on dry season river runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama

    USGS Publications Warehouse

    Ogden, Fred L.; Crouch, Trey D.; Stallard, Robert F.; Hall, Jefferson S.

    2013-01-01

    A paired catchment methodology was used with more than 3 years of data to test whether forests increase base flow in the dry season, despite reduced annual runoff caused by evapotranspiration (the “sponge-effect hypothesis”), and whether forests reduce maximum runoff rates and totals during storms. The three study catchments were: a 142.3 ha old secondary forest, a 175.6 ha mosaic of mixed age forest, pasture, and subsistence agriculture, and a 35.9 ha actively grazed pasture subcatchment of the mosaic catchment. The two larger catchments are adjacent, with similar morphology, soils, underlying geology, and rainfall. Annual water balances, peak runoff rates, runoff efficiencies, and dry season recessions show significant differences. Dry season runoff from the forested catchment receded more slowly than from the mosaic and pasture catchments. The runoff rate from the forest catchment was 1–50% greater than that from the similarly sized mosaic catchment at the end of the dry season. This observation supports the sponge-effect hypothesis. The pasture and mosaic catchment median runoff efficiencies were 2.7 and 1.8 times that of the forest catchment, respectively, and increased with total storm rainfall. Peak runoff rates from the pasture and mosaic catchments were 1.7 and 1.4 times those of the forest catchment, respectively. The forest catchment produced 35% less total runoff and smaller peak runoff rates during the flood of record in the Panama Canal Watershed. Flood peak reduction and increased streamflows through dry periods are important benefits relevant to watershed management, payment for ecosystem services, water-quality management, reservoir sedimentation, and fresh water security in the Panama Canal watershed and similar tropical landscapes.

  7. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient

    PubMed Central

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The “varying constraints hypothesis” of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels—the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)—using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied—early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia. PMID:27441689

  8. Do Reductions in Dry Season Transpiration Allow Shallow Soil Water Uptake to Persist in a Tropical Lower Montane Cloud Forest?

    NASA Astrophysics Data System (ADS)

    Munoz Villers, L. E.; Holwerda, F.; Alvarado-Barrientos, M. S.; Goldsmith, G. R.; Geissert Kientz, D. R.; González Martínez, T. M.; Dawson, T. E.

    2016-12-01

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF water cycling remain poorly understood. To investigate the plant functional response to reduced water availability, we conducted a study during the mid to late dry season (2014) in the lower limit (1,325 m asl) of the TMCF belt (1200-2500 m asl) in central Veracruz, Mexico. The temporal variation of transpiration rates of dominant upper canopy and mid-story tree species, depth of water uptake, as well as tree water sources were examined using micrometeorological, sapflow and soil moisture measurements, in combination with data on stable isotope (δ18O and δ2H) composition of rain, tree xylem, soil (bulk and low suction-lysimeter) and stream water. The sapflow data suggest that crown conductances decreased as temperature and vapor pressure deficit increased, and soil moisture decreased from the mid to late dry season. Across all samplings (January 21, April 12 and 26), upper canopy species (Quercus spp.) showed more depleted (negative) isotope values compared to mid-story trees (Carpinus tropicalis). Overall, we found that the evaporated soil water pool was the main source for the trees. Furthermore, our MixSIAR Bayesian mixing model results showed that the depth of tree water uptake changed over the course of the dry season. Unexpectedly, a shift in water uptake from deeper (60-120 cm depth) to shallower soil water (0-30 cm) sources was observed, coinciding with the decreases in transpiration rates towards the end of the dry season. A larger reduction in deep soil water contributions was observed for upper canopy trees (from 70±14 to 22±15%) than for mid-story species (from 10±13 to 7±10%). The use of shallow soil water by trees during the dry season seems consistent with the greater root biomass and higher macronutrient concentrations found in the first 10 cm of the soil profiles. These findings are an

  9. Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert.

    PubMed

    Godínez-Alvarez, H; Morín, C; Rivera-Aguilar, V

    2012-01-01

    Information about the effects of biological soil crusts (BSC) on germination, seedling survival and growth of vascular plants is controversial because they can have positive, neutral or negative effects. This controversy may be because most studies conducted until now have just analysed one or two recruitment stages independently. To understand the BSC effects on vascular plants, it is necessary to consider each stage of the recruitment process and synthesise all this information. The goal of this study was twofold. First, we analyse germination, seedling survival and growth of three vascular plants (Agave marmorata, Prosopis laevigata and Neobuxbaumia tetetzo) on BSC (cyanobacteria and mixed crust) from a tropical desert region of south-central México. Second, we synthesise the information to determine the total effect of BSC on plant species performance. We conducted experiments under controlled conditions to evaluate the proportion of germinated seeds, proportion of surviving seedlings and seedling dry weight in BSC and bare soil. Results showed that BSC have different effects on germination, seedling survival and growth of plant species. Plant species performance was qualitatively higher on BSC than bare soil. The highest performance of A. marmorata and P. laevigata was observed on cyanobacteria and mixed crusts, respectively. The highest performance of N. tetetzo was on both crust types. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Phylogenetic classification of the world's tropical forests.

    PubMed

    Slik, J W Ferry; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; Alves, Luciana F; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C, Gerardo A; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L; Bastin, Jean-François; Bellingham, Peter J; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brambach, Fabian; Brearley, Francis Q; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H S; Davidar, Priya; DeWalt, Saara J; Din, Hazimah; Drake, Donald R; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M; Grogan, James; Hakeem, Khalid Rehman; Harris, David J; Harrison, Rhett D; Hector, Andy; Hemp, Andreas; Homeier, Jürgen; Hussain, M Shah; Ibarra-Manríquez, Guillermo; Hanum, I Faridah; Imai, Nobuo; Jansen, Patrick A; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kessler, Michael; Killeen, Timothy J; Kooyman, Robert M; Laumonier, Yves; Laurance, Susan G; Laurance, William F; Lawes, Michael J; Letcher, Susan G; Lindsell, Jeremy; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R; Martin, Emanuel H; Calderado Leal Matos, Darley; Meave, Jorge A; Melo, Felipe P L; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D; Munguía-Rosas, Miguel A; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R; Powers, Jennifer S; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S B; Rolim, Samir; Rovero, Francesco; Rozak, Andes; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd Said, Mohd Nizam; Saiter, Felipe Z; Saner, Philippe; Santos, Braulio; Dos Santos, João Roberto; Sarker, Swapan Kumar; Schmitt, Christine B; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sultana, Aisha; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H S; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V J; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Webb, Edward L; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo

    2018-02-20

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: ( i ) Indo-Pacific, ( ii ) Subtropical, ( iii ) African, ( iv ) American, and ( v ) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. Copyright © 2018 the Author(s). Published by PNAS.

  11. Turbulence Measurements in a Tropical Zoo Hall

    NASA Astrophysics Data System (ADS)

    Eugster, Werner; Denzler, Basil; Bogdal, Christian

    2017-04-01

    The Masoala rainforest hall of the Zurich Zoo, Switzerland, covers a ground surface area of 10,856 m2 and reaches 30 m in height. With its transparent ETFE foiled roof it provides a tropical climate for a large diversity of plants and animals. In combination with an effort to estimate dry deposition of elemental mercury, we made an attempt to measure turbulent transfer velocity with an ultrasonic anemometer inside the hall. Not surprising, the largest turbulence elements were on the order of the hall dimension. Although the dimensions of the hall seem to be small (200,000 m3) for eddy covariance flux measurements and the air circulation inside the hall was extremely weak, the spectra of wind velocity components and virtual (sonic) temperature obeyed the general statistical description expected under unconstrained outdoor measurement conditions. We will present results from a two-week measurement campaign in the Masoala rainforest hall and make a suggestion for the deposition velocity to be used to estimate dry deposition of atmospheric components to the tropical vegetation surface.

  12. MEXICAN-AMERICAN STUDY PROJECT. ADVANCE REPORT 10, MEXICAN AMERICANS IN SOUTHWEST LABOR MARKETS.

    ERIC Educational Resources Information Center

    FOGEL, WALTER

    MEXICAN AMERICANS ARE CLEARLY A DISADVANTAGED GROUP IN THE LABOR MARKETS OF THE SOUTHWEST. ALTHOUGH SUBSTANTIAL GAINS IN INCOME AND OCCUPATIONAL STATUS TAKE PLACE BETWEEN THE FIRST AND SECOND GENERATIONS OF MEXICAN AMERICANS, LITTLE IMPROVEMENT IS EVIDENCED AFTER THE SECOND GENERATION. AS FURTHER EVIDENCE OF DISADVANTAGEMENT, IT HAS BEEN FOUND…

  13. Sensitivity of tropical forest aboveground productivity to climate anomalies in SW Costa Rica

    NASA Astrophysics Data System (ADS)

    Hofhansl, Florian; Kobler, Johannes; Ofner, Joachim; Drage, Sigrid; Pölz, Eva-Maria; Wanek, Wolfgang

    2014-12-01

    The productivity of tropical forests is driven by climate (precipitation, temperature, and light) and soil fertility (geology and topography). While large-scale drivers of tropical productivity are well established, knowledge on the sensitivity of tropical lowland net primary production to climate anomalies remains scarce. We here analyze seven consecutive years of monthly recorded tropical forest aboveground net primary production (ANPP) in response to a recent El Niño-Southern Oscillation (ENSO) anomaly. The ENSO transition period resulted in increased temperatures and decreased precipitation during the El Niño dry period, causing a decrease in ANPP. However, the subsequent La Niña wet period caused strong increases in ANPP such that drought-induced reductions were overcompensated. Most strikingly, the climatic controls differed between canopy production (CP) and wood production (WP). Whereas CP showed strong seasonal variation but was not affected by ENSO, WP decreased significantly in response to a 3°C increase in annual maximum temperatures during the El Niño period but subsequently recovered to above predrought levels during the La Niña period. Moreover, the climate sensitivity of tropical forest ANPP components was affected by local topography (water availability) and disturbance history (species composition). Our results suggest that projected increases in temperature and dry season length could impact tropical carbon sequestration by shifting ANPP partitioning toward decreased WP, thus decreasing the carbon storage of highly productive lowland forests. We conclude that the impact of climate anomalies on tropical forest productivity is strongly related to local site characteristics and will therefore likely prevent uniform responses of tropical lowland forests to projected global changes.

  14. Mexican and Mexican American women in a battered women's shelter: barriers to condom negotiation for HIV/AIDS prevention.

    PubMed

    Davila, Y R; Brackley, M H

    1999-01-01

    Anecdotal information suggests that, for Hispanic women who are involved with abusive partners, condom use request as an HIV/AIDS sexual risk-reduction behavior may expose the women to risk of both abuse and HIV/AIDS. A qualitative study explored barriers to condom negotiation for HIV/AIDS prevention among Mexican and Mexican American women in abusive relationships. A convenience sample of 14 Mexican and Mexican American women was recruited from a battered women's shelter. A demographic form, a domestic violence assessment form, and audiotaped responses to a semistructured interview guide were used to collect data. Descriptive statistics were used to describe the sample. Audiotaped interviews were transcribed verbatim and submitted to content analysis, which revealed past and present themes of physical, psychological, and sexual abuse of Mexican and Mexican American women who requested condom use by their male sexual partners. Also identified by content analysis was the influence of men's power on women's public, private, and sexual interactions.

  15. Tree allometry and improved estimation of carbon stocks and balance in tropical forests.

    PubMed

    Chave, J; Andalo, C; Brown, S; Cairns, M A; Chambers, J Q; Eamus, D; Fölster, H; Fromard, F; Higuchi, N; Kira, T; Lescure, J-P; Nelson, B W; Ogawa, H; Puig, H; Riéra, B; Yamakura, T

    2005-08-01

    Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees >or= 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5-6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle.

  16. Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico

    NASA Astrophysics Data System (ADS)

    Verduzco, Vivian S.; Garatuza-Payán, Jaime; Yépez, Enrico A.; Watts, Christopher J.; Rodríguez, Julio C.; Robles-Morua, Agustin; Vivoni, Enrique R.

    2015-10-01

    Due to their large extent and high primary productivity, tropical dry forests (TDF) are important contributors to atmospheric carbon exchanges in subtropical and tropical regions. In northwest Mexico, a bimodal precipitation regime that includes winter precipitation derived from Pacific storms and summer precipitation from the North American monsoon (NAM) couples water availability with ecosystem processes. We investigated the net ecosystem production of a TDF ecosystem using a 4.5 year record of water and carbon fluxes obtained from the eddy covariance method complemented with remotely sensed data. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer that respiration is mainly due to decomposition of soil organic matter accumulated from the prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production but can be overwhelmed by the strength of the primary productivity during the NAM. Precipitation characteristics during NAM have significant controls on sustaining carbon fixation in the TDF into the fall season. We identified that a threshold of ~350 to 400 mm of monsoon precipitation leads to a switch in the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This monsoonal precipitation threshold is typically exceeded one out of every 2 years. The close coupling of winter and summer periods with respect to carbon fluxes suggests that the annual carbon balance is dependent on precipitation amounts in both seasons in TDF ecosystems.

  17. Successional changes in functional composition contrast for dry and wet tropical forest.

    PubMed

    Lohbeck, Madelon; Poorter, Lourens; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Paz, Horacio; Pérez-García, Eduardo A; Romero-Pérez, I Eunice; Tauro, Alejandra; Bongers, Frans

    2013-06-01

    We tested whether and how functional composition changes with succession in dry deciduous and wet evergreen forests of Mexico. We hypothesized that compositional changes during succession in dry forest were mainly determined by increasing water availability leading to community functional changes from conservative to acquisitive strategies, and in wet forest by decreasing light availability leading to changes from acquisitive to conservative strategies. Research was carried out in 15 dry secondary forest plots (5-63 years after abandonment) and 17 wet secondary forest plots (< 1-25 years after abandonment). Community-level functional traits were represented by community-weighted means based on 11 functional traits measured on 132 species. Successional changes in functional composition are more marked in dry forest than in wet forest and largely characterized by different traits. During dry forest succession, conservative traits related to drought tolerance and drought avoidance decreased, as predicted. Unexpectedly acquisitive leaf traits also decreased, whereas seed size and dependence on biotic dispersal increased. In wet forest succession, functional composition changed from acquisitive to conservative leaf traits, suggesting light availability as the main driver of changes. Distinct suites of traits shape functional composition changes in dry and wet forest succession, responding to different environmental filters.

  18. Cultural Vignette: Mexican Americans.

    ERIC Educational Resources Information Center

    Boyer, Mary Ellen; And Others

    Developed as part of a multicultural research project in the San Diego Community College District, this booklet presents the findings of a 10-member research team about various elements of Mexican-American culture. The areas covered are: (1) historical background on the Mexican heritage of the United States from pre-colonial times to the present…

  19. Design and operation of a solarheated dry kiln for tropical latitudes

    Treesearch

    Brian Bond; Omar Espinoza; Philip Araman

    2011-01-01

    Lumber is usually dried to a specific moisture content prior to further manufacturing or use. While lumber can be air-dried, the ambient humidity in most localities prevents the lumber from reaching the moisture content necessary for dimensional stability and use, especially for interior use. Solar kilns are an inexpensive alternative to conventional steam-heated kilns...

  20. Interannual variability in the extent and intensity of tropical dry forest deciduousness in the Mexican Yucatan (2000-2016): Drivers and Links to Regional Atmospheric Conditions

    NASA Astrophysics Data System (ADS)

    Cuba, Nicholas Joseph

    The dry topical forests of the southern Yucatan Peninsula experience multiple natural and anthropogenic disturbances, as well as substantial interannual climate variability that can result in stark interannual differences in vegetation phenology. Dry season deciduousness is a typical response to limit tree water loss during prolonged periods of hot and dry conditions, and this behavior has both direct implications for ecosystem functioning, and the potential to indicate climate conditions when observed using remotely-sensed data. The first research paper of this dissertation advances methods to assess the accuracy of remotely-sensed measurements of canopy conditions using in-situ observations. Linear regression models show the highest correlation (R2 = 0.751) between in-situ canopy gap fraction and Landsat NDWISWIR2. MODIS time series NDWISWIR2 are created for the period March 2000-February 2011, and exhibit stronger correlation with time series of TRMM precipitation data than do MODIS EVI time series (R2= 0.48 vs. R2 = 0.43 in deciduous forest areas). The second paper examines differences between the deciduous phenology of young forest stands and older forest stands. Land-cover maps are overlaid to determine whether forested areas are greater than or less than 22 years old in 2010, and metrics related to deciduous phenology are derived from MODIS EVI2 time series in three years, 2008 to 2011. Statistical tests that compare matched pairs of young (12-22 years) and older (>22 years) forest stand age class samples are used to detect significant differences in metrics related to the intensity and timing of deciduousness. In all three years, younger forests exhibit significantly more intense deciduousness, measured as total seasonal change of EVI2 normalized by annual maximum EVI2 (p<0.001), and exhibit larger EVI2 declines at successive 32-day periods during dry season months (p<0.02), than nearby older forests that are assumed to share similar environmental

  1. MEXICAN-AMERICAN STUDY PROJECT. ADVANCE REPORT 2, MEXICAN IMMIGRATION TO THE UNITED STATES--THE RECORD AND ITS IMPLICATIONS.

    ERIC Educational Resources Information Center

    GREBLER, LEO; AND OTHERS

    THIS PRELIMINARY REPORT DESCRIBES THAT PHASE OF THE UCLA MEXICAN-AMERICAN STUDY PROJECT WHICH CONCERNS THE IMMIGRATION PROCESS OF MEXICANS TO THE UNITED STATES. STATISTICS ARE PRESENTED ABOUT--(1) THE VOLUME OF IMMIGRATION OVER THE YEARS, (2) THE SOCIO-ECONOMIC CHARACTERISTICS OF IMMIGRATING MEXICANS, (3) THE GEOGRAPHIC DISTRIBUTION OF MIGRANTS…

  2. Solar and anthropogenic forcing of tropical hydrology

    NASA Astrophysics Data System (ADS)

    Shindell, Drew T.; Faluvegi, Greg; Miller, Ron L.; Schmidt, Gavin A.; Hansen, James E.; Sun, Shan

    2006-12-01

    Holocene climate proxies suggest substantial correlations between tropical meteorology and solar variations, but these have thus far not been explained. Using a coupled ocean-atmosphere-composition model forced by sustained multi-decadal irradiance increases, we show that greater tropical temperatures alter the hydrologic cycle, enhancing the climatological precipitation maxima in the tropics while drying the subtropical subsidence regions. The shift is enhanced by tropopause region ozone increases, and the model captures the pattern inferred from paleoclimate records. The physical process we describe likely affected past civilizations, including the Maya, Moche, and Ancestral Puebloans who experienced drought coincident with increased irradiance during the late medieval (~900-1250). Similarly, decreased irradiance may have affected cultures via a weakened monsoon during the Little Ice Age (~1400-1750). Projections of 21st-century climate change yield hydrologic cycle changes via similar processes, suggesting a strong likelihood of increased subtropical drought as climate warms.

  3. Rare, Intense, Big fires dominate the global tropics under drier conditions.

    PubMed

    Hantson, Stijn; Scheffer, Marten; Pueyo, Salvador; Xu, Chi; Lasslop, Gitta; van Nes, Egbert H; Holmgren, Milena; Mendelsohn, John

    2017-10-30

    Wildfires burn large parts of the tropics every year, shaping ecosystem structure and functioning. Yet the complex interplay between climate, vegetation and human factors that drives fire dynamics is still poorly understood. Here we show that on all continents, except Australia, tropical fire regimes change drastically as mean annual precipitation falls below 550 mm. While the frequency of fires decreases below this threshold, the size and intensity of wildfires rise sharply. This transition to a regime of Rare-Intense-Big fires (RIB-fires) corresponds to the relative disappearance of trees from the landscape. Most dry regions on the globe are projected to become substantially drier under global warming. Our findings suggest a global zone where this drying may have important implications for fire risks to society and ecosystem functioning.

  4. Racial Identity and Racial Treatment of Mexican Americans.

    PubMed

    Ortiz, Vilma; Telles, Edward

    2012-04-01

    How racial barriers play in the experiences of Mexican Americans has been hotly debated. Some consider Mexican Americans similar to European Americans of a century ago that arrived in the United States with modest backgrounds but were eventually able to participate fully in society. In contrast, others argue that Mexican Americans have been racialized throughout U.S. history and this limits their participation in society. The evidence of persistent educational disadvantages across generations and frequent reports of discrimination and stereotyping support the racialization argument. In this paper, we explore the ways in which race plays a role in the lives of Mexican Americans by examining how education, racial characteristics, social interactions, relate to racial outcomes. We use the Mexican American Study Project, a unique data set based on a 1965 survey of Mexican Americans in Los Angeles and San Antonio combined with surveys of the same respondents and their adult children in 2000, thereby creating a longitudinal and intergenerational data set. First, we found that darker Mexican Americans, therefore appearing more stereotypically Mexican, report more experiences of discrimination. Second, darker men report much more discrimination than lighter men and than women overall. Third, more educated Mexican Americans experience more stereotyping and discrimination than their less-educated counterparts, which is partly due to their greater contact with Whites. Lastly, having greater contact with Whites leads to experiencing more stereotyping and discrimination. Our results are indicative of the ways in which Mexican Americans are racialized in the United States.

  5. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest.

    PubMed

    Frosi, Gabriella; Barros, Vanessa A; Oliveira, Marciel T; Santos, Mariana; Ramos, Diego G; Maia, Leonor C; Santos, Mauro G

    2016-12-01

    In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (P i ) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (P i ) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H 2 O and -H 2 O), 2 AMF levels (+AMF and -AMF) and 2P i levels (+P i and -P i ). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, P i or AMF+P i plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or P i . After rehydration, those plants submitted to drought with AMF, P i or AMF+P i showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or P i . However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, P i or AMF+P i increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Adapting to the unpredictable: reproductive biology of vertebrates in the Australian wet-dry tropics.

    PubMed

    Shine, Richard; Brown, Gregory P

    2008-01-27

    In the wet-dry tropics of northern Australia, temperatures are high and stable year-round but monsoonal rainfall is highly seasonal and variable both annually and spatially. Many features of reproduction in vertebrates of this region may be adaptations to dealing with this unpredictable variation in precipitation, notably by (i) using direct proximate (rainfall-affected) cues to synchronize the timing and extent of breeding with rainfall events, (ii) placing the eggs or offspring in conditions where they will be buffered from rainfall extremes, and (iii) evolving developmental plasticity, such that the timing and trajectory of embryonic differentiation flexibly respond to local conditions. For example, organisms as diverse as snakes (Liasis fuscus, Acrochordus arafurae), crocodiles (Crocodylus porosus), birds (Anseranas semipalmata) and wallabies (Macropus agilis) show extreme annual variation in reproductive rates, linked to stochastic variation in wet season rainfall. The seasonal timing of initiation and cessation of breeding in snakes (Tropidonophis mairii) and rats (Rattus colletti) also varies among years, depending upon precipitation. An alternative adaptive route is to buffer the effects of rainfall variability on offspring by parental care (including viviparity) or by judicious selection of nest sites in oviparous taxa without parental care. A third type of adaptive response involves flexible embryonic responses (including embryonic diapause, facultative hatching and temperature-dependent sex determination) to incubation conditions, as seen in squamates, crocodilians and turtles. Such flexibility fine-tunes developmental rates and trajectories to conditions--especially, rainfall patterns--that are not predictable at the time of oviposition.

  7. Mexican American Self-Referents and Linguistic Attitudes.

    ERIC Educational Resources Information Center

    Flores, Nancy de la Zerda; Whitehead, Jack

    In order to determine whether differences in choice of ethnic self-referent by Mexican-Americans reflect differences in ethnic identity and attitudes toward their culture, questionnaires were distributed among Mexican-Americans living in San Antonio. The measurable cultural attitude was that toward language, since to the Mexican-American Spanish…

  8. Green Medicine: Traditional Mexican-American Herbal Remedies.

    ERIC Educational Resources Information Center

    Torres, Eliseo

    Traditional Mexican American herbal potions and remedies and their history are explained in an introductory book for the general reader. The importance of curanderismo, or green medicine, in Mexican and Mexican American cultures is explored. A brief history traces the herbal aspects of curanderismo through Mayan and Aztec cultures, the Spanish…

  9. Effects of Land Use Change and Seasonality of Precipitation on Soil Nitrogen in a Dry Tropical Forest Area in the Western Llanos of Venezuela

    PubMed Central

    González-Pedraza, Ana Francisca; Dezzeo, Nelda

    2014-01-01

    We evaluated changes of different soil nitrogen forms (total N, available ammonium and nitrate, total N in microbial biomass, and soil N mineralization) after conversion of semideciduous dry tropical forest in 5- and 18-year-old pastures (YP and OP, resp.) in the western Llanos of Venezuela. This evaluation was made at early rainy season, at end rainy season, and during dry season. With few exceptions, no significant differences were detected in the total N in the three study sites. Compared to forest soils, YP showed ammonium losses from 4.2 to 62.9% and nitrate losses from 20.0 to 77.8%, depending on the season of the year. In OP, the ammonium content increased from 50.0 to 69.0% at the end of the rainy season and decreased during the dry season between 25.0 and 55.5%, whereas the nitrate content increased significantly at early rainy season. The net mineralization and the potentially mineralizable N were significantly higher (P < 0.05) in OP than in forest and YP, which would indicate a better quality of the substrate in OP for mineralization. The mineralization rate constant was higher in YP than in forest and OP. This could be associated with a reduced capacity of these soils to preserve the available nitrogen. PMID:25610907

  10. Sensitivity of the Endogeic Tropical Earthworm Pontoscolex corethrurus to the Presence of Heavy Crude Oil.

    PubMed

    Del Carmen Cuevas-Díaz, María; Vázquez-Luna, Dinora; Martínez-Hernández, Sergio; Guzmán-López, Oswaldo; Ortíz-Ceballos, Angel I

    2017-08-01

    Contamination of soil with petroleum is common in oil-producing areas across the tropical regions of the world. There is limited knowledge on the sensitivity of endogeic tropical earthworms to the contamination of soil with total petroleum hydrocarbons (TPH) present in crude oil. Pontoscolex corethrurus is a dominant species in tropical agroecosystems around oil-processing facilities. The sensitivity of P. corethrurus to soil artificially contaminated with "Maya" Mexican heavy crude oil was investigated through avoidance and acute ecotoxicity tests, using the following measured concentrations: 0 (reference soil), 551, 969, 4845, 9991 and 14,869 mg/kg. The avoidance test showed that P. corethrurus displayed a significant avoidance behavior to heavy crude oil at a concentration of 9991 mg/kg or higher. In contrast, acute toxicity tests indicate that the median lethal concentration (LC 50 ) was 3067.32 mg/kg; however, growth (weight loss) was more sensitive than mortality. Our study revealed that P. corethrurus is sensitive to TPH, thus highlighting the importance of P. corethrurus for petroleum ecotoxicological tests.

  11. Global Precipitation Patterns Associated with ENSO and Tropical Circulations

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric

    1999-01-01

    Tropical precipitation and the accompanying latent heat release is the engine that drives the global circulation. An increase or decrease in rainfall in the tropics not only leads to the local effects of flooding or drought, but contributes to changes in the large scale circulation and global climate system. Rainfall in the tropics is highly variable, both seasonally (monsoons) and interannually (ENSO). Two experimental observational data sets, developed under the auspices of the Global Precipitation Climatology Project (GPCP), are used in this study to examine the relationships between global precipitation and ENSO and extreme monsoon events over the past 20 years. The V2x79 monthly product is a globally complete, 2.5 deg x 2.5 deg, satellite-gauge merged data set that covers the period 1979 to the present. Indices based on patterns of satellite-derived rainfall anomalies in the Pacific are used to analyze the teleconnections between ENSO and global precipitation, with emphasis on the monsoon systems. It has been well documented that dry (wet) Asian monsoons accompany warm (cold) ENSO events. However, during the summer seasons of the 1997/98 ENSO the precipitation anomalies were mostly positive over India and the Bay of Bengal, which may be related to an epoch-scale variability in the Asian monsoon circulation. The North American monsoon may be less well linked to ENSO, but a positive precipitation anomaly was observed over Mexico around the September following the 1997/98 event. For the twenty-year record, precipitation and SST patterns in the tropics are analyzed during wet and dry monsoons. For the Asian summer monsoon, positive rainfall anomalies accompany two distinct patterns of tropical precipitation and a warm Indian Ocean. Negative anomalies coincide with a wet Maritime Continent.

  12. Racial Identity and Racial Treatment of Mexican Americans

    PubMed Central

    Ortiz, Vilma; Telles, Edward

    2013-01-01

    How racial barriers play in the experiences of Mexican Americans has been hotly debated. Some consider Mexican Americans similar to European Americans of a century ago that arrived in the United States with modest backgrounds but were eventually able to participate fully in society. In contrast, others argue that Mexican Americans have been racialized throughout U.S. history and this limits their participation in society. The evidence of persistent educational disadvantages across generations and frequent reports of discrimination and stereotyping support the racialization argument. In this paper, we explore the ways in which race plays a role in the lives of Mexican Americans by examining how education, racial characteristics, social interactions, relate to racial outcomes. We use the Mexican American Study Project, a unique data set based on a 1965 survey of Mexican Americans in Los Angeles and San Antonio combined with surveys of the same respondents and their adult children in 2000, thereby creating a longitudinal and intergenerational data set. First, we found that darker Mexican Americans, therefore appearing more stereotypically Mexican, report more experiences of discrimination. Second, darker men report much more discrimination than lighter men and than women overall. Third, more educated Mexican Americans experience more stereotyping and discrimination than their less-educated counterparts, which is partly due to their greater contact with Whites. Lastly, having greater contact with Whites leads to experiencing more stereotyping and discrimination. Our results are indicative of the ways in which Mexican Americans are racialized in the United States. PMID:24307918

  13. Impact of habitat degradation on phlebotominae (Diptera: Psychodidae) of tropical dry forests in Northern Colombia.

    PubMed

    Travi, Bruno L; Adler, Gregory H; Lozano, Margarita; Cadena, Horacio; Montoya-Lerma, James

    2002-05-01

    We examined changes in the phlebotomine fauna resulting from human intervention in a tropical dry forest of Northern Colombia where visceral and cutaneous leishmaniases are endemic. A natural forest reserve (Colosó) and a highly degraded area (San Andrés de Sotavento [SAS]) were sampled monthly for 8 mo using Shannon traps, sticky traps, and resting-site collections. Overall abundances were higher in Colosó (15,988) than in SAS (2,324). and species richness of phlebotomines was greater in the forest reserve (11 species) than in the degraded habitat (seven species). Fisher alpha, a measure of diversity, reinforced this trend. Both sand fly communities were dominated by Lutzomyia evansi (Nuòez-Tovar), vector of Leishmania chagasi (Cunha & Chagas), representing 92 and 81% of all captures in Colosó and SAS, respectively. Lutzomyia longipalpis (Lutz & Neiva), the common vector of visceral leishmaniasis, accounted for 4-7% of the sand fly community. Lutzornyia panamensis (Shannon) and Lutzomya gomezi (Nitzulescu), putative vectors of Leishmania braziliensis (Vianna), had low abundances at both study sites. The zoophilic species Lutzomyia cayennensis (Floch & Abonneuc) and Lutzomyia trinidadensis (Newstead) were present in variable numbers according to trapping methods and site. Habitat degradation negatively affected sand fly communities, but medically important species were able to exploit modified environments, thereby contributing to Lishmania endemicity.

  14. Drought Stress Response of Dry Forest Trees of the Brazilian Caatinga

    NASA Astrophysics Data System (ADS)

    Menezes, R.; Worbes, M.

    2015-12-01

    Martin Worbes and Romulo Menezes In the frame of the "Tropi-Dry" network we studied drought response strategies of six tree species in a Caatinga forest at the Fazenda Tamandua near Patos in Paraiba, NE Brazil. We selected the tree species as representatives of the different phenological ecotypes: evergreen, deciduous and stem succulent. The deciduous group comprised N-fixing as well as non N-fixing Leguminosae. Over an entire vegetation period (dry and wet-season) we monitored their phenological behaviour, photosynthesis rates, stomata conductance and water potential, measured if leaves were present and we estimated seasonal variations in stable carbon and N15 content of the leaves. The major results are: Evergreen species (e.g. Capparis) may compensate low carbon-fixing rates in the wet season with a much longer vegetation period as the deciduous species. Stem succulents (Jatropha) do not fulfill the expectations of being high productive species under drought stress conditions, while the N-fixing Mimosa performed in particular at the end and the beginning of the dry period better than the rest of the investigated species. In general the results may help to understand different strategies of tree species in respect to extended dry periods of at least six months as in our study area and their role in carbon sequestration of tropical dry forests. The variety of observed strategies may contribute to the resilience of the ecosystem tropical dry forests.

  15. The Tropical Upper Troposphere and Lower Stratosphere in the GEOS-2 GCM

    NASA Technical Reports Server (NTRS)

    Pawson, S.; Takacs, L.; Molod, A.; Nebuda, S.; Chen, M.; Rood, R.; Read, W. L.; Fiorino, M.

    1999-01-01

    The structure of the tropical upper troposphere and lower stratosphere in the GEOS-2 General Circulation Model (GCM) is discussed. The emphasis of this study is on the reality of monthly-mean temperature and water vapor distributions in the model, compared to reasonable observational estimates. It is shown that although the zonal-mean temperature is in good agreement with observations, the GCM supports an excessive zonal asymmetry near the tropopause compared to the ECMWF Reanalyses. In reality there is a QBO-related variability in the zonally averaged lower stratospheric temperature which is not captured by the model. The observed upper tropospheric temperature and humidity fields show variations related to those in the sea surface temperature, which are not incorporated in the GCM; nevertheless, there is some interannual variability in the GCM, indicating a component arising from internal processes. The model is too moist in the middle troposphere (500 hPa) but too dry in the upper troposphere, suggesting that there is too little vertical transport or too much drying in the GCM. Transport into the stratosphere shows a pronounced annual cycle, with drier air entering the tropical stratosphere when the tropopause is coldest in northern winter; while the alternating dry and moist air masses can be traced ascending through the tropical lower stratosphere, the progression of the anomalies is too rapid.

  16. Redescription of the poorly known planktonic copepod Pontellopsis lubbockii (Giesbrecht, 1889) (Pontellidae) from the Eastern Tropical Pacific with a key to species

    PubMed Central

    Suárez-Morales, Eduardo; Kozak, Eva

    2012-01-01

    Abstract During a survey of the epipelagic zooplankton carried out off the coast of the Mexican states of Jalisco and Colima, in the Eastern Tropical Pacific, female and male specimens of the poorly known calanoid copepod Pontellopsis lubbockii (Giesbrecht, 1889) were collected. Because previous descriptions and illustrations are largely incomplete and have caused some taxonomical confusion, this species is fully redescribed from specimens from the Mexican Pacific. The species has some characters that have been overlooked, but those related to the female genital double-somite are the most striking, it has two conical dorsal protuberances and a long ventral spiniform process unique of this species. The mouthparts of this species have not been hitherto described and figured, the flexible terminal setae of legs 3 and 4 is noteworthy. The male general morphology agrees in general with previous data, but new details of the leg 5 and geniculate antennule are added. Its mouthparts, with strong, serrate setae on the maxillae and maxillules, and a strong mandibular edge, suggest that this is a predator form. A dichotomous key for the identification of males and females of the species of Pontellopsis known from the Eastern Tropical Pacific is included. PMID:23372406

  17. Variability in core areas of spider monkeys (Ateles geoffroyi) in a tropical dry forest in Costa Rica.

    PubMed

    Asensio, Norberto; Schaffner, Colleen M; Aureli, Filippo

    2012-04-01

    Core areas are highly used parts of the home range on which the survival of solitary or group-living animals depends. We investigated the home range and core area size and area fidelity of a spider monkey community in a tropical dry forest over a 4-year period. Home ranges overlapped extensively across years, subgroup sizes, and seasons. In contrast, spider monkeys used core areas that varied in size and location across the study years, subgroup sizes, and seasons. These shifts in core areas suggest that the understanding of core areas, and thus the spatial requirements, of a species in a particular habitat may be limited if based on short-term studies. In this respect, our findings emphasize the importance of long-term studies of the spatial ecology of any species in a particular habitat. Our study also shows that the yearly home range basically includes all the core areas from different years, seasons, and subgroup sizes (i.e., the super-core area). This is conceptually important for territorial species, such as spider monkeys, which defend a stable home range as it contains not only the current, but also the future core areas.

  18. Mexicano, Mexican-American or Chicano?

    ERIC Educational Resources Information Center

    Contreras, Maximiliano

    Although often considered to be homogeneous, the Hispanic community contains many culturally diverse groups. In the United States today, those of Mexican heritage--by far the largest subgroup within the Hispanic community--can be further classified as Mexicano (undocumented resident), Mexican American, or Chicano. This classification system…

  19. Mexican American intergenerational caregiving model.

    PubMed

    Escandón, Socorro

    2006-08-01

    This study employed grounded theory to formulate a conceptual model of intergenerational caregiving among Mexican American families. The sample consisted of 10 Mexican American caregivers of various generations older than 21 who provided at least one intermittent service (without pay at least once a month) to an elder, related through consanguinal or acquired kinship ties. The inductively generated theory of role acceptance is composed of four phases: (a) introduction--early caregiving experiences, (b) role reconciliation, (c) role imprint, and (d) providing or projecting care. This model can be used to study varied generations of Mexican American caregivers. It also provides a framework for comparison with other groups of caregivers. The results can help in designing nursing interventions to support caregivers based on understanding the issues, to create and design systems that address the varying and ever-changing needs of informal caregivers, and to assist in the formulation of policy that supports Mexican American caregivers.

  20. Runoff thresholds and land-to-marine ecosystem connectivity in a dry tropical setting: St. John, US Virgin Islands

    NASA Astrophysics Data System (ADS)

    Ramos-Scharron, C. E.; LaFevor, M. C.; Roy, J.

    2017-12-01

    Developing a conceptually sound yet practical understanding of runoff and sediment delivery from human occupied lands to tropical ocean waters still represents a pivotal need of coral reef management worldwide. In the dry tropical and ephemeral streamflow setting that typifies the small watersheds ( 1s km2) draining the US Virgin Islands, changes in hydrologic and sediment delivery dynamics provoked by unsurfaced road networks represent a major threat to coral reefs and other sensitive marine ecosystems. Through a combined empirical and modeling approach, this study evaluates how road building and associated stormflow restoration strategies affect rainfall thresholds for runoff generation at varying spatial scales and their impact on land-to-sea connectivity. Rainfall thresholds and runoff coefficients for precipitation excess on unpaved roads are 2-3 mm and 22-30% (respectively) or a full order of magnitude different from those for undisturbed hillslopes and watersheds. Here we discuss the use of a `volume-to-breakthrough' inspired index to predict the potential of road runoff to reach downslope portions of the watershed and the coastline as runon. The index integrates the effects of storm-by-storm runoff accumulation for every road drainage point with its flow distance to specific locations along the stream network. While large runoff volumes and short flow distances imply a relatively high connectivity potential, small volumes and long distances are associated to low delivery potential. The index has proven able to discern observed runoff responses under a variety of road-stream network scenarios and rainfall conditions. These results enhance our understanding of ephemeral stream hydrology and are serving to improve coral reef management strategies throughout the Northeastern Caribbean.

  1. Phylogenetic classification of the world’s tropical forests

    PubMed Central

    Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C., Gerardo A.; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L.; Bastin, Jean-François; Bellingham, Peter J.; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brearley, Francis Q.; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L.; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M.; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H. S.; Davidar, Priya; DeWalt, Saara J.; Din, Hazimah; Drake, Donald R.; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J.; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W.; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M.; Grogan, James; Hakeem, Khalid Rehman; Harris, David J.; Harrison, Rhett D.; Hector, Andy; Hemp, Andreas; Hussain, M. Shah; Ibarra-Manríquez, Guillermo; Hanum, I. Faridah; Imai, Nobuo; Jansen, Patrick A.; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kessler, Michael; Killeen, Timothy J.; Kooyman, Robert M.; Laumonier, Yves; Laurance, William F.; Lawes, Michael J.; Letcher, Susan G.; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R.; Martin, Emanuel H.; Calderado Leal Matos, Darley; Meave, Jorge A.; Melo, Felipe P. L.; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P.; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D.; Munguía-Rosas, Miguel A.; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N.; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A.; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F.; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R.; Powers, Jennifer S.; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S. B.; Rolim, Samir; Rovero, Francesco; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd. Said, Mohd. Nizam; Saiter, Felipe Z.; Saner, Philippe; Santos, Braulio; dos Santos, João Roberto; Sarker, Swapan Kumar; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F.; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H. S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V. J.; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H.; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Webb, Edward L.; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C. Yves; Yap, Sandra L.; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo

    2018-01-01

    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. PMID:29432167

  2. Challenge theme 3: Protecting the environment and safeguarding human health: Chapter 5 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    USGS Publications Warehouse

    Papoulias, Diana M.; Parcher, Jean W.

    2013-01-01

    Many of the diverse, fragile ecosystems of the United States–Mexican border region are reaching unsustainable levels because of rapid population growth and changes in land use. Water shortages and pollution, poor air quality, increased soil salinities, and pesticides and heavy metal contaminants are some of the many stressors that are degrading the quality of life in the Borderlands. Lack of water treatment and wastewater infrastructure on both sides of the United States–Mexican border contributes to elevated rates of various communicable diseases most commonly found in developing countries: tuberculosis, intestinal infections, and hepatitis. Chronic diseases (diabetes, cancer, and heart disease) also prevail at high rates along the border, resembling trends observed in developed countries. In addition, the subtropical climate of the Borderlands is particularly suited for vectors of tropical diseases, such as malaria and dengue fever.

  3. Mexican American Education in Texas: A Function of Wealth. Mexican American Education Study IV.

    ERIC Educational Resources Information Center

    Knack, Sally S.; And Others

    In this report, the author indicates how the Texas school finance system works to the detriment of those districts in which Mexican American students are concentrated. Data for the report were taken from the Civil Rights Commission's 1969 survey of education for Mexican Americans in the southwest and the Department of Health Education and…

  4. Non-native grass removal and shade increase soil moisture and seedling performance during Hawaiian dry forest restoration

    Treesearch

    Jared M. Thaxton; Susan Cordell; Robert J. Cabin; Darren R. Sandquist

    2012-01-01

    Invasive non-native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non-native species, particularly grasses. Within a grass-dominated site in leeward...

  5. Idioms of Distress Among Depressed White-Non-Mexican and Mexican-Origin Older Men.

    PubMed

    Apesoa-Varano, Ester Carolina; Barker, Judith C; Unutzer, Jurgen; Aguilar-Gaxiola, Sergio; Johnson, Megan Dwight; Tran, Cindy; Guarnaccia, Peter; Hinton, Ladson

    2015-09-01

    Older men are less likely than older women to receive depression treatment. Latino older men in particular have been found to have significantly lower rates of depression treatment than their white-non-Mexican (WNM) counterparts. Prior research has shown that men are less likely than women to express overt affect and/or report depression symptoms that may prompt primary care physicians' inquiry about depression. Previous studies have overlooked the idioms of distress common among older men. This study investigates: a) the range of idioms of distress that emerge in the narratives of depressed older men, and b) the use of these idioms among depressed WNM and Mexican-origin older men. The present report is based on qualitative data collected through the Men's Health and Aging Study (MeHAS), a mixed-method study of clinically depressed WNM and Mexican-origin older (65 and above) men recruited in primary care settings. Qualitative analysis of 77 interviews led to identification of idioms of distress and informed idiom categories. Study findings show that: a) both groups of men utilized a range of idioms of distress that met current DSM criteria for depression, b) both groups were also likely to utilize idioms that feel outside clinical depression criteria, and c) there were similarities as well as differences between WNM and Mexican-origin men. This study provides a larger vocabulary that clinicians might consider in recognizing depression and initiating depression care for older men from diverse ethnic backgrounds. This is important to improve depression care among older men in general and those of Mexican-origin in particular.

  6. Depression and Acculturation in Mexican-American Women.

    ERIC Educational Resources Information Center

    Masten, William G.

    It has been postulated that the result of the Mexican woman's inability to live up to the stiff requirements of her culture should show itself in depressive trends. These theories are often applied to the Mexican-American female as well. The aim of this study was to determine if acculturation is related to depression in Mexican-American females. A…

  7. El Arte Culinario Mexicano (Mexican Culinary Art).

    ERIC Educational Resources Information Center

    Card, Michelle

    This unit in Mexican cooking can be used in Junior High School home economics classes to introduce students to Mexican culture or as a mini-course in Spanish at almost any level. It is divided into two parts. Part One provides historical background and information on basic foods, the Mexican market, shopping tips, regional cooking and customs.…

  8. Mexican Americans: Labeling and Mislabeling.

    ERIC Educational Resources Information Center

    Lampe, Philip E.

    1984-01-01

    To facilitate comparisons between studies of those who have ancestral ties to Mexico and to aid in accumulation of knowledge, some agreement must be reached among social scientists and a common terminology be adopted. A proposed terminology differentiates between Mexicans, Mexican Americans, Mexicanos, Chicanos, Latinos, Latin Americans, and…

  9. Mexican immigrant mothers' expectations for children's health services.

    PubMed

    Clark, Lauren; Redman, Richard W

    2007-10-01

    Women of Mexican descent living in the United States raise children who use health care services. What do immigrant Mexican mothers expect from children's health care services? And how do their expectations for children's health services compare to acculturated Mexican American mothers' expectations? This focused ethnographic study, based on repeated interviews with 28 mothers of varying acculturation levels, describes their expectations and experiences with children's health care services in the United States. Findings support a shared core of expectations for both Mexican immigrant and Mexican American mothers, and differences in health care access and financing, time spent in health care encounters, and cultural and linguistic expectations for care. Health care providers can use this information to approach Mexican-descent mothers and children with their expectations in mind, and craft a negotiated plan of care congruent with their expectations.

  10. Reproductive habitus, psychosocial health, and birth weight variation in Mexican immigrant and Mexican American women in south Texas.

    PubMed

    Fleuriet, K Jill; Sunil, T S

    2015-08-01

    The Latina Paradox, or persistent, unexplained variation in low birth weight rates in recently immigrated Mexican women and the trend toward higher rates in subsequent generations of Mexican American women, is most often attributed to unidentified sociocultural causes. We suggest herein that different disciplinary approaches can be synthesized under the constructs of reproductive habitus and subjective social status to identify influences of sociocultural processes on birth weight. Reproductive habitus are "modes of living the reproductive body, bodily practices, and the creation of new subjects through interactions between people and structures" (Smith-Oka, 2012: 2276). Subjective social status infers comparison of self to others based on community definitions of status or socioeconomic status (Adler 2007). We present results from a prospective study of low-income Mexican immigrant and Mexican American women from south Texas that tested the ability of reproductive habitus and subjective social status to elucidate the Latina Paradox. We hypothesized that reproductive habitus between Mexican immigrant women and Mexican American women inform different subjective social statuses during pregnancy, and different subjective social statuses mediate responses to psychosocial stressors known to correlate with low birth weight. Six hundred thirty-one women were surveyed for psychosocial health, subjective social status, and reproductive histories between 2011 and 2013. Eighty-three women were interviewed between 2012 and 2013 for status during pregnancy, prenatal care practices, and pregnancy narratives and associations. Birth weight was extracted from medical records. Results were mixed. Subjective social status and pregnancy-related anxiety predicted low birth weight in Mexican immigrant but not Mexican American women. Mexican immigrant women had significantly lower subjective social status scores but a distinct reproductive habitus that could explain improved psychosocial

  11. Synthesis of the Ecohydrology of a Mexican Tropical Montane Cloud Forest and Implications of Land Use and Climate Change

    NASA Astrophysics Data System (ADS)

    Asbjornsen, H.; Alvarado-Barrientos, M. S.; Bruijnzeel, L. A.; Dawson, T. E.; Geissert, D.; Goldsmith, G. R.; Gomez-Cardenas, M.; Gomez-Tagle, A.; Gotsch, S. F.; Holwerda, F.; McDonnell, J. J.; Munoz Villers, L. E.; Tobon, C.

    2013-05-01

    Land use conversion and climate change threaten the hydrological services from tropical montane cloud forests (TMCFs), but knowledge about cloud forest ecohydrology and the effects of global change drivers is limited. Here, we present a synthesis of research that traced the hydrologic sources, fluxes and flowpaths under different land cover types degraded pasture, regenerating forest, mature forest, pine reforestation) in a seasonally dry TMCF in Veracruz, Mexico. We used hydrological (cloud water interception, CWI; streamflow) and ecophysiological measurements (transpiration, E; foliar uptake, FU) in combination with stable isotope techniques to elucidate to these ecohydrological processes. Results revealed that CWI was ≤2% of total annual rainfall due to low fog occurrence and wind speeds. Fog without rainfall reduced E by a factor of 4-5 relative to sunny conditions and by a factor of 2 relative to overcast conditions; the water 'gained' from fog suppression was ~80-100 mm year-1 relative to sunny conditions. At the canopy scale, FU resulted in the recovery of 9% of total E, suggesting a crucial role in alleviating water deficit; but not sufficient to offset the 17% water loss from nighttime E. Trees primarily utilized water from 30-50 cm soil depth, while water reaching the stream was derived from deep, 'old' water that was distinct from 'new' rainwater and plant water. Soils had high infiltration rates and water storage capacity, which contributed to the relatively low rainfall-runoff response, mainly generated from deep subsurface flowpaths. Conversion of mature forest to pasture or forest regeneration on former TMCF increased annual water yield by 600 mm and 300 mm, respectively, while planting pine on degraded pastures reduced water yield by 365 mm. Our results suggest that the ecophysiological effects of fog via suppressed E and FU have a greater impact on water yield than direct inputs from CWI in this TMCF. Rapid vertical rainfall percolation and

  12. Overweight and mortality in Mexican Americans.

    PubMed

    Stern, M P; Patterson, J K; Mitchell, B D; Haffner, S M; Hazuda, H P

    1990-07-01

    The Geriatric Research Center (GRC) table of desirable weights is based on the mortality experience of holders of 4.2 million policies issued by 25 life insurance companies in the USA and Canada. The GRC table defines optimum weight-for-height as the weight range which is associated with below average mortality for a given age and height group. People who fall outside this range, i.e. overweight or underweight, experience above average mortality for their age and height group. We classified 3176 Mexican Americans and 1841 non-Hispanic whites who participated in the San Antonio Heart Study according to the GRC table and found that Mexican Americans were less likely than non-Hispanic whites to be underweight and more likely to be overweight. The two effects did not offset one another, however, and fewer Mexican Americans were found to be in the 'just right' range. If the mortality experience of the population which generated the GRC table (largely non-Hispanic) applied to Mexican Americans, these results imply that Mexican Americans should have higher mortality rates than non-Hispanic whites. Vital statistics data from the state of Texas for the years 1979-81, however, fail to corroborate this prediction. Beyond age 45 years, an age range in which obesity and obesity-related disorders would be expected to exert an important influence on mortality, age-specific and age-adjusted all cause mortality was at last as good if not better in Mexican Americans than in non-Hispanic whites. These results could not be explained by ethnic differences in body fat distribution, since fat was less favorably distributed in Mexican Americans.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. The Mexican Drought Atlas: Tree-Ring Reconstructions of the Soil Moisture Balance During the Late Pre-Hispanic, Colonial, and Modern Eras

    NASA Technical Reports Server (NTRS)

    Stahle, David W.; Cook, Edward R.; Burnette, Dorian J.; Villanueva, Jose; Cerano, Julian; Burns, Jordan N.; Griffin, Daniel; Cook, Benjamin I.; Acuna, Rodolfo; Torbenson, Max C. A.; hide

    2016-01-01

    Mexico has suffered a long history and prehistory of severe sustained drought. Drought over Mexico is modulated by ocean-atmospheric variability in the Atlantic and Pacific, raising the possibility for long-range seasonal climate forecasting, which could help mediate the economic and social impacts of future dry spells. The instrumental record of Mexican climate is very limited before 1920, but tree-ring chronologies developed from old-growth forests in Mexico can provide an excellent proxy representation of the spatial pattern and intensity of past moisture regimes useful for the analysis of climate dynamics and climate impacts. The Mexican Drought Atlas (MXDA) has been developed from an extensive network of 252 climate sensitive tree-ring chronologies in and near Mexico. The MXDA reconstructions extend from 1400 CE-2012 and were calibrated with the instrumental summer (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) on a 0.5deg latitude/longitude grid extending over land areas from 14 to 34degN and 75-120degW using Ensemble Point-by-Point Regression (EPPR) for the 1944-1984 period. The grid point reconstructions were validated for the period 1920-1943 against instrumental gridded scPDSI values based on the fewer weather station observations available during that interval. The MXDA provides a new spatial perspective on the historical impacts of moisture extremes over Mexico during the past 600-years, including the Aztec Drought of One Rabbit in 1454, the drought of El Ano de Hambre in 1785-1786, and the drought that preceded the Mexican Revolution of 1909-1910. The El Nino/Southern Oscillation (ENSO) is the most important ocean-atmospheric forcing of moisture variability detected with the MXDA. In fact, the reconstructions suggest that the strongest central equatorial Pacific sea surface temperature (SST) teleconnection to the soil moisture balance over North America may reside in northern Mexico. This ENSO signal has stronger and more time

  14. The Mexican Drought Atlas: Tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras

    NASA Astrophysics Data System (ADS)

    Stahle, David W.; Cook, Edward R.; Burnette, Dorian J.; Villanueva, Jose; Cerano, Julian; Burns, Jordan N.; Griffin, Daniel; Cook, Benjamin I.; Acuña, Rodolfo; Torbenson, Max C. A.; Szejner, Paul; Howard, Ian M.

    2016-10-01

    Mexico has suffered a long history and prehistory of severe sustained drought. Drought over Mexico is modulated by ocean-atmospheric variability in the Atlantic and Pacific, raising the possibility for long-range seasonal climate forecasting, which could help mediate the economic and social impacts of future dry spells. The instrumental record of Mexican climate is very limited before 1920, but tree-ring chronologies developed from old-growth forests in Mexico can provide an excellent proxy representation of the spatial pattern and intensity of past moisture regimes useful for the analysis of climate dynamics and climate impacts. The Mexican Drought Atlas (MXDA) has been developed from an extensive network of 252 climate sensitive tree-ring chronologies in and near Mexico. The MXDA reconstructions extend from 1400 CE-2012 and were calibrated with the instrumental summer (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) on a 0.5° latitude/longitude grid extending over land areas from 14 to 34°N and 75-120°W using Ensemble Point-by-Point Regression (EPPR) for the 1944-1984 period. The grid point reconstructions were validated for the period 1920-1943 against instrumental gridded scPDSI values based on the fewer weather station observations available during that interval. The MXDA provides a new spatial perspective on the historical impacts of moisture extremes over Mexico during the past 600-years, including the Aztec Drought of One Rabbit in 1454, the drought of El Año de Hambre in 1785-1786, and the drought that preceded the Mexican Revolution of 1909-1910. The El Niño/Southern Oscillation (ENSO) is the most important ocean-atmospheric forcing of moisture variability detected with the MXDA. In fact, the reconstructions suggest that the strongest central equatorial Pacific sea surface temperature (SST) teleconnection to the soil moisture balance over North America may reside in northern Mexico. This ENSO signal has stronger and more time

  15. Mexican Americans in Comparative Perspective.

    ERIC Educational Resources Information Center

    Connor, Walker, Ed.

    The outgrowth of a conference intended to broaden the base of objective information about the Mexican American community, this collection of 13 papers examines the effects of immigration by people of Mexican origin on the economic, educational, social, political, and linguistic systems of the United States. Walker Connor's introduction puts the…

  16. Broadcast seeding as a potential tool to reestablish native species in degraded dry forest ecosystems in Hawaii

    Treesearch

    S. Brooks; S. Cordell; L. Perry

    2009-01-01

    Hawaiian dry forests currently occupy a small fraction of their former range, and worldwide tropical dry forests are one of the most human-altered systems. Many small-scale projects have been successful in restoring native dry forests in abandoned pastures and degraded woodlands by outplanting after invasive species removal, but this is a costly approach. In this...

  17. Thermophilic microbial mats in a tropical geothermal location display pronounced seasonal changes but appear resilient to stochastic disturbance.

    PubMed

    Lacap, Donnabella C; Barraquio, Wilfredo; Pointing, Stephen B

    2007-12-01

    We demonstrate for the first time a dynamic seasonality within thermophilic mat communities in a tropical geothermal spring. Biomass fluctuated such that it is greatest in the dry season, before falling drastically as the summer rains arrive, and then re-colonization culminates in a new climax in the following dry season. Species richness estimates based upon 16S rRNA gene environmental phylotypes mirrored this pattern, where those unique to the dry season disappear during the wet season only to reappear the following year, and vice versa. Relative abundance of some phototrophic phylotypes was also shown to vary seasonally. Environmental variables within the thermal environment that were most closely correlated to these variations were temperature and phosphate, with the latter a covariable to heavy seasonal tropical monsoon rainfall. Stochastic disturbance caused by a strong typhoon caused significant although temporary effects and both diversity and standing biomass recovered within a few months. Tropical hot spring communities clearly function under a fundamentally different set of abiotic variables from those in temperate locations which do not display seasonality. This is of particular relevance to bioprospecting efforts where targeting the most biodiverse niche is desired, because future sampling strategies for tropical thermal environments should consider diversity on temporal as well as spatial scales.

  18. Phenology of temperate trees in tropical climates

    NASA Astrophysics Data System (ADS)

    Borchert, Rolf; Robertson, Kevin; Schwartz, Mark D.; Williams-Linera, Guadalupe

    2005-09-01

    Several North American broad-leaved tree species range from the northern United States at ˜47°N to moist tropical montane forests in Mexico and Central America at 15-20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from -10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.

  19. The Chicanos; Mexican American Voices.

    ERIC Educational Resources Information Center

    Ludwig, Edward W., Ed.; Santibanez, James, Ed.

    Articles, fiction, and poetry that form a picture of Chicano life today are presented in this anthology of writings about Mexican Americans. Included are reminiscences of Mexican American childhood, accounts of Chicanos in the American school system, reports on strikes by Chicano workers, and poems and stories that reflect the hard realities of…

  20. Mexican/Mexican American Adolescents and "Keepin' It REAL": An Evidence-Based Substance Use Prevention Program

    ERIC Educational Resources Information Center

    Kulis, Stephen; Marsiglia, Flavio F.; Elek, Elvira; Dustman, Patricia; Wagstaff, David A.; Hecht, Michael L.

    2005-01-01

    A randomized trial tested the efficacy of three curriculum versions teaching drug resistance strategies, one modeled on Mexican American culture; another modeled on European American and African American culture; and a multicultural version. Self-report data at baseline and 14 months post-intervention were obtained from 3,402 Mexican heritage…

  1. Strong selection at MHC in Mexicans since admixture

    USDA-ARS?s Scientific Manuscript database

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the major histocompatibility complex (MHC) region Mexicans have excessive African ance...

  2. HIV health care services for Mexican migrants.

    PubMed

    Solorio, M Rosa; Currier, Judith; Cunningham, William

    2004-11-01

    This article reviews the literature on HIV/AIDS health care services for Mexican migrants in the United States. Because so little research has been conducted on Mexican migrants per se, we include literature on Latinos/Hispanics in the United States, because some characteristics may be shared. Furthermore, we focus special attention on data from California because it is on the front line of issues regarding health care for Mexican migrants. The types of health care services needed to improve on the quality of care provided to Mexican migrants living with HIV are highlighted, and recommendations are made for future interventions, research, and binational collaborations.

  3. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest.

    PubMed

    Cai, Zhi-Quan; Schnitzer, Stefan A; Bongers, Frans

    2009-08-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in seasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO(2) assimilation per unit mass (A(mass)), nitrogen concentration (N(mass)), and delta(13)C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO(2) assimilation per unit area (A(area)), phosphorus concentration per unit mass (P(mass)), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A(area) decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana delta(13)C increased four times more than tree delta(13)C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A(mass) than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.

  4. [Canopy rainfall storage capacity of tropical seasonal rainforest and rubber plantation in Xishuangbanna].

    PubMed

    Wang, Xin; Zhang, Yiping

    2006-10-01

    Based on the 2003-2004 laboratory and field observation data, and with scaling-up method, this paper studied the canopy rainfall storage capacity of tropical seasonal rainforest and rubber plantation in Xishuangbanna. The results showed that the canopy rainfall storage capacity was 0.45-0.79 mm for tropical seasonal rainforest and 0.48-0.71 mm for rubber plantation, and that of the branch and bark accounted for >50 % of the total. For these two forests, the canopy rainfall storage capacity was much higher in foggy season (from November to February) and dry-hot season (from March to April) than in rainy season (from May to October), and the duration needed to reach water saturation was about 5 min for leaf, 2-3 h for bark, and 2. 5-4 h for branch. During the processes of wetting and air-drying, leaf was easier while branch and bark were somewhat difficult to hold water and then be air-dried, suggesting that leaf played an important role in intercepting rainfall in short-duration rainfall events, while branch and bark could work much better in doing this in long-duration or high-intensity rainfall events. Compared with rubber plantation, tropical seasonal rainforest had a stronger rainfall-storage capacity due to its multi-layer structure of canopy and excellent water-holding performance.

  5. Mexican-Americans of South Texas.

    ERIC Educational Resources Information Center

    Madsen, William

    The Hogg Foundation for Mental Health sponsored and financed the Hidalgo Project on Differential Culture Change and Mental Health during the 4-year period from 1957 to 1961; this document is an abbreviated report of that study of Mexican-American culture in Hidalgo County, Texas. Acculturation levels of various classes of the Mexican-American…

  6. Forest-climate interactions in fragmented tropical landscapes.

    PubMed

    Laurance, William F

    2004-03-29

    In the tropics, habitat fragmentation alters forest-climate interactions in diverse ways. On a local scale (less than 1 km), elevated desiccation and wind disturbance near fragment margins lead to sharply increased tree mortality, thus altering canopy-gap dynamics, plant community composition, biomass dynamics and carbon storage. Fragmented forests are also highly vulnerable to edge-related fires, especially in regions with periodic droughts or strong dry seasons. At landscape to regional scales (10-1000 km), habitat fragmentation may have complex effects on forest-climate interactions, with important consequences for atmospheric circulation, water cycling and precipitation. Positive feedbacks among deforestation, regional climate change and fire could pose a serious threat for some tropical forests, but the details of such interactions are poorly understood.

  7. Weight Status of Mexican Immigrant Women: A Comparison With Women in Mexico and With US-Born Mexican American Women

    PubMed Central

    Ritterman-Weintraub, Miranda L.; Fernald, Lia C. H.; Kaufer-Horwitz, Martha

    2013-01-01

    Objectives. We assessed the association between birthplace, residence, or years in the United States and actual weight (body mass index), perceived weight accuracy, or provider screens for overweight or obesity among Mexican immigrant women. Methods. We used linked data from Health and Nutrition Examination Survey waves 2001–2006 and 2006 National Mexican Health and Nutrition Survey to compare 513 immigrants with 9527 women in Mexico and 342 US-born Mexican American women. Results. Immigrants were more likely than women in Mexico to be obese and to perceive themselves as overweight or obese after adjustment for confounders. Recent immigrants had similar weight-related outcomes as women in Mexico. Immigrants were less likely to be obese than were US-born Mexican Americans. Within the overweight or obese population, reported provider screens were higher among immigrants than among women in Mexico, but lower than among US-born Mexican Americans. US residency of at least 5 years but less than 20 years and reporting insufficient provider screens elevated obesity risk. Conclusions. Mexican-origin women in the United States and Mexico are at risk for overweight and obesity. We found no evidence of a “healthy immigrant” effect. PMID:23865649

  8. Weight status of Mexican immigrant women: a comparison with women in Mexico and with US-born Mexican American women.

    PubMed

    Guendelman, Sylvia D; Ritterman-Weintraub, Miranda L; Fernald, Lia C H; Kaufer-Horwitz, Martha

    2013-09-01

    We assessed the association between birthplace, residence, or years in the United States and actual weight (body mass index), perceived weight accuracy, or provider screens for overweight or obesity among Mexican immigrant women. We used linked data from Health and Nutrition Examination Survey waves 2001-2006 and 2006 National Mexican Health and Nutrition Survey to compare 513 immigrants with 9527 women in Mexico and 342 US-born Mexican American women. Immigrants were more likely than women in Mexico to be obese and to perceive themselves as overweight or obese after adjustment for confounders. Recent immigrants had similar weight-related outcomes as women in Mexico. Immigrants were less likely to be obese than were US-born Mexican Americans. Within the overweight or obese population, reported provider screens were higher among immigrants than among women in Mexico, but lower than among US-born Mexican Americans. US residency of at least 5 years but less than 20 years and reporting insufficient provider screens elevated obesity risk. Mexican-origin women in the United States and Mexico are at risk for overweight and obesity. We found no evidence of a "healthy immigrant" effect.

  9. Craniofacial Secular Change in Recent Mexican Migrants.

    PubMed

    Spradley, Katherine; Stull, Kyra E; Hefner, Joseph T

    2016-01-01

    Research by economists suggests that recent Mexican migrants are better educated and have higher socioeconomic status (SES) than previous migrants. Because factors associated with higher SES and improved education can lead to positive secular changes in overall body form, secular changes in the craniofacial complex were analyzed within a recent migrant group from Mexico. The Mexican group represents individuals in the act of migration, not yet influenced by the American environment, and thus can serve as a starting point for future studies of secular change in this population group. The excavation of a historic Hispanic cemetery in Tucson, Arizona, also allows for a comparison between historic Hispanics and recent migrants to explore craniofacial trends over a broad time period, as both groups originate from Mexico. The present research addresses two main questions: (1) Are cranial secular changes evident in recent Mexican migrants? (2) Are historic Hispanics and recent Mexican migrants similar? By studying secular changes within a migrant population group, secular trends may be detected, which will be important for understanding the biological variation of the migrants themselves and will serve as a preliminary investigation of secular change within Mexican migrants. The comparison of a sample of recent Mexican migrants with a historic Hispanic sample, predominantly of Mexican origin, allows us to explore morphological similarities and differences between early and recent Mexicans within the United States. Vault and face size and a total of 82 craniofacial interlandmark distances were used to explore secular changes within the recent Mexican migrants (females, n = 38; males, n = 178) and to explore the morphological similarities between historic Hispanics (females, n = 54; males, n = 58) and recent migrants. Sexes were separated, and multivariate adaptive regression splines and basis splines (quadratic with one knot) were used to assess the direction and magnitude

  10. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    DOE PAGES

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; ...

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence andmore » horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.« less

  11. Los Dos Mundos: Rural Mexican Americans, Another America.

    ERIC Educational Resources Information Center

    Baker, Richard

    This book explores race relations between Mexican Americans and Anglo Americans in "Middlewest," a fictitious name for an actual rural Idaho community with the highest proportion of Mexican Americans in the state. Many Mexican Americans in this predominantly agricultural area are current or former migrant workers. The first chapter…

  12. New strategies for drug discovery in tropical forests based on ethnobotanical and chemical ecological studies.

    PubMed

    Albuquerque, Ulysses Paulino; Ramos, Marcelo Alves; Melo, Joabe Gomes

    2012-03-06

    Hypotheses from ethnobotany and chemical ecology can increase our ability to predict the pharmaceutical potential of tropical flora. In order to illustrate how bioprospecting studies can benefit from the incorporation of these hypotheses, especially in tropical dry forests, we discuss evidence from ethnobotanical studies that examine hypotheses about the ecology of plant defense against herbivory. We focus on two hypotheses regarding defense patterns in plants-the plant apparency hypothesis and the resource availability hypothesis-and analyze how these can help us understand the use of medicinal plants by traditional communities. The evidence suggests that medicinal plants in the dry forest are a rich source of drugs in which phenolic compounds, especially tannins, are directly responsible for the therapeutic activity. Phenolic compounds and their potential therapeutic activity are likely good candidates for bioprospecting efforts. We believe that following strategies to link ethnobotanical and chemical ecological approaches will increase the efficiency of bioprospecting studies in tropical forests. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Impact of post-mining subsidence on nitrogen transformation in southern tropical dry deciduous forest, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, N.; Singh, R.S.; Singh, J.S.

    The goal of our research was to assess the impact of post-mining land subsidence, caused due to underground coal mining operations, on fine root biomass and root tips count; plant available nutrient status, microbial biomass N (MBN) and N-mineralization rates of a Southern tropical dry deciduous forest of Singareni Coalfields of India. The changes were quantified in all the three (rainy, winter and summer) seasons, in slope and depression microsites of the subsided land and an adjacent undamaged forest microsite. Physico-chemical characteristics were found to be altered after subsidence, showing a positive impact of subsidence on soil moisture, bulk density,more » water holding capacity, organic carbon content, total N and total P. The increase in all the parameters was found in depression microsites, while in slope microsites, the values were lower. Fine root biomass and root tips count increased in the subsided depression microsites, as demonstrated by increases of 62% and 45%, respectively. Soil nitrate-N and phosphate-P concentrations were also found to be higher in depression microsite, showing an increase of 35.68% and 24.74%, respectively. Depression microsite has also shown the higher MBN value with an increase over control. Net nitrification, net N-mineralization and MBN were increased in depression microsite by 29.77%, 25.72% and 34%, respectively. There was a positive relation of microbial N with organic C, fine root biomass and root tips.« less

  14. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes.

    PubMed

    Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S

    2017-03-01

    The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.

  15. Effect of gamma irradiation on nutritional value of dry field beans (Phaseolus vulgaris) for chicks.

    PubMed

    Reddy, S J; Pubols, M H; McGinnis, J

    1979-07-01

    The effect of gamma irradiation (60Co) of different varieties and breeding lines of dry field beans (Phaseolus vulgaris) on chick growth was determined using a chick growth assay in which the diet contained approximately 50% beans. Total protein (N X 6.25) in beans was not changed appreciably by irradiation (21 Mrad) but protein solubility in water was decreased. Irradiation increased in vitro enzymatic digestibility of bean protein by pepsin and by a mixture of trypsin, chymotrypsin and peptidase. In the bioassay the diet was formulated to derive half of the total protein (22.6%) from beans. Autoclaved Pinto and Pink beans gave significantly better growth than Red Mexican and White Pea beans. The differences between Red Mexican and White Pea beans were not significant except for Red Mexican breeding line number RS-59. The nutritional value of all varieties of beans, based on chick growth, was significantly improved by gamma irradiation. The irradiation treatment of beans tended to increase nitrogen retention by chicks and decrease uric acid nitrogen excretion in relation to nitrogen intake.

  16. Invited review: Artisanal Mexican cheeses.

    PubMed

    González-Córdova, Aarón F; Yescas, Carlos; Ortiz-Estrada, Ángel Martín; De la Rosa-Alcaraz, María de Los Ángeles; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda

    2016-05-01

    The objective of this review is to present an overview of some of the most commonly consumed artisanal Mexican cheeses, as well as those cheeses that show potential for a protected designation of origin. A description is given for each of these cheeses, including information on their distinguishing characteristics that makes some of them potential candidates for achieving a protected designation of origin status. This distinction could help to expand their frontiers and allow them to become better known and appreciated in other parts of the world. Due to the scarcity of scientific studies concerning artisanal Mexican cheeses, which would ultimately aid in the standardization of manufacturing processes and in the establishment of regulations related to their production, more than 40 varieties of artisanal cheese are in danger of disappearing. To preserve these cheeses, it is necessary to address this challenge by working jointly with government, artisanal cheesemaking organizations, industry, academics, and commercial partners on the implementation of strategies to protect and preserve their artisanal means of production. With sufficient information, official Mexican regulations could be established that would encompass and regulate the manufacture of Mexican artisanal cheeses. Finally, as many Mexican artisanal cheeses are produced from raw milk, more scientific studies are required to show the role of the lactic acid bacteria and their antagonistic effect on pathogenic microorganisms during aging following cheese making. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Conceptualizing Parent Involvement: Low-Income Mexican Immigrant Perspectives

    ERIC Educational Resources Information Center

    Crane, Thomas B.

    2012-01-01

    The purposes of this study were to (a) investigate the conceptualization of low-income Mexican immigrant parents about their parental involvement and the family-school connection, (b) identify the influences on low-income Mexican immigrant parents' approach to parent involvement, and (c) identify the ways that Mexican immigrant parents…

  18. Patterns of contraceptive use among Mexican-origin women.

    PubMed

    White, Kari L; Potter, Joseph E

    Mexican women in the United States (US) have higher rates of fertility compared to other ethnic groups and women in Mexico. Whether variation in women's access to family planning services or patterns of contraceptive use contributes to this higher fertility has received little attention. We explore Mexican women's contraceptive use, taking into account women's place in the reproductive life course. Using nationally representative samples from the US (National Survey of Family Growth) and Mexico (Encuesta National de la Dinámica Demográfica), we compared the parity-specific frequency of contraceptive use and fertility intentions for non-migrant women, foreign-born Mexicans in the US, US-born Mexicans, and whites. Mexican women in the US were less likely to use IUDs and more likely to use hormonal contraception than women in Mexico. Female sterilization was the most common method among higher parity women in both the US and Mexico, however, foreign-born Mexicans were less likely to be sterilized, and the least likely to use any permanent contraceptive method. Although foreign-born Mexicans were slightly less likely to report that they did not want more children, differences in method use remained after controlling for women's fertility intentions. At all parities, foreign-born Mexicans used less effective methods. These findings suggest that varying access to family planning services may contribute to variation in women's contraceptive use. Future studies are needed to clarify the extent to which disparities in fertility result from differences in contraceptive access.

  19. Emerging deforestation trends in tropical dry forests ecoregions of Mexico and Central America

    NASA Astrophysics Data System (ADS)

    Portillo, C. A.; Cao, G.; Smith, V.

    2015-12-01

    Neotropical dry forests (TDF) have experienced an unprecedented deforestation that is leading to the loss of tropical biodiversity at a rapid pace, but information on deforestation dynamics in TDF is scarce. In this study, we present a sub-continental and national level assessment of TDF loss patterns in Mexico and Central America at high spatial and temporal resolution using remote sensing and GIS technologies. We used the Global Forest Change (GFC) dataset published by Hansen et al. (2013) which shows results from time-series analysis of Landsat images in characterizing global forest extent and change from 2000 through 2013. We analyzed forest loss within and around mapped TDF cover mapped by Portillo-Quintero et al. 2010. In order to minimize errors in source data, we overlaid a 25 x 25 km grid on top of the regional dataset and conducted a cell by cell and country by country inspection at multiple scales using high resolution ancillary data. We identified trends in the clustering of space-time TDF deforestation data using ArcGIS, categorizing trends in: new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating and historical hotspots (high frequency of deforestation events) and cold spots (low frequency of deforestation). In general, the region is experiencing less frequent deforestation events with a higher number of intensifying and new cold spots across TDF landscapes. However, an important number of intensifying and persistent hotspots exist so no general trend in forest loss was detected for the period 2001-2013, except for El Salvador which shows a significant decreasing trend in forest loss. Mexico, Nicaragua, Honduras and Guatemala are the major sources of intensifying, persistent and new deforestation hot spots. These were identified in the southern pacific coast and the Yucatan Peninsula in Mexico, northwestern Guatemala, both western and eastern Honduras and around Lake Nicaragua in Nicaragua.

  20. Emerging deforestation trends in tropical dry forests ecoregions of Mexico and Central America

    NASA Astrophysics Data System (ADS)

    Perez-Rodriguez, I. M.; Sievert, S. M.; Fogel, M. L.; Foustoukos, D.

    2014-12-01

    Neotropical dry forests (TDF) have experienced an unprecedented deforestation that is leading to the loss of tropical biodiversity at a rapid pace, but information on deforestation dynamics in TDF is scarce. In this study, we present a sub-continental and national level assessment of TDF loss patterns in Mexico and Central America at high spatial and temporal resolution using remote sensing and GIS technologies. We used the Global Forest Change (GFC) dataset published by Hansen et al. (2013) which shows results from time-series analysis of Landsat images in characterizing global forest extent and change from 2000 through 2013. We analyzed forest loss within and around mapped TDF cover mapped by Portillo-Quintero et al. 2010. In order to minimize errors in source data, we overlaid a 25 x 25 km grid on top of the regional dataset and conducted a cell by cell and country by country inspection at multiple scales using high resolution ancillary data. We identified trends in the clustering of space-time TDF deforestation data using ArcGIS, categorizing trends in: new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating and historical hotspots (high frequency of deforestation events) and cold spots (low frequency of deforestation). In general, the region is experiencing less frequent deforestation events with a higher number of intensifying and new cold spots across TDF landscapes. However, an important number of intensifying and persistent hotspots exist so no general trend in forest loss was detected for the period 2001-2013, except for El Salvador which shows a significant decreasing trend in forest loss. Mexico, Nicaragua, Honduras and Guatemala are the major sources of intensifying, persistent and new deforestation hot spots. These were identified in the southern pacific coast and the Yucatan Peninsula in Mexico, northwestern Guatemala, both western and eastern Honduras and around Lake Nicaragua in Nicaragua.

  1. Counseling Mexican Americans: A Multimodal Approach.

    ERIC Educational Resources Information Center

    Ponterotto, Joseph G.

    1987-01-01

    Describes a culturally sensitive and relevant therapeutic framework for nonminority and minority counselors working with clients of Mexican-American heritage. Uses Lazarus's multimodal approach as the basis. Examines the current status of Mexican-American mental health service delivery and use. (Author/ABB)

  2. Biogenic VOC Emissions from Tropical Landscapes

    NASA Astrophysics Data System (ADS)

    Guenther, A.; Greenberg, J.; Harley, P.; Otter, L.; Vanni Gatti, L.; Baker, B.

    2003-04-01

    Biogenic VOC have an important role in determining the chemical composition of atmosphere. As a result, these compounds are important for visibility, biogeochemical cycling, climate and radiative forcing, and the health of the biosphere. Tropical landscapes are estimated to release about 80% of total global biogenic VOC emissions but have been investigated to lesser extent than temperate regions. Tropical VOC emissions are particularly important due to the strong vertical transport and the rapid landuse change that is occurring there. This presentation will provide an overview of field measurements of biogenic VOC emissions from tropical landscapes in Amazonia (Large-scale Biosphere-atmosphere experiment in Amazonia, LBA) Central (EXPRESSO) and Southern (SAFARI 2000) Africa, Asia and Central America. Flux measurement methods include leaf-scale (enclosure measurements), canopy-scale (above canopy tower measurements), landscape-scale (tethered balloon), and regional-scale (aircraft measurements) observations. Typical midday isoprene emission rates for different landscapes vary by more than a factor of 20 with the lowest emissions observed from degraded forests. Emissions of alpha-pinene vary by a similar amount with the highest emissions associated with landscapes dominated by light dependent monoterpene emitting plants. Isoprene emissions tend to be higher for neotropical forests (Amazon and Costa Rica) in comparison to Africa and Asian tropical forests but considerable differences are observed within regions. Strong seasonal variations were observed in both the Congo and the Amazon rainforests with peak emissions during the dry seasons. Substantial emissions of light dependent monoterpenes, methanol and acetone are characteristic of at least some tropical landscapes.

  3. Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica.

    PubMed

    Derroire, Géraldine; Powers, Jennifer S; Hulshof, Catherine M; Cárdenas Varela, Luis E; Healey, John R

    2018-01-10

    A coordinated response to environmental drivers amongst individual functional traits is central to the plant strategy concept. However, whether the trait co-ordination observed at the global scale occurs at other ecological scales (especially within species) remains an open question. Here, for sapling communities of two tropical dry forest types in Costa Rica, we show large differences amongst traits in the relative contribution of species turnover and intraspecific variation to their directional changes in response to environmental changes along a successional gradient. We studied the response of functional traits associated with the leaf economics spectrum and drought tolerance using intensive sampling to analyse inter- and intra-specific responses to environmental changes and ontogeny. Although the overall functional composition of the sapling communities changed during succession more through species turnover than through intraspecific trait variation, their relative contributions differed greatly amongst traits. For instance, community mean specific leaf area changed mostly due to intraspecific variation. Traits of the leaf economics spectrum showed decoupled responses to environmental drivers and ontogeny. These findings emphasise how divergent ecological mechanisms combine to cause great differences in changes of individual functional traits over environmental gradients and ecological scales.

  4. The potential of using Landsat time-series to extract tropical dry forest phenology

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Helmer, E.

    2016-12-01

    Vegetation phenology is the timing of seasonal developmental stages in plant life cycles. Due to the persistent cloud cover in tropical regions, current studies often use satellite data with high frequency, such as AVHRR and MODIS, to detect vegetation phenology. However, the spatial resolution of these data is from 250 m to 1 km, which does not have enough spatial details and it is difficult to relate to field observations. To produce maps of phenology at a finer spatial resolution, this study explores the feasibility of using Landsat images to detect tropical forest phenology through reconstructing a high-quality, seasonal time-series of images, and tested it in Mona Island, Puerto Rico. First, an automatic method was applied to detect cloud and cloud shadow, and a spatial interpolator was use to retrieve pixels covered by clouds, shadows, and SLC-off gaps. Second, enhanced vegetation index time-series derived from the reconstructed Landsat images were used to detect 11 phenology variables. Detected phenology is consistent with field investigations, and its spatial pattern is consistent with the rainfall distribution on this island. In addition, we may expect that phenology should correlate with forest biophysical attributes, so 47 plots with field measurement of biophysical attributes were used to indirectly validate the phenology product. Results show that phenology variables can explain a lot of variations in biophysical attributes. This study suggests that Landsat time-series has great potential to detect phenology in tropical areas.

  5. Legal Status and Wage Disparities for Mexican Immigrants

    ERIC Educational Resources Information Center

    Hall, Matthew; Greenman, Emily; Farkas, George

    2010-01-01

    This article employs a unique method of inferring the legal status of Mexican immigrants in the Survey of Income and Program Participation to offer new evidence of the role of legal authorization in the United States on workers' wages. We estimate wage trajectories for four groups: documented Mexican immigrants, undocumented Mexican immigrants,…

  6. Prevalence of dry eye syndrome in residents of surgical specialties.

    PubMed

    Castellanos-González, José Alberto; Torres-Martínez, Verónica; Martínez-Ruiz, Adriana; Fuentes-Orozco, Clotilde; Rendón-Félix, Jorge; Irusteta-Jiménez, Leire; Márquez-Valdez, Aída Rebeca; Cortés-Lares, José Antonio; González-Ojeda, Alejandro

    2016-07-16

    The aim of this study was to determine the prevalence and severity of dry eye syndrome in a group of Mexican residents of different surgical specialties. A cross-sectional descriptive study where the residents were studied using the Ocular Surface Disease Index, together with diagnostic tests for dry eye syndrome, such as tear breakup time, Oxford Schema, Schirmer's test I, and meibomian gland dysfunction testing. Statistical analyses were performed by Pearson's chi-squared test for categorical variables and student's t-test for quantitative variables. Any P value < 0.05 was considered statistically significant. One hundred and twenty-three residents were included (246 eyes); 90 (73 %) were male and 33 (27 %) were female. The mean age was 27.8 ± 2.1 years. A higher number of residents with dry eye syndrome was found in the cardiothoracic surgery (75 %) and otorhinolaryngology (71 %) specialties; 70 % of them reported ocular symptoms, with teardrop quality involvement in >50 % of them. We found a prevalence of 56 % for mild-to-moderate/severe stages of the condition. Their presence in the operating room predisposes surgical residents to dry eye syndrome because of environmental conditions.

  7. Newborn screening for six lysosomal storage disorders in a cohort of Mexican patients: Three-year findings from a screening program in a closed Mexican health system.

    PubMed

    Navarrete-Martínez, Juana Inés; Limón-Rojas, Ana Elena; Gaytán-García, Maria de Jesús; Reyna-Figueroa, Jesús; Wakida-Kusunoki, Guillermo; Delgado-Calvillo, Ma Del Rocío; Cantú-Reyna, Consuelo; Cruz-Camino, Héctor; Cervantes-Barragán, David Eduardo

    2017-05-01

    To evaluate the results of a lysosomal newborn screening (NBS) program in a cohort of 20,018 Mexican patients over the course of 3years in a closed Mexican Health System (Petróleos Mexicanos [PEMEX] Health Services). Using dried blood spots (DBS), we performed a multiplex tandem mass spectrometry enzymatic assay for six lysosomal storage disorders (LSDs) including Pompe disease, Fabry disease, Gaucher disease, mucopolysaccharidosis type I (MPS-I), Niemann-Pick type A/B, and Krabbe disease. Screen-positive cases were confirmed using leukocyte enzymatic activity and DNA molecular analysis. From July 2012 to April 2016, 20,018 patients were screened; 20 patients were confirmed to have an LSD phenotype (99.9 in 100,000 newborns). Final distributions include 11 Pompe disease, five Fabry disease, two MPS-I, and two Niemann-Pick type A/B patients. We did not find any Gaucher or Krabbe patients. A final frequency of 1 in 1001 LSD newborn phenotypes was established. NBS is a major public health achievement that has decreased the morbidity and mortality of inborn errors of metabolism. The introduction of NBS for LSD presents new challenges. This is the first multiplex Latin-American study of six LSDs detected through NBS. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Tropical rainforest methane consumption during the El Niño of 2015-16

    NASA Astrophysics Data System (ADS)

    Aronson, E. L.; Dierick, D.; Botthoff, J.; Swanson, A. C.; Allen, M. F.

    2016-12-01

    Tropical forests sequester up to 40% of the anthropogenic and natural carbon exchanged with the atmosphere. Even though soils are the largest pool of terrestrial carbon, relatively little is known about the methane consumption capacity of tropical forest soils. Under high water, low oxygen (anaerobic) conditions, carbon decomposed is respired as methane (CH4) by methanogen microorganisms. During dry seasons, deeper rainforest soils remain wet, but dry at the surface. Since molecule for molecule the global warming potential of CH4 is two orders of magnitude greater than CO2, the relative production and sequestration of CO2 versus CH4 in tropical rainforests has a large impact on global climate trends. In 2015-16, the globe experienced an unusually strong ENSO event, which impacted the tropics. Atypical ENSO climatic events such as this include drought in tropical forests of Central America. We hypothesized that ENSO controls much of the year-to-year variability in the global CH4 cycle, primarily by turning the tropical forest from a strong annual source for CH4 during the La Niña or normal rainy season, to a year-round sink for CH4 during El Niño events. Further, we hypothesized that during a strong El Niño event, the unusually dry conditions of the tropical rainy season lead to the methanotrophs in these soils consuming large amounts of CH4. In order to investigate these predictions, CH4 flux was measured in three campaigns in March, during peak ENSO impact, as well as May and July 2016, at the La Selva Biological Station, Costa Rica. Fluxes were measured in eight paired plots, each with four collars. The collars measure 20 cm diameter by 12 cm in length, inserted into the soil, with a collar height of around 8 cm, in February 2016, a month before the first field campaign. Air samples were injected into pre-evacuated exetainers, and analyzed by gas chromatograph within 72 h. We found an average CH4 sink of -0.018 mg m-2 h-1. This flux is roughly four times lower

  9. Folk Arts in the Home: New Mexican Tinwork.

    ERIC Educational Resources Information Center

    Gomez, Aurelia; Sullivan, Laura Temple

    New Mexican tinwork is a folk art tradition that developed out of Mexican and European silver work. Due to a lack of silver in New Mexico, tin became the material of choice. Rooted in European Hispanic traditions, this contemporary craft is yet another example of the resourceful ingenuity and adaptation that characterizes many New Mexican folk…

  10. Drug and Alcohol Use among Rural Mexican-Americans.

    ERIC Educational Resources Information Center

    Castro, Felipe G.; Gutierres, Sara

    Very little research has examined drug and alcohol use among rural Mexican-Americans, and the few existing studies have yielded mixed results. Some authors have suggested that substance use by Mexican-American youth is similar to that of Anglo youth, but at least one study has shown that Mexican-American females use drugs at a higher rate than do…

  11. Economic Restructuring and Racialization: Incorporation of Mexicans and Mexican-Americans in the Rural Midwest. Working Paper.

    ERIC Educational Resources Information Center

    Naples, Nancy A.

    An 8-year ethnographic study in two rural Iowa towns examined the incorporation of recently arrived Mexicans and Mexican Americans into the social, economic, and political life of the community. Relocating to work in a nearby food processing plant, the newcomers altered the ethnic composition of this formerly homogeneous area. Data were gathered…

  12. Mexican Women, Migration and Sex Roles.

    ERIC Educational Resources Information Center

    Baca, Reynaldo; Dexter, Bryan

    1985-01-01

    Compares Mexican women involved in migration to understand how their sex roles and status have been affected. Uses data from two separate studies: ethnography on migrants' wives left at home in a Mexican village and a survey of unauthorized immigrants in the Los Angeles area. (SA)

  13. Mexican Managers' Perceptions of Cultural Competence.

    ERIC Educational Resources Information Center

    Grosse, Christine Uber

    2001-01-01

    Global managers in Mexico identified what their U.S. counterparts should know about Mexican culture to do business effectively. Suggested Mexican and U.S.cultures are exact opposites in many respects. Discussed differences in building business relationships, attitudes toward time, family and religious values, communication patterns, and…

  14. Observations of supersaturation in the presence of cirrus at the tropical and sub-tropical tropopause

    NASA Astrophysics Data System (ADS)

    Smith, J. B.; Weinstock, E. M.; Pittman, J. V.; Sayres, D.; Moyer, E. J.; Anderson, J. G.; Herman, R. L.; Bui, T. P.; Thompson, T. L.

    2003-04-01

    We present in situ observations of water vapor and total water in the tropical and sub-tropical upper troposphere obtained aboard the WB-57 aircraft on flights out of Costa Rica during the Clouds and Water Vapor in the Climate System mission in August of 2001, and out of Key West, Florida during the CRYSTAL-FACE mission in July of 2002. The recently developed Harvard total water instrument merges the established Lyman-alpha photo-fragment fluorescence detection technique with a specially designed sampling inlet and heater, to make accurate and precise measurements of water in both the vapor and condensed phase. The combination of the Harvard total water and water vapor instruments allows for simultaneous measurement of water vapor, total water, and the net ice water content of cirrus. Data from the two instruments agree in dry air and demonstrate sufficient sensitivity to detect thin cirrus. Further analysis indicates frequent ice-supersaturation both in clear air and in cirrus. These data present a substantial contribution to in situ observations of ice-supersaturation, particularly in the presence of cirrus near the cold tropical tropopause. We will discuss the implications of high ice-supersaturation in the context of cloud microphysics, and the processes controlling water vapor in the upper troposphere and lower stratosphere.

  15. Convectively-coupled Kelvin waves over the tropical Atlantic and African regions and their influence on Atlantic tropical cyclogenesis

    NASA Astrophysics Data System (ADS)

    Ventrice, Michael J.

    intensify by most model guidance, both Danielle and Earl struggled to do so. It is shown that Danielle and Earl interacted with the convectively suppressed phase of an eastward propagating CCKW during the time they were predicted to intensify. Composite analysis shows that during and after the passage of the convectively suppressed phase of the CCKW over the Atlantic, large-scale vertical wind shear increases as a result of anomalous upper-level westerlies collocated with anomalous lower-level easterlies. Large-scale subsidence associated with the convectively suppressed phase of the CCKW causes the atmosphere to dry. Further, when the upper-level westerly wind anomalies associated with the CCKW are located over the equatorial Atlantic, a tropical upper-tropospheric trough (TUTT) develops over the northern tropical Atlantic. TUTTs are upper-level disturbances known to negatively impact the intensity of tropical cyclones. CCKWs over the tropical Atlantic tend to occur during preferable locations of the Madden-Julian Oscillation (MJO). Results show that the MJO significantly modulates Atlantic tropical cyclogenesis using real-time multivariate MJO indices. Like CCKWs, AEW activity is found to vary coherently with MJO passages. Furthermore, the MJO also impacts the large-scale environment that favors for Atlantic tropical cyclogenesis. Therefore in addition to CCKWs, the state of the MJO should be used for Atlantic tropical cyclogenesis medium-range predictability.

  16. Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico.

    PubMed

    Moo-Huchin, Víctor M; Moo-Huchin, Mariela I; Estrada-León, Raciel J; Cuevas-Glory, Luis; Estrada-Mota, Iván A; Ortiz-Vázquez, Elizabeth; Betancur-Ancona, David; Sauri-Duch, Enrique

    2015-01-01

    The aim of this study was to determine the antioxidant compounds, antioxidant activity and content of individual phenolic compounds of freeze-dried peel from three tropical fruits grown in Yucatan, México: purple star apple (Chrysophyllum cainito L.), yellow cashew and red cashew (Anacardium occidentale). The freeze-dried peels were good source of antioxidant compounds. ABTS and DPPH values in the peel from each fruit were 3050.95-3322.31 μM Trolox/100g dry weight (DW) or 890.19-970.01 mg of vitamin C/100 g DW, and 1579.04-1680.90 μM Trolox/100 g DW or 340.18-362.18 mg of vitamin C/100 g DW, respectively. Six phenolic compounds were identified in the peel from the tropical fruits studied: ferulic, caffeic, sinapic, gallic, ellagic and myricetin. This study demonstrated that freeze-dried peels from purple star apple, yellow cashew and red cashew, could serve as potential sources of antioxidants for use in food and pharmaceutical industries. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Diatom Evidence for Climatic Changes Associated With the Slowdown of the Meridional Overturning Circulation in the Last 50 Years in the Mexican Tropical Pacific.

    NASA Astrophysics Data System (ADS)

    Machain-Castillo, M. L.; Almaraz-Ruiz, L.; Esparza-Alvarez, M. A.; Ruiz-Fernandez, A. C.; Sanchez-Cabeza, J. A.; Hernandez-Becerril, D. U.

    2016-12-01

    Laminated sediments from the Gulf of Tehuantepec, Mexican Tropical Pacific, reveal climatic variability during the last 50 years. The Gulf of Tehuantepec is characterized by strong upwelling during the autumn-winter season due to intense northern winds. Upwelling supplies high nutrient concentrations and cold water to the ocean surface, resulting in high biological productivity, including diatom blooms. The rest of the year winds are relatively calm and currents predominantly flow to the Northeast. A box core collected in the area beneath the wind axes (750m water depth) showed sub-millimeter to millimeter scale laminated sediments. Laminae were separated and analyzed for diatoms. Chronology was obtained by 210Pb dating. Three diatom associations were recognized in the sediments studied: a cold water association dominated by Thalasionema nitzschioides, T. nitzchioides var. parva, Lioloma pacificum and Chaetoceros spores; an association dominated by Fragilariopsis doliolus, T. bacillare and Thalassiosira oestrupii, more characteristic of temperate waters, and an association of warm waters characterized by Neodelphineis pelagica, T. pseudonitzschioides, Actinocyclus ellipticus, Cyclotella litoralis and Thalassiosira decipiens. Abundance of diatoms is higher (up to 344 106 valves g-1) in the coldest association and lowest (83 106 valves g-1) in the warmer one. Although upwelling species are present throughout the core, we observed a decrease in diatom abundance and an increase in temperate and warm water taxa from the 1960's-1970's. This trend is coincident with the climatic changes produced by the slowdown of the meridional overturning circulation proposed for the past century and global warming.

  18. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest.

    PubMed

    González-Salvatierra, Claudia; Luis Andrade, José; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Manuel Peña-Rodríguez, Luis

    2010-07-01

    Plants have evolved photoprotective mechanisms to limit photodamage; one of these mechanisms involves the biosynthesis of antioxidant metabolites to neutralize reactive oxygen species generated when plants are exposed to excess light. However, it is known that exposure of plants to conditions of extreme water stress and high light intensity results in their enhanced susceptibility to over-excitation of photosystem II and to photooxidative stress. In this investigation we used the 2,2-diphenyl-1-picrylhydrazyl reduction assay to conduct a broad survey of the effect of water availability and light exposure conditions on the antioxidant activity of the leaf extracts of two bromeliad species showing crassulacean acid metabolism. One of these was an epiphyte, Tillandsia brachycaulos, and the other a terrestrial species, Bromelia karatas. Both species were found growing wild in the tropical dry deciduous forest of Dzibilchaltún National Park, México. The microenvironment of T. brachycaulos and B. karatas experiences significant diurnal and seasonal light variations as well as changes in temperature and water availability. The results obtained showed that, for both bromeliads, increases in antioxidant activity occurred during the dry season, as a consequence of water stress and higher light conditions. Additionally, in T. brachycaulos there was a clear correlation between high light intensity conditions and the content of anthocyanins which accumulated below the leaf epidermis. This result suggests that the role of these pigments is as photoprotective screens in the leaves. The red coloration below the leaf epidermis of B. karatas was not due to anthocyanins but to other unidentified pigments. 2010 Elsevier GmbH. All rights reserved.

  19. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico.

    PubMed

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio

    2015-10-01

    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  20. Mexican Americans: A Brief Look at Their History.

    ERIC Educational Resources Information Center

    Nava, Julian

    This short survey begins with a definition of the Mexican American and some of the questions asked by the general public about his culture and aims. It outlines the history of the United States' involvement with Mexico and explains the experience of the Mexican Americans after the end of the Mexican War in 1848. Their ethnic origins and the rich…

  1. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crutzen, P.J.; Andreae, M.O.

    1990-12-21

    Biomass burning is widespread, especially in the tropics. It serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses. Furthermore, much agricultural waste and fuel wood is being combusted, particularly in developing countries. Biomass containing 2 to 5 petagrams of carbon is burned annually (1 petagram = 10{sup 15} grams), producing large amounts of trace gases and aerosol particles that play important roles in atmospheric chemistry and climate. Emissions of carbon monoxide and methane by biomass burningmore » affect the oxidation efficiency of the atmosphere by reacting with hydroxyl radicals, and emissions of nitric oxide and hydrocarbons lead to high ozone concentrations in the tropics during the dry season. Large quantities of smoke particles are produced as well, and these can serve as cloud condensation nuclei. These particles may thus substantially influence cloud microphysical and optical properties, an effect that could have repercussions for the radiation budget and the hydrological cycle in the tropics. Widespread burning may also disturb biogeochemical cycles, especially that of nitrogen. About 50% of the nitrogen in the biomass fuel can be released as molecular nitrogen. This pyrodenitrification process causes a sizable loss of fixed nitrogen in tropical ecosystems, in the range of 10 to 20 teragrams per year (1 teragram = 10{sup 12} grams).« less

  2. Employment Hardship among Mexican-Origin Women

    ERIC Educational Resources Information Center

    De Anda, Roberto M.

    2005-01-01

    This study compares the prevalence and causes of employment hardship between Mexican-origin and White women. Data come from the March 1992, 1996, and 2000 Current Population Surveys. Using logistic regression, the author assesses whether there is a difference between Mexican-origin and White women in employment hardship, controlling for personal…

  3. Responses of tropical terrestrial biosphere carbon cycle to the 2015-2016 El Niño

    NASA Astrophysics Data System (ADS)

    Liu, J.; Schimel, D.; Bowman, K. W.; Parazoo, N.; Jiang, Z.; Lee, M.; Bloom, A. A.; Wunch, D.; Frankenberg, C.; Sun, Y.; O'Dell, C.; Gurney, K. R.; Menemenlis, D.; Gierach, M. M.; Crisp, D.; Eldering, A.

    2017-12-01

    The 2015-2016 El Niño, the 2nd strongest since the 1950s, led to historic high temperature and low precipitation over the tropics while the atmospheric CO2 growth rate was the largest on record. The launch of the Orbiting Carbon Observatory-2 (OCO-2) shortly before the 2015-2016 El Niño event provides an opportunity to understand how tropical land carbon fluxes respond to the warm and dry climate characteristics of the El Niño conditions. The El Niño events may also provide a natural experiment to study the response of tropical land carbon fluxes to future climate, since anomalously warm and dry tropical environments typical of El Niño are expected to be more frequent under most emission scenarios. Here we quantified the response of net biosphere exchange (NBE) and biomass burning to these climate anomalies by assimilating column CO2 from Greenhouse Gases Observing Satellite (GOSAT) and Orbiting Carbon Observatory-2, and CO from Measurements of Pollution in the Troposphere (MOPITT) into an atmospheric inversion framework. We further quantified Gross Primary Production with the Solar Induced Fluorescence (SIF) from GOSAT, and calculated the respiration as a residual term. Relative to the 2011 La Niña, the pantropical biosphere released 2.4 ± 0.34 Gt more carbon into the atmosphere, with an approximately equal distribution over three tropical continents in 2015. However, the dominant processes were different: GPP reduced (0.9 ± 0.22 GtC) in tropical South America, fire increased (0.4 ± 0.10 GtC) in tropical Asia, and respiration increased (0.6 ± 0.34 GtC) in Africa. During the peak of El Nino from the late 2015 to the early 2016, tropical South American had the largest response. We will further discuss the possible lagged-effect of 2015-2016 El Niño on 2017 tropical biosphere carbon fluxes.

  4. Regional variation in Caribbean dry forest tree species composition

    Treesearch

    Janet Franklin; Julie Ripplinger; Ethan H. Freid; Humfredo Marcano-Vega; David W. Steadman

    2015-01-01

    How does tree species composition vary in relation to geographical and environmental gradients in a globally rare tropical/subtropical broadleaf dry forest community in the Caribbean? We analyzed data from 153 Forest Inventory and Analysis (FIA) plots from Puerto Rico and the U.S. Virgin Islands (USVI), along with 42 plots that we sampled in the Bahamian Archipelago (...

  5. Influence of factors on the drying of cassava in a solar simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Njie, D.N.; Rumsey, T.R.

    1997-03-01

    In tropical countries, sun drying is still the most popular method used for processing root and tuber crops like cassava and yam. Relatively very little has been done on studying the kinetics of sun drying a bed of chips of cassava and similar crops, but this information is invaluable in finding options for reducing drying time and costs, and increasing tonnage produced. This project studied some factors that have an effect on the sun drying rate of cassava chips. The factors were ambient temperature, relative humidity, radiation intensity, air velocity, and loading density. A solar simulation chamber was constructed somore » that drying could be achieved under controllable conditions similar to those obtained in sun drying. Experiments carried out in the simulator revealed that temperature had the most significant effect on drying rate, followed by air velocity, and radiation intensity. Regression equations were developed relating the drying rate with the factors studied.« less

  6. The Mexican American Cultural Values scales for Adolescents and Adults

    PubMed Central

    Knight, George P.; Gonzales, Nancy A.; Saenz, Delia S.; Bonds, Darya D.; Germán, Miguelina; Deardorff, Julianna; Roosa, Mark W.; Updegraff, Kimberly A.

    2009-01-01

    This research evaluates the properties of a measure of culturally linked values of Mexican Americans in early adolescence and adulthood. The items measure were derived from qualitative data provided by focus groups in which Mexican Americans’ (adolescents, mothers and fathers) perceptions of key values were discussed. The focus groups and a preliminary item refinement resulted in the fifty-item Mexican American Cultural Values Scales (identical for adolescents and adults) that includes nine value subscales. Analyses of data from two large previously published studies sampling Mexican American adolescents, mothers, and fathers provided evidence of the expected two correlated higher order factor structures, reliability, and construct validity of the subscales of the Mexican American Cultural Values Scales as indicators of values that are frequently associated with Mexican/Mexican American culture. The utility of this measure for use in longitudinal research, and in resolving some important theoretical questions regarding dual cultural adaptation, are discussed. PMID:20644653

  7. Service Delivery to Elderly Mexican-Americans.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Center for Social Work Research.

    A curriculum examining various aspects of the Mexican American culture was designed for a training program conducted by the Texas Department of Public Welfare for its case workers and other personnel. Intended to heighten awareness of the cultural variables affecting the relationship of Mexican American clients to case workers and to the…

  8. Long-term in situ persistence of biodiversity in tropical sky islands revealed by landscape genomics.

    PubMed

    Mastretta-Yanes, Alicia; Xue, Alexander T; Moreno-Letelier, Alejandra; Jorgensen, Tove H; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C

    2018-01-01

    Tropical mountains are areas of high species richness and endemism. Two historical phenomena may have contributed to this: (i) fragmentation and isolation of habitats may have promoted the genetic differentiation of populations and increased the possibility of allopatric divergence and speciation and (ii) the mountain areas may have allowed long-term population persistence during global climate fluctuations. These two phenomena have been studied using either species occurrence data or estimating species divergence times. However, only few studies have used intraspecific genetic data to analyse the mechanisms by which endemism may emerge at the microevolutionary scale. Here, we use landscape analysis of genomic SNP data sampled from two high-elevation plant species from an archipelago of tropical sky islands (the Trans-Mexican Volcanic Belt) to test for population genetic differentiation, synchronous demographic changes and habitat persistence. We show that genetic differentiation can be explained by the degree of glacial habitat connectivity among mountains and that mountains have facilitated the persistence of populations throughout glacial/interglacial cycles. Our results support the ongoing role of tropical mountains as cradles for biodiversity by uncovering cryptic differentiation and limits to gene flow. © 2017 John Wiley & Sons Ltd.

  9. Two Scales for the Measurement of Mexican-American Identity.

    ERIC Educational Resources Information Center

    Teske, Raymond, Jr.; Nelson, Bardin H.

    The development of scales to measure Mexican American identification with their population is discussed in this paper. The scales measure (1) identification with the Mexican American population using attitudinal items (Identity Scale) and (2) interaction behavior with the Mexican American population (Interaction Scale). The sample consisted of all…

  10. Sociocultural Beliefs Related to Sex among Mexican American Adolescents.

    ERIC Educational Resources Information Center

    Flores, Elena; Millstein, Susan G.; Eyre, Stephen L.

    1998-01-01

    In a two-phase study, Mexican American male and female adolescents listed positive and negative elements related to preferred partner qualities and engaging in sexual activity; then other Mexican American adolescents classified the items. Results suggest that adolescents' partner preferences and reasons to have sex reflected Mexican American…

  11. Drought-related leaf phenology in tropical forests - Insights from a stochastic eco-hydrological approach

    NASA Astrophysics Data System (ADS)

    Vico, G.; Feng, X.; Dralle, D.; Thompson, S. E.; Manzoni, S.

    2016-12-01

    Drought deciduousness is a common phenological strategy to cope with water shortages during periodic dry spells or during the dry season in tropical forests. On one hand, shedding leaves allows avoiding drought stress, but implies leaf construction costs that evergreen species need to sustain less frequently. On the other hand, maintaining leaves during dry periods requires stable water sources, traits enabling leaves to remain active at low water potential, and carbon stores to sustain respiration costs in periods with little carbon uptake. Which of these strategies is the most competitive ultimately depends on the balance of carbon costs and gains in the long-term. In turn, this balance is affected by the hydro-climatic conditions, in terms of both length of the dry season and random rainfall occurrences during the wet season. To address the question as to which hydro-climatic conditions favor drought-deciduous vs. evergreen leaf habit in tropical forests, we develop a stochastic eco-hydrological framework that provides probability density functions of long-term carbon gain in tropical trees with a range of phenological strategies. From these distributions we compute the long-term mean carbon gain and use it as a measure of fitness and thus reproductive success. Finally, this measure is used to assess which phenological strategies are evolutionarily stable, providing an objective criterion to predict how likely a species with a certain phenological strategy is to invade a community dominated but another strategy. In general, we find that deciduous habit is evolutionary stable in more unpredictable climates for a given total rainfall, and in drier climates. However, a minimum annual rainfall is required for any strategy to have a positive carbon gain.

  12. Thickness of tropical ice and photosynthesis on a snowball Earth

    NASA Technical Reports Server (NTRS)

    McKay, C. P.

    2000-01-01

    On a completely ice-covered "snowball" Earth the thickness of ice in the tropical regions would be limited by the sunlight penetrating into the ice cover and by the latent heat flux generated by freezing at the ice bottom--the freezing rate would balance the sublimation rate from the top of the ice cover. Heat transfer models of the perennially ice-covered Antarctic dry valley lakes applied to the snowball Earth indicate that the tropical ice cover would have a thickness of 10 m or less with a corresponding transmissivity of > 0.1%. This light level is adequate for photosynthesis and could explain the survival of the eukaryotic algae.

  13. Thickness of tropical ice and photosynthesis on a snowball Earth.

    PubMed

    McKay, C P

    2000-07-15

    On a completely ice-covered "snowball" Earth the thickness of ice in the tropical regions would be limited by the sunlight penetrating into the ice cover and by the latent heat flux generated by freezing at the ice bottom--the freezing rate would balance the sublimation rate from the top of the ice cover. Heat transfer models of the perennially ice-covered Antarctic dry valley lakes applied to the snowball Earth indicate that the tropical ice cover would have a thickness of 10 m or less with a corresponding transmissivity of > 0.1%. This light level is adequate for photosynthesis and could explain the survival of the eukaryotic algae.

  14. Mexican forest fires and their decadal variations

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Graciela

    2016-11-01

    A high forest fire season of two to three years is regularly observed each decade in Mexican forests. This seems to be related to the presence of the El Niño phenomenon and to the amount of total solar irradiance. In this study, the results of a multi-cross wavelet analysis are reported based on the occurrence of Mexican forest fires, El Niño and the total solar irradiance for the period 1970-2014. The analysis shows that Mexican forest fires and the strongest El Niño phenomena occur mostly around the minima of the solar cycle. This suggests that the total solar irradiance minima provide the appropriate climatological conditions for the occurrence of these forest fires. The next high season for Mexican forest fires could start in the next solar minimum, which will take place between the years 2017 and 2019. A complementary space analysis based on MODIS active fire data for Mexican forest fires from 2005 to 2014 shows that most of these fires occur in cedar and pine forests, on savannas and pasturelands, and in the central jungles of the Atlantic and Pacific coasts.

  15. Anthropometric study of Mexican primary school children.

    PubMed

    Prado-León, L R; Avila-Chaurand, R; González-Muñoz, E L

    2001-08-01

    This paper presents the results of an anthropometric survey conducted on male and female Mexican primary school children age 6-11 years in the metropolitan area of the city of Guadalajara. A set of 50 body dimensions was taken based on international standards. The sample consisted of 4758 children (boys and girls). The anthropometric measurements were compared to those of American, Cuban and Mexican children. The results indicate that the body dimensions of Mexican children from this study are different from those of American, Cuban, and other Mexican children, probably due to ethnic differences and the time lapse between the different studies. It is considered that the 50 parameters are necessary for the design of school furniture, fittings and equipment in order to minimize musculoskeletal, visual, and circulatory problems resulting from using those badly designed elements.

  16. FUEL CONDITIONS ASSOCIATED WITH NATIVE AND EXOTIC GRASSES IN A SUBTROPICAL DRY FOREST IN PUERTO RICO

    Treesearch

    Jarrod M. Thaxton; Skip J. Van Bloem; Stefanie Whitmire

    2012-01-01

    Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of...

  17. The Representation of "Curanderismo" in Selected Mexican American Works

    ERIC Educational Resources Information Center

    Pabon, Melissa

    2007-01-01

    "Curanderismo," a Mexican folk practice, is a prevalent subject in Mexican American literature. Because much of the presence of "curanderismo" in Mexican American literature is only explored in ethnographic studies, the purpose of this study is to examine the artistic representation of "curanderismo" in the novels "Bless Me, Ultima" by Rudolfo…

  18. Global Overview On Delivery Of Sediment To The Coast From Tropical River Basins

    NASA Astrophysics Data System (ADS)

    Syvitski, J. P.; Kettner, A. J.; Brakenridge, G. R.

    2011-12-01

    Depending on definition, the tropics occupy between 16% and 19% of the earth's land surface, and discharge ~18.5% of the earth's fluvial water runoff. These flow regimes are driven by three types of sub-regional climate: rainforest, monsoon, and savannah. Even though the tropics include extreme precipitation events, particularly for the SE Asian islands, the general rainfall pattern alternates between wet and dry seasons as the ITCZ follows the sun and where annual monsoonal rain occurs. ITCZ convective rainfall is the dominant style of precipitation but this can be influenced by rare intra-tropical cyclone events, and by atmospheric river events set up by strong monsoonal conditions. Though a rainy season is normal (for example, portions of India discharge in summer may reach 50 times that of winter), the actual rainfall events are in the form of short bursts of precipitation (hours to days) separated by periods of dry (hours to weeks). Some areas of the tropics receive more than 100 thunderstorms per year. Rivers respond to this punctuated weather by seasonal flooding. For the smaller island nations and locales (e.g. Indonesia, Philippines, Borneo, Hainan, PNG, Madagascar, Hawaii, Taiwan) flash floods are common. Larger tropical river systems (Niger, Ganges, Brahmaputra, Congo, Amazon, Orinoco, Magdalena) show typical seasonally modulated discharges. The sediment flux from tropical rivers is approximately 17% to 19% of the global total - however individual river basins offer a wide range in sediment yields reflecting highly variable differences in their hinterland lithology, tectonic activity and volcanism, land-sliding, and relief. Human influences also greatly influence the range for tropical river sediment yield. Some SE Asian Rivers continue to be greatly affected by deforestation, road construction, and monoculture plantations. Sediment flux is more than twice the pre-Anthropocene flux in many of these SE Asian countries, especially where dams and reservoir

  19. A Comparison of PBDE Serum Concentrations in Mexican and Mexican-American Children Living in California

    PubMed Central

    Fenster, Laura; Castorina, Rosemary; Marks, Amy R.; Sjödin, Andreas; Rosas, Lisa Goldman; Holland, Nina; Guerra, Armando Garcia; Lopez-Carillo, Lizbeth; Bradman, Asa

    2011-01-01

    Background: Polybrominated diphenyl ethers (PBDE), which are used as flame retardants, have been found to be higher in residents of California than of other parts of the United States. Objectives: We aimed to investigate the role of immigration to California on PBDE levels in Latino children. Methods: We compared serum PBDE concentrations in a population of first-generation Mexican-American 7-year-old children (n = 264), who were born and raised in California [Center for Health Analysis of Mothers and Children of Salinas (CHAMACOS) study], with 5-year-old Mexican children (n = 283), who were raised in the states in Mexico where most CHAMACOS mothers had originated (Proyecto Mariposa). Results: On average, PBDE serum concentrations in the California Mexican-American children were three times higher than their mothers’ levels during pregnancy and seven times higher than concentrations in the children living in Mexico. The PBDE serum concentrations were higher in the Mexican-American children regardless of length of time their mother had resided in California or the duration of the child’s breast-feeding. These data suggest that PBDE serum concentrations in these children resulted primarily from postnatal exposure. Conclusions: Latino children living in California have much higher PBDE serum levels than their Mexican counterparts. Given the growing evidence documenting potential health effects of PBDE exposure, the levels in young children noted in this study potentially present a major public health challenge, especially in California. In addition, as PBDEs are being phased out and replaced by other flame retardants, the health consequences of these chemical replacements should be investigated and weighed against their purported fire safety benefits. PMID:21498147

  20. Application of digital field photographs as documents for tropical plant inventory1

    PubMed Central

    LaFrankie, James V.; Chua, Anna I.

    2015-01-01

    Premise of the study: We tested the credibility and significance of digital field photographs as supplements or substitutes for conventional herbarium specimens with particular relevance to exploration of the tropics. Methods: We made 113 collections in triplicate at a species-rich mountain in the Philippines while we took 1238 digital photographs of the same plants. We then identified the plants from the photographs alone, categorized the confidence of the identification and the reason for failure to identify, and compared the results to identifications based on the dried specimens. Results: We identified 72.6% of the photographic sets with high confidence and 27.4% with low confidence or only to genus. In no case was a confident identification altered by subsequent examination of the dried specimen. The failure to identify photographic sets to species was due to the lack of a key feature in 67.8% of the cases and due to a poorly understood taxonomy in 32.2%. Discussion: We conclude that digital photographs cannot replace traditional herbarium specimens as the primary elements that document tropical plant diversity. However, photographs represent a new and important artifact that aids an expedient survey of tropical plant diversity while encouraging broad public participation. PMID:25995976

  1. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales).

    PubMed

    De-Nova, J Arturo; Medina, Rosalinda; Montero, Juan Carlos; Weeks, Andrea; Rosell, Julieta A; Olson, Mark E; Eguiarte, Luis E; Magallón, Susana

    2012-01-01

    • Mesoamerican arid biomes epitomize neotropical rich and complex biodiversity. To document some of the macroevolutionary processes underlying the vast species richness of Mesoamerican seasonally dry tropical forests (SDTFs), and to evaluate specific predictions about the age, geographical structure and niche conservatism of SDTF-centered woody plant lineages, the diversification of Bursera is reconstructed. • Using a nearly complete Bursera species-level phylogeny from nuclear and plastid genomic markers, we estimate divergence times, test for phylogenetic and temporal diversification heterogeneity, test for geographical structure, and reconstruct habitat shifts. • Bursera became differentiated in the earliest Eocene, but diversified during independent early Miocene consecutive radiations that took place in SDTFs. The late Miocene average age of Bursera species, the presence of phylogenetic geographical structure, and its strong conservatism to SDTFs conform to expectations derived from South American SDTF-centered lineages. • The diversification of Bursera suggests that Mesoamerican SDTF richness derives from high speciation from the Miocene onwards uncoupled from habitat shifts, during a period of enhanced aridity resulting mainly from global cooling and regional rain shadows. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  2. Ectomycorrhizal diversity and community structure in stands of Quercus oleoides in the seasonally dry tropical forests of Costa Rica

    NASA Astrophysics Data System (ADS)

    Desai, Nikhilesh S.; Wilson, Andrew W.; Powers, Jennifer S.; Mueller, Gregory M.; Egerton-Warburton, Louise M.

    2016-12-01

    Most conservation efforts in seasonally dry tropical forests have overlooked less obvious targets for conservation, such as mycorrhizal fungi, that are critical to plant growth and ecosystem structure. We documented the diversity of ectomycorrhizal (EMF) and arbuscular mycorrhizal (AMF) fungal communities in Quercus oleoides (Fagaceae) in Guanacaste province, Costa Rica. Soil cores and sporocarps were collected from regenerating Q. oleoides plots differing in stand age (early vs late regeneration) during the wet season. Sequencing of the nuclear ribosomal ITS region in EMF root tips and sporocarps identified 37 taxa in the Basidiomycota; EMF Ascomycota were uncommon. The EMF community was dominated by one species (Thelephora sp. 1; 70% of soil cores), more than half of all EMF species were found only once in an individual soil core, and there were few conspecific taxa. Most EMF taxa were also restricted to either Early or Late plots. Levels of EMF species richness and diversity, and AMF root colonization were similar between plots. Our results highlight the need for comprehensive spatiotemporal samplings of EMF communities in Q. oleoides to identify and prioritize rare EMF for conservation, and document their genetic and functional diversity.

  3. A Qualitative Study of Mexican American Adolescents and Depression

    ERIC Educational Resources Information Center

    Fornos, Laura B.; Mika, Virginia Seguin; Bayles, Bryan; Serrano, Alberto C.; Jimenez, Roberto L.; Villarreal, Roberto

    2005-01-01

    Depressive disorders are present in a high percentage of Mexican American adolescents. Among the US Mexican American population, suicide is the fourth leading cause of death among 10- to 19-year-olds. Little research, however, has focused on Mexican American adolescents' knowledge and views about depression and seeking help for depression. Results…

  4. Mexican and Mexican American Student Reflections on Transfer: Institutional Agents and the Continued Role of the Community College

    ERIC Educational Resources Information Center

    Cortez, Edén; Castro, Erin L.

    2017-01-01

    This qualitative analysis draws upon the experiences of six Mexican and Mexican American community college transfer students during the 2012-2013 academic year. Relying on literature regarding institutional agents, we examine students' reflections regarding pre- and post-transfer support from both institutional agents and structured student…

  5. Influence of the Saharan Air Layer on Atlantic tropical cyclone formation during the period 1-12 September 2003

    NASA Astrophysics Data System (ADS)

    Pan, Weiyu; Wu, Liguang; Shie, Chung-Lin

    2011-01-01

    Atmospheric Infrared Sounder (AIRS) data show that the Saharan air layer (SAL) is a dry, warm, and well-mixed layer between 950 and 500 hPa over the tropical Atlantic, extending westward from the African coast to the Caribbean Sea. The formations of both Hurricane Isabel and Tropical Depression 14 (TD14) were accompanied with outbreaks of SAL air during the period 1-12 September 2003, although TD14 failed to develop into a named tropical cyclone. The influence of the SAL on their formations is investigated by examining data from satellite observations and numerical simulations, in which AIRS data are incorporated into the MM5 model through the nudging technique. Analyses of the AIRS and simulation data suggest that the SAL may have played two roles in the formation of tropical cyclones during the period 1-12 September 2003. First, the outbreaks of SAL air on 3 and 8 September enhanced the transverse-vertical circulation with the rising motion along the southern edge of the SAL and the sinking motion inside the SAL, triggering the development of two tropical disturbances associated with Hurricane Isabel and TD14. Second, in addition to the reduced environmental humidity and enhanced static stability in the lower troposphere, the SAL dry air intruded into the inner region of these tropical disturbances as their cyclonic flows became strong. This effect may have slowed down the formation of Isabel and inhibited TD14 becoming a named tropical cyclone, while the enhanced vertical shear contributed little to tropical cyclone formation during this period. The 48-h trajectory calculations confirm that the parcels from the SAL can be transported into the inner region of an incipient tropical cyclone.

  6. Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure

    PubMed Central

    Solis-Gabriel, Lizet; Mendoza-Arroyo, Wendy

    2017-01-01

    Tropical dry forests (TDFs) have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control) in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning. PMID:28560101

  7. Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure.

    PubMed

    Solis-Gabriel, Lizet; Mendoza-Arroyo, Wendy; Boege, Karina; Del-Val, Ek

    2017-01-01

    Tropical dry forests (TDFs) have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control) in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning.

  8. Short-term consequences of slash-and-burn practices on the arbuscular mycorrhizal fungi of a tropical dry forest.

    PubMed

    Aguilar-Fernández, Mónica; Jaramillo, Víctor J; Varela-Fregoso, Lucía; Gavito, Mayra E

    2009-03-01

    Rates of land conversion from forest to cultivated land by slash-and-burn practices are higher in tropical dry forest (TDF) than any other Neotropical forest type. This study examined the short-term consequences of the slash-and-burn process on arbuscular mycorrhizal fungi (AMF). We expected that slash-and-burn would reduce mycorrhizal colonization and propagules and change species richness and composition. Soil and root samples were taken from TDF control and pasture plots originated after slash-and-burn at four dates during the year of conversion to examine species composition, spore abundance, and infective propagules. Additionally, spore abundance and viability and viable intraradical colonization were measured twice during the second year after conversion. Forest and pasture plots maintained similar species richness and an overall 84% similarity during the first year after conversion. Infective propagules were reduced in pasture plots during the first year after slash-and-burn, whereas spore abundance and intraradical colonization remained similar in TDF and pasture plots both years of the study. Our results suggest, contrary to the expected, that forest conversion by means of slash-and-burn followed by cultivation resulted in few immediate changes in the AMF communities, likely because of the low heat conductivity of the soil and rapid combustion of plant residues.

  9. Inter-comparison of precipitable water among reanalyses and its effect on downscaling in the tropics

    NASA Astrophysics Data System (ADS)

    Takahashi, H. G.; Fujita, M.; Hara, M.

    2012-12-01

    This paper compared precipitable water (PW) among four major reanalyses. In addition, we also investigated the effect of the boundary conditions on downscaling in the tropics, using a regional climate model. The spatial pattern of PW in the reanalyses agreed closely with observations. However, the absolute amounts of PW in some reanalyses were very small compared to observations. The discrepancies of the 12-year mean PW in July over the Southeast Asian monsoon region exceeded the inter-annual standard deviation of the PW. There was also a discrepancy in tropical PWs throughout the year, an indication that the problem is not regional, but global. The downscaling experiments were conducted, which were forced by the different four reanalyses. The atmospheric circulation, including monsoon westerlies and various disturbances, was very small among the reanalyses. However, simulated precipitation was only 60 % of observed precipitation, although the dry bias in the boundary conditions was only 6 %. This result indicates that dry bias has large effects on precipitation in downscaling over the tropics. This suggests that a simulated regional climate downscaled from ensemble-mean boundary conditions is quite different from an ensemble-mean regional climate averaged over the several regional ones downscaled from boundary conditions of the ensemble members in the tropics. Downscaled models can provide realistic simulations of regional tropical climates only if the boundary conditions include realistic absolute amounts of PW. Use of boundary conditions that include realistic absolute amounts of PW in downscaling in the tropics is imperative at the present time. This work was partly supported by the Global Environment Research Fund (RFa-1101) of the Ministry of the Environment, Japan.

  10. WET AND DRY SEASON ECOSYSTEM LEVEL FLUXES OF ISOPRENE AND MONOTERPENES FROM A SOUTHEAST ASIAN SECONDARY FOREST AND RUBBER TREE PLANTATION

    EPA Science Inventory

    Canopy scale fluxes of isoprene and monoterpenes were investigated in both wet and dry seasons above a rubber tree (Hevea brasiliensis)/secondary tropical forest in the Yunnan province of southwestern China. Drought conditions were unusually high during the dry season experiment....

  11. Unrevealing the History of Earthquakes and Tsunamis of the Mexican Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M. T.; Castillo-Aja, M. D. R.; Cruz, S.; Corona, N.; Rangel Velarde, V.; Lagos, M.

    2014-12-01

    The great earthquakes and tsunamis of the last decades in Sumatra, Chile, and Japan remind us of the need for expanding the record of history of such catastrophic events. It can't be argued that even countries with extensive historical documents and tsunami sand deposits still have unsolved questions on the frequency of them, and the variables that control them along subduction zones. We present here preliminary results of a combined approach using historical archives and multiple proxies of the sedimentary record to unrevealing the history of possible great earthquakes and their tsunamis on the Mexican Subduction zone. The Mexican subduction zone extends over 1000 km long and little is known if the entire subduction zone along the Middle American Trench behaves as one enormous unit rather than in segments that rupture at different frequencies and with different strengths (as the short instrumental record shows). We searched on historical archives and earthquake databases to distinguish tsunamigenic events registered from the 16th century to now along the Jalisco-Colima and Guerrero-Oaxaca coastal stretches. The historical data referred are mostly from the 19th century on since the population on the coast was scarce before. We found 21 earthquakes with tsunamigenic potential, and of those 16 with doubtful to definitive accompanying tsunami on the Jalisco-Colima coast, and 31 tsunamigenic earthquakes on the Oaxaca-Guerrero coast. Evidence of great earthquakes and their tsunamis from the sedimentary record are scarce, perhaps due poor preservation of tsunami deposits in this tropical environment. Nevertheless, we have found evidence for a number of tsunamigenic events, both historical and prehistorical, 1932 and 1400 AD on Jalisco, and 3400 BP, 1789 AD, 1979 ad, and 1985 AD on Guerrero-Oaxaca. We continue working and a number of events are still to be dated. This work would aid in elucidating the history of earthquakes and tsunamis on the Mexican subduction zone.

  12. North Atlantic forcing of tropical Indian Ocean climate.

    PubMed

    Mohtadi, Mahyar; Prange, Matthias; Oppo, Delia W; De Pol-Holz, Ricardo; Merkel, Ute; Zhang, Xiao; Steinke, Stephan; Lückge, Andreas

    2014-05-01

    The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.

  13. Prospects and Challenges in tropical isotope dendroclimatology

    NASA Astrophysics Data System (ADS)

    Evans, M. N.; Anchukaitis, K. J.; White, S. R.; Ektvedt, T. M.; Penniston, R. C.; Rheaume, M. M.; Bowman, D. M.

    2008-12-01

    We review a stable isotope-based approach to the development, modeling, interpretation, and analysis of hydrometeorological estimates from tropical trees. The strategy overcomes the common problem of missing, intermittent or non-annual ring structure in tropical trees by relying instead on the observation of the annual wet-dry seasonality typical to tropical environments as mirrored in the oxygen isotopic composition of wood-derived α-cellulose. We explore regions for which forward modeling of the proxy system would expect us to resolve hydrometeorological variations associated with the El Niño-Southern Oscillation (ENSO) phenomenon, rather than being limited to regions with tree species or environments producing verifiable annual ring chronologies. A modified protocol allows for rapid, simple and non-toxic micro-extraction of pure α-cellulose, which is isotopically indistinguishable from that produced by more classical means. We describe a new reactor for the pyrolysis of α-cellulose in an induction heater, which permits isotopic analysis of α-cellulose samples as small as 30μg, and as many as 100 automated sample analyses per day. A forward model adapted for tropical environments can be used to test and refine the interpretation of the isotopic data, and to predict locales for which we should be able to maximize the paleoclimatic potential of future sample collections. We have found the modeled isotopic chronometer and raingage in agreement with independent chronological controls in a variety of environments and tree species in Costa Rica, Indonesia, Brazil, Peru and Australia. Development of long hydrometeorological records from the terrestrial tropics is underway not only by our group, but by a growing number of collaborators and colleagues. Together we should be able to build a network of paleoprecipitation records and better understand the linkages between tropical surface ocean temperatures and large-scale drought.

  14. Land use policies and deforestation in Brazilian tropical dry forests between 2000 and 2015

    NASA Astrophysics Data System (ADS)

    Dupin, Mariana G. V.; Espírito-Santo, Mário M.; Leite, Marcos E.; Silva, Jhonathan O.; Rocha, André M.; Barbosa, Rômulo S.; Anaya, Felisa C.

    2018-03-01

    Tropical Dry Forests (TDFs) have been broadly converted into pastures and crops, with direct consequences to biodiversity, ecosystem services, and social welfare. Such land use and cover changes (LUCC) usually are strongly influenced by government environmental and development policies. The present study aimed at analyzing LUCC in Brazilian TDFs between 2000 and 2015, using the north of Minas Gerais state (128 000 km2) as a case study. We evaluated the potential biophysical and social-economic drivers of TDF loss, natural regeneration and net area change at the county level. Further, we determined the effects of these LUCC variables on socioeconomic indicators. We identified a considerable change in TDF cover, expressed as 9825 km2 of deforestation and 6523 km2 of regeneration, which resulted in a net loss of 3302 km2. The annual rate of TDF cover change was -1.2%, which is extremely high for a vegetation type that is protected as part of the Atlantic Rain Forest biome since 1993. TDF deforestation was directly affected by county area and by the increase in cattle density, and inversely affected by terrain declivity, indicating that land conversion is mostly driven by cattle ranching in flat regions. TDF regeneration was directly affected by county area and inversely affected by the increase in population density and terrain declivity. LUCC variables did not affect welfare indicators, undermining claims from rural sectors that TDF protection would cause a socioeconomic burden for northern Minas Gerais. Our results highlight the importance of naturally regenerating secondary forests to the maintenance of ecosystem integrity and its services, which are frequently neglected in conservation strategies. Hegemonic macroeconomic policies affecting TDFs have been deeply rooted in deforestation for commodities production, and need urgent review because they cause long-term environmental impacts without evidence of welfare gains.

  15. Organization of the Tropical Convective Cloud Population by Humidity and the Critical Transition to Heavy Precipitation

    NASA Astrophysics Data System (ADS)

    Igel, M.

    2015-12-01

    The tropical atmosphere exhibits an abrupt statistical switch between non-raining and heavily raining states as column moisture increases across a wide range of length scales. Deep convection occurs at values of column humidity above the transition point and induces drying of moist columns. With a 1km resolution, large domain cloud resolving model run in RCE, what will be made clear here for the first time is how the entire tropical convective cloud population is affected by and feeds back to the pickup in heavy precipitation. Shallow convection can act to dry the low levels through weak precipitation or vertical redistribution of moisture, or to moisten toward a transition to deep convection. It is shown that not only can deep convection dehydrate the entire column, it can also dry just the lower layer through intense rain. In the latter case, deep stratiform cloud then forms to dry the upper layer through rain with anomalously high rates for its value of column humidity until both the total column moisture falls below the critical transition point and the upper levels are cloud free. Thus, all major tropical cloud types are shown to respond strongly to the same critical phase-transition point. This mutual response represents a potentially strong organizational mechanism for convection, and the frequency of and logical rules determining physical evolutions between these convective regimes will be discussed. The precise value of the point in total column moisture at which the transition to heavy precipitation occurs is shown to result from two independent thresholds in lower-layer and upper-layer integrated humidity.

  16. [Species of dinoflagellates of the genus Gambierdiscus (Dinophyceae) in the Mexican Caribbean Sea].

    PubMed

    Hernández-Becerril, D U; Almazán Becerril, A

    2004-09-01

    Some dinoflagellates with benthic habits are related to ciguatera intoxication by fish consumption, especially in tropical areas. In the Mexican Caribbean, ciguatera is relatively common, but only one paper seems to have been published on the subject, and there are very few publicactions on phytoplankton and benthic microalgae. Material collected along the coast of the State of Quintana Roo with phytoplankton net (54 mm) and directly from sediment and epiphytes of macroscopic plants, was searched for toxic and other associated dinoflagellates. Samples were studied by light and scanning electron microscopy. Morphological characters were useful for species identification, but eventually physiological, ecological and molecular characters could also be used. Three species of Gambierdiscus, related to the production of ciguatera toxins, were identified: G. belizeanus, G. toxicus and G. yasumotoi. They are distributed in shallow coastal areas, including coastal lagoons.

  17. Geographical ecology of dry forest tree communities in the West Indies

    Treesearch

    Janet Franklin; Riley Andrade; Mark L. Daniels; Patrick Fairbairn; Maria C. Fandino; Thomas W. Gillespie; Grizelle González; Otto Gonzalez; Daniel Imbert; Valerie Kapos; Daniel L. Kelly; Humfredo Marcano-Vega; Elvia J. Meléndez-Ackerman; Kurt P. McLaren; Morag A. McDonald; Julie Ripplinger; Julissa Rojas-Sandoval; Michael S. Ross; Jorge Ruiz; David W. Steadman; Edmund V. J. Tanner; Inge Terrill; Michel Vennetier

    2018-01-01

    Aim: Seasonally dry tropical forest (SDTF) of the Caribbean Islands (primarily West Indies) is floristically distinct from Neotropical SDTF in Central and South America. We evaluate whether tree species composition was associated with climatic gradients or geographical distance. Turnover (dissimilarity) in species composition of different islands or among more distant...

  18. Plant diversity patterns in neotropical dry forests and their conservation implications

    Treesearch

    K. Banda-R; A. Delgado-Salinas; K. G. Dexter; R. Linares-Palomino; A. Oliveira-Filho; D. Prado; M. Pullan; C. Quintana; R. Riina; G. M. Rodriguez M.; J. Weintritt; P. Acevedo-Rodriguez; J. Adarve; E. Alvarez; A. Aranguren B.; J. C. Arteaga; G. Aymard; A. Castano; N. Ceballos-Mago; A. Cogollo; H. Cuadros; F. Delgado; W. Devia; H. Duenas; L. Fajardo; A. Fernandez; M. A. Fernandez; J. Franklin; E. H. Freid; L. A. Galetti; R. Gonto; R. Gonzalez-M.; R. Graveson; E. H. Helmer; A. Idarraga; R. Lopez; H. Marcano-Vega; O. G. Martinez; H. M. Maturo; M. McDonald; K. McLaren; O. Melo; F. Mijares; V. Mogni; D. Molina; N. d. P. Moreno; J. M. Nassar; D. M. Neves; L. J. Oakley; M. Oatham; A. R. Olvera-Luna; F. F. Pezzini; O. J. R. Dominguez; M. E. Rios; O. Rivera; N. Rodriguez; A. Rojas; T. Sarkinen; R. Sanchez; M. Smith; C. Vargas; B. Villanueva; R. T. Pennington

    2016-01-01

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than...

  19. Structural response of Caribbean dry forests to hurricane winds: a case study from Guanica Forest, Puerto Rico.

    Treesearch

    Skip J. Van Bloem; Ariel E. Lugo; Peter G. Murphy

    2006-01-01

    Tropical dry forests in the Caribbean have an uniquely short, shrubby structure with a high proportion of multiple-stemmed trees compared to dry forests elsewhere in the Neotropics. Previous studies have shown that this structure can arise without the loss of main stems from cutting, grazing, or other human intervention. The Caribbean has a high frequency of hurricanes...

  20. Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil.

    PubMed

    Santos, Rubens M; Oliveira-Filho, Ary T; Eisenlohr, Pedro V; Queiroz, Luciano P; Cardoso, Domingos B O S; Rodal, Maria J N

    2012-02-01

    The tree species composition of seasonally dry tropical forests (SDTF) in north-eastern and central Brazil is analyzed to address the following hypotheses: (1) variations in species composition are related to both environment (climate and substrate) and spatial proximity; (2) SDTF floristic units may be recognized based on peculiar composition and environment; and (3) the Arboreal Caatinga, a deciduous forest occurring along the hinterland borders of the Caatinga Domain, is one of these units and its flora is more strongly related to the caatinga vegetation than to outlying forests. The study region is framed by the Brazilian coastline, 50th meridian west and 21st parallel south, including the Caatinga Domain and extensions into the Atlantic Forest and Cerrado Domains. Multivariate and geostatistic analyses were performed on a database containing 16,226 occurrence records of 1332 tree species in 187 georeferenced SDTF areas and respective environmental variables. Tree species composition varied significantly with both environmental variables and spatial proximity. Eight SDTF floristic units were recognized in the region, including the Arboreal Caatinga. In terms of species composition, its tree flora showed a stronger link with that of the Cerrado Dry Forest Enclaves. On the other hand, in terms of species frequency across sample areas, the links were stronger with two other units: Rock Outcrops Caatinga and Agreste and Brejo Dry Forests. There is a role for niche-based control of tree species composition across the SDTFs of the region determined primarily by the availability of ground water across time and secondarily by the amount of soil mineral nutrients. Spatial proximity also contributes significantly to the floristic cohesion of SDTF units suggesting a highly dispersal-limited tree flora. These units should be given the status of eco-regions to help driving the conservation policy regarding the protection of their biodiversity.

  1. Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil

    PubMed Central

    Santos, Rubens M; Oliveira-Filho, Ary T; Eisenlohr, Pedro V; Queiroz, Luciano P; Cardoso, Domingos B O S; Rodal, Maria J N

    2012-01-01

    The tree species composition of seasonally dry tropical forests (SDTF) in north-eastern and central Brazil is analyzed to address the following hypotheses: (1) variations in species composition are related to both environment (climate and substrate) and spatial proximity; (2) SDTF floristic units may be recognized based on peculiar composition and environment; and (3) the Arboreal Caatinga, a deciduous forest occurring along the hinterland borders of the Caatinga Domain, is one of these units and its flora is more strongly related to the caatinga vegetation than to outlying forests. The study region is framed by the Brazilian coastline, 50th meridian west and 21st parallel south, including the Caatinga Domain and extensions into the Atlantic Forest and Cerrado Domains. Multivariate and geostatistic analyses were performed on a database containing 16,226 occurrence records of 1332 tree species in 187 georeferenced SDTF areas and respective environmental variables. Tree species composition varied significantly with both environmental variables and spatial proximity. Eight SDTF floristic units were recognized in the region, including the Arboreal Caatinga. In terms of species composition, its tree flora showed a stronger link with that of the Cerrado Dry Forest Enclaves. On the other hand, in terms of species frequency across sample areas, the links were stronger with two other units: Rock Outcrops Caatinga and Agreste and Brejo Dry Forests. There is a role for niche-based control of tree species composition across the SDTFs of the region determined primarily by the availability of ground water across time and secondarily by the amount of soil mineral nutrients. Spatial proximity also contributes significantly to the floristic cohesion of SDTF units suggesting a highly dispersal-limited tree flora. These units should be given the status of eco-regions to help driving the conservation policy regarding the protection of their biodiversity. PMID:22423333

  2. Undocumented Migration and the Residential Segregation of Mexicans in New Destinations1

    PubMed Central

    Hall, Matthew; Stringfield, Jonathan

    2014-01-01

    This study uses data from the 2000 Census and 2005–2009 American Community Survey to examine the impact of undocumented Mexican migration to new destinations on residential segregation between Mexican immigrants and native-born whites and native-born blacks. We find that Mexican-white and Mexican-black segregation is higher in new Mexican gateways than in established areas and that, for Mexican-immigrant segregation from whites, this heightened level of residential segregation in new destinations can be explained by the high presence of unauthorized Mexican immigrants living there which tends to bolster segregation between the two groups. By contrast, Mexican-immigrant segregation from native-born blacks tends to be lower in areas with larger undocumented populations, a pattern that is especially true in new destinations. Neither of these opposing effects of legal status on Mexican-immigrant segregation can be explained by compositional differences in assimilation (English ability and earnings) between documented and undocumented immigrants nor by structural variation in metropolitan areas, suggesting a unique association between legal status and segregation. PMID:24913945

  3. Familism, machismo and child rearing practices among Mexican Americans.

    PubMed

    Tamez, E G

    1981-09-01

    Mexican Americans form the 2nd largest minority group in the US. Fertility is 50% higher than in any other ethnic group. Income levels are inordinately low. In 1970, 42% of Mexican Americans were indigent, making approxiamtely 4200 annually. The Mexican American poor can be categorized into newly arrived aliens or 2nd or 3rd generation American citizens. In the 1st instance, the couple is young and English is not spoken. 2nd or 3rd generation Mexican Americans speak English. The persistent socioeconomic status of the Mexican American relates directly to the level of education. 52% of all Mexican Americans do not finish high school. Paz and Remos described the Mexican in terms of Adler's inferiority model. Murillo stated that to an individual, the family--whether nuclear or extended--is the center of life. The inherent responsibility is that the individual behave properly lest the family be disgraced. The family provides emotional and material security. Familism was seen as a deterrant to utilization of health care services, although some studies claim opposing views. Familism and occupational stability related positively to seeking medical care when ill. Hayden believed that supreme male dominance, individualism, pride, wife beating, aversion to contraceptives, and other characteristics were attributable to machismo. A predominant pattern in Mexican American culture is that of elders' ordering young men and women to establish obedience and male dominance. The husband represents authority and the wife-mother maintains a role of complete devotion to her husband and children. Role differentiation is taught implicitly and explicitly from infancy. Studies on the psychological differences between the sexes indicated that females were oppressed and had lower self esteem than males. 18-24 year old Mexican Americans are becoming less insistent upon strict separation of sex roles and are beginning to reject the traditional Mexican notion of masculine superiority. The word

  4. Prediabetes, undiagnosed diabetes, and diabetes among Mexican adults: findings from the Mexican Health and Aging Study.

    PubMed

    Kumar, Amit; Wong, Rebeca; Ottenbacher, Kenneth J; Al Snih, Soham

    2016-03-01

    The purpose of the study was to examine the prevalence and determinants of prediabetes, undiagnosed diabetes, and diabetes among Mexican adults from a subsample of the Mexican Health and Aging Study. We examined 2012 participants from a subsample of the Mexican Health and Aging Study. Measures included sociodemographic characteristics, body mass index, central obesity, medical conditions, cholesterol, high-density lipoprotein cholesterol, hemoglobin A1c, and vitamin D. Logistic regression was performed to identify factors associated with prediabetes, undiagnosed diabetes, and self-reported diabetes. Prevalence of prediabetes, undiagnosed, and self-reported diabetes in this cohort was 44.2%, 18.0%, and 21.4%, respectively. Participants with high waist-hip ratio (1.61, 95% confidence interval [CI] = 1.05-2.45) and high cholesterol (1.85, 95% CI = 1.36-2.51) had higher odds of prediabetes. Overweight (1.68, 95% CI = 1.07-2.64), obesity (2.38, 95% CI = 1.41-4.02), and high waist circumference (1.60, 95% CI = 1.06-2.40) were significantly associated with higher odds of having undiagnosed diabetes. Those residing in a Mexican state with high U.S. migration had lower odds of prediabetes (0.61, 95% CI = 0.45-0.82) and undiagnosed diabetes (0.53, 95% CI = 0.41-0.70). Those engaged in regular physical activity had lower odds of undiagnosed diabetes (0.74, 95% CI = 0.57-0.97). There is a high prevalence of prediabetes and undiagnosed diabetes among Mexican adults in this subsample. Findings suggest the need for resources to prevent, identify, and treat persons with prediabetes and undiagnosed diabetes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Mexican Celebrations. Latin American Culture Studies Project.

    ERIC Educational Resources Information Center

    Garza-Lubeck, Maria; Salinas, Ana Maria

    Developed for elementary school children, this unit is designed to teach about Mexican American culture through the study of holidays celebrated throughout much of Latin America and the southwestern United States. The unit describes and provides background information about nine Mexican American holidays. Among the activities included are the…

  6. Challenging the Stereotypes of Mexican American Fathers

    ERIC Educational Resources Information Center

    Saracho, Olivia N.; Spodek, Bernard

    2007-01-01

    This critical review presents studies of Mexican American fathers in the United Sates to provide researchers with an understanding of contemporary fatherhood. It describes the myths that cause methodological and conceptual problems in interpreting the results of studies on Mexican American fathers. Several common challenges and limitations in…

  7. MEXICAN-AMERICAN STUDY PROJECT. ADVANCE REPORT 8, MEXICAN-AMERICANS IN A MIDWEST METROPOLIS--A STUDY OF EAST CHICAGO.

    ERIC Educational Resources Information Center

    LAMANNA, RICHARD A.; SAMORA, JULIAN

    MEXICAN AMERICANS WHO HAVE MIGRATED TO THE INDUSTRIAL COMPLEX OF EAST CHICAGO ARE ANALYZED TO DETERMINE THE VALIDITY OF A HYPOTHESIS THAT THIS GROUP WAS PROVIDED OPPORTUNITIES NOT AVAILABLE TO THEIR COUNTERPARTS IN THE SOUTHWEST FOR ASSIMILATION INTO THE COMMUNITY. A CONCISE REPORT ON THE HISTORY OF THE MEXICAN-AMERICAN COLONY IN EAST CHICAGO, ITS…

  8. Relationship between Trends in Land Precipitation and Tropical SST Gradient

    NASA Technical Reports Server (NTRS)

    Chung, Chul Eddy; Ramanathan, V.

    2007-01-01

    In this study, we examined global zonal/annual mean precipitation trends. Land precipitation trend from 1951 to 2002 shows widespread drying between 10 S to 20 N but the trend from 1977 to 2002 shows partial recovery. Based on general circulation model sensitivity studies, we suggested that these features are driven largely by the meridional SST gradient trend in the tropics. Our idealized CCM3 experiments substantiated that land precipitation is more sensitive to meridional SST gradient than to an overall tropical warming. Various simulations produced for the IPCC 4th assessment report demonstrate that increasing CO2 increases SST in the entire tropics non-uniformly and increases land precipitation only in certain latitude belts, again pointing to the importance of SST gradient change. Temporally varying aerosols in the IPCC simulations alter meridional SST gradient and land precipitation substantially. Anthropogenic aerosol direct solar forcing without its effects on SST is shown by the CCM3 to have weak but non-negligible influence on land precipitation.

  9. "American" Abjection: "Chicanos," Gangs, and Mexican/Migrant Transnationality in Chicago

    ERIC Educational Resources Information Center

    De Genova, Nicholas

    2008-01-01

    Crime and street violence often evoke racialized discourses about urban space. In this ethnographic research in Chicago, however, the disdain that many Mexican migrants articulated about street gangs principally concerned issues "internal" to the Mexican/Chicano community, notably a profound ambivalence about U.S.-born Mexicans and a…

  10. [Dichotic perception of Mandarin third tone by Mexican Chinese learners].

    PubMed

    Wang, Hongbin

    2014-05-01

    To investigate the relationship between the advantage ear (cerebral hemisphere) of Spanish-speaking Mexican learners and the third Chinese tone. Third tone Chinese vowel syllables were used as experimental materials with dichotic listening technology to test the Spanish-speaking Mexican Chinese learners (20-32 years old) who studied Chinese about 20 h. In terms of error rates to identify the third Chinese tone, the Spanish-speaking Mexican Chinese learners's reaction to the third tone suggested that their left ears were the advantageous ear (the right cerebral hemisphere) (Z=-2.091, P=0.036). The verbal information of tones influenced the perception of Mexican Chinese learners' mandarin tones. In the process of learning mandarin tones, Mexican Chinese learners gradually formed the category of tones.

  11. Mexicans of Detroit. Peopling of Michigan Series.

    ERIC Educational Resources Information Center

    Baba, Marietta Lynn; Abonyi, Malvina Hauk

    Tracing the background and history of Mexican Americans in Detroit, Michigan, the booklet briefly reviews the early stages of Meso-American history, the Spaniards' arrival in Mexico, colonial Mexico, Mexico's revolt for independence, and the internal turmoil in Mexico which continued until early in 1861. The accomplishments of such Mexicans as…

  12. Climate change, allergy and asthma, and the role of tropical forests.

    PubMed

    D'Amato, Gennaro; Vitale, Carolina; Rosario, Nelson; Neto, Herberto Josè Chong; Chong-Silva, Deborah Carla; Mendonça, Francisco; Perini, Josè; Landgraf, Loraine; Solé, Dirceu; Sánchez-Borges, Mario; Ansotegui, Ignacio; D'Amato, Maria

    2017-01-01

    Tropical forests cover less than 10 per cent of all land area (1.8 × 107 km 2 ) and over half of the tropical-forest area (1.1 × 107 Km 2 ) is represented by humid tropical forests (also called tropical rainforests). The Amazon basin contains the largest rainforest on Earth, almost 5.8 million km 2 , and occupies about 40% of South America; more than 60% of the basin is located in Brazil and the rest in Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname and Venezuela. Over the past decade the positive role of tropical rainforests in capturing large amounts of atmospheric carbon dioxide (CO 2 ) has been demonstrated. In response to the increase in atmospheric CO 2 concentration, tropical forests act as a global carbon sink. Accumulation of carbon in the tropical terrestrial biosphere strongly contributes to slowing the rate of increase of CO 2 into the atmosphere, thus resulting in the reduction of greenhouse gas effect. Tropical rainforests have been estimated to account for 32-36% of terrestrial Net Primary Productivity (NPP) that is the difference between total forest photosynthesis and plant respiration. Tropical rainforests have been acting as a strong carbon sink in this way for decades. However, over the past years, increased concentrations of greenhouse gases, and especially CO 2 , in the atmosphere have significantly affected the net carbon balance of tropical rainforests, and have warmed the planet substantially driving climate changes through more severe and prolonged heat waves, variability in temperature, increased air pollution, forest fires, droughts, and floods. The role of tropical forests in mitigating climate change is therefore critical. Over the past 30 years almost 600,000 km 2 have been deforested in Brazil alone due to the rapid development of Amazonia, this is the reason why currently the region is one of the 'hotspots' of global environmental change on the planet. Deforestation represents the second largest

  13. FRNA Bacteriophages as Viral Indicators of Faecal Contamination in Mexican Tropical Aquatic Systems.

    PubMed

    Arredondo-Hernandez, Luis Jose Rene; Diaz-Avalos, Carlos; Lopez-Vidal, Yolanda; Castillo-Rojas, Gonzalo; Mazari-Hiriart, Marisa

    2017-01-01

    A particular challenge to water safety in populous intertropical regions is the lack of reliable faecal indicators to detect microbiological contamination of water, while the numerical relationships of specific viral indicators remain largely unexplored. The aim of this study was to investigate the numerical relationships of FRNA-bacteriophage genotypes, adenovirus 41, and human adenoviruses (HADV) in Mexican surface water systems to assess sewage contamination. We studied the presence of HADV, HADV41 and FRNA bacteriophage genotypes in water samples and quantified by qPCR and RT-qPCR. Virus and water quality indicator variances, as analyzed by principal component analysis and partial least squared regression, followed along the major percentiles of water faecal enterococci. FRNA bacteriophages adequately deciphered viral and point source water contamination. The strongest correlation for HADV was with FRNA bacteriophage type II, in water samples higher than the 50th percentiles of faecal enterococci, thus indicating urban pollution. FRNA bacteriophage genotypes I and III virus indicator performances were assisted by their associations with electrical conductivity and faecal enterococci. In combination, our methods are useful for inferring water quality degradation caused by sewage contamination. The methods used have potential for determining source contamination in water and, specifically, the presence of enteric viruses where clean and contaminated water have mixed.

  14. FRNA Bacteriophages as Viral Indicators of Faecal Contamination in Mexican Tropical Aquatic Systems

    PubMed Central

    Diaz-Avalos, Carlos; Lopez-Vidal, Yolanda; Castillo-Rojas, Gonzalo; Mazari-Hiriart, Marisa

    2017-01-01

    A particular challenge to water safety in populous intertropical regions is the lack of reliable faecal indicators to detect microbiological contamination of water, while the numerical relationships of specific viral indicators remain largely unexplored. The aim of this study was to investigate the numerical relationships of FRNA-bacteriophage genotypes, adenovirus 41, and human adenoviruses (HADV) in Mexican surface water systems to assess sewage contamination. We studied the presence of HADV, HADV41 and FRNA bacteriophage genotypes in water samples and quantified by qPCR and RT-qPCR. Virus and water quality indicator variances, as analyzed by principal component analysis and partial least squared regression, followed along the major percentiles of water faecal enterococci. FRNA bacteriophages adequately deciphered viral and point source water contamination. The strongest correlation for HADV was with FRNA bacteriophage type II, in water samples higher than the 50th percentiles of faecal enterococci, thus indicating urban pollution. FRNA bacteriophage genotypes I and III virus indicator performances were assisted by their associations with electrical conductivity and faecal enterococci. In combination, our methods are useful for inferring water quality degradation caused by sewage contamination. The methods used have potential for determining source contamination in water and, specifically, the presence of enteric viruses where clean and contaminated water have mixed. PMID:28114378

  15. Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM-Tropics A

    NASA Astrophysics Data System (ADS)

    Olson, Jennifer R.; Baum, Bryan A.; Cahoon, Donald R.; Crawford, James H.

    1999-03-01

    Advanced very high resolution radiometer 1.1 km resolution satellite radiance data were used to locate active fires throughout much of the tropical region during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics (PEM-Tropics A) aircraft campaign, held in September and October 1996. The spatial and temporal distributions of the fires in Australia, southern Africa, and South America are presented here. The number of fires over northern Australia, central Africa, and South America appeared to decrease toward the end of the mission period. Fire over eastern Australia was widespread, and temporal patterns showed a somewhat consistent amount of burning with periodic episodes of enhanced fire counts observed. At least one episode of enhanced fire counts corresponded to the passage of a frontal system which brought conditions conducive to fire to the region, with strong westerlies originating over the hot, dry interior continent. Regions that were affected by lower than normal rainfall during the previous wet season (e.g., northern Australia and southwestern Africa) showed relatively few fires during this period. This is consistent with a drought-induced decrease in vegetation and therefore a decreased availability of fuel for burning. Alternatively, a heavier than normal previous wet season along the southeastern coast of South Africa may have contributed to high fuel loading and an associated relatively heavy amount of burning compared to data from previous years.

  16. Interannual Variations in Tropical Upper-Tropospheric Humidity: Understanding Tropical Convective and Dynamical Processes

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Fitzjarrald, Dan E.; Miller, Timothy L.

    2005-01-01

    Uncertainty remains as to what extent variability in mid to upper tropospheric moisture, especially over the tropics, behaves as constant relative humidity during interannual climate variations associated with ENSO. Systematic variations in HIRS 6.7 micron and MLS 205 GHz suggest that dry subtropical regions evolving during warm SST events depress relative humidity, but the interpretation of these events is still uncertain. Additional specific concerns have to do with regional signatures of convective processes: How does the origin of dry air in the eastern subtropical N. Pacific differ in ENSO warm versus cold years? The dynamics of Rossby wave forcing by convective heating, subtropical jet stream dynamics, and dynamics driven subsidence all come into play here. How variations in precipitating ice hydrometeors from tropical anvils relate to variations in UTH is also a subject of debate? Do variations in precipitating ice, cloud cover and water vapor behavior show any support for the Iris-hypothesis mechanism? Here we examine historical records of SSM/T-2 data to gain a better physical understanding of the effects of deep convective moisture sources and dynamically-induced vertical circulations on UTH. These high frequency microwave measurements (183.3 GHz) take advantage of far less sensitivity to cloud hydrometeors than the 6.7 micron data to yield a record of upper tropospheric relative humidity. Furthermore, signatures of precipitating ice from these channels facilitate comparisons to TRMM hydrometeors detected by radar. In analyzing these observations, we isolate water vapor and temperature change components that affect brightness temperatures and the inferred relative humidity. Trajectory modeling is also used to understand interannual humidity anomalies in terms of outflow fbm convective regions and history of diabatically-driven sinking which modifies relative humidity.

  17. Contrasting hydraulic strategies in two tropical lianas and their host trees

    Treesearch

    Daniel M. Johnson; Jean-Christophe Domec; David R. Woodruff; Katherine A. McCulloh; Frederick C. Meinzer

    2013-01-01

    Tropical Iiana abundance has been increasing over the past 40 yr, which has been associated with reduced rainfall. The proposed mechanism allowing lianas to thrive in dry conditions is deeper root systems than co-occurring trees, although we know very little about the fundamental hydraulic physiology of lianas. To test the hypothesis that two abundant Iiana species...

  18. New records of sabellids and serpulids (Polychaeta: Sabellidae, Serpulidae) from the Tropical Eastern Pacific.

    PubMed

    Bastida-Zavala, J Rolando; Buelna, Alondra Sofía Rodríguez; DE León-González, Jesús Angel; Camacho-Cruz, Karla Andrea; Carmona, Isabel

    2016-11-07

    Sabellids and serpulids are two well represented families in the polychaete fauna of the Tropical Eastern Pacific, with 31 and 34 species respectively; however, most records come from the Gulf of California or the western coast of Baja California Peninsula. Only a few records are from localities in the large expanse of the central and southern Mexican Pacific. Thus, sabellids and serpulids were collected from several shallow water habitats along the coast of Mexican Pacific, such as coastal lagoons, coral reefs, rocky shores and from man-made structures as marinas, piers and ships of several harbors; additionally, specimens from national collections were revised. More than 8,400 specimens of sabellids and serpulids from the states of Baja California, Baja California Sur, Sonora, Sinaloa, Michoacán, Guerrero, Oaxaca and Chiapas, and some specimens from Panamá and Perú were examined. In the present work we record new localities of four sabellids and 24 serpulids. One sabellid, Branchiomma bairdi, is an exotic/invasive species in Oaxaca, Sinaloa and Baja California Sur, while four species of serpulids are exotic and/or cryptogenic species: Ficopomatus uschakovi, Hydroides dirampha, H. elegans and H. sanctaecrucis. Additionally, the geographical range has been extended for five species: the sabellids Pseudobranchiomma punctata from Oahu, Hawaii to La Paz Bay, and Parasabella pallida from California to Puerto Escondido, Baja California Sur; and for three serpulids, Hydroides inermis from the Galápagos Islands to Agua Blanca, Oaxaca, H. gairacensis from Panamá to Puerto Ángel, Oaxaca, and H. panamensis from Panamá to Huatulco, Oaxaca and Faro de Bucerías, Michoacán. Hydroides cf. amri, previously recorded as H. brachyacantha from Oahu, Hawaii, is more similar to H. amri from Australia. The number of sabellids recorded for the Tropical Eastern Pacific increased to 33, the serpulid species to 35.

  19. Diabetes is more lethal in Mexicans and Mexican Americans compared to non-Hispanic Whites

    PubMed Central

    Hunt, Kelly J; Gonzalez, Maria Elena; Lopez, Ruy; Haffner, Steve M; Stern, Michael P; Gonzalez-Villalpando, Clicerio

    2012-01-01

    Purpose To examine the mortality risk associated with diabetes in the Mexico City Diabetes Study (MCDS) and the San Antonio Heart Study (SAHS). Methods Prospective cohorts conducted 1990-2007 in MCDS and 1979-2000 in SAHS. Mortality risk was examined using Cox proportional hazard models in 1,402 non-Hispanic whites (NHW), 1,907 U.S.-born Mexican Americans (MA), 444 Mexican-born MA, 2,281 Mexico City residents (MCR) between the ages of 35 and 64. Results Age- and sex-adjusted mortality HRs comparing U.S.-born MA, Mexican-born MA and MCR to NHW were 1.09 (95% CI: 0.86, 1.37), 1.23 (95% CI: 0.86, 1.76) and 0.97 (95% CI: 0.77, 1.23), respectively, in non-diabetic individuals; in contrast, mortality risk varied in diabetic individuals with respective HRs of 1.77 (95% CI: 1.20, 2.61), 1.08 (95% CI: 0.59, 1.97) and 2.27 (95% CI: 1.53, 3.35) (interaction p-value=0.0003). Excluding Mexican-born MA and non-diabetic individuals, controlling for medication use, insulin use, fasting glucose levels and duration of diabetes explained a significant proportion of the mortality differential (HRs relative to NHW were 1.31 (95% CI: 0.87, 1.98) in U.S.-born MA and 1.38 (95% CI: 0.89, 2.12) in MCR). Conclusions This study provides evidence that diabetes is more lethal in U.S.-born MA and MCR than in NHW. PMID:21840730

  20. Sexual development of dairy bulls in the Mexican tropics.

    PubMed

    Jiménez-Severiano, Hector

    2002-09-01

    Sexual development and pubertal traits were studied in Holstein Frisian (Ho) and Brown Swiss (BS) bulls born and maintained under tropical conditions. Characteristics evaluated every 2 weeks, from 27 to 63 weeks of age, included live weight, scrotal circumference, testicular diameter, semen quality and sexual behavior. Puberty was defined as the age at which a bull first produced an ejaculate containing at least 50 x 106 spermatozoa, with a minimum of 10% progressive motility. Testicular growth was linear in Ho bulls and quadratic in BS bulls. There was no breed difference in age at puberty (Ho, 333 +/- 15.8 days; BS, 311 +/- 10.5 days). However, at puberty, live weight and scrotal circumference tended to be greater in Ho (276 +/- 16.9 kg and 28.4 +/- 1 cm, respectively) than in BS bulls (233 +/- 11.3 kg and 25.9 +/- 0.7 cm, respectively), and testicular diameter was larger for Ho (5.5 +/- 0.24 cm) than for BS bulls (4.8 +/- 0.16 cm). Pooled data for all bulls for semen characteristics at puberty were: volume, 6.3 +/- 0.6 ml; progressive motility, 26.8 +/- 4.4%; sperm concentration, 58.5 +/- 13.9 x 10(6) spermatozoa/ml, and 351.5 +/- 91.2 x 10(6) spermatozoa/ejaculate. These values improved until at least 18 weeks after puberty. Eighty-five percent of bulls mounted heifers by 206 days of age, but only a few bulls had mounts with ejaculation during the study. It was concluded that reproductive development was similar between Ho and BS bulls, but slower than that reported for dairy bulls in temperate areas. Variation in some characteristics, such as scrotal circumference, was observed among bulls within each breed group, which might be of benefit for genetic selection.

  1. Strong Selection at MHC in Mexicans since Admixture

    PubMed Central

    Zhou, Quan; Zhao, Liang; Guan, Yongtao

    2016-01-01

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive African ancestral alleles compared to the rest of the genome, which is the hallmark of recent selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for two datasets, which put our finding among the strongest known selections observed in humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans. Using inaccurate Amerindian training samples was a major concern for the credibility of previously reported selection signals in Latinos. Taking advantage of the flexibility of our statistical model, we devised a model fitting technique that can learn Amerindian ancestral haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans using only European and African training samples. The strong selection signal at the MHC remains without Amerindian training samples. Finally, we note that medical history studies suggest such a strong selection at MHC is plausible in Mexicans. PMID:26863142

  2. Subtropical dry forest regeneration in grass-invaded areas of Puerto Rico: understanding why Leucaena leucocephala dominates and native species fail

    Treesearch

    Brett T. Wolfe; S.J. Van Bloem

    2012-01-01

    Throughout the tropics, non-native grasses invade, dominate, and persist in areas where subtropical and tropical dry forests have been highly degraded. In Central America and the Caribbean Islands, forests that regenerate in grass-invaded areas are generally composed of one to a few tree species, usually of the Fabaceae family and often non-native. We investigated the...

  3. Development and Use of a Traditional Mexican Diet Score in Relation to Systemic Inflammation and Insulin Resistance among Women of Mexican Descent.

    PubMed

    Santiago-Torres, Margarita; Tinker, Lesley F; Allison, Matthew A; Breymeyer, Kara L; Garcia, Lorena; Kroenke, Candyce H; Lampe, Johanna W; Shikany, James M; Van Horn, Linda; Neuhouser, Marian L

    2015-12-01

    Women of Mexican descent are disproportionally affected by obesity, systemic inflammation, and insulin resistance (IR). Available approaches used to give scores to dietary patterns relative to dietary guidelines may not effectively capture traditional diets of Mexicans, who comprise the largest immigrant group in the United States. We characterized an a priori traditional Mexican diet (MexD) score high in corn tortillas, beans, soups, Mexican mixed dishes (e.g., tamales), fruits, vegetables, full-fat milk, and Mexican cheeses and low in refined grains and added sugars and evaluated the association of the MexD score with systemic inflammation and IR in 493 postmenopausal participants in the Women's Health Initiative (WHI) who are of Mexican ethnic descent. The MexD score was developed from the baseline (1993-1998) WHI food frequency questionnaire, which included Hispanic foods and was available in Spanish. Body mass index (BMI) was computed from baseline measured weight and height, and ethnicity was self-reported. Outcome variables were high sensitivity C-reactive protein (hsCRP), glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and triglyceride concentrations measured at follow-up (2012-2013). Multivariable linear and logistic regression models were used to test the associations of the MexD score with systemic inflammation and IR. The mean ± SD MexD score was 5.8 ± 2.1 (12 maximum points) and was positively associated with intakes of carbohydrates, vegetable protein, and dietary fiber and inversely associated with intakes of added sugars and total fat (P < 0.01). Women with high compared with low MexD scores, consistent with a more-traditional Mexican diet, had 23% and 15% lower serum hsCRP (P < 0.05) and insulin concentrations, respectively (P < 0.05). Baseline BMI modified these associations such that lower MexD scores were associated with higher insulin and HOMA-IR in overweight/obese women (P-interaction <0.05). These findings

  4. Environmental constraints on the compositional and phylogenetic beta-diversity of tropical forest snake assemblages.

    PubMed

    Moura, Mario R; Costa, Henrique C; Argôlo, Antônio J S; Jetz, Walter

    2017-09-01

    The ongoing biodiversity crisis increases the importance and urgency of studies addressing the role of environmental variation on the composition and evolutionary history of species assemblages, but especially the tropics and ectotherms remain understudied. In regions with rainy summers, coexistence of tropical ectothermic species may be determined by the partitioning of the climatic niche, as ectotherms can rely on water availability and thermoregulatory behaviour to buffer constraints along their climatic niche. Conversely, tropical ectotherms facing dry summers would have fewer opportunities to climatic niche partitioning and other processes rather than environmental filtering would mediate species coexistence. We used 218 snake assemblages to quantify the compositional (CBD) and phylogenetic (PBD) beta-diversity of snakes in the Atlantic Forest (AF) hotspot, South America. We identify two AF regions with distinct climatological regimes: dry summers in the northern-AF and rainy summers in the southern-AF. While accounting for the influence of multiscale spatial processes, we disentangle the relative contribution of thermal, water-related and topographic conditions in structuring the CBD and PBD of snake assemblages, and determine the extent in which snake assemblages under distinct climatological regimes are affected by environmental filtering. Thermal conditions best explain CBD and PBD of snakes for the whole AF, whereas water-related factors best explain the structure of snake assemblages within a same climatological regime. CBD and PBD patterns are similarly explained by spatial factors but snake assemblages facing dry summers are more affected by spatial processes operating at fine to intermediate spatial scale, whereas those assemblages in regions with rainy summers have a stronger signature of coarse-scale processes. As expected, environmental filtering plays a stronger role in southern-AF than northern-AF, and the synergism between thermal and water

  5. Church-Based Social Relationships, Belonging, and Health Among Older Mexican Americans

    PubMed Central

    Krause, Neal; Bastida, Elena

    2011-01-01

    The purpose of this study is to explain how church-based emotional support influences the health of older Mexican Americans. This issue is evaluated with a theoretical model that contains the following core linkages: (1) older Mexican Americans who go to church more often will be more likely to receive emotional support from fellow church members; (2) older Mexican Americans who receive more support from their fellow church members will be more likely to feel they belong in their congregation; (3) older Mexican Americans who feel they belong in their congregation are likely to have a stronger sense of personal control; and (4) older Mexican Americans who have a stronger sense of personal control are likely to enjoy better health. Data from a recent nationwide survey of older Mexican Americans provide support for each of these relationships. PMID:21687808

  6. The Technology of Instruction in Mexican Universities.

    ERIC Educational Resources Information Center

    McGinn, Noel F.; And Others

    The purposes of this study were to assess the presence and use of instructional aids and teaching arrangements in Mexican universities; to explain the existence and use of such aids; and to suggest policies and procedures intended to improve instruction in Mexican universities. Interviews were conducted with the directors of and a sample of…

  7. Environmental monitoring using acetylcholinesterase inhibition in vitro. A case study in two Mexican lagoons.

    PubMed

    Rodríguez-Fuentes, G; Gold-Bouchot, G

    2000-01-01

    Cholinesterase inhibition is considered a specific biomarker of exposure and effect for organophosphorous pesticides. Its use for monitoring has been hindered, particularly in tropical countries where organophosphates are widely used for malaria and dengue control, because of the frequent lack of suitable controls. An in vitro technique is proposed as a biochemical method for monitoring pollutant mixtures in sediment toxicity tests. Brain homogenate from the fish Oreochromis niloticus is used as the enzyme source. Optimum incubation time, extraction solvent and effect of crude oil on acetylcholinesterase (AChE) are reported. The method described was used in sediments from two Mexican lagoons, located in an oil extraction area where pesticides are used in agriculture and vector control campaigns. AChE inhibitions from 3 to 21% were found in these lagoons, even in the presence of high concentrations of petroleum.

  8. The Mexican American Extended Family as an Emotional Support System.

    ERIC Educational Resources Information Center

    Keefe, Susan E.; And Others

    Using data gathered over a three-year period in three Southern California towns, the family structure and the reliance on kin for emotional support of Anglo Americans and Mexican Americans were compared. The first year 666 Mexican Americans and 340 Anglos were interviewed. In the second year, 372 Mexican Americans and 163 Anglos were…

  9. Desorption isotherms of heavy (AZOBE, EBONY) and light heavyweight tropical woods (IROKO, SAPELLI) of Cameroon

    NASA Astrophysics Data System (ADS)

    Nsouandélé, J. L.; Tamba, J. G.; Bonoma, B.

    2018-04-01

    This work is centered on the study of the desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods, which contribute in the determination of drying and storage of tropical plank woods. Desorption isotherms of tropical woods were experimentally determined under different temperatures in this study using the gravimetric method. The determination of Henderson's model isotherms parameters of desorption were obtained for temperatures of 20 °C, 30 °C, 40 °C, and 50 °C. The mean relative deviation between theoretical and experimental moisture contents was calculated and fitted well with the desorption models of tropical woods. We noticed that Henderson models fitted much better with experimental ones for 95% of relative humidity. The sigmoid shapes of results are satisfactory. Hysteresis phenomenon was observed for desorption isotherms of heavy (Azobe, Ebony) and heavyweight (Iroko, Sapelli) tropical woods. Results showed the difference between the stability and use of heavy and heavyweight tropical wood. These results help in the estimation of water content at equilibrium of tropical woods in relative humidity from experimented ones. Hygroscopic equilibrium humidity of heavy tropical woods varied between 0% and 50% while those of heavyweight varied between 0% and 25%. Therefore, these woods can be used in an opened environment; woodwork and decoration.

  10. Liana infestation impacts tree growth in a lowland tropical moist forest

    NASA Astrophysics Data System (ADS)

    van der Heijden, G. M. F.; Phillips, O. L.

    2009-03-01

    Stand-level estimates of the effect of lianas on tree growth in mature tropical forests are needed to evaluate the functional impact of lianas and their potential to affect the ability of tropical forests to sequester carbon, but these are currently lacking. Using data collected on tree growth rates, local growing conditions and liana competition in five permanent sampling plots in Amazonian Peru, we present the first such estimates of the effect of lianas on above-ground productivity of trees. By constructing a multi-level linear mixed effect model to predict individual tree diameter growth model using individual tree growth conditions, we were able to estimate stand-level above-ground biomass (AGB) increment in the absence of lianas. We show that lianas, mainly by competing above-ground with trees, reduce tree annual above-ground stand-level biomass by ~10%, equivalent to 0.51 Mg dry weight ha-1 yr-1 or 0.25 Mg C ha-1 yr-1. AGB increment of lianas themselves was estimated to be 0.15 Mg dry weight ha-1 yr-1 or 0.07 Mg C ha-1 yr-1, thus only compensating ~29% of the liana-induced reduction in stand-level AGB increment. Increasing liana pressure on tropical forests may therefore not only reduce their carbon storage capacity, by indirectly promoting tree species with low-density wood, but also their rate of carbon uptake, with potential consequences for the rate of increase in atmospheric carbon dioxide.

  11. Scavenger removal: Bird and bat carcass persistence in a tropical wind farm

    NASA Astrophysics Data System (ADS)

    Villegas-Patraca, Rafael; Macías-Sánchez, Samuel; MacGregor-Fors, Ian; Muñoz-Robles, Carlos

    2012-08-01

    Energy produced by wind farms has diverse positive environmental effects, but can also be related to negative impacts, including wildlife mortality through collisions with wind turbines. Bird and bat mortality caused by collisions with wind turbines can be estimated indirectly by counting carcasses within wind farms. However, carcass removal by scavengers often biases such measurements. In this study, we identified the main scavengers removing bird and bat carcasses in a tropical wind farm. A known fate analysis was done to assess the effect of carcass type (i.e., small bird, large bird, bat), vegetation type (i.e., secondary vegetation, croplands) and season (dry and rainy seasons of 2009) on carcass persistence rates. We identified three main scavenger groups, with mammals being the most abundant group. Our results show high rates of carcass removal relative to previous studies, especially for bats; there were fewer remaining carcasses after 20 days in our tropical site than in non-tropical environments reported elsewhere. We found a higher carcass persistence rate during the rainy season than in the dry season, possibly due to a greater abundance of food resources for scavenger organisms in the rainy season. Although we found some evidence for higher persistence rates for large bird carcasses than for small bird and bat carcasses during the rainy season, overall carcass type was not a strong predictor of persistence rates. Similarly, we did not find a strong effect of vegetation type on carcass persistence rates. Results suggest that in order to estimate accurate bird and bat mortality in tropical wind farm areas, seasonality should be incorporated to correction factors of carcass removal rates.

  12. Stress Resilience among Border Mexican American Women

    ERIC Educational Resources Information Center

    Guinn, Bobby; Vincent, Vern; Dugas, Donna

    2009-01-01

    The purpose of this study was to identify factors distinguishing Mexican American women living near the U.S.-Mexican border who are resilient to the experience of stress from those who are not. The study sample consisted of 418 participants ranging in age from 20 to 61 years. Data were gathered through a self-report survey instrument composed of…

  13. Education Futurism and the Mexican-American Student.

    ERIC Educational Resources Information Center

    Bane, Mary E.

    Since today's education is strictly white middle class with little diversion to other ethnic cultures, the Mexican American student finds that it is not relevant to his being or his present day situation. Compounding the problem is that the Mexican American has to deal with the existence of two cultures--one of his parents which he maintains at…

  14. Predictors of weight loss in Mexican American adolescents

    USDA-ARS?s Scientific Manuscript database

    This study examined predictors of weight change in Mexican American adolescents. Eighty overweight Mexican American children were randomized to receive either the intensive intervention or self help program. Physiological (e.g. standardized BMI (zBMI), percent body fat, and tanner stage), psychologi...

  15. Tropical convection regimes in climate models: evaluation with satellite observations

    NASA Astrophysics Data System (ADS)

    Steiner, Andrea K.; Lackner, Bettina C.; Ringer, Mark A.

    2018-04-01

    High-quality observations are powerful tools for the evaluation of climate models towards improvement and reduction of uncertainty. Particularly at low latitudes, the most uncertain aspect lies in the representation of moist convection and interaction with dynamics, where rising motion is tied to deep convection and sinking motion to dry regimes. Since humidity is closely coupled with temperature feedbacks in the tropical troposphere, a proper representation of this region is essential. Here we demonstrate the evaluation of atmospheric climate models with satellite-based observations from Global Positioning System (GPS) radio occultation (RO), which feature high vertical resolution and accuracy in the troposphere to lower stratosphere. We focus on the representation of the vertical atmospheric structure in tropical convection regimes, defined by high updraft velocity over warm surfaces, and investigate atmospheric temperature and humidity profiles. Results reveal that some models do not fully capture convection regions, particularly over land, and only partly represent strong vertical wind classes. Models show large biases in tropical mean temperature of more than 4 K in the tropopause region and the lower stratosphere. Reasonable agreement with observations is given in mean specific humidity in the lower to mid-troposphere. In moist convection regions, models tend to underestimate moisture by 10 to 40 % over oceans, whereas in dry downdraft regions they overestimate moisture by 100 %. Our findings provide evidence that RO observations are a unique source of information, with a range of further atmospheric variables to be exploited, for the evaluation and advancement of next-generation climate models.

  16. The Geological Trace Of The 1932 Tsunamis In The Tropical Jalisco-Colima Coast, Mexico

    NASA Astrophysics Data System (ADS)

    Ramirez-Herrera, M.; Blecher, L.; Goff, J. R.; Corona, N.; Chague-Goff, C.; Lagos, M.; Hutchinson, I.; Aguilar, B.; Goguitchaichrili, A.; Machain-Castillo, M. L.; Rangel, V.; Zawadzki, A.; Jacobsen, G.

    2013-05-01

    The study and preservation of tsunami deposits have being challenging in humid tropical environments. While tsunami deposits have been widely studied at temperate latitudes, few studies assess this problem in tropical environments due to the difficulties intrinsic to these places (e.g. tsunami deposit preservation, post-burial changes in a tropical environment, mangrove vegetation, difficult access, wildlife, among others). Here we assess the problem of tsunami-deposits preservation on the Jalisco-Colima tropical coast of Mexico, which parallels the more than 1000-km long Mexican subduction, where historical accounts indicate the occurrence of two significant tsunamis on June 3 and 22, 1932 (Corona and Ramírez-Herrera, 2012a, Valdivia et al., 2012). However, up to date, no geological evidence of these events has been reported. We present geological evidence of two large tsunamis related to the June 3, M 8.2 earthquake, and the June 22, Ms 6.9 landslide-triggering event of 1932 (Corona and Ramírez-Herrera, 2012a, b). A multiproxy approach was applied to unravel the nature of anomalous sand units and sharp basal contacts in the stratigraphy of a number of sites at Palo Verde estuary, El Tecuán swales and marsh, and La Manzanilla swales, on the Jalisco-Colima coast. Lines of evidence including historical, geomorphological, stratigraphic, grain size, organic matter content, microfossils (diatoms and foraminifera), geochemical content, magnetic susceptibility and AMS analyses, together with dating (210Pb and 14C), and modeling, corroborate the presence of tsunami deposits of both the 3 June 1932 tsunami at El Tecuán and La Manzanilla, and the 22 June 1932 tsunami at Palo Verde. Further evidence of earlier tsunamis, at least four events, is also evident in the stratigraphy. Work in progress should reveal the chronology of the earliest tsunamis and their origin. Corona, N., M.T. Ramirez-Herrera. (2012a) Mapping and historical reconstruction of the great Mexican 1932

  17. Withstanding a record drought: Dry season sap flow and safety margins of canopy epiphytes in three sites along an elevation gradient in a tropical montane cloud forest

    NASA Astrophysics Data System (ADS)

    Gotsch, S. G.; Darby, A.; Glunk, A.; Murray, J.; Draguljic, D.

    2016-12-01

    Tropical montane cloud forests (TMCFs) are projected to experience shifts in microclimate due to changes in precipitation patterns and cloud base heights. Understanding how the TMCF will be affected by such changes is critical since these forests harbor a great number of endemic species and the intact forest plays an important role in local and regional hydrology. The epiphyte community is one of the characteristic components of this unique ecosystem. Epiphytes contribute greatly to the biomass and diversity of the forest, and play an important role in the TMCF water cycle. The ecosystem role played by the epiphyte community may be lost if these species, which lack roots to the ground, cannot withstand projected changes in climate. We measured dry season sap flow in canopy epiphytes in three sites along an elevation gradient, in Monteverde Costa Rica during an extreme drought event. In addition, we measured predawn and midday leaf water potentials, and dry season pressure-volume curves on focal species. We found that during a month-long dry period, species in all sites reduced transpiration considerably, and for a two-week period, sap flow rates were close to zero. During this time, predawn and midday leaf water potentials remained high (> -1.0 MPa) due to the utilization of stored leaf water and strong stomatal regulation. At the end of the dry season, midday leaf water potentials were approximately 2x lower in the driest versus the wettest site (AVG: -0.94 vs. -0.47 MPa) although hydraulic safety margins were greater at the driest sites. Our results indicate that epiphyte communities vary in their water use strategies and that the epiphyte community in wetter sites is more likely to experience hydraulic failure if there are increases in the number of days without precipitation and/or increases in temperature.

  18. Forensic parameters of the X-STR Decaplex system in Mexican populations.

    PubMed

    Mariscal Ramos, C; Martínez-Cortes, G; Ramos-González, B; Rangel-Villalobos, H

    2018-03-01

    We studied the X-STR decaplex system in 529 DNA female samples of Mexican populations from five geographic regions. Allele frequencies and forensic parameters were estimated in each region and in the pooled Mexican population. Genotype distribution by locus was in agreement with Hardy-Weinberg expectations in each Mexican population sample. Similarly, linkage equilibrium was demonstrated between pair of loci. Pairwise comparisons and genetic distances between Mexican, Iberoamerican and one African populations were estimated and graphically represented. Interestingly, a non-significant interpopulation differentiation was detected (Fst = 0.0021; p = .74389), which allows using a global Mexican database for forensic interpretation of X-STR genotypes. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Robust changes in tropical rainy season length at 1.5 °C and 2 °C

    NASA Astrophysics Data System (ADS)

    Saeed, Fahad; Bethke, Ingo; Fischer, Erich; Legutke, Stephanie; Shiogama, Hideo; Stone, Dáithí A.; Schleussner, Carl-Friedrich

    2018-06-01

    Changes in the hydrological cycle are among the aspects of climate change most relevant for human systems and ecosystems. Besides trends in overall wetting or drying, changes in temporal characteristics of wetting and drying are of crucial importance in determining the climate hazard posed by such changes. This is particularly the case for tropical regions, where most precipitation occurs during the rainy season and changes in rainy season onset and length have substantial consequences. Here we present projections for changes in tropical rainy season lengths for mean temperature increase of 1.5 °C and 2 °C above pre-industrial levels. Based on multi-ensemble quasi-stationary simulations at these warming levels, our analysis indicates robust changes in rainy season characteristics in large parts of the tropics despite substantial natural variability. Specifically, we report a robust shortening of the rainy season for all of tropical Africa as well as north-east Brazil. About 27% of West Africa is projected to experience robust changes in the rainy season length with a mean shortening of about 7 days under 1.5 °C. We find that changes in the temporal characteristics are largely unrelated to changes in overall precipitation, highlighting the importance of investigating both separately.

  20. Longitudinal Lung Function Growth of Mexican Children Compared with International Studies

    PubMed Central

    Martínez-Briseño, David; Fernández-Plata, Rosario; Gochicoa-Rangel, Laura; Torre-Bouscoulet, Luis; Rojas-Martínez, Rosalba; Mendoza, Laura; García-Sancho, Cecilia; Pérez-Padilla, Rogelio

    2013-01-01

    Introduction Our aim was to compare the longitudinal lung function growth of Mexican children and adolescents with the collated spirometric reference proposed for international use and with that of Mexican-Americans from the National Health State Examination Survey III (NHANES) III study. Materials and Methods A cohort of Mexican children in third year of primary school was followed with spirometry twice a year through secondary school. Multilevel mixed-effects lineal models separated by gender were fit for the spirometric variables of 2,641 respiratory-healthy Mexican children expressed as Z-scores of tested reference equations. Impact of adjustment by sitting height on differences with Mexican-American children was observed in a subsample of 1,987 children. Results At same gender, age, and height, Mexican children had increasingly higher forced expiratory volume in 1 s (FEV1) and Forced vital capacity (FVC) than the children from the collated reference study (mean Z-score, 0.68 for FEV1 and 0.51 for FVC) and than Mexican-American children (Z-score, 0.23 for FEV1 and 0.21 for FVC) respectively. Differences with Mexican-Americans were not reduced by adjusting by sitting height. Conclusions For reasons that remain unclear, the gender-, age-, and height-adjusted lung function of children from Mexico City is higher than that reported by several international studies. PMID:24143231

  1. Uneven drying of zygotic embryos and embryonic axes of recalcitrant seeds: challenges and considerations for cryopreservation.

    PubMed

    Ballesteros, Daniel; Sershen; Varghese, Boby; Berjak, Patricia; Pammenter, Norman W

    2014-08-01

    Cryopreservation is the most promising option for the long-term germplasm conservation of recalcitrant-seeded species. However, the variable post-cryo success achieved with the excised zygotic explants traditionally used for cryopreservation has been a concern for some time. Differential drying rates amongst explants of different species, uneven drying amongst explants within a batch of seeds and uneven drying across tissues within individual embryos could be contributory factors to this variable success and these phenomena form the foci of the present study. Using zygotic explants from a range of recalcitrant-seeded species, which included sub-tropical dicotyledonous trees and sub-tropical monocotyledonous geophytes, the study showed that embryo morphology and anatomy are critical determinants of the drying characteristics of the different tissues composing the explant and hence, post-cryo survival. The results suggest that the rates of drying of explants to water contents (WCs) in the theoretically optimal range for successful cryopreservation are species-specific, and that more rapid drying rates may promote post-cryo survival. However, the large variation in WC amongst individual explants in bulk samples challenges the selection of the theoretically optimum WC for cryopreservation. As a consequence of differential drying rates across the different tissues composing explants, either lethal ice crystal damage or desiccation damage may sometimes be likely in tissues responsible for the onwards development of the embryo. Drying times for cryopreservation of such explants should, therefore, be selected on the basis of WC of segments containing root or shoot meristem, rather than embryo bulk WC. Drying intensity and duration also interact with explant morphology and embryo/axis size and anatomy to bring about - or preclude - post-cryo survival. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Chicanos: A History of Mexican Americans. American Century Series.

    ERIC Educational Resources Information Center

    Meier, Matt S.; Rivera, Feliciano

    To identify the Mexican American as a member of a unique cultural group is the purpose of this history of the Chicanos. The history of the Mexican American is divided into 5 broad time periods: the Indo-Hispanic period, during which there was a blending of the Indian and Spanish cultures; the Mexican period, a time of political activity which…

  3. Wood Decomposition of Cyrilla racemiflora (Cyrillaceae) in Puerto Rican Dry and Wet Forests: A 13-year Case Study.

    Treesearch

    Juan A. Torres; Grizelle Gonzalez

    2005-01-01

    We studied the decomposition of Cyrilla racemiflora logs over a 13-yr period in tropical dry and wet forests in Puerto Rico. The mean mass loss, ratio of soft to hard wood, nutrient concentrations, and the diversity of wood-inhabiting organisms were greater in logs decomposing in the dry forest than in the wet forest. Termites were also more abundant in the logs...

  4. Development and Use of a Traditional Mexican Diet Score in Relation to Systemic Inflammation and Insulin Resistance among Women of Mexican Descent123

    PubMed Central

    Santiago-Torres, Margarita; Tinker, Lesley F; Allison, Matthew A; Breymeyer, Kara L; Garcia, Lorena; Kroenke, Candyce H; Lampe, Johanna W; Shikany, James M; Van Horn, Linda; Neuhouser, Marian L

    2015-01-01

    Background: Women of Mexican descent are disproportionally affected by obesity, systemic inflammation, and insulin resistance (IR). Available approaches used to give scores to dietary patterns relative to dietary guidelines may not effectively capture traditional diets of Mexicans, who comprise the largest immigrant group in the United States. Objectives: We characterized an a priori traditional Mexican diet (MexD) score high in corn tortillas, beans, soups, Mexican mixed dishes (e.g., tamales), fruits, vegetables, full-fat milk, and Mexican cheeses and low in refined grains and added sugars and evaluated the association of the MexD score with systemic inflammation and IR in 493 postmenopausal participants in the Women’s Health Initiative (WHI) who are of Mexican ethnic descent. Methods: The MexD score was developed from the baseline (1993–1998) WHI food frequency questionnaire, which included Hispanic foods and was available in Spanish. Body mass index (BMI) was computed from baseline measured weight and height, and ethnicity was self-reported. Outcome variables were high sensitivity C-reactive protein (hsCRP), glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), and triglyceride concentrations measured at follow-up (2012–2013). Multivariable linear and logistic regression models were used to test the associations of the MexD score with systemic inflammation and IR. Results: The mean ± SD MexD score was 5.8 ± 2.1 (12 maximum points) and was positively associated with intakes of carbohydrates, vegetable protein, and dietary fiber and inversely associated with intakes of added sugars and total fat (P < 0.01). Women with high compared with low MexD scores, consistent with a more-traditional Mexican diet, had 23% and 15% lower serum hsCRP (P < 0.05) and insulin concentrations, respectively (P < 0.05). Baseline BMI modified these associations such that lower MexD scores were associated with higher insulin and HOMA-IR in overweight

  5. Seasonal Variation of Ozone in the Tropical Lower Stratosphere: Southern Tropics are Different from Northern Tropics

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Waugh, Darryn W.; Wang, Lei,; Oman, Luke D.; Douglass, Anne R.; Newman, Paul A.

    2014-01-01

    We examine the seasonal behavior of ozone by using measurements from various instruments including ozonesondes, Aura Microwave Limb Sounder, and Stratospheric Aerosol and Gas Experiment II. We find that the magnitude of the annual variation in ozone, as a percentage of the mean ozone, exhibits a maximum at or slightly above the tropical tropopause. The maximum is larger in the northern tropics than in the southern tropics, and the annual maximum of ozone in the southern tropics occurs 2 months later than that in the northern tropics, in contrast to usual assumption that the tropics can be treated as a horizontally homogeneous region. The seasonal cycles of ozone and other species in this part of the lower stratosphere result from a combination of the seasonal variation of the Brewer-Dobson circulation and the seasonal variation of tropical and midlatitude mixing. In the Northern Hemisphere, the impacts of upwelling and mixing between the tropics and midlatitudes on ozone are in phase and additive. In the Southern Hemisphere, they are not in phase. We apply a tropical leaky pipe model independently to each hemisphere to examine the relative roles of upwelling and mixing in the northern and southern tropical regions. Reasonable assumptions of the seasonal variation of upwelling and mixing yield a good description of the seasonal magnitude and phase in both the southern and northern tropics. The differences in the tracers and transport between the northern and southern tropical stratospheres suggest that the paradigm of well-mixed tropics needs to be revised to consider latitudinal variations within the tropics.

  6. Depression among older Mexican American caregivers.

    PubMed

    Hernandez, Ann Marie; Bigatti, Silvia M

    2010-01-01

    The authors compared depression levels between older Mexican American caregivers and noncaregivers while controlling for confounds identified but not controlled in past research. Mexican American caregivers and noncaregivers (N = 114) ages 65 and older were matched on age, gender, socioeconomic status, self-reported health, and acculturation. Caregivers reported higher scores on the Center for Epidemiologic Studies Depression scale (CES-D) and were more likely to score in the depressed range than noncaregivers. In a regression model with all participants, group classification (caregiver vs. noncaregiver) and health significantly predicted CES-D scores. A model with only caregivers that included caregiver burden, self-rated health, and gender significantly predicted CES-D scores, with only caregiver burden entering the regression equation. These results suggest that older Mexican American caregivers are more depressed than noncaregivers, as has been found in younger populations. (c) 2009 APA, all rights reserved.

  7. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  8. Tropical Convection's Roles in Tropical Tropopause Cirrus

    NASA Technical Reports Server (NTRS)

    Boehm, Matthew T.; Starr, David OC.; Verlinde, Johannes; Lee, Sukyoung

    2002-01-01

    The results presented here show that tropical convection plays a role in each of the three primary processes involved in the in situ formation of tropopause cirrus. First, tropical convection transports moisture from the surface into the upper troposphere. Second, tropical convection excites Rossby waves that transport zonal momentum toward the ITCZ, thereby generating rising motion near the equator. This rising motion helps transport moisture from where it is detrained from convection to the cold-point tropopause. Finally, tropical convection excites vertically propagating tropical waves (e.g. Kelvin waves) that provide one source of large-scale cooling near the cold-point tropopause, leading to tropopause cirrus formation.

  9. Unpacking acculturation: cultural orientations and educational attainment among Mexican-origin youth.

    PubMed

    Roche, Kathleen M; Ghazarian, Sharon R; Fernandez-Esquer, Maria Eugenia

    2012-07-01

    Given educational risks facing Mexican-origin children of immigrant parents, it is important to understand how aspects of the acculturation process influence Mexican-origin youth's educational success. Drawing from selective assimilation theory, this study examined how cultural orientations across myriad facets of acculturation were associated with the educational attainment of second-generation Mexican immigrant youth. The sample included 755 Mexican-origin youth (50% female) in the "Children of Immigrants Longitudinal Study." Results from structural equation models indicated that youth reporting greater facility in the English language and a stronger value on familism attained higher levels of education in young adulthood than did other youth. Parents' U.S. social ties and youth's value on early paid work were associated with less educational attainment. Innovative findings from this study indicate the importance of considering both Mexican and American cultural orientations across myriad facets of acculturation for understanding second-generation immigrant Mexican youth's educational attainment.

  10. Liana competition with tropical trees varies seasonally but not with tree species identity.

    PubMed

    Leonor, Alvarez-Cansino; Schnitzer, Stefan A; Reid, Joseph P; Powers, Jennifer S

    2015-01-01

    Lianas in tropical forests compete intensely with trees for above- and belowground resources and limit tree growth and regeneration. Liana competition with adult canopy trees may be particularly strong, and, if lianas compete more intensely with some tree species than others, they may influence tree species composition. We performed the first systematic, large-scale liana removal experiment to assess the competitive effects of lianas on multiple tropical tree species by measuring sap velocity and growth in a lowland tropical forest in Panama. Tree sap velocity increased 60% soon after liana removal compared to control trees, and tree diameter growth increased 25% after one year. Although tree species varied in their response to lianas, this variation was not significant, suggesting that lianas competed similarly with all tree species examined. The effect of lianas on tree sap velocity was particularly strong during the dry season, when soil moisture was low, suggesting that lianas compete intensely with trees for water. Under the predicted global change scenario of increased temperature and drought intensity, competition from lianas may become more prevalent in seasonal tropical forests, which, according to our data, should have a negative effect on most tropical tree species.

  11. Promoting Reading among Mexican American Children. ERIC Digest.

    ERIC Educational Resources Information Center

    Murray, Yvonne I.; Velazquez, Jose

    Good books can help children develop pride in their ethnic identity, knowledge about cultural history and positive role models, and improved self-esteem. However, Mexican American students often do not experience literature in this way. This digest briefly reviews Mexican American children's literature, recommends classroom strategies, provides…

  12. A palaeo-ecological assessment of the resilience of south-east Asian dry forests to monsoon extremes

    NASA Astrophysics Data System (ADS)

    Hamilton, R. J.; Penny, D.; Maxwell, A.

    2014-12-01

    Predictions that the frequency and intensity of monsoon extremes will rise in coming decades are being made with increasing confidence. There is concern that these climatic changes may drive tropical monsoon forests across critical thresholds, triggering ecological regime shifts. The global consequences of such shifts, coupled with knowledge gaps around the nature and intensity of drivers needed to instigate ecosystem reorganization, highlights the need for research that analyses the resilience of these seasonal forest to future climatic change. While work has indicated that these forests may be susceptible to reorganization to savanna under changing precipitation regimes, the interactions between climatic drivers and ecosystem response is still poorly understood, particularly in the seasonal forests outside of the neo- and afro-tropics. This study presents results on the threshold dynamics of the extensive south-east Asian seasonally dry tropical forest ecoregion (SASDTF) through analysis of plant microfossils and charcoal archived in sediment cores extracted from two tropical crater lakes in Cambodia. These data are compared with regional paleoclimatic reconstructions to gauge past forest response to monsoon extremes, and provide insight into the magnitude and duration of climatic events most likely to result in the breaching of critical thresholds. Our results suggest that, at a biome level, the SASDTF appears resilient to low-amplitude climatic variations over millennia, despite instrumental observations of strong precipitation-tree cover coupling in global dry forest resilience models.

  13. Storms in the tropics of Titan.

    PubMed

    Schaller, E L; Roe, H G; Schneider, T; Brown, M E

    2009-08-13

    Methane clouds, lakes and most fluvial features on Saturn's moon Titan have been observed in the moist high latitudes, while the tropics have been nearly devoid of convective clouds and have shown an abundance of wind-carved surface features like dunes. The presence of small-scale channels and dry riverbeds near the equator observed by the Huygens probe at latitudes thought incapable of supporting convection (and thus strong rain) has been suggested to be due to geological seepage or other mechanisms not related to precipitation. Here we report the presence of bright, transient, tropospheric clouds in tropical latitudes. We find that the initial pulse of cloud activity generated planetary waves that instigated cloud activity at other latitudes across Titan that had been cloud-free for at least several years. These observations show that convective pulses at one latitude can trigger short-term convection at other latitudes, even those not generally considered capable of supporting convection, and may also explain the presence of methane-carved rivers and channels near the Huygens landing site.

  14. A coarsening model for self-organization of tropical convection

    NASA Astrophysics Data System (ADS)

    Craig, G. C.; Mack, J. M.

    2013-08-01

    If the influence of humidity on cumulus convection causes moist regions of the tropical troposphere to become moister and dry regions to become drier, and if horizontal mixing of moisture is not rapid enough to overcome this tendency, then the atmosphere will tend to separate into increasingly large moist and dry regions through a process of coarsening. We present a simple model for the moisture budget of the free troposphere, including subsidence drying, convective moistening, and horizontal mixing, and a constraint on total precipitation representing radiative-convective equilibrium. When initialized with a spatially uncorrelated moisture distribution, the model shows self-organization of precipitation with two main stages: A coarsening stage where the correlation length grows proportional to time to the power 1/2 and a droplet stage where precipitation is confined to a decreasing number of circular moist regions. A potential function is introduced to characterize the tendency for self-organization, which could be a useful diagnostic for analyzing cloud-resolving model simulations.

  15. Forgotten History: Mexican American School Segregation in Arizona from 1900-1951

    ERIC Educational Resources Information Center

    Powers, Jeanne M.

    2008-01-01

    This article documents the efforts by Mexican Americans to challenge school segregation in Arizona in the first half of the twentieth century. As in Texas and California, although state law never formally mandated the segregation of Mexican American students, school districts in Arizona often established separate "Mexican Schools" for…

  16. Health Status and Behavioral Risk Factors in Older Adult Mexicans and Mexican Immigrants to the U.S

    PubMed Central

    Aguila, Emma; Escarce, Jose; Leng, Mei; Morales, Leo

    2013-01-01

    Objectives Investigate the “salmon-bias” hypothesis, which posits that Mexicans in the U.S. return to Mexico due to poor health, as an explanation for the Hispanic health paradox in which Hispanics in the United States are healthier than might be expected from their socioeconomic status. Method Sample includes Mexicans age 50 or above living in the U.S. and Mexico from the 2003 Mexican Health and Aging Study and the 2004 Health and Retirement Study. Logistic regressions examine whether non-migrants or return migrants have different odds than immigrants of reporting a health outcome. Results The “salmon-bias” hypothesis holds for select health outcomes. However, non-migrants and return migrants have better health outcomes than immigrants on a variety of indicators. Discussion Overall, the results of this study do not support the salmon bias hypothesis; other explanations for the paradox could be explored. PMID:23264441

  17. Tropical forest cover change in the 1990s and options for future monitoring.

    PubMed

    Mayaux, Philippe; Holmgren, Peter; Achard, Frédéric; Eva, Hugh; Stibig, Hans-Jürgen; Branthomme, Anne

    2005-02-28

    Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a high degree of conformity and provide a good understanding of trends at the pan-tropical level. In 1990 there were some 1150 million ha of tropical rain forest with the area of the humid tropics deforested annually estimated at 5.8 million ha (approximately twice the size of Belgium). A further 2.3 million ha of humid forest is apparently degraded annually through fragmentation, logging and/or fires. In the sub-humid and dry tropics, annual deforestation of tropical moist deciduous and tropical dry forests comes to 2.2 and 0.7 million ha, respectively. Southeast Asia is the region where forests are under the highest pressure with an annual change rate of -0.8 to -0.9%. The annual area deforested in Latin America is large, but the relative rate (-0.4 to -0.5%) is lower, owing to the vast area covered by the remaining Amazonian forests. The humid forests of Africa are being converted at a similar rate to those of Latin America (-0.4 to -0.5% per year). During this period, secondary forests have also been established, through re-growth on abandoned land and forest plantations, but with different ecological, biophysical and economic characteristics compared with primary forests. These trends are significant in all regions, but the extent of new forest cover has proven difficult to establish. These results, as well as the lack of more detailed knowledge, clearly demonstrate the need to improve sound scientific evidence to support policy. The two projects provide useful guidance for future monitoring efforts in the context of multilateral environmental

  18. Influenza seasonality goes south in the Yucatan Peninsula: The case for a different influenza vaccine calendar in this Mexican region.

    PubMed

    Ayora-Talavera, Guadalupe; Flores, Gerardo Montalvo-Zurbia; Gómez-Carballo, Jesus; González-Losa, Refugio; Conde-Ferraez, Laura; Puerto-Solís, Marylin; López-Martínez, Irma; Díaz-Quiñonez, Alberto; Barrera-Badillo, Gisela; Acuna-Soto, Rodolfo; Livinski, Alicia A; Alonso, Wladimir J

    2017-08-24

    While vaccination may be relatively straightforward for regions with a well-defined winter season, the situation is quite different for tropical regions. Influenza activity in tropical regions might be out of phase with the dynamics predicted for their hemispheric group thereby impacting the effectiveness of the immunization campaign. To investigate how the climatic diversity of Mexico hinders its existing influenza immunization strategy and to suggest that the hemispheric vaccine recommendations be tailored to the regional level in order to optimize vaccine effectiveness. We studied the seasonality of influenza throughoutMexico by modeling virological and mortality data.De-trended time series of each Mexican state were analyzed by Fourier decomposition to describe the amplitude and timing of annual influenza epidemic cycles and to compare with each the timing of the WHO's Northern and Southern Hemispheric vaccination schedule. The timings of the primary (major) peaks of both virological and mortality data for most Mexican states are well aligned with the Northern Hemisphere winter (December-February) and vaccine schedule. However, influenza peaks in September in the three states of the Yucatan Peninsula. Influenza-related mortality also peaks in September in Quintana Roo and Yucatan whereas it peaks in May in Campeche. As the current timing of vaccination in Mexico is between October and November, more than half of the annual influenza cases have already occurred in the Yucatan Peninsula states by the time the Northern Hemispheric vaccine is delivered and administered. The current Northern Hemispheric influenza calendar adopted for Mexico is not optimal for the Yucatan Peninsula states thereby likely reducing the effectiveness of the immunization of the population. We recommend that Mexico tailor its immunization strategy to better reflect its climatologic and epidemiological diversity and adopt the WHO Southern Hemisphere influenza vaccine and schedule for the

  19. Recovering More than Tree Cover: Herbivores and Herbivory in a Restored Tropical Dry Forest

    PubMed Central

    2015-01-01

    Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October) in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae) and Ipomoea pauciflora (Convolvulaceae) were selected in each plot (N = 110 trees). Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp.) was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 –fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and disturbed sites

  20. Determining the K coefficient to leaf area index estimations in a tropical dry forest

    NASA Astrophysics Data System (ADS)

    Magalhães, Sarah Freitas; Calvo-Rodriguez, Sofia; do Espírito Santo, Mário Marcos; Sánchez Azofeifa, Gerardo Arturo

    2018-03-01

    Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and K max (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere

  1. Recovering more than tree cover: herbivores and herbivory in a restored tropical dry forest.

    PubMed

    Juan-Baeza, Iris; Martínez-Garza, Cristina; Del-Val, Ek

    2015-01-01

    Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October) in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae) and Ipomoea pauciflora (Convolvulaceae) were selected in each plot (N = 110 trees). Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp.) was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 -fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and disturbed sites

  2. River and Wetland Food Webs in Australia's Wet-Dry Tropics: General Principles and Implications for Management.

    NASA Astrophysics Data System (ADS)

    Douglas, M. M.; Bunn, S. E.; Davies, P. M.

    2005-05-01

    The tropical rivers of northern Australia are internationally recognised for their high ecological and cultural values. They have largely unmodified flow regimes and are comparatively free of the impacts associated with intensive land use. However, there is growing demand for agricultural development and existing pressures, such as weeds and feral animals, threaten their ecological integrity. Using the international literature to provide a conceptual framework and drawing on limited published and unpublished data on rivers in northern Australia, we have derived five general principles about food webs and related ecosystem processes that both characterise tropical rivers of northern Australia and have important implications for their management. These are: (1) Seasonal hydrology is a strong driver of ecosystem processes and food web structure; (2) Hydrological connectivity is largely intact and underpins important terrestrial-aquatic food web subsidies; (3) River and wetland food webs are strongly dependent on algal production; (4) A few common macroconsumers species have a strong influence on benthic food webs; (5) Omnivory is widespread and food chains are short. These principles have implications for the management and protection of tropical rivers and wetlands of northern Australia and provide a framework for the formation of testable hypotheses in future research programs.

  3. Cultural Resources for Mexican American Education. ERIC Digest.

    ERIC Educational Resources Information Center

    Collins, Timothy; Hagerman, Robert

    Even though Mexican Americans are the fastest growing ethnic group in the United States, their history and literature receive limited attention in schools. Incorporating Mexican American culture and history into the curriculum should help minimize the cultural myopia characteristic of many students and the cultural alienation that may contribute…

  4. The Mexican-American in the Health Care System.

    ERIC Educational Resources Information Center

    Stambler, Moses

    Mexican Americans differ from Anglo Americans in their types of health problems, relation to the American health care system, and responses to health care. Mexican Americans tend to underutilize available health resources because of fear of discrimination, perception of health workers as government representatives, and language and cultural…

  5. Biomarkers of Alzheimer’s Disease Among Mexican Americans

    PubMed Central

    O’Bryant, Sid E.; Xiao, Guanghua; Edwards, Melissa; Devous, Michael; Gupta, Veer Bala; Martins, Ralph; Zhang, Fan; Barber, Robert

    2013-01-01

    Background Mexican Americans are the fastest aging segment of the U.S. population yet little scientific literature exists regarding the Alzheimer disease (AD) among this segment of the population. The extant literature suggests that biomarkers of AD will vary according to race/ethnicity though no prior work has explicitly studied this possibility. The aim of this study was to create a serum-based biomarker profile of AD among Mexican American. Methods Data were analyzed from 363 Mexican American participants (49 AD and 314 normal controls) enrolled in the Texas Alzheimer’s Research & Care Consortium (TARCC). Non-fasting serum samples were analyzed using a luminex-based multi-plex platform. A biomarker profile was generated using random forest analyses. Results The biomarker profile of AD among Mexican Americans was different from prior work from non-Hispanic populations with regards to the variable importance plots. In fact, many of the top markers were related to metabolic factors (e.g. FABP, GLP-1, CD40, pancreatic polypeptide, insulin-like-growth factor, and insulin). The biomarker profile was a significant classifier of AD status yielding an area under the receiver operating characteristic curve (AUC), sensitivity (SN) and specificity (SP) of 0.77, 0.92 and 0.64, respectively. Combining biomarkers with clinical variables yielded a better balance of SN and SP. Conclusion The biomarker profile for AD among Mexican American cases is significantly different from that previously identified among non-Hispanic cases from many large-scale studies. This is the first study to explicitly examine and provide support for blood-based biomarkers of AD among Mexican Americans. Areas for future research are highlighted. PMID:23313927

  6. Contrasting hydraulic strategies in two tropical lianas and their host trees.

    PubMed

    Johnson, Daniel M; Domec, Jean-Christophe; Woodruff, David R; McCulloh, Katherine A; Meinzer, Frederick C

    2013-02-01

    Tropical liana abundance has been increasing over the past 40 yr, which has been associated with reduced rainfall. The proposed mechanism allowing lianas to thrive in dry conditions is deeper root systems than co-occurring trees, although we know very little about the fundamental hydraulic physiology of lianas. To test the hypothesis that two abundant liana species would physiologically outperform their host tree under reduced water availability, we measured rooting depth, hydraulic properties, plant water status, and leaf gas exchange during the dry season in a seasonally dry tropical forest. We also used a model to compare water use by one of the liana species and the host tree during drought. All species measured were shallowly rooted. The liana species were more vulnerable to embolism than host trees and experienced water potentials that were predicted to result in substantial hydraulic losses in both leaves and stems. Water potentials measured in host trees were not negative enough to result in significant hydraulic losses. Model results predicted the liana to have greater gas exchange than its host tree during drought and nondrought conditions. The host tree species had a more conservative strategy for maintenance of the soil-to-leaf hydraulic pathway than the lianas it supported. The two liana species experienced embolism in stems and leaves, based on vulnerability curves and water potentials. These emboli were presumably repaired before the next morning. However, in the host tree species, reduced stomatal conductance prevented leaf or stem embolism.

  7. Tropical Glaciers

    NASA Astrophysics Data System (ADS)

    Fountain, Andrew

    The term "tropical glacier" calls to mind balmy nights and palm trees on one hand and cold, blue ice on the other. Certainly author Gabriel Garcia Marqez exploited this contrast in One Hundred Years of Solitude. We know that tropical fish live in warm, Sun-kissed waters and tropical plants provide lush, dense foliage populated by colorful tropical birds. So how do tropical glaciers fit into this scene? Like glaciers everywhere, tropical glaciers form where mass accumulation—usually winter snow—exceeds mass loss, which is generally summer melt. Thus, tropical glaciers exist at high elevations where precipitation can occur as snowfall exceeds melt and sublimation losses, such as the Rwenzori Mountains in east Africa and the Maoke Range of Irian Jaya.

  8. Analysis of zenith tropospheric delay in tropical latitudes

    NASA Astrophysics Data System (ADS)

    Zablotskyj, Fedir; Zablotska, Alexandra

    2010-05-01

    The paper studies some peculiarities of the nature of zenith tropospheric delay in tropical latitudes. There are shown the values of dry and wet components of zenith tropospheric delay obtained by an integration of the radiosonde data at 9 stations: Guam, Seyshelles, Singapore, Pago Pago, Hilo, Koror, San Cristobal, San Juan and Belem. There were made 350 atmospheric models for the period from 11th to 20th of January, April, July and October 2008 at 0h and 12h UT (Universal Time). The quantities of the dry dd(aer) and wet dw(aer) components of zenith tropospheric delay were determined by means of the integration for each atmospheric model. Then the quantities of the dry dd(SA), dd(HO) and wet dw(SA), dw(HO) components of zenith tropospheric delay (Saastamoinen and Hopfield analytical models) were calculated by the surface values of the pressure P0, temperature t0, relative air humidity U0 on the height H0 and by the geographic latitude φ. It must be point out the following from the analysis of the averaged quantities and differences δdd(SA), δdd(HO), δdw(SA), δdw(HO) between the correspondent components of zenith tropospheric delay obtained by the radiosonde data and by the analytical models: zenith tropospheric delay obtained by the radiosonde data amounts to considerably larger value in the equatorial zone, especially, at the expense of the wet component, in contrast to high and middle latitudes. Thus, the dry component of zenith tropospheric delay is equal at the average 2290 mm and the wet component is 290 mm; by the results of the analysis of Saastamoinen and Hopfield models the dry component differences δdd(SA) and δdd(HO) are negative in all cases and average -20 mm. It is not typical neither for high latitudes nor for middle ones; the differences between the values of the wet components obtained from radiosonde data and of Saastamoinen and Hopfield models are positive in general. Therewith the δdw(HO) values are larger than the correspondent

  9. Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India.

    PubMed

    Singh, Anand N; Zeng, De-hui; Chen, Fu-sheng

    2005-01-01

    Total concentration of heavy metals (Cd, Cr, Cu, Fe, Pb, Ni, Mn and Zn) was estimated in the redeveloping soil of mine spoil under 5-yr old plantations of four woody species namely: Albizia lebbeck, Albizia procera, Tectona grandis and Dendrocalamus strictus. The data recorded in the present study were compared with other unplanted coal mine spoil colliery, which was around to the study site and adjoining area of dry tropical forest. Among all the heavy metals, the maximum concentration was found for Fe and minimum for Cd. However, among all four species, total concentrations of these heavy metals were recorded maximally in the plantation plots of T. grandis except for Fe, while minimally in A. lebbeck except for Zn, whereas, the maximum concentration of Fe and Zn was in the plantation plots of D. strictus and A. procera. Statistical analysis revealed significant differences due to species for all the heavy metals except Cu. Among four species, A. lebbeck, A. procera and D. strictus showed more efficient for reducing heavy metal concentrations whereas T. grandis was not more effective to reduce heavy metal concentrations in redeveloping soil of mine spoil.

  10. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    PubMed

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  11. Mexican-heritage preadolescents' ethnic identification and perceptions of substance use.

    PubMed

    Ndiaye, Khadidiatou; Hecht, Michael L; Wagstaff, David A; Elek, Elvira

    2009-01-01

    This paper examines the relationship between ethnic identification and substance use for 1,346 Mexican-heritage preadolescents in a National Institute on Drug Abuse-funded study in Phoenix, Arizona (2004-2005). Participants ranged from 9 to 13 years old, 49% reported their gender as male, 33% self-identified as Mexican, and 67% as Mexican American, and 91% of the students reported taking part in the free or reduced-price lunch program. Questionnaire responses were analyzed by fitting regression models. Analyses showed that ethnic identification may play a protective role, with stronger ethnic identification related to more antidrug norms, less positive drug expectations, stronger refusal efficacy, and less intent to use substances. While gender did not significantly moderate the relationships, ethnic identification appears more broadly related to antisubstance-use norms for Mexican-born than U.S.-born participants. This study presents important implications for substance-use prevention research among Mexican heritage preadolescents. Finally, limitations of the study are noted.

  12. Incorporating Mexican American History and Culture into the Social Studies Classroom.

    ERIC Educational Resources Information Center

    Escamilla, Kathy

    Although Mexican Americans are the fastest growing ethnic group in the United States, their history and literature are seldom taught in American classrooms. A study of over 3,000 high school sophomores in the Southwest revealed that neither Anglos nor Hispanics were aware of the contributions of Mexican Americans. Incorporating Mexican American…

  13. Contemporary Fertility Patterns and First-Birth Timing among Mexican-Origin Women

    ERIC Educational Resources Information Center

    Batson, Christie D.

    2013-01-01

    This article examines first-birth timing among Mexican women in the United States over two birth cohorts. Currently, Mexican women are one of a small group that maintains above-replacement fertility in the United States, contributing to both Mexican population growth and overall national population growth. Yet, the fertility timing of Mexican…

  14. Anxiety disorders among Mexican Americans and non-Hispanic whites in Los Angeles.

    PubMed

    Karno, M; Golding, J M; Burnam, M A; Hough, R L; Escobar, J I; Wells, K M; Boyer, R

    1989-04-01

    This report from the Los Angeles site of the NIMH Epidemiologic Catchment Area study reveals significant ethnic and national origin differences in lifetime prevalence rates for three out of six specific, DSM-III-defined anxiety disorders. In the case of simple phobia, United States-born Mexican Americans report higher rates than native non-Hispanic whites or immigrant Mexican Americans, the latter two groups having similar rates. Mexican Americans born in the United States had higher rates of agoraphobia than immigrant Mexican Americans, and non-Hispanic whites reported higher lifetime rates of generalized anxiety disorder compared with both immigrant and native Mexican Americans. Neither ethnic nor national origin differences in lifetime prevalence rates were found for panic disorder, social phobia, and obsessive-compulsive disorder. Selective migration is postulated as a potential factor influencing prevalence differences between native and immigrant Mexican Americans.

  15. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding.

    PubMed

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C

    2013-02-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early and late-successional species differ in resistance to experimentally imposed soil drought. The microenvironment in early successional sites was warmer and drier than in mature forest. Nevertheless, successional groups did not differ in resistance to soil drought. Late-successional species resisted drought through two independent mechanisms: high resistance of xylem to embolism, or reliance on high stem water storage capacity. High sapwood water reserves delayed the effects of soil drying by transiently decoupling plant and soil water status. Resistance to soil drought resulted from the interplay between variations in xylem vulnerability to embolism, reliance on sapwood water reserves and leaf area reduction, leading to a tradeoff of avoidance against tolerance of soil drought, along which successional groups were not differentiated. Overall, our data suggest that ranking species' performance under soil drought based solely on xylem resistance to embolism may be misleading, especially for species with high sapwood water storage capacity. © 2012 Blackwell Publishing Ltd.

  16. Rapid wave and storm surge warning system for tropical cyclones in Mexico

    NASA Astrophysics Data System (ADS)

    Appendini, C. M.; Rosengaus, M.; Meza, R.; Camacho, V.

    2015-12-01

    The National Hurricane Center (NHC) in Miami, is responsible for the forecast of tropical cyclones in the North Atlantic and Eastern North Pacific basins. As such, Mexico, Central America and Caribbean countries depend on the information issued by the NHC related to the characteristics of a particular tropical cyclone and associated watch and warning areas. Despite waves and storm surge are important hazards for marine operations and coastal dwellings, their forecast is not part of the NHC responsibilities. This work presents a rapid wave and storm surge warning system based on 3100 synthetic tropical cyclones doing landfall in Mexico. Hydrodynamic and wave models were driven by the synthetic events to create a robust database composed of maximum envelops of wind speed, significant wave height and storm surge for each event. The results were incorporated into a forecast system that uses the NHC advisory to locate the synthetic events passing inside specified radiuses for the present and forecast position of the real event. Using limited computer resources, the system displays the information meeting the search criteria, and the forecaster can select specific events to generate the desired hazard map (i.e. wind, waves, and storm surge) based on the maximum envelop maps. This system was developed in a limited time frame to be operational in 2015 by the National Hurricane and Severe Storms Unit of the Mexican National Weather Service, and represents a pilot project for other countries in the region not covered by detailed storm surge and waves forecasts.

  17. Spatial and Temporal Microbial Patterns in a Tropical Macrotidal Estuary Subject to Urbanization

    PubMed Central

    Kaestli, Mirjam; Skillington, Anna; Kennedy, Karen; Majid, Matthew; Williams, David; McGuinness, Keith; Munksgaard, Niels; Gibb, Karen

    2017-01-01

    Darwin Harbour in northern Australia is an estuary in the wet-dry tropics subject to increasing urbanization with localized water quality degradation due to increased nutrient loads from urban runoff and treated sewage effluent. Tropical estuaries are poorly studied compared to temperate systems and little is known about the microbial community-level response to nutrients. We aimed to examine the spatial and temporal patterns of the bacterial community and its association with abiotic factors. Since Darwin Harbour is macrotidal with strong seasonal patterns and mixing, we sought to determine if a human impact signal was discernible in the microbiota despite the strong hydrodynamic forces. Adopting a single impact–double reference design, we investigated the bacterial community using next-generation sequencing of the 16S rRNA gene from water and sediment from reference creeks and creeks affected by effluent and urban runoff. Samples were collected over two years during neap and spring tides, in the dry and wet seasons. Temporal drivers, namely seasons and tides had the strongest relationship to the water microbiota, reflecting the macrotidal nature of the estuary and its location in the wet-dry tropics. The neap-tide water microbiota provided the clearest spatial resolution while the sediment microbiota reflected current and past water conditions. Differences in patterns of the microbiota between different parts of the harbor reflected the harbor's complex hydrodynamics and bathymetry. Despite these variations, a microbial signature was discernible relating to specific effluent sources and urban runoff, and the composite of nutrient levels accounted for the major part of the explained variation in the microbiota followed by salinity. Our results confirm an overall good water quality but they also reflect the extent of some hypereutrophic areas. Our results show that the microbiota is a sensitive indicator to assess ecosystem health even in this dynamic and complex

  18. United States -- Mexican joint ventures: A case history approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, N.L.; Chidester, R.J.; Hughes, K.R.

    1993-03-01

    Because the Mexican government has encouraged investment in Mexico by increasing the percentage of ownership of a Mexican business that a US company can hold, joint ventures are more attractive now than they had been in the past. This study provides preliminary information for US renewable energy companies who are interested in forming a joint venture with a Mexican company. This report is not intended to be a complete reference but does identifies a number of important factors that should be observed when forming a Mexican joint venture: (1)Successful joint ventures achieve the goals of each partner. (2)It is essentialmore » that all parties agree to the allocation of responsibilities. (3)Put everything in writing. (4)Research in depth the country or countries in which you are considering doing business.« less

  19. Spatial patterns of trends and teleconnections in climate indices relevant for Mexican maize

    NASA Astrophysics Data System (ADS)

    Dewes, C. F.

    2013-05-01

    precipitation over the Yucatán and a few areas along the southern Pacific coast, and with more dry days - though accompanied by stronger extreme precipitation events - over southwestern Mexico. They are also associated with a delaying start of the rainy season in a narrow area just east of the south-central highlands and higher risk of frost during late-winter up in the highlands. Increasing Caribbean SSTs are associated with increasing temperatures over the mainland and stronger precipitation over the Yucatán. Variability in the NAO and its trend towards more positive phases is associated the drying trend in central Mexico, intensification of precipitation over the northwest, and also increasing temperatures over the entire mainland in both the warm and cold growing seasons. The atmospheric circulation over the Atlantic Ocean and its increasing tropical SSTs, have a larger and broader participation in Mexican trends than is noted with the Pacific counterparts.

  20. Ecophysiological and phenological strategies in seasonally-dry ecosystems: an ecohydrological approach

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Manzoni, Stefano; Thompson, Sally; Molini, Annalisa; Porporato, Amilcare

    2015-04-01

    Seasonally-dry climates are particularly challenging for vegetation, as they are characterized by prolonged dry periods and often marked inter-annual variability. During the dry season plants face predictable physiological stress due to lack of water, whereas the inter-annual variability in rainfall timing and amounts requires plants to develop flexible adaptation strategies. The variety of strategies observed across seasonally-dry (Mediterranean and tropical) ecosystems is indeed wide - ranging from near-isohydric species that adjust stomatal conductance to avoid drought, to anisohydric species that maintain gas exchange during the dry season. A suite of phenological strategies are hypothesized to be associated to ecophysiological strategies. Here we synthetize current knowledge on ecophysiological and phenological adaptations through a comprehensive ecohydrological model linking a soil water balance to a vegetation carbon balance. Climatic regimes are found to select for different phenological strategies that maximize the long-term plant carbon uptake. Inter-annual variability of the duration of the wet season allows coexistence of different drought-deciduous strategies. In contrast, short dry seasons or access to groundwater favour evergreen species. Climatic changes causing more intermittent rainfall and/or shorter wet seasons are predicted to favour drought-deciduous species with opportunistic water use.