Science.gov

Sample records for mglu receptor activation

  1. mGlu2 metabotropic glutamate receptors restrain inflammatory pain and mediate the analgesic activity of dual mGlu2/mGlu3 receptor agonists.

    PubMed

    Zammataro, Magda; Chiechio, Santina; Montana, Michael C; Traficante, Anna; Copani, Agata; Nicoletti, Ferdinando; Gereau, Robert W

    2011-01-01

    Group II metabotropic glutamate receptors (mGluRs) couple to the inhibitory G-protein Gi. The group II mGluRs include two subtypes, mGlu2 and mGlu3, and their pharmacological activation produces analgesic effects in inflammatory and neuropathic pain states. However, the specific contribution of each one of the two subtypes has not been clarified due to the lack of selective orthosteric ligands that can discriminate between mGlu2 and mGlu3 subtypes.In this study we used mGlu2 or mGlu3 knock-out mice to dissect the specific role for these two receptors in the endogenous control of inflammatory pain and their specific contribution to the analgesic activity of mixed mGlu2/3 receptor agonists.Our results showed that mGlu2⁻(/)⁻ mice display a significantly greater pain response compared to their wild type littermates. Interestingly the increased pain sensitivity in mGlu2⁻(/)⁻ mice occurred only in the second phase of the formalin test. No differences were observed in the first phase. In contrast, mGlu3⁻(/)⁻ mice did not significantly differ from their wild type littermates in either phase of the formalin test.When systemically injected, a single administration of the mGlu2/3 agonist, LY379268 (3 mg/kg, ip), showed a significant reduction of both phases in wild-type mice and in mGlu3⁻(/)⁻ but not in mGlu2⁻(/)⁻ mice. However tolerance to the analgesic effect of LY379268 (3 mg/kg, ip) in mGlu3⁻(/)⁻ mice developed following 5 consecutive days of injection.Taken together, these results demonstrate that: (i) mGlu2 receptors play a predominant role over mGlu3 receptors in the control of inflammatory pain in mice; (ii) the analgesic activity of mixed mGlu2/3 agonists is entirely mediated by the activation of the mGlu2 subtype and (iii) the development of tolerance to the analgesic effect of mGlu2/3 agonists develops despite the lack of mGlu3 receptors. PMID:21235748

  2. Selective activation of either mGlu2 or mGlu3 receptors can induce LTD in the amygdala.

    PubMed

    Lucas, Sarah J; Bortolotto, Zuner A; Collingridge, Graham L; Lodge, David

    2013-03-01

    Group II metabotropic glutamate (mGlu) receptors are known to induce a long-term depression (LTD) of synaptic transmission in many brain regions including the amygdala. However the roles of the individual receptor subtypes, mGlu2 and mGlu3, in LTD are not well understood. In particular, it is unclear whether activation of mGlu3 receptors is sufficient to induce LTD at synapses in the CNS. In the present study, advantage was taken of a Wistar rat strain not expressing mGlu2 receptors (Ceolin et al., 2011) to investigate the function of mGlu3 receptors in the amygdala. In this preparation, the group II agonist, DCG-IV induced an LTD of the cortical, but not the intra-nuclear, synaptic input to the lateral amygdala. This LTD was concentration dependent and was blocked by the group II mGlu receptor antagonist, LY341495. To investigate further the role of mGlu3 receptors, we used LY395756 (an mGlu2 agonist and mGlu3 antagonist), which acts as a pure mGlu3 receptor antagonist in this rat strain. This compound alone had no effect on basal synaptic transmission, but blocked the LTD induced by DCG-IV. Furthermore, we found that DCG-IV also induces LTD in mGlu2 receptor knock-out (KO) mice to a similar extent as in wild-type mice. This confirms that the activation of mGlu3 receptors alone is sufficient to induce LTD at this amygdala synapse. To address whether mGlu2 activation alone is also sufficient to induce LTD at this synapse we used LY541850 (the active enantiomer of LY395756) in wild-type mice. LY541850 induced a substantial LTD showing that either receptor alone is capable of inducing LTD in this pathway. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. PMID:22531751

  3. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer's disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective.

    PubMed

    Caraci, Filippo; Molinaro, Gemma; Battaglia, Giuseppe; Giuffrida, Maria Laura; Riozzi, Barbara; Traficante, Anna; Bruno, Valeria; Cannella, Milena; Merlo, Sara; Wang, Xushan; Heinz, Beverly A; Nisenbaum, Eric S; Britton, Thomas C; Drago, Filippo; Sortino, Maria Angela; Copani, Agata; Nicoletti, Ferdinando

    2011-03-01

    Dual orthosteric agonists of metabotropic glutamate 2 (mGlu2) and mGlu3 receptors are being developed as novel antipsychotic agents devoid of the adverse effects of conventional antipsychotics. Therefore, these drugs could be helpful for the treatment of psychotic symptoms associated with Alzheimer's disease (AD). In experimental animals, the antipsychotic activity of mGlu2/3 receptor agonists is largely mediated by the activation of mGlu2 receptors and is mimicked by selective positive allosteric modulators (PAMs) of mGlu2 receptors. We investigated the distinct influence of mGlu2 and mGlu3 receptors in mixed and pure neuronal cultures exposed to synthetic β-amyloid protein (Aβ) to model neurodegeneration occurring in AD. The mGlu2 receptor PAM, N-4'-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), devoid of toxicity per se, amplified Aβ-induced neurodegeneration, and this effect was prevented by the mGlu2/3 receptor antagonist (2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl)glycine (LY341495). LY566332 potentiated Aβ toxicity regardless of the presence of glial mGlu3 receptors, but it was inactive when neurons lacked mGlu2 receptors. The dual mGlu2/3 receptor agonist, (-)-2-oxa-4-aminobicyclo[3.1.0]exhane-4,6-dicarboxylic acid (LY379268), was neuroprotective in mixed cultures via a paracrine mechanism mediated by transforming growth factor-β1. LY379268 lost its protective activity in neurons grown with astrocytes lacking mGlu3 receptors, indicating that protection against Aβ neurotoxicity was mediated entirely by glial mGlu3 receptors. The selective noncompetitive mGlu3 receptor antagonist, (3S)-1-(5-bromopyrimidin-2-yl)-N-(2,4-dichlorobenzyl)pyrrolidin-3-amine methanesulfonate hydrate (LY2389575), amplified Aβ toxicity on its own, and, interestingly, unmasked a neurotoxic activity of LY379268, which probably was mediated by the activation of mGlu2 receptors. These data indicate that selective potentiation of

  4. Phasic and Tonic mGlu7 Receptor Activity Modulates the Thalamocortical Network

    PubMed Central

    Tassin, Valériane; Girard, Benoît; Chotte, Apolline; Fontanaud, Pierre; Rigault, Delphine; Kalinichev, Mikhail; Perroy, Julie; Acher, Francine; Fagni, Laurent; Bertaso, Federica

    2016-01-01

    Mutation of the metabotropic glutamate receptor type 7 (mGlu7) induces absence-like epileptic seizures, but its precise role in the somatosensory thalamocortical network remains unknown. By combining electrophysiological recordings, optogenetics, and pharmacology, we dissected the contribution of the mGlu7 receptor at mouse thalamic synapses. We found that mGlu7 is functionally expressed at both glutamatergic and GABAergic synapses, where it can inhibit neurotransmission and regulate short-term plasticity. These effects depend on the PDZ-ligand of the receptor, as they are lost in mutant mice. Interestingly, the very low affinity of mGlu7 receptors for glutamate raises the question of how it can be activated, namely at GABAergic synapses and in basal conditions. Inactivation of the receptor activity with the mGlu7 negative allosteric modulator (NAM), ADX71743, enhances thalamic synaptic transmission. In vivo administration of the NAM induces a lethargic state with spindle and/or spike-and-wave discharges accompanied by a behavioral arrest typical of absence epileptic seizures. This provides evidence for mGlu7 receptor-mediated tonic modulation of a physiological function in vivo preventing synchronous and potentially pathological oscillations. PMID:27199672

  5. Chemical biology of mGlu4 receptor activation: dogmas, challenges, strategies and opportunities.

    PubMed

    Huang, Xinyan; Dale, Elena; Brodbeck, Robbin M; Doller, Dario

    2014-01-01

    Drug design necessitates a clear understanding of the phenotypic response to be elicited by a given ligandtarget interaction. This relationship is relatively well understood for classical biological targets of drug action, but for some novel targets, notably those amenable to allosteric modulation, developing such understanding may represent a more challenging task. In order to gain knowledge on the nature of the functional response derived from mGlu4 receptor activation, its molecular and cell biology are reviewed, including signalling pathways involved, receptor localization in central nervous system and beyond, and potential genetic links to disease. Broadly held views for both, orthosteric agonists as well as allosteric modulators, are compared with specific observations for the case of mGlu4 receptor activation via orthosteric and allosteric mechanisms. First, sub-type selectivity and brain penetration of amino acid mGlu4 receptor agonists are discussed, followed by the quantification of functional allosteric effects, the potential role of heterodimers in the functional response, and the observation of supra-physiological efficacy of mGlu4 receptor PAMs. We show that, in our analysis, these attributes differ from those that may be expected by extrapolating from broad knowledge. In addition, recent progress with mGlu4 receptor radioligands and PET ligands is summarized.

  6. Activation of mGlu3 receptors stimulates the production of GDNF in striatal neurons.

    PubMed

    Battaglia, Giuseppe; Molinaro, Gemma; Riozzi, Barbara; Storto, Marianna; Busceti, Carla L; Spinsanti, Paola; Bucci, Domenico; Di Liberto, Valentina; Mudò, Giuseppina; Corti, Corrado; Corsi, Mauro; Nicoletti, Ferdinando; Belluardo, Natale; Bruno, Valeria

    2009-01-01

    Metabotropic glutamate (mGlu) receptors have been considered potential targets for the therapy of experimental parkinsonism. One hypothetical advantage associated with the use of mGlu receptor ligands is the lack of the adverse effects typically induced by ionotropic glutamate receptor antagonists, such as sedation, ataxia, and severe learning impairment. Low doses of the mGlu2/3 metabotropic glutamate receptor agonist, LY379268 (0.25-3 mg/kg, i.p.) increased glial cell line-derived neurotrophic factor (GDNF) mRNA and protein levels in the mouse brain, as assessed by in situ hybridization, real-time PCR, immunoblotting, and immunohistochemistry. This increase was prominent in the striatum, but was also observed in the cerebral cortex. GDNF mRNA levels peaked at 3 h and declined afterwards, whereas GDNF protein levels progressively increased from 24 to 72 h following LY379268 injection. The action of LY379268 was abrogated by the mGlu2/3 receptor antagonist, LY341495 (1 mg/kg, i.p.), and was lost in mGlu3 receptor knockout mice, but not in mGlu2 receptor knockout mice. In pure cultures of striatal neurons, the increase in GDNF induced by LY379268 required the activation of the mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways, as shown by the use of specific inhibitors of the two pathways. Both in vivo and in vitro studies led to the conclusion that neurons were the only source of GDNF in response to mGlu3 receptor activation. Remarkably, acute or repeated injections of LY379268 at doses that enhanced striatal GDNF levels (0.25 or 3 mg/kg, i.p.) were highly protective against nigro-striatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice, as assessed by stereological counting of tyrosine hydroxylase-positive neurons in the pars compacta of the substantia nigra. We speculate that selective mGlu3 receptor agonists or enhancers are potential candidates as neuroprotective agents in Parkinson's disease, and their use might

  7. Neurobiological Insights from mGlu Receptor Allosteric Modulation

    PubMed Central

    O’Brien, Daniel E

    2016-01-01

    Allosteric modulation of metabotropic glutamate (mGlu) receptors offers a promising pharmacological approach to normalize neural circuit dysfunction associated with various psychiatric and neurological disorders. As mGlu receptor allosteric modulators progress through discovery and clinical development, both technical advances and novel tool compounds are providing opportunities to better understand mGlu receptor pharmacology and neurobiology. Recent advances in structural biology are elucidating the structural determinants of mGlu receptor–negative allosteric modulation and supplying the means to resolve active, allosteric modulator-bound mGlu receptors. The discovery and characterization of allosteric modulators with novel pharmacological profiles is uncovering the biological significance of their intrinsic agonist activity, biased mGlu receptor modulation, and novel mGlu receptor heterodimers. The development and exploitation of optogenetic and optopharmacological tools is permitting a refined spatial and temporal understanding of both mGlu receptor functions and their allosteric modulation in intact brain circuits. Together, these lines of research promise to provide a more refined understanding of mGlu receptors and their allosteric modulation that will inform the development of mGlu receptor allosteric modulators as neurotherapeutics in the years to come. PMID:26647381

  8. Allosteric Modulators for mGlu Receptors

    PubMed Central

    Gasparini, F; Spooren, W

    2007-01-01

    The metabotropic glutamate receptor family comprises eight subtypes (mGlu1-8) of G-protein coupled receptors. mGlu receptors have a large extracellular domain which acts as recognition domain for the natural agonist glutamate. In contrast to the ionotropic glutamate receptors which mediate the fast excitatory neurotransmission, mGlu receptors have been shown to play a more modulatory role and have been proposed as alternative targets for pharmacological interventions. The potential use of mGluRs as drug targets for various nervous system pathologies such as anxiety, depression, schizophrenia, pain or Parkinson’s disease has triggered an intense search for subtype selective modulators and resulted in the identification of numerous novel pharmacological agents capable to modulate the receptor activity through an interaction at an allosteric site located in the transmembrane domain. The present review presents the most recent developments in the identification and the characterization of allosteric modulators for the mGlu receptors. PMID:19305801

  9. Xanthurenic Acid Activates mGlu2/3 Metabotropic Glutamate Receptors and is a Potential Trait Marker for Schizophrenia.

    PubMed

    Fazio, Francesco; Lionetto, Luana; Curto, Martina; Iacovelli, Luisa; Cavallari, Michele; Zappulla, Cristina; Ulivieri, Martina; Napoletano, Flavia; Capi, Matilde; Corigliano, Valentina; Scaccianoce, Sergio; Caruso, Alessandra; Miele, Jessica; De Fusco, Antonio; Di Menna, Luisa; Comparelli, Anna; De Carolis, Antonella; Gradini, Roberto; Nisticò, Robert; De Blasi, Antonio; Girardi, Paolo; Bruno, Valeria; Battaglia, Giuseppe; Nicoletti, Ferdinando; Simmaco, Maurizio

    2015-12-08

    The kynurenine pathway of tryptophan metabolism has been implicated in the pathophysiology of psychiatric disorders, including schizophrenia. We report here that the kynurenine metabolite, xanturenic acid (XA), interacts with, and activates mGlu2 and mGlu3 metabotropic glutamate receptors in heterologous expression systems. However, the molecular nature of this interaction is unknown, and our data cannot exclude that XA acts primarily on other targets, such as the vesicular glutamate transporter, in the CNS. Systemic administration of XA in mice produced antipsychotic-like effects in the MK-801-induced model of hyperactivity. This effect required the presence of mGlu2 receptors and was abrogated by the preferential mGlu2/3 receptor antagonist, LY341495. Because the mGlu2 receptor is a potential drug target in the treatment of schizophrenia, we decided to measure serum levels of XA and other kynurenine metabolites in patients affected by schizophrenia. Serum XA levels were largely reduced in a large cohort of patients affected by schizophrenia, and, in patients with first-episode schizophrenia, levels remained low after 12 months of antipsychotic medication. As opposed to other kynurenine metabolites, XA levels were also significantly reduced in first-degree relatives of patients affected by schizophrenia. We suggest that lowered serum XA levels might represent a novel trait marker for schizophrenia.

  10. Xanthurenic Acid Activates mGlu2/3 Metabotropic Glutamate Receptors and is a Potential Trait Marker for Schizophrenia.

    PubMed

    Fazio, Francesco; Lionetto, Luana; Curto, Martina; Iacovelli, Luisa; Cavallari, Michele; Zappulla, Cristina; Ulivieri, Martina; Napoletano, Flavia; Capi, Matilde; Corigliano, Valentina; Scaccianoce, Sergio; Caruso, Alessandra; Miele, Jessica; De Fusco, Antonio; Di Menna, Luisa; Comparelli, Anna; De Carolis, Antonella; Gradini, Roberto; Nisticò, Robert; De Blasi, Antonio; Girardi, Paolo; Bruno, Valeria; Battaglia, Giuseppe; Nicoletti, Ferdinando; Simmaco, Maurizio

    2015-01-01

    The kynurenine pathway of tryptophan metabolism has been implicated in the pathophysiology of psychiatric disorders, including schizophrenia. We report here that the kynurenine metabolite, xanturenic acid (XA), interacts with, and activates mGlu2 and mGlu3 metabotropic glutamate receptors in heterologous expression systems. However, the molecular nature of this interaction is unknown, and our data cannot exclude that XA acts primarily on other targets, such as the vesicular glutamate transporter, in the CNS. Systemic administration of XA in mice produced antipsychotic-like effects in the MK-801-induced model of hyperactivity. This effect required the presence of mGlu2 receptors and was abrogated by the preferential mGlu2/3 receptor antagonist, LY341495. Because the mGlu2 receptor is a potential drug target in the treatment of schizophrenia, we decided to measure serum levels of XA and other kynurenine metabolites in patients affected by schizophrenia. Serum XA levels were largely reduced in a large cohort of patients affected by schizophrenia, and, in patients with first-episode schizophrenia, levels remained low after 12 months of antipsychotic medication. As opposed to other kynurenine metabolites, XA levels were also significantly reduced in first-degree relatives of patients affected by schizophrenia. We suggest that lowered serum XA levels might represent a novel trait marker for schizophrenia. PMID:26643205

  11. Xanthurenic Acid Activates mGlu2/3 Metabotropic Glutamate Receptors and is a Potential Trait Marker for Schizophrenia

    PubMed Central

    Fazio, Francesco; Lionetto, Luana; Curto, Martina; Iacovelli, Luisa; Cavallari, Michele; Zappulla, Cristina; Ulivieri, Martina; Napoletano, Flavia; Capi, Matilde; Corigliano, Valentina; Scaccianoce, Sergio; Caruso, Alessandra; Miele, Jessica; De Fusco, Antonio; Di Menna, Luisa; Comparelli, Anna; De Carolis, Antonella; Gradini, Roberto; Nisticò, Robert; De Blasi, Antonio; Girardi, Paolo; Bruno, Valeria; Battaglia, Giuseppe; Nicoletti, Ferdinando; Simmaco, Maurizio

    2015-01-01

    The kynurenine pathway of tryptophan metabolism has been implicated in the pathophysiology of psychiatric disorders, including schizophrenia. We report here that the kynurenine metabolite, xanturenic acid (XA), interacts with, and activates mGlu2 and mGlu3 metabotropic glutamate receptors in heterologous expression systems. However, the molecular nature of this interaction is unknown, and our data cannot exclude that XA acts primarily on other targets, such as the vesicular glutamate transporter, in the CNS. Systemic administration of XA in mice produced antipsychotic-like effects in the MK-801-induced model of hyperactivity. This effect required the presence of mGlu2 receptors and was abrogated by the preferential mGlu2/3 receptor antagonist, LY341495. Because the mGlu2 receptor is a potential drug target in the treatment of schizophrenia, we decided to measure serum levels of XA and other kynurenine metabolites in patients affected by schizophrenia. Serum XA levels were largely reduced in a large cohort of patients affected by schizophrenia, and, in patients with first-episode schizophrenia, levels remained low after 12 months of antipsychotic medication. As opposed to other kynurenine metabolites, XA levels were also significantly reduced in first-degree relatives of patients affected by schizophrenia. We suggest that lowered serum XA levels might represent a novel trait marker for schizophrenia. PMID:26643205

  12. mGlu receptors and drug addiction.

    PubMed

    Cleva, Richard M; Olive, M Foster

    2012-05-01

    Historically, brain catecholamine systems have been the primary focus of studies examining the neural substrates of drug addiction. In the past two decades, however, a wealth of evidence has accumulated indicating a pivotal role for glutamatergic neurotransmission in mediating addictive behaviors as well as long-term neuroplasticity associated with chronic drug use. As a result, there has been increased interest in developing glutamate-based therapies for the treatment of addictive disorders. Metabotropic glutamate (mGlu) receptors are classified into subcategories designated as Group I (mGlu1 and mGlu5), Group II (mGlu2 and mGlu3), and Group III (mGlu4, mGlu6, mGlu7, and mGlu8), and have received a great deal of attention due to their mediation of slower modulatory excitatory neurotransmission. Pharmacological ligands targeting these receptors have demonstrated reduced incidences of excitotoxicity or severe adverse side effects as compared to those targeting ionotropic glutamate (iGlu) receptors. Behavioral genetic and pharmacological studies have explored the role of individual mGlu receptor subtypes in regulating various addiction-related behaviours and several mGlu receptor ligands have been the subject of clinical testing for other medical conditions. PMID:22662312

  13. Differentiating the roles of mGlu2 and mGlu3 receptors using LY541850, an mGlu2 agonist/mGlu3 antagonist.

    PubMed

    Hanna, Lydia; Ceolin, Laura; Lucas, Sarah; Monn, James; Johnson, Bryan; Collingridge, Graham; Bortolotto, Zuner; Lodge, David

    2013-03-01

    Despite the potential therapeutic relevance of group II metabotropic glutamate (mGlu) receptors, there has been a lack of pharmacological tools for separating the roles of mGlu2 and mGlu3 receptor subtypes. LY541850 was claimed from human mGlu receptors expressed in non-neuronal cells to be a selective orthosteric mGlu2 agonist and mGlu3 antagonist. We have verified this pharmacological profile of LY541850 in hippocampal slices. Field excitatory post-synaptic potentials (fEPSPs) evoked by stimulation of the temporo-ammonic path (TAP) input to CA1 stratum lacunosum moleculare (SLM) were inhibited by LY541850 in mGlu3-/- mice (EC(50) 38 nM) and wild-type littermates (EC(50) 42 nM) to a similar extent but were not significantly affected in mGlu2-/- mice. The group II agonist, DCG-IV, inhibited the fEPSP in all three genotypes. Co-application of DCG-IV and LY541850 in mGlu3-/- and wild-type littermates resulted in an additive effect, whereas in mGlu2-/- mice, LY541850 reversed the inhibitory action of DCG-IV. These results confirm the selective mGlu2 agonist and mGlu3 antagonist actions of LY541850. A similar profile of activity was seen in medial perforant path synapse to the dentate gyrus. Systemic administration of LY541850 to wild-type mice, reduced the increase in locomotor activity following both phencyclidine and amphetamine administration. These data support the hypothesis that mGlu2 receptors mediate the antipsychotic effects of mixed group II agonists. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. PMID:22445601

  14. Methyl substitution of 2-aminobicyclo[3.1.0]hexane 2,6-dicarboxylate (LY354740) determines functional activity at metabotropic glutamate receptors: identification of a subtype selective mGlu2 receptor agonist.

    PubMed

    Dominguez, Carmen; Prieto, Lourdes; Valli, Matthew J; Massey, Steven M; Bures, Mark; Wright, Rebecca A; Johnson, Bryan G; Andis, Sherri L; Kingston, Ann; Schoepp, Darryle D; Monn, James A

    2005-05-19

    LY354740 (1) is a highly potent and selective agonist of metabotropic glutamate (mGlu) receptors 2 and 3. In the present study, we have prepared C3- and C4-methyl-substituted variants of rac-1, compounds 5, 9, and 13. Each of these racemic methyl-substituted analogues displaced specific binding of the mGlu2/3 receptor antagonist (3)H-2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid ((3)H-LY341495) from membranes expressing mGlu2 or mGlu3 receptor subtypes. Evaluation of the functional effects of this series on second messenger responses in cells expressing human mGlu2 or mGlu3 receptors revealed C3beta-methyl analogue 5 to possess antagonist properties at both mGlu2 and mGlu3 receptors while C4beta-methyl analogue 9 acts as a full agonist at each of these targets. Unexpectedly, we found that incorporation of a methyl substituent at the C4alpha-position as in analogue 13 results in a mixed mGlu2 agonist/mGlu3 antagonist pharmacological profile. All of the mGlu2 agonist and mGlu3 antagonist activity of rac-13 was found to reside in its resolved (+)-isomer. PMID:15887967

  15. Design and Synthesis of Systemically Active Metabotropic Glutamate Subtype-2 and -3 (mGlu2/3) Receptor Positive Allosteric Modulators (PAMs): Pharmacological Characterization and Assessment in a Rat Model of Cocaine Dependence

    PubMed Central

    2015-01-01

    As part of our ongoing small-molecule metabotropic glutamate (mGlu) receptor positive allosteric modulator (PAM) research, we performed structure–activity relationship (SAR) studies around a series of group II mGlu PAMs. Initial analogues exhibited weak activity as mGlu2 receptor PAMs and no activity at mGlu3. Compound optimization led to the identification of potent mGlu2/3 selective PAMs with no in vitro activity at mGlu1,4–8 or 45 other CNS receptors. In vitro pharmacological characterization of representative compound 44 indicated agonist-PAM activity toward mGlu2 and PAM activity at mGlu3. The most potent mGlu2/3 PAMs were characterized in assays predictive of ADME/T and pharmacokinetic (PK) properties, allowing the discovery of systemically active mGlu2/3 PAMs. On the basis of its overall profile, compound 74 was selected for behavioral studies and was shown to dose-dependently decrease cocaine self-administration in rats after intraperitoneal administration. These mGlu2/3 receptor PAMs have significant potential as small molecule tools for investigating group II mGlu pharmacology. PMID:24735492

  16. Design and synthesis of systemically active metabotropic glutamate subtype-2 and -3 (mGlu2/3) receptor positive allosteric modulators (PAMs): pharmacological characterization and assessment in a rat model of cocaine dependence.

    PubMed

    Dhanya, Raveendra-Panickar; Sheffler, Douglas J; Dahl, Russell; Davis, Melinda; Lee, Pooi San; Yang, Li; Nickols, Hilary Highfield; Cho, Hyekyung P; Smith, Layton H; D'Souza, Manoranjan S; Conn, P Jeffrey; Der-Avakian, Andre; Markou, Athina; Cosford, Nicholas D P

    2014-05-22

    As part of our ongoing small-molecule metabotropic glutamate (mGlu) receptor positive allosteric modulator (PAM) research, we performed structure-activity relationship (SAR) studies around a series of group II mGlu PAMs. Initial analogues exhibited weak activity as mGlu2 receptor PAMs and no activity at mGlu3. Compound optimization led to the identification of potent mGlu2/3 selective PAMs with no in vitro activity at mGlu1,4-8 or 45 other CNS receptors. In vitro pharmacological characterization of representative compound 44 indicated agonist-PAM activity toward mGlu2 and PAM activity at mGlu3. The most potent mGlu2/3 PAMs were characterized in assays predictive of ADME/T and pharmacokinetic (PK) properties, allowing the discovery of systemically active mGlu2/3 PAMs. On the basis of its overall profile, compound 74 was selected for behavioral studies and was shown to dose-dependently decrease cocaine self-administration in rats after intraperitoneal administration. These mGlu2/3 receptor PAMs have significant potential as small molecule tools for investigating group II mGlu pharmacology. PMID:24735492

  17. Activation of mGlu2/3 metabotropic glutamate receptors negatively regulates the stimulation of inositol phospholipid hydrolysis mediated by 5-hydroxytryptamine2A serotonin receptors in the frontal cortex of living mice.

    PubMed

    Molinaro, G; Traficante, A; Riozzi, B; Di Menna, L; Curto, M; Pallottino, S; Nicoletti, F; Bruno, V; Battaglia, G

    2009-08-01

    The interaction between 5-hydroxytryptamine(2A) (5-HT(2A)) serotonin receptors and metabotropic glutamate (mGlu) 2/3 receptors underlies the antipsychotic activity of mGlu2/3 receptor agonists in experimental animals and humans. The molecular nature of this interaction is only partially known. We here report for the first time that pharmacological activation of mGlu2/3 receptors attenuates the stimulation of polyphosphoinositide (PI) hydrolysis mediated by 5-HT(2A) receptors in the frontal cortex of living mice. Mice were injected intracerebroventricularly with [myo-(3)H]inositol and treated with drugs 1 h after a pretreatment with lithium, which blocks the conversion of inositol monophosphate into free inositol. Systemic injection of the mGlu2/3 receptor agonist (-)-2-oxa-4-aminocyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268) inhibited the stimulation of PI hydrolysis induced by the hallucinogenic 5-HT(2A) receptor agonist (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) without affecting the stimulation by mGlu1/5 or muscarinic receptors. The action of LY379268 was prevented by the preferential mGlu2/3 receptor antagonist (2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl)glycine (LY341495). N-(4'-cyano-biphenyl-3-yl)-N-(3-pyridinylmethyl)-ethanesulfonamide hydrochloride (LY566332), a selective mGlu2 receptor enhancer, also reduced DOI-stimulated PI hydrolysis when combined with subthreshold doses of LY379268. Systemic LY379268 inhibited DOI-stimulated PI hydrolysis in mice lacking either mGlu2 or mGlu3 receptors but was inactive in double mGlu2/mGlu3 receptor knockout mice, suggesting that both mGlu2 and mGlu3 receptors interact with 5-HT(2A) receptors. Surprisingly, contrasting results were obtained in cortical slice preparations, where LY379268 amplified both DOI- and 3,5-dihydroxyphenylglycine-stimulated PI hydrolysis. Amplification was abrogated by the mGlu5 receptor antagonist 2-methyl-6-(phenylethynyl)pyridine, suggesting that

  18. Effects of mGlu2 or mGlu3 receptor deletions on mGlu2/3 receptor agonist (LY354740)-induced brain c-Fos expression: specific roles for mGlu2 in the amygdala and subcortical nuclei, and mGlu3 in the hippocampus.

    PubMed

    Linden, Anni-Maija; Baez, Melvin; Bergeron, Marcelle; Schoepp, Darryle D

    2006-08-01

    LY354740 is a potent and selective mGlu2/3 receptor agonist with activity in models of psychiatric disorders (anxiety, psychosis), and early clinical studies in anxiety patients. However, the specific receptor subtypes and brain regions which mediate mGlu2/3 receptor agonist pharmacology/efficacy are not well understood. Here we investigate the effects of deleting mGlu2 or mGlu3 receptors on basal and LY354740-regulated c-Fos expression in mouse brain using mGlu2 or mGlu3 knockout mice. Consistent with our earlier findings, LY354740 administration (20 mg/kg, i.p.) to wild-type mice increased c-Fos expression in specific limbic (central amygdala, bed nucleus of the stria terminalis, midline thalamic nuclei) and non-limbic (thalamic dorsolateral geniculate nucleus, superior colliculus, Edinger-Westphal) structures, while modestly suppressing hippocampal c-Fos expression. The LY354740-induced increases in c-Fos expression in all the above regions were abolished by mGlu2, but not mGlu3, receptor deletion. Interestingly, basal c-Fos expression was significantly increased in the hippocampus of mGlu3, but not mGlu2, receptor knockouts compared to wild-type mice. Moreover, this increase was not suppressed by LY354740, such that in the CA3 region LY354740 now increased c-Fos expression in the mGlu3 knockouts. These results demonstrate that the LY354740-induced increases of c-Fos expression in specific brain regions, including the central and extended amygdala are specifically linked to mGlu2 receptors, and LY354740 suppressions of neuronal activity in the hippocampus are linked to mGlu3 receptors. PMID:16733060

  19. OptoGluNAM4.1, a Photoswitchable Allosteric Antagonist for Real-Time Control of mGlu4 Receptor Activity.

    PubMed

    Rovira, Xavier; Trapero, Ana; Pittolo, Silvia; Zussy, Charleine; Faucherre, Adèle; Jopling, Chris; Giraldo, Jesús; Pin, Jean-Philippe; Gorostiza, Pau; Goudet, Cyril; Llebaria, Amadeu

    2016-08-18

    OptoGluNAM4.1, a negative allosteric modulator (NAM) of metabotropic glutamate receptor 4 (mGlu4) contains a reactive group that covalently binds to the receptor and a blue-light-activated, fast-relaxing azobenzene group that allows reversible receptor activity photocontrol in vitro and in vivo. OptoGluNAM4.1 induces light-dependent behavior in zebrafish and reverses the activity of the mGlu4 agonist LSP4-2022 in a mice model of chronic pain, defining a photopharmacological tool to better elucidate the physiological roles of the mGlu4 receptor in the nervous system. PMID:27478159

  20. DSR-98776, a novel selective mGlu5 receptor negative allosteric modulator with potent antidepressant and antimanic activity.

    PubMed

    Kato, Taro; Takata, Makoto; Kitaichi, Maiko; Kassai, Momoe; Inoue, Mitsuhiro; Ishikawa, Chihiro; Hirose, Wataru; Yoshida, Kozo; Shimizu, Isao

    2015-06-15

    Modulation of monoaminergic systems has been the main stream of treatment for patients with mood disorders. However, recent evidence suggests that the glutamatergic system plays an important role in the pathophysiology of these disorders. This study pharmacologically characterized a structurally novel metabotropic glutamate 5 (mGlu5) receptor negative allosteric modulator, DSR-98776, and evaluated its effect on rodent models of depression and mania. First, DSR-98776 in vitro profile was assessed using intracellular calcium and radioligand binding assays. This compound showed dose-dependent inhibitory activity for mGlu5 receptors by binding to the same allosteric site as 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a known mGlu5 inhibitor. The in vivo therapeutic benefits of DSR-98776 were evaluated in common rodent models of depression and mania. In the rat forced swimming test, DSR-98776 (1-3mg/kg) significantly reduced rats immobility time after treatment for 7 consecutive days, while paroxetine (3 and 10mg/kg) required administration for 2 consecutive weeks to reduce rats immobility time. In the mouse forced swimming test, acute administration of DSR-98776 (10-30 mg/kg) significantly reduced immobility time. This effect was not influenced by 4-chloro-DL-phenylalanine methyl ester hydrochloride-induced 5-HT depletion. Finally, DSR-98776 (30 mg/kg) significantly decreased methamphetamine/chlordiazepoxide-induced hyperactivity in mice, which reflects this compound antimanic-like effect. These results indicate that DSR-98776 acts as an orally potent antidepressant and antimanic in rodent models and can be a promising therapeutic option for the treatment of a broad range of mood disorders with depressive and manic states. PMID:25823809

  1. Rational design, synthesis, and structure-activity relationship of benzoxazolones: new potent mglu5 receptor antagonists based on the fenobam structure.

    PubMed

    Ceccarelli, Simona M; Jaeschke, Georg; Buettelmann, Bernd; Huwyler, Jörg; Kolczewski, Sabine; Peters, Jens-Uwe; Prinssen, Eric; Porter, Richard; Spooren, Will; Vieira, Eric

    2007-03-01

    A novel class of potent and stable mGlu5 receptor antagonists was developed by combining information from a high-throughput screening campaign with the structure of the known anxiolytic fenobam. Representative compounds from this class show favorable pharmacokinetic properties and are active in an in vivo model of anxiety.

  2. Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes.

    PubMed

    Ciccarelli, R; Di Iorio, P; Bruno, V; Battaglia, G; D'Alimonte, I; D'Onofrio, M; Nicoletti, F; Caciagli, F

    1999-09-01

    Pharmacological activation of A(1) adenosine receptor with 2-chloro-N6-cyclopentyladenosine (CCPA) or mGlu3 metabotropic glutamate receptors with (2S,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG-IV) or aminopyrrolidine-2R, 4R-dicarboxylate (2R,4R-APDC) enhanced the release of nerve growth factor (NGF) or S-100beta protein from rat cultured astrocytes. Stimulation of release by CCPA and DCG-IV or 2R,4R-APDC was inhibited by the A(1) adenosine receptor antagonist 8-cyclopentyl-1, 3-dipropylxanthine and by the mGlu2/3 receptor antagonist (2S,1'S, 2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine (PCCG-4), respectively. Time-course studies revealed a profound difference between the release of S-100beta protein and the release of NGF in response to extracellular signals. Stimulation of S-100beta protein exhibited rapid kinetics, peaking after 1 h of drug treatment, whereas the enhancement of NGF release was much slower, requiring at least 6 h of A(1) adenosine or mGlu3 receptor activation. In addition, stimulation of NGF but not S-100beta release was substantially reduced in cultures treated with the protein synthesis inhibitor cycloheximide. In addition, a 6-8 h treatment of cultured astrocytes with A(1) or mGlu3 receptor agonists increased the levels of both NGF mRNA and NGF-like immunoreactive proteins, including NGF prohormone. We conclude that activation of A(1) adenosine or mGlu3 receptors produces pleiotropic effects in astrocytes, stimulating the synthesis and/or the release of protein factors. Astrocytes may therefore become targets for drugs that stimulate the local production of neurotrophic factors in the CNS, and this may provide the basis for a novel therapeutic strategy in chronic neurodegenerative disorders. PMID:10457374

  3. Regulation of group II metabotropic glutamate receptors by G protein-coupled receptor kinases: mGlu2 receptors are resistant to homologous desensitization.

    PubMed

    Iacovelli, L; Molinaro, G; Battaglia, G; Motolese, M; Di Menna, L; Alfiero, M; Blahos, J; Matrisciano, F; Corsi, M; Corti, C; Bruno, V; De Blasi, A; Nicoletti, F

    2009-04-01

    We examined the regulation of mGlu2 and mGlu3 metabotropic glutamate receptor signaling prompted by the emerging role of these receptor subtypes as therapeutic targets for psychiatric disorders, such as anxiety and schizophrenia. In transfected human embryonic kidney 293 cells, G-protein-coupled receptor kinase (GRK) 2 and GRK3 fully desensitized the agonist-dependent inhibition of cAMP formation mediated by mGlu3 receptors. In contrast, GRK2 or other GRKs did not desensitize the cAMP response to mGlu2 receptor activation. Desensitization of mGlu3 receptors by GRK2 required an intact kinase activity, as shown by the use of the kinase-dead mutant GRK2-K220R or the recombinant GRK2 C-terminal domain. Overexpression of beta-arrestin1 also desensitized mGlu3 receptors and did not affect the cAMP signaling mediated by mGlu2 receptors. The difference in the regulation of mGlu2 and mGlu3 receptors was signal-dependent because GRK2 desensitized the activation of the mitogen-activated protein kinase pathway mediated by both mGlu2 and mGlu3 receptors. In vivo studies confirmed the resistance of mGlu2 receptor-mediated cAMP signaling to homologous desensitization. Wild-type, mGlu2(-/-), or mGlu3(-/-) mice were treated intraperitoneally with saline or the mixed mGlu2/3 receptor agonist (-)-2-oxa-4-aminobicyclo[3.1.0]-exhane-4,6-dicarboxylic acid (LY379268; 1 mg/kg) once daily for 7 days. Inhibition of forskolin-stimulated cAMP formation by LY379268 was measured in cortical slices prepared 24 h after the last injection. Agonist pretreatment fully desensitized the cAMP response in wild-type and mGlu2(-/-) mice but had no effect in mGlu3(-/-) mice, in which LY379268 could only activate the mGlu2 receptor. We predict the lack of tolerance when mixed mGlu2/3 receptor agonists or selective mGlu2 enhancers are used continually in patients. PMID:19164443

  4. mGlu5 receptor antagonists: a novel class of anxiolytics?

    PubMed

    Spooren, Will; Gasparini, Fabrizio

    2004-05-01

    In the early 1990s, a new family of receptors were cloned that were found to mediate the intracellular metabolic effects of glutamate via coupling to secondary messenger systems, that is, the metabotropic glutamate (mGlu) receptors. Eight such receptors (mGlu1 to mGlu8) have been cloned to date, and according to their amino acid sequence, pharmacology and second-messenger coupling, these receptors have been clustered into three groups (I-III). In contrast to the glutamate-gated ion channels (NMDA, AMPA and kainate receptors), which are responsible for fast excitatory transmission, mGlu receptors have been shown to play a modulatory role in the glutamatergic synaptic transmission either by modulating the ion channel activity or by influencing neurotransmitter release. Given the fact that the mGlu receptors are G-protein- coupled, they obviously constitute a new attractive group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of group I (mGlu1 and mGlu5) and group II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain physiology and pathophysiology. The identification of MPEP (2-methyl-6-(phenylethynyl)-pyridine), a highly selective and brain-penetrant mGlu5 receptor antagonist, allowed the exploration of the therapeutic potential of this class of compounds. Subsequent behavior studies revealed that--with the exception of benzodiazepines--mGlu5 receptor antagonists exhibit the widest and most robust anxiolytic activity in preclinical models seen to date. Upcoming clinical studies will soon indicate if the preclinical anxiolytic-like efficacy translates into anxiolytic activity in humans. PMID:15334174

  5. Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent.

    PubMed

    Higgins, Guy A; Ballard, Theresa M; Kew, James N C; Richards, J Grayson; Kemp, John A; Adam, Geo; Woltering, Thomas; Nakanishi, Shigetada; Mutel, Vincent

    2004-06-01

    Atrophy of the medial temporal lobes, including the glutamatergic cortical-hippocampal circuitry, is an early event in Alzheimer's disease (AD) and probably contributes to the characteristic short-term mnemonic decline. Pharmacological strategies directly targeted to ameliorating this functional decline may represent a novel approach for the symptomatic treatment of AD. Presynaptic group II metabotropic glutamate receptors (i.e. mGlu2 and mGlu3) exert a powerful modulatory influence on the function of these pathways, in particular the perforant pathway. Using a combination of mGlu2 receptor knockout mice and the group II agonist LY354740, we show that activation of mGlu2 receptors produces a cognitive impairment, i.e. a delay-dependent deficit in delayed matching and non-matching to position, and impaired spatial learning in a Morris water maze. Conversely, a group II antagonist, LY341495, improved acquisition of spatial learning. LY354740 potently reduced field excitatory postsynaptic potentials in hippocampal slices from wild type but not mGlu2 receptor knockout mice. Taken together, these results suggest that activation of mGlu2 receptors evokes a powerful inhibitory effect on hippocampal synaptic transmission and mGlu2 agonists produce a cognitive deficit consistent with this change. Conversely, mGlu2 receptor antagonists may improve certain aspects of cognition and thus represent a novel approach for the symptomatic treatment of AD. PMID:15081787

  6. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light.

    PubMed

    Pritchett, David; Jagannath, Aarti; Brown, Laurence A; Tam, Shu K E; Hasan, Sibah; Gatti, Silvia; Harrison, Paul J; Bannerman, David M; Foster, Russell G; Peirson, Stuart N

    2015-01-01

    Sleep and/or circadian rhythm disruption (SCRD) is seen in up to 80% of schizophrenia patients. The co-morbidity of schizophrenia and SCRD may in part stem from dysfunction in common brain mechanisms, which include the glutamate system, and in particular, the group II metabotropic glutamate receptors mGlu2 and mGlu3 (encoded by the genes Grm2 and Grm3). These receptors are relevant to the pathophysiology and potential treatment of schizophrenia, and have also been implicated in sleep and circadian function. In the present study, we characterised the sleep and circadian rhythms of Grm2/3 double knockout (Grm2/3-/-) mice, to provide further evidence for the involvement of group II metabotropic glutamate receptors in the regulation of sleep and circadian rhythms. We report several novel findings. Firstly, Grm2/3-/- mice demonstrated a decrease in immobility-determined sleep time and an increase in immobility-determined sleep fragmentation. Secondly, Grm2/3-/- mice showed heightened sensitivity to the circadian effects of light, manifested as increased period lengthening in constant light, and greater phase delays in response to nocturnal light pulses. Greater light-induced phase delays were also exhibited by wildtype C57Bl/6J mice following administration of the mGlu2/3 negative allosteric modulator RO4432717. These results confirm the involvement of group II metabotropic glutamate receptors in photic entrainment and sleep regulation pathways. Finally, the diurnal wheel-running rhythms of Grm2/3-/- mice were perturbed under a standard light/dark cycle, but their diurnal rest-activity rhythms were unaltered in cages lacking running wheels, as determined with passive infrared motion detectors. Hence, when assessing the diurnal rest-activity rhythms of mice, the choice of assay can have a major bearing on the results obtained.

  7. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light

    PubMed Central

    Pritchett, David; Jagannath, Aarti; Brown, Laurence A.; Tam, Shu K. E.; Hasan, Sibah; Gatti, Silvia; Harrison, Paul J.; Bannerman, David M.; Foster, Russell G.; Peirson, Stuart N.

    2015-01-01

    Sleep and/or circadian rhythm disruption (SCRD) is seen in up to 80% of schizophrenia patients. The co-morbidity of schizophrenia and SCRD may in part stem from dysfunction in common brain mechanisms, which include the glutamate system, and in particular, the group II metabotropic glutamate receptors mGlu2 and mGlu3 (encoded by the genes Grm2 and Grm3). These receptors are relevant to the pathophysiology and potential treatment of schizophrenia, and have also been implicated in sleep and circadian function. In the present study, we characterised the sleep and circadian rhythms of Grm2/3 double knockout (Grm2/3-/-) mice, to provide further evidence for the involvement of group II metabotropic glutamate receptors in the regulation of sleep and circadian rhythms. We report several novel findings. Firstly, Grm2/3-/- mice demonstrated a decrease in immobility-determined sleep time and an increase in immobility-determined sleep fragmentation. Secondly, Grm2/3-/- mice showed heightened sensitivity to the circadian effects of light, manifested as increased period lengthening in constant light, and greater phase delays in response to nocturnal light pulses. Greater light-induced phase delays were also exhibited by wildtype C57Bl/6J mice following administration of the mGlu2/3 negative allosteric modulator RO4432717. These results confirm the involvement of group II metabotropic glutamate receptors in photic entrainment and sleep regulation pathways. Finally, the diurnal wheel-running rhythms of Grm2/3-/- mice were perturbed under a standard light/dark cycle, but their diurnal rest-activity rhythms were unaltered in cages lacking running wheels, as determined with passive infrared motion detectors. Hence, when assessing the diurnal rest-activity rhythms of mice, the choice of assay can have a major bearing on the results obtained. PMID:25950516

  8. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light.

    PubMed

    Pritchett, David; Jagannath, Aarti; Brown, Laurence A; Tam, Shu K E; Hasan, Sibah; Gatti, Silvia; Harrison, Paul J; Bannerman, David M; Foster, Russell G; Peirson, Stuart N

    2015-01-01

    Sleep and/or circadian rhythm disruption (SCRD) is seen in up to 80% of schizophrenia patients. The co-morbidity of schizophrenia and SCRD may in part stem from dysfunction in common brain mechanisms, which include the glutamate system, and in particular, the group II metabotropic glutamate receptors mGlu2 and mGlu3 (encoded by the genes Grm2 and Grm3). These receptors are relevant to the pathophysiology and potential treatment of schizophrenia, and have also been implicated in sleep and circadian function. In the present study, we characterised the sleep and circadian rhythms of Grm2/3 double knockout (Grm2/3-/-) mice, to provide further evidence for the involvement of group II metabotropic glutamate receptors in the regulation of sleep and circadian rhythms. We report several novel findings. Firstly, Grm2/3-/- mice demonstrated a decrease in immobility-determined sleep time and an increase in immobility-determined sleep fragmentation. Secondly, Grm2/3-/- mice showed heightened sensitivity to the circadian effects of light, manifested as increased period lengthening in constant light, and greater phase delays in response to nocturnal light pulses. Greater light-induced phase delays were also exhibited by wildtype C57Bl/6J mice following administration of the mGlu2/3 negative allosteric modulator RO4432717. These results confirm the involvement of group II metabotropic glutamate receptors in photic entrainment and sleep regulation pathways. Finally, the diurnal wheel-running rhythms of Grm2/3-/- mice were perturbed under a standard light/dark cycle, but their diurnal rest-activity rhythms were unaltered in cages lacking running wheels, as determined with passive infrared motion detectors. Hence, when assessing the diurnal rest-activity rhythms of mice, the choice of assay can have a major bearing on the results obtained. PMID:25950516

  9. mGlu3 receptor and astrocytes: partners in neuroprotection.

    PubMed

    Durand, Daniela; Carniglia, Lila; Caruso, Carla; Lasaga, Mercedes

    2013-03-01

    Astrocytes are currently studied intensively because of their now highlighted relevance as key players with neurons that modulate a wide range of central functions, from synaptic plasticity and synaptogenesis to regulation of metabolic and neuroinflammatory processes. Since the discovery of mGlu3 receptors on astrocytes, accumulating evidence supports a role of these receptors not only in maintaining synaptic homeostasis and treating psychiatric disorders but also in promoting astrocyte survival in several pathologic conditions. This review focuses on providing up-to-date knowledge regarding effects of activating astroglial mGlu3 receptors on psychiatric disorders, astrocyte and neuronal survival, and neurodegenerative diseases. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. PMID:22564439

  10. mGlu2/3 agonist-induced hyperthermia: an in vivo assay for detection of mGlu2/3 receptor antagonism and its relation to antidepressant-like efficacy in mice.

    PubMed

    Gleason, S D; Li, X; Smith, I A; Ephlin, J D; Wang, X-S; Heinz, B A; Carter, J H; Baez, M; Yu, J; Bender, D M; Witkin, J M

    2013-08-01

    An assay to detect the on-target effects of mGlu2/3 receptor antagonists in vivo would be valuable in guiding dosing regimens for the exploration of biological effects of potential therapeutic import. Multiple approaches involving blockade of mGlu2/3 receptor agoinist-driven behavioral effects in mice and rats were investigated. Most of these methods failed to provide a useful method of detection of antagonists in vivo (e.g., locomotor activity). In contrast, the mGlu2/3 receptor agonist LY379268 produced dose-dependent increases in body temperature of mice. The hyperthermic effects of LY379268 was abolished in mGlu2 and in mGlu2/3 receptor null mice but not in mGlu3 null mice. Hyperthermia was not produced by an mGlu8 receptor agonist. Agonist-induced hyperthermia was prevented in a dose-dependent manner by structurally-distinct mGlu2/3 receptor antagonists. The blockade was stereo-specific. Moreover, this biological readout was responsive to both orthosteric and to negative allosteric modulators of mGlu2/3 receptors. Antagonism of agonist-induced hyperthermia predicted antidepressant-like efficacy in the mouse forced swim test. As with the hyperthermic response, the antidepressant-like effects of mGlu2/3 receptor antagonists were shown to be due to mGlu2 and not to mGlu3 or mGlu8 receptors through the use of receptor knock-out mice. The ability to rapidly assess on-target activity of mGlu2/3 receptor antagonists enables determination of parameters for setting efficacy doses in vivo. In turn, efficacy-related data in the preclinical laboratory can help to set expectations of therapeutic potential and dosing in humans. PMID:23574174

  11. Astroglial mGlu3 receptors promote alpha-secretase-mediated amyloid precursor protein cleavage.

    PubMed

    Durand, Daniela; Carniglia, Lila; Beauquis, Juan; Caruso, Carla; Saravia, Flavia; Lasaga, Mercedes

    2014-04-01

    Amyloid precursor protein (APP) shedding yields the Alzheimer's disease (AD)-related peptide amyloid β (Aβ) through β- and γ-secretase cleavage. Alternatively, α-secretase cleavage generates a soluble and neuroprotective fragment (sAPPα) while precludes the production of Aβ. Although metabotropic glutamate (mGlu) receptors were associated with induction of sAPPα production in astrocytes, there was no further evidence regarding the specific subtype receptor or the mechanisms involved in this action. In the present study, we used the dual mGlu2/3 receptor agonist LY379268, which in pure astrocyte cultures selectively activates mGlu3 receptor subtype since mGlu2 receptor subtype is not expressed by these cells. We showed that LY379268 incremented sAPPα release from cultured astrocytes by inducing α-secretases expression, whereas it decreased β-secretase levels. LY379268-induced increase of PPAR-γ levels could be involved in the effect of the agonist on sAPPα release. Using the PDAPP-J20 murine model of AD we described a strong reduction in mGlu2/3 receptor expression in the hippocampus of 5- and 14-month-old transgenic mice compared to control littermates. Moreover, mGlu3 receptor expression is also decreased specifically in hippocampal astrocytes of these transgenic animals as a function of age. Therefore, diminished levels of hippocampal mGlu3 receptors might have implications in the development of the disease in these transgenic mice considering the anti-amyloidogenic action of mGlu3 receptors in astrocytes. PMID:24291464

  12. Chemical Modulation of Mutant mGlu1 Receptors Derived from Deleterious GRM1 Mutations Found in Schizophrenics

    PubMed Central

    2014-01-01

    Schizophrenia is a complex and highly heterogeneous psychiatric disorder whose precise etiology remains elusive. While genome-wide association studies (GWAS) have identified risk genes, they have failed to determine if rare coding single nucleotide polymorphisms (nsSNPs) contribute in schizophrenia. Recently, two independent studies identified 12 rare, deleterious nsSNPS in the GRM1 gene, which encodes the metabotropic glutamate receptor subtype 1 (mGlu1), in schizophrenic patients. Here, we generated stable cell lines expressing the mGlu1 mutant receptors and assessed their pharmacology. Using both the endogenous agonist glutamate and the synthetic agonist DHPG, we found that several of the mutant mGlu1 receptors displayed a loss of function that was not due to a loss in plasma membrane expression. Due to a lack of mGlu1 positive allosteric modulators (PAM) tool compounds active at human mGlu1, we optimized a known mGlu4 PAM/mGlu1 NAM chemotype into a series of potent and selective mGlu1 PAMs by virtue of a double “molecular switch”. Employing mGlu1 PAMs from multiple chemotypes, we demonstrate that the mutant receptors can be potentiated by small molecules and in some cases efficacy restored to that comparable to wild type mGlu1 receptors, suggesting deficits in patients with schizophrenia due to these mutations may be amenable to intervention with an mGlu1 PAM. However, in wild type animals, mGlu1 negative allosteric modulators (NAMs) are efficacious in classic models predictive of antipsychotic activity, whereas we show that mGlu1 PAMs have no effect to slight potentiation in these models. These data further highlight the heterogeneity of schizophrenia and the critical role of patient selection strategies in psychiatric clinical trials to match genotype with therapeutic mechanism. PMID:25137254

  13. The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection.

    PubMed

    Corti, Corrado; Battaglia, Giuseppe; Molinaro, Gemma; Riozzi, Barbara; Pittaluga, Anna; Corsi, Mauro; Mugnaini, Manolo; Nicoletti, Ferdinando; Bruno, Valeria

    2007-08-01

    Dual metabotropic glutamate 2/3 (mGlu2/3) receptor agonists have been examined with success in the clinic with positive proof of efficacy in several tests of anxiety and schizophrenia. Moreover, a large body of evidence has accumulated that these drugs have significant neuroprotective potential. An important discussion in the field deals with dissecting effects on mGlu2 versus effects on mGlu3 receptors, which is relevant for the potential use of subtype-selective agonists or allosteric activators. We addressed this issue using mGlu2 and mGlu3 receptor knock-out mice. We used mixed cultures of cortical cells in which astrocytes and neurons were plated at different times and could therefore originate from different mice. Cultures were challenged with NMDA for the induction of excitotoxic neuronal death. The mGlu2/3 receptor agonist, (-)-2-oxa-4-aminocyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), was equally neuroprotective in cultures containing neurons from wild-type, mGlu2-/-, or mGlu3-/- mice. Neuroprotection was instead abolished when astrocytes lacked mGlu3 receptors, unless neuronal mGlu2 receptors were also absent. The latter condition partially restored the protective activity of LY379268. Cultures in which neurons originated from mGlu2-/- mice were also intrinsically resistant to NMDA toxicity. In in vivo experiments, systemic administration of LY379268 protected striatal neurons against NMDA toxicity in wild-type and mGlu2-/- mice but not in mGlu3-/- mice. In addition, LY379268 was protective against nigrostriatal degeneration induced by low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine only in mice lacking mGlu2 receptors. We conclude that neuroprotection by mGlu2/3 receptor agonists requires the activation of astrocytic mGlu3 receptors, whereas, unexpectedly, activation of mGlu2 receptors might be harmful to neurons exposed to toxic insults. PMID:17670976

  14. Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039).

    PubMed

    Fell, Matthew J; Svensson, Kjell A; Johnson, Bryan G; Schoepp, Darryle D

    2008-07-01

    (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) is a potent and selective group II metabotropic glutamate [(mGlu)2 and mGlu3] receptor agonist for which its prodrug LY2140023 [(1R,4S,5S,6S)-2-thiabicyclo[3.1.0]-hexane-4,6-dicarboxylic acid,4-[(2S)-2-amino-4-(methylthio)-1-oxobutyl]amino-, 2,2-dioxide monohydrate] has recently been shown to have efficacy in the treatment of the positive and negative symptoms of schizophrenia. In this article, we use mGlu receptor-deficient mice to investigate the relative contribution of mGlu2 and mGlu3 receptors in mediating the antipsychotic profile of LY404039 in the phencyclidine (PCP) and d-amphetamine (AMP) models of psychosis. To further explore the mechanism of action of LY404039, we compared the drugs' ability to block PCP-induced hyperlocomotion to that of atypical antipsychotics in wild-type and mice lacking mGlu2/3 receptors. In wild-type animals, LY404039 (3-30 mg/kg i.p.) significantly reversed AMP (5 mg/kg, i.p.)-induced increases in ambulations, distance traveled, and reduced time spent at rest. LY404039 reversed PCP (7.5 mg/kg i.p.)-evoked behaviors at 10 mg/kg. The antipsychotic-like effects of LY404039 (10 mg/kg i.p.) on PCP and AMP-evoked behavioral activation were absent in mGlu2 and mGlu2/3 but not in mGlu3 receptor-deficient mice, indicating that the activation of mGlu2 and not mGlu3 receptors is responsible for the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039. In contrast, the atypical antipsychotic drugs clozapine and risperidone inhibited PCP-evoked behaviors in both wild-type and mGlu2/3 receptor-deficient mice. These data demonstrate that the antipsychotic-like effects of the mGlu2/3 receptor agonist LY404039 in psychostimulant models of psychosis are mechanistically distinct from those of atypical antipsychotic drugs and are dependent on functional mGlu2 and not mGlu3 receptors. PMID:18424625

  15. Synthesis and metabotropic glutamate receptor activity of S-oxidized variants of (-)-4-amino-2-thiabicyclo-[3.1.0]hexane-4,6-dicarboxylate: identification of potent, selective, and orally bioavailable agonists for mGlu2/3 receptors.

    PubMed

    Monn, James A; Massey, Steven M; Valli, Matthew J; Henry, Steven S; Stephenson, Gregory A; Bures, Mark; Hérin, Marc; Catlow, John; Giera, Deborah; Wright, Rebecca A; Johnson, Bryan G; Andis, Sherri L; Kingston, Ann; Schoepp, Darryle D

    2007-01-25

    (-)-4-Amino-2-thiabicyclo-[3.1.0]hexane-4,6-dicarboxylate (LY389795, (-)-3) is a highly potent and selective agonist of metabotropic glutamate receptors 2 (mGlu2) and 3 (mGlu3). As part of our ongoing research program, we have prepared S-oxidized variants of (-)-3, compounds (-)-10, (+)-11 (LY404040), and (-)-12 (LY404039). Each of these chiral heterobicyclic amino acids displaced specific binding of the mGlu2/3 receptor antagonist 3H-2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (3H-LY341495) from membranes expressing recombinant human mGlu2 or mGlu3 and acted as potent agonists in cells expressing these receptor subtypes. Docking of the most potent of these derivatives, (+)-11, to mGlu2 revealed the possibility of an additional H-bond interaction between the sulfoxide oxygen of (+)-11 with tyrosine residue Y236. Pharmacokinetic analysis of mGlu active enantiomers (+)-11 and (-)-12 in rats showed each to be well absorbed following oral administration. Consistent with their mGlu2/3 agonist potency and pharmacokinetic properties, both (+)-11 and (-)-12 blocked phencyclidine-evoked ambulations in a dose-dependent manner, indicating their potential as nonclassical antipsychotic agents. PMID:17228865

  16. Positive allosteric modulation reveals a specific role for mGlu2 receptors in sensory processing in the thalamus.

    PubMed

    Copeland, C S; Neale, S A; Salt, T E

    2012-02-15

    Group II metabotropic glutamate receptor (mGlu) modulation of sensory processing in the rat ventrobasal thalamic nucleus (VB) has been extensively studied in vivo. However, it is not yet known what the relative contributions are of the Group II mGlu receptor subtypes (mGlu2 and mGlu3) to this modulation, nor to what extent these receptors may be activated under physiological conditions during this process. Using single-neurone recording in the rat VB in vivo with local application of the selective Group II agonist LY354740 and the subtype selective mGlu2 positive allosteric modulator (PAM) LY487379, our findings were twofold. Firstly, we found that there is an mGlu2 component to the effects of LY354740 on sensory responses in the VB. Secondly, we have demonstrated that application of the PAM alone can modulate sensory responses of single neurones in vivo. This indicates that mGlu2 receptors can be activated by endogenous agonist following physiological sensory stimulation. We speculate that the mGlu2 subtype could be activated under physiological stimulus-evoked conditions by 'glutamate spillover' from synapses between excitatory sensory afferents and VB neurones that can lead to a reduction in sensory-evoked inhibition arising from the thalamic reticular nucleus (TRN). We propose that this potential mGlu2 receptor modulation of inhibition could play an important role in discerning relevant information from background activity upon physiological sensory stimulation. Furthermore, this could be a site of action for mGlu2 PAMs to modulate cognitive processes. PMID:22199165

  17. Potentiation of mGlu5 receptors with the novel enhancer, VU0360172, reduces spontaneous absence seizures in WAG/Rij rats.

    PubMed

    D'Amore, V; Santolini, I; van Rijn, C M; Biagioni, F; Molinaro, G; Prete, A; Conn, P J; Lindsley, C W; Zhou, Y; Vinson, P N; Rodriguez, A L; Jones, C K; Stauffer, S R; Nicoletti, F; van Luijtelaar, G; Ngomba, R T

    2013-03-01

    Absence epilepsy is generated by the cortico-thalamo-cortical network, which undergoes a finely tuned regulation by metabotropic glutamate (mGlu) receptors. We have shown previously that potentiation of mGlu1 receptors reduces spontaneous occurring spike and wave discharges (SWDs) in the WAG/Rij rat model of absence epilepsy, whereas activation of mGlu2/3 and mGlu4 receptors produces the opposite effect. Here, we have extended the study to mGlu5 receptors, which are known to be highly expressed within the cortico-thalamo-cortical network. We used presymptomatic and symptomatic WAG/Rij rats and aged-matched ACI rats. WAG/Rij rats showed a reduction in the mGlu5 receptor protein levels and in the mGlu5-receptor mediated stimulation of polyphosphoinositide hydrolysis in the ventrobasal thalamus, whereas the expression of mGlu5 receptors was increased in the somatosensory cortex. Interestingly, these changes preceded the onset of the epileptic phenotype, being already visible in pre-symptomatic WAG/Rij rats. SWDs in symptomatic WAG/Rij rats were not influenced by pharmacological blockade of mGlu5 receptors with MTEP (10 or 30 mg/kg, i.p.), but were significantly decreased by mGlu5 receptor potentiation with the novel enhancer, VU0360172 (3 or 10 mg/kg, s.c.), without affecting motor behaviour. The effect of VU0360172 was prevented by co-treatment with MTEP. These findings suggest that changes in mGlu5 receptors might lie at the core of the absence-seizure prone phenotype of WAG/Rij rats, and that mGlu5 receptor enhancers are potential candidates to the treatment of absence epilepsy. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. PMID:22705340

  18. Potentiation of mGlu5 receptors with the novel enhancer, VU0360172, reduces spontaneous absence seizures in WAG/Rij rats

    PubMed Central

    D’Amore, V.; Santolini, I.; van Rijn, C.M.; Biagioni, F.; Molinaro, G.; Prete, A.; Conn, P.J.; Lindsley, C.W.; Zhou, Y.; Vinson, P.N.; Rodriguez, A.L.; Jones, C.K.; Stauffer, S.R.; Nicoletti, F.; van Luijtelaar, G.; Ngomba, R.T.

    2013-01-01

    Absence epilepsy is generated by the cortico-thalamo-cortical network, which undergoes a finely tuned regulation by metabotropic glutamate (mGlu) receptors. We have shown previously that potentiation of mGlu1 receptors reduces spontaneous occurring spike and wave discharges (SWDs) in the WAG/Rij rat model of absence epilepsy, whereas activation of mGlu2/3 and mGlu4 receptors produces the opposite effect. Here, we have extended the study to mGlu5 receptors, which are known to be highly expressed within the cortico-thalamo-cortical network. We used presymptomatic and symptomatic WAG/Rij rats and aged-matched ACI rats. WAG/Rij rats showed a reduction in the mGlu5 receptor protein levels and in the mGlu5-receptor mediated stimulation of polyphosphoinositide hydrolysis in the ventrobasal thalamus, whereas the expression of mGlu5 receptors was increased in the somatosensory cortex. Interestingly, these changes preceded the onset of the epileptic phenotype, being already visible in pre-symptomatic WAG/Rij rats. SWDs in symptomatic WAG/Rij rats were not influenced by pharmacological blockade of mGlu5 receptors with MTEP (10 or 30 mg/kg, i.p.), but were significantly decreased by mGlu5 receptor potentiation with the novel enhancer, VU0360172 (3 or 10 mg/kg, s.c.), without affecting motor behaviour. The effect of VU0360172 was prevented by co-treatment with MTEP. These findings suggest that changes in mGlu5 receptors might lie at the core of the absence-seizure prone phenotype of WAG/Rij rats, and that mGlu5 receptor enhancers are potential candidates to the treatment of absence epilepsy. PMID:22705340

  19. Activation of mGlu3 metabotropic glutamate receptors enhances GDNF and GLT-1 formation in the spinal cord and rescues motor neurons in the SOD-1 mouse model of amyotrophic lateral sclerosis.

    PubMed

    Battaglia, Giuseppe; Riozzi, Barbara; Bucci, Domenico; Di Menna, Luisa; Molinaro, Gemma; Pallottino, Simone; Nicoletti, Ferdinando; Bruno, Valeria

    2015-02-01

    Enhancement of glial-derived neurotrophic factor (GDNF) is an established therapeutic target for amyotrophic lateral sclerosis (ALS). Activation of group II metabotropic glutamate (mGlu) receptors with the orthosteric agonist, LY379268, enhanced GDNF levels in cultured spinal cord astrocytes from wild-type mice and mGlu2(-/-) mice, but not in astrocytes from mGlu3(-/-) mice. LY379268 protected Sternberger monoclonal incorporated antibody-32 (SMI-32)(+) motor neurons against excitotoxic death in mixed cultures of spinal cord cells, and its action was abrogated by anti-GDNF antibodies. Acute systemic injection of LY379268 (0.5, 1 or 5mg/kg, i.p.) enhanced spinal cord GDNF levels in wild-type and mGlu2(-/-) mice, but not in mGlu3(-/-) mice. No tolerance developed to the GDNF-enhancing effect of LY379268 when the drug was continuously delivered for 28days by means of s.c. osmotic minipumps (0.5-5mg/day). Double fluorescent immunostaining showed a co-localization of GDNF with the astrocyte marker, GFAP, but not with the neuronal marker, Neuronal Nuclear Antigen (NeuN), or with SMI-32. Continuous infusion of LY379268 also enhanced the expression of the glutamate transporter GLT-1, in the spinal cord. These data laid the groundwork for the study of LY379268 in ALS mice. Continuous treatment with 1 or 5mg/kg/day with LY379268 had a beneficial effect on neurological disability in SOD1G93A mice. At day 40 of treatment, LY379268 enhanced spinal cord levels of GDNF and GLT-1, and rescued spinal cord motor neurons, as assessed by stereologic counting of SMI-32(+) cells. LY379268 had no significant effect on the mortality rate of SODG93A. These findings encourage the development of selective mGlu3 receptor agonists/enhancers as neuroprotective agents in ALS. PMID:25434487

  20. Prolonged administration of antidepressant drugs leads to increased binding of [(3)H]MPEP to mGlu5 receptors.

    PubMed

    Nowak, Gabriel; Pomierny-Chamioło, Lucyna; Siwek, Agata; Niedzielska, Ewa; Pomierny, Bartosz; Pałucha-Poniewiera, Agnieszka; Pilc, Andrzej

    2014-09-01

    Metabotropic glutamate 5 (mGlu5) receptors are functionally connected with NMDA receptors. The antidepressant activity of the NMDA receptor antagonist ketamine in both preclinical and clinical studies, along with the antidepressant-like activities of negative allosteric modulators (NAMs) of mGlu5, led us to investigate if prolonged administration of various antidepressant drugs or the mGlu5 NAM, MTEP, causes changes in mGlu5 receptor availability or protein expression or in expression of Homer proteins in the rat brain. Our results clearly show that prolonged treatment with antidepressants with various mechanisms of action (such as escitalopram, reboxetine, milnacipran, moclobemide and imipramine) or with MTEP led to significant increases in [(3)H]MPEP binding in homogenates of the hippocampus and/or cerebral cortex. Increases in mGlu5 expression were also observed, though they did not always parallel the increase in binding. The results indicate that adaptive up-regulation of mGlu5 receptors may be a common change induced by antidepressant drugs. PMID:24796254

  1. L-Acetylcarnitine induces analgesia by selectively up-regulating mGlu2 metabotropic glutamate receptors.

    PubMed

    Chiechio, S; Caricasole, A; Barletta, E; Storto, M; Catania, M V; Copani, A; Vertechy, M; Nicolai, R; Calvani, M; Melchiorri, D; Nicoletti, F

    2002-05-01

    L-Acetylcarnitine (LAC, 100 mg/kg, s.c.), a drug commonly used for the treatment of painful neuropathies, substantially reduced mechanical allodynia in rats subjected to monolateral chronic constriction injury (CCI) of the sciatic nerve and also attenuated acute thermal pain in intact rats. In both cases, induction of analgesia required repeated injections of LAC, suggesting that the drug induces plastic changes within the nociceptive pathway. In both CCI- and sham-operated rats, a 24-day treatment with LAC increased the expression of metabotropic glutamate (mGlu) receptors 2 and 3 in the lumbar segment of the spinal cord, without changing the expression of mGlu1a or -5 receptors. A similar up-regulation of mGlu2/3 receptors was detected in the dorsal horns and dorsal root ganglia of intact rats treated with LAC for 5-7 days, a time sufficient for the induction of thermal analgesia. Immunohistochemical analysis showed that LAC treatment enhanced mGlu2/3 immunoreactivity in the inner part of lamina II and in laminae III and IV of the spinal cord. An increased mGlu2/3 receptor expression was also observed in the cerebral cortex but not in the hippocampus or cerebellum of LAC-treated animals. Reverse transcription-polymerase chain reaction combined with Northern blot analysis showed that repeated LAC injections selectively induced mGlu2 mRNA in the dorsal horns and cerebral cortex (but not in the hippocampus). mGlu3 mRNA levels did not change in any brain region of LAC-treated animals. To examine whether the selective up-regulation of mGlu2 receptors had any role in LAC-induced analgesia, we have used the novel compound LY 341495, which is a potent and systemically active mGlu2/3 receptor antagonist. LAC-induced analgesia was largely reduced 45 to 75 min after a single injection of LY 341495 (1 mg/kg, i.p.) in both CCI rats tested for mechanical allodynia and intact rats tested for thermal pain. We conclude that LAC produces analgesia against chronic pain produced not

  2. Opposite influence of the metabotropic glutamate receptor subtypes mGlu3 and -5 on astrocyte proliferation in culture.

    PubMed

    Ciccarelli, R; Sureda, F X; Casabona, G; Di Iorio, P; Caruso, A; Spinella, F; Condorelli, D F; Nicoletti, F; Caciagli, F

    1997-12-01

    In non-synchronized, subconfluent secondary cultures of rat cortical astrocytes, the selective group-I metabotropic glutamate (mGlu) receptor agonist 3,5-dihydroxyphenylglycine (DHPG) increased [methyl-3H]-thymidine incorporation. This effect was mediated by the activation of the mGlu5 receptor, which was shown to be present by either RT-PCR or Western blot analysis. The mixed mGlu receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine reduced the increase in both intracellular Ca2+ and [methyl-3H]-thymidine incorporation produced by DHPG. In contrast, (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV), a potent and selective agonist of group-II mGlu receptors, reduced [methyl-3H]-thymidine incorporation in non-synchronized astrocyte cultures. The antiproliferative effect of DCG-IV was prevented by the selective group-II mGlu receptor antagonist (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine (PCCG-IV). The opposite effect of DHPG and DCG-IV on astrocyte proliferation was confirmed in cultures deprived of serum for 48 hours and then stimulated to proliferate with either epidermal growth factor (EGF) or the metabolically stable ATP analogue adenosine 5'-(beta,gamma-imido)-triphosphate (AMP-PNP). We conclude that activation of mGlu5 receptors enhances proliferation in cultured astrocytes, whereas activation of a receptor with pharmacological characteristics similar to those of mGlu2/3 receptors reduces proliferation. PMID:9419014

  3. Biphasic modulation by mGlu5 receptors of TRPV1-mediated intracellular calcium elevation in sensory neurons contributes to heat sensitivity

    PubMed Central

    Masuoka, T; Nakamura, T; Kudo, M; Yoshida, J; Takaoka, Y; Kato, N; Ishibashi, T; Imaizumi, N; Nishio, M

    2015-01-01

    Background and Purpose Elevation of glutamate, an excitatory amino acid, during inflammation and injury plays a crucial role in the reception and transmission of sensory information via ionotropic and metabotropic receptors. This study aimed to investigate the mechanisms underlying the biphasic effects of metabotropic glutamate mGlu5 receptor activation on responses to noxious heat. Experimental Approach We assessed the effects of intraplantar quisqualate, a non-selective glutamate receptor agonist, on heat and mechanical pain behaviours in mice. In addition, the effects of quisqualate on the intracellular calcium response and on membrane currents mediated by TRPV1 channels, were examined in cultured dorsal root ganglion neurons from mice. Key Results Activation of mGlu5 receptors in hind paw transiently increased, then decreased, the response to noxious heat. In sensory neurons, activation of mGlu5 receptors potentiated TRPV1-mediated intracellular calcium elevation, while terminating activation of mGlu5 receptors depressed it. TRPV1-induced currents were potentiated by activation of mGlu5 receptors under voltage clamp conditions and these disappeared after washout. However, voltage-gated calcium currents were inhibited by the mGlu5 receptor agonist, even after washout. Conclusions and Implications These results suggest that, in sensory neurons, mGlu5 receptors biphasically modulate TRPV1-mediated intracellular calcium response via transient potentiation of TRPV1 channel-induced currents and persistent inhibition of voltage-gated calcium currents, contributing to heat hyper- and hypoalgesia. PMID:25297838

  4. Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand.

    PubMed

    Taylor, Deanna L; Jones, Fleur; Kubota, Eva S F Chen Seho; Pocock, Jennifer M

    2005-03-16

    Activated microglia may be detrimental to neuronal survival in a number of neurodegenerative diseases. Thus, strategies that reduce microglial neurotoxicity may have therapeutic benefit. Stimulation of group II metabotropic glutamate (mGlu) receptors on rat primary microglia with the specific group II agonist 2S,2'R,3'R-2-(2',3'-dicarboxy-cyclopropyl)glycine for 24 h induced microglial activation and resulted in a neurotoxic microglial phenotype. These effects were attributable to preferential mGlu2 stimulation, because N-acetyl-L-aspartyl-L-glutamate, a specific mGlu3 agonist, did not induce microglial activation or neurotoxicity. Stimulation of microglial mGlu2 but not mGlu3 induced caspase-3 activation in cerebellar granule neurons in culture, using microglial-conditioned media as well as cocultures. Stimulation of microglial mGlu2 induced tumor necrosis factor-alpha (TNFalpha) release, which contributed to microglial neurotoxicity mediated via neuronal TNF receptor 1 and caspase-3 activation. Stimulation of microglial group I or III mGlu receptors did not induce TNFalpha release. TNFalpha was only neurotoxic in the presence of microglia or microglial-conditioned medium. The toxicity of TNFalpha could be prevented by coexposure of neurons to conditioned medium from microglia stimulated by the specific group III agonist L-2-amino-4-phosphono-butyric acid. The neurotoxicity of TNFalpha derived from mGlu2-stimulated microglia was potentiated by microglial-derived Fas ligand (FasL), the death receptor ligand. FasL was constitutively expressed in microglia and shed after mGlu2 stimulation. Our data suggest that selective and inverse modulation of microglial mGlu2 and mGlu3 may prove a therapeutic target in neuroinflammatory diseases such as Alzheimer's disease and multiple sclerosis. PMID:15772355

  5. Chronic imipramine treatment reduces inhibitory properties of group II mGlu receptors without affecting their density or affinity.

    PubMed

    Pałucha, Agnieszka; Brański, Piotr; Kĺak, Kinga; Sowa, Magdalena

    2007-01-01

    An increasing body of evidence indicates an important role of the glutamatergic system in the pathophysiology of depression. Not only ionotropic but also metabotropic glutamate receptors (mGlu receptors) have been suggested to be involved in the mechanism of action of antidepressant drugs. Moreover, several mGlu receptor ligands possess a great antidepressant potential. Group II mGlu receptor antagonists have been shown to induce antidepressant-like effects in rodents. An influence of chronic antidepressant treatment on group II mGlu receptors has also been suggested. In our studies, we examined an influence of repeated (21-day) imipramine treatment on the density of group II mGlu receptors and affinity of mGlu2 and mGlu3 receptor radioligand [3H]-LY341495 for group II mGlu receptors in the rat brain hippocampus and frontal cortex. Moreover, we analyzed an influence of chronic imipramine administration on the ability of group II mGlu receptor agonist, 2R,4R-APDC, to inhibit forskolin-stimulated cAMP accumulation in the rat brain cortical slices. We found that inhibitory properties of group II mGlu receptors were diminished after chronic, but not acute imipramine administration. However, no changes in the density or affinity of the mGlu2 and mGlu3 receptor ligand for group II mGlu receptors were observed. PMID:18048952

  6. Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schizophrenia?

    PubMed

    DD, Darryle D Schoepp; Marek, Gerard J

    2002-04-01

    Agonists for mGlu2/3 receptors decrease the evoked release of glutamate at certain (ie. forebrain / limbic) glutamatergic synapses, indicating that the functional role of mGlu2 and/or mGlu3 receptors is to suppress glutamate excitations. This offers a mechanism for dampening glutamate excitation under pathological states resulting from excessive glutamate release. Based, in part, on the psychotomimetic actions of phencyclidine (PCP)- like drugs, excessive or pathological glutamate release has been implicated in a number of clinical conditions including psychosis. With this in mind, the pharmacology of multiple mGlu2/3 receptor agonists have been investigated in PCP treated rats. Agonists for mGlu2/3 receptors such as LY354740 and LY379268 have been shown to block certain behavioral responses to PCP in rats. The effects of mGlu2/3 agonists on PCP-induced behaviors are blocked by a low doses of a selective mGlu2/3 receptor antagonist, indicating that these actions are mediated via mGlu2/3 receptors. In addition, mGlu2/3 agonists potently suppress glutamate release in rat prefrontal cortex, as reflected by excitatory post-synaptic potentials (EPSPs) induced by serotonin (5-HT) acting on 5HT(2A) receptors. These actions of LY354740 and LY379268 are also blocked by a selective mGlu2/3 antagonist. Atypical antipsychotic drugs such as clozapine also suppress 5-HT-induced EPSPs in this brain region, thus suggesting a common pathway for the actions of atypical antipsychotic drugs and mGlu2/3 receptor agonists. As glutamatergic dysfunction has been implicated in psychotic states and possibly in the etiology of schizophrenia, clinical studies with mGlu2/3 agonists may be warranted to further explore the validity of the glutamatergic hypothesis of schizophrenia. PMID:12769628

  7. QSAR design of triazolopyridine mGlu2 receptor positive allosteric modulators.

    PubMed

    Tresadern, Gary; Cid, José-Maria; Trabanco, Andrés A

    2014-09-01

    Two QSAR approaches were applied to assist the design and to prioritise the synthesis of new active mGlu2 receptor positive allosteric modulators (PAMs). With the aim to explore a particular point of substitution the models successfully prioritised molecules originating from chemistry ideas and a large virtual library. The two methods, 3D topomer CoMFA and support vector machines with 2D ECFP6 fingerprints, delivered good correlation and success in this prospective application. Fourteen molecules with different substituent decoration were identified by the in silico models and synthesised. They were found to be highly active and their mGlu2 receptor PAM activity (pEC50) was predicted within 0.3 and 0.4log units of error with the two methods. The value of the molecules and the models for the future of the project is discussed. PMID:25086773

  8. [3H]-LY341495 as a novel antagonist radioligand for group II metabotropic glutamate (mGlu) receptors: characterization of binding to membranes of mGlu receptor subtype expressing cells.

    PubMed

    Johnson, B G; Wright, R A; Arnold, M B; Wheeler, W J; Ornstein, P L; Schoepp, D D

    1999-10-01

    Metabotropic glutamate (mGlu) receptors are a family of eight known subtypes termed mGlu1-8. Currently, few ligands are available to study the pharmacology of mGlu receptor subtypes. In functional assays, we previously described LY341495 as a highly potent and selective mGlu2 and mGlu3 receptor antagonist. In this study, radiolabeled [3H]-LY341495 was used to investigate the characteristics of receptor binding to membranes from cells expressing human mGlu receptor subtypes. Using membranes from cells expressing human mGlu2 and mGlu3 receptors, [3H]-LY341495 (1 nM) specific binding was > 90% of total binding. At an approximate K(D) concentration for [3H]-LY341495 binding to human mGlu2 and mGlu3 receptors (1 nM), no appreciable specific binding of [3H-]LY341495 was found in membranes of cells expressing human mGlu1a, mGlu5a, mGlu4a, mGlu6, or mGlu7a receptors. However, modest (approximately 20% of mGlu2/3) specific [3H]-LY341495 (1 nM) binding was observed in human mGlu8 expressing cells. [3H]-LY341495 bound to membranes expressing human mGlu2 and mGlu3 receptors in a reversible and saturable manner with relatively high affinities (Bmax 20.5 +/- 5.4 and 32.0 +/- 7.0 pmol/mg protein; and K(D) = 1.67 +/- 0.20 and 0.75 +/- 0.43 nM, respectively). The pharmacology of [3H]-LY341495 binding in mGlu2 and mGlu3 expressing cells was consistent with that previously described for LY341495 in functional assays. [3H]-LY341495 binding provides a useful way to further investigate regulation of receptor expression and pharmacological properties of mGlu2 and mGlu3 receptor subtypes in recombinant systems. PMID:10530814

  9. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia.

    PubMed

    Moreno, José L; Miranda-Azpiazu, Patricia; García-Bea, Aintzane; Younkin, Jason; Cui, Meng; Kozlenkov, Alexey; Ben-Ezra, Ariel; Voloudakis, Georgios; Fakira, Amanda K; Baki, Lia; Ge, Yongchao; Georgakopoulos, Anastasios; Morón, José A; Milligan, Graeme; López-Giménez, Juan F; Robakis, Nikolaos K; Logothetis, Diomedes E; Meana, J Javier; González-Maeso, Javier

    2016-01-12

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) can form multiprotein complexes (heteromers), which can alter the pharmacology and functions of the constituent receptors. Previous findings demonstrated that the Gq/11-coupled serotonin 5-HT2A receptor and the Gi/o-coupled metabotropic glutamate 2 (mGlu2) receptor-GPCRs that are involved in signaling alterations associated with psychosis-assemble into a heteromeric complex in the mammalian brain. In single-cell experiments with various mutant versions of the mGlu2 receptor, we showed that stimulation of cells expressing mGlu2-5-HT2A heteromers with an mGlu2 agonist led to activation of Gq/11 proteins by the 5-HT2A receptors. For this crosstalk to occur, one of the mGlu2 subunits had to couple to Gi/o proteins, and we determined the relative location of the Gi/o-contacting subunit within the mGlu2 homodimer of the heteromeric complex. Additionally, mGlu2-dependent activation of Gq/11, but not Gi/o, was reduced in the frontal cortex of 5-HT2A knockout mice and was reduced in the frontal cortex of postmortem brains from schizophrenic patients. These findings offer structural insights into this important target in molecular psychiatry.

  10. Pharmacological and pharmacokinetic properties of JNJ-40411813, a positive allosteric modulator of the mGlu2 receptor

    PubMed Central

    Lavreysen, Hilde; Ahnaou, Abdellah; Drinkenburg, Wilhelmus; Langlois, Xavier; Mackie, Claire; Pype, Stefan; Lütjens, Robert; Le Poul, Emmanuel; Trabanco, Andrés A; Nuñez, José María Cid

    2015-01-01

    Compounds modulating metabotropic glutamate type 2 (mGlu2) receptor activity may have therapeutic benefits in treating psychiatric disorders like schizophrenia and anxiety. The pharmacological and pharmacokinetic properties of a novel mGlu2 receptor-positive allosteric modulator (PAM), 1-butyl-3-chloro-4-(4-phenyl-1-piperidinyl)-2(1H)-pyridinone (JNJ-40411813/ADX71149) are described here. JNJ-40411813 acts as a PAM at the cloned mGlu2 receptor: EC50 = 147 ± 42 nmol/L in a [35S]GTPγS binding assay with human metabotropic glutamate type 2 (hmGlu2) CHO cells and EC50 = 64 ± 29 nmol/L in a Ca2+ mobilization assay with hmGlu2 Gα16 cotransfected HEK293 cells. [35S]GTPγS autoradiography on rat brain slices confirmed PAM activity of JNJ-40411813 on native mGlu2 receptor. JNJ-40411813 displaced [3H]JNJ-40068782 and [3H]JNJ-46281222 (mGlu2 receptor PAMs), while it failed to displace [3H]LY341495 (a competitive mGlu2/3 receptor antagonist). In rats, JNJ-40411813 showed ex vivo mGlu2 receptor occupancy using [3H]JNJ-46281222 with ED50 of 16 mg/kg (p.o.). PK-PD modeling using the same radioligand resulted in an EC50 of 1032 ng/mL. While JNJ-40411813 demonstrated moderate affinity for human 5HT2A receptor in vitro (Kb = 1.1 μmol/L), higher than expected 5HT2A occupancy was observed in vivo (in rats, ED50 = 17 mg/kg p.o.) due to a metabolite. JNJ-40411813 dose dependently suppressed REM sleep (LAD, 3 mg/kg p.o.), and promoted and consolidated deep sleep. In fed rats, JNJ-40411813 (10 mg/kg p.o.) was rapidly absorbed (Cmax 938 ng/mL at 0.5 h) with an absolute oral bioavailability of 31%. Collectively, our data show that JNJ-40411813 is an interesting candidate to explore the therapeutic potential of mGlu2 PAMs, in in vivo rodents experiments as well as in clinical studies. PMID:25692015

  11. Tetrahydronaphthyridine and Dihydronaphthyridinone Ethers As Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 5 (mGlu5)

    PubMed Central

    2015-01-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Starting from an acetylene-based lead from high throughput screening, an evolved bicyclic dihydronaphthyridinone was identified. We describe further refinements leading to both dihydronaphthyridinone and tetrahydronaphthyridine mGlu5 PAMs containing an alkoxy-based linkage as an acetylene replacement. Exploration of several structural features including western pyridine ring isomers, positional amides, linker connectivity/position, and combinations thereof, reveal that these bicyclic modulators generally exhibit steep SAR and within specific subseries display a propensity for pharmacological mode switching at mGlu5 as well as antagonist activity at mGlu3. Structure–activity relationships within a dihydronaphthyridinone subseries uncovered 12c (VU0405372), a selective mGlu5 PAM with good in vitro potency, low glutamate fold-shift, acceptable DMPK properties, and in vivo efficacy in an amphetamine-based model of psychosis. PMID:24914612

  12. Presynaptic Release-Regulating mGlu1 Receptors in Central Nervous System.

    PubMed

    Pittaluga, Anna

    2016-01-01

    Group I metabotropic glutamate (mGlu) receptors consists of mGlu1 and mGlu5 receptor subtypes. These receptors are widely distributed in the central nervous system (CNS), where they preferentially mediate facilitatory signaling in neurones and glial cells, mainly by favoring phospholipase (PLC) translocation. Based on the literature so far available, group I Metabotropic glutamate receptors (mGluRs) are preferentially expressed at the postsynaptic side of chemical synapsis, where they participate in the progression of the chemical stimulus. Studies, however, have shown the presence of these receptors also at the presynaptic level, where they exert several functions, including the modulation of transmitter exocytosis. Presynaptic Group I mGluRs can be both autoreceptors regulating release of glutamate and heteroreceptors regulating the release of various transmitters, including GABA, dopamine, noradrenaline, and acetylcholine. While the existence of presynaptic release-regulating mGlu5 receptors is largely recognized, the possibility that mGlu1 receptors also are present at this level has been a matter of discussion for a long time. A large body of evidence published in the last decade, however, supports this notion. This review aims at revisiting the data from in vitro studies concerning the existence and the role of release-regulating mGlu1 receptors presynaptically located in nerve terminals isolated from selected regions of the CNS. The functional interaction linking mGlu5 and mGlu1 receptor subtypes at nerve terminals and their relative contributions as modulators of central transmission will also be discussed. We apologize in advance for omission in our coverage of the existing literature. PMID:27630571

  13. Presynaptic Release-Regulating mGlu1 Receptors in Central Nervous System

    PubMed Central

    Pittaluga, Anna

    2016-01-01

    Group I metabotropic glutamate (mGlu) receptors consists of mGlu1 and mGlu5 receptor subtypes. These receptors are widely distributed in the central nervous system (CNS), where they preferentially mediate facilitatory signaling in neurones and glial cells, mainly by favoring phospholipase (PLC) translocation. Based on the literature so far available, group I Metabotropic glutamate receptors (mGluRs) are preferentially expressed at the postsynaptic side of chemical synapsis, where they participate in the progression of the chemical stimulus. Studies, however, have shown the presence of these receptors also at the presynaptic level, where they exert several functions, including the modulation of transmitter exocytosis. Presynaptic Group I mGluRs can be both autoreceptors regulating release of glutamate and heteroreceptors regulating the release of various transmitters, including GABA, dopamine, noradrenaline, and acetylcholine. While the existence of presynaptic release-regulating mGlu5 receptors is largely recognized, the possibility that mGlu1 receptors also are present at this level has been a matter of discussion for a long time. A large body of evidence published in the last decade, however, supports this notion. This review aims at revisiting the data from in vitro studies concerning the existence and the role of release-regulating mGlu1 receptors presynaptically located in nerve terminals isolated from selected regions of the CNS. The functional interaction linking mGlu5 and mGlu1 receptor subtypes at nerve terminals and their relative contributions as modulators of central transmission will also be discussed. We apologize in advance for omission in our coverage of the existing literature.

  14. Presynaptic Release-Regulating mGlu1 Receptors in Central Nervous System

    PubMed Central

    Pittaluga, Anna

    2016-01-01

    Group I metabotropic glutamate (mGlu) receptors consists of mGlu1 and mGlu5 receptor subtypes. These receptors are widely distributed in the central nervous system (CNS), where they preferentially mediate facilitatory signaling in neurones and glial cells, mainly by favoring phospholipase (PLC) translocation. Based on the literature so far available, group I Metabotropic glutamate receptors (mGluRs) are preferentially expressed at the postsynaptic side of chemical synapsis, where they participate in the progression of the chemical stimulus. Studies, however, have shown the presence of these receptors also at the presynaptic level, where they exert several functions, including the modulation of transmitter exocytosis. Presynaptic Group I mGluRs can be both autoreceptors regulating release of glutamate and heteroreceptors regulating the release of various transmitters, including GABA, dopamine, noradrenaline, and acetylcholine. While the existence of presynaptic release-regulating mGlu5 receptors is largely recognized, the possibility that mGlu1 receptors also are present at this level has been a matter of discussion for a long time. A large body of evidence published in the last decade, however, supports this notion. This review aims at revisiting the data from in vitro studies concerning the existence and the role of release-regulating mGlu1 receptors presynaptically located in nerve terminals isolated from selected regions of the CNS. The functional interaction linking mGlu5 and mGlu1 receptor subtypes at nerve terminals and their relative contributions as modulators of central transmission will also be discussed. We apologize in advance for omission in our coverage of the existing literature. PMID:27630571

  15. Glial inhibitors influence the mRNA and protein levels of mGlu2/3, 5 and 7 receptors and potentiate the analgesic effects of their ligands in a mouse model of neuropathic pain.

    PubMed

    Osikowicz, Maria; Skup, Malgorzata; Mika, Joanna; Makuch, Wioletta; Czarkowska-Bauch, Julita; Przewlocka, Barbara

    2009-12-15

    Metabotropic glutamate (mGlu) receptors, which are present on neurons and glial cells, have been shown to play a role in neuropathic pain. The present study sought to investigate how the glial inhibitors minocycline and pentoxifylline alter the effect that chronic constriction injury (CCI) has on the expression of mGlu receptors and on their associated ligands. RT-PCR analysis revealed that seven days after CCI, the mRNA levels of glial markers C1q and GFAP, as well as those of mGlu5 and mGlu3, but not mGlu7, were elevated in the lumbar spinal cord - ipsilateral to the injury. The protein levels of the microglial marker OX42, the astroglial marker GFAP, and mGlu5 receptor protein were increased, whereas the levels of mGlu2/3 and mGlu7 receptor proteins were reduced. Preemptive and repeated intraperitoneal (i.p.) administration (16 and 1h before nerve injury and then twice daily for seven days) of minocycline (30mg/kg) and pentoxifylline (20mg/kg) prevented the injury-induced changes in the levels of mGlu3 and mGlu5 receptor mRNAs and the injury-induced changes in the protein levels of all the receptors. Repeated administration of minocycline and pentoxifylline significantly attenuated CCI-induced allodynia (von Frey test) and hyperalgesia (cold plate test) measured on day seven after injury and potentiated the antiallodynic and antihyperalgesic effects of single i.p. and intrathecal (i.t.) injections of mGlu receptor ligands: MPEP, LY379268 or AMN082. We conclude that attenuation of injury-induced glial activation can reduce glutamatergic activity, thereby contributing to regulation of pain sensation. PMID:19782473

  16. mGLU3 metabotropic glutamate receptors modulate the differentiation of SVZ-derived neural stem cells towards the astrocytic lineage.

    PubMed

    Ciceroni, C; Mosillo, P; Mastrantoni, E; Sale, P; Ricci-Vitiani, L; Biagioni, F; Stocchi, F; Nicoletti, F; Melchiorri, D

    2010-05-01

    Neural stem cells (NSCs) isolated from the subventricular zone (SVZ) of postnatal mice, and cultured as neurospheres, expressed functional mGlu3 receptors. Following mitogen withdrawal and plating onto poly-ornitine-coated dishes, cells dissociated from the neurospheres differentiated into GFAP(+) astrocytes (about 85%), and a small percentage of beta-III tubulin(+)-neurons and O1(+)-oligodendrocytes. Activation of mGlu3 receptors with LY379268 (100 nM, applied every other day), during the differentiation period, impaired astrocyte differentiation, favoring the maintenance in culture of proliferating progenitors co-expressing GFAP with the immature markers, Sox1 and nestin. Co-treatment with the preferential mGlu2/3 receptor antagonist, LY341495 (100 nM), reversed this effect. We examined whether mGlu3 receptors could modulate the canonical signaling pathway activated by bone morphogenic proteins (BMPs), which are known to promote astrocyte differentiation of SVZ/NSCs. An acute challenge of cells isolated from the neurospheres with BMP4 (100 ng/mL) led to phosphorylation and nuclear translocation of the transcription factors, Smads. This effect was largely attenuated by the mGlu2/3 receptor agonist, LY379268. The interaction of mGlu3 and BMP4 receptors was mediated by the activation of the mitogen-activated protein kinase (MAPK) pathway. Accordingly, LY379268 failed to affect BMP receptor signaling when combined with the MAPK kinase inhibitor, UO-126 (30 muM). These data raise the intriguing possibility that glutamate regulates differentiation of SVZ/NSCs by activating mGlu3 receptors. PMID:20091783

  17. Pharmacological enhancement of mGlu1 metabotropic glutamate receptors causes a prolonged symptomatic benefit in a mouse model of spinocerebellar ataxia type 1

    PubMed Central

    2013-01-01

    Background Spinocerebellar ataxia type 1 (SCA1) is a genetic disorder characterized by severe ataxia associated with progressive loss of cerebellar Purkinje cells. The mGlu1 metabotropic glutamate receptor plays a key role in mechanisms of activity-dependent synaptic plasticity in the cerebellum, and its dysfunction is linked to the pathophysiology of motor symptoms associated with SCA1. We used SCA1 heterozygous transgenic mice (Q154/Q2) as a model for testing the hypothesis that drugs that enhance mGlu1 receptor function may be good candidates for the medical treatment of SCA1. Results Symptomatic 30-week old SCA1 mice showed reduced mGlu1 receptor mRNA and protein levels in the cerebellum. Interestingly, these mice also showed an intense expression of mGlu5 receptors in cerebellar Purkinje cells, which normally lack these receptors. Systemic treatment of SCA1 mice with the mGlu1 receptor positive allosteric modulator (PAM), Ro0711401 (10 mg/kg, s.c.), caused a prolonged improvement of motor performance on the rotarod and the paw-print tests. A single injection of Ro0711401 improved motor symptoms for several days, and no tolerance developed to the drug. In contrast, the mGlu5 receptor PAM, VU0360172 (10 mg/kg, s.c.), caused only a short-lasting improvement of motor symptoms, whereas the mGlu1 receptor antagonist, JNJ16259685 (2.5 mg/kg, i.p.), further impaired motor performance in SCA1 mice. The prolonged symptomatic benefit caused by Ro0711401 outlasted the time of drug clearance from the cerebellum, and was associated with neuroadaptive changes in the cerebellum, such as a striking reduction of the ectopically expressed mGlu5 receptors in Purkinje cells, increases in levels of total and Ser880-phosphorylated GluA2 subunit of AMPA receptors, and changes in the length of spines in the distal dendrites of Purkinje cells. Conclusions These data demonstrate that pharmacological enhancement of mGlu1 receptors causes a robust and sustained motor improvement in SCA

  18. Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes.

    PubMed

    Ciccarelli, Renata; D'Alimonte, Iolanda; Ballerini, Patrizia; D'Auro, Mariagrazia; Nargi, Eleonora; Buccella, Silvana; Di Iorio, Patrizia; Bruno, Valeria; Nicoletti, Ferdinando; Caciagli, Francesco

    2007-05-01

    Astrocyte death may occur in neurodegenerative disorders and complicates the outcome of brain ischemia, a condition associated with high extracellular levels of adenosine and glutamate. We show that pharmacological activation of A(1) adenosine and mGlu3 metabotropic glutamate receptors with N(6)-chlorocyclopentyladenosine (CCPA) and (-)2-oxa-4-aminocyclo-[3.1.0]hexane-4,6-dicarboxylic acid (LY379268), respectively, protects cultured astrocytes against apoptosis induced by a 3-h exposure to oxygen/glucose deprivation (OGD). Protection by CCPA and LY379268 was less than additive and was abrogated by receptor blockade with selective competitive antagonists or pertussis toxin. Both in control astrocytes and in astrocytes exposed to OGD, CCPA and LY379268 induced a rapid activation of the phosphatidylinositol-3-kinase (PI3K) and extracellular signal-regulated kinases 1 and 2 (ERK1/2)/mitogen-activated protein kinase (MAPK) pathways, which are known to support cell survival. In cultures exposed to OGD, CCPA and LY379268 reduced the activation of c-Jun N-terminal kinase and p38/MAPK, reduced the levels of the proapoptotic protein Bad, increased the levels of the antiapoptotic protein Bcl-X(L), and were highly protective against apoptotic death, as shown by nuclear 4'-6-diamidino-2-phenylindole staining and measurements of caspase-3 activity. All of these effects were attenuated by treatment with 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) and 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY294002), which inhibit the MAPK and the PI3K pathways, respectively. These data suggest that pharmacological activation of A(1) and mGlu3 receptors protects astrocytes against hypoxic/ischemic damage by stimulating the PI3K and ERK1/2 MAPK pathways. PMID:17293559

  19. Synthesis and pharmacological characterization of C4-disubstituted analogs of 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate: identification of a potent, selective metabotropic glutamate receptor agonist and determination of agonist-bound human mGlu2 and mGlu3 amino terminal domain structures.

    PubMed

    Monn, James A; Prieto, Lourdes; Taboada, Lorena; Pedregal, Concepcion; Hao, Junliang; Reinhard, Matt R; Henry, Steven S; Goldsmith, Paul J; Beadle, Christopher D; Walton, Lesley; Man, Teresa; Rudyk, Helene; Clark, Barry; Tupper, David; Baker, S Richard; Lamas, Carlos; Montero, Carlos; Marcos, Alicia; Blanco, Jaime; Bures, Mark; Clawson, David K; Atwell, Shane; Lu, Frances; Wang, Jing; Russell, Marijane; Heinz, Beverly A; Wang, Xushan; Carter, Joan H; Xiang, Chuanxi; Catlow, John T; Swanson, Steven; Sanger, Helen; Broad, Lisa M; Johnson, Michael P; Knopp, Kelly L; Simmons, Rosa M A; Johnson, Bryan G; Shaw, David B; McKinzie, David L

    2015-02-26

    As part of our ongoing research to identify novel agents acting at metabotropic glutamate 2 (mGlu2) and 3 (mGlu3) receptors, we have previously reported the identification of the C4α-methyl analog of mGlu2/3 receptor agonist 1 (LY354740). This molecule, 1S,2S,4R,5R,6S-2-amino-4-methylbicyclo[3.1.0]hexane-2,6-dicarboxylate 2 (LY541850), exhibited an unexpected mGlu2 agonist/mGlu3 antagonist pharmacological profile, whereas the C4β-methyl diastereomer (3) possessed dual mGlu2/3 receptor agonist activity. We have now further explored this structure-activity relationship through the preparation of cyclic and acyclic C4-disubstituted analogs of 1, leading to the identification of C4-spirocyclopropane 5 (LY2934747), a novel, potent, and systemically bioavailable mGlu2/3 receptor agonist which exhibits both antipsychotic and analgesic properties in vivo. In addition, through the combined use of protein-ligand X-ray crystallography employing recombinant human mGlu2/3 receptor amino terminal domains, molecular modeling, and site-directed mutagenesis, a molecular basis for the observed pharmacological profile of compound 2 is proposed. PMID:25602126

  20. A role for noradrenergic transmission in the actions of phencyclidine and the antipsychotic and antistress effects of mGlu2/3 receptor agonists.

    PubMed

    Swanson, Chad J; Schoepp, Darryle D

    2003-11-01

    Evidence suggests that glutamatergic neuronal transmission is involved in psychiatric and neurological disorders and that drugs that target glutamate systems may serve as novel therapeutics in humans. For example, agonists for group II mGlu receptors (mGlu2 and mGlu3) have been shown to be anxiolytic in certain animal models and have shown promise in early human trials. mGlu2/3 receptor agonists also block the neurochemical and behavioral actions of psychotogens, such as phencyclidine and amphetamine in rodents, suggesting that they may be useful to treat psychosis in humans. Recently, we have used in vivo microdialysis and behavioral methods to further explore the potential antipsychotic and antistress actions of mGlu2/3 receptor agonists in rats. In subjects undergoing brain microdialysis of the nucleus accumbens shell, we have shown that LY379268 (3 mg/kg s.c.) (a systemically active mGlu2/3 receptor agonist) blocks PCP-induced locomotor activations for approximately 3 hours. In these animals, PCP-induced dopamine release was reduced, but only in a transient fashion (15-75 min). PCP-induced norepinephrine release was also reduced, but unlike dopamine, in a manner that was temporally correlated with the reduction of PCP-induced behaviors. In separate experiments in rats not undergoing microdialysis, the alpha2-adrenergic receptor agonist, clonidine, was shown to block PCP behaviors, and the norepinephrine reuptake inhibitor reboxetine was shown to exacerbate PCP-induced ambulations. In the latter study, LY379268 pretreatment effectively reversed the PCP behaviors in both control and reboxetine-treated animals. These data support a role for noradrenergic neurotransmission in the actions of drugs such as phencyclidine and suggest that stress pathways associated with these drugs can be normalized by mGlu2/3 receptor activation. PMID:14684454

  1. Glutamate receptor mGlu2 and mGlu3 knockout striata are dopamine supersensitive, with elevated D2(High) receptors and marked supersensitivity to the dopamine agonist (+)PHNO.

    PubMed

    Seeman, Philip; Battaglia, Giuseppe; Corti, Corrado; Corsi, Mauro; Bruno, Valeria

    2009-03-01

    The finding that the mGlu2/3 metabotropic glutamate receptor agonist, LY404039, improves clinical symptoms in schizophrenia warrants a search for a possible interaction between mGlu2/3 receptors and dopamine D2 receptors. Here, this topic is examined in striatal tissue of mice lacking either mGlu2 or mGlu3 receptor. Such mice are known to be behaviorally supersensitive to dopamine receptor agonists. Therefore, to determine the basis of this dopamine supersensitivity, the proportion of dopamine D2(High) receptors was measured in the striata of mGlu2 and mGlu3 receptor knockout mice. The proportion of D2(High) receptors was found to be elevated by 220% in the striata of both knockouts. To measure the functional dopamine supersensitivity, the D2 agonist (+)PHNO was used to stimulate the incorporation of GTP-gamma-S in the striatal homogenates in the presence of drugs that blocked the dopamine D1, D3, and D5 receptors. Compared with control striata, the mGlu2 receptor knockout tissues were 67-fold more sensitive to (+)PHNO, while the mGlu3 receptor knockout tissues were 17-fold more sensitive. These data suggest that group II mGlu receptors-mGlu2 receptors in particular-may normally regulate D2 receptors by reducing the proportion of high-affinity D2 receptors in membranes. Such regulation may contribute to the antipsychotic action of mGlu2/3 receptor agonists. PMID:19084908

  2. Dihydrothiazolopyridone Derivatives as a Novel Family of Positive Allosteric Modulators of the Metabotropic Glutamate 5 (mGlu5) Receptor

    PubMed Central

    Bartolomé-Nebreda, José Manuel; Conde-Ceide, Susana; Delgado, Francisca; Iturrino, Laura; Pastor, Joaquín; Pena, Miguel Ángel; Trabanco, Andrés A.; Tresadern, Gary; Wassvik, Carola M.; Stauffer, Shaun R.; Jadhav, Satyawan; Gogi, Kiran; Vinson, Paige N.; Noetzel, Meredith J.; Days, Emily; Weaver, C. David; Lindsley, Craig W.; Niswender, Colleen M.; Jones, Carrie K.; Conn, P. Jeffrey; Rombouts, Frederik; Lavreysen, Hilde; Macdonald, Gregor J.; Mackie, Claire; Steckler, Thomas

    2014-01-01

    Starting from a singleton chromanone high throughput screening (HTS) hit, we describe a focused medicinal chemistry optimization effort leading to the identification of a novel series of phenoxymethyl-dihydrothiazolopyridone derivatives as selective positive allosteric modulators (PAMs) of the metabotropic glutamate 5 (mGlu5) receptor. These dihydrothiazolopyridones potentiate receptor responses in recombinant systems. In vitro and in vivo drug metabolism and pharmacokinetic (DMPK) evaluation allowed us to select compound 16a for its assessment in a preclinical animal screen of possible antipsychotic activity. 16a was able to reverse amphetamine-induced hyperlocomotion in rats in a dose-dependent manner without showing any significant motor impairment or overt neurological side effects at comparable doses. Evolution of our medicinal chemistry program, structure activity, and properties relationships (SAR and SPR) analysis as well as a detailed profile for optimized mGlu5 receptor PAM 16a are described. PMID:23947773

  3. Characterization of [(3)H]-LY354740 binding to rat mGlu2 and mGlu3 receptors expressed in CHO cells using semliki forest virus vectors.

    PubMed

    Schweitzer, C; Kratzeisen, C; Adam, G; Lundstrom, K; Malherbe, P; Ohresser, S; Stadler, H; Wichmann, J; Woltering, T; Mutel, V

    2000-07-24

    The binding properties of [(3)H]-LY354740 were characterized on rat metabotropic glutamate receptors mGlu2 and mGlu3 expressed in Chinese hamster ovary (CHO) cells using Semliki Forest virus vectors. The saturation isotherm gave K(D) values of 20+/-5 and 53+/-8 nM and B(max) values of 474+/-161 and 667+/-89 fmol/mg protein for mGlu2 and mGlu3 receptors, respectively. NMDA, CaCl(2), DHPG and kainate were inactive up to 1 mM, whereas LY341495, DCG IV and ibotenate inhibited [(3)H]-LY354740 binding with similar potencies on both receptors. L-CCG I, L-AP4, L-AP5, LY354740 and 1S,3R-ACPD were 2- to 4-fold more potent inhibitors of [(3)H]-LY354740 binding to mGlu2 than mGlu3 receptors. However, MPPG and L-AP3 had a 6-fold and DTT a 28-fold preference for mGlu2 over mGlu3. ZnCl(2), at 10 mM, inhibited more than 70% of [(3)H]-LY354740 binding to mGlu2 receptors. At the same concentration it did not affect significantly [(3)H]-LY354740 binding to mGlu3 receptors. On the contrary, glutamate, quisqualate, EGLU and NAAG showed a 3-, 5-, 7- and 12-fold preference for mGlu3 over mGlu2. Finally, GTPgammaS, which partially inhibited the binding on mGlu2 receptors, was inactive to inhibit [(3)H]-LY354740 binding on mGlu3 receptors. PMID:10884552

  4. Development of a novel, CNS-penetrant, metabotropic glutamate receptor 3 (mGlu3) NAM probe (ML289) derived from a closely related mGlu5 PAM.

    PubMed

    Sheffler, Douglas J; Wenthur, Cody J; Bruner, Joshua A; Carrington, Sheridan J S; Vinson, Paige N; Gogi, Kiran K; Blobaum, Anna L; Morrison, Ryan D; Vamos, Mitchell; Cosford, Nicholas D P; Stauffer, Shaun R; Daniels, J Scott; Niswender, Colleen M; Conn, P Jeffrey; Lindsley, Craig W

    2012-06-15

    Herein we report the discovery and SAR of a novel metabotropic glutamate receptor 3 (mGlu(3)) NAM probe (ML289) with 15-fold selectivity versus mGlu(2). The mGlu(3) NAM was discovered via a 'molecular switch' from a closely related, potent mGlu(5) positive allosteric modulator (PAM), VU0092273. This NAM (VU0463597, ML289) displays an IC(50) value of 0.66 μM and is inactive against mGlu(5). PMID:22607673

  5. Location-Dependent Signaling of the Group 1 Metabotropic Glutamate Receptor mGlu5

    PubMed Central

    Jong, Yuh-Jiin I.; Sergin, Ismail; Purgert, Carolyn A.

    2014-01-01

    Although G protein–coupled receptors are primarily known for converting extracellular signals into intracellular responses, some receptors, such as the group 1 metabotropic glutamate receptor, mGlu5, are also localized on intracellular membranes where they can mediate both overlapping and unique signaling effects. Thus, besides “ligand bias,” whereby a receptor’s signaling modality can shift from G protein dependence to independence, canonical mGlu5 receptor signaling can also be influenced by “location bias” (i.e., the particular membrane and/or cell type from which it signals). Because mGlu5 receptors play important roles in both normal development and in disorders such as Fragile X syndrome, autism, epilepsy, addiction, anxiety, schizophrenia, pain, dyskinesias, and melanoma, a large number of drugs are being developed to allosterically target this receptor. Therefore, it is critical to understand how such drugs might be affecting mGlu5 receptor function on different membranes and in different brain regions. Further elucidation of the site(s) of action of these drugs may determine which signal pathways mediate therapeutic efficacy. PMID:25326002

  6. Exploration of Allosteric Agonism Structure-Activity Relationships within an Acetylene Series of Metabotropic Glutamate Receptor 5 (mGlu5) Positive Allosteric Modulators (PAMs): discovery of 5-((3-fluorophenyl)ethynyl)-N-(3-methyloxetan-3-yl)picolinamide (ML254)

    PubMed Central

    Turlington, Mark; Noetzel, Meredith J.; Chun, Aspen; Zhou, Ya; Gogliotti, Rocco D.; Nguyen, Elizabeth D.; Gregory, Karen J.; Vinson, Paige N.; Rook, Jerri M.; Gogi, Kiran K.; Xiang, Zixiu; Bridges, Thomas M.; Daniels, J. Scott; Jones, Carrie; Niswender, Colleen M.; Meiler, Jens; Conn, P. Jeffrey; Lindsley, Craig W.; Stauffer, Shaun R.

    2014-01-01

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Both allosteric agonism and high glutamate fold-shift have been implicated in the neurotoxic profile of some mGlu5 PAMs; however, these hypotheses remain to be adequately addressed. To develop tool compounds to probe these hypotheses, the structure-activity relationship of allosteric agonism was examined within an acetylenic series of mGlu5 PAMs exhibiting allosteric agonism in addition to positive allosteric modulation (ago-PAMs). PAM 38t, a low glutamate fold-shift allosteric ligand (maximum fold-shift ~3.0), was selected as a potent PAM with no agonism in the in vitro system used for compound characterization and in two native electrophysiological systems using rat hippocampal slices. PAM 38t (ML254) will be useful to probe the relative contribution of cooperativity and allosteric agonism to the adverse effect liability and neurotoxicity associated with this class of mGlu5 PAMs. PMID:24050755

  7. Study of novel selective mGlu2 agonist in the temporo-ammonic input to CA1 neurons reveals reduced mGlu2 receptor expression in a Wistar substrain with an anxiety-like phenotype.

    PubMed

    Ceolin, Laura; Kantamneni, Sriharsha; Barker, Gareth R I; Hanna, Lydia; Murray, Laura; Warburton, E Clea; Robinson, Emma S J; Monn, James A; Fitzjohn, Stephen M; Collingridge, Graham L; Bortolotto, Zuner A; Lodge, David

    2011-05-01

    Group II metabotropic receptors (mGluRs) regulate central synaptic transmission by modulating neurotransmitter release. However, the lack of pharmacological tools differentiating between mGlu2 and mGlu3 receptors has hampered identification of the roles of these two receptor subtypes. We have used LY395756 [(1SR,2SR,4RS,5RS,6SR)-2-amino-4-methylbicyclo[3.1.0]-hexane2,6-dicarboxylic], an agonist at mGlu2 receptors and an antagonist at mGlu3 receptors in cell lines, to investigate the roles of these receptors in the temporo-ammonic path from entorhinal cortex to CA1-stratum lacunosum moleculare in rat hippocampal slices. Surprisingly, the degree of inhibition of the field EPSP induced by LY395756 fell into two distinct groups, with EC(50) values of <1 μm and >100 μm. In "sensitive" slices, LY395756 had additive actions with a mixed mGlu2/mGlu3 agonist, DCG-IV [(2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine], whereas in "insensitive" slices, LY395756 reduced the effect of DCG-IV, with an IC(50) of ∼1 μm. This separation into sensitive and insensitive slices could be explained by LY395756 acting as an mGlu2 agonist and mGlu3 antagonist, respectively, a finding supported by data from mice lacking these receptors. The heterogeneity was correlated with differences in expression levels of mGlu2 receptors within our Wistar colony and other Wistar substrains. The initial search for a behavioral correlate indicated that rats lacking mGlu2 receptors showed anxiety-like behavior in open-field and elevated plus maze assays. These findings have implications for rat models of psychiatric disease and are especially pertinent given that mGlu2 receptors are targets for compounds under development for anxiety. PMID:21543601

  8. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice

    PubMed Central

    Vicidomini, Cinzia; Ponzoni, Luisa; Lim, Dmitry; Schmeisser, Michael; Reim, Dominik; Morello, Noemi; Orelanna, Daniel; Tozzi, Alessandro; Durante, Valentina; Scalmani, Paolo; Mantegazza, Massimo; Genazzani, Armando A.; Giustetto, Maurizio; Sala, Mariaelvina; Calabresi, Paolo; Boeckers, Tobias M.; Sala, Carlo; Verpelli, Chiara

    2016-01-01

    SHANK3 (also called PROSAP2) genetic haploinsufficiency is thought to be the major cause of neuropsychiatric symptoms in Phelan-McDermid syndrome (PMS). PMS is a rare genetic disorder that causes a severe form of intellectual disability (ID), expressive language delays and other autistic features. Furthermore, a significant number of SHANK3 mutations have been identified in patients with Autism Spectrum disorders ASD, and SHANK3 truncating mutations are associated with moderate to profound ID. The Shank3 protein is a scaffold protein that is located in the postsynaptic density (PSD) of excitatory synapses and is crucial for synapse development and plasticity. In this study, we investigated the molecular mechanisms associated with the ASD-like behaviors observed in Shank3Δ11-/- mice in which exon 11 has been deleted. Our results indicate that Shank3 is essential to mediating mGlu5 receptor signaling by recruiting Homer1b/c to the PSD, specifically in the striatum and cortex. Moreover, augmenting mGlu5 receptor activity by administering 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) ameliorated the functional and behavioral defects that were observed in Shank3Δ11-/- mice, suggesting that pharmaceutical treatments that increase mGlu5 activity may represent a new approach for treating patients that are affected by PMS and SHANK3 mutations. PMID:27021819

  9. Molecular modeling and mutagenesis of the ligand-binding pocket of the mGlu3 subtype of metabotropic glutamate receptor.

    PubMed

    Yao, Yi; Pattabiraman, N; Michne, William F; Huang, Xi-Ping; Hampson, David R

    2003-08-01

    A homology model of the extracellular domain of the mGlu3 subtype of metabotropic glutamate (mGlu) receptor was generated and tested using site-directed mutagenesis, a radioligand-binding assay using the Group II selective agonist (2S,2'R,3'R)-2-(2',3'-[3H]dicarboxycyclopropyl) glycine ([3H]DCG-IV), and in a fluorescence-based functional assay in live transiently transfected human embryonic kidney cells. Ten of the 12 mGlu3 mutants (R64A, R68A, Y150A, S151A, T174A, D194A, Y222A, R277A, D301A and K389) showed either no binding or a 90% or greater loss of specific [3H]DCG-IV binding. Several analogous mutations in mGlu2 supported the results obtained with mGlu3. These results demonstrate that the binding of [3H]DCG-IV to mGlu3 is exceptionally sensitive to mutagenesis-induced perturbations. In silico docking of DCG-IV into the agonist binding pocket of mGlu3 facilitated the interpretation the mutagenesis results. Tyrosines 150 and 222, and arginine 277 show close contacts with the third carboxylic acid group in DCG-IV, which is not present in glutamate or (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I). Mutation of these three amino acids to alanine resulted in a near complete loss of receptor activation by DCG-IV and retention of near wild-type affinity for L-CCG-I. It is proposed that hydrogen bonding between this carboxylate and tyrosines 150 and 222 and arginine 277 provide a partial explanation for the high affinity and Group II selectivity of DCG-IV. These findings define the essential features of the ligand-binding pocket of mGlu3 and, together with other recent studies on mGlu receptors, provide new opportunities for structure-based drug design. PMID:12887692

  10. Synergism between fluoxetine and the mGlu2/3 receptor agonist, LY379268, in an in vitro model for antidepressant drug-induced neurogenesis.

    PubMed

    Matrisciano, F; Zusso, M; Panaccione, I; Turriziani, B; Caruso, A; Iacovelli, L; Noviello, L; Togna, G; Melchiorri, D; Debetto, P; Tatarelli, R; Battaglia, G; Nicoletti, F; Giusti, P; Girardi, P

    2008-02-01

    We examined the interaction between the selective serotonin reuptake inhibitor, fluoxetine, and group-II metabotropic glutamate (mGlu) receptors using progenitor cells isolated from cultured cerebellar granule cells, considered as an in vitro model of antidepressant-drug induced neurogenesis. These cells expressed mGlu3 receptors negatively coupled to adenylyl cyclase. A 72-h treatment with either fluoxetine or low concentrations of mGlu2/3 receptor agonists (LY379268 or 2R,4R-APDC) enhanced cell proliferation. The action of fluoxetine was mediated by the activation of 5-HT(1A) receptors. We found a strong synergism between fluoxetine and LY379268 in enhancing cell proliferation and inhibiting cAMP formation. The increased cell proliferation induced by fluoxetine+LY379268 was abrogated by the cAMP analogue, 8-Br-cAMP, as well as by drugs that inhibit the mitogen-activated protein kinase and phosphatidyilinositol-3-kinase pathways. Interestingly, fluoxetine and LY379268 also acted synergistically in promoting neuronal differentiation when progenitor cells were incubated in the presence of serum. These data support the hypothesis that a combination between classical antidepressants and mGlu2/3 receptor agonists may be helpful in the experimental treatment of depression. PMID:18082849

  11. Maternal lipopolysaccharide treatment differentially affects 5-HT(2A) and mGlu2/3 receptor function in the adult male and female rat offspring.

    PubMed

    Wischhof, Lena; Irrsack, Ellen; Dietz, Frank; Koch, Michael

    2015-10-01

    Maternal infection during pregnancy increases the risk for the offspring to develop schizophrenia. However, it is still not fully understood which biochemical mechanisms are responsible for the emergence of neuropsychiatric symptoms following prenatal immune activation. The serotonin (5-hydroxytryptamine, 5-HT) and glutamate system have prominently been associated with the schizophrenia pathophysiology but also with the mechanism of antipsychotic drug actions. Here, we investigated the behavioral and cellular response to 5-HT2A and metabotropic glutamate (mGlu)2/3 receptor stimulation in male and female offspring born to lipopolysaccharide (LPS)-treated mothers. Additionally, we assessed protein expression levels of prefrontal 5-HT2A and mGlu2 receptors. Prenatally LPS-exposed male and female offspring showed locomotor hyperactivity and increased head-twitch behavior in response to the 5-HT2A receptor agonist DOI. In LPS-exposed male offspring, the mGlu2/3 receptor agonist LY379268 failed to reduce DOI-induced prepulse inhibition deficits. In LPS-males, the behavioral changes were further accompanied by enhanced DOI-induced c-Fos protein expression and an up-regulation of prefrontal 5-HT2A receptors. No changes in either 5-HT2A or mGlu2 receptor protein levels were found in female offspring. Our data support the hypothesis of an involvement of maternal infection during pregnancy contributing, at least partially, to the pathology of schizophrenia. Identifying biochemical alterations that parallel the behavioral deficits may help to improve therapeutic strategies in the treatment of this mental illness. Since most studies in rodents almost exclusively include male subjects, our data further contribute to elucidating possible gender differences in the effects of prenatal infection on 5-HT2A and mGlu2/3 receptor function. PMID:26051401

  12. LY354740, an mGlu2/3 receptor agonist as a novel approach to treat anxiety/stress.

    PubMed

    Schoepp, Darryle D; Wright, Rebecca A; Levine, Louise R; Gaydos, Brenda; Potter, William Z

    2003-09-01

    Metabotropic glutamate (mGlu) receptors, which include mGlu1-8 receptors, are a heterogeneous family of G-protein coupled receptors (GPCRs) that function to modulate neuronal excitation and plasticity via pre-synaptic, post-synaptic and glial mechanisms. Agonists for group II mGlu receptors (mGlu2 and mGlu3), such as LY354740, have been shown to suppress enhanced glutamatergic excitations in brain synapses known to be involved in the expression of fear/anxiety in animals and humans. Systemic administration of LY354740 increases open-arm time in the elevated plus maze in mice under conditions of moderate to severe stress, blocks the expression but not development of fear-potentiated startle in rats, prevents lactate-induced panic-like responses in panic-prone rats, and attenuates certain physiological, behavioral, and neurochemical consequences of acute stress in rodents. In these preclinical models, LY354740 does not produce the side-effects (e.g. sedation) that are associated with other anxiolytic agents such as benzodiazepines. Early clinical results with LY354740 have demonstrated safety and efficacy in a human anxiety model (panic provocation induced by CO2 challenge). Collectively, these data indicate mGlu2/3 receptor agonists such as LY354740 represent a promising new approach for treatment of anxiety and stress-related disorders in humans. PMID:13129812

  13. 5-HT(2A) and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman Low- (RLA) and High- (RHA) avoidance rat strains.

    PubMed

    Klein, A B; Ultved, L; Adamsen, D; Santini, M A; Tobeña, A; Fernandez-Teruel, A; Flores, P; Moreno, M; Cardona, D; Knudsen, G M; Aznar, S; Mikkelsen, J D

    2014-03-28

    The Roman Low- and High-Avoidance rat strains (RLA-I vs RHA-I) have been bidirectionally selected and bred according to their performance in the two-way active avoidance response in the shuttle-box test. Numerous studies have reported a pronounced divergence in emotionality between the two rat strains including differences in novelty seeking, anxiety, stress coping, and susceptibility to addictive substances. However, the underlying molecular mechanisms behind these divergent phenotypes are not known. Here, we determined impulsivity using the 5-choice serial reaction time task and levels of serotonin transporter (SERT), 5-HT(2A) and 5-HT(1A) receptor binding using highly specific radioligands ((3)H-escitalopram, (3)H-MDL100907 and (3)H-WAY100635) and mGlu2/3 receptor binding ((3)H-LY341495) using receptor autoradiography in fronto-cortical sections from RLA-I (n=8) and RHA-I (n=8) male rats. In the more impulsive RHA-I rats, 5-HT(2A), 5-HT(1A) and SERT binding in the frontal cortex was significantly higher compared to RLA-I rats. In contrast, mGlu2/3 receptor binding was decreased by 40% in RHA-I rats compared to RLA-I rats. To differentiate between mGlu2 and mGlu3 receptor protein levels, these were further studied using western blotting, which showed non-detectable levels of mGlu2 receptor protein in RHA rats, while no differences were observed for mGlu3 receptor protein levels. Collectively, these data show general congenital differences in the serotonergic system and a pronounced difference in mGlu2 receptor protein levels. We suggest that the differences in the serotonergic system may mediate some of the phenotypic characteristics in this strain such as hyper-impulsivity and susceptibility to drug addiction. PMID:24412375

  14. Endogenous activation of metabotropic glutamate receptors supports the proliferation and survival of neural progenitor cells.

    PubMed

    Di Giorgi-Gerevini, V; Melchiorri, D; Battaglia, G; Ricci-Vitiani, L; Ciceroni, C; Busceti, C L; Biagioni, F; Iacovelli, L; Canudas, A M; Parati, E; De Maria, R; Nicoletti, F

    2005-08-01

    The use of neural progenitor cells (NPCs) is limited by the incomplete knowledge of the extracellular signals regulating their proliferation and survival. We report that cultured mouse NPCs express functional mGlu3 and mGlu5 metabotropic glutamate receptors. Pharmacological blockade of both receptors reduced NPC proliferation and survival, whereas activation of mGlu5 receptors substantially enhanced cell proliferation. Adult mice lacking mGlu5 receptors or treated with mGlu5 or mGlu3 receptor antagonists showed a dramatic reduction in the number of dividing neuroprogenitors present in the subventricular zone and in the dentate gyrus of the hippocampus. These data disclose a novel function of mGlu receptors and offer new potential strategies for the optimization of cell replacement therapy in neurodegenerative disorders. PMID:15947794

  15. mGlu3 receptor blockade inhibits proliferation and promotes astrocytic phenotype in glioma stem cells.

    PubMed

    Zhou, Kun; Song, Yechun; Zhou, Wei; Zhang, Chunqing; Shu, Haifeng; Yang, Hui; Wang, Bin

    2014-04-01

    We have characterised, using both in vivo and in vitro methods, the effects of the metabotropic glutamate receptor subtype 3 (mGlu3) antagonist (LY341495) and agonist (LY379268) on the proliferation and differentiation of glioma stem cells (GSC). For in vitro studies, a CCK-8 assay was used to determine the cell proliferation, flow cytometry was performed to determine cell cycle phases, and immunohistochemistry and laser confocal microscopy were employed to detect CD133 expression. For in vivo studies, GSCs were injected into nude mice treated with either LY379268 or LY341495 and the growth of the tumours was measured after 3 weeks. When compared with controls, the proliferation rates and proportion of cells in S phase within the LY341495 treated group decreased in a time-dependent manner. In the presence of differentiation medium containing LY341495, GSC differentiation was diverted into an astrocyte rather than neuronal phenotype. The growth rate and volume of tumours injected into nude mice was reduced in LY341495 treated mice compared with controls. Thus pharmacological blockade of mGlu3 receptor signalling pathway significantly inhibits the growth and proliferation of GSCs both in vitro and in vivo while promoting differentiation to astrocytes. These results further implicate mGlu3 in the biology of glioma and as a target for continued research. PMID:24482010

  16. Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABAB and mGlu2/3 receptors

    PubMed Central

    Kupferschmidt, David A; Lovinger, David M

    2015-01-01

    Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABAB and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 to assess presynaptic Ca2+ in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca2+ and striatal field potential recordings, we report that relative to P/Q-type Ca2+ channels, N-type channels preferentially contributed to evoked presynaptic Ca2+ influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABAB or mGlu2/3 receptors inhibited both evoked presynaptic Ca2+ transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca2+ channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires. Key points Plastic changes at cortical inputs to the dorsolateral striatum (DLS) underlie skill learning and habit formation, so characterizing the mechanisms by which these inputs are regulated is important for understanding the neural basis of action control. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 and brain slice photometry to assess evoked presynaptic Ca2+ transients in cortical inputs to the DLS and study their regulation by GABAB and mGlu2

  17. Differential regulation of synaptic transmission by mGlu2 and mGlu3 at the perforant path inputs to the dentate gyrus and CA1 revealed in mGlu2 -/- mice.

    PubMed

    Kew, James N C; Pflimlin, Marie-Claire; Kemp, John A; Mutel, Vincent

    2002-08-01

    Group II metabotropic glutamate (mGlu) receptors can act as presynaptic autoinhibitory receptors at perforant path inputs to the hippocampus under conditions of high frequency synaptic activation. We have used mGlu2 -/- mice to examine the relative roles of mGlu2 and mGlu3 in the regulation of perforant path synaptic transmission mediated by both the selective group II receptor agonist, DCG-IV, and by synaptically released glutamate. Field excitatory postsynaptic potentials evoked by stimulation of either the perforant path inputs to the dentate gyrus mid-moleculare or the CA1 stratum lacunosum moleculare were inhibited by DCG-IV with IC(50) values and maximum percentage inhibition of: 169 nM (60%) and 41 nM (72%) in wild-type mice and 273 nM (19%) and 116 nM (49%) in mGlu2 -/- mice, respectively. Activation of presynaptic group II mGlu autoreceptors by synaptically released glutamate, as revealed by a LY341495-mediated increase in the relative amplitude of a test fEPSP evoked after a conditioning burst, was observed in both the dentate gyrus and the stratum lacunosum of wild-type, but not mGlu2 -/- mice. These observations demonstrate that activation of mGlu3 receptors can regulate synaptic transmission at perforant path synapses but suggest that mGlu2 is the major presynaptic group II autoreceptor activated by synaptically released glutamate. PMID:12213275

  18. Anxiolytic activity of the MGLU2/3 receptor agonist LY354740 on the elevated plus maze is associated with the suppression of stress-induced c-Fos in the hippocampus and increases in c-Fos induction in several other stress-sensitive brain regions.

    PubMed

    Linden, A-M; Greene, S J; Bergeron, M; Schoepp, D D

    2004-03-01

    LY354740 is a potent and selective agonist for group II metabotropic glutamate (mGlu) receptors, mGlu2 and mGlu3 receptors, with anxiolytic activity in several animal models of anxiety, including the elevated plus maze (EPM) test. Here, we studied neuronal activation in mouse brain after EPM exposure in saline- and LY354740-treated mice using c-Fos immunoreactivity as a marker. The effect of LY354740 on c-Fos expression was also studied in cage control (no EPM) mice. Pretreatment with LY354740 (20 mg/kg, s.c.) produced robust anxiolytic behavior on the EPM. LY354740 administration decreased EPM-induced increases in c-Fos expression in the CA3 of the hippocampus, while having no significant effects on basal c-Fos expression in the hippocampus. LY354740 administration significantly increased c-Fos expression in specific limbic regions, including the lateral division of the central nucleus of the amygdala (CeL), lateral parabrachial nucleus, locus coeruleus, and Edinger-Westphal nucleus, whether or not animals were exposed to the EPM. Moreover, LY354740 administration per se significantly increased c-Fos expression in regions processing sensory information, including the paraventricular and lateral geniculate nucleus of the thalamus as well as the nucleus of the optic tract and superior colliculus. In particular, the suppression of fear-evoked neuronal activity in the hippocampus and drug-induced increases in neuronal activation in the CeL have been previously linked to the anxiolytic effects of clinically effective drugs such as benzodiazepines, and thus may contribute to anxiolytic actions of LY354740 in animal models and human anxiety patients. PMID:14694349

  19. Cellular distribution of AMPA receptor subunits and mGlu5 following acute and repeated administration of morphine or methamphetamine.

    PubMed

    Herrold, Amy A; Persons, Amanda L; Napier, T Celeste

    2013-08-01

    Ionotropic AMPA receptors (AMPAR) and metabotropic glutamate group I subtype 5 receptors (mGlu5) mediate neuronal and behavioral effects of abused drugs. mGlu5 stimulation increases expression of striatal-enriched tyrosine phosphatase isoform 61 (STEP61 ) which internalizes AMPARs. We determined the rat brain profile of these proteins using two different classes of abused drugs, opiates, and stimulants. STEP61 levels, and cellular distribution/expression of AMPAR subunits (GluA1, GluA2) and mGlu5, were evaluated via a protein cross-linking assay in medial prefrontal cortex (mPFC), nucleus accumbens (NAc), and ventral pallidum (VP) harvested 1 day after acute, or fourteen days after repeated morphine (8 mg/kg) or methamphetamine (1 mg/kg) (treatments producing behavioral sensitization). Acute morphine decreased GluA1 and GluA2 surface expression in mPFC and GluA1 in NAc. Fourteen days after repeated morphine or methamphetamine, mGlu5 surface expression increased in VP. In mPFC, mGlu5 were unaltered; however, after methamphetamine, STEP61 levels decreased and GluA2 surface expression increased. Pre-treatment with a mGlu5-selective negative allosteric modulator, blocked methamphetamine-induced behavioral sensitization and changes in mPFC GluA2 and STEP61 . These data reveal (i) region-specific distinctions in glutamate receptor trafficking between acute and repeated treatments of morphine and methamphetamine, and (ii) that mGlu5 is necessary for methamphetamine-induced alterations in mPFC GluA2 and STEP61 .

  20. Blocking metabotropic glutamate receptor subtype 7 (mGlu7) via the Venus flytrap domain (VFTD) inhibits amygdala plasticity, stress, and anxiety-related behavior.

    PubMed

    Gee, Christine E; Peterlik, Daniel; Neuhäuser, Christoph; Bouhelal, Rochdi; Kaupmann, Klemens; Laue, Grit; Uschold-Schmidt, Nicole; Feuerbach, Dominik; Zimmermann, Kaspar; Ofner, Silvio; Cryan, John F; van der Putten, Herman; Fendt, Markus; Vranesic, Ivo; Glatthar, Ralf; Flor, Peter J

    2014-04-18

    The metabotropic glutamate receptor subtype 7 (mGlu7) is an important presynaptic regulator of neurotransmission in the mammalian CNS. mGlu7 function has been linked to autism, drug abuse, anxiety, and depression. Despite this, it has been difficult to develop specific blockers of native mGlu7 signaling in relevant brain areas such as amygdala and limbic cortex. Here, we present the mGlu7-selective antagonist 7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one (XAP044), which inhibits lateral amygdala long term potentiation (LTP) in brain slices from wild type mice with a half-maximal blockade at 88 nm. There was no effect of XAP044 on LTP of mGlu7-deficient mice, indicating that this pharmacological effect is mGlu7-dependent. Unexpectedly and in contrast to all previous mGlu7-selective drugs, XAP044 does not act via the seven-transmembrane region but rather via a binding pocket localized in mGlu7's extracellular Venus flytrap domain, a region generally known for orthosteric agonist binding. This was shown by chimeric receptor studies in recombinant cell line assays. XAP044 demonstrates good brain exposure and wide spectrum anti-stress and antidepressant- and anxiolytic-like efficacy in rodent behavioral paradigms. XAP044 reduces freezing during acquisition of Pavlovian fear and reduces innate anxiety, which is consistent with the phenotypes of mGlu7-deficient mice, the results of mGlu7 siRNA knockdown studies, and the inhibition of amygdala LTP by XAP044. Thus, we present an mGlu7 antagonist with a novel molecular mode of pharmacological action, providing significant application potential in psychiatry. Modeling the selective interaction between XAP044 and mGlu7's Venus flytrap domain, whose three-dimensional structure is already known, will facilitate future drug development supported by computer-assisted drug design.

  1. Synthesis and Pharmacological Characterization of C4-(Thiotriazolyl)-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylates. Identification of (1R,2S,4R,5R,6R)-2-Amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic Acid (LY2812223), a Highly Potent, Functionally Selective mGlu2 Receptor Agonist.

    PubMed

    Monn, James A; Prieto, Lourdes; Taboada, Lorena; Hao, Junliang; Reinhard, Matthew R; Henry, Steven S; Beadle, Christopher D; Walton, Lesley; Man, Teresa; Rudyk, Helene; Clark, Barry; Tupper, David; Baker, S Richard; Lamas, Carlos; Montero, Carlos; Marcos, Alicia; Blanco, Jaime; Bures, Mark; Clawson, David K; Atwell, Shane; Lu, Frances; Wang, Jing; Russell, Marijane; Heinz, Beverly A; Wang, Xushan; Carter, Joan H; Getman, Brian G; Catlow, John T; Swanson, Steven; Johnson, Bryan G; Shaw, David B; McKinzie, David L

    2015-09-24

    Identification of orthosteric mGlu(2/3) receptor agonists capable of discriminating between individual mGlu2 and mGlu3 subtypes has been highly challenging owing to the glutamate-site sequence homology between these proteins. Herein we detail the preparation and characterization of a series of molecules related to (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate 1 (LY354740) bearing C4-thiotriazole substituents. On the basis of second messenger responses in cells expressing other recombinant human mGlu2/3 subtypes, a number of high potency and efficacy mGlu2 receptor agonists exhibiting low potency mGlu3 partial agonist/antagonist activity were identified. From this, (1R,2S,4R,5R,6R)-2-amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 14a (LY2812223) was further characterized. Cocrystallization of 14a with the amino terminal domains of hmGlu2 and hmGlu3 combined with site-directed mutation studies has clarified the underlying molecular basis of this unique pharmacology. Evaluation of 14a in a rat model responsive to mGlu2 receptor activation coupled with a measure of central drug disposition provides evidence that this molecule engages and activates central mGlu2 receptors in vivo. PMID:26313429

  2. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors

    PubMed Central

    Nasca, Carla; Xenos, Dionysios; Barone, Ylenia; Caruso, Alessandra; Scaccianoce, Sergio; Matrisciano, Francesco; Battaglia, Giuseppe; Mathé, Aleksander A.; Pittaluga, Anna; Lionetto, Luana; Simmaco, Maurizio; Nicoletti, Ferdinando

    2013-01-01

    Epigenetic mechanisms are involved in the pathophysiology of depressive disorders and are unique potential targets for therapeutic intervention. The acetylating agent L-acetylcarnitine (LAC), a well-tolerated drug, behaves as an antidepressant by the epigenetic regulation of type 2 metabotropic glutamate (mGlu2) receptors. It caused a rapid and long-lasting antidepressant effect in Flinders Sensitive Line rats and in mice exposed to chronic unpredictable stress, which, respectively, model genetic and environmentally induced depression. In both models, LAC increased levels of acetylated H3K27 bound to the Grm2 promoter and also increased acetylation of NF-ĸB-p65 subunit, thereby enhancing the transcription of Grm2 gene encoding for the mGlu2 receptor in hippocampus and prefrontal cortex. Importantly, LAC reduced the immobility time in the forced swim test and increased sucrose preference as early as 3 d of treatment, whereas 14 d of treatment were needed for the antidepressant effect of chlorimipramine. Moreover, there was no tolerance to the action of LAC, and the antidepressant effect was still seen 2 wk after drug withdrawal. Conversely, NF-ĸB inhibition prevented the increase in mGlu2 expression induced by LAC, whereas the use of a histone deacetylase inhibitor supported the epigenetic control of mGlu2 expression. Finally, LAC had no effect on mGlu2 knockout mice exposed to chronic unpredictable stress, and a single injection of the mGlu2/3 receptor antagonist LY341495 partially blocked LAC action. The rapid and long-lasting antidepressant action of LAC strongly suggests a unique approach to examine the epigenetic hypothesis of depressive disorders in humans, paving the way for more efficient antidepressants with faster onset of action. PMID:23382250

  3. Group II mGlu receptor agonists fail to protect against various neurotoxic insults induced in murine cortical, striatal and cerebellar granular pure neuronal cultures.

    PubMed

    Moldrich, R X; Giardina, S F; Beart, P M

    2001-07-01

    Since group II metabotropic glutamate (mGlu) receptors are a potential target for the amelioration of neuronal injury, we evaluated the ability of group II mGlu receptor agonists to attenuate toxicity induced by various insults in cortical, striatal and cerebellar granular (CGCs) pure neuronal cultures. The three cultures, when maintained under serum-free, anti-oxidant rich conditions for up to 13 days in vitro (div) were shown by immunocytochemistry to contain a maximum of 2-7% glia. At 6, 9 and 13 div a graded pattern of injury to cortical and striatal cultures was achieved with either hydrogen peroxide (60-110 microM), staurosporine (1 microM), N-methyl-D-aspartate (NMDA, 70 microM), alpha-amino-3-hydroxy-methylisoxazole-4-propionate (AMPA, 100 microM) or kainate (100 microM) over either 4, 24 or 48 h. CGCs were similarly exposed to low K(+) (5.4 mM KCl). Cell viability was examined via phase-contrast microscopy and assessed by a 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide assay. Treatment with group II mGlu receptor agonists (1-300 microM), 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate ((2R,4R)-APDC), (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I), (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) and N-acetylaspartylglutamate (NAAG) failed to attenuate the toxicity. Pretreatment of cultures with the agonists and treatment following acute insult also failed to attenuate toxicity. Further investigations demonstrated the presence of second messenger activation whereby (2R,4R)-APDC reduced forskolin-stimulated production of cAMP in each culture. Thus, despite receptor coupling to intracellular signaling cascades, and regardless of culture development, agonist concentration, extent and mode of injury, group II mGlu receptor agonists were unable to protect against injury induced in cortical, striatal and cerebellar granular pure neuronal cultures. This result is in contrast to mixed cultures of neurones and glia and implies an

  4. Sleep-Deprivation Induces Changes in GABAB and mGlu Receptor Expression and Has Consequences for Synaptic Long-Term Depression

    PubMed Central

    Tadavarty, Ramakrishna; Rajput, Padmesh S.; Wong, Jennifer M.; Kumar, Ujendra; Sastry, Bhagavatula R.

    2011-01-01

    Long term depression (LTD) in the CA1 region of the hippocampus, induced with a 20-Hz, 30 s tetanus to Schaffer collaterals, is enhanced in sleep-deprived (SD) rats. In the present study, we investigated the role of metabotropic glutamate receptors (mGluRs), γ-Aminobutyric acid (GABA) B receptors (GABAB-Rs) and N-methyl-D-aspartic acid receptors (NMDARs) in the LTD of the population excitatory postsynaptic potential (pEPSP). The requirement of Ca2+ from L- and T- type voltage-gated calcium channels (VGCCs) and intracellular stores was also studied. Results indicate that mGluRs, a release of Ca2+ from intracellular stores and GABAB-Rs are required for LTD. Interestingly, while mGlu1Rs seem to be involved in both short-term depression and LTD, mGlu5Rs appear to participate mostly in LTD. CGP 55845, a GABAB-R antagonist, partially suppressed LTD in normally sleeping (NS) rats, while completely blocking LTD in SD rats. Moreover, GS-39783, a positive allosteric modulator for GABAB-R, suppressed the pEPSP in SD, but not NS rats. Since both mGluRs and GABAB-Rs seem to be involved in the LTD, especially in SD rats, we examined if the receptor expression pattern and/or dimerization changed, using immunohistochemical, co-localization and co-immunoprecipitation techniques. Sleep-deprivation induced an increase in the expression of GABAB-R1 and mGlu1αR in the CA1 region of the hippocampus. In addition, co-localization and heterodimerization between mGlu1αR/GABAB-R1 and mGlu1αR/GABAB-R2 is enhanced in SD rats. Taken together, our findings present a novel form of LTD sensitive to the activation of mGluRs and GABAB-Rs, and reveal, for the first time, that sleep-deprivation induces alterations in the expression and dimerization of these receptors. PMID:21980366

  5. Synthesis and SAR of substituted pyrazolo[1,5-a]quinazolines as dual mGlu(2)/mGlu(3) NAMs.

    PubMed

    Wenthur, Cody J; Morrison, Ryan D; Daniels, J Scott; Conn, P Jeffrey; Lindsley, Craig W

    2014-06-15

    Herein we report the design and synthesis of a series of substituted pyrazolo[1,5-a]quinazolin-5(4H)-ones as negative allosteric modulators of metabotropic glutamate receptors 2 and 3 (mGlu2 and mGlu3, respectively). Development of this series was initiated by reports that pyrazolo[1,5-a]quinazoline-derived scaffolds can yield compounds with activity at group II mGlu receptors which are prone to molecular switching following small structural changes. Several potent analogues, including 4-methyl-2-phenyl-8-(pyrimidin-5-yl)pyrazolo[1,5-a]quinazolin-5(4H)-one (10b), were discovered with potent in vitro activity as dual mGlu2/mGlu3 NAMs, with excellent selectivity versus the other mGluRs. PMID:24794112

  6. Synthesis and SAR of substituted pyrrazolo[1,5-a]quinazolines as dual mGlu2/mGlu3 NAMs

    PubMed Central

    Wenthur, Cody J.; Morrison, Ryan D.; Daniels, J. Scott; Conn, P. Jeffrey; Lindsley, Craig W.

    2014-01-01

    Herein we report the design and synthesis of a series of substituted pyrazolo[1,5-a]quinazolin-5(4H)-ones as negative allosteric modulators of metabotropic glutamate receptors 2 and 3 (mGlu2 and mGlu3, respectively). Development of this series was initiated by reports that pyrazolo[1,5-a]quinazoline-derived scaffolds can yield compounds with activity at group II mGlu receptors which are prone to molecular switching following small structural changes. Several potent analogues, including 4-methyl-2-phenyl-8-(pyrimidin-5-yl)pyrazolo[1,5-a]quinazolin-5(4H)-one (10b), were discovered with potent in vitro activity as dual mGlu2/mGlu3 NAMs, with excellent selectivity versus the other mGluRs. PMID:24794112

  7. The Rapidly Acting Antidepressant Ketamine and the mGlu2/3 Receptor Antagonist LY341495 Rapidly Engage Dopaminergic Mood Circuits.

    PubMed

    Witkin, J M; Monn, J A; Schoepp, D D; Li, X; Overshiner, C; Mitchell, S N; Carter, G; Johnson, B; Rasmussen, K; Rorick-Kehn, L M

    2016-07-01

    Ketamine is a rapidly acting antidepressant in patients with treatment-resistant depression (TRD). Although the mechanisms underlying these effects are not fully established, inquiry to date has focused on the triggering of synaptogenesis transduction pathways via glutamatergic mechanisms. Preclinical data suggest that blockade of metabotropic glutamate (mGlu2/3) receptors shares many overlapping features and mechanisms with ketamine and may also provide rapid efficacy for TRD patients. Central dopamine circuitry is recognized as an end target for mood regulation and hedonic valuation and yet has been largely neglected in mechanistic studies of antidepressant-relevant effects of ketamine. Herein, we evaluated the changes in dopaminergic neurotransmission after acute administration of ketamine and the mGlu2/3 receptor antagonist LY341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid ] in preclinical models using electrophysiologic, neurochemical, and behavioral endpoints. When given acutely, both ketamine and LY341495, but not the selective serotonin reuptake inhibitor (SSRI) citalopram, increased the number of spontaneously active dopamine neurons in the ventral tegmental area (VTA), increased extracellular levels of dopamine in the nucleus accumbens and prefrontal cortex, and enhanced the locomotor stimulatory effects of the dopamine D2/3 receptor agonist quinpirole. Further, both ketamine and LY341495 reduced immobility time in the tail-suspension assay in CD1 mice, which are relatively resistant to SSRI antidepressants. Both the VTA neuronal activation and the antidepressant phenotype induced by ketamine and LY341495 were attenuated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo- (9CI)-benzo[f]quinoxaline-7-sulfonamide, indicating AMPA-dependent effects. These findings provide another overlapping mechanism of action of ketamine and mGlu2/3 receptor

  8. Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus

    PubMed Central

    Klar, Rebecca; Walker, Adam G.; Ghose, Dipanwita; Grueter, Brad A.; Engers, Darren W.; Hopkins, Corey R.; Lindsley, Craig W.; Xiang, Zixiu

    2015-01-01

    Of the eight metabotropic glutamate (mGlu) receptor subtypes, only mGlu7 is expressed presynaptically at the Schaffer collateral (SC)-CA1 synapse in the hippocampus in adult animals. Coupled with the inhibitory effects of Group III mGlu receptor agonists on transmission at this synapse, mGlu7 is thought to be the predominant autoreceptor responsible for regulating glutamate release at SC terminals. However, the lack of mGlu7-selective pharmacological tools has hampered direct testing of this hypothesis. We used a novel, selective mGlu7-negative allosteric modulator (NAM), ADX71743, and a newly described Group III mGlu receptor agonist, LSP4-2022, to elucidate the role of mGlu7 in modulating transmission in hippocampal area CA1 in adult C57BL/6J male mice. Interestingly, although mGlu7 agonists inhibit SC-CA1 EPSPs, we found no evidence for activation of mGlu7 by stimulation of SC-CA1 afferents. However, LSP4-2022 also reduced evoked monosynaptic IPSCs in CA1 pyramidal cells and, in contrast to its effect on SC-CA1 EPSPs, ADX71743 reversed the ability of high-frequency stimulation of SC afferents to reduce IPSC amplitudes. Furthermore, blockade of mGlu7 prevented induction of LTP at the SC-CA1 synapse and activation of mGlu7 potentiated submaximal LTP. Together, these data suggest that mGlu7 serves as a heteroreceptor at inhibitory synapses in area CA1 and that the predominant effect of activation of mGlu7 by stimulation of glutamatergic afferents is disinhibition, rather than reduced excitatory transmission. Furthermore, this mGlu7-mediated disinhibition is required for induction of LTP at the SC-CA1 synapse, suggesting that mGlu7 could serve as a novel therapeutic target for treatment of cognitive disorders. PMID:25972184

  9. Involvement of GABAB Receptor Signaling in Antipsychotic-like Action of the Novel Orthosteric Agonist of the mGlu4 Receptor, LSP4-2022.

    PubMed

    Woźniak, Monika; Acher, Francine; Marciniak, Marcin; Lasoń-Tyburkiewicz, Magdalena; Gruca, Piotr; Papp, Mariusz; Pilc, Andrzej; Wierońska, Joanna M

    2016-01-01

    Considering that ligands of metabotropic glutamate and GABA receptors may exert beneficial effects on schizophrenia, we assessed the actions of the first mGlu4-selective orthosteric agonist, LSP4-2022, in several tests reflecting positive, negative, and cognitive symptoms of schizophrenia. Moreover, we investigated the possible involvement of GABAB receptors in LSP4-2022-induced actions. Hyperactivity induced by MK-801 or amphetamine and DOI-induced head twitches in mice were used as the models of positive symptoms. The social interaction test, modified forced swim test (FST), and novel object recognition (NOR) test were used as the models of negative and cognitive symptoms of schizophrenia. LSP4-2022 inhibited hyperactivity (in a dose-dependent manner, 0.5-2 mg/kg) induced by MK-801 or amphetamine and DOI-induced head twitches. In mGlu4 receptor knockout mice, LSP4-2022 was not effective. However, it reversed MK-801-induced impairment in the social interaction test and the MK-801-induced increase of immobility in the modified FST. In the NOR test, LSP4-2022 was active at a dose of 2 mg/kg. GABAB receptor antagonist, CGP55845 (10 mg/kg), reversed LSP4-2022-induced effects in hyperactivity and head twitch tests. At the same time, the simultaneous administration of subeffective doses of LSP4-2022 (0.1 mg/kg) and a positive allosteric modulator of GABAB receptor PAM, GS39783 (0.1 mg/kg), induced clear antipsychotic-like effects in those two tests. Such an interaction between mGlu4 and GABAB receptors was not observed in the social interaction and NOR tests. Therefore, we suggest that the activation of the mGlu4 receptor is a promising approach facilitating the discovery of novel antipsychotic drugs, and that the interplay between mGlu4 and GABAB receptors may become the basis for a novel therapy for schizophrenic patients with predomination of positive symptoms.

  10. Cinnabarinic acid, an endogenous metabolite of the kynurenine pathway, activates type 4 metabotropic glutamate receptors.

    PubMed

    Fazio, F; Lionetto, L; Molinaro, G; Bertrand, H O; Acher, F; Ngomba, R T; Notartomaso, S; Curini, M; Rosati, O; Scarselli, P; Di Marco, R; Battaglia, G; Bruno, V; Simmaco, M; Pin, J P; Nicoletti, F; Goudet, C

    2012-05-01

    Cinnabarinic acid is an endogenous metabolite of the kynurenine pathway that meets the structural requirements to interact with glutamate receptors. We found that cinnabarinic acid acts as a partial agonist of type 4 metabotropic glutamate (mGlu4) receptors, with no activity at other mGlu receptor subtypes. We also tested the activity of cinnabarinic acid on native mGlu4 receptors by examining 1) the inhibition of cAMP formation in cultured cerebellar granule cells; 2) protection against excitotoxic neuronal death in mixed cultures of cortical cells; and 3) protection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice after local infusion into the external globus pallidus. In all these models, cinnabarinic acid behaved similarly to conventional mGlu4 receptor agonists, and, at least in cultured neurons, the action of low concentrations of cinnabarinic acid was largely attenuated by genetic deletion of mGlu4 receptors. However, high concentrations of cinnabarinic acid were still active in the absence of mGlu4 receptors, suggesting that the compound may have off-target effects. Mutagenesis and molecular modeling experiments showed that cinnabarinic acid acts as an orthosteric agonist interacting with residues of the glutamate binding pocket of mGlu4. Accordingly, cinnabarinic acid did not activate truncated mGlu4 receptors lacking the N-terminal Venus-flytrap domain, as opposed to the mGlu4 receptor enhancer, N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC). Finally, we could detect endogenous cinnabarinic acid in brain tissue and peripheral organs by high-performance liquid chromatography-tandem mass spectrometry analysis. Levels increased substantially during inflammation induced by lipopolysaccharide. We conclude that cinnabarinic acid is a novel endogenous orthosteric agonist of mGlu4 receptors endowed with neuroprotective activity. PMID:22311707

  11. Metabotropic glutamate receptor mGlu5 is a mediator of appetite and energy balance in rats and mice.

    PubMed

    Bradbury, Margaret J; Campbell, Una; Giracello, Darlene; Chapman, Deborah; King, Chris; Tehrani, Lida; Cosford, Nicholas D P; Anderson, Jeff; Varney, Mark A; Strack, Alison M

    2005-04-01

    The metabotropic glutamate receptor subtype mGlu5 modulates central reward pathways. Many transmitter systems within reward pathways affect feeding. We examined the potential role of mGlu5 in body weight regulation using genetic and pharmacological approaches. Adult mice lacking mGlu5, mGluR5-/-, weighed significantly less than littermate controls (mGluR5+/+, despite no difference in ad libitum food intake. After overnight food deprivation, mGluR5-/- mice ate significantly less than their mGluR5+/+ controls when refeeding. When on a high fat diet, mGluR5-/- mice weighed less and had decreased plasma insulin and leptin concentrations. The selective mGlu5 antagonist MTEP [3-[(2-methyl-1,3-thiazol-4-yl)-ethynyl]-pyridine; 15 mg/kg s.c.] reduced refeeding after overnight food deprivation in mGluR5+/+, but not mGluR5-/- mice, demonstrating that feeding suppression is mediated via a mGlu5 mechanism. MTEP (1-10 mg/kg) decreased night-time food intake in rats in a dose-related manner. At 10 mg/kg, MTEP injected at 8.5, 4.5, or 0.5 h before refeeding reduced overnight food intake by approximately approximately 30%. Diet-induced obese (DIO) and age-matched lean rats were treated for 12 days with MTEP (3 or 10 mg/kg/day s.c.), dexfenfluramine (3 mg/kg/day s.c.), or vehicle. Daily and cumulative food intakes were reduced in DIO rats by MTEP and dexfenfluramine. Weight gain was prevented with MTEP (3 mg/kg), and weight and adiposity loss was seen with MTEP (10 mg/kg) and dexfenfluramine. Caloric efficiency was decreased, suggesting increased energy expenditure. In lean rats, similar, although smaller, effects were observed. In conclusion, using genetic and pharmacological approaches, we have shown that mGlu5 modulates food intake and energy balance in rodents.

  12. The metabotropic glutamate receptor, mGlu5, is required for extinction learning that occurs in the absence of a context change.

    PubMed

    André, Marion Agnes Emma; Güntürkün, Onur; Manahan-Vaughan, Denise

    2015-02-01

    The metabotropic glutamate (mGlu) receptors and, in particular, mGlu5 are crucially involved in multiple forms of synaptic plasticity that are believed to underlie explicit memory. MGlu5 is also required for information transfer through neuronal oscillations and for spatial memory. Furthermore, mGlu5 is involved in extinction of implicit forms of learning. This places this receptor in a unique position with regard to information encoding. Here, we explored the role of this receptor in context-dependent extinction learning under constant, or changed, contextual conditions. Animals were trained over 3 days to take a left turn under 25% reward probability in a T-maze with a distinct floor pattern (Context A). On Day 4, they experienced either a floor pattern change (Context B) or the same floor pattern (Context A) in the absence of reward. After acquisition of the task, the animals were returned to the maze once more on Day 5 (Context A, no reward). Treatment with the mGlu5 antagonist, 2-methyl-6-(phenylethynyl) pyridine, before maze exposure on Day 4 completely inhibited extinction learning in the AAA paradigm but had no effect in the ABA paradigm. A subsequent return to the original context (A, on Day 5) revealed successful extinction in the AAA paradigm, but impairment of extinction in the ABA paradigm. These data support that although extinction learning in a new context is unaffected by mGlu5 antagonism, extinction of the consolidated context is impaired. This suggests that mGlu5 is intrinsically involved in enabling learning that once-relevant information is no longer valid.

  13. Spatial Learning Requires mGlu5 Signalling in the Dorsal Hippocampus.

    PubMed

    Tan, Shawn Zheng Kai; Ganella, Despina E; Dick, Alec Lindsay Ward; Duncan, Jhodie R; Ong-Palsson, Emma; Bathgate, Ross A D; Kim, Jee Hyun; Lawrence, Andrew J

    2015-06-01

    We examined the role of hippocampal metabotropic glutamate receptor 5 (mGlu5) in spatial learning and memory. Although it has been shown that mGlu5 signalling is required for certain forms of learning and memory, its role in spatial learning is unclear since studies using pharmacological or knockout mice models provide inconsistent findings. Additionally, the location in the brain where mGlu5 signalling may modulate such learning is yet to be precisely delineated. We stereotaxically injected rAAV-Cre into the dorsal hippocampus of mGlu5(loxP/loxP) mice to knockdown mGlu5 in that region. We show for the first time that knockdown of mGlu5 in the dorsal hippocampus is sufficient to impair spatial learning in Morris Water Maze. Locomotor activity and memory retrieval were unaffected by the mGlu5 knockdown. Taken together, these findings support a key role for dorsal hippocampal mGlu5 signalling in spatial learning.

  14. Metabotropic glutamate receptors: beyond the regulation of synaptic transmission.

    PubMed

    Nicoletti, Ferdinando; Battaglia, Giuseppe; Storto, Marianna; Ngomba, Richard T; Iacovelli, Luisa; Arcella, Antonietta; Gradini, Roberto; Sale, Patrizio; Rampello, Liborio; De Vita, Teresa; Di Marco, Roberto; Melchiorri, Daniela; Bruno, Valeria

    2007-08-01

    Metabotropic glutamate (mGlu) receptors are G-protein coupled receptors activated by glutamate, the major excitatory neurotransmitter of the CNS. A growing body of evidence suggests that the function of mGlu receptors is not restricted to the regulation of synaptic transmission. mGlu receptors are expressed in a variety of peripheral cells, including inter alia hepatocytes, pancreatic cells, osteoblasts and immune cells. Within the immunological synapses, mGlu receptors expressed by T cells might contribute to the vast array of signals generated by the antigen-presenting cells. mGlu receptors are also found in embryonic and neural stem cells. This suggests their involvement in the pathophysiology of brain tumors, which likely originates from cancer stem cells similar to neural stem cells. Ligands of mGlu3 and mGlu4 receptors are potential candidates for the experimental treatment of malignant gliomas and medulloblastomas, respectively. PMID:17651904

  15. A novel form of low frequency hippocampal mossy fiber plasticity induced by bimodal mGlu1 receptor signaling

    PubMed Central

    Frausto, Shanti F.; Ito, Koichi; Marszalec, William; Swanson, Geoffrey T.

    2011-01-01

    Summary Mossy fiber synapses act as the critical mediators of highly dynamic communication between hippocampal granule cells in the dentate gyrus and CA3 pyramidal neurons. Excitatory synaptic strength at mossy fiber to CA3 pyramidal cell synapses is potentiated rapidly and reversibly by brief trains of low frequency stimulation of mossy fiber axons. We show that slight modifications to the pattern of stimulation convert this short-term potentiation into prolonged synaptic strengthening lasting tens of minutes in rodent hippocampal slices. This low-frequency potentiation of mossy fiber EPSCs (mf-LFP) requires postsynaptic mGlu1 receptors for induction but is expressed presynaptically as an increased release probability, and therefore impacts both AMPA and NMDA components of the mossy fiber EPSC. A non-conventional signaling pathway initiated by mGlu1 receptors contributes to induction of plasticity, because EPSC potentiation was prevented by a tyrosine kinase inhibitor and only partially reduced by GDPβS. A slowly reversible state of enhanced synaptic efficacy could serve as a mechanism for altering the integrative properties of this synapse within a relatively broad temporal window. PMID:22114260

  16. Discovery and SAR of novel series of imidazopyrimidinones and dihydroimidazopyrimidinones as positive allosteric modulators of the metabotropic glutamate receptor 5 (mGlu5)

    PubMed Central

    Martín-Martín, María Luz; Bartolomé-Nebreda, José Manuel; Conde-Ceide, Susana; Alonso de Diego, Sergio A.; López, Silvia; Martínez-Viturro, Carlos M.; Tong, Han Min; Lavreysen, Hilde; Macdonald, Gregor J.; Steckler, Thomas; Mackie, Claire; Bridges, Thomas M.; Daniels, J. Scott; Niswender, Colleen M.; Noetzel, Meredith J.; Jones, Carrie K.; Conn, P. Jeffrey; Lindsley, Craig W.; Stauffer, Shaun R.

    2015-01-01

    We report the discovery and SAR of two novel series of imidazopyrimidinones and dihydroimidazopyrimidinones as metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs). Exploration of several structural features in the western and eastern part of the imidazopyrimidinone core and combinations thereof, revealed compound 4a as a mGlu5 PAM with good in vitro potency and efficacy, acceptable drug metabolism and pharmacokinetic (DMPK) properties and in vivo efficacy in an amphetamine-based model of psychosis. However, the presence of CNS-mediated adverse effects in preclinical species precluded any further in vivo evaluation. PMID:25683622

  17. Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction.

    PubMed

    Walker, Adam G; Wenthur, Cody J; Xiang, Zixiu; Rook, Jerri M; Emmitte, Kyle A; Niswender, Colleen M; Lindsley, Craig W; Conn, P Jeffrey

    2015-01-27

    Clinical studies have revealed that genetic variations in metabotropic glutamate receptor 3 (mGlu3) affect performance on cognitive tasks dependent upon the prefrontal cortex (PFC) and may be linked to psychiatric conditions such as schizophrenia, bipolar disorder, and addiction. We have performed a series of studies aimed at understanding how mGlu3 influences PFC function and cognitive behaviors. In the present study, we found that activation of mGlu3 can induce long-term depression in the mouse medial PFC (mPFC) in vitro. Furthermore, in vivo administration of a selective mGlu3 negative allosteric modulator impaired learning in the mPFC-dependent fear extinction task. The results of these studies implicate mGlu3 as a major regulator of PFC function and cognition. Additionally, potentiators of mGlu3 may be useful in alleviating prefrontal impairments associated with several CNS disorders. PMID:25583490

  18. Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction

    PubMed Central

    Walker, Adam G.; Wenthur, Cody J.; Xiang, Zixiu; Rook, Jerri M.; Emmitte, Kyle A.; Niswender, Colleen M.; Lindsley, Craig W.; Conn, P. Jeffrey

    2015-01-01

    Clinical studies have revealed that genetic variations in metabotropic glutamate receptor 3 (mGlu3) affect performance on cognitive tasks dependent upon the prefrontal cortex (PFC) and may be linked to psychiatric conditions such as schizophrenia, bipolar disorder, and addiction. We have performed a series of studies aimed at understanding how mGlu3 influences PFC function and cognitive behaviors. In the present study, we found that activation of mGlu3 can induce long-term depression in the mouse medial PFC (mPFC) in vitro. Furthermore, in vivo administration of a selective mGlu3 negative allosteric modulator impaired learning in the mPFC-dependent fear extinction task. The results of these studies implicate mGlu3 as a major regulator of PFC function and cognition. Additionally, potentiators of mGlu3 may be useful in alleviating prefrontal impairments associated with several CNS disorders. PMID:25583490

  19. LY354740 is a potent and highly selective group II metabotropic glutamate receptor agonist in cells expressing human glutamate receptors.

    PubMed

    Schoepp, D D; Johnson, B G; Wright, R A; Salhoff, C R; Mayne, N G; Wu, S; Cockerman, S L; Burnett, J P; Belegaje, R; Bleakman, D; Monn, J A

    1997-01-01

    The novel compound LY354740 is a conformationally constrained analog of glutamate, which was designed for interaction at metabotropic glutamate (mGlu) receptors. In this paper the selectivity of LY354740 for recombinant human mGlu receptor subtypes expressed in non-neuronal (RGT) cells is described. At human mGlu2 receptors, LY354740 produced > 90% suppression of forskolin-stimulated cAMP formation with an EC50 of 5.1 +/- 0.3 nM. LY354740 was six-fold less potent in activating human mGlu3 receptors (EC50 = 24.3 +/- 0.5 nM). LY354740 inhibition of forskolin-stimulated cAMP formation in human mGlu2 receptor-expressing cells was blocked by competitive mGlu receptor antagonists, including (+)-alpha-methyl-4-carboxyphenylglycine (MCPG) and LY307452 ((2S,4S)-2-amino-4-(4,4-diphenylbut-1-yl)-pentane-1,5-dioic acid). LY354740 had no agonist or antagonist activities at cells expressing human mGlu4 or mGlu7 (group III mGlu receptors) (EC50 > 100,000 nM). When tested at group I phosphoinositide-coupled human mGlu receptors (mGlu1a and mGlu5a), LY354740 did not activate or inhibit mGlu receptor agonist-evoked phosphoinositide hydrolysis at up to 100,000 nM. Electrophysiological experiments also demonstrated that LY354740 also had no appreciable activity in cells expressing human recombinant AMPA (GluR4) and kainate (GluR6) receptors. Thus, LY354740 is a highly potent, efficacious and selective group II (mGlu2/3) receptor agonist, useful to explore the functions of these receptors in situ. PMID:9144636

  20. The novel metabotropic glutamate receptor agonist 2R,4R-APDC potentiates stimulation of phosphoinositide hydrolysis in the rat hippocampus by 3,5-dihydroxyphenylglycine: evidence for a synergistic interaction between group 1 and group 2 receptors.

    PubMed

    Schoepp, D D; Salhoff, C R; Wright, R A; Johnson, B G; Burnett, J P; Mayne, N G; Belagaje, R; Wu, S; Monn, J A

    1996-01-01

    The mGlu receptor subtypes and second messenger pathways that mediate 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) responses in brain tissues are not fully understood. 1S,3R-ACPD differs from 3,5-dihydroxyphenylglycine (DHPG) or quisqualate in that 1S,3R-ACPD also activates group 2 mGlu receptors (mGlu2 and mGlu3) that are negatively linked to cAMP formation. To investigate the contribution of group 2 mGlu receptor activity of 1S,3R-ACPD to the phosphoinositide response in the rat hippocampus, we examined the effects of the novel group 2 mGlu receptor agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC). 2R,4R-APDC did not activate or inhibit group 1 mGlu receptors (human mGlu1 alpha and mGlu5a) or group 3 mGlu receptors (human mGlu4 and mGlu7), but potently decreased forskolin-stimulated cAMP formation in human mGlu2- and mGlu3-expressing cells. In slices of the adult rat hippocampus 2R,4R-APDC had no effect on basal phosphoinositide hydrolysis; however, it was found to greatly enhance phosphoinositide hydrolysis to DHPG or quisqualate. In the neonatal rat hippocampus, 2R,4R-APDC enhanced the potency of DHPG, while not affecting the maximal response to group 1 mGlu receptor agonists. Thus, the phosphoinositide response in the rat hippocampus to 1S,3R-ACPD is mediated by a synergistic interaction between group 1 and group 2 mGlu receptors. PMID:9076745

  1. The group II metabotropic glutamate receptor 3 (mGluR3, mGlu3, GRM3): expression, function and involvement in schizophrenia.

    PubMed

    Harrison, P J; Lyon, L; Sartorius, L J; Burnet, P W J; Lane, T A

    2008-05-01

    Group II metabotropic glutamate receptors (mGluRs) comprise mGluR2 (mGlu2; encoded by GRM2) and mGluR3 (mGlu3; encoded by GRM3) and modulate glutamate neurotransmission and synaptic plasticity. Here we review the expression and function of mGluR3 and its involvement in schizophrenia. mGluR3 is expressed by glia and neurons in many brain regions and has a predominantly presynaptic distribution, consistent with its role as an inhibitory autoreceptor and heteroceptor. mGluR3 splice variants exist in human brain but are of unknown function. Differentiation of mGluR3 from mGluR2 has been problematic because of the lack of selective ligands and antibodies; the available data suggest particular roles for mGluR3 in long-term depression, in glial function and in neuroprotection. Some but not all studies find genetic association of GRM3 polymorphisms with psychosis, with the risk alleles also being associated with schizophrenia-related endophenotypes such as impaired cognition, cortical activation and glutamate markers. The dimeric form of mGluR3 may be reduced in the brain in schizophrenia. Finally, preclinical findings have made mGluR3 a putative therapeutic target, and now direct evidence for antipsychotic efficacy of a group II mGluR agonist has emerged from a randomised clinical trial in schizophrenia. Together these data implicate mGluR3 in aetiological, pathophysiological and pharmacotherapeutic aspects of the disorder. PMID:18541626

  2. Exploring the active conformation of cyclohexane carboxylate positive allosteric modulators of the type 4 metabotropic glutamate receptor.

    PubMed

    Rovira, Xavier; Harrak, Youssef; Trapero, Ana; González-Bulnes, Patricia; Malhaire, Fanny; Pin, Jean-Philippe; Goudet, Cyril; Giraldo, Jesús; Llebaria, Amadeu

    2014-12-01

    The active conformation of a family of metabotropic glutamate receptor subtype 4 (mGlu4 ) positive allosteric modulators (PAMs) with the cyclohexane 1,2-dicarboxylic scaffold present in cis-2-(3,5-dichlorophenylcarbamoyl)cyclohexanecarboxylic acid (VU0155041) was investigated by testing structurally similar six-membered ring compounds that have a locked conformation. The norbornane and cyclohexane molecules designed as mGlu4 conformational probes and the enantiomers of the trans diastereomer were computationally characterized and tested in mGlu4 pharmacological assays. The results support a VU0155041 active conformation, with the chair cyclohexane having the aromatic amide substituent in an axial position and the carboxylate in an equatorial position. Moreover, the receptor displays enantiomeric discrimination of the chiral PAMs. The constructed pharmacophore characterized a highly constrained mGlu4 allosteric binding site, thus providing a step forward in structure-based drug design for mGlu4 PAMs.

  3. Targeting of metabotropic glutamate receptors for the treatment of schizophrenia.

    PubMed

    Chaki, Shigeyuki; Hikichi, Hirohiko

    2011-01-01

    The glutamatergic system is involved in a wide range of physiological processes in the brain, and its dysfunction plays an important role in the etiology and pathophysiology of psychiatric disorders, including schizophrenia. Among the glutamate receptors, metabotropic receptors (mGlu receptors) have emerged as attractive therapeutic targets for the development of novel interventions for psychiatric disorders. Among them, group II mGlu receptors, such as mGlu2 and mGlu3 receptors, are of particular interest because of their unique distribution and the regulatory roles they have in neurotransmission. Recently, potent agonists for mGlu2/3 receptor have been synthesized, and their pharmacological roles have been intensively investigated in animal models. The efficacy for the treatment of schizophrenia has also been proven in a clinical trial. Recently, much attention has been paid to mGlu2 receptor potentiators, which potentiate the glutamate response without affecting the actual activity of the mGlu2 receptor. In addition, mGlu1 receptor antagonists have recently been proposed as an attractive approach to developing novel antipsychotics in animal models. This review describes the potential of both mGlu2/3 receptor agonists/potentiators and mGlu1 receptor antagonists for the treatment of schizophrenia. PMID:21355835

  4. Recent progress in the synthesis and characterization of group II metabotropic glutamate receptor allosteric modulators.

    PubMed

    Sheffler, Douglas J; Pinkerton, Anthony B; Dahl, Russell; Markou, Athina; Cosford, Nicholas D P

    2011-08-17

    Group II metabotropic glutamate (mGlu) receptors consist of the metabotropic glutamate 2 (mGlu(2)) and metabotropic glutamate 3 (mGlu(3)) receptor subtypes which modulate glutamate transmission by second messenger activation to negatively regulate the activity of adenylyl cyclase. Excessive accumulation of glutamate in the perisynaptic extracellular region triggers mGlu(2) and mGlu(3) receptors to inhibit further release of glutamate. There is growing evidence that the modulation of glutamatergic neurotransmission by small molecule modulators of Group II mGlu receptors has significant potential for the treatment of several neuropsychiatric and neurodegenerative diseases. This review provides an overview of recent progress on the synthesis and pharmacological characterization of positive and negative allosteric modulators of the Group II mGlu receptors. PMID:22860167

  5. Recent Progress in the Synthesis and Characterization of Group II Metabotropic Glutamate Receptor Allosteric Modulators

    PubMed Central

    2011-01-01

    Group II metabotropic glutamate (mGlu) receptors consist of the metabotropic glutamate 2 (mGlu2) and metabotropic glutamate 3 (mGlu3) receptor subtypes which modulate glutamate transmission by second messenger activation to negatively regulate the activity of adenylyl cyclase. Excessive accumulation of glutamate in the perisynaptic extracellular region triggers mGlu2 and mGlu3 receptors to inhibit further release of glutamate. There is growing evidence that the modulation of glutamatergic neurotransmission by small molecule modulators of Group II mGlu receptors has significant potential for the treatment of several neuropsychiatric and neurodegenerative diseases. This review provides an overview of recent progress on the synthesis and pharmacological characterization of positive and negative allosteric modulators of the Group II mGlu receptors. PMID:22860167

  6. Among the twenty classical L-amino acids, only glutamate directly activates metabotropic glutamate receptors.

    PubMed

    Frauli, Mélanie; Neuville, Pascal; Vol, Claire; Pin, Jean-Philippe; Prézeau, Laurent

    2006-02-01

    Under pathophysiological conditions, cellular amino acids can be profusely released from cells into the cerebral interstitial space. Because several class-C G protein coupled receptors (GPCRs) display a broad natural ligand spectrum, being sensitive to more than one endogenous ligand, we wondered whether the related metabotropic glutamate (mGlu) receptors could be modulated by various types of L-amino acids, allowing them to sense large increase in extracellular amino acid concentration. Here, the agonist, antagonist and allosteric effects of the twenty classical L-amino acids were evaluated on the eight mGlu receptor subtypes. We show that, in addition to glutamate (Glu), cysteine, aspartate and asparagine also lead to the activation of mGlu3, 4 and 5. Interestingly, our data demonstrate that the effect of these three amino acids did not result from a direct activation of the receptors, but from an indirect action involving Glu-transporters/exchangers. These data first demonstrate that mGlu receptors, unlike other class-C GPCRs, display an extremely high selectivity towards one ligand. Moreover, our results also show that Glu transport systems allow mGlu receptors to sense large increase in the extracellular concentration of some amino acids. Such a system will certainly lead to a large increase in some mGlu receptor activity under pathological conditions, such as seizure, ischemia or other brain injuries. PMID:16310227

  7. Effect of the umami peptides on the ligand binding and function of rat mGlu4a receptor might implicate this receptor in the monosodium glutamate taste transduction.

    PubMed

    Monastyrskaia, K; Lundstrom, K; Plahl, D; Acuna, G; Schweitzer, C; Malherbe, P; Mutel, V

    1999-11-01

    1. The effect of several metabotropic ligands and di- or tripeptides were tested on the binding of [3H]-L(+)-2-amino-4-phosphonobutyric acid ([3H]-L-AP4) on rat mGlu4 receptor. For selected compounds, the functional activity was determined on this receptor using the guanosine-5'[gamma-35S]-thiotriphosphate [gamma-35S]-GTP binding assay. 2. Using the scintillation proximity assay, [3H]-L-AP4 saturation analysis gave binding parameters K(D) and Bmax values of 150 nM and 9.3 pmoles mg-1 protein, respectively. The specific binding was inhibited concentration-dependently by several mGlu receptor ligands, and their rank order of affinity was established. 3. Several peptides inhibited the [3H]-L-AP4 binding with the following rank order of potency: glutamate-glutamate>glutamate-glutamate-leucine=aspartate - glutamate>glutamate - glutamate-aspartate>lactoyl-glutamate>aspartate-aspartate. Aspartate-phenylalanine-methyl ester (aspartame) was inactive up to 1 mM and guanosine-5'-monophosphate and inosine-5'-monophosphate were inactive up to 100 micronM. 4. The [gamma-35S]-GTP binding functional assay was used to determine the agonist activities of the different compounds. For the rat mGlu4 agonists, L-AP4 and L-glutamate, the correlation between their occupancy and activation of the receptor was close to one. The peptides, Glu-Glu, Asp-Glu and Glu-Glu-Asp failed to stimulate the [gamma-35S]-GTP binding at receptor occupancy greater than 80% and Glu-Glu-Leu appeared to be a weak partial agonist. These peptides did not elicit a clear dose-dependent umami perception. However, Glu-lac showed a good correlation between its potency to stimulate the [gamma-35S]-GTP binding and its affinity for displacement of [3H]-L-AP4 binding. These data are in agreement with the peptide taste assessment in human subjects, which showed that the acid derivatives of glutamate had characteristics similar to umami.

  8. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists.

    PubMed

    Moreno, José L; Holloway, Terrell; Albizu, Laura; Sealfon, Stuart C; González-Maeso, Javier

    2011-04-15

    Hallucinogenic drugs, including mescaline, psilocybin and lysergic acid diethylamide (LSD), act at serotonin 5-HT2A receptors (5-HT2ARs). Metabotropic glutamate receptor 2/3 (mGluR2/3) ligands show efficacy in modulating the responses induced by activation of 5-HT2ARs. The formation of a 5-HT2AR-mGluR2 complex suggests a functional interaction that affects the hallucinogen-regulated cellular signaling pathways. Here, we tested the cellular and behavioral effects of hallucinogenic 5-HT2AR agonists in mGluR2 knockout (mGluR2-KO) mice. Mice were intraperitoneally injected with the hallucinogens DOI (2 mg/kg) and LSD (0.24 mg/kg), or vehicle. Head-twitch behavioral response, expression of c-fos, which is induced by all 5-HT2AR agonists, and expression of egr-2, which is hallucinogen-specific, were determined in wild type and mGluR2-KO mice. [(3)H]Ketanserin binding displacement curves by DOI were performed in mouse frontal cortex membrane preparations. Head twitch behavior was abolished in mGluR2-KO mice. The high-affinity binding site of DOI was undetected in mGluR2-KO mice. The hallucinogen DOI induced c-fos in both wild type and mGluR2-KO mice. However, the induction of egr-2 by DOI was eliminated in mGlu2-KO mice. These findings suggest that the 5-HT2AR-mGluR2 complex is necessary for the neuropsychological responses induced by hallucinogens.

  9. Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated by metabotropic glutamate receptors

    PubMed Central

    Copeland, C.S.; Neale, S.A.; Salt, T.E.

    2015-01-01

    The mediodorsal thalamus (MD) likely plays an important role in cognition as it receives abundant afferent connections from the amygdala and prefrontal cortex (PFC). Indeed, disturbed activity within the MD is thought to precipitate cognitive deficits associated with schizophrenia. As compounds acting at the Group II metabotropic glutamate (mGlu) receptors (subtypes mGlu2/mGlu3) have efficacy in animal models of schizophrenia, we investigated whether a Group II agonist and an mGlu2 positive allosteric modulator (PAM) could modulate MD activity. Extracellular single-unit recordings were made in vivo from MD neurones in anaesthetised rats. Responses were elicited by electrical stimulation of the PFC and/or amygdala, with Group II compounds locally applied as required. The Group II agonist reduced inhibition evoked in the MD: an effect manifested as an increase in short-latency responses, and a decrease in long-latency burst-firing. This disinhibitory action of the Group II receptors in the MD represents a mechanism of potential therapeutic importance as increased inhibition in the MD has been associated with cognitive deficit-onset. Furthermore, as co-application of the mGlu2 PAM did not potentiate the Group II agonist effects in the MD, we suggest that the Group II disinhibitory effect is majority-mediated via mGlu3. This heterogeneity in Group II receptor thalamic physiology bears consequence, as compounds active exclusively at the mGlu2 subtype are unlikely to perturb maladapted MD firing patterns associated with cognitive deficits, with activity at mGlu3 receptors possibly more appropriate. Indeed, polymorphisms in the mGlu3, but not the mGlu2, gene have been detected in patients with schizophrenia. PMID:25576798

  10. Neuronal activity patterns in the mediodorsal thalamus and related cognitive circuits are modulated by metabotropic glutamate receptors.

    PubMed

    Copeland, C S; Neale, S A; Salt, T E

    2015-05-01

    The mediodorsal thalamus (MD) likely plays an important role in cognition as it receives abundant afferent connections from the amygdala and prefrontal cortex (PFC). Indeed, disturbed activity within the MD is thought to precipitate cognitive deficits associated with schizophrenia. As compounds acting at the Group II metabotropic glutamate (mGlu) receptors (subtypes mGlu2/mGlu3) have efficacy in animal models of schizophrenia, we investigated whether a Group II agonist and an mGlu2 positive allosteric modulator (PAM) could modulate MD activity. Extracellular single-unit recordings were made in vivo from MD neurones in anaesthetised rats. Responses were elicited by electrical stimulation of the PFC and/or amygdala, with Group II compounds locally applied as required. The Group II agonist reduced inhibition evoked in the MD: an effect manifested as an increase in short-latency responses, and a decrease in long-latency burst-firing. This disinhibitory action of the Group II receptors in the MD represents a mechanism of potential therapeutic importance as increased inhibition in the MD has been associated with cognitive deficit-onset. Furthermore, as co-application of the mGlu2 PAM did not potentiate the Group II agonist effects in the MD, we suggest that the Group II disinhibitory effect is majority-mediated via mGlu3. This heterogeneity in Group II receptor thalamic physiology bears consequence, as compounds active exclusively at the mGlu2 subtype are unlikely to perturb maladapted MD firing patterns associated with cognitive deficits, with activity at mGlu3 receptors possibly more appropriate. Indeed, polymorphisms in the mGlu3, but not the mGlu2, gene have been detected in patients with schizophrenia. PMID:25576798

  11. Radiosynthesis and Evaluation of an 18F-Labeled Positron Emission Tomography (PET) Radioligand for Metabotropic Glutamate Receptor Subtype 4 (mGlu4)

    PubMed Central

    2015-01-01

    Four 4-phthalimide derivatives of N-(3-chlorophenyl)-2-picolinamide were synthesized as potential ligands for the PET imaging of mGlu4 in the brain. Of these compounds, N-(3-chloro-4-(4-fluoro-1,3-dioxoisoindolin-2-yl)phenyl)-2-picolinamide (3, KALB001) exhibited improved binding affinity (IC50 = 5.1 nM) compared with ML128 (1) and was subsequently labeled with 18F. When finally formulated in 0.1 M citrate buffer (pH 4) with 10% ethanol, the specific activity of [18F]3 at the end of synthesis (EOS) was 233.5 ± 177.8 GBq/μmol (n = 4). The radiochemical yield of [18F]3 was 16.4 ± 4.8% (n = 4), and the purity was over 98%. In vivo imaging studies in a monkey showed that the radiotracer quickly penetrated the brain with the highest accumulation in the brain areas known to express mGlu4. Despite some unfavorable radiotracer properties like fast washout in rodent studies, [18F]3 is the first 18F-labeled mGlu4 radioligand, which can be further modified to improve pharmacokinetics and brain penetrability for future human studies. PMID:25330258

  12. Emotional Impairment and Persistent Upregulation of mGlu5 Receptor following Morphine Abstinence: Implications of an mGlu5-MOPr Interaction

    PubMed Central

    Zanos, Panos; Georgiou, Polymnia; Gonzalez, Loreto Rojo; Hourani, Susanna; Chen, Ying; Kitchen, Ian; Kieffer, Brigitte L; Winsky-Sommerer, Raphaelle

    2016-01-01

    Background: A difficult problem in treating opioid addicts is the maintenance of a drug-free state because of the negative emotional symptoms associated with withdrawal, which may trigger relapse. Several lines of evidence suggest a role for the metabotropic glutamate receptor 5 in opioid addiction; however, its involvement during opioid withdrawal is not clear. Methods: Mice were treated with a 7-day escalating-dose morphine administration paradigm. Following withdrawal, the development of affective behaviors was assessed using the 3-chambered box, open-field, elevated plus-maze and forced-swim tests. Metabotropic glutamate receptor 5 autoradiographic binding was performed in mouse brains undergoing chronic morphine treatment and 7 days withdrawal. Moreover, since there is evidence showing direct effects of opioid drugs on the metabotropic glutamate receptor 5 system, the presence of an metabotropic glutamate receptor 5/μ-opioid receptor interaction was assessed by performing metabotropic glutamate receptor 5 autoradiographic binding in brains of mice lacking the μ-opioid receptor gene. Results: Withdrawal from chronic morphine administration induced anxiety-like, depressive-like, and impaired sociability behaviors concomitant with a marked upregulation of metabotropic glutamate receptor 5 binding. Administration of the metabotropic glutamate receptor 5 antagonist, 3-((2-Methyl-4-thiazolyl)ethynyl)pyridine, reversed morphine abstinence-induced depressive-like behaviors. A brain region-specific increase in metabotropic glutamate receptor 5 binding was observed in the nucleus accumbens shell, thalamus, hypothalamus, and amygdala of μ-opioid receptor knockout mice compared with controls. Conclusions: These results suggest an association between metabotropic glutamate receptor 5 alterations and the emergence of opioid withdrawal-related affective behaviors. This study supports metabotropic glutamate receptor 5 system as a target for the development of

  13. Stimulation of endocannabinoid formation in brain slice cultures through activation of group I metabotropic glutamate receptors.

    PubMed

    Jung, Kwang-Mook; Mangieri, Regina; Stapleton, Christopher; Kim, Janet; Fegley, Darren; Wallace, Matthew; Mackie, Ken; Piomelli, Daniele

    2005-11-01

    Activation of group I metabotropic glutamate (mGlu) receptors drives the endocannabinoid system to cause both short- and long-term changes of synaptic strength in the striatum, hippocampus, and other brain areas. Although there is strong electrophysiological evidence for a role of endocannabinoid release in mGlu receptor-dependent plasticity, the identity of the endocannabinoid transmitter mediating this phenomenon remains undefined. In this study, we show that activation of group I mGlu receptors triggers the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), but not anandamide, in primary cultures of corticostriatal and hippocampal slices prepared from early postnatal rat brain. Pharmacological studies suggest that 2-AG biosynthesis is initiated by activation of mGlu5 receptors, is catalyzed by phospholipase C (PLC) and 1,2-diacylglycerol lipase (DGL) activities, and is dependent on intracellular Ca2+ ions. Realtime polymerase chain reaction and immunostaining analyses indicate that DGL-beta is the predominant DGL isoform expressed in corticostriatal and hippocampal slices and that this enzyme is highly expressed in striatal neurons, where it is colocalized with PLC-beta1. The results suggest that 2-AG is a primary endocannabinoid mediator of mGlu receptor-dependent neuronal plasticity.

  14. Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors.

    PubMed

    Monn, J A; Valli, M J; Massey, S M; Hansen, M M; Kress, T J; Wepsiec, J P; Harkness, A R; Grutsch, J L; Wright, R A; Johnson, B G; Andis, S L; Kingston, A; Tomlinson, R; Lewis, R; Griffey, K R; Tizzano, J P; Schoepp, D D

    1999-03-25

    As part of our ongoing research program aimed at the identification of highly potent, selective, and systemically active agonists for group II metabotropic glutamate (mGlu) receptors, we have prepared novel heterobicyclic amino acids (-)-2-oxa-4-aminobicyclo[3.1. 0]hexane-4,6-dicarboxylate (LY379268, (-)-9) and (-)-2-thia-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY389795, (-)-10). Compounds (-)-9 and (-)-10 are structurally related to our previously described nanomolar potency group II mGlu receptor agonist, (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate monohydrate (LY354740 monohydrate, 5), with the C4-methylene unit of 5 being replaced with either an oxygen atom (as in (-)-9) or a sulfur atom (as in (-)-10). Compounds (-)-9 and (-)-10 potently and stereospecifically displaced specific binding of the mGlu2/3 receptor antagonist ([3H]LY341495) in rat cerebral cortical homogenates, displaying IC50 values of 15 +/- 4 and 8.4 +/- 0.8 nM, respectively, while having no effect up to 100 000 nM on radioligand binding to the glutamate recognition site on NMDA, AMPA, or kainate receptors. Compounds (-)-9 and (-)-10 also potently displaced [3H]LY341495 binding from membranes expressing recombinant human group II mGlu receptor subtypes: (-)-9, Ki = 14.1 +/- 1.4 nM at mGlu2 and 5.8 +/- 0.64 nM at mGlu3; (-)-10, Ki = 40.6 +/- 3.7 nM at mGlu2 and 4.7 +/- 1.2 nM at mGlu3. Evaluation of the functional effects of (-)-9 and (-)-10 on second-messenger responses in nonneuronal cells expressing human mGlu receptor subtypes demonstrated each to be a highly potent agonist for group II mGlu receptors: (-)-9, EC50 = 2.69 +/- 0.26 nM at mGlu2 and 4.58 +/- 0.04 nM at mGlu3; (-)-10, EC50 = 3.91 +/- 0.81 nM at mGlu2 and 7.63 +/- 2. 08 nM at mGlu3. In contrast, neither compound (up to 10 000 nM) displayed either agonist or antagonist activity in cells expressing recombinant human mGlu1a, mGlu5a, mGlu4a, or mGlu7a receptors. The agonist effects of (-)-9 and (-)-10 at group II mGlu

  15. Metabotropic glutamate receptors in stem/progenitor cells.

    PubMed

    Melchiorri, Daniela; Cappuccio, Irene; Ciceroni, Cinzia; Spinsanti, Paola; Mosillo, Paola; Sarichelou, Iran; Sale, Patrizio; Nicoletti, Ferdinando

    2007-09-01

    Functional mGlu receptor subtypes are found in stem/progenitor cells, and regulate proliferation, differentiation, and survival of these cells. Activation of mGlu5 receptors supports self-renewal of embryonic stem cells, which are pluripotent cells isolated from the blastocyst capable of generating all the body's cell lineages, including germ cells. Differentiation of embryonic stem cells into embryoid bodies is associated with the induction of mGlu4 receptors, the activation of which drives cell differentiation towards the mesoderm and endoderm lineages. Different mGlu receptor subtypes, mGlu3 and mGlu5 receptors in particular, are found in neural stem cells (stem cells resident in the CNS that give rise to neurons, astrocytes or oligodendrocytes) isolated from the developing brain or from regions of persistent neurogenesis of the adult brain (e.g. the subventricular zone lining the wall of the lateral ventricles). The evidence that activation of mGlu3 and mGlu5 receptors stimulates proliferation of these cells is particularly interesting because of the similarities between neural stem cells and putative cancer stem cells that support the growth of malignant gliomas. A link among mGlu receptors, stem cells and cancer is supported by the finding that mGlu4 receptors are expressed by cerebellar granule cell neuroprogenitors, which are the putative cells of origin of medulloblastomas. The study of mGlu receptors in stem/progenitor cells has potential applications in the optimisation of protocols of cell expansion and differentiation aimed at cell replacement strategies, and may gain new insights into the pathophysiology of neurodevelopmental disorders and brain tumours. PMID:17675103

  16. Preclinical evaluation of the antipsychotic potential of the mGlu2-positive allosteric modulator JNJ-40411813

    PubMed Central

    Lavreysen, Hilde; Langlois, Xavier; Donck, Luc Ver; Nuñez, José María Cid; Pype, Stefan; Lütjens, Robert; Megens, Anton

    2015-01-01

    JNJ-40411813/ADX71149 (1-butyl-3-chloro-4-(4-phenylpiperidin-1-yl) pyridin-2(1H)-one) is a positive allosteric modulator (PAM) of the mGlu2 receptor, which also displays 5-Hydroxytryptamine (5HT2A) antagonism after administration in rodents due to a rodent-specific metabolite. JNJ-40411813 was compared with the orthosteric mGlu2/3 agonist LY404039 (4-amino-2-thiabicyclo [3.1.0] hexane-4,6-dicarboxylic acid 2,2-dioxide), the selective mGlu2 PAM JNJ-42153605 (3-(cyclopropylmethyl)-7-(4-phenylpiperidin-1-yl)-8-(trifluoromethyl)[1,2,4]triazolo[4,3-a]pyridine) and the 5HT2A antagonist ritanserin in rodent models for antipsychotic activity and potential side effects, attempting to differentiate between the various compounds and mechanisms of action. In mice, JNJ-40411813, JNJ-42153605, and LY404039 inhibited spontaneous locomotion and phencyclidine- and scopolamine-induced but not d-amphetamine-induced hyperlocomotion; the 5HT2A antagonist ritanserin inhibited only spontaneous locomotion and phencyclidine-induced hyperlocomotion. As measured by 2-deoxyglucose uptake, all compounds reversed memantine-induced brain activation in mice. The two mGlu2 PAMs and LY404039, but not ritanserin, inhibited conditioned avoidance behavior in rats. Like ritanserin, the mGlu2 ligands antagonized 2,5-dimethoxy-4-methylamphetamine-induced head twitches in rats. LY404039 but not the mGlu2 PAMs impaired rotarod performance in rats and increased the acoustic startle response in mice. Our results show that although 5HT2A antagonism has effect in some models, mGlu2 receptor activation is sufficient for activity in several animal models of antipsychotic activity. The mGlu2 PAMs mimicked the in vivo pharmacodynamic effects observed with LY404039 except for effects on the rotarod and acoustic startle, suggesting that they produce a primary activity profile similar to that of the mGlu2/3 receptor agonist while they can be differentiated based on their secondary activity profile. The results are

  17. Antipsychotic profiles of TASP0443294, a novel and orally active positive allosteric modulator of metabotropic glutamate 2 receptor.

    PubMed

    Hikichi, Hirohiko; Hiyoshi, Tetsuaki; Marumo, Toshiyuki; Tomishima, Yasumitsu; Kaku, Ayaka; Iida, Izumi; Urabe, Hiroki; Tamita, Tomoko; Yasuhara, Akito; Karasawa, Jun-ichi; Chaki, Shigeyuki

    2015-03-01

    Glutamatergic dysfunction has been implicated in psychiatric disorders such as schizophrenia. The stimulation of metabotropic glutamate (mGlu) 2 receptor has been shown to be effective in a number of animal models of schizophrenia. In this study, we investigated the antipsychotic profiles of (2S)-5-methyl-2-{[4-(1,1,1-trifluoro-2-methylpropan-2-yl)phenoxy]methyl}-2,3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamide (TASP0443294), a newly synthesized positive allosteric modulator of the mGlu2 receptor. TASP0443294 potentiated the response of human mGlu2 and rat mGlu2 receptors to glutamate with EC50 values of 277 and 149 nM, respectively, without affecting the glutamate response of human mGlu3 receptor. TASP0443294 was distributed in the brain and cerebrospinal fluid after peroral administration in rats. The peroral administration of TASP0443294 inhibited methamphetamine-induced hyperlocomotion in rats, which was attenuated by an mGlu2/3 receptor antagonist, and improved social memory impairment induced by 5R,10S-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) in rats. Furthermore, TASP0443294 reduced the ketamine-induced basal gamma hyperactivity in the prefrontal cortex and suppressed rapid eye movement (REM) sleep in rats. These findings indicate that TASP0443294 is an mGlu2 receptor positive allosteric modulator with antipsychotic activity, and that the suppression of aberrant gamma oscillations and REM sleep could be considered as neurophysiological biomarkers for TASP0443294. PMID:25837934

  18. Activation of group II metabotropic glutamate receptors induces long-term depression of excitatory synaptic transmission in the substantia nigra pars reticulata.

    PubMed

    Johnson, Kari A; Niswender, Colleen M; Conn, P Jeffrey; Xiang, Zixiu

    2011-10-24

    Activation of group II metabotropic glutamate receptors (mGlu2 and mGlu3) has been implicated as a potential therapeutic strategy for treating both motor symptoms and progressive neurodegeneration in Parkinson's disease (PD). Modulation of excitatory transmission in the basal ganglia represents a possible mechanism by which group II mGlu agonists could exert antiparkinsonian effects. Previous studies have identified reversible effects of mGlu2/3 activation on excitatory transmission at various synapses in the basal ganglia, including the excitatory synapse between the subthalamic nucleus (STN) and the substantia nigra pars reticulata (SNr). Using whole-cell patch clamp studies of GABAergic SNr neurons in rat midbrain slices, we have found that a prolonged activation of group II mGlus by the selective agonist LY379268 induces a long-term depression (LTD) of evoked excitatory postsynaptic current (EPSC) amplitude. Bath application of LY379268 (100nM, 10min) induced a marked reduction in EPSC amplitude, and excitatory transmission remained depressed for at least 40min after agonist washout. The effect of LY379268 was concentration-dependent and was completely blocked by the group II mGlu-preferring antagonist LY341495 (500nM). To determine the relative contributions of mGlu2 and mGlu3 to the LTD induced by LY379268, we tested the ability of LY379268 (100nM) to induce LTD in wild type mice and mice lacking mGlu2 or mGlu3. LY379268 induced similar LTD in wild type mice and mGlu3 knockout mice, whereas LTD was absent in mGlu2 knockout mice, indicating that mGlu2 activation is necessary for the induction of LTD in the SNr. These studies suggest a novel role for mGlu2 in the long-term regulation of excitatory transmission in the SNr and invite further exploration of mGlu2 as a therapeutic target for treating the motor symptoms of PD. PMID:21945652

  19. Metabotropic glutamate receptors in neurodegeneration/neuroprotection: still a hot topic?

    PubMed

    Caraci, Filippo; Battaglia, Giuseppe; Sortino, Maria Angela; Spampinato, Simona; Molinaro, Gemma; Copani, Agata; Nicoletti, Ferdinando; Bruno, Valeria

    2012-09-01

    Moving from early studies, we here review the most recent evidence linking metabotropic glutamate (mGlu) receptors to processes of neurodegeneration/neuroprotection. The use of knockout mice and subtype-selective drugs has increased our knowledge of the precise role played by individual mGlu receptor subtypes in these processes. Activation of mGlu1 and mGlu5 receptors may either amplify or reduce neuronal damage depending on the context and the nature of the toxic insults. In contrast, mGlu1 and mGlu5 receptors antagonists are consistently protective in in vitro and in vivo models of neuronal death. A series of studies suggest that mGlu1 receptor antagonists or negative allosteric modulators (NAMs) are promising candidates for the treatment of ischemic brain damage, whereas mGlu5 receptor NAMs, which have been clinically developed for the treatment of Parkinson's disease (PD) and l-DOPA-induced dyskinesias, protect nigro-striatal dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice and monkeys. Activation of glial mGlu3 receptors promotes the formation of various neurotrophic factors, such as transforming growth factor-β (TGF-β), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF). Hence, selective mGlu3 receptor agonists or positive allosteric modulators (PAMs) (not yet available) are potentially helpful in the treatment of chronic neurodegenerative disorders such as PD, Alzheimer's disease (AD), and amyotrophic lateral sclerosis. Selective mGlu2 receptor PAMs should be used with caution in AD patients because these drugs are shown to amplify β-amyloid neurotoxicity. Finally, mGlu4 receptor agonists/PAMs share with mGlu5 receptor NAMs the ability to improve motor symptoms associated with PD and attenuate nigro-striatal degeneration at the same time. No data are yet available on the role of mGlu7 and mGlu8 receptors in neurodegeneration

  20. Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice.

    PubMed

    Matrisciano, Francesco; Tueting, Patricia; Maccari, Stefania; Nicoletti, Ferdinando; Guidotti, Alessandro

    2012-03-01

    Prenatal exposure to restraint stress causes long-lasting changes in neuroplasticity that likely reflect pathological modifications triggered by early-life stress. We found that the offspring of dams exposed to repeated episodes of restraint stress during pregnancy (here named 'prenatal restraint stress mice' or 'PRS mice') developed a schizophrenia-like phenotype, characterized by a decreased expression of brain-derived neurotrophic factor and glutamic acid decarboxylase 67, an increased expression of type-1 DNA methyl transferase (DNMT1) in the frontal cortex, and a deficit in social interaction, locomotor activity, and prepulse inhibition. PRS mice also showed a marked decrease in metabotropic glutamate 2 (mGlu2) and mGlu3 receptor mRNA and protein levels in the frontal cortex, which was manifested at birth and persisted in adult life. This decrease was associated with an increased binding of DNMT1 to CpG-rich regions of mGlu2 and mGlu3 receptor promoters and an increased binding of MeCP2 to the mGlu2 receptor promoter. Systemic treatment with the selective mGlu2/3 receptor agonist LY379268 (0.5 mg/kg, i.p., twice daily for 5 days), corrected all the biochemical and behavioral abnormalities shown in PRS mice. Our data show for the first time that PRS induces a schizophrenia-like phenotype in mice, and suggest that epigenetic changes in mGlu2 and mGlu3 receptors lie at the core of the pathological programming induced by early-life stress.

  1. Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice.

    PubMed

    Matrisciano, Francesco; Tueting, Patricia; Maccari, Stefania; Nicoletti, Ferdinando; Guidotti, Alessandro

    2012-03-01

    Prenatal exposure to restraint stress causes long-lasting changes in neuroplasticity that likely reflect pathological modifications triggered by early-life stress. We found that the offspring of dams exposed to repeated episodes of restraint stress during pregnancy (here named 'prenatal restraint stress mice' or 'PRS mice') developed a schizophrenia-like phenotype, characterized by a decreased expression of brain-derived neurotrophic factor and glutamic acid decarboxylase 67, an increased expression of type-1 DNA methyl transferase (DNMT1) in the frontal cortex, and a deficit in social interaction, locomotor activity, and prepulse inhibition. PRS mice also showed a marked decrease in metabotropic glutamate 2 (mGlu2) and mGlu3 receptor mRNA and protein levels in the frontal cortex, which was manifested at birth and persisted in adult life. This decrease was associated with an increased binding of DNMT1 to CpG-rich regions of mGlu2 and mGlu3 receptor promoters and an increased binding of MeCP2 to the mGlu2 receptor promoter. Systemic treatment with the selective mGlu2/3 receptor agonist LY379268 (0.5 mg/kg, i.p., twice daily for 5 days), corrected all the biochemical and behavioral abnormalities shown in PRS mice. Our data show for the first time that PRS induces a schizophrenia-like phenotype in mice, and suggest that epigenetic changes in mGlu2 and mGlu3 receptors lie at the core of the pathological programming induced by early-life stress. PMID:22089319

  2. Type 1 metabotropic glutamate receptors (mGlu1) trigger the gating of GluD2 delta glutamate receptors

    PubMed Central

    Ady, Visou; Perroy, Julie; Tricoire, Ludovic; Piochon, Claire; Dadak, Selma; Chen, Xiaoru; Dusart, Isabelle; Fagni, Laurent; Lambolez, Bertrand; Levenes, Carole

    2014-01-01

    The orphan GluD2 receptor belongs to the ionotropic glutamate receptor family but does not bind glutamate. Ligand-gated GluD2 currents have never been evidenced, and whether GluD2 operates as an ion channel has been a long-standing question. Here, we show that GluD2 gating is triggered by type 1 metabotropic glutamate receptors, both in a heterologous expression system and in Purkinje cells. Thus, GluD2 is not only an adhesion molecule at synapses but also works as a channel. This gating mechanism reveals new properties of glutamate receptors that emerge from their interaction and opens unexpected perspectives regarding synaptic transmission and plasticity. PMID:24357660

  3. Progress in the developement of positive allosteric modulators of the metabotropic glutamate receptor 2.

    PubMed

    Trabanco, A A; Cid, J M; Lavreysen, H; Macdonald, G J; Tresadern, G

    2011-01-01

    The metabotropic glutamate type 2 (mGlu2) receptor is a G-protein coupled receptor (GPCR) expressed on presynaptic nerve terminals where it negatively modulates glutamate and GABA release. Mixed mGlu2/mGlu3 orthosteric agonists such as LY354740 have shown activity in a range of preclinical animal models of anxiety and schizophrenia. Clinical work with LY354740 demonstrated activity in a CO(2) inhalation study suggesting application in the treatment of anxiety related disorders. Subsequently, a related prodrug LY2140023 demonstrated improvements in positive and negative symptoms in patients suffering from schizophrenia. These molecules exhibit combined mGlu2/mGlu3 activity although there is evidence from knock-out studies that preclinical anti-psychotic effects may be mediated via the mGlu2 receptor. An alternative avenue for modulating GPCRs is to act via allosteric mechanisms, binding at a different site from the orthosteric agonist. Since the first discovery of mGlu2 positive allosteric modulators (PAMs) such as 2,2,2-TEMPS and BINA, multiple families of mGlu2 modulators have been reported and several have entered into clinical development. This review focuses on recent advances in the development of novel mGlu2 PAMs by analysis of compounds disclosed in research articles and patent literature between 2007 and 2010. PMID:21110815

  4. Comparison of the effects of diazepam, the CRF1 antagonist CP-154,526 and the group II mGlu receptor agonist LY379268 on stress-evoked extracellular norepinephrine levels.

    PubMed

    Lorrain, Daniel S; Baccei, Christopher S; Correa, Lucia D; Bristow, Linda J

    2005-06-01

    The present study used an elevated platform procedure to investigate the effects of diazepam, a CRF1 antagonist CP-154,526 and a group II mGlu2/3 receptor agonist LY379268 on stress-evoked increase in extracellular norepinephrine (NE). Pretreatment with either diazepam (1 mg/kg, i.p.), CP-154,526 (20 mg/kg, i.p.) or LY379268 (1, 3 and 10 mg/kg, p.o.) significantly reduced platform stress-evoked NE. Interestingly, at the highest dose tested (10 mg/kg) LY379268 caused a marked increase in baseline NE levels. We tested whether this effect would diminish after repeated dosing. In contrast to acute administration, a challenge injection of LY379268 after repeated dosing (10 mg/kg x days) did not alter basal NE. Importantly, although less effective, LY379268 still significantly reduced stress-evoked NE. We further show that this increase in basal NE may involve mGlu2/3 receptor regulation of the GABAergic system. To this end, administration of the GABAB agonist, baclofen (4 mg/kg, i.p.), 2 h after dosing with LY379268, reversed the increase in baseline NE. These data suggest that, like diazepam and CP-154,526, group II mGlu2/3 receptor agonists can attenuate stress-evoked increase in extracellular NE in the rat prefrontal cortex. In addition they reveal a 'stress-like' increase in NE after high doses of LY379268 which may reflect mGlu3 receptor modulation of GABAergic transmission. PMID:15857619

  5. Differential changes in mGlu2 and mGlu3 gene expression following pilocarpine-induced status epilepticus: A comparative real-time PCR analysis

    PubMed Central

    Ermolinsky, Boris; Pacheco Otalora, Luis F.; Arshadmansab, Massoud F.; Zarei, Masoud; Garrido-Sanabria, Emilio R.

    2008-01-01

    Group II metabotropic glutamate (mGlu II) receptors subtype 2 and 3 (mGlu2 and mGlu3) are subtle regulators of neuronal excitability and synaptic plasticity in the hippocampus. In recent years, researchers have investigated the potential neuroprotective and anticonvulsant effects of compounds acting on mGlu II receptors. However, abnormal expression and function of mGlu2 and mGlu3 have been reported in temporal lobe epilepsy, a phenomena that may limit the therapeutic effectiveness of these potentially new antiepileptic drugs. Here, we investigated seizure-induced changes in mGlu2 and mGlu3 mRNA following pilocarpine-inducted status epilepticus (SE) and subsequent epileptogenesis. Relative changes in gene expression were assessed by comparative analysis of quantitative real-time PCR (qrtPCR) by the delta-delta CT method. Pilocarpine-treated and control rats were sacrificed at different periods (24h, 10 days, one month and more than two months) following SE. Total RNA was isolated from microdissected dentate gyrus and processed for RT-PCR and qrtPCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an endogenous control gene. Analysis of relative quantification (RQ) ratios of mGlu2 and mGlu3 mRNA expression revealed a significant down-regulation of both targets at 24h after SE. Gene expression partially recovered at 10 days following SE reaching control levels at one month after SE. Two month after SE, mGlu2 mRNA expression was significantly down-regulated to ~41% of control expression whereas mGlu3 mRNA was comparable to control levels. Our data indicate that mGlu2 and mGlu3 expression is dynamically down-regulated or selectively enhanced during critical periods of epileptogenesis. Seizure-induced differential dysregulation of mGlu2 and mGlu3 receptors may affect the availability of these molecular targets for therapeutic compounds in epilepsy. PMID:18585369

  6. Differential changes in mGlu2 and mGlu3 gene expression following pilocarpine-induced status epilepticus: a comparative real-time PCR analysis.

    PubMed

    Ermolinsky, Boris; Pacheco Otalora, Luis F; Arshadmansab, Massoud F; Zarei, Masoud M; Garrido-Sanabria, Emilio R

    2008-08-21

    Group II metabotropic glutamate (mGlu II) receptors subtype 2 and 3 (mGlu2 and mGlu3) are subtle regulators of neuronal excitability and synaptic plasticity in the hippocampus. In recent years, researchers have investigated the potential neuroprotective and anticonvulsant effects of compounds acting on mGlu II receptors. However, abnormal expression and function of mGlu2 and mGlu3 have been reported in temporal lobe epilepsy, a phenomena that may limit the therapeutic effectiveness of these potentially new antiepileptic drugs. Here, we investigated seizure-induced changes in mGlu2 and mGlu3 mRNA following pilocarpine-inducted status epilepticus (SE) and subsequent epileptogenesis. Relative changes in gene expression were assessed by comparative analysis of quantitative real-time PCR (qrtPCR) by the delta-delta CT method. Pilocarpine-treated and control rats were sacrificed at different periods (24 h, 10 days, one month and more than two months) following SE. Total RNA was isolated from microdissected dentate gyrus and processed for RT-PCR and qrtPCR using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an endogenous control gene. Analysis of relative quantification (RQ) ratios of mGlu2 and mGlu3 mRNA expression revealed a significant down-regulation of both targets at 24 h after SE. Gene expression partially recovered at 10 days following SE reaching control levels at one month after SE. Two month after SE, mGlu2 mRNA expression was significantly down-regulated to approximately 41% of control expression whereas mGlu3 mRNA was comparable to control levels. Our data indicate that mGlu2 and mGlu3 expression is dynamically down-regulated or selectively enhanced during critical periods of epileptogenesis. Seizure-induced differential dysregulation of mGlu2 and mGlu3 receptors may affect the availability of these molecular targets for therapeutic compounds in epilepsy. PMID:18585369

  7. Alleviating pain hypersensitivity through activation of type 4 metabotropic glutamate receptor.

    PubMed

    Vilar, Bruno; Busserolles, Jérôme; Ling, Bing; Laffray, Sophie; Ulmann, Lauriane; Malhaire, Fanny; Chapuy, Eric; Aissouni, Youssef; Etienne, Monique; Bourinet, Emmanuel; Acher, Francine; Pin, Jean-Philippe; Eschalier, Alain; Goudet, Cyril

    2013-11-27

    Hyperactivity of the glutamatergic system is involved in the development of central sensitization in the pain neuraxis, associated with allodynia and hyperalgesia observed in patients with chronic pain. Herein we study the ability of type 4 metabotropic glutamate receptors (mGlu4) to regulate spinal glutamate signaling and alleviate chronic pain. We show that mGlu4 are located both on unmyelinated C-fibers and spinal neurons terminals in the inner lamina II of the spinal cord where they inhibit glutamatergic transmission through coupling to Cav2.2 channels. Genetic deletion of mGlu4 in mice alters sensitivity to strong noxious mechanical compression and accelerates the onset of the nociceptive behavior in the inflammatory phase of the formalin test. However, responses to punctate mechanical stimulation and nocifensive responses to thermal noxious stimuli are not modified. Accordingly, pharmacological activation of mGlu4 inhibits mechanical hypersensitivity in animal models of inflammatory or neuropathic pain while leaving acute mechanical perception unchanged in naive animals. Together, these results reveal that mGlu4 is a promising new target for the treatment of chronic pain. PMID:24285900

  8. Chloride is an Agonist of Group II and III Metabotropic Glutamate Receptors.

    PubMed

    DiRaddo, John O; Miller, Eric J; Bowman-Dalley, Carrie; Wroblewska, Barbara; Javidnia, Monica; Grajkowska, Ewa; Wolfe, Barry B; Liotta, Dennis C; Wroblewski, Jarda T

    2015-09-01

    The elemental anion chloride is generally considered a passive participant in neuronal excitability, and has never been shown to function as an agonist in its own right. We show that the antagonist-mediated, glutamate-independent inverse agonism of group II and III metabotropic glutamate (mGlu) receptors results from inhibition of chloride-mediated activation. In silico molecular modeling, site-directed mutagenesis, and functional assays demonstrate (1) that chloride is an agonist of mGlu3, mGlu4, mGlu6, and mGlu8 receptors with its own orthosteric site, and (2) that chloride is not an agonist of mGlu2 receptors. Molecular modeling-predicted and site-directed mutagenesis supported that this unique property of mGlu2 receptors results from a single divergent amino acid, highlighting a molecular switch for chloride insensitivity that is transduced through an arginine flip. Ultimately, these results suggest that activation of group II and III mGlu receptors is mediated not only by glutamate, but also by physiologically relevant concentrations of chloride. PMID:26089372

  9. The effect of ((-)-2-oxa-4-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY379268), an mGlu2/3 receptor agonist, on EEG power spectra and coherence in ketamine model of psychosis.

    PubMed

    Fujáková, Michaela; Páleníček, Tomáš; Brunovský, Martin; Gorman, Ingmar; Tylš, Filip; Kubešová, Anna; Řípová, Daniela; Krajča, Vladimír; Horáček, Jiří

    2014-07-01

    In the present study we investigated the potential antipsychotic effects of the mGlu2/3 agonist LY379268 on changes in EEG power spectra and coherence in the ketamine model of psychosis. In order to use behaviorally active drug doses, experiments detecting changes in locomotor activity and sensorimotor gating were also conducted. In EEG experiments, adult male Wistar rats were injected with ketamine 30 mg/kg i.p. and LY379268 3 mg/kg i.p. Cortical EEG was recorded from twelve (2 × 6) electrodes placed homolaterally on each hemisphere. To avoid interference with the behavioral hyperactivity of ketamine challenge, the behavioral activity of animals was simultaneously registered at the time of recording. Subsequent power spectral and coherence analyses were assessed in epochs corresponding to behavioral inactivity. Analysis of segments with behavioral activity compared to inactivity was also performed. The effects of LY379268 3 mg/kg i.p. on the deficits in sensorimotor processing and on hyperlocomotion induced by ketamine were evaluated in the test of prepulse inhibition of acoustic startle reaction (PPI ASR) and in the open field. LY379268 reversed the ketamine-induced hyperlocomotion but had no effect on ketamine-induced PPI deficits. In EEG epochs corresponding to behavioral inactivity ketamine decreased the power in the delta band, induced a power increase in the high frequency bands and globally decreased EEG coherence. Pretreatment with the LY379268 completely reversed the ketamine-induced power increase in high frequency bands and had a partial effect on EEG coherence. LY379268 alone induced a decrease of beta, high beta and low-gamma power, and an increase in coherence in high frequency bands. Additional analysis revealed that behavioral activity increases power as well as coherence in most frequency bands. In conclusion, agonism of mGlu2/3 receptors was effective in reversing most of the changes induced by ketamine, however due to the lack of effectiveness

  10. The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling.

    PubMed

    Bruno, V; Sureda, F X; Storto, M; Casabona, G; Caruso, A; Knopfel, T; Kuhn, R; Nicoletti, F

    1997-03-15

    The group-II metabotropic glutamate (mGlu) receptor agonists (2S,1'R, 2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV), S-4-carboxy-3-hydroxyphenylglycine (4C3HPG), and (2S,1'S, 2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I) protected mouse cortical neurons grown in mixed cultures against excitotoxic degeneration induced by a 10 min pulse with NMDA. Protection was observed not only when agonists were added in combination with NMDA but also when they were transiently applied to cultures 6-20 hr before the NMDA pulse. In both cases, neuroprotection was reduced by the group-II mGlu receptor antagonist (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine (PCCG-IV), as well as by the protein synthesis inhibitor cycloheximide (CHX). Both neurons and astrocytes in mixed cultures were immunostained with an antibody that recognized mGlu2 and mGlu3 receptors in recombinant cells. To determine whether astrocytes played any role in the neuroprotection mediated by group-II mGlu receptors, we exposed pure cultures of cortical astrocytes to DCG-IV, 4C3HPG, or L-CCG-I for 10 min. The astrocyte medium collected 2-20 hr after the exposure to any of these drugs was highly neuroprotective when transferred to mixed cultures treated with NMDA. This protective activity was reduced when CHX was applied to astrocyte cultures immediately after the transient exposure to group-II mGlu receptor agonists. We conclude that neuroprotection mediated by group-II mGlu receptors in cultured cortical cells requires new protein synthesis and involves an interaction between neurons and astrocytes. PMID:9045718

  11. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications

    PubMed Central

    Yin, Shen; Niswender, Colleen M.

    2014-01-01

    The metabotropic glutamate (mGlu) receptors are a group of Class C Seven Transmembrane Spanning/G Protein Coupled Receptors (7TMRs/GPCRs). These receptors are activated by glutamate, one of the standard amino acids and the major excitatory neurotransmitter. By activating G protein-dependent and non G protein-dependent signaling pathways, mGlus modulate glutamatergic transmission in both the periphery and throughout the central nervous system. Since the discovery of the first mGlu receptor, especially the last decade, a great deal of progress has been made in understanding the signaling, structure, pharmacological manipulation and therapeutic indications of the 8 mGlu members. PMID:24793301

  12. Glutamate metabotropic receptors as targets for drug therapy in epilepsy.

    PubMed

    Moldrich, Randal X; Chapman, Astrid G; De Sarro, Giovambattista; Meldrum, Brian S

    2003-08-22

    Metabotropic glutamate (mGlu) receptors have multiple actions on neuronal excitability through G-protein-linked modifications of enzymes and ion channels. They act presynaptically to modify glutamatergic and gamma-aminobutyric acid (GABA)-ergic transmission and can contribute to long-term changes in synaptic function. The recent identification of subtype-selective agonists and antagonists has permitted evaluation of mGlu receptors as potential targets in the treatment of epilepsy. Agonists acting on group I mGlu receptors (mGlu1 and mGlu5) are convulsant. Antagonists acting on mGlu1 or mGlu5 receptors are anticonvulsant against 3,5-dihydroxyphenylglycine (DHPG)-induced seizures and in mouse models of generalized motor seizures and absence seizures. The competitive, phenylglycine mGlu1/5 receptor antagonists generally require intracerebroventricular administration for potent anticonvulsant efficacy but noncompetitive antagonists, e.g., (3aS,6aS)-6a-naphthalen-2-ylmethyl-5-methyliden-hexahydrocyclopenta[c]furan-1-on (BAY36-7620), 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), and 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893) block generalized seizures with systemic administration. Agonists acting on group II mGlu receptors (mGlu2, mGlu3) to reduce glutamate release are anticonvulsant, e.g., 2R,4R-aminopyrrolidine-2,4-dicarboxylate [(2R,4R)-APDC], (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268). The classical agonists acting on group III mGlu receptors such as L-(+)-2-amino-4-phosphonobutyric acid, and L-serine-O-phosphate are acutely proconvulsant with some anticonvulsant activity. The more recently identified agonists (R,S)-4-phosphonophenylglycine [(R,S)-PPG] and (S)-3,4-dicarboxyphenylglycine [(S)-3,4-DCPG] and (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid [ACPT-1] are all anticonvulsant without proconvulsant effects. Studies in animal models of kindling

  13. Molecular determinants of positive allosteric modulation of the human metabotropic glutamate receptor 2

    PubMed Central

    Farinha, A; Lavreysen, H; Peeters, L; Russo, B; Masure, S; Trabanco, A A; Cid, J; Tresadern, G

    2015-01-01

    Background and Purpose The activation of the metabotropic glutamate receptor 2 (mGlu2) reduces glutamatergic transmission in brain regions where excess excitatory signalling is implicated in disorders such as anxiety and schizophrenia. Positive allosteric modulators (PAMs) can provide a fine-tuned potentiation of these receptors' function and are being investigated as a novel therapeutic approach. An extensive set of mutant human mGlu2 receptors were used to investigate the molecular determinants that are important for positive allosteric modulation at this receptor. Experimental Approach Site-directed mutagenesis, binding and functional assays were employed to identify amino acids important for the activity of nine PAMs. The data from the radioligand binding and mutagenesis studies were used with computational docking to predict a binding mode at an mGlu2 receptor model based on the recent structure of the mGlu1 receptor. Key Results New amino acids in TM3 (R635, L639, F643), TM5 (L732) and TM6 (W773, F776) were identified for the first time as playing an important role in the activity of mGlu2 PAMs. Conclusions and Implications This extensive study furthers our understanding of positive allosteric modulation of the mGlu2 receptor and can contribute to improved future design of mGlu2 PAMs. PMID:25571949

  14. Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors.

    PubMed Central

    Hermans, E; Challiss, R A

    2001-01-01

    In 1991 a new type of G-protein-coupled receptor (GPCR) was cloned, the type 1a metabotropic glutamate (mGlu) receptor, which, despite possessing the defining seven-transmembrane topology of the GPCR superfamily, bore little resemblance to the growing number of other cloned GPCRs. Subsequent studies have shown that there are eight mammalian mGlu receptors that, together with the calcium-sensing receptor, the GABA(B) receptor (where GABA is gamma-aminobutyric acid) and a subset of pheromone, olfactory and taste receptors, make up GPCR family C. Currently available data suggest that family C GPCRs share a number of structural, biochemical and regulatory characteristics, which differ markedly from those of the other GPCR families, most notably the rhodopsin/family A GPCRs that have been most widely studied to date. This review will focus on the group I mGlu receptors (mGlu1 and mGlu5). This subgroup of receptors is widely and differentially expressed in neuronal and glial cells within the brain, and receptor activation has been implicated in the control of an array of key signalling events, including roles in the adaptative changes needed for long-term depression or potentiation of neuronal synaptic connectivity. In addition to playing critical physiological roles within the brain, the mGlu receptors are also currently the focus of considerable attention because of their potential as drug targets for the treatment of a variety of neurological and psychiatric disorders. PMID:11672421

  15. (2S,1'S,2'R,3'R)-2(2'-Carboxy-3'-hydroxymethylcyclopropyl)glycine-[3H], a potent and selective radioligand for labeling group 2 and 3 metabotropic glutamate receptors.

    PubMed

    Wheeler, William J; Clodfelter, Dean K; Collado, Ivan; Kulanthaivel, Palaniappan; Pedregal, Concepcion; Stoddard, Eli A; Wright, Rebecca A; Schoepp, Darryle D

    2005-01-17

    We report herein the synthesis of the tritium labeled isotopomer of 1 and its use as a radioligand to label mGlu8 receptors in rat forebrain membranes as well as cloned human recombinant mGlu receptors. [(3)H]-1 was synthesized by the NaBT(4) reduction of an activated analog of 5. [(3)H]-1 bound appreciably to recombinant human mGlu2, mGlu3 and mGlu8 receptors and to rat forebrain membranes and was displaced by L-glutamate and L-(+)-2 amino-4-phosphonobutyric acid. The results indicate that [(3)H]-1 should be a useful ligand for the study of mGluR2, 3, and 8 receptors in cloned cell lines and possibly brain tissue. PMID:15603952

  16. Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice

    PubMed Central

    Guo, Weirui; Molinaro, Gemma; Collins, Katie A.; Hays, Seth A.; Paylor, Richard; Worley, Paul F.; Szumlinski, Karen K.

    2016-01-01

    Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5R/R) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5R/R mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. SIGNIFICANCE STATEMENT Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical

  17. Novel Scaffold Identification of mGlu1 Receptor Negative Allosteric Modulators Using a Hierarchical Virtual Screening Approach.

    PubMed

    Jang, Jae Wan; Cho, Nam-Chul; Min, Sun-Joon; Cho, Yong Seo; Park, Ki Duk; Seo, Seon Hee; No, Kyoung Tai; Pae, Ae Nim

    2016-02-01

    Metabotropic glutamate receptor 1 (mGluR1) is considered as an attractive drug target for neuropathic pain treatments. The hierarchical virtual screening approach for identifying novel scaffolds of mGluR1 allosteric modulators was performed using a homology model built with the dopamine D3 crystal structure as template. The mGluR1 mutagenesis data, conserved amino acid sequences across class A and class C GPCRs, and previously reported multiple sequence alignments of class C GPCRs to the rhodopsin template, were employed for the sequence alignment to overcome difficulties of model generation with low sequence identity of mGluR1 and dopamine D3. The structures refined by molecular dynamics simulations were employed for docking of Asinex commercial libraries after hierarchical virtual screening with pharmacophore and naïve Bayesian models. Five of 35 compounds experimentally evaluated using a calcium mobilization assay exhibited micromolar activities (IC50) with chemotype novelty that demonstrated the validity of our methods. A hierarchical structure and ligand-based virtual screening approach with homology model of class C GPCR based on dopamine D3 class A GPCR structure was successfully performed and applied to discover novel negative mGluR1 allosteric modulators.

  18. Novel Scaffold Identification of mGlu1 Receptor Negative Allosteric Modulators Using a Hierarchical Virtual Screening Approach.

    PubMed

    Jang, Jae Wan; Cho, Nam-Chul; Min, Sun-Joon; Cho, Yong Seo; Park, Ki Duk; Seo, Seon Hee; No, Kyoung Tai; Pae, Ae Nim

    2016-02-01

    Metabotropic glutamate receptor 1 (mGluR1) is considered as an attractive drug target for neuropathic pain treatments. The hierarchical virtual screening approach for identifying novel scaffolds of mGluR1 allosteric modulators was performed using a homology model built with the dopamine D3 crystal structure as template. The mGluR1 mutagenesis data, conserved amino acid sequences across class A and class C GPCRs, and previously reported multiple sequence alignments of class C GPCRs to the rhodopsin template, were employed for the sequence alignment to overcome difficulties of model generation with low sequence identity of mGluR1 and dopamine D3. The structures refined by molecular dynamics simulations were employed for docking of Asinex commercial libraries after hierarchical virtual screening with pharmacophore and naïve Bayesian models. Five of 35 compounds experimentally evaluated using a calcium mobilization assay exhibited micromolar activities (IC50) with chemotype novelty that demonstrated the validity of our methods. A hierarchical structure and ligand-based virtual screening approach with homology model of class C GPCR based on dopamine D3 class A GPCR structure was successfully performed and applied to discover novel negative mGluR1 allosteric modulators. PMID:26343933

  19. Levels of the Rab GDP dissociation inhibitor (GDI) are altered in the prenatal restrain stress mouse model of schizophrenia and are differentially regulated by the mGlu2/3 receptor agonists, LY379268 and LY354740.

    PubMed

    Orlando, Rosamaria; Borro, Marina; Motolese, Marta; Molinaro, Gemma; Scaccianoce, Sergio; Caruso, Alessandra; di Nuzzo, Luigi; Caraci, Filippo; Matrisciano, Francesco; Pittaluga, Anna; Mairesse, Jerome; Simmaco, Maurizio; Nisticò, Robert; Monn, James A; Nicoletti, Ferdinando

    2014-11-01

    LY379268 and LY354740, two agonists of mGlu2/3 metabotropic glutamate receptors, display different potencies in mouse models of schizophrenia. This differential effect of the two drugs remains unexplained. We performed a proteomic analysis in cultured cortical neurons challenged with either LY379268 or LY354740. Among the few proteins that were differentially influenced by the two drugs, Rab GDP dissociation inhibitor-β (Rab GDIβ) was down-regulated by LY379268 and showed a trend to an up-regulation in response to LY354740. In cultured hippocampal neurons, LY379268 selectively down-regulated the α isoform of Rab GDI. Rab GDI inhibits the activity of the synaptic vesicle-associated protein, Rab3A, and is reduced in the brain of schizophrenic patients. We examined the expression of Rab GDI in mice exposed to prenatal stress ("PRS mice"), which have been described as a putative model of schizophrenia. Rab GDIα protein levels were increased in the hippocampus of PRS mice at postnatal days (PND)1 and 21, but not at PND60. At PND21, PRS mice also showed a reduced depolarization-evoked [(3)H]d-aspartate release in hippocampal synaptosomes. The increase in Rab GDIα levels in the hippocampus of PRS mice was reversed by a 7-days treatment with LY379268 (1 or 10 mg/kg, i.p.), but not by treatment with equal doses of LY354740. These data strengthen the validity of PRS mice as a model of schizophrenia, and show for the first time a pharmacodynamic difference between LY379268 and LY354740 which might be taken into account in an attempt to explain the differential effect of the two drugs across mouse models.

  20. Glial metabotropic glutamate receptor-4 increases maturation and survival of oligodendrocytes

    PubMed Central

    Spampinato, Simona Federica; Merlo, Sara; Chisari, Mariangela; Nicoletti, Ferdinando; Sortino, Maria Angela

    2015-01-01

    Group III metabotropic glutamate (mGlu) receptors mediate important neuroprotective and anti-inflammatory effects. Stimulation of mGlu4 receptor reduces neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) whereas mGlu4 knockout mice display exacerbated EAE clinical scores. We now show that mGlu4 receptors are expressed in oligodendrocytes, astrocytes and microglia in culture. Oligodendrocytes express mGlu4 receptors only at early stages of maturation (O4 positive), but not when more differentiated (myelin basic protein, MBP positive). Treatment of immature oligodendrocytes with the mGlu4 receptor agonist L-2-Amino-4-phosphonobutyrate (L-AP4; 50 μM for 48 h) accelerates differentiation with enhanced branching and earlier appearance of MBP staining. Oligodendrocyte death induced by exposure to 1 mM kainic acid for 24 h is significantly reduced by a 30-min pretreatment with L-AP4 (50 μM), an effect observed only in the presence of astrocytes, mimicked by the specific mGlu4 receptor positive allosteric modulator N-Phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) (30 μM) and prevented by pretreatment with the mGlu4 receptor antagonist, cyclopropyl-4-phosphonophenylglycine (CPPG) (100 μM). In astrocytes, mGlu4 receptor is the most expressed among group III mGlu receptors, as by Quantitative real time PCR (QRT-PCR), and its silencing prevents protective effects. Protection is also observed when conditioned medium (CM) from L-AP4-pretreated astrocytes is transferred to oligodendrocytes challenged with kainic acid. Transforming growth factor β (TGF-β) mediates the increased oligodendrocyte survival as the effect of L-AP4 is mimicked by addition of 10 ng/ml TGF-β and prevented by incubation with a neutralizing anti-TGF-β antibody. In contrast, despite the expression of mGlu4 receptor in resting and activated microglia, CM from L-AP4-stimulated microglia does not modify kainate-induced oligodendrocyte toxicity. Our

  1. The Relevance of Group II Glutamate Receptors Expression to Anxiety.

    PubMed

    Ravid, Jonathan D; Mostofsky, David I

    2016-01-01

    The interface of receptor-mediated regulation of cellular signaling and neurological outputs remains an active field of investigation. The metabotropic G protein-coupled glutamate receptors, and in particular, the group II cyclic adenosine mono-phosphate (cAMP)-lowering metabotropic glutamate receptors 2 and 3 (mGlu2/3 glutamate receptors), have gained interest as therapeutic targets in different forms of neurological disorders. This review explores mGlu2/3 glutamate receptors expression, pharmacological activation, and signaling links to anxiety, as assessed in animal models and in clinical trials. PMID:27650988

  2. Activation of group II metabotropic glutamate receptors underlies microglial reactivity and neurotoxicity following stimulation with chromogranin A, a peptide up-regulated in Alzheimer's disease.

    PubMed

    Taylor, D L; Diemel, L T; Cuzner, M L; Pocock, J M

    2002-09-01

    Regulation of microglial reactivity and neurotoxicity is critical for neuroprotection in neurodegenerative diseases. Here we report that microglia possess functional group II metabotropic glutamate receptors, expressing mRNA and receptor protein for mGlu2 and mGlu3, negatively coupled to adenylate cyclase. Two different agonists of these receptors were able to induce a neurotoxic microglial phenotype which was attenuated by a specific antagonist. Chromogranin A, a secretory peptide expressed in amyloid plaques in Alzheimer's disease, activates microglia to a reactive neurotoxic phenotype. Chromogranin A-induced microglial activation and subsequent neurotoxicity may also involve an underlying stimulation of group II metabotropic glutamate receptors since their inhibition reduced chromogranin A-induced microglial reactivity and neurotoxicity. These results show that selective inhibition of microglial group II metabotropic glutamate receptors has a positive impact on neuronal survival, and may prove a therapeutic target in Alzheimer's disease. PMID:12358765

  3. Phenyl-tetrazolyl acetophenones: discovery of positive allosteric potentiatiors for the metabotropic glutamate 2 receptor.

    PubMed

    Pinkerton, Anthony B; Vernier, Jean-Michel; Schaffhauser, Hervé; Rowe, Blake A; Campbell, Una C; Rodriguez, Dana E; Lorrain, Daniel S; Baccei, Christopher S; Daggett, Lorrie P; Bristow, Linda J

    2004-08-26

    Herein we disclose the discovery of a new class of positive allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2), phenyl-tetrazolyl acetophenones, e.g. 1-(2-hydroxy-3-propyl-4-[4-[4-(2H-tetrazol-5-yl)phenoxy]butoxy]phenyl) ethanone (4). These potentiators were shown to have no effect in the absence of glutamate as well as no effect at mGlu3 or the other mGlu receptors. The compounds were also evaluated in rodent models with potential relevance for schizophrenia, and 4 was shown to have activity in the inhibition of ketamine-induced norepinephrine release and ketamine-induced hyperactivity. This represents the first example of the efficacy of mGlu2 receptor potentiators in these models. PMID:15317469

  4. Metabotropic glutamate receptors: potential drug targets for the treatment of schizophrenia.

    PubMed

    Chavez-Noriega, Laura E; Schaffhauser, Hervé; Campbell, Una C

    2002-06-01

    Schizophrenia is a debilitating chronic psychiatric illness affecting 1% of the population. The cardinal features of schizophrenia are positive symptoms (thought disorder, hallucinations, catatonic behavior), negative symptoms (social withdrawal, anhedonia, apathy) and cognitive impairment. Although progress in elucidating the aetiology of schizophrenia has been slow, new insights on the neurochemical and neurophysiological mechanisms underlying the pathophysiology of this illness are beginning to emerge. The glutamate/N-methyl-D-aspartate (NMDA) hypofunction hypothesis of schizophrenia is supported by observations that administration of NMDA glutamate receptor antagonists such as phencyclidine (PCP) or ketamine induces psychosis in humans; moreover, decreased levels of glutamate and changes in several markers of glutamatergic function occur in schizophrenic brain. Administration of PCP or ketamine to rodents elicits an increase in locomotion and stereotypy accompanied by an increase in glutamate efflux in several brain regions. Systemic administration of group II metabotropic glutamate (mGlu) receptor agonists suppresses PCP-induced behavioral effects and the increase in glutamate efflux. Activation of group II mGlu receptors (mGlu2 and mGlu3) decreases glutamate release from presynaptic nerve terminals, suggesting that group II mGlu receptor agonists may be beneficial in the treatment of schizophrenia. In addition, pharmacological manipulations that enhance NMDA function may be efficacious antipsychotics. Selective activation of mGlu5 receptors significantly potentiates NMDA-induced responses, supporting this novel approach for the treatment of schizophrenia. The glutamate hypothesis of schizophrenia predicts that agents that restore the balance in glutamatergic neurotransmission will ameliorate the symptomatology associated with this illness. Development of potent, efficacious, systemically active drugs will help to address the antipsychotic potential of these

  5. Transcriptional regulation of metabotropic glutamate receptor 2/3 expression by the NF-kappaB pathway in primary dorsal root ganglia neurons: a possible mechanism for the analgesic effect of L-acetylcarnitine.

    PubMed

    Chiechio, Santina; Copani, Agata; De Petris, Laura; Morales, Maria Elena P; Nicoletti, Ferdinando; Gereau, Robert W

    2006-01-01

    L-acetylcarnitine (LAC), a drug utilized for the treatment of neuropathic pain in humans, has been shown to induce analgesia in rodents by up-regulating the expression of metabotropic glutamate receptor 2 (mGlu2) in dorsal root ganglia (DRG). We now report that LAC-induced upregulation of mGlu2 expression in DRG cultures involves transcriptional activation mediated by nuclear factor-kappaB (NF-kappaB). A single application of LAC (250 muM) to DRG cultures induced a transient increase in mGlu2 mRNA, which was observable after 1 hour and was no longer detectable after 1 to 4 days. In contrast, LAC treatment had no effect on mGlu3 mRNA expression. Pharmacological inhibition of NF-kappaB binding to DNA by caffeic acid phenethyl ester (CAPE) (2.5 microg/ml for 30 minutes) reduced the constitutive expression of mGlu2 and mGlu3 mRNA after 1-4 days and reduced the constitutive expression of mGlu2/3 protein at 4 days. This evidence combined with the expression of p65/RelA and c-Rel in DRG neurons indicated that expression of mGlu2 and mGlu3 is endogenously regulated by the NF-kappaB family of transcription factors. Consistent with this idea, the transient increase in mGlu2 mRNA induced by LAC after 1 hour was completely suppressed by CAPE. Furthermore, LAC induced an increase in the acetylation of p65/RelA, a process that enhances the transcriptional activity of p65/RelA. These results are consistent with the hypothesis that LAC selectively induces the expression of mGlu2 by acting as a donor of acetyl groups, thus enhancing the activity of the NF-kappaB family of transcription factors. Accordingly, we show that carnitine, which has no effect on pain thresholds, had no effect on p65/RelA acetylation and did not enhance mGlu2 expression. Taken together, these results demonstrate that expression of mGlu2 and mGlu3 mRNA is regulated by the NF-kappaB transcriptional machinery, and that agents that increase acetylation and activation of NF-kappaB transcription factors might

  6. New 4-Functionalized Glutamate Analogues Are Selective Agonists at Metabotropic Glutamate Receptor Subtype 2 or Selective Agonists at Metabotropic Glutamate Receptor Group III.

    PubMed

    Huynh, Tri H V; Erichsen, Mette N; Tora, Amélie S; Goudet, Cyril; Sagot, Emmanuelle; Assaf, Zeinab; Thomsen, Christian; Brodbeck, Robb; Stensbøl, Tine B; Bjørn-Yoshimoto, Walden E; Nielsen, Birgitte; Pin, Jean-Philippe; Gefflaut, Thierry; Bunch, Lennart

    2016-02-11

    The metabotropic glutamate (Glu) receptors (mGluRs) play key roles in modulating excitatory neurotransmission in the brain. In all, eight subtypes have been identified and divided into three groups, group I (mGlu1,5), group II (mGlu2,3), and group III (mGlu4,6-8). In this article, we present a L-2,4-syn-substituted Glu analogue, 1d, which displays selective agonist activity at mGlu2 over the remaining mGluR subtypes. A modeling study and redesign of the core scaffold led to the stereoselective synthesis of four new conformationally restricted Glu analogues, 2a-d. Most interestingly, 2a retained a selective agonist activity profile at mGlu2 (EC50 in the micromolar range), whereas 2c/2d were both selective agonists at group III, subtypes mGlu4,6,8. In general, 2d was 20-fold more potent than 2c and potently activated mGlu4,6,8 in the low-mid nanomolar range.

  7. Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo.

    PubMed

    Arcella, Antonietta; Carpinelli, Giulia; Battaglia, Giuseppe; D'Onofrio, Mara; Santoro, Filippo; Ngomba, Richard Teke; Bruno, Valeria; Casolini, Paola; Giangaspero, Felice; Nicoletti, Ferdinando

    2005-07-01

    U87MG human glioma cells in cultures expressed metabotropic glutamate (mGlu) receptors mGlu2 and mGlu3. Addition of the mGlu2/3 receptor antagonist LY341495 to the cultures reduced cell growth, expression of cyclin D1/2, and activation of the MAP kinase and phosphatidylinositol-3-kinase pathways. This is in line with the evidence that activation of mGlu2/3 receptors sustains glioma cell proliferation. U87MG cells were either implanted under the skin (1x10(6) cells/0.5 ml) or infused into the caudate nucleus (0.5x10(6) cells/5 microl) of nude mice. Animals were treated for 28 days with mGlu receptor antagonists by means of subcutaneous osmotic minipumps. Treatments with LY341495 or (2S)-alpha-ethylglutamate (both infused at a rate of 1 mg/kg per day) reduced the size of tumors growing under the skin. Infusion of LY341495 (10 mg/kg per day) also reduced the growth of brain tumors, as assessed by magnetic resonance imaging analysis carried out every seven days. The effect of drug treatment was particularly evident during the exponential phase of tumor growth, that is, between the third and the fourth week following cell implantation. Immunohistochemical analysis showed that U87MG cells retained the expression of mGlu2/3 receptors when implanted into the brain of nude mice. These data suggest that mGlu2/3 receptor antagonists are of potential use in the experimental treatment of malignant gliomas. PMID:16053698

  8. Neurophysiologic and antipsychotic profiles of TASP0433864, a novel positive allosteric modulator of metabotropic glutamate 2 receptor.

    PubMed

    Hiyoshi, Tetsuaki; Marumo, Toshiyuki; Hikichi, Hirohiko; Tomishima, Yasumitsu; Urabe, Hiroki; Tamita, Tomoko; Iida, Izumi; Yasuhara, Akito; Karasawa, Jun-ichi; Chaki, Shigeyuki

    2014-12-01

    Excess glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, and the activation of metabotropic glutamate 2 (mGlu2) receptor may exert antipsychotic effects by normalizing glutamate transmission. In the present study, we investigated the neurophysiologic and antipsychotic profiles of TASP0433864 [(2S)-2-[(4-tert-butylphenoxy)methyl]-5-methyl-2,3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamide], a newly synthesized positive allosteric modulator (PAM) of mGlu2 receptor. TASP0433864 exhibited PAM activity at human and rat mGlu2 receptors with EC50 values of 199 and 206 nM, respectively, without exerting agonist activity at rat mGlu2 receptor. TASP0433864 produced a leftward and upward shift in the concentration-response curve of glutamate-increased guanosine 5'-O-(3-[(35)S]thio)triphosphate binding to mGlu2 receptor. In contrast, TASP0433864 had negligible activities for other mGlu receptors, including mGlu3 receptor, and did not have any affinity for other receptors or transporters. In hippocampal slices, TASP0433864 potentiated an inhibitory effect of DCG-IV [(2S,2'R,3'R)-2-(2',3'-dicarboxylcyclopropyl)glycine], a mGlu2/3 receptor agonist, on the field excitatory postsynaptic potentials in the dentate gyrus, indicating that TASP0433864 potentiates the mGlu2 receptor-mediated presynaptic inhibition of glutamate release. Moreover, TASP0433864 inhibited both MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate]- and ketamine-increased cortical γ band oscillation in the rat cortical electroencephalogram, which have been considered to reflect the excess activation of cortical pyramidal neurons. The inhibitory effect of TASP0433864 on cortical activation was also observed in the mouse 2-deoxy-glucose uptake study. In a behavioral study, TASP0433864 significantly inhibited both ketamine- and methamphetamine-increased locomotor activities in mice and rats, respectively. Collectively, these

  9. Neurophysiologic and antipsychotic profiles of TASP0433864, a novel positive allosteric modulator of metabotropic glutamate 2 receptor.

    PubMed

    Hiyoshi, Tetsuaki; Marumo, Toshiyuki; Hikichi, Hirohiko; Tomishima, Yasumitsu; Urabe, Hiroki; Tamita, Tomoko; Iida, Izumi; Yasuhara, Akito; Karasawa, Jun-ichi; Chaki, Shigeyuki

    2014-12-01

    Excess glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, and the activation of metabotropic glutamate 2 (mGlu2) receptor may exert antipsychotic effects by normalizing glutamate transmission. In the present study, we investigated the neurophysiologic and antipsychotic profiles of TASP0433864 [(2S)-2-[(4-tert-butylphenoxy)methyl]-5-methyl-2,3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamide], a newly synthesized positive allosteric modulator (PAM) of mGlu2 receptor. TASP0433864 exhibited PAM activity at human and rat mGlu2 receptors with EC50 values of 199 and 206 nM, respectively, without exerting agonist activity at rat mGlu2 receptor. TASP0433864 produced a leftward and upward shift in the concentration-response curve of glutamate-increased guanosine 5'-O-(3-[(35)S]thio)triphosphate binding to mGlu2 receptor. In contrast, TASP0433864 had negligible activities for other mGlu receptors, including mGlu3 receptor, and did not have any affinity for other receptors or transporters. In hippocampal slices, TASP0433864 potentiated an inhibitory effect of DCG-IV [(2S,2'R,3'R)-2-(2',3'-dicarboxylcyclopropyl)glycine], a mGlu2/3 receptor agonist, on the field excitatory postsynaptic potentials in the dentate gyrus, indicating that TASP0433864 potentiates the mGlu2 receptor-mediated presynaptic inhibition of glutamate release. Moreover, TASP0433864 inhibited both MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate]- and ketamine-increased cortical γ band oscillation in the rat cortical electroencephalogram, which have been considered to reflect the excess activation of cortical pyramidal neurons. The inhibitory effect of TASP0433864 on cortical activation was also observed in the mouse 2-deoxy-glucose uptake study. In a behavioral study, TASP0433864 significantly inhibited both ketamine- and methamphetamine-increased locomotor activities in mice and rats, respectively. Collectively, these

  10. CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor.

    PubMed

    Lindemann, Lothar; Jaeschke, Georg; Michalon, Aubin; Vieira, Eric; Honer, Michael; Spooren, Will; Porter, Richard; Hartung, Thomas; Kolczewski, Sabine; Büttelmann, Bernd; Flament, Christophe; Diener, Catherine; Fischer, Christophe; Gatti, Silvia; Prinssen, Eric P; Parrott, Neil; Hoffmann, Gerhard; Wettstein, Joseph G

    2011-11-01

    The metabotropic glutamate receptor 5 (mGlu5) is a glutamate-activated class C G protein-coupled receptor widely expressed in the central nervous system and clinically investigated as a drug target for a range of indications, including depression, Parkinson's disease, and fragile X syndrome. Here, we present the novel potent, selective, and orally bioavailable mGlu5 negative allosteric modulator with inverse agonist properties 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine (CTEP). CTEP binds mGlu5 with low nanomolar affinity and shows >1000-fold selectivity when tested against 103 targets, including all known mGlu receptors. CTEP penetrates the brain with a brain/plasma ratio of 2.6 and displaces the tracer [(3)H]3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-methyl-oxime (ABP688) in vivo in mice from brain regions expressing mGlu5 with an average ED(50) equivalent to a drug concentration of 77.5 ng/g in brain tissue. This novel mGlu5 inhibitor is active in the stress-induced hyperthermia procedure in mice and the Vogel conflict drinking test in rats with minimal effective doses of 0.1 and 0.3 mg/kg, respectively, reflecting a 30- to 100-fold higher in vivo potency compared with 2-methyl-6-(phenylethynyl)pyridine (MPEP) and fenobam. CTEP is the first reported mGlu5 inhibitor with both long half-life of approximately 18 h and high oral bioavailability allowing chronic treatment with continuous receptor blockade with one dose every 48 h in adult and newborn animals. By enabling long-term treatment through a wide age range, CTEP allows the exploration of the full therapeutic potential of mGlu5 inhibitors for indications requiring chronic receptor inhibition. PMID:21849627

  11. Metabotropic glutamate receptors: From the workbench to the bedside

    PubMed Central

    Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P.

    2013-01-01

    Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson’s disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled ‘Trends in Neuropharmacology: In Memory of Erminio Costa’. PMID:21036182

  12. Mood disorders: regulation by metabotropic glutamate receptors.

    PubMed

    Pilc, Andrzej; Chaki, Shigeyuki; Nowak, Gabriel; Witkin, Jeffrey M

    2008-03-01

    Medicinal therapies for mood disorders neither fully serve the efficacy needs of patients nor are they free of side-effect issues. Although monoamine-based therapies are the primary current treatment approaches, both preclinical and clinical findings have implicated the excitatory neurotransmitter glutamate in the pathogenesis of major depressive disorders. The present commentary focuses on the metabotropic glutamate receptors and their relationship to mood disorders. Metabotropic glutamate (mGlu) receptors regulate glutamate transmission by altering the release of neurotransmitter and/or modulating the post-synaptic responses to glutamate. Convergent biochemical, pharmacological, behavioral, and clinical data will be reviewed that establish glutamatergic neurotransmission via mGlu receptors as a biologically relevant process in the regulation of mood and that these receptors may serve as novel targets for the discovery of small molecule modulators with unique antidepressant properties. Specifically, compounds that antagonize mGlu2, mGlu3, and/or mGlu5 receptors (e.g. LY341495, MGS0039, MPEP, MTEP) exhibit biochemical effects indicative of antidepressant effects as well as in vivo activity in animal models predictive of antidepressant efficacy. Both preclinical and clinical data have previously been presented to define NMDA and AMPA receptors as important targets for the modulation of major depression. In the present review, we present a model suggesting how the interplay of glutamate at the mGlu and at the ionotropic AMPA and NMDA receptors might account for the antidepressant-like effects of glutamatergic- and monoaminergic-based drugs affecting mood in patients. The current data lead to the hypothesis that mGlu-based compounds and conventional antidepressants impact a network of interactive effects that converge upon a down regulation of NMDA receptor function and an enhancement in AMPA receptor signaling. PMID:18164691

  13. Fractionation of spatial memory in GRM2/3 (mGlu2/mGlu3) double knockout mice reveals a role for group II metabotropic glutamate receptors at the interface between arousal and cognition.

    PubMed

    Lyon, Louisa; Burnet, Philip W J; Kew, James N C; Corti, Corrado; Rawlins, J Nicholas P; Lane, Tracy; De Filippis, Bianca; Harrison, Paul J; Bannerman, David M

    2011-12-01

    Group II metabotropic glutamate receptors (mGluR2 and mGluR3, encoded by GRM2 and GRM3) are implicated in hippocampal function and cognition, and in the pathophysiology and treatment of schizophrenia and other psychiatric disorders. However, pharmacological and behavioral studies with group II mGluR agonists and antagonists have produced complex results. Here, we studied hippocampus-dependent memory in GRM2/3 double knockout (GRM2/3(-/-)) mice in an iterative sequence of experiments. We found that they were impaired on appetitively motivated spatial reference and working memory tasks, and on a spatial novelty preference task that relies on animals' exploratory drive, but were unimpaired on aversively motivated spatial memory paradigms. GRM2/3(-/-) mice also performed normally on an appetitively motivated, non-spatial, visual discrimination task. These results likely reflect an interaction between GRM2/3 genotype and the arousal-inducing properties of the experimental paradigm. The deficit seen on appetitive and exploratory spatial memory tasks may be absent in aversive tasks because the latter induce higher levels of arousal, which rescue spatial learning. Consistent with an altered arousal-cognition relationship in GRM2/3(-/-) mice, injection stress worsened appetitively motivated, spatial working memory in wild-types, but enhanced performance in GRM2/3(-/-) mice. GRM2/3(-/-) mice were also hypoactive in response to amphetamine. This fractionation of hippocampus-dependent memory depending on the appetitive-aversive context is to our knowledge unique, and suggests a role for group II mGluRs at the interface of arousal and cognition. These arousal-dependent effects may explain apparently conflicting data from previous studies, and have translational relevance for the involvement of these receptors in schizophrenia and other disorders. PMID:21832989

  14. Type-3 metabotropic glutamate receptors negatively modulate bone morphogenetic protein receptor signaling and support the tumourigenic potential of glioma-initiating cells.

    PubMed

    Ciceroni, C; Arcella, A; Mosillo, P; Battaglia, G; Mastrantoni, E; Oliva, M A; Carpinelli, G; Santoro, F; Sale, P; Ricci-Vitiani, L; De Maria, R; Pallini, R; Giangaspero, F; Nicoletti, F; Melchiorri, D

    2008-09-01

    Targeted-therapies enhancing differentiation of glioma-initiating cells (GICs) are potential innovative approaches to the treatment of malignant gliomas. These cells support tumour growth and recurrence and are resistant to radiotherapy and chemotherapy. We have found that GICs express mGlu3 metabotropic glutamate receptors. Activation of these receptors sustained the undifferentiated state of GICs in culture by negatively modulating the action of bone morphogenetic proteins, which physiologically signal through the phosphorylation of the transcription factors, Smads. The cross-talk between mGlu3 receptors and BMP receptors was mediated by the activation of the mitogen-activated protein kinase pathway. Remarkably, pharmacological blockade of mGlu3 receptors stimulated the differentiation of cultured GICs into astrocytes, an effect that appeared to be long lasting, independent of the growth conditions, and irreversible. In in vivo experiments, a 3-month treatment with the brain-permeant mGlu receptor antagonist, LY341495 limited the growth of infiltrating brain tumours originating from GICs implanted into the brain parenchyma of nude mice. While clusters of tumour cells were consistently found in the brain of control mice, they were virtually absent in a large proportion of mice treated with LY341495. These findings pave the way to a new non-cytotoxic treatment of malignant gliomas based on the use of mGlu3 receptor antagonists. PMID:18621067

  15. Discovery and SAR of a novel series of non-MPEP site mGlu5 PAMs based on an aryl glycine sulfonamide scaffold

    PubMed Central

    Rodriguez, Alice L.; Zhou, Ya; Williams, Richard; Weaver, C. David; Vinson, Paige N.; Dawson, Eric S.; Steckler, Thomas; Lavreysen, Hilde; Mackieg, Claire; Bartolomé, José M.; Macdonald, Gregor J.; Daniels, J. Scott; Niswender, Colleen M.; Jones, Carrie K.; Conn, P. Jeffrey; Lindsley, Craig W.; Stauffer, Shaun R.

    2012-01-01

    Herein we report the discovery and SAR of a novel series of non-MPEP site metabotropic glutamate receptor 5 (mGlu5) positive allosteric modulators (PAMs) based on an aryl glycine sulfonamide scaffold. This series represents a rare non-MPEP site mGlu5 PAM chemotype. PMID:23142615

  16. Orally Active Metabotropic Glutamate Subtype 2 Receptor Positive Allosteric Modulators: Structure-Activity Relationships and Assessment in a Rat Model of Nicotine Dependence

    PubMed Central

    Sidique, Shyama; Dhanya, Raveendra-Panickar; Sheffler, Douglas J.; Nickols, Hilary Highfield; Yang, Li; Dahl, Russell; Mangravita-Novo, Arianna; Smith, Layton H.; D’Souza, Manoranjan S.; Semenova, Svetlana; Conn, P. Jeffrey; Markou, Athina; Cosford, Nicholas D. P.

    2012-01-01

    Compounds that modulate metabotropic glutamate subtype 2 (mGlu2) receptors have the potential to treat several disorders of the central nervous system (CNS) including drug dependence. Herein we describe the synthesis and structure-activity relationship (SAR) studies around a series of mGlu2 receptor positive allosteric modulators (PAMs). The effects of N-substitution (R1) and substitutions on the aryl ring (R2) were identified as key areas for SAR exploration (Figure 3). Investigation of the effects of varying substituents in both the isoindolinone (2) and benzisothiazolone (3) series led to compounds with improved in vitro potency and/or efficacy. In addition, several analogues exhibited promising pharmacokinetic (PK) properties. Furthermore, compound 2 was shown to dose-dependently decrease nicotine self-administration in rats following oral administration. Our data, showing for the first time efficacy of an mGlu2 receptor PAM in this in vivo model, suggest potential utility for the treatment of nicotine dependence in humans. PMID:23009245

  17. Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 5 Based on Select Acetylenic Negative Allosteric Modulators.

    PubMed

    Gregory, Karen J; Velagaleti, Ranganadh; Thal, David M; Brady, Ryan M; Christopoulos, Arthur; Conn, P Jeffrey; Lapinsky, David J

    2016-07-15

    G protein-coupled receptors (GPCRs) represent the largest class of current drug targets. In particular, small-molecule allosteric modulators offer substantial potential for selectively "tuning" GPCR activity. However, there remains a critical need for experimental strategies that unambiguously determine direct allosteric ligand-GPCR interactions, to facilitate both chemical biology studies and rational structure-based drug design. We now report the development and use of first-in-class clickable allosteric photoprobes for a GPCR based on metabotropic glutamate receptor 5 (mGlu5) negative allosteric modulator (NAM) chemotypes. Select acetylenic mGlu5 NAM lead compounds were rationally modified to contain either a benzophenone or an aryl azide as a photoreactive functional group, enabling irreversible covalent attachment to mGlu5 via photoactivation. Additionally, a terminal alkyne or an aliphatic azide was incorporated as a click chemistry handle, allowing chemoselective attachment of fluorescent moieties to the irreversibly mGlu5-bound probe via tandem photoaffinity labeling-bioorthogonal conjugation. These clickable photoprobes retained submicromolar affinity for mGlu5 and negative cooperativity with glutamate, interacted with the "common allosteric-binding site," displayed slow binding kinetics, and could irreversibly label mGlu5 following UV exposure. We depleted the number of functional mGlu5 receptors using an irreversibly bound NAM to elucidate and delineate orthosteric agonist affinity and efficacy. Finally, successful conjugation of fluorescent dyes via click chemistry was demonstrated for each photoprobe. In the future, these clickable photoprobes are expected to aid our understanding of the structural basis of mGlu5 allosteric modulation. Furthermore, tandem photoaffinity labeling-bioorthogonal conjugation is expected to be a broadly applicable experimental strategy across the entire GPCR superfamily. PMID:27115427

  18. Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats.

    PubMed

    Koike, Hiroyuki; Chaki, Shigeyuki

    2014-09-01

    Ketamine, a non-competitive N-methyl-d-aspartate receptor antagonist, and group II metabotropic glutamate (mGlu2/3) receptor antagonists produce antidepressant effects in animal models of depression, which last for at least 24h, through the transient increase in glutamate release, leading to activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor. Both ketamine and an mGlu2/3 receptor antagonist reportedly increase the expression of GluR1, an AMPA receptor subunit, within 24h, which may account for the sustained enhancement of excitatory synaptic transmission following ketamine administration. However, whether the sustained increase in AMPA receptor-mediated synaptic transmission is associated with the antidepressant effects of ketamine and mGlu2/3 receptor antagonists has not yet been investigated. In the present study, to address this question, we tested whether AMPA receptor stimulation at 24h after a single injection of ketamine or an mGlu2/3 receptor antagonist, (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid (LY341495) was necessary for the antidepressant effect of these compounds using a forced swim test in rats. A single injection of ketamine or LY341495 at 24h before the test significantly decreased the immobility time. An AMPA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), administered 30min prior to the test significantly and dose-dependently reversed the antidepressant effects of ketamine and LY341495, while NBQX itself had no effect on the immobility time. Our findings suggest that AMPA receptor stimulation at 24h after a single injection of ketamine or LY341495 is required to produce the anti-immobility effects of these compounds. Moreover, the present results provide additional evidence that an mGlu2/3 receptor antagonist may share some of neural mechanisms with ketamine to exert antidepressant effects.

  19. Re-exploring the N-phenylpicolinamide derivatives to develop mGlu4 ligands with improved affinity and in vitro microsomal stability.

    PubMed

    Zhang, Zhaoda; Kil, Kun-Eek; Poutiainen, Pekka; Choi, Ji-Kyung; Kang, Hye-Jin; Huang, Xi-Ping; Roth, Bryan L; Brownell, Anna-Liisa

    2015-09-15

    In recent years, mGlu4 has received great attention and research effort because of the potential benefits of mGlu4 activation in treating numerous brain disorders, such as Parkinson's disease (PD). Many positive allosteric modulators of mGlu4 have been developed. To better understand the role of mGlu4 in healthy and disease conditions, we are interested in developing an mGlu4 selective radioligand for in vivo studies. Thus, we had synthesized and studied [(11)C]2 as a PET tracer for mGlu4, which demonstrated some promising features as a PET radioligand as well as the limitation need to be improved. In order to develop an mGlu4 ligand with enhanced affinity and improved metabolic stability, we have modified, synthesized and evaluated a series of new N-phenylpicolinamide derivatives. The SAR study has discovered a number of compounds with low nM affinity to mGlu4. The dideuteriumfluoromethoxy modified compound 24 is identified as a very promising mGlu4 ligand, which has demonstrated enhanced affinity, improved in vitro microsomal stability, good selectivity and good permeability. PMID:26231155

  20. A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis.

    PubMed

    Benneyworth, Michael A; Xiang, Zixiu; Smith, Randy L; Garcia, Efrain E; Conn, P Jeffrey; Sanders-Bush, Elaine

    2007-08-01

    Recent clinical studies reveal that selective agonists of group II metabotropic glutamate (mGlu) receptors have robust efficacy in treating positive and negative symptoms in patients with schizophrenia. Group II mGlu receptor agonists also modulate the in vivo activity of psychotomimetic drugs and reduce the ability of psychotomimetic hallucinogens to increase glutamatergic transmission. Because increased excitation of the medial prefrontal cortex (mPFC) has been implicated in pathophysiology of schizophrenia, the ability of group II mGlu receptor agonists to reduce hallucinogenic drug action in this region is believed to be directly related to their antipsychotic efficacy. A novel class of ligands, termed positive allosteric modulators, has recently been identified, displaying exceptional mGlu2 receptor selectivity. These compounds do not activate mGlu2 receptors directly but potentiate the ability of glutamate and other agonists to activate this receptor. We now report that the mGlu2 receptor-selective positive allosteric modulator biphenyl-indanone A (BINA) modulates excitatory neurotransmission in the mPFC and attenuates the in vivo actions of the hallucinogenic 5-HT(2A/2C) receptor agonist (-)2,5-dimethoxy-4-bromoamphetamine [(-)DOB]. BINA attenuates serotonin-induced increases in spontaneous excitatory postsynaptic currents in the mPFC, mimicking the effect of the mGlu2/3 receptor agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV). In addition, BINA reduced (-)DOB-induced head twitch behavior and Fos expression in mPFC, effects reversed by pretreatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl) -3 - (xanth-9-yl-)propionic acid (LY341495). These data confirm the relevance of excitatory signaling in the mPFC to the behavioral actions of hallucinogens and further support the targeting of mGlu2 receptors as a novel strategy for treating glutamatergic dysfunction in schizophrenia.

  1. The metabotropic glutamate receptor subtype 5 antagonist fenobam is analgesic and has improved in vivo selectivity compared with the prototypical antagonist 2-methyl-6-(phenylethynyl)-pyridine.

    PubMed

    Montana, Michael C; Cavallone, Laura F; Stubbert, Kristi K; Stefanescu, Andrei D; Kharasch, Evan D; Gereau, Robert W

    2009-09-01

    Metabotropic glutamate receptor subtype 5 (mGlu5) has been demonstrated to play a role in the modulation of numerous nociceptive modalities. When administered via peripheral, intrathecal, or systemic routes, mGlu5 antagonists have analgesic properties in a variety of preclinical pain models. Despite a wealth of data supporting the use of mGlu5 antagonists to treat pain, studies have been limited to preclinical animal models due to a lack of mGlu5 antagonists that are approved for use in humans. It has been demonstrated previously that fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea], an anxiolytic shown to be safe and effective in human trials, is a selective and potent noncompetitive antagonist of mGlu5 (J Pharmacol Exp Ther 315:711-721, 2005). Here, we report a series of studies aimed at testing whether fenobam, similar to the prototypical mGlu5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), has analgesic properties in mice. We show that fenobam reduces formalin-induced pain behaviors and relieves established inflammation-induced thermal hypersensitivity in mice. Similar results were seen with MPEP. Administration of fenobam resulted in an increase in locomotor activity in the open-field task but did not impair performance on the accelerating Rotarod. Analysis of brain and plasma fenobam levels indicated that fenobam is rapidly concentrated in brain after intraperitoneal administration in mice but is essentially cleared from circulation within 1 h after injection. Fenobam had no analgesic effect in mGlu5 knockout mice, whereas the prototypical antagonist MPEP retained significant analgesic efficacy in mGlu5 knockouts. These results demonstrate that fenobam is analgesic in mice and has an improved in vivo selectivity for mGlu5 over MPEP. PMID:19515968

  2. Qualification of LSP1-2111 as a Brain Penetrant Group III Metabotropic Glutamate Receptor Orthosteric Agonist

    PubMed Central

    2013-01-01

    LSP1-2111 is a group III metabotropic glutamate receptor agonist with preference toward the mGlu4 receptor subtype. This compound has been extensively used as a tool to explore the pharmacology of mGlu4 receptor activation in preclinical animal behavioral models. However, the blood–brain barrier penetration of this amino acid derivative has never been studied. We report studies on the central nervous system (CNS) disposition of LSP1-2111 using quantitative microdialysis in rat. Significant unbound concentrations of the drug relative to its in vitro binding affinity and functional potency were established in extracellular fluid (ECF). These findings support the use of LSP1-2111 to study the CNS pharmacology of mGlu4 receptor activation through orthosteric agonist mechanisms. PMID:24900783

  3. Shining Light on an mGlu5 Photoswitchable NAM: A Theoretical Perspective.

    PubMed

    Dalton, James A R; Lans, Isaias; Rovira, Xavier; Malhaire, Fanny; Gómez-Santacana, Xavier; Pittolo, Silvia; Gorostiza, Pau; Llebaria, Amadeu; Goudet, Cyril; Pin, Jean-Philippe; Giraldo, Jesús

    2016-01-01

    Metabotropic glutamate receptors (mGluRs) are important drug targets because of their involvement in several neurological diseases. Among mGluRs, mGlu5 is a particularly high-profile target because its positive or negative allosteric modulation can potentially treat schizophrenia or anxiety and chronic pain, respectively. Here, we computationally and experimentally probe the functional binding of a novel photoswitchable mGlu5 NAM, termed alloswitch-1, which loses its NAM functionality under violet light. We show alloswitch-1 binds deep in the allosteric pocket in a similar fashion to mavoglurant, the co-crystallized NAM in the mGlu5 transmembrane domain crystal structure. Alloswitch-1, like NAM 2-Methyl-6-(phenylethynyl)pyridine (MPEP), is significantly affected by P655M mutation deep in the allosteric pocket, eradicating its functionality. In MD simulations, we show alloswitch-1 and MPEP stabilize the co-crystallized water molecule located at the bottom of the allosteric site that is seemingly characteristic of the inactive receptor state. Furthermore, both NAMs form H-bonds with S809 on helix 7, which may constitute an important stabilizing interaction for NAM-induced mGlu5 inactivation. Alloswitch-1, through isomerization of its amide group from trans to cis is able to form an additional interaction with N747 on helix 5. This may be an important interaction for amide-containing mGlu5 NAMs, helping to stabilize their binding in a potentially unusual cis-amide state. Simulated conformational switching of alloswitch-1 in silico suggests photoisomerization of its azo group from trans to cis may be possible within the allosteric pocket. However, photoexcited alloswitch-1 binds in an unstable fashion, breaking H-bonds with the protein and destabilizing the co-crystallized water molecule. This suggests photoswitching may have destabilizing effects on mGlu5 binding and functionality.

  4. Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-α initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia.

    PubMed

    Gregg, Laura C; Jung, Kwang-Mook; Spradley, Jessica M; Nyilas, Rita; Suplita, Richard L; Zimmer, Andreas; Watanabe, Masahiko; Mackie, Ken; Katona, István; Piomelli, Daniele; Hohmann, Andrea G

    2012-07-11

    Acute stress reduces pain sensitivity by engaging an endocannabinoid signaling circuit in the midbrain. The neural mechanisms governing this process and molecular identity of the endocannabinoid substance(s) involved are unknown. We combined behavior, pharmacology, immunohistochemistry, RNA interference, quantitative RT-PCR, enzyme assays, and lipidomic analyses of endocannabinoid content to uncover the role of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) in controlling pain sensitivity in vivo. Here, we show that footshock stress produces antinociception in rats by activating type 5 metabotropic glutamate receptors (mGlu(5)) in the dorsolateral periaqueductal gray (dlPAG) and mobilizing 2-AG. Stimulation of mGlu(5) in the dlPAG with DHPG [(S)-3,5-dihydroxyphenylglycine] triggered 2-AG formation and enhanced stress-dependent antinociception through a mechanism dependent upon both postsynaptic diacylglycerol lipase (DGL) activity, which releases 2-AG, and presynaptic CB(1) cannabinoid receptors. Pharmacological blockade of DGL activity in the dlPAG with RHC80267 [1,6-bis(cyclohexyloximinocarbonylamino)hexane] and (-)-tetrahydrolipstatin (THL), which inhibit activity of DGL-α and DGL-β isoforms, suppressed stress-induced antinociception. Inhibition of DGL activity in the dlPAG with THL selectively decreased accumulation of 2-AG without altering levels of anandamide. The putative 2-AG-synthesizing enzyme DGL-α colocalized with mGlu(5) at postsynaptic sites of the dlPAG, whereas CB(1) was confined to presynaptic terminals, consistent with a role for 2-AG as a retrograde signaling messenger. Finally, virally mediated silencing of DGL-α, but not DGL-β, transcription in the dlPAG mimicked effects of DGL inhibition in suppressing both endocannabinoid-mediated stress antinociception and 2-AG formation. The results indicate that activation of the postsynaptic mGlu(5)-DGL-α cascade triggers retrograde 2-AG signaling in vivo. This pathway is required for

  5. A Novel Class of Succinimide-Derived Negative Allosteric Modulators of Metabotropic Glutamate Receptor Subtype 1 Provides Insight into a Disconnect in Activity between the Rat and Human Receptors

    PubMed Central

    2014-01-01

    Recent progress in the discovery of mGlu1 allosteric modulators has suggested the modulation of mGlu1 could offer possible treatment for a number of central nervous system disorders; however, the available chemotypes are inadequate to fully investigate the therapeutic potential of mGlu1 modulation. To address this issue, we used a fluorescence-based high-throughput screening assay to screen an allosteric modulator-biased library of compounds to generate structurally diverse mGlu1 negative allosteric modulator hits for chemical optimization. Herein, we describe the discovery and characterization of a novel mGlu1 chemotype. This series of succinimide negative allosteric modulators, exemplified by VU0410425, exhibited potent inhibitory activity at rat mGlu1 but was, surprisingly, inactive at human mGlu1. VU0410425 and a set of chemically diverse mGlu1 negative allosteric modulators previously reported in the literature were utilized to examine this species disconnect between rat and human mGlu1 activity. Mutation of the key transmembrane domain residue 757 and functional screening of VU0410425 and the literature compounds suggests that amino acid 757 plays a role in the activity of these compounds, but the contribution of the residue is scaffold specific, ranging from critical to minor. The operational model of allosterism was used to estimate the binding affinities of each compound to compare to functional data. This novel series of mGlu1 negative allosteric modulators provides valuable insight into the pharmacology underlying the disconnect between rat and human mGlu1 activity, an issue that must be understood to progress the therapeutic potential of allosteric modulators of mGlu1. PMID:24798819

  6. mGlu2 Receptor Agonism, but Not Positive Allosteric Modulation, Elicits Rapid Tolerance towards Their Primary Efficacy on Sleep Measures in Rats.

    PubMed

    Ahnaou, Abdallah; Lavreysen, Hilde; Tresadern, Gary; Cid, Jose M; Drinkenburg, Wilhelmus H

    2015-01-01

    G-protein-coupled receptor (GPCR) agonists are known to induce both cellular adaptations resulting in tolerance to therapeutic effects and withdrawal symptoms upon treatment discontinuation. Glutamate neurotransmission is an integral part of sleep-wake mechanisms, which processes have translational relevance for central activity and target engagement. Here, we investigated the efficacy and tolerance potential of the metabotropic glutamate receptors (mGluR2/3) agonist LY354740 versus mGluR2 positive allosteric modulator (PAM) JNJ-42153605 on sleep-wake organisation in rats. In vitro, the selectivity and potency of JNJ-42153605 were characterized. In vivo, effects on sleep measures were investigated in rats after once daily oral repeated treatment for 7 days, withdrawal and consecutive re-administration of LY354740 (1-10 mg/kg) and JNJ-42153605 (3-30 mg/kg). JNJ-42153605 showed high affinity, potency and selectivity at mGluR2. Binding site analyses and knowledge-based docking confirmed the specificity of JNJ-42153605 at the mGluR2 allosteric binding site. Acute LY354740 and JNJ-42153605 dose-dependently decreased rapid eye movement (REM) sleep time and prolonged its onset latency. Sub chronic effects of LY354740 on REM sleep measures disappeared from day 3 onwards, whereas those of JNJ-42153605 were maintained after repeated exposure. LY354740 attenuated REM sleep homeostatic recovery, while this was preserved after JNJ-42153605 administration. JNJ-42153605 enhanced sleep continuity and efficiency, suggesting its potential as an add-on medication for impaired sleep quality during early stages of treatment. Abrupt cessation of JNJ-42153605 did not induce withdrawal phenomena and sleep disturbances, while the initial drug effect was fully reinstated after re-administration. Collectively, long-term treatment with JNJ-42153605 did not induce tolerance phenomena to its primary functional effects on sleep measures, nor adverse effects at withdrawal, while it promoted

  7. mGlu2 Receptor Agonism, but Not Positive Allosteric Modulation, Elicits Rapid Tolerance towards Their Primary Efficacy on Sleep Measures in Rats

    PubMed Central

    Ahnaou, Abdallah; Lavreysen, Hilde; Tresadern, Gary; Cid, Jose M.; Drinkenburg, Wilhelmus H.

    2015-01-01

    G-protein-coupled receptor (GPCR) agonists are known to induce both cellular adaptations resulting in tolerance to therapeutic effects and withdrawal symptoms upon treatment discontinuation. Glutamate neurotransmission is an integral part of sleep-wake mechanisms, which processes have translational relevance for central activity and target engagement. Here, we investigated the efficacy and tolerance potential of the metabotropic glutamate receptors (mGluR2/3) agonist LY354740 versus mGluR2 positive allosteric modulator (PAM) JNJ-42153605 on sleep-wake organisation in rats. In vitro, the selectivity and potency of JNJ-42153605 were characterized. In vivo, effects on sleep measures were investigated in rats after once daily oral repeated treatment for 7 days, withdrawal and consecutive re-administration of LY354740 (1–10 mg/kg) and JNJ-42153605 (3–30 mg/kg). JNJ-42153605 showed high affinity, potency and selectivity at mGluR2. Binding site analyses and knowledge-based docking confirmed the specificity of JNJ-42153605 at the mGluR2 allosteric binding site. Acute LY354740 and JNJ-42153605 dose-dependently decreased rapid eye movement (REM) sleep time and prolonged its onset latency. Sub chronic effects of LY354740 on REM sleep measures disappeared from day 3 onwards, whereas those of JNJ-42153605 were maintained after repeated exposure. LY354740 attenuated REM sleep homeostatic recovery, while this was preserved after JNJ-42153605 administration. JNJ-42153605 enhanced sleep continuity and efficiency, suggesting its potential as an add-on medication for impaired sleep quality during early stages of treatment. Abrupt cessation of JNJ-42153605 did not induce withdrawal phenomena and sleep disturbances, while the initial drug effect was fully reinstated after re-administration. Collectively, long-term treatment with JNJ-42153605 did not induce tolerance phenomena to its primary functional effects on sleep measures, nor adverse effects at withdrawal, while it promoted

  8. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias.

    PubMed

    Sengmany, K; Gregory, K J

    2016-10-01

    The metabotropic glutamate receptor subtype 5 (mGlu5 ) is a family C GPCR that has been implicated in various neuronal processes and, consequently, in several CNS disorders. Over the past few decades, GPCR-based drug discovery, including that for mGlu5 receptors, has turned considerable attention to targeting allosteric binding sites. Modulation of endogenous agonists by allosteric ligands offers the advantages of spatial and temporal fine-tuning of receptor activity, increased selectivity and reduced adverse effects with the potential to elicit improved clinical outcomes. Further, with greater appreciation of the multifaceted nature of the transduction of mGlu5 receptor signalling, it is increasingly apparent that drug discovery must take into consideration unique receptor conformations and the potential for stimulus-bias. This novel paradigm proposes that different ligands may differentially modulate distinct signalling pathways arising from the same receptor. We review our current understanding of the complexities of mGlu5 receptor signalling and regulation, and how these relate to allosteric ligands. Ultimately, a deeper appreciation of these relationships will provide the foundation for targeted drug design of compounds with increased selectivity, not only for the desired receptor but also for the desired signalling outcome from the receptor. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.

  9. Modulation of mGlu2 Receptors, but Not PDE10A Inhibition Normalizes Pharmacologically-Induced Deviance in Auditory Evoked Potentials and Oscillations in Conscious Rats

    PubMed Central

    Ahnaou, Abdallah; Biermans, Ria; Drinkenburg, Wilhelmus H.

    2016-01-01

    Improvement of cognitive impairments represents a high medical need in the development of new antipsychotics. Aberrant EEG gamma oscillations and reductions in the P1/N1 complex peak amplitude of the auditory evoked potential (AEP) are neurophysiological biomarkers for schizophrenia that indicate disruption in sensory information processing. Inhibition of phosphodiesterase (i.e. PDE10A) and activation of metabotropic glutamate receptor (mGluR2) signaling are believed to provide antipsychotic efficacy in schizophrenia, but it is unclear whether this occurs with cognition-enhancing potential. The present study used the auditory paired click paradigm in passive awake Sprague Dawley rats to 1) model disruption of AEP waveforms and oscillations as observed in schizophrenia by peripheral administration of amphetamine and the N-methyl-D-aspartate (NMDA) antagonist phencyclidine (PCP); 2) confirm the potential of the antipsychotics risperidone and olanzapine to attenuate these disruptions; 3) evaluate the potential of mGluR2 agonist LY404039 and PDE10 inhibitor PQ-10 to improve AEP deficits in both the amphetamine and PCP models. PCP and amphetamine disrupted auditory information processing to the first click, associated with suppression of the P1/N1 complex peak amplitude, and increased cortical gamma oscillations. Risperidone and olanzapine normalized PCP and amphetamine-induced abnormalities in AEP waveforms and aberrant gamma/alpha oscillations, respectively. LY404039 increased P1/N1 complex peak amplitudes and potently attenuated the disruptive effects of both PCP and amphetamine on AEPs amplitudes and oscillations. However, PQ-10 failed to show such effect in either models. These outcomes indicate that modulation of the mGluR2 results in effective restoration of abnormalities in AEP components in two widely used animal models of psychosis, whereas PDE10A inhibition does not. PMID:26808689

  10. Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors.

    PubMed

    Rovira, Xavier; Malhaire, Fanny; Scholler, Pauline; Rodrigo, Jordi; Gonzalez-Bulnes, Patricia; Llebaria, Amadeu; Pin, Jean-Philippe; Giraldo, Jesús; Goudet, Cyril

    2015-01-01

    Type 4 metabotropic glutamate (mGlu4) receptors are emerging targets for the treatment of various disorders. Accordingly, numerous mGlu4-positive allosteric modulators (PAMs) have been identified, some of which also display agonist activity. To identify the structural bases for their allosteric action, we explored the relationship between the binding pockets of mGlu4 PAMs with different chemical scaffolds and their functional properties. By use of innovative mGlu4 biosensors and second-messenger assays, we show that all PAMs enhance agonist action on the receptor through different degrees of allosteric agonism and positive cooperativity. For example, whereas VU0155041 and VU0415374 display equivalent efficacies [log(τ(B)) = 1.15 ± 0.38 and 1.25 ± 0.44, respectively], they increase the ability of L-AP4 to stabilize the active conformation of the receptor by 4 and 39 times, respectively. Modeling and docking studies identify 2 overlapping binding pockets as follows: a first site homologous to the pocket of natural agonists of class A GPCRs linked to allosteric agonism and a second one pointing toward a site topographically homologous to the Na(+) binding pocket of class A GPCRs, occupied by PAMs exhibiting the strongest cooperativity. These results reveal that intrinsic efficacy and cooperativity of mGlu4 PAMs are correlated with their binding mode, and vice versa, integrating structural and functional knowledge from different GPCR classes. PMID:25342125

  11. Expression of groups I and II metabotropic glutamate receptors in the rat brain during aging.

    PubMed

    Simonyi, Agnes; Ngomba, Richard T; Storto, Marianna; Catania, Maria V; Miller, Laura A; Youngs, Brian; DiGiorgi-Gerevini, Valeria; Nicoletti, Ferdinando; Sun, Grace Y

    2005-05-10

    Age-dependent changes in the expression of group I and II metabotropic glutamate (mGlu) receptors were studied by in situ hybridization, Western blot analysis and immunohistochemistry. Male Fisher 344 rats of three ages (3, 12 and 25 months) were tested. Age-related increases in mGlu1 receptor mRNA levels were found in several areas (thalamic nuclei, hippocampal CA3) with parallel increases in mGlu1a receptor protein expression. However, a slight decrease in mGlu1a receptor mRNA expression in individual Purkinje neurons and a decline in cerebellar mGlu1a receptor protein levels were detected in aged animals. In contrast, mGlu1b receptor mRNA levels increased in the cerebellar granule cell layer. Although mGlu5 receptor mRNA expression decreased in many regions, its protein expression remained unchanged during aging. Compared to the small changes in mGlu2 receptor mRNA levels, mGlu3 receptor mRNA levels showed substantial age differences. An increased mGlu2/3 receptor protein expression was found in the frontal cortex, thalamus, hippocampus and corpus callosum in aged animals. These results demonstrate region- and subtype-specific, including splice variant specific changes in the expression of mGlu receptors in the brain with increasing age. PMID:15862522

  12. Neonatal exposure to MK-801 reduces mRNA expression of mGlu3 receptors in the medial prefrontal cortex of adolescent rats.

    PubMed

    Uehara, Takashi; Sumiyoshi, Tomiki; Rujescu, Dan; Genius, Just; Matsuoka, Tadasu; Takasaki, Ichiro; Itoh, Hiroko; Kurachi, Masayoshi

    2014-05-01

    Schizophrenia is considered as a "neurodegenerative" and "neurodevelopmental" disorder, the pathophysiology of which may include hypofunction of the N-methyl-D-aspartate receptor (NMDA-R) or subsequent pathways. Accordingly, administration of NMDA-R antagonists to rodents during the perinatal period may emulate some core pathophysiological aspects of schizophrenia. The effect of 4-day (postnatal day; PD 7-10) administration of MK-801, a selective NMDA-R antagonist, on gene expression in the medial prefrontal cortex (mPFC), hippocampus, and amygdala was evaluated using quantitative polymerase chain reaction methods. Specifically, we sought to determine whether genes related to Glu transmissions, for example those encoding for NMDA-Rs, metabotropic Glu receptors (mGluRs), or Glu transporters, were altered by neonatal treatment with MK-801. Model rats showed downregulation of the mGluR3 subtype in the mPFC around puberty, especially at PD 35 in response to MK-801 or during ontogenesis without pharmacological manipulations. Genes encoding for other mGluRs subtypes, that is NMDA-Rs and Glu transporters, were not affected by the neonatal insult. These results suggest that NMDA-R antagonism in the early course of development modulates the expression of mGluR3 in mPFC around puberty. Thus, mGluR3 may serve as a potential target to prevent the onset and progression of schizophrenia. PMID:24549941

  13. Activation of Group II and Group III metabotropic glutamate receptors by endogenous ligand(s) and the modulation of synaptic transmission in the superficial superior colliculus.

    PubMed

    Thompson, H; Neale, S A; Salt, T E

    2004-11-01

    Previous work from this laboratory indicates that Group II/III metabotropic glutamate (mGlu) receptors modulate responses of SC neurones to visual stimuli in vivo. It is thought that tonic levels of glutamate may be sufficient to activate some mGlu receptors. We wished to investigate if these receptors are activated under ambient conditions in SC. Field excitatory postsynaptic potentials (fEPSPs) evoked by optic tract stimulation were recorded from 300 microm slices of the adult pigmented rat superior colliculus at 34 degrees C. The Group II receptor selective agonist LY354740 (100-300 nM) had no significant effect on the peak amplitude of the fEPSP, although it did enhance the late phase of the fEPSP. In order to test for activation of Group II receptors by endogenous ligand, the selective antagonists LY341495 (50 nM) or EGLU (200 microM) were applied: these either enhanced or reduced the fEPSP amplitude. In similar experiments carried out at 22 degrees C, no effect was seen. The fEPSP enhancements, but not the fEPSP reductions, could be occluded by GABA antagonists. Application of higher concentrations of LY341495 (300, 600 nM-known to also affect Group III receptors, particularly mGlu8), or co-application of 50 nM LY341495 and the Group III-selective antagonist CPPG (100 microM) produced enhancements of responses, or counteracted response reductions over those seen with 50 nM LY341495 alone. The predominant Group II receptor in SC is mGlu3. It is known that this can be located presynaptically on GABAergic and glutamatergic terminals, postsynaptically, and on glia. Our results indicate that such receptors are tonically activated by endogenous transmitter, have distinct effects, and influence retino-collicular transmission. Furthermore, there is a segregation of effects where receptors exert some of their effects via modulation of GABAergic circuitry. PMID:15527816

  14. Withdrawal from cocaine self-administration and yoked cocaine delivery dysregulates glutamatergic mGlu5 and NMDA receptors in the rat brain.

    PubMed

    Pomierny-Chamiolo, Lucyna; Miszkiel, Joanna; Frankowska, Małgorzata; Pomierny, Bartosz; Niedzielska, Ewa; Smaga, Irena; Fumagalli, Fabio; Filip, Małgorzata

    2015-04-01

    In human addicts and in animal models, chronic cocaine use leads to numerous alterations in glutamatergic transmission, including its receptors. The present study focused on metabotropic glutamatergic receptors type 5 (mGluR(5)) and N-methyl-D-aspartate receptor subunits (NMDAR: GluN1, GluN2A, GluN2B) proteins during cocaine self-administration and after 10-day of extinction training in rats. To discriminate the contingent from the non-contingent cocaine delivery, we employed the "yoked"-triad control procedure. Protein expression in rat prefrontal cortex, nucleus accumbens, hippocampus, and dorsal striatum was determined. We also examined the Homer1b/c protein, a member of the postsynaptic density protein family that links NMDAR to mGluR(5). Our results revealed that cocaine self-administration selectively increased GluN1 and GluN2A subunit in the rat hippocampus and dorsal striatum, respectively, while mGluR(5) protein expression was similarly increased in the dorsal striatum of both experimental groups. Withdrawal from both contingent and non-contingent cocaine delivery induced parallel increases in prefrontal cortical GluN2A protein expression, hippocampal mGluR(5), and GluN1 protein expression as well as in accumbal GluN1 subunit expression, while the mGluR(5) expression was reduced in the prefrontal cortex. Extinction training in animals with a history of cocaine self-administration resulted in an elevation of the hippocampal GluN2A/GluN2B subunits and accumbal mGluR(5), and in a 50 % decrease of mGluR(5) protein expression in the dorsal striatum. The latter reduction was associated with Homer1b/1c protein level decrease. Our results showed that both contingent and non-contingent cocaine administration produces numerous, brain region specific, alterations in the mGluR(5), NMDA, and Homer1b/1c protein expression which are dependent on the modality of cocaine administration. PMID:25408547

  15. Identification of essential residues involved in the glutamate binding pocket of the group II metabotropic glutamate receptor.

    PubMed

    Malherbe, P; Knoflach, F; Broger, C; Ohresser, S; Kratzeisen, C; Adam, G; Stadler, H; Kemp, J A; Mutel, V

    2001-11-01

    Metabotropic glutamate (mGlu) receptors are a family of G-protein-coupled receptors that play central roles as modulators of both glutamatergic and other major neurotransmitter systems in CNS. Using molecular modeling, site-directed mutagenesis, [(3)H]LY354740 binding, [(35)S]GTPgammaS binding, and activation of GIRK current, we have been able to identify residues crucial for the binding of LY354740 and glutamate to rat mGlu2 receptors. Several of the crucial residues located in the binding site (Arg-57, Tyr-144, Tyr-216, Asp-295) have not been identified previously. We propose that the gamma-carboxyl group of LY354740 forms H-bonds to Arg-57, whereas the alpha-carboxyl group forms an H-bond with the hydroxyl group of Ser-145. The alpha-amino group of LY354740 forms H-bonds to Asp-295 and to the side-chain hydroxyl group of Thr-168. In addition, Tyr-144 may establish a hydrophobic (C-H/pi)-interaction with the bicyclo-hexane ring of LY354740. Furthermore, the mutation of residues Ser-148 and Arg-183, which are too remote for a direct interaction, affected the ligand affinity dramatically. These results suggest that Ser-148 and Arg-183 may be important for the 3D structure and/or are involved in closure of the domain. Finally, Asp-146, which is also remote from the binding site, was shown to be involved in the differential binding affinity of [(3)H]LY354740 for mGlu2 versus mGlu3 receptors. All the mGlu receptors except mGlu2 are activated by Ca(2+) and have serine instead of aspartic acid at this position, which suggests a critical role of this aspartic acid residue in the binding properties of this unique receptor. PMID:11641422

  16. LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors.

    PubMed

    Kingston, A E; Ornstein, P L; Wright, R A; Johnson, B G; Mayne, N G; Burnett, J P; Belagaje, R; Wu, S; Schoepp, D D

    1998-01-01

    The in vitro pharmacology of a structurally novel compound, LY341495, was investigated at human recombinant metabotropic glutamate (mGlu) receptor subtypes expressed in non-neuronal (RGT, rat glutamate transporter) cells. LY341495 was a nanomolar potent antagonist of 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD)-induced inhibition of forskolin-stimulated cAMP formation at mGlu2 and mGlu3 receptors (respective IC50S of 0.021 and 0.014 microM). At group I mGlu receptor expressing cells, LY341495 was micromolar potent in antagonizing quisqualate-induced phosphoinositide (PI) hydrolysis, with IC50 values of 7.8 and 8.2 microM for mGlu1a and mGlu5a receptors, respectively. Among the human group III mGlu receptors, the most potent inhibition of L-2-amino-4-phosphonobutyric acid (L-AP4) responses was seen for LY341495 at mGlu8, with an IC50 of 0.17 microM. LY341495 was less potent at mGlu7 (IC50 = 0.99 microM) and least potent at mGlu4 (IC50 = 22 microM). Binding studies in rat brain membranes also demonstrated nanomolar potent group II mGlu receptor affinity for LY341495, with no appreciable displacement of ionotropic glutamate receptor ligand binding. Thus, LY341495 has a unique range of selectivity across the mGlu receptor subtypes with a potency order of mGlu3 > or = mGlu2 > mGlu8 > mGlu7 > mGlu1a = mGlu5a > mGlu4. In particular, LY341495 is the most potent antagonist yet reported at mGlu2, 3 and 8 receptors. Thus, it represents a novel pharmacological agent for elucidating the function of mGlu receptors in experimental systems. PMID:9680254

  17. Functional modulation of G-protein coupled receptors during Parkinson disease-like neurodegeneration.

    PubMed

    Jenkins, Bruce G; Zhu, Aijun; Poutiainen, Pekka; Choi, Ji-Kyung; Kil, Kun-Eek; Zhang, Zhaoda; Kuruppu, Darshini; Aytan, Nurgul; Dedeoglu, Alpaslan; Brownell, Anna-Liisa

    2016-09-01

    G-protein coupled dopamine and metabotropic glutamate receptors (mGlu) can modulate neurotransmission during Parkinson's disease (PD)-like neurodegeneration. PET imaging studies in a unilateral dopamine denervation model (6-OHDA) showed a significant inverse correlation of presynaptic mGlu4 and postsynaptic mGlu5 expression in the striatum and rapidly declining mGlu4 and enhanced mGlu5 expression in the hippocampus during progressive degeneration over time. Immunohistochemical studies verified the decreased mGlu4 expression in the hippocampus on the lesion side but did not show difference in mGlu5 expression between lesion and control side. Pharmacological MRI studies showed enhanced hemodynamic response in several brain areas on the lesion side compared to the control side after challenge with mGlu4 positive allosteric modulator or mGlu5 negative allosteric modulator. However, mGlu4 response was biphasic having short enhancement followed by negative response on both sides of brain. Studies in mGlu4 expressing cells demonstrated that glutamate induces cooperative increase in binding of mGlu4 ligands - especially at high glutamate levels consistent with in vivo concentration. This suggests that mGlu allosteric modulators as drug candidates will be highly sensitive to changes in glutamate concentration and hence metabolic state. These experiments demonstrate the importance of the longitudinal imaging studies to investigate temporal changes in receptor functions to obtain individual response for experimental drugs. PMID:26581500

  18. Efficacy and safety of an adjunctive mGlu2 receptor positive allosteric modulator to a SSRI/SNRI in anxious depression.

    PubMed

    Kent, Justine M; Daly, Ella; Kezic, Iva; Lane, Rosanne; Lim, Pilar; De Smedt, Heidi; De Boer, Peter; Van Nueten, Luc; Drevets, Wayne C; Ceusters, Marc

    2016-06-01

    This phase 2a, randomized, multicenter, double-blind, proof-of-concept study was designed to evaluate, efficacy, safety and tolerability of JNJ-40411813/ADX71149, a novel metabotropic glutamate 2 receptor positive allosteric modulator as an adjunctive treatment for major depressive disorder (MDD) with significant anxiety symptoms. Eligible patients (18-64 years) had a DSM-IV diagnosis of MDD, Hamilton Depression Rating Scale-17 (HDRS17) score of ≥ 18, HDRS17 anxiety/somatization factor score of ≥ 7, and an insufficient response to current treatment with a selective serotonin reuptake inhibitor or serotonin-norepinephrine reuptake inhibitor. The doubly-randomized, 8-week double-blind treatment phase was comprised of two 4-week periods, from which a combined test statistic was generated, with pre-determined weights assigned to each of the 2 treatment periods. Period 1: patients (n=121) were randomly assigned (1:1) to JNJ-40411813 (n=62; 50mg to 150 mg b.i.d, flexibly dosed) or placebo (n=59); Period 2: placebo-treated patients (n=22) who continued to meet entry severity criteria were re-randomized (1:1) to JNJ-40411813 or placebo, while other patients underwent sham re-randomization and continued on their same treatment. Of 121 randomized patients, 100 patients (82.6%) were completers. No efficacy signal was detected on the primary endpoint, the 6-item Hamilton Anxiety Subscale (HAM-A6, p=0.51). Efficacy signals (based on prespecified 1-sided p<0.20) were evident on several secondary outcome measures of both depression (HDRS17 total score, 6-item subscale of HDRS17 assessing core depressive symptoms [HAM-D6], and Inventory of Depressive Symptomatology [IDS-C30]) and anxiety (HDRS17 anxiety/somatization factor, IDS-C30 anxiety subscale). Although well-tolerated, the results do not suggest efficacy for JNJ-40411813 as an adjunctive treatment for patients with MDD with significant anxious symptoms in the dose range studied.

  19. Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors.

    PubMed

    Gewirtz, J C; Marek, G J

    2000-11-01

    Recent electrophysiological studies in our laboratory have demonstrated a physiological interaction between 5-HT(2A) and metabotropic glutamate2/3 (mGlu2/3) receptors in the medial prefrontal cortex. Several behavioral studies have found that phenethylamine hallucinogens with partial agonist activity at 5-HT(2A) receptors induce head shakes when directly administered into the medial prefrontal cortex. The purpose of the present experiments was to examine whether an interaction occurs between mGlu2/3 and 5-HT(2A) receptors on a behavioral level using head shakes induced by phenethylamine hallucinogens as a model of 5-HT(2A) receptor activation. Administration of the mGlu2/3 agonist LY354740 (0.3-10 mg/kg, ip) suppressed head shakes induced by the phenethylamine hallucinogen 1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI). Conversely, administration of the mGlu2/3 antagonist LY341495 (1 mg/kg, ip) enhanced the frequency of DOI-induced head shakes. Taken together, these results raise the possibility that the psychomimetic properties of hallucinogenic drugs may be mediated in part, via increased glutamate release following activation of 5-HT(2A) receptors.

  20. Metabotropic glutamate receptors in the control of mood disorders.

    PubMed

    Witkin, Jeffrey M; Marek, Gerard J; Johnson, Bryan G; Schoepp, Darryle D

    2007-04-01

    Current treatments for depression are less than optimal in terms of onset of action, response and remission rates, and side-effect profiles. Glutamate is the major excitatory neurotransmitter controlling synaptic excitability and plasticity in most brain circuits, including limbic pathways involved in depression. Thus, drugs that target glutamate neuronal transmission offer novel approaches to treat depression. Recently, the NMDA receptor antagonist ketamine has demonstrated clinical efficacy in a randomized clinical trial of depressed patients. Metabotropic glutamate (mGlu) receptors function to regulate glutamate neuronal transmission by altering the release of neurotransmitter or modulating the post-synaptic responses to glutamate. Accumulating evidence from biochemical and behavioral studies support the idea that the regulation of glutamatergic neurotransmission via mGlu receptors is linked to mood disorders and that these receptors may serve as novel targets for the discovery of small molecule modulators with unique antidepressant properties. For example, mGlu receptor modulation can facilitate neuronal stem cell proliferation (neurogenesis) and the release of neurotransmitters that are associated with treatment response to depression in humans (serotonin, norepinephrine, dopamine). In particular, compounds that antagonize mGlu2, mGlu3 and/or mGlu5 receptors (e.g. LY341495, MSG0039, MPEP) have been linked to the above pharmacology and have also shown in vivo activity in animal models predictive of antidepressant efficacy such as the forced-swim test. The in vivo actions of these agents can be antagonized by compounds that block AMPA receptors, suggesting that their actions are direct downstream consequences of the enhancement of glutamate neuronal transmission in brain regions involved in depression. These data provide new approaches to finding mechanistically distinct drugs for depression that may have advantages over current therapies for some patients

  1. Combined behavioral studies and in vivo imaging of inflammatory response and expression of mGlu5 receptors in schnurri-2 knockout mice.

    PubMed

    Choi, Ji-Kyung; Zhu, Aijun; Jenkins, Bruce G; Hattori, Satoko; Kil, Kun-Eek; Takagi, Tsuyoshi; Ishii, Shunsuke; Miyakawa, Tsuyoshi; Brownell, Anna-Liisa

    2015-11-16

    Schnurri-2 (Shn-2) knockout (KO) mice have been proposed as a preclinical neuroinflammatory schizophrenia model. We used behavioral studies and imaging markers that can be readily translated to human populations to explore brain effects of inflammation. Shn-2 KO mice and their littermate control mice were imaged with two novel PET ligands; an inflammation marker [(11)C]PBR28 and the mGluR5 ligand [(18)F]FPEB. Locomotor activity was measured using open field exploration with saline, methamphetamine or amphetamine challenge. A significantly increased accumulation of [(11)C]PBR28 was found in the cortex, striatum, hippocampus and olfactory bulb of Shn-2 KO mice. Increased mGluR5 binding was also observed in the cortex and hippocampus of the Shn-2 KO mice. Open field locomotor testing revealed a large increase in novelty-induced hyperlocomotion in Shn-2 KO mice with abnormal (decreased) responses to either methamphetamine or amphetamine. These data provide additional support to demonstrate that the Shn-2 KO mouse model exhibits several behavioral and pathological markers resembling human schizophrenia making it an attractive translational model for the disease.

  2. Group II and III metabotropic glutamate receptors contribute to different aspects of visual response processing in the rat superior colliculus

    PubMed Central

    Cirone, Jennifer; Salt, Thomas E

    2001-01-01

    Neurones in the superior colliculus (SC) respond to novel sensory stimuli and response habituation is a key feature of this. It is known that both ionotropic and metabotropic glutamate (mGlu) receptors participate in visual responses of superficial SC neurones. A feature of Group II and Group III mGlu receptors is that they may modulate specific neural pathways, possibly via presynaptic mechanisms. However, less is known about how this may relate to functions of systems in whole animals. We have therefore investigated whether these receptors affect specific attributes of visual responses in the superficial SC. Recordings were made from visually responsive neurones in anaesthetised rats, and agonists and antagonists of Group II and III mGlu receptors were applied iontophoretically at the recording site. We found that application of the Group III metabotropic glutamate receptor agonist l-2-amino-4-phosphonobutyric acid (l-AP4) produced an increase in visual response habituation, whilst Group III antagonists decreased habituation. These effects were independent of the response habituation mediated via GABAB receptors. In contrast, modulation of Group II mGlu receptors with the specific agonist LY354740 or the antagonist LY341495 did not affect response habituation, although these compounds did modulate visual responses. This suggests a specific role for Group III mGlu receptors in visual response habituation. The magnitude of Group II effects was smaller during presentation of low contrast stimuli compared with high contrast stimuli. This suggests that activation of Group II receptors may be activity dependent and that these receptors can translate this into a functional effect in adapting to high contrast stimuli. PMID:11433000

  3. Allosteric Modulation of Metabotropic Glutamate Receptors: Structural Insights and Therapeutic Potential

    PubMed Central

    Gregory, Karen J.; Dong, Elizabeth N.; Meiler, Jens; Conn, P. Jeffrey

    2010-01-01

    Allosteric modulation of G protein-coupled receptors (GPCRs) represents a novel approach to the development of probes and therapeutics that is expected to enable subtype-specific regulation of central nervous system target receptors. The metabotropic glutamate receptors (mGlus) are class C GPCRs that play important neuromodulatory roles throughout the brain, as such they are attractive targets for therapeutic intervention for a number of psychiatric and neurological disorders including anxiety, depression, Fragile X Syndrome, Parkinson’s disease and schizophrenia. Over the last fifteen years, selective allosteric modulators have been identified for many members of the mGlu family. The vast majority of these allosteric modulators are thought to bind within the transmembrane-spanning domains of the receptors to enhance or inhibit functional responses. A combination of mutagenesis-based studies and pharmacological approaches are beginning to provide a better understanding of mGlu allosteric sites. Collectively, when mapped onto a homology model of the different mGlu subtypes based on the β2-adrenergic receptor, the previous mutagenesis studies suggest commonalities in the location of allosteric sites across different members of the mGlu family. In addition, there is evidence for multiple allosteric binding pockets within the transmembrane region that can interact to modulate one another. In the absence of a class C GPCR crystal structure, this approach has shown promise with respect to the interpretation of mutagenesis data and understanding structure-activity relationships of allosteric modulator pharmacophores. PMID:20637216

  4. Blockage of acquisition and expression of morphine-induced conditioned place preference in rats due to activation of glutamate receptors type II/III in nucleus accumbens.

    PubMed

    Baharlouei, Negar; Sarihi, Abdolrahman; Komaki, Alireza; Shahidi, Siamak; Haghparast, Abbas

    2015-08-01

    Numerous studies have shown that glutamate in the nucleus accumbens (NAc) is an essential neurotransmitter for the extension of morphine-induced place preference. mGlu2/3 glutamate receptors in the NAc have important roles in the reward pathway. However, less is known about the role of this glutamate receptor subtype in morphine-induced conditioned place preference (CPP). In this study, we examined the effects of bilateral intra-accumbal administration of LY379268, an mGlu2/3 receptor agonist on the acquisition and expression of morphine-induced CPP in rats. Adult male Wistar rats (n=136; 220-250g) were evaluated in a CPP paradigm. Doses of LY379268 (0.3, 1 and 3μg/0.5μL saline per side) were administered into the NAc on both sides during the 3days of the conditioning (acquisition) or post-conditioning (expression) phase. The results show that bilateral intra-accumbal administration of LY379268 (0.3, 1 and 3μg) markedly decreased the acquisition of morphine-induced CPP in a dose-dependent manner. In a second series of experiments, we determined that injection of LY379268 into the NAc considerably attenuated the expression of morphine CPP only at the highest dose (3μg). Our findings suggest that activation of mGlu2/3 receptors in the NAc dose-dependently blocked both the establishment and the maintenance of morphine-induced CPP and confirmed the role of this system as a potential therapeutic target for addiction.

  5. An interchangeable role for kainate and metabotropic glutamate receptors in the induction of rat hippocampal mossy fiber long-term potentiation in vivo

    PubMed Central

    Wallis, James L; Irvine, Mark W; Jane, David E; Lodge, David; Collingridge, Graham L; Bortolotto, Zuner A

    2015-01-01

    The roles of both kainate receptors (KARs) and metabotropic glutamate receptors (mGluRs) in mossy fiber long-term potentiation (MF-LTP) have been extensively studied in hippocampal brain slices, but the findings are controversial. In this study, we have addressed the roles of both mGluRs and KARs in MF-LTP in anesthetized rats. We found that MF-LTP could be induced in the presence of either GluK1-selective KAR antagonists or group I mGluR antagonists. However, LTP was inhibited when the group I mGluRs and the GluK1-KARs were simultaneously inhibited. Either mGlu1 or mGlu5 receptor activation is sufficient to induce this form of LTP as selective inhibition of either subtype alone, together with the inhibition of KARs, did not inhibit MF-LTP. These data suggest that mGlu1 receptors, mGlu5 receptors, and GluK1-KARs are all engaged during high-frequency stimulation, and that the activation of any one of these receptors alone is sufficient for the induction of MF-LTP in vivo. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:25821051

  6. Pharmacological profiling of native group II metabotropic glutamate receptors in primary cortical neuronal cultures using a FLIPR.

    PubMed

    Sanger, Helen; Hanna, Lydia; Colvin, Ellen M; Grubisha, Olivera; Ursu, Daniel; Heinz, Beverly A; Findlay, Jeremy D; Vivier, Richard G; Sher, Emanuele; Lodge, David; Monn, James A; Broad, Lisa M

    2013-03-01

    The group II metabotropic glutamate (mGlu) receptors comprised of the mGlu2 and mGlu3 receptor subtypes have gained recognition in recent years as potential targets for psychiatric disorders, including anxiety and schizophrenia. In addition to studies already indicating which subtype mediates the anxiolytic and anti-psychotic effects observed in disease models, studies to help further define the preferred properties of selective group II mGlu receptor ligands will be essential. Comparison of the in vitro properties of these ligands to their in vivo efficacy and tolerance profiles may help provide these additional insights. We have developed a relatively high-throughput native group II mGlu receptor functional assay to aid this characterisation. We have utilised dissociated primary cortical neuronal cultures, which after 7 days in vitro have formed functional synaptic connections and display periodic and spontaneous synchronised calcium (Ca(2+)) oscillations in response to intrinsic action potential bursts. We herein demonstrate that in addition to non-selective group II mGlu receptor agonists, (2R,4R)-APDC, LY379268 and DCG-IV, a selective mGlu2 agonist, LY541850, and mGlu2 positive allosteric modulators, BINA and CBiPES, inhibit the frequency of synchronised Ca(2+) oscillations in primary cultures of rat and mouse cortical neurons. Use of cultures from wild-type, mGlu2(-/-), mGlu3(-/-) and mGlu2/3(-/-) mice allowed us to further probe the contribution of mGlu2 and mGlu3, and revealed LY541850 to be a partial mGlu2 agonist and a full mGlu3 antagonist. Overnight pre-treatment of cultures with these ligands revealed a preferred desensitisation profile after treatment with a positive allosteric modulator. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. PMID:22659090

  7. Tetrahydronaphthyridine and dihydronaphthyridinone ethers as positive allosteric modulators of the metabotropic glutamate receptor 5 (mGlu₅).

    PubMed

    Turlington, Mark; Malosh, Chrysa; Jacobs, Jon; Manka, Jason T; Noetzel, Meredith J; Vinson, Paige N; Jadhav, Satyawan; Herman, Elizabeth J; Lavreysen, Hilde; Mackie, Claire; Bartolomé-Nebreda, José M; Conde-Ceide, Susana; Martín-Martín, M Luz; Tong, Han Min; López, Silvia; MacDonald, Gregor J; Steckler, Thomas; Daniels, J Scott; Weaver, C David; Niswender, Colleen M; Jones, Carrie K; Conn, P Jeffrey; Lindsley, Craig W; Stauffer, Shaun R

    2014-07-10

    Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Starting from an acetylene-based lead from high throughput screening, an evolved bicyclic dihydronaphthyridinone was identified. We describe further refinements leading to both dihydronaphthyridinone and tetrahydronaphthyridine mGlu5 PAMs containing an alkoxy-based linkage as an acetylene replacement. Exploration of several structural features including western pyridine ring isomers, positional amides, linker connectivity/position, and combinations thereof, reveal that these bicyclic modulators generally exhibit steep SAR and within specific subseries display a propensity for pharmacological mode switching at mGlu5 as well as antagonist activity at mGlu3. Structure-activity relationships within a dihydronaphthyridinone subseries uncovered 12c (VU0405372), a selective mGlu5 PAM with good in vitro potency, low glutamate fold-shift, acceptable DMPK properties, and in vivo efficacy in an amphetamine-based model of psychosis. PMID:24914612

  8. Metabotropic glutamate 2 receptors modulate synaptic inputs and calcium signals in striatal cholinergic interneurons.

    PubMed

    Pisani, Antonio; Bonsi, Paola; Catania, Maria Vincenza; Giuffrida, Raffaella; Morari, Michele; Marti, Matteo; Centonze, Diego; Bernardi, Giorgio; Kingston, Ann E; Calabresi, Paolo

    2002-07-15

    Striatal cholinergic interneurons were recorded from a rat slice preparation. Synaptic potentials evoked by intrastriatal stimulation revealed three distinct components: a glutamatergic EPSP, a GABA(A)-mediated depolarizing potential, and an acetylcholine (ACh)-mediated IPSP. The responses to group II metabotropic glutamate (mGlu) receptor activation were investigated on the isolated components of the synaptic potentials. Each pharmacologically isolated component was reversibly reduced by bath-applied LY379268 and ((2S,1'R,2'R,3'R)-2-(2,3-dicarboxylcyclopropyl)-glycine, group II agonists. In an attempt to define the relevance of group II mGlu receptor activation on cholinergic transmission, we focused on the inhibitory effect on the IPSP, which was mimicked and occluded by omega-agatoxin IVA (omega-Aga-IVA), suggesting a modulation on P-type high-voltage-activated calcium channels. Spontaneous calcium-dependent plateau-potentials (PPs) were recorded with cesium-filled electrodes plus tetraethylammonium and TTX in the perfusing solution, and measurements of intracellular calcium [Ca2+]i changes were obtained simultaneously. PPs and the concomitant [Ca2+]i elevations were significantly reduced in amplitude and duration by LY379268. The mGlu-mediated inhibitory effect on PPs was mimicked by omega-Aga-IVA, suggesting an involvement of P-type channels. Moreover, electrically induced ACh release from striatal slices was reduced by mGlu2 receptor agonists and occluded by omega-Aga-IVA in a dose-dependent manner. Finally, double-labeling experiments combining mGlu2 receptor in situ hybridization and choline acetyltransferase immunocytochemistry revealed a strong mGlu2 receptor labeling on cholinergic interneurons, whereas single-label isotopic in situ hybridization for mGlu3 receptors did not show any labeling in these large striatal interneurons. These results suggest that the mGlu2 receptor-mediated modulatory action on cell excitability would tune striatal ACh release

  9. THE METABOTROPIC GLUTAMATE 2/3 RECEPTOR AGONIST LY379268 COUNTERACTED KETAMINE-AND APOMORPHINE-INDUCED PERFORMANCE DEFICITS IN THE OBJECT RECOGNITION TASK, BUT NOT OBJECT LOCATION TASK, IN RATS

    PubMed Central

    Pitsikas, Nikolaos; Markou, Athina

    2014-01-01

    Experimental evidence indicates that the non competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine and the mixed dopamine (DA) D1/D2 receptor agonist apomorphine induce schizophrenia-like symptoms in rodents, including cognitive deficits. Activation of Group II metabotropic glutamate 2/3 (mGlu2/3) receptors reduces the excessive glutamate release that is hypothesized to be associated with psychiatric disorders. Thus, mGlu2/3 receptor agonists may reverse deficits induced by excessive glutamate or DA release induced by administration of NMDA receptor antagonists and DA receptor agonists, respectively, and potentially those seen in schizophrenia. LY379268 is a selective mGlu2/3 receptor agonist that has shown to be effective in several animal models of stroke, epilepsy, and drug abuse. The present study investigated whether LY379268 antagonizes non-spatial and spatial recognition memory deficits induced by ketamine and apomorphine administration in rats. To assess the effects of the compounds on non-spatial and spatial recognition memory, the object recognition task and object location task were used. Post-training administration of LY379268 (1-3 mg/kg, i.p.) counteracted ketamine (3 mg/kg, i.p.) and apomorphine (1 mg/kg, i.p.)-induced performance deficits in the object recognition task. In contrast, LY379268 (1-3 mg/kg, i.p.) did not attenuate spatial recognition memory deficits produced by ketamine (3 mg/kg, i.p.) or apomorphine (1 mg/kg, i.p.) in the object location task. The present data show that the mGlu2/3 receptor agonist LY379268 reversed non-spatial, but not spatial, recognition memory deficits induced by NMDA receptor blockade or DA receptor agonism in rodents. Thus, such mGlu2/3 receptor agonists may be efficacious in reversing some memory deficits seen in schizophrenia patients. PMID:24859609

  10. Pharmacological and pharmacokinetic properties of a structurally novel, potent, and selective metabotropic glutamate 2/3 receptor agonist: in vitro characterization of agonist (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]-hexane-4,6-dicarboxylic acid (LY404039).

    PubMed

    Rorick-Kehn, Linda M; Johnson, Bryan G; Burkey, Jennifer L; Wright, Rebecca A; Calligaro, David O; Marek, Gerard J; Nisenbaum, Eric S; Catlow, John T; Kingston, Ann E; Giera, Deborah D; Herin, Marc F; Monn, James A; McKinzie, David L; Schoepp, Darryle D

    2007-04-01

    Group II metabotropic glutamate (mGlu) receptor agonists, including (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate monohydrate (LY354740) and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268), have demonstrated efficacy in animal models of anxiety and schizophrenia, and LY354740 decreased anxiety in human subjects. Herein, we report the in vitro pharmacological profile and pharmacokinetic properties of another potent, selective, and structurally novel mGlu2/3 receptor agonist, (-)-(1R,4S,5S,6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY404039) and provide comparisons with LY354740. Similar to LY354740, LY404039 is a nanomolar potent agonist at recombinant human mGlu2 and mGlu3 receptors (K(i) = 149 and 92, respectively) and in rat neurons expressing native mGlu2/3 receptors (Ki = 88). LY404039 is highly selective for mGlu2/3 receptors, showing more than 100-fold selectivity for these receptors, versus ionotropic glutamate receptors, glutamate transporters, and other receptors targeted by known anxiolytic and antipsychotic medications. Functionally, LY404039 potently inhibited forskolin-stimulated cAMP formation in cells expressing human mGlu2 and mGlu3 receptors. Electrophysiological studies indicated that LY404039 suppressed electrically evoked excitatory activity in the striatum, and serotonin-induced l-glutamate release in the prefrontal cortex; effects reversed by LY341495. These characteristics suggest LY404039 modulates glutamatergic activity in limbic and forebrain areas relevant to psychiatric disorders; and that, similar to LY354740, it works through a mechanism that may be devoid of negative side effects associated with current antipsychotics and anxiolytics. Interestingly, despite the slightly lower potency (approximately 2-5-fold) of LY404039 versus LY354740 in binding, functional, and electrophysiological assays, LY404039 demonstrated higher plasma exposure and better oral bioavailability in

  11. Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson's disease and l-DOPA-induced dyskinesia: Comparison between a positive allosteric modulator and an orthosteric agonist

    PubMed Central

    Iderberg, Hanna; Maslava, Natallia; Thompson, Analisa D.; Bubser, Michael; Niswender, Colleen M.; Hopkins, Corey R.; Lindsley, Craig W.; Conn, P. Jeffrey; Jones, Carrie K.; Cenci, M. Angela

    2015-01-01

    Metabotropic glutamate receptor 4 (mGlu4) negatively modulates GABA and glutamate release in the ‘indirect pathway’ of the basal ganglia, and has thus been proposed as a potential target to treat motor symptoms in Parkinson's disease. Here, we present an extensive comparison of the behavioural effects produced by the mGlu4 positive allosteric modulator (PAM), VU0364770, and the mGlu4 orthosteric agonist, LSP1-2111, in rats with unilateral 6-OHDA lesions. The compounds' activity was initially assessed in a test of haloperidol-induced catalepsy in intact rats, and effective doses were then evaluated in the hemiparkinsonian animal model. Neither of the two compounds modified the development of dyskinetic behaviours elicited by chronic treatment with full doses of l-DOPA. When given together with l-DOPA to rats with already established dyskinesias, neither VU0364770 nor LSP1-2111 modified the abnormal involuntary movement scores. VU0364770 potentiated, however, the motor stimulant effect of a sub-threshold l-DOPA dose in certain behavioural tests, whereas LSP1-2111 lacked this ability. Taken together, these results indicate that a pharmacological stimulation of mGlu4 lacks intrinsic antidyskinetic activity, but may have DOPA-sparing activity in Parkinson's disease. For the latter indication, mGlu4 PAMs appear to provide a better option than orthosteric agonists. PMID:25749357

  12. Synthesis and structure-activity relationship studies of novel 2-diarylethyl substituted (2-carboxycycloprop-1-yl)glycines as high-affinity group II metabotropic glutamate receptor ligands.

    PubMed

    Sørensen, Ulrik S; Bleisch, Thomas J; Kingston, Anne E; Wright, Rebecca A; Johnson, Bryan G; Schoepp, Darryle D; Ornstein, Paul L

    2003-01-17

    The major excitatory neurotransmitter in the central nervous system, (S)-glutamic acid , activates both ionotropic and metabotropic excitatory amino acid receptors. Its importance in connection to neurological and psychiatric disorders has directed great attention to the development of compounds that modulate the effects of this endogenous ligand. Whereas L-carboxycyclopropylglycine (L-CCG-1) is a potent agonist at, primarily, group II metabotropic glutamate receptors, alkylation of at the alpha-carbon notoriously result in group II mGluR antagonists, of which the most potent compound described so far, LY341495, displays IC(50) values of 23 and 10 nM at the group II receptor subtypes mGlu2 and mGlu3, respectively. In this study we synthesized a series of structural analogues of in which the xanthyl moiety is replaced by two substituted-phenyl groups. The pharmacological characterization shows that these novel compounds have very high affinity for group II mGluRs when tested as their racemates. The most potent analogues demonstrate K(i) values in the range of 5-12 nM, being thus comparable to LY341495. PMID:12470714

  13. Direct and indirect interactions between cannabinoid CB1 receptor and group II metabotropic glutamate receptor signalling in layer V pyramidal neurons from the rat prefrontal cortex.

    PubMed

    Barbara, Jean-Gaël; Auclair, Nathalie; Roisin, Marie-Paule; Otani, Satoru; Valjent, Emmanuel; Caboche, Jocelyne; Soubrie, Philippe; Crepel, Francis

    2003-03-01

    At proximal synapses from layer V pyramidal neurons from the rat prefrontal cortex, activation of group II metabotropic glutamate receptors (group II mGlu) by (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine (DCG IV) induced a long-lasting depression of excitatory postsynaptic currents. Paired-pulse experiments suggested that the depression was expressed presynaptically. Activation of type 1 cannabinoid receptors (CB1) by WIN 55,212-2 occluded the DCG IV-induced depression in a mutually occlusive manner. At the postsynaptic level, WIN 55,212-2 and DCG IV were also occlusive for the activation of extracellular signal-regulated kinase. The postsynaptic localization of active extracellular signal-regulated kinase was confirmed by immunocytochemistry after activation of CB1 receptors. However, phosphorylation of extracellular signal-regulated kinase in layer V pyramidal neurons was dependent on the activation of N-methyl-d-aspartate receptors, consequently to a release of glutamate in the local network. Group II mGlu were also shown to be involved in long-term changes in synaptic plasticity induced by high frequency stimulations. The group II mGlu antagonist (RS)-alpha-methylserine-O-phosphate monophenyl ester (MSOPPE) favoured long-term depression. However, no interaction was found between MSOPPE, WIN 55,212-2 and the CB1 receptor antagonist SR 141716A on the modulation of long-term depression or long-term potentiation and the effects of these drugs were rather additive. We suggest that CB1 receptor and group II mGlu signalling may interact through a presynaptic mechanism in the induction of a DCG IV-induced depression. Postsynaptically, an indirect interaction occurs for activation of extracellular signal-regulated kinase. However, none of these interactions seem to play a role in synaptic plasticities induced with high frequency stimulations.

  14. A key role for diacylglycerol lipase-alpha in metabotropic glutamate receptor-dependent endocannabinoid mobilization.

    PubMed

    Jung, Kwang-Mook; Astarita, Giuseppe; Zhu, Chenggang; Wallace, Matthew; Mackie, Ken; Piomelli, Daniele

    2007-09-01

    Activation of group I metabotropic glutamate (mGlu) receptors recruits the endocannabinoid system to produce both short- and long-term changes in synaptic strength in many regions of the brain. Although there is evidence that the endocannabinoid 2-arachidonoylglycerol (2-AG) mediates this process, the molecular mechanism underlying 2-AG mobilization remains unclear. In the present study, we used a combination of genetic and targeted lipidomic approaches to investigate the role of the postsynaptic membrane-associated lipase, diacylglycerol lipase type-alpha (DGL-alpha), in mGlu receptor-dependent 2-AG mobilization. DGL-alpha overexpression in mouse neuroblastoma Neuro-2a cells increased baseline 2-AG levels. This effect was accompanied by enhanced utilization of the 2-AG precursor 1-stearoyl,2-arachidonoyl-sn-glycerol and increased accumulation of the 2-AG breakdown product arachidonic acid. A similar, albeit less marked response was observed with other unsaturated and polyunsaturated monoacylglycerols, 1,2-diacylglycerols, and fatty acids. Silencing of DGL-alpha by RNA interference elicited lipidomic changes opposite those of DGL-alpha overexpression and abolished group I mGlu receptor-dependent 2-AG mobilization. Coimmunoprecipitation and site-directed mutagenesis experiments revealed that DGL-alpha interacts, via a PPxxF domain, with the coiled-coil (CC)-Homer proteins Homer-1b and Homer-2, two components of the molecular scaffold that enables group I mGlu signaling. DGL-alpha mutants that do not bind Homer maintained their ability to generate 2-AG in intact cells but failed to associate with the plasma membrane. The findings indicate that DGL-alpha mediates group I mGlu receptor-induced 2-AG mobilization. They further suggest that the interaction of CC-Homer with DGL-alpha is necessary for appropriate function of this lipase.

  15. CNS distribution of metabotropic glutamate 2 and 3 receptors: transgenic mice and [³H]LY459477 autoradiography.

    PubMed

    Wright, Rebecca A; Johnson, Bryan G; Zhang, Ce; Salhoff, Craig; Kingston, Ann E; Calligaro, David O; Monn, James A; Schoepp, Darryle D; Marek, Gerard J

    2013-03-01

    Group II metabotropic glutamate (mGlu) receptor agonists were efficacious in randomized clinical research trials for schizophrenia and generalized anxiety disorder. The regional quantification of mGlu(2) and mGlu(3) receptors remains unknown. A selective and structurally novel mGlu(2/3) receptor agonist, 2-amino-4-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY459477) was tritiated and the distribution of mGlu(2) and mGlu(3) receptors was studied in transgenic mice lacking either mGlu(2), mGlu(3) or both receptors. LY459477 is an agonist with 1-2 nM potency for rodent and human mGlu(2) and mGlu(3) receptors. The functional selectivity of LY459477 was demonstrated by over 640-fold selectivity and the displacement binding selectivity was greater than 320-fold for all glutamate receptors except mGlu(6) (∼230-fold). More than 1000-fold selectivity was demonstrated for all non-glutamate receptors known to be targeted by antipsychotic drugs. Like atypical antipsychotic drugs, LY459477 reversed in vitro electrophysiological effects of a serotonergic hallucinogen and behavioral effects of phencyclidine or amphetamine. There was virtually no binding of [(3)H]LY459477 to any brain region in mice with a deletion of both mGlu(2) and mGlu(3) receptors. Regions enriched in mGlu(2) receptors included the medial prefrontal cortex, select hippocampal regions, the medial mammillary nucleus, the medial habenula, and the cerebellar granular cell layer. Regions enriched in mGlu(3) receptors were the dorsolateral entorhinal cortex, the hippocampal CA1 field, the piriform cortex, the substantia nigra, the thalamic reticular nucleus, and primary sensory thalamic nuclei. These findings suggest [(3)H]LY459477 should be a useful tool to further define the role of mGlu(2) and mGlu(3) receptors throughout the brain with respect to major neuropsychiatric syndromes. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.

  16. Group I and group II metabotropic glutamate receptor allosteric modulators as novel potential antipsychotics

    PubMed Central

    Walker, Adam G.; Conn, P. Jeffrey

    2014-01-01

    Recently, there has been a shift in the schizophrenia field focusing on restoring glutamate signaling. Extensive preclinical data suggests that mGlu5 PAMs could have efficacy in all three symptom domains but there is concern of potential adverse effects. New insights into mechanisms underlying this toxicity may provide a path for discovery of safe mGlu5 PAMs. Genetic mutations in mGlu1 have been described in schizophrenics creating interest in this receptor as a therapeutic target. Preclinical data demonstrated the antipsychotic potential of of mGlu2/3 agonists but clinical trials were not successful. However, studies have suggested that mGlu2 is the subtype mediating antipsychotic effects and selective mGlu2 PAMs are now in clinical development. Finally, recent genetic studies suggest mGlu3 modulators may be pro-cognitive. PMID:25462291

  17. Group I and group II metabotropic glutamate receptor allosteric modulators as novel potential antipsychotics.

    PubMed

    Walker, Adam G; Conn, P Jeffrey

    2015-02-01

    Recently, there has been a shift in the schizophrenia field focusing on restoring glutamate signaling. Extensive preclinical data suggests that mGlu5 PAMs could have efficacy in all three symptom domains but there is concern of potential adverse effects. New insights into mechanisms underlying this toxicity may provide a path for discovery of safe mGlu5 PAMs. Genetic mutations in mGlu1 have been described in schizophrenics creating interest in this receptor as a therapeutic target. Preclinical data demonstrated the antipsychotic potential of mGlu2/3 agonists but clinical trials were not successful. However, studies have suggested that mGlu2 is the subtype mediating antipsychotic effects and selective mGlu2 PAMs are now in clinical development. Finally, recent genetic studies suggest mGlu3 modulators may be pro-cognitive. PMID:25462291

  18. Differential regulation of mGlu5 R and ΜOPr by priming- and cue-induced reinstatement of cocaine-seeking behaviour in mice.

    PubMed

    Georgiou, Polymnia; Zanos, Panos; Ehteramyan, Mazdak; Hourani, Susanna; Kitchen, Ian; Maldonado, Rafael; Bailey, Alexis

    2015-09-01

    The key problem for the treatment of drug addiction is relapse to drug use after abstinence that can be triggered by drug-associated cues, re-exposure to the drug itself and stress. Understanding the neurobiological mechanisms underlying relapse is essential in order to develop effective pharmacotherapies for its prevention. Given the evidence implicating the metabotropic glutamate receptor 5 (mGlu5 R), μ-opioid receptor (MOPr), κ-opioid receptor (ΚOPr) and oxytocin receptor (OTR) systems in cocaine addiction and relapse, our aim was to assess the modulation of these receptors using a mouse model of cue- and priming-induced reinstatement of cocaine seeking. Male mice were trained to self-administer cocaine (1 mg/kg/infusion, i.v.) and were randomized into different groups: (1) cocaine self-administration; (2) cocaine extinction; (3) cocaine-primed (10 mg/kg i.p.); or (4) cue-induced reinstatement of cocaine seeking. Mice undergoing the same protocols but receiving saline instead of cocaine were used as controls. Quantitative autoradiography of mGlu5 R, MOPr, KOPr and OTR showed a persistent cocaine-induced upregulation of the mGlu5 R and OTR in the lateral septum and central amygdala, respectively. Moreover, a downregulation of mGlu5 R and MOPr was observed in the basolateral amygdala and striatum, respectively. Further, we showed that priming- but not cue-induced reinstatement upregulates mGlu5 R and MOPr binding in the nucleus accumbens core and basolateral amygdala, respectively, while cue- but not priming-induced reinstatement downregulates MOPr binding in caudate putamen and nucleus accumbens core. This is the first study to provide direct evidence of reinstatement-induced receptor alterations that are likely to contribute to the neurobiological mechanisms underpinning relapse to cocaine seeking.

  19. Metabotropic glutamate receptors: their therapeutic potential in anxiety.

    PubMed

    Spooren, Will; Lesage, Anne; Lavreysen, Hilde; Gasparini, Fabrizio; Steckler, Thomas

    2010-01-01

    Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors. PMID:21309118

  20. Metabotropic glutamate receptors: their therapeutic potential in anxiety.

    PubMed

    Spooren, Will; Lesage, Anne; Lavreysen, Hilde; Gasparini, Fabrizio; Steckler, Thomas

    2010-01-01

    Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors.

  1. Molecular Insights into Metabotropic Glutamate Receptor Allosteric Modulation

    PubMed Central

    Gregory, Karen J.

    2015-01-01

    The metabotropic glutamate (mGlu) receptors are a group of eight family C G protein–coupled receptors that are expressed throughout the central nervous system (CNS) and periphery. Within the CNS the different subtypes are found in neurons, both pre- and/or postsynaptically, where they mediate modulatory roles and in glial cells. The mGlu receptor family provides attractive targets for numerous psychiatric and neurologic disorders, with the majority of discovery programs focused on targeting allosteric sites, with allosteric ligands now available for all mGlu receptor subtypes. However, the development of allosteric ligands remains challenging. Biased modulation, probe dependence, and molecular switches all contribute to the complex molecular pharmacology exhibited by mGlu receptor allosteric ligands. In recent years we have made significant progress in our understanding of this molecular complexity coupled with an increased understanding of the structural basis of mGlu allosteric modulation. PMID:25808929

  2. The Metabotropic Glutamate Receptor 4-Positive Allosteric Modulator VU0364770 Produces Efficacy Alone and in Combination with l-DOPA or an Adenosine 2A Antagonist in Preclinical Rodent Models of Parkinson's Disease

    PubMed Central

    Jones, Carrie K.; Bubser, Michael; Thompson, Analisa D.; Dickerson, Jonathan W.; Turle-Lorenzo, Nathalie; Amalric, Marianne; Blobaum, Anna L.; Bridges, Thomas M.; Morrison, Ryan D.; Jadhav, Satyawan; Engers, Darren W.; Italiano, Kimberly; Bode, Jacob; Daniels, J. Scott; Lindsley, Craig W.; Hopkins, Corey R.; Conn, P. Jeffrey

    2012-01-01

    Parkinson's disease (PD) is a debilitating neurodegenerative disorder associated with severe motor impairments caused by the loss of dopaminergic innervation of the striatum. Previous studies have demonstrated that positive allosteric modulators (PAMs) of metabotropic glutamate receptor 4 (mGlu4), including N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide, can produce antiparkinsonian-like effects in preclinical models of PD. However, these early mGlu4 PAMs exhibited unsuitable physiochemical properties for systemic dosing, requiring intracerebroventricular administration and limiting their broader utility as in vivo tools to further understand the role of mGlu4 in the modulation of basal ganglia function relevant to PD. In the present study, we describe the pharmacologic characterization of a systemically active mGlu4 PAM, N-(3-chlorophenyl)picolinamide (VU0364770), in several rodent PD models. VU0364770 showed efficacy alone or when administered in combination with l-DOPA or an adenosine 2A (A2A) receptor antagonist currently in clinical development (preladenant). When administered alone, VU0364770 exhibited efficacy in reversing haloperidol-induced catalepsy, forelimb asymmetry-induced by unilateral 6-hydroxydopamine (6-OHDA) lesions of the median forebrain bundle, and attentional deficits induced by bilateral 6-OHDA nigrostriatal lesions in rats. In addition, VU0364770 enhanced the efficacy of preladenant to reverse haloperidol-induced catalepsy when given in combination. The effects of VU0364770 to reverse forelimb asymmetry were also potentiated when the compound was coadministered with an inactive dose of l-DOPA, suggesting that mGlu4 PAMs may provide l-DOPA-sparing activity. The present findings provide exciting support for the potential role of selective mGlu4 PAMs as a novel approach for the symptomatic treatment of PD and a possible augmentation strategy with either l-DOPA or A2A antagonists. PMID:22088953

  3. Type-3 metabotropic glutamate receptors regulate chemoresistance in glioma stem cells, and their levels are inversely related to survival in patients with malignant gliomas.

    PubMed

    Ciceroni, C; Bonelli, M; Mastrantoni, E; Niccolini, C; Laurenza, M; Larocca, L M; Pallini, R; Traficante, A; Spinsanti, P; Ricci-Vitiani, L; Arcella, A; De Maria, R; Nicoletti, F; Battaglia, G; Melchiorri, D

    2013-03-01

    Drug treatment of malignant gliomas is limited by the intrinsic resistance of glioma stem cells (GSCs) to chemotherapy. GSCs isolated from human glioblastoma multiforme (GBM) expressed metabotropic glutamate receptors (mGlu3 receptors). The DNA-alkylating agent, temozolomide, killed GSCs only if mGlu3 receptors were knocked down or pharmacologically inhibited. In contrast, mGlu3 receptor blockade did not affect the action of paclitaxel, etoposide, cis-platinum, and irinotecan. mGlu3 receptor blockade enabled temozolomide toxicity by inhibiting a phosphatidylinositol-3-kinase/nuclear factor-κB pathway that supports the expression of O(6)-methylguanine-DNA methyltransferase (MGMT), an enzyme that confers resistance against DNA-alkylating agents. In mice implanted with GSCs into the brain, temozolomide combined with mGlu3 receptor blockade substantially reduced tumor growth. Finally, 87 patients with GBM undergoing surgery followed by adjuvant chemotherapy with temozolomide survived for longer time if tumor cells expressed low levels of mGlu3 receptors. In addition, the methylation state of the MGMT gene promoter in tumor extracts influenced survival only in those patients with low expression of mGlu3 receptors in the tumor. These data encourage the use of mGlu3 receptor antagonists as add-on drugs in the treatment of GBM, and suggest that the transcript of mGlu3 receptors should be measured in tumor specimens for a correct prediction of patients' survival in response to temozolomide treatment. PMID:23175182

  4. Differential Modulation of Thresholds for Intracranial Self-Stimulation by mGlu5 Positive and Negative Allosteric Modulators: Implications for Effects on Drug Self-Administration

    PubMed Central

    Cleva, Richard M.; Watterson, Lucas R.; Johnson, Meagan A.; Olive, M. Foster

    2011-01-01

    Pharmacological manipulation of the type 5 metabotropic glutamate (mGlu5) receptor alters various addiction related behaviors such as drug self-administration and the extinction and reinstatement of drug-seeking behavior. However, the effects of pharmacological modulation of mGlu5 receptors on brain reward function have not been widely investigated. We examined the effects of acute administration of positive and negative allosteric modulators (PAMs and NAMs, respectively) on brain reward function by assessing thresholds for intracranial self-stimulation (ICSS). In addition, when acute effects were observed, we examined changes in ICSS thresholds following repeated administration. Male Sprague-Dawley rats were implanted with bipolar electrodes into the medial forebrain bundle and trained to respond for ICSS, followed by assessment of effects of mGlu5 ligands on ICSS thresholds using a discrete trials current–intensity threshold determination procedure. Acute administration of the selective mGlu5 NAMs MTEP (0, 0.3, 1, or 3 mg/kg) and fenobam (0, 3, 10, or 30 mg/kg) dose-dependently increased ICSS thresholds (∼70% at the highest dose tested), suggesting a deficit in brain reward function. Acute administration of the mGlu5 PAMs CDPPB (0, 10, 30, and 60 mg/kg) or ADX47273 (0, 10, 30, and 60 mg/kg) was without effect at any dose tested. When administered once daily for five consecutive days, the development of tolerance to the ability of threshold-elevating doses of MTEP and fenobam to increase ICSS thresholds was observed. We conclude that mGlu5 PAMs and NAMs differentially affect brain reward function, and that tolerance to the ability of mGlu5 NAMs to reduce brain reward function develops with repeated administration. These brain reward deficits should be taken into consideration when interpreting acute effects of mGlu5 NAMs on drug self-administration, and repeated administration of these ligands may be an effective method to reduce these deficits. PMID

  5. Novel metabotropic glutamate receptor negatively coupled to adenylyl cyclase in cultured rat cerebellar astrocytes.

    PubMed

    Kanumilli, Srinivasan; Toms, Nick J; Roberts, Peter J

    2004-04-01

    Several excitatory amino acid ligands were found potently to inhibit forskolin-stimulated cAMP accumulation in rat cultured cerebellar astrocytes: L-cysteine sulfinic acid (L-CSA) = L-aspartate > L-glutamate >/= the glutamate uptake inhibitor, L-PDC. This property did not reflect activation of conventional glutamate receptors, since the selective ionotropic glutamate receptor agonists NMDA, AMPA, and kainate, as well as several mGlu receptor agonists [(1S,3R)-ACPD, (S)-DHPG, DCG-IV, L-AP4, L-quisqualate, and L-CCG-I], were without activity. In addition, the mGlu receptor antagonists, L-AP3, (S)-4CPG, Eglu, LY341495, (RS)-CPPG, and (S)-MCPG failed to reverse 30 microM glutamate-mediated inhibitory responses. L-PDC-mediated inhibition was abolished by the addition of the enzyme glutamate-pyruvate transaminase. This finding suggests that the effect of L-PDC is indirect and that it is mediated through endogenously released L-glutamate. Interestingly, L-glutamate-mediated inhibitory responses were resistant to pertussis toxin, suggesting that G(i)/G(o) type G proteins were not involved. However, inhibition of protein kinase C (PKC, either via the selective PKC inhibitor GF109203X or chronic PMA treatment) augmented glutamate-mediated inhibitory responses. Although mGlu3 receptors (which are negatively coupled to adenylyl cyclase) are expressed in astrocyte populations, in our study Western blot analysis indicated that this receptor type was not expressed in cerebellar astrocytes. We therefore suggest that cerebellar astrocytes express a novel mGlu receptor, which is negatively coupled to adenylyl cyclase, and possesses an atypical pharmacological profile. PMID:14999808

  6. Distribution of metabotropic glutamate 2 and 3 receptors in the rat forebrain: Implication in emotional responses and central disinhibition.

    PubMed

    Gu, Guibao; Lorrain, Daniel S; Wei, Hongbing; Cole, Rebecca L; Zhang, Xin; Daggett, Lorrie P; Schaffhauser, Herve J; Bristow, Linda J; Lechner, Sandra M

    2008-03-01

    The receptor localization of metabotropic glutamate receptors (mGlu) 2 and 3 was examined by using in situ hybridization and a well-characterized mGlu2-selective antibody in the rat forebrain. mGlu2 was highly and discretely expressed in cell bodies in almost all of the key regions of the limbic system in the forebrain, including the midline and intralaminar structures of the thalamus, the association cortices, the dentate gyrus of the hippocampus, the medial mammillary nucleus, and the lateral and basolateral nuclei of the amygdala. Moreover, presynaptic mGlu2 terminals were found in most of the forebrain structures, especially in the lateral part of the central nucleus of the amygdala, and the CA1 region of the hippocampus. Although some overlaps exist, such as in the hippocampus and the amygdala, the expression of mGlu3 mRNA, however, appeared to be more disperse, compared with that of mGlu2 mRNA. These distribution results support previous behavioral studies that the mGlu2 and 3 receptors may play important roles in emotional responses. In addition to its expression in glia, mGlu3 was distinctively expressed in cells in the GABAergic reticular nucleus of the thalamus. Local infusion of a non-selective mGlu2/3 agonist, LY379268, in the reticular nucleus of the thalamus, significantly reduced GABA release, suggesting that mGlu3 may also play a role in central disinhibition. PMID:18242587

  7. Glutamate receptor subunit expression in primary neuronal and secondary glial cultures.

    PubMed

    Janssens, N; Lesage, A S

    2001-06-01

    We report on the expression of ionotropic glutamate receptor subunits in primary neuronal cultures from rat cortex, hippocampus and cerebellum and of metabotropic glutamate (mGlu) receptor subtypes in these neuronal cultures as well as in cortical astroglial cultures. We found that the NMDA receptor (NR) subunits NR1, NR2A and NR2B were expressed in all three cultures. Each of the three cultures showed also expression of the four AMPA receptor subunits. Although RT-PCR detected mRNA of all kainate (KA) subunits in the three cultures, western blot showed only expression of Glu6 and KA2 receptor subunits. The expression analysis of mGlu receptors indicated the presence of all mGlu receptor subtype mRNAs in the three neuronal cultures, except for mGlu2 receptor mRNA, which was not detected in the cortical and cerebellar culture. mGlu1a/alpha, -2/3 and -5 receptor proteins were present in all three cultures, whereas mGlu4a and mGlu8a receptor proteins were not detected. Astroglial cultures were grown in either serum-containing or chemically defined medium. Only mGlu5 receptor protein was found in astroglial cultures grown in serum-containing medium. When astrocytes were cultured in chemically defined medium, mGlu3, -5 and -8 receptor mRNAs were detected, but at the protein level, still only mGlu5 receptor was found. PMID:11413230

  8. Glutamate receptors and transporters in genetic and acquired models of epilepsy.

    PubMed

    Meldrum, B S; Akbar, M T; Chapman, A G

    1999-09-01

    Glutamate, the principal excitatory neurotransmitter in the brain, acts on three families of ionotropic receptor--AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid), kainate and NMDA (N-methyl-D-aspartate) receptors and three families of metabotropic receptor (Group I: mGlu1 and mGlu5; Group II: mGlu2 and mGlu3; Group III: mGlu4, mGlu6, mGlu7 and mGlu8). Glutamate is removed from the synaptic cleft and the extracellular space by Na+-dependent transporters (GLAST/EAAT1, GLT/EAAT2, EAAC/EAAT3, EAAT4, EAAT5). In rodents, genetic manipulations relating to the expression or function of glutamate receptor proteins can induce epilepsy syndromes or raise seizure threshold. Decreased expression of glutamate transporters (EAAC knockdown, GLT knockout) can lead to seizures. In acquired epilepsy syndromes, a wide variety of changes in receptors and transporters have been described. Electrically-induced kindling in the rat is associated with functional potentiation of NMDA receptor-mediated responses at various limbic sites. Group I metabotropic responses are enhanced in the amygdala. To date, no genetic epilepsy in man has been identified in which the primary genetic defect involves glutamate receptors or transporters. Changes are found in some acquired syndromes, including enhanced NMDA receptor responses in dentate granule cells in patients with hippocampal sclerosis. PMID:10515165

  9. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5.

    PubMed

    Burrows, Emma L; McOmish, Caitlin E; Buret, Laetitia S; Van den Buuse, Maarten; Hannan, Anthony J

    2015-07-01

    Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors. To clarify the role of mGlu5-dependent behavioral expression by environmental factors, we assessed mGlu5 knockout (KO) mice after exposure to environmental enrichment (EE) or reared under standard conditions. The mGlu5 KO mice showed reduced prepulse inhibition (PPI), long-term memory deficits, and spontaneous locomotor hyperactivity, which were all attenuated by EE. Examining the cellular impact of genetic and environmental manipulation, we show that EE significantly increased pyramidal cell dendritic branching and BDNF protein levels in the hippocampus of wild-type mice; however, mGlu5 KO mice were resistant to these alterations, suggesting that mGlu5 is critical to these responses. A selective effect of EE on the behavioral response to the NMDA receptor antagonist MK-801 in mGlu5 KO mice was seen. MK-801-induced hyperlocomotion was further potentiated in enriched mGlu5 KO mice and treatment with MK-801 reinstated PPI disruption in EE mGlu5 KO mice only, a response that is absent under standard housing conditions. Together, these results demonstrate an important role for mGlu5 in environmental modulation of schizophrenia-related behavioral impairments. Furthermore, this role of the mGlu5 receptor is mediated by interaction with NMDA receptor function, which may inform development of novel therapeutics.

  10. Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction

    PubMed Central

    Olive, M. Foster

    2010-01-01

    Glutamate plays a pivotal role in regulating drug self-administration and drug-seeking behavior, and the past decade has witnessed a substantial surge of interest in the role of Group I metabotropic glutamate receptors (mGlu1 and mGlu5 receptors) in mediating these behaviors. As will be reviewed here, Group I mGlu receptors are involved in normal and drug-induced synaptic plasticity, drug reward, reinforcement and relapse-like behaviors, and addiction-related cognitive processes such as maladaptive learning and memory, behavioral inflexibility, and extinction learning. Animal models of addiction have revealed that antagonists of Group I mGlu receptors, particularly the mGlu5 receptor, reduce self-administration of virtually all drugs of abuse. Since inhibitors of mGlu5 receptor function have now entered clinical trials for other medical conditions and appear to be well-tolerated, a key question that remains unanswered is - what changes in cognition are produced by these compounds that result in reduced drug intake and drug-seeking behavior? Finally, in contrast to mGlu5 receptor antagonists, recent studies have indicated that positive allosteric modulation of mGlu5 receptors actually enhances synaptic plasticity and improves various aspects of cognition, including spatial learning, behavioral flexibility, and extinction of drug-seeking behavior. Thus, while inhibition of Group I mGlu receptor function may reduce drug reward, reinforcement, and relapse-related behaviors, positive allosteric modulation of the mGlu5 receptor subtype may actually enhance cognition and potentially reverse some of the cognitive deficits associated with chronic drug use. PMID:20371237

  11. Discovery of a Selective and CNS Penetrant Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 3 with Antidepressant and Anxiolytic Activity in Rodents.

    PubMed

    Engers, Julie L; Rodriguez, Alice L; Konkol, Leah C; Morrison, Ryan D; Thompson, Analisa D; Byers, Frank W; Blobaum, Anna L; Chang, Sichen; Venable, Daryl F; Loch, Matthew T; Niswender, Colleen M; Daniels, J Scott; Jones, Carrie K; Conn, P Jeffrey; Lindsley, Craig W; Emmitte, Kyle A

    2015-09-24

    Previous preclinical work has demonstrated the therapeutic potential of antagonists of the group II metabotropic glutamate receptors (mGlus). Still, compounds that are selective for the individual group II mGlus (mGlu2 and mGlu3) have been scarce. There remains a need for such compounds with the balance of properties suitable for convenient use in a wide array of rodent behavioral studies. We describe here the discovery of a selective mGlu3 NAM 106 (VU0650786) suitable for in vivo work. Compound 106 is a member of a series of 5-aryl-6,7-dihydropyrazolo[1,5-a]pyrazine-4(5H)-one compounds originally identified as a mGlu5 positive allosteric modulator (PAM) chemotype. Its suitability for use in rodent behavioral models has been established by extensive in vivo PK studies, and the behavioral experiments presented here with compound 106 represent the first examples in which an mGlu3 NAM has demonstrated efficacy in models where prior efficacy had previously been noted with nonselective group II antagonists. PMID:26335039

  12. Discovery of a Selective and CNS Penetrant Negative Allosteric Modulator of Metabotropic Glutamate Receptor Subtype 3 with Antidepressant and Anxiolytic Activity in Rodents

    PubMed Central

    Engers, Julie L.; Rodriguez, Alice L.; Konkol, Leah C.; Morrison, Ryan D.; Thompson, Analisa D.; Byers, Frank W.; Blobaum, Anna L.; Chang, Sichen; Venable, Daryl F.; Loch, Matthew T.; Niswender, Colleen M.; Daniels, J. Scott; Jones, Carrie K.; Conn, P. Jeffrey; Lindsley, Craig W.; Emmitte, Kyle A.

    2016-01-01

    Previous preclinical work has demonstrated the therapeutic potential of antagonists of the group II metabotropic glutamate receptors (mGlus). Still, compounds that are selective for the individual group II mGlus (mGlu2 and mGlu3) have been scarce. There remains a need for such compounds with the balance of properties suitable for convenient use in a wide array of rodent behavioral studies. We describe here the discovery of a selective mGlu3 NAM 106 (VU0650786) suitable for in vivo work. Compound 106 is a member of a series of 5-aryl-6,7-dihydropyrazolo[1,5-a]pyrazine-4(5H)-one compounds originally identified as a mGlu5 positive allosteric modulator (PAM) chemotype. Its suitability for use in rodent behavioral models has been established by extensive in vivo PK studies, and the behavioral experiments presented here with compound 106 represent the first examples in which an mGlu3 NAM has demonstrated efficacy in models where prior efficacy had previously been noted with nonselective group II antagonists. PMID:26335039

  13. Binding of [3H](2S,1'S,2'S)-2-(9-xanthylmethyl)-2-(2'-carboxycyclopropyl) glycine ([3H]LY341495) to cell membranes expressing recombinant human group III metabotropic glutamate receptor subtypes.

    PubMed

    Wright, R A; Arnold, M B; Wheeler, W J; Ornstein, P L; Schoepp, D D

    2000-12-01

    LY341495 is a highly potent and selective antagonist for group II mGlu receptors (mGlu2 and mGlu3). High affinity binding of [3H]LY341495 to recombinant human group II mGlu receptors (mGlu2 and mGlu3), and in rat brain homogenates (Kd approximately 1 nM), has been previously described. Although LY341495 is a very selective nM-potent antagonist for group II mGlu receptors, it is also a relatively potent antagonist for group III mGlu receptors at high nanomolar to low micromolar concentrations. In this study we examined and characterized the binding of [3H]LY341495 to membranes of cells expressing recombinant human group III mGlu receptors. Using up to 100 nM of [3H]LY341495, the level of specific binding in human mGlu4a receptor-expressing cell membranes was not appreciable and binding to this site was not examined further. In contrast, we demonstrated sufficient specific binding of [3H]LY341495 to human mGlu6, mGlu7a and mGlu8a receptor-expressing cell membranes to allow for further characterizations. [3H]LY341495 binding was saturable and rapidly reversible. [3H]LY341495 bound to a single site in each cell line, with Kd and Bmax values of 31.6+/-6.8 nM and 3.3+/-0.7 pmol/mg protein (mGlu6), 72.7+/-22.0 nM and 3.7+/-0.4 pmol/mg protein (mGlu7a), and 14.0+/-1.1 nM and 3.0+/-0.2 pmol/mg protein (mGlu8a). [3H]LY341495 binding to mGlu6, 7a and 8a was displaceable by compounds which interact functionally with group III mGlu receptors. For example, L-AP4 displaced [3H]LY341495 with Ki values of 6.8+/-3.1 microM (mGlu6), 211+/-43 microM (mGlu7a) and 1.6+/-0.3 microM (mGlu8a). With L-glutamate, we obtained Ki values of 12.3+/-3.5, 869+/-154 and 4.5+/-0.83 microM, for mGlu6, mGlu7a and mGlu8a, respectively. Ki values for unlabelled LY341495 were 0.058+/-0.008, 0.22+/-0.05 and 0.029+/-0.008 microM, respectively. These studies demonstrated that [3H]LY341495 is a useful radioligand for studying the pharmacology and expression of recombinant mGlu6, 7a and 8a receptors in cell

  14. Identification and characterization of mGlu3 ligands using a high throughput FLIPR assay for detection of agonists, antagonists, and allosteric modulators.

    PubMed

    Pratt, Steven D; Mezler, Mario; Geneste, Hervé; Bakker, Margot H M; Hajduk, Philip J; Gopalakrishnan, Sujatha M

    2011-08-01

    When targeting G-protein coupled receptors (GPCRs) in early stage drug discovery, or for novel targets, the type of ligand most likely to produce the desired therapeutic effect may be unknown. Therefore, it can be desirable to identify potential lead compounds from multiple categories: agonists, antagonists, and allosteric modulators. In this study, we developed a triple addition calcium flux assay using FLIPR Tetra to identify multiple ligand classes for the metabotropic glutamate receptor 3 (mGlu3), using a cell line stably co-expressing the human G-protein-coupled mGlu3 receptor, a promiscuous G-protein (G(α16)), and rat Glast, a glutamate transporter. Compounds were added to the cells followed by stimulation with EC(10) and then EC(80) concentration of glutamate, the physiological agonist for mGlu receptors. This format produced a robust assay, facilitating the identification of agonists, positive allosteric modulators and antagonists/negative allosteric modulators. Follow up experiments were conducted to exclude false positives. Using this approach, we screened a library of approximately 800,000 compounds using FLIPR Tetra and identified viable leads for all three ligand classes. Further characterization revealed the selectivity of individual ligands. PMID:21534916

  15. Mechanism for the activation of glutamate receptors

    Cancer.gov

    Scientists at the NIH have used a technique called cryo-electron microscopy to determine a molecular mechanism for the activation and desensitization of ionotropic glutamate receptors, a prominent class of neurotransmitter receptors in the brain and spina

  16. Impaired expression and function of group II metabotropic glutamate receptors in pilocarpine-treated chronically epileptic rats

    PubMed Central

    Garrido-Sanabria, Emilio R.; Otalora, Luis F. Pacheco; Arshadmansab, Massoud F.; Herrera, Berenice; Francisco, Sebastian; Ermolinsky, Boris

    2008-01-01

    Group II metabotropic (mGlu II) receptor subtypes mGlu2 and mGlu3 are important modulators of synaptic plasticity and glutamate release in the brain. Accordingly, several pharmacological ligands have been designed to target these receptors for the treatment of neurological disorders characterized by anomalous glutamate regulation including epilepsy. In this study, we examine whether the expression level and function of mGlu2 and mGlu3 are altered in experimental epilepsy by using immunohistochemistry, Western blot analysis, RT-PCR and extracellular recordings. A down-regulation of mGlu2/3 protein expression at the mossy fiber pathway was associated with a significant reduction in mGlu2/3 protein expression in the hippocampus and cortex of chronically epileptic rats. Moreover, a reduction in mGlu2 and mGlu3 transcripts levels was noticed as early as 24h after pilocarpine-induced status epilepticus (SE) and persisted during subsequent “latent” and chronic periods. In addition, a significant impairment of mGlu II-mediated depression of field excitatory postsynaptic potentials at mossy fiber-CA3 synapses was detected in chronically epileptic rats. Application of mGlu II agonists (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) induced a significant reduction of the fEPSP amplitude in control rats, but not in chronic epileptic rats. These data indicate a long-lasting impairment of mGlu2/3 expression that may contribute to abnormal presynaptic plasticity, exaggerate glutamate release and hyperexcitability in temporal lobe epilepsy. PMID:18804094

  17. Impaired expression and function of group II metabotropic glutamate receptors in pilocarpine-treated chronically epileptic rats.

    PubMed

    Garrido-Sanabria, Emilio R; Otalora, Luis F Pacheco; Arshadmansab, Massoud F; Herrera, Berenice; Francisco, Sebastian; Ermolinsky, Boris S

    2008-11-13

    Group II metabotropic (mGlu II) receptor subtypes mGlu2 and mGlu3 are important modulators of synaptic plasticity and glutamate release in the brain. Accordingly, several pharmacological ligands have been designed to target these receptors for the treatment of neurological disorders characterized by anomalous glutamate regulation including epilepsy. In this study, we examine whether the expression level and function of mGlu2 and mGlu3 are altered in experimental epilepsy by using immunohistochemistry, Western blot analysis, RT-PCR and extracellular recordings. A down-regulation of mGlu2/3 protein expression at the mossy fiber pathway was associated with a significant reduction in mGlu2/3 protein expression in the hippocampus and cortex of chronically epileptic rats. Moreover, a reduction in mGlu2 and mGlu3 transcripts levels was noticed as early as 24 h after pilocarpine-induced status epilepticus (SE) and persisted during subsequent "latent" and chronic periods. In addition, a significant impairment of mGlu II-mediated depression of field excitatory postsynaptic potentials at mossy fiber-CA3 synapses was detected in chronically epileptic rats. Application of mGlu II agonists (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV) induced a significant reduction of the fEPSP amplitude in control rats, but not in chronic epileptic rats. These data indicate a long-lasting impairment of mGlu2/3 expression that may contribute to abnormal presynaptic plasticity, exaggerate glutamate release and hyperexcitability in temporal lobe epilepsy. PMID:18804094

  18. Characterization of the novel positive allosteric modulator of the metabotropic glutamate receptor 4 ADX88178 in rodent models of neuropsychiatric disorders.

    PubMed

    Kalinichev, Mikhail; Le Poul, Emmanuel; Boléa, Christelle; Girard, Françoise; Campo, Brice; Fonsi, Massimiliano; Royer-Urios, Isabelle; Browne, Susan E; Uslaner, Jason M; Davis, Matthew J; Raber, Jacob; Duvoisin, Robert; Bate, Simon T; Reynolds, Ian J; Poli, Sonia; Celanire, Sylvain

    2014-09-01

    There is growing evidence that activation of metabotropic glutamate receptor 4 (mGlu4) leads to anxiolytic- and antipsychotic-like efficacy in rodent models, yet its relevance to depression-like reactivity remains unclear. Here, we present the pharmacological evaluation of ADX88178 [5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine], a novel potent, selective, and brain-penetrant positive allosteric modulator of the mGlu4 receptor in rodent models of anxiety, obsessive compulsive disorder (OCD), fear, depression, and psychosis. ADX88178 dose-dependently reduced the number of buried marbles in the marble burying test and increased open-arm exploration in the elevated plus maze (EPM) test, indicative of anxiolytic-like efficacy. Target specificity of the effect in the EPM test was confirmed using male and female mGlu4 receptor knockout mice. In mice, ADX88178 reduced the likelihood of conditioned freezing in the acquisition phase of the fear conditioning test, yet had no carryover effect in the expression phase. Also, ADX88178 dose-dependently reduced duration of immobility in the forced swim test, indicative of antidepressant-like efficacy. ADX88178 reduced DOI (2,5-dimethoxy-4-iodoamphetamine)-mediated head twitches (albeit with no dose-dependency), and MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]-induced locomotor hyperactivity in mice, but was inactive in the conditioned avoidance response test in rats. The compound showed good specificity as it had no effect on locomotor activity in mice and rats at efficacious doses. Thus, allosteric activation of mGlu4 receptors can be a promising new therapeutic approach for treatment of anxiety, OCD, fear-related disorders, and psychosis. PMID:24947466

  19. Characterization of the Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 ADX88178 in Rodent Models of Neuropsychiatric Disorders

    PubMed Central

    Le Poul, Emmanuel; Boléa, Christelle; Girard, Françoise; Campo, Brice; Fonsi, Massimiliano; Royer-Urios, Isabelle; Browne, Susan E.; Uslaner, Jason M.; Davis, Matthew J.; Raber, Jacob; Duvoisin, Robert; Bate, Simon T.; Reynolds, Ian J.; Celanire, Sylvain

    2014-01-01

    There is growing evidence that activation of metabotropic glutamate receptor 4 (mGlu4) leads to anxiolytic- and antipsychotic-like efficacy in rodent models, yet its relevance to depression-like reactivity remains unclear. Here, we present the pharmacological evaluation of ADX88178 [5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine], a novel potent, selective, and brain-penetrant positive allosteric modulator of the mGlu4 receptor in rodent models of anxiety, obsessive compulsive disorder (OCD), fear, depression, and psychosis. ADX88178 dose-dependently reduced the number of buried marbles in the marble burying test and increased open-arm exploration in the elevated plus maze (EPM) test, indicative of anxiolytic-like efficacy. Target specificity of the effect in the EPM test was confirmed using male and female mGlu4 receptor knockout mice. In mice, ADX88178 reduced the likelihood of conditioned freezing in the acquisition phase of the fear conditioning test, yet had no carryover effect in the expression phase. Also, ADX88178 dose-dependently reduced duration of immobility in the forced swim test, indicative of antidepressant-like efficacy. ADX88178 reduced DOI (2,5-dimethoxy-4-iodoamphetamine)-mediated head twitches (albeit with no dose-dependency), and MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]–induced locomotor hyperactivity in mice, but was inactive in the conditioned avoidance response test in rats. The compound showed good specificity as it had no effect on locomotor activity in mice and rats at efficacious doses. Thus, allosteric activation of mGlu4 receptors can be a promising new therapeutic approach for treatment of anxiety, OCD, fear-related disorders, and psychosis. PMID:24947466

  20. Characterization of the novel positive allosteric modulator of the metabotropic glutamate receptor 4 ADX88178 in rodent models of neuropsychiatric disorders.

    PubMed

    Kalinichev, Mikhail; Le Poul, Emmanuel; Boléa, Christelle; Girard, Françoise; Campo, Brice; Fonsi, Massimiliano; Royer-Urios, Isabelle; Browne, Susan E; Uslaner, Jason M; Davis, Matthew J; Raber, Jacob; Duvoisin, Robert; Bate, Simon T; Reynolds, Ian J; Poli, Sonia; Celanire, Sylvain

    2014-09-01

    There is growing evidence that activation of metabotropic glutamate receptor 4 (mGlu4) leads to anxiolytic- and antipsychotic-like efficacy in rodent models, yet its relevance to depression-like reactivity remains unclear. Here, we present the pharmacological evaluation of ADX88178 [5-methyl-N-(4-methylpyrimidin-2-yl)-4-(1H-pyrazol-4-yl)thiazol-2-amine], a novel potent, selective, and brain-penetrant positive allosteric modulator of the mGlu4 receptor in rodent models of anxiety, obsessive compulsive disorder (OCD), fear, depression, and psychosis. ADX88178 dose-dependently reduced the number of buried marbles in the marble burying test and increased open-arm exploration in the elevated plus maze (EPM) test, indicative of anxiolytic-like efficacy. Target specificity of the effect in the EPM test was confirmed using male and female mGlu4 receptor knockout mice. In mice, ADX88178 reduced the likelihood of conditioned freezing in the acquisition phase of the fear conditioning test, yet had no carryover effect in the expression phase. Also, ADX88178 dose-dependently reduced duration of immobility in the forced swim test, indicative of antidepressant-like efficacy. ADX88178 reduced DOI (2,5-dimethoxy-4-iodoamphetamine)-mediated head twitches (albeit with no dose-dependency), and MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]-induced locomotor hyperactivity in mice, but was inactive in the conditioned avoidance response test in rats. The compound showed good specificity as it had no effect on locomotor activity in mice and rats at efficacious doses. Thus, allosteric activation of mGlu4 receptors can be a promising new therapeutic approach for treatment of anxiety, OCD, fear-related disorders, and psychosis.

  1. Involvement of subtype 1 metabotropic glutamate receptors in apoptosis and caspase-7 over-expression in spinal cord of neuropathic rats

    PubMed Central

    Siniscalco, Dario; Giordano, Catia; Fuccio, Carlo; Luongo, Livio; Ferraraccio, Franca; Rossi, Francesca; de Novellis, Vito; Roth, Kevin A.; Maione, Sabatino

    2008-01-01

    The effect of the non-selective, 1-aminoindan-1,5-dicarboxylic acid (AIDA), and selective (3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4- methoxycyclohexyl) methanone (JNJ16259685), metabotropic glutamate subtype 1 (mGlu1) receptor antagonists, on rat sciatic nerve chronic constrictive injury (CCI)- induced hyperalgesia, allodynia, spinal dorsal horn apoptosis, and gliosis was examined at 3 and 7 days post-injury. RT-PCR analysis showed increased expression of bax, apoptotic protease-activating factor-1 (apaf-1), nestin, GFAP, and caspase-7 mRNA in the dorsal horn spinal cord by 3 days post-CCI. At 7 days post-CCI, only over-expression of bcl-2, nestin and GFAP mRNA was observed. Administration of AIDA reduced thermal hyperalgesia and mechanical allodynia at 3 and 7 days post-CCI; administration of JNJ16259685 reduced thermal hyperalgesia at 3 and 7 days post-CCI, but not mechanical allodynia. AIDA decreased the mRNA levels of bax, apaf-1, GFAP and caspase-7 genes. JNJ16259685 increased the mRNA levels of bcl- 2 and GFAP gene, and decreased APAF-1 and caspases-7 genes. Inhibiting mGlu1 receptors also reduced TUNEL-positive profiles and immunohistochemical reactivity for caspase-7. We report here that despite inhibiting CCI-induced over-expression of pro-apoptotic genes in the spinal cord dorsal horn, the selective mGlu1 receptor antagonist JNJ16259685 exerted only a slight and transient allodynic effect. Moreover, JNJ16259685, but not the non-selective AIDA, increased astrogliosis which may account for its decreased analgesic efficacy. This study provides evidence that the contemporary and partial blockade of group I and likely ionotropic glutamate receptors may be a more suitable therapy than selective blockade of mGlu1 subtype receptors condition to decrease neuropathic pain symptoms. PMID:18325779

  2. [3H]LY341495 binding to group II metabotropic glutamate receptors in rat brain.

    PubMed

    Wright, R A; Arnold, M B; Wheeler, W J; Ornstein, P L; Schoepp, D D

    2001-08-01

    [3H]LY341495 is a highly potent and selective antagonist for group II metabotropic glutamate (mGlu) receptors (mGlu2 and mGlu3), which has been used to label these receptors in cells expressing recombinant receptor subtypes. In this study, we characterized the kinetics, pharmacology, and distribution of [3H]LY341495 binding to mGlu receptors in rat brain tissue. Equilibrium experiments in the rat forebrain demonstrated binding to a single site that was saturable, reversible, and of high affinity (Bmax, 3.9 +/- 0.65 pmol/mg of protein, Kd, 0.84 +/- 0.11 nM). The relative order of potencies for displacement of [3H]LY341495 by mGlu receptor ligands was LY341495 > L-glutamic acid > LY354740 > (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine > 4-(2R,4R)-aminopyrrolidine-2,4-dicarboxylate > (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid > (R,S)-alpha-methyl-4-phosphonophenylglycine > (R,S)3,5-dihydroxyphenylglycine > L-(+)-2-amino-4-phosphonobutyric acid. [3H]LY341495 was not displaced by the selective ionotropic glutamate receptor agonists N-methyl-D-aspartic acid, (R,S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, or kainate at concentrations up to 1 mM. Comparison of [3H]LY341495 binding in rat brain with recombinant mGlu receptor subtypes demonstrated a very high correlation with mGlu3 receptor binding (r2 = 0.957), a significant, but lower, correlation with mGlu2 receptor binding (r2 = 0.869), but no significant correlation to mGlu8 receptor binding (r2 = 0.284). Regional studies using autoradiography showed a similar distribution of [3H]LY341495 binding to that for group II mGlu receptors previously reported by others using immunocytochemical techniques. These studies indicate that [3H]LY341495 selectively labels group II (mGlu2/3) receptors, but under the conditions used, [3H]LY341495 may bind predominately to mGlu3 receptor populations in the rat forebrain. PMID:11454905

  3. Signal transduction activated by cannabinoid receptors.

    PubMed

    Díaz-Laviada, Inés; Ruiz-Llorente, Lidia

    2005-07-01

    Since the discovery that cannabinoids exert biological actions through binding to specific receptors, signal mechanisms triggered by these receptors have been focus of extensive study. This review summarizes the current knowledge of the signalling events produced by cannabinoids from membrane receptors to downstream regulators. Two types of cannabinoid receptors have been identified to date: CB(1) and CB(2) both belonging to the heptahelichoidal receptor family but with different tissue distribution and signalling mechanisms. Coupling to inhibitory guanine nucleotide-binding protein and thus inhibition of adenylyl cyclase has been observed in both receptors but other signal transduction pathways that are regulated or not by these G proteins are differently activated upon ligand-receptor binding including ion channels, sphingomyelin hydrolysis, ceramide generation, phospholipases activation and downstream targets as MAP kinase cascade, PI3K, FAK or NOS regulation. Cannabinoids may also act independently of CB(1)or CB(2) receptors. The existence of new unidentified putative cannabinoid receptors has been claimed by many investigators. Endocannabinoids activate vanilloid TRPV1 receptors that may mediate some of the cannabinoid effects. Other actions of cannabinoids can occur through non-receptor-mediated mechanisms.

  4. Opposite effects of Zn on the in vitro binding of [3H]LY354740 to recombinant and native metabotropic glutamate 2 and 3 receptors.

    PubMed

    Malherbe, Pari; Richards, J Grayson; Broger, Clemens; Zenner, Marie-Thérèse; Messer, Jürg; Kratzeisen, Claudia; Nakanishi, Shigetada; Mutel, Vincent

    2005-07-01

    We investigated the effect of Zn on agonist binding to both recombinant and native mGlu2 and mGlu3 receptors. Zn had a biphasic inhibitory effect on recombinant mGlu2 with IC(50) values for the high- and low-affinity components of 60 +/- 10 microM and 2 +/- 0.7 mM, respectively. Zn induced a complex biphasic effect of inhibition and enhancement of [(3)H]LY354740 binding to mGlu3. Observations with a series of chimeric mGlu2/3 receptors suggest that the Zn effect resides in the N-terminal domain of mGlu2 and mGlu3. We observed that the His56 of mGlu2, which corresponds to Asp63 in mGlu3 was largely accountable for the second phase of the Zn effect. As revealed by quantitative receptor radioautography, the addition of up to 100 microm Zn to brain sections of wild-type mice resulted in significant decreases in binding density in most brain regions. In particular, the mid-molecular layer of the dentate gyrus (DGmol) and the CA1 lacunosum moleculare of hippocampus (CA1-LMol) showed reductions of 62 and 67%, respectively. In contrast, the addition of 300 microM Zn to brain sections of mGlu2(-/-) mice caused large increases in binding density of 289 and 242% in DGmol and CA1-LMol, respectively. Therefore, Zn might play a role as a physiological modulator of group II mGlu receptor function. PMID:15953358

  5. Actions of Xanthurenic acid, a putative endogenous Group II metabotropic glutamate receptor agonist, on sensory transmission in the thalamus.

    PubMed

    Copeland, C S; Neale, S A; Salt, T E

    2013-03-01

    Xanthurenic acid (XA), a molecule arising from tryptophan metabolism by transamination of 3-hydroxykynurenine, has recently been identified as an endogenous Group II (mGlu2 and mGlu3) metabotropic glutamate (mGlu) receptor ligand in vitro. Impairments in Group II mGlu receptor expression and function have been implicated in the pathophysiology of schizophrenia, as have multiple steps in the kynurenine metabolism pathway. Therefore, we examined XA in vivo to further investigate its potential as a Group II mGlu receptor ligand using a preparation that has been previously demonstrated to efficiently reveal the action of other Group II mGlu receptor ligands in vivo. Extracellular single-neurone recordings were made in the rat ventrobasal thalamus (VB) in conjunction with iontophoresis of agonists, an antagonist and a positive allosteric modulator and/or intravenous (i.v.) injection of XA. We found the XA effect on sensory inhibition, when applied iontophoretically and i.v., was similar to that of other Group II mGlu receptor agonists in reducing inhibition evoked in the VB from the thalamic reticular nucleus upon physiological sensory stimulation. Furthermore, we postulate that XA may be the first potential endogenous allosteric agonist (termed 'endocoid') for the mGlu receptors. As the Group II receptors and kynurenine metabolism pathway have both been heavily implicated in the pathophysiology of schizophrenia, XA could play a pivotal role in antipsychotic research as this potential endocoid represents both a convergence within these two biological parameters and a novel class of Group II mGlu receptor ligand. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'. PMID:22491023

  6. [(18)F]FPEB and [(18)F]FDEGPECO comparative study of mGlu5 quantification in rodent brain.

    PubMed

    Kang, Jee Hae; Lee, Minkyung; Ryu, Young Hoon; Lyoo, Chul Hyoung; Kim, Chul Hoon; Lee, Kyo Chul; Choi, Tae Hyun; Choi, Jae Yong

    2015-04-01

    The aim of this study is to compare [(18)F]FPEB and [(18)F]FDEGPECO for the quantification of mGlu5 receptors in rodent brains. After preparation of radioligands, dynamic PET data was acquired for 90min. Estimated non-displaceable binding potential (BPND) values were calculated from the non-invasive Logan's graphical analysis method. Although both radioligands showed similar radiochemical amenability, [(18)F]FPEB PET showed higher brain uptake and superior binding potential values than those of [(18)F]FDEGPECO PET (peak brain uptakes in the hippocampus and the striatum: 7.2-8.7 vs. 5.0-6.2, BPND: 7.3-9.6 vs. 0.3-0.4 for [(18)F]FPEB and [(18)F]FDEGPECO, respectively). In addition, the target-to-reference ratios for [(18)F]FPEB is >4 fold than those of [(18)F]FDEGPECO. From this evidence, we conclude that [(18)F]FPEB is a superior radioligand for mGlu5 imaging in preclinical studies.

  7. Metabotropic glutamate receptors in the tripartite synapse as a target for new psychotropic drugs.

    PubMed

    Wierońska, Joanna M; Pilc, Andrzej

    2009-01-01

    Mental disorders, such as depression, anxiety and schizophrenia, has become a large medical and social problem recently. Studies performed in animal tests and early clinical investigations brought a new insight in the pharmacotherapy of these disorders. Latest investigations are focused mainly on the glutamatergic system, a main excitatory amino acid neurotransmitter in the brain. Evidence indicates that metabotropic glutamate receptors ligands have excellent antidepressant, anxiolytic and antipsychotic effects. Metabotopic glutamate receptors (mGlu) divaded into three groups (group I, II and III) are localized on nerve terminals, postsynaptic sites and glial cells and thus they can influence and modulate the action of glutamate on different levels in the synapse. Recent advances in the identification of selective and specific compounds (both ortho- and allosteric ligands), and the generation of transgenic animals enabled to have new insight into the pathophysiology and therapy of mood disorders. At present, the most potent seem to be negative allosteric modulators of the first group (mGlu1 and mGlu5), and positive allosteric modulators of the second (mGlu2 and mGlu3) and third (mGlu4/7/8) group of mGlu receptors. PMID:19428811

  8. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    PubMed Central

    Shah, Imran; Houck, Keith; Judson, Richard S.; Kavlock, Robert J.; Martin, Matthew T.; Reif, David M.; Wambaugh, John; Dix, David J.

    2011-01-01

    Background Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic analysis of new in vitro human NR activity data on 309 environmental chemicals in relationship to their liver cancer-related chronic outcomes in rodents. Results The effects of 309 environmental chemicals on human constitutive androstane receptors (CAR/NR1I3), pregnane X receptor (PXR/NR1I2), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptors (PPAR/NR1C), liver X receptors (LXR/NR1H), retinoic X receptors (RXR/NR2B) and steroid receptors (SR/NR3) were determined using in vitro data. Hepatic histopathology, observed in rodents after two years of chronic treatment for 171 of the 309 chemicals, was summarized by a cancer lesion progression grade. Chemicals that caused proliferative liver lesions in both rat and mouse were generally more active for the human receptors, relative to the compounds that only affected one rodent species, and these changes were significant for PPAR (p0.001), PXR (p0.01) and CAR (p0.05). Though most chemicals exhibited receptor promiscuity, multivariate analysis clustered them into relatively few NR activity combinations. The human NR activity pattern of chemicals weakly associated with the severity of rodent liver cancer lesion progression (p0.05). Conclusions The rodent carcinogens had higher in vitro potency for human NR relative to non-carcinogens. Structurally diverse chemicals with similar NR promiscuity patterns weakly associated with the severity of rodent liver cancer progression. While these results do not prove the role of NR activation in human liver cancer, they do have implications for nuclear receptor chemical biology and provide insights into putative toxicity pathways. More importantly, these findings suggest the

  9. Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands.

    PubMed

    Oishi, Shinya; Misu, Ryosuke; Tomita, Kenji; Setsuda, Shohei; Masuda, Ryo; Ohno, Hiroaki; Naniwa, Yousuke; Ieda, Nahoko; Inoue, Naoko; Ohkura, Satoshi; Uenoyama, Yoshihisa; Tsukamura, Hiroko; Maeda, Kei-Ichiro; Hirasawa, Akira; Tsujimoto, Gozoh; Fujii, Nobutaka

    2011-01-13

    Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.

  10. Mechanism of FGF receptor dimerization and activation

    PubMed Central

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  11. Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta.

    PubMed

    Bruno, V; Battaglia, G; Casabona, G; Copani, A; Caciagli, F; Nicoletti, F

    1998-12-01

    The medium collected from cultured astrocytes transiently exposed to the group-II metabotropic glutamate (mGlu) receptor agonists (2S,1'R, 2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) or (S)-4-carboxy-3-hydroxyphenylglycine (4C3HPG) is neuroprotective when transferred to mixed cortical cultures challenged with NMDA (). The following data indicate that this particular form of neuroprotection is mediated by transforming growth factor-beta (TGFbeta). (1) TGFbeta1 and -beta2 were highly neuroprotective against NMDA toxicity, and their action was less than additive with that produced by the medium collected from astrocytes treated with DCG-IV or 4C3HPG (GM/DCG-IV or GM/4C3HPG); (2) antibodies that specifically neutralized the actions of TGFbeta1 or -beta2 prevented the neuroprotective activity of DCG-IV or 4C3HPG, as well as the activity of GM/DCG-IV or GM/4C3HPG; and (3) a transient exposure of cultured astrocytes to either DCG-IV or 4C3HPG led to a delayed increase in both intracellular and extracellular levels of TGFbeta. We therefore conclude that a transient activation of group-II mGlu receptors (presumably mGlu3 receptors) in astrocytes leads to an increased formation and release of TGFbeta, which in turn protects neighbor neurons against excitotoxic death. These results offer a new strategy for increasing the local production of neuroprotective factors in the CNS. PMID:9822720

  12. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  13. Modulators of androgen and estrogen receptor activity.

    PubMed

    Clarke, Bart L; Khosla, Sundeep

    2010-01-01

    This review focuses on significant recent findings regarding modulators of androgen and estrogen receptor activity. Selective androgen receptor modulators (SARMs) interact with androgen receptors (ARs), and selective estrogen receptor modulators (SERMs) interact with estrogen receptors (ERs), with variable tissue selectivity. SERMs, which interact with both ERб and ERв in a tissue-specific manner to produce diverse outcomes in multiple tissues, continue to generate significant interest for clinical application. Development of SARMs for clinical application has been slower to date because of potential adverse effects, but these diverse compounds continue to be investigated for use in disorders in which modulation of the AR is important. SARMs have been investigated mostly at the basic and preclinical level to date, with few human clinical trials published. These compounds have been evaluated mostly for application in different stages of prostate cancer to date, but they hold promise for multiple other applications. Publication of the large STAR and RUTH clinical trials demonstrated that the SERMs tamoxifen and raloxifene have interesting similarities and differences in tissues that contain ERs. Lasofoxifene, bazedoxifene, and arzoxifene are newer SERMs that have been demonstrated in clinical trials to more potently increase bone mineral density and lower serum cholesterol values than tamoxifen or raloxifene. Both SARMs and SERMs hold great promise for therapeutic use in multiple disorders in which tissue-specific effects are mediated by their respective receptors.

  14. The Emerging Role of Metabotropic Glutamate Receptors in the Pathophysiology of Chronic Stress-Related Disorders.

    PubMed

    Peterlik, Daniel; Flor, Peter J; Uschold-Schmidt, Nicole

    2016-01-01

    Chronic stress-related psychiatric conditions such as anxiety, depression, and alcohol abuse are an enormous public health concern. The etiology of these pathologies is complex, with psychosocial stressors being among the most frequently discussed risk factors. The brain glutamatergic neurotransmitter system has often been found involved in behaviors and pathophysiologies resulting from acute stress and fear. Despite this, relatively little is known about the role of glutamatergic system components in chronic psychosocial stress, neither in rodents nor in humans. Recently, drug discovery efforts at the metabotropic receptor subtypes of the glutamatergic system (mGlu1-8 receptors) led to the identification of pharmacological tools with emerging potential in psychiatric conditions. But again, the contribution of individual mGlu subtypes to the manifestation of physiological, molecular, and behavioral consequences of chronic psychosocial stress remains still largely unaddressed. The current review will describe animal models typically used to analyze acute and particularly chronic stress conditions, including models of psychosocial stress, and there we will discuss the emerging roles for mGlu receptor subtypes. Indeed, accumulating evidence indicates relevance and potential therapeutic usefulness of mGlu2/3 ligands and mGlu5 receptor antagonists in chronic stress-related disorders. In addition, a role for further mechanisms, e.g. mGlu7-selective compounds, is beginning to emerge. These mechanisms are important to be analyzed in chronic psychosocial stress paradigms, e.g. in the chronic subordinate colony housing (CSC) model. We summarize the early results and discuss necessary future investigations, especially for mGlu5 and mGlu7 receptor blockers, which might serve to suggest improved therapeutic strategies to treat stress-related disorders. PMID:27296643

  15. Using Nuclear Receptor Activity to Stratify Hepatocarcinogens

    EPA Science Inventory

    Nuclear receptors (NR) are a superfamily of ligand-activated transcription factors that control a range of cellular processes. Persistent stimulation of some NR is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. Here we report on a systematic an...

  16. Distribution and abundance of metabotropic glutamate receptor subtype 2 in rat brain revealed by [3H]LY354740 binding in vitro and quantitative radioautography: correlation with the sites of synthesis, expression, and agonist stimulation of [35S]GTPgammas binding.

    PubMed

    Richards, Grayson; Messer, Jürg; Malherbe, Pari; Pink, Richard; Brockhaus, Manfred; Stadler, Heinz; Wichmann, Jürgen; Schaffhauser, Hervé; Mutel, Vincent

    2005-06-20

    Until recently, there was a lack of selective radioligands for the subtypes of metabotropic glutamate (mGlu) receptors. [(3)H]LY354740 ((+)-2-aminobicyclo[3,1,0]hexane-2,6-dicarboxylic acid), a selective agonist for group II receptors (mGlu2 and -3, which are negatively coupled to cAMP production), has now been used to map their brain distribution and abundance by in vitro binding and quantitative radioautography. The selective cation dependence of its binding allowed the discrimination between mGlu2 and mGlu3 receptor labeling. Thus, in the presence of Ca(2+) and Mg(2+) ions, the agonist bound selectively to mGlu2 receptors as evidenced by: 1) the correlative distribution and abundance of binding sites (highest in the lacunosum moleculare of the hippocampus and lowest in white matter) with mGlu2 receptor mRNA and protein revealed by in situ hybridization histochemistry and immunohistochemistry, respectively; 2) its selective pharmacology; and 3) the distribution of LY354740-stimulated [(35)S]GTPgammaS binding (25-97% above basal, according to the brain region), revealing G protein-coupled receptor coupling to G(i) proteins. Nonspecific binding (in the presence of 10 muM DCG-IV, a group II-selective, mGlu2-preferring, receptor agonist) was <10% of total. In adjacent sections, the distribution of binding sites for [(3)H]DCG-IV was very similar. This extensive study paves the way for investigations of the regional expression and regulation of mGlu2 receptors in human CNS diseases, such as Alzheimer's disease, which may reveal their functional roles and identify potential therapeutic drug targets. Indeed, it has recently been demonstrated (Higgins et al. [2004] Neuropharmacology 46:907-917) that pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent. PMID:15861463

  17. Metabotropic Glutamate 2/3 Receptors and Epigenetic Modifications in Psychotic Disorders: A Review

    PubMed Central

    Matrisciano, Francesco; Panaccione, Isabella; Grayson, Danis R.; Nicoletti, Ferdinando; Guidotti, Alessandro

    2016-01-01

    Schizophrenia and Bipolar Disorder are chronic psychiatric disorders, both considered as “major psychosis”; they are thought to share some pathogenetic factors involving a dysfunctional gene x environment interaction. Alterations in the glutamatergic transmission have been suggested to be involved in the pathogenesis of psychosis. Our group developed an epigenetic model of schizophrenia originated by Prenatal Restraint Stress (PRS) paradigm in mice. PRS mice developed some behavioral alterations observed in schizophrenic patients and classic animal models of schizophrenia, i.e. deficits in social interaction, locomotor activity and prepulse inhibition. They also showed specific changes in promoter DNA methylation activity of genes related to schizophrenia such as reelin, BDNF and GAD67, and altered expression and function of mGlu2/3 receptors in the frontal cortex. Interestingly, behavioral and molecular alterations were reversed by treatment with mGlu2/3 agonists. Based on these findings, we speculate that pharmacological modulation of these receptors could have a great impact on early phase treatment of psychosis together with the possibility to modulate specific epigenetic key protein involved in the development of psychosis. In this review, we will discuss in more details the specific features of the PRS mice as a suitable epigenetic model for major psychosis. We will then focus on key proteins of chromatin remodeling machinery as potential target for new pharmacological treatment through the activation of metabotropic glutamate receptors. PMID:26813121

  18. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor

    PubMed Central

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick

    2016-01-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)–forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally. PMID:26994072

  19. Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor.

    PubMed

    Yasujima, Tomoya; Saito, Kosuke; Moore, Rick; Negishi, Masahiko

    2016-05-01

    Phenobarbital (PB) antagonized insulin to inactivate the insulin receptor and attenuated the insulin receptor downstream protein kinase B (AKT)-forkhead box protein O1 and extracellular signal-regulated kinase 1/2 signals in mouse primary hepatocytes and HepG2 cells. Hepatic AKT began dephosphorylation in an early stage of PB treatment, and blood glucose levels transiently increased in both wild-type and constitutive androstane receptor (CAR) knockout (KO) mice. On the other hand, blood glucose levels increased in wild-type mice, but not KO mice, in later stages of PB treatment. As a result, PB, acting as an insulin receptor antagonist, elicited CAR-independent increases and CAR-dependent decreases of blood glucose levels at these different stages of treatment, respectively. Reciprocally, insulin activation of the insulin receptor repressed CAR activation and induction of its target CYP2B6 gene in HepG2 cells. Thus, PB and insulin cross-talk through the insulin receptor to regulate glucose and drug metabolism reciprocally.

  20. [Evidence on the key role of the metabotrobic glutamatergic receptors in the pathogenesis of schizophrenia: a "breakthrough" in pharmacological treatment].

    PubMed

    Pannese, Rossella; Minichino, Amedeo; Pignatelli, Marco; Delle Chiaie, Roberto; Biondi, Massimo; Nicoletti, Ferdinando

    2012-01-01

    The metabotropic glutamate receptors (mGluRs) are expressed pre- and post synaptically throughout the nervous system where they serve as modulators of synaptic transmission and neuronal excitability. The glutamatergic system is involved in a wide range of physiological processes in the brain, and its dysfunction plays an important role in the etiology and pathophysiology of psychiatric disorders, including schizophrenia. This paper reviews the neurodevelopmental origin and genetic susceptibility of schizophrenia relevant to NMDA receptor neurotransmission, and discusses the relationship between NMDA hypofunction and different domains of symptom in schizophrenia as well as putative treatment modality for the disorder. mGlu receptors have been hypothesizes as attractive therapeutic targets for the development of novel interventions for psychiatric disorders. Group II of mGlu receptors are of particular interest because of their unique distribution and the regulatory roles they have in neurotransmission. The glutamate hypothesis of schizophrenia predicts that agents that restore the balance in glutamatergic neurotransmission will ameliorate the symptomatology associated with this illness. Development of potent, efficacious, systemically active drugs will help to address the antipsychotic potential of these novel therapeutics. This review will discuss recent progress in elucidating the pharmacology and function of group II receptors in the context of current hypotheses on the pathophysiology of schizophrenia and the need for new and better antipsychotics.

  1. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator#

    PubMed Central

    Wu, Huixian; Wang, Chong; Gregory, Karen J.; Han, Gye Won; Cho, Hyekyung P.; Xia, Yan; Niswender, Colleen M.; Katritch, Vsevolod; Meiler, Jens; Cherezov, Vadim; Conn, P. Jeffrey; Stevens, Raymond C.

    2014-01-01

    The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the 2.8 Å resolution structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator FITM. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs, but is more restricted compared to most other GPCRs. We observed a parallel 7TM dimer, mediated by cholesterols, suggesting that signaling initiated by glutamate’s interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights on the allosteric modulation and activation mechanism of class C GPCRs. PMID:24603153

  2. Insulin receptor activation in solitary fibrous tumours.

    PubMed

    Li, Y; Chang, Q; Rubin, B P; Fletcher, C D M; Morgan, T W; Mentzer, S J; Sugarbaker, D J; Fletcher, J A; Xiao, S

    2007-04-01

    Solitary fibrous tumours (SFTs) are known to overexpress insulin-like growth factor 2 (IGF-2). The down-stream oncogenic pathways of IGF-2, however, are not clear. Here we report uniform activation of the insulin receptor (IR) pathway in SFTs, which are mesenchymal tumours frequently associated with hypoglycaemia. Whereas the IR and its downstream signalling pathways were constitutively activated in SFTs, insulin-like growth factor 1 receptor (IGF-1R) was not expressed in these tumours. We also find that SFT cells secrete IGF-2 and proliferate in serum-free medium, consistent with an IGF-2/IR autocrine loop. The aetiological relevance of IGF-2 is supported by expression of IR-A, the IR isoform with high affinity for IGF-2, in all SFTs. Our studies suggest that IR activation plays an oncogenic role in SFTs.

  3. Fear extinction in 17 day old rats is dependent on metabotropic glutamate receptor 5 signaling.

    PubMed

    Ganella, Despina E; Thangaraju, Pushbalela; Lawrence, Andrew J; Kim, Jee Hyun

    2016-02-01

    We used pharmacological modulation of the mGlu5 receptor to investigate its role in the extinction of conditioned fear throughout development. In postnatal day (P) 17 rats, the positive allosteric modulator CDPPB facilitated, while the negative allosteric modulator MTEP impaired extinction. These drugs had no such effects on P24 or adult rats. These results establish a changing importance of mGlu5 in extinction of conditioned fear at distinct stages of development.

  4. Biased Signaling of Protease-Activated Receptors

    PubMed Central

    Zhao, Peishen; Metcalf, Matthew; Bunnett, Nigel W.

    2014-01-01

    In addition to their role in protein degradation and digestion, proteases can also function as hormone-like signaling molecules that regulate vital patho-physiological processes, including inflammation, hemostasis, pain, and repair mechanisms. Certain proteases can signal to cells by cleaving protease-activated receptors (PARs), a family of four G protein-coupled receptors. PARs are expressed by almost all cell types, control important physiological and disease-relevant processes, and are an emerging therapeutic target for major diseases. Most information about PAR activation and function derives from studies of a few proteases, for example thrombin in the case of PAR1, PAR3, and PAR4, and trypsin in the case of PAR2 and PAR4. These proteases cleave PARs at established sites with the extracellular N-terminal domains, and expose tethered ligands that stabilize conformations of the cleaved receptors that activate the canonical pathways of G protein- and/or β-arrestin-dependent signaling. However, a growing number of proteases have been identified that cleave PARs at divergent sites to activate distinct patterns of receptor signaling and trafficking. The capacity of these proteases to trigger distinct signaling pathways is referred to as biased signaling, and can lead to unique patho-physiological outcomes. Given that a different repertoire of proteases are activated in various patho-physiological conditions that may activate PARs by different mechanisms, signaling bias may account for the divergent actions of proteases and PARs. Moreover, therapies that target disease-relevant biased signaling pathways may be more effective and selective approaches for the treatment of protease- and PAR-driven diseases. Thus, rather than mediating the actions of a few proteases, PARs may integrate the biological actions of a wide spectrum of proteases in different patho-physiological conditions. PMID:24860547

  5. Equivalent Activities of Repulsive Axon Guidance Receptors

    PubMed Central

    Long, Hong; Yoshikawa, Shingo

    2016-01-01

    Receptors on the growth cone at the leading edge of elongating axons play critical guidance roles by recognizing cues via their extracellular domains and transducing signals via their intracellular domains, resulting in changes in direction of growth. An important concept to have emerged in the axon guidance field is the importance of repulsion as a major guidance mechanism. Given the number and variety of different repulsive receptors, it is generally thought that there are likely to be qualitative differences in the signals they transduce. However, the nature of these possible differences is unknown. By creating chimeras using the extracellular and intracellular domains of three different Drosophila repulsive receptors, Unc5, Roundabout (Robo), and Derailed (Drl) and expressing them in defined cells within the embryonic nervous system, we examined the responses elicited by their intracellular domains systematically. Surprisingly, we found no qualitative differences in growth cone response or axon growth, suggesting that, despite their highly diverged sequences, each intracellular domain elicits repulsion via a common pathway. In terms of the signaling pathway(s) used by the repulsive receptors, mutations in the guanine nucleotide exchange factor Trio strongly enhance the repulsive activity of all three intracellular domains, suggesting that repulsion by Unc5, Robo, and Drl, and perhaps repulsion in general, involves Trio activity. SIGNIFICANCE STATEMENT A prevailing concept that has emerged in the axon guidance field is the importance of repulsion as a guidance mechanism for steering axons to their appropriate targets. Given the number and variety of different repulsive receptors, it is generally thought that there are differences in the signals that they transduce. However, this has never been tested directly. We have used the advanced genetics of Drosophila to compare directly the outputs of different repulsive receptors. Surprisingly, we found no qualitative

  6. Peroxisome proliferator-activated receptors and angiogenesis.

    PubMed

    Biscetti, F; Straface, G; Pitocco, D; Zaccardi, F; Ghirlanda, G; Flex, A

    2009-12-01

    The peroxisome proliferator-activated receptors (PPARs) are a group of three nuclear receptor isoforms, PPARalpha, PPARgamma and PPARdelta, encoded by different genes, and they form a subfamily of the nuclear receptor superfamily. The clinical interest in PPARs originates with fibrates and thiazolidinediones, which, respectively, act on PPARalpha and PPARgamma and are used to ameliorate hyperlipidaemia and hyperglycaemia in subjects with type 2 diabetes mellitus (T2DM). PPARs play a central role in these patients due to their ability to regulate the expression of numerous genes involved in glycaemic control, lipid metabolism, vascular tone and inflammation. Abnormal angiogenesis is implicated in several of the long-term complications of diabetes mellitus, characterized by vasculopathy associated with aberrant growth of new blood vessels. This pathological process plays a crucial role in diabetic retinopathy, nephropathy and neuropathy, impaired wound healing and impaired coronary collateral vessel development. In recent years, there has been increasing appreciation of the fact that PPARs might be involved in the molecular mechanisms that regulate angiogenesis through the action of growth factors and cytokines that stimulate migration, proliferation and survival of endothelial cells. During the last few years direct comparative analyses have been performed, using selective PPARs agonists, to clarify the angiogenic properties of the different members of the PPAR family. Lately, the findings provide new information to order to understand the biological, clinical and therapeutic effects of PPARs, and the role of these nuclear receptors in angiogenesis, with potentially important implications for the management of subjects affected by T2DM. PMID:19628379

  7. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  8. The mouse cyclophosphamide model of bladder pain syndrome: tissue characterization, immune profiling, and relationship to metabotropic glutamate receptors

    PubMed Central

    Golubeva, Anna V.; Zhdanov, Alexander V.; Mallel, Giuseppe; Dinan, Timothy G.; Cryan, John F.

    2014-01-01

    Abstract Painful bladder syndrome/Interstitial cystitis (PBS/IC) is a chronic disorder characterized clinically by recurring episodes of pelvic pain and increased urination frequency, significantly impairing patients' quality of life. Despite this, there is an unmet medical need in terms of effective diagnostics and treatment. Animal models are crucial in this endeavor. Systemic chronic administration of cyclophosphamide (CYP) in mice has been proposed as a relevant preclinical model of chronic bladder pain. However, molecular mechanisms underlying the pathogenesis of this model are lacking. Here, we show that mice, subjected to repetitive systemic injections of CYP, developed mild inflammatory response in bladder tissue characterized by submucosal edema, moderate increase in proinflammatory cytokine gene expression, and mastocytosis. No signs of massive inflammatory infiltrate, tissue hemorrhages, mucosal ulcerations and urothelium loss were observed. Instead, CYP treatment induced urothelium hyperplasia, accompanied by activation of proliferative signaling cascades, and a decrease in the expression of urothelium‐specific markers. Metabotropic glutamate (mGlu) receptors have been implicated in chronic pain disorders. CYP administration induced differential changes in mGlu receptors mRNA levels in bladder tissue, without affecting gene expression at spinal cord level, pointing to the potential link between peripheral mGlu receptors and inflammation‐induced bladder malfunction and hyperalgesia. Taken together, these data indicate that chronic CYP treatment in mice is a model of PBS mostly relevant to the major, nonulcerative subtype of the syndrome, characterized by a relatively unaltered mucosa and a sparse inflammatory response. This model can help to elucidate the pathogenetic mechanisms of the disease. PMID:24760514

  9. Potent, stereoselective, and brain region selective modulation of second messengers in the rat brain by (+)LY354740, a novel group II metabotropic glutamate receptor agonist.

    PubMed

    Schoepp, D D; Johnson, B G; Wright, R A; Salhoff, C R; Monn, J A

    1998-08-01

    LY354740 is a highly potent and selective agonist for recombinant Group II mGlu receptors (mGlu2 and mGlu3), which has anxiolytic and drug withdrawal alleviating properties when administered systemically in rats and mice. The modulation of second messengers by LY354740 in rat brain tissues was investigated to understand the cellular basis for the pharmacological and potential therapeutic actions of LY354740. LY354740 potently decreased forskolin-stimulated cAMP formation in slices of the adult rat hippocampus (EC50=22+/-3 nM) in a stereoselective manner. LY354740 (at 1 microM) greatly (>90%) suppressed forskolin-stimulated cAMP in the cerebral cortex, hippocampus, and striatum, while producing only partial suppression (about 50%) in midbrain regions and olfactory bulb, and no significant cAMP alterations in the cerebellum and brainstem regions. Inhibition of forskolin-stimulated cAMP formation was antagonized by (+)-alpha(-methyl-4-carboxyphenylglycine [(+)MCPG], a competitive mGlu receptor antagonist. LY354740 did not alter phosphoinositide hydrolysis in the rat hippocampus per se, but potentiated stimulation of phophoinositide hydrolysis by the Group I mGlu receptor selective agonist 3,5-dihydroxyphenylglycine (DHPG) or stimulation of cAMP formation by the adenosine receptor agonist 5'-N-ethylcarboxamideoadenosine (NECA). These data indicate that LY354740 is a highly potent, efficacious, and selective Group II mGlu receptor (mGlu 2/3) agonist in the rat brain. The potent, stereoselective, and brain region selective actions of LY354740 on mGlu receptor linked second messenger systems likely underlie the in vivo potency and stereoselectivity of this compound in animal models. PMID:9750002

  10. Iterative experimental and virtual high-throughput screening identifies metabotropic glutamate receptor subtype 4 positive allosteric modulators

    PubMed Central

    Mueller, Ralf; Dawson, Eric S.; Niswender, Colleen M.; Butkiewicz, Mariusz; Hopkins, Corey R.; Weaver, C. David; Lindsley, Craig W.; Conn, P. Jeffrey; Meiler, Jens

    2013-01-01

    Activation of metabotropic glutamate receptor subtype 4 has been shown to be efficacious in rodent models of Parkinson’s disease. Artificial neural networks were trained based on a recently reported high throughput screen which identified 434 positive allosteric modulators of metabotropic glutamate receptor subtype 4 out of a set of approximately 155,000 compounds. A jury system containing three artificial neural networks achieved a theoretical enrichment of 15.4 when selecting the top 2% compounds of an independent test dataset. The model was used to screen an external commercial database of approximately 450,000 drug-like compounds. 1,100 predicted active small molecules were tested experimentally using two distinct assays of mGlu4 activity. This experiment yielded 67 positive allosteric modulators of metabotropic glutamate receptor subtype 4 that confirmed in both experimental systems. Compared to the 0.3% active compounds in the primary screen, this constituted an enrichment of 22 fold. PMID:22592386

  11. The Metabotropic Glutamate 5 Receptor Modulates Extinction and Reinstatement of Methamphetamine-Seeking in Mice

    PubMed Central

    Chesworth, Rose; Brown, Robyn M.; Kim, Jee Hyun; Lawrence, Andrew J.

    2013-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant with no therapeutics registered to assist addicts in discontinuing use. Glutamatergic dysfunction has been implicated in the development and maintenance of addiction. We sought to assess the involvement of the metabotropic glutamate 5 receptor (mGlu5) in behaviours relevant to METH addiction because this receptor has been implicated in the actions of other drugs of abuse, including alcohol, cocaine and opiates. mGlu5 knockout (KO) mice were tested in intravenous self-administration, conditioned place preference and locomotor sensitization. Self-administration of sucrose was used to assess the response of KO mice to a natural reward. Acquisition and maintenance of self-administration, as well as the motivation to self-administer METH was intact in mGlu5 KO mice. Importantly, mGlu5 KO mice required more extinction sessions to extinguish the operant response for METH, and exhibited an enhanced propensity to reinstate operant responding following exposure to drug-associated cues. This phenotype was not present when KO mice were tested in an equivalent paradigm assessing operant responding for sucrose. Development of conditioned place preference and locomotor sensitization were intact in KO mice; however, conditioned hyperactivity to the context previously paired with drug was elevated in KO mice. These data demonstrate a role for mGlu5 in the extinction and reinstatement of METH-seeking, and suggests a role for mGlu5 in regulating contextual salience. PMID:23861896

  12. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    PubMed Central

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra; Roncaglioni, Alessandra; Tropsha, Alexander; Varnek, Alexandre; Zakharov, Alexey; Worth, Andrew; Richard, Ann M.; Grulke, Christopher M.; Trisciuzzi, Daniela; Fourches, Denis; Horvath, Dragos; Benfenati, Emilio; Muratov, Eugene; Wedebye, Eva Bay; Grisoni, Francesca; Mangiatordi, Giuseppe F.; Incisivo, Giuseppina M.; Hong, Huixiao; Ng, Hui W.; Tetko, Igor V.; Balabin, Ilya; Kancherla, Jayaram; Shen, Jie; Burton, Julien; Nicklaus, Marc; Cassotti, Matteo; Nikolov, Nikolai G.; Nicolotti, Orazio; Andersson, Patrik L.; Zang, Qingda; Politi, Regina; Beger, Richard D.; Todeschini, Roberto; Huang, Ruili; Farag, Sherif; Rosenberg, Sine A.; Slavov, Svetoslav; Hu, Xin; Judson, Richard S.

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. Objectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. Methods: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. Results: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. Conclusion: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other

  13. How IGF-1 activates its receptor

    PubMed Central

    Kavran, Jennifer M; McCabe, Jacqueline M; Byrne, Patrick O; Connacher, Mary Katherine; Wang, Zhihong; Ramek, Alexander; Sarabipour, Sarvenaz; Shan, Yibing; Shaw, David E; Hristova, Kalina; Cole, Philip A; Leahy, Daniel J

    2014-01-01

    The type I insulin-like growth factor receptor (IGF1R) is involved in growth and survival of normal and neoplastic cells. A ligand-dependent conformational change is thought to regulate IGF1R activity, but the nature of this change is unclear. We point out an underappreciated dimer in the crystal structure of the related Insulin Receptor (IR) with Insulin bound that allows direct comparison with unliganded IR and suggests a mechanism by which ligand regulates IR/IGF1R activity. We test this mechanism in a series of biochemical and biophysical assays and find the IGF1R ectodomain maintains an autoinhibited state in which the TMs are held apart. Ligand binding releases this constraint, allowing TM association and unleashing an intrinsic propensity of the intracellular regions to autophosphorylate. Enzymatic studies of full-length and kinase-containing fragments show phosphorylated IGF1R is fully active independent of ligand and the extracellular-TM regions. The key step triggered by ligand binding is thus autophosphorylation. DOI: http://dx.doi.org/10.7554/eLife.03772.001 PMID:25255214

  14. Spongian diterpenoids inhibit androgen receptor activity

    PubMed Central

    Yang, Yu Chi; Meimetis, Labros G; Tien, Amy H; Mawji, Nasrin R; Carr, Gavin; Wang, Jun; Andersen, Raymond J; Sadar, Marianne D

    2013-01-01

    Androgen receptor (AR) is a ligand-activated transcription factor and a validated drug target for all stages of prostate cancer. Antiandrogens compete with physiological ligands for AR ligand-binding domain (LBD). High-throughput screening of a marine natural product library for small molecules that inhibit AR transcriptional activity yielded the furanoditerpenoid spongia-13(16),-14-dien-19-oic acid, designated terpene 1 (T1). Characterization of T1 and the structurally related semi-synthetic analogues (T2 and T3) revealed that these diterpenoids have antiandrogen properties that include inhibition of both androgen-dependent proliferation and AR transcriptional activity by a mechanism that involved competing with androgen for AR LBD and blocking essential N/C interactions required for androgen-induced AR transcriptional activity. Structure activity relationship analyses revealed some chemical features of T1 that are associated with activity and yielded T3 as the most potent analogue. In vivo, T3 significantly reduced the weight of seminal vesicles, which are an androgen-dependent tissue, thereby confirming T3’s on-target activity. The ability to create analogues of diterpenoids that have varying antiandrogen activity represents a novel class of chemical compounds for the analysis of AR ligand-binding properties and therapeutic development. PMID:23443807

  15. Intrinsic relative activities of κ opioid agonists in activating Gα proteins and internalizing receptor: Differences between human and mouse receptors.

    PubMed

    DiMattio, Kelly M; Ehlert, Frederick J; Liu-Chen, Lee-Yuan

    2015-08-15

    Several investigators recently identified biased κ opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [(35)S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi-G) and receptor internalization (RAi-I) and the degree of functional selectivity between the two [Log RAi-G - logRAi-I, RAi-G/RAi-I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1-17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed.

  16. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  17. Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells.

    PubMed

    Tomasello, E; Bléry, M; Vély, F; Vivier, E

    2000-04-01

    Despite the absence of antigen-specific receptors at their surface, NK cells can selectively eliminate virus-infected cells, tumor cells and allogenic cells. A dynamic and precisely coordinated balance between activating and inhibitory receptors governs NK cell activation programs. Multiple activating and inhibitory NK cell surface molecules have been described, a group of them acting as receptors for MHC class I molecules. In spite of their heterogeneity, activating NK cell receptors present remarkable structural and functional homologies with T cell- and B cell-antigen receptors. Inhibitory NK cell receptors operate at early stages of activating cascades by recruiting protein tyrosine phosphatases via intra- cytoplasmic motifs (ITIM), a strategy which is widely conserved in hematopoietic and non-hematopoietic cells.

  18. Principles of antibody-mediated TNF receptor activation

    PubMed Central

    Wajant, H

    2015-01-01

    From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies. PMID:26292758

  19. Microglial neurotransmitter receptors trigger superoxide production in microglia; consequences for microglial-neuronal interactions.

    PubMed

    Mead, Emma L; Mosley, Angelina; Eaton, Simon; Dobson, Lucianne; Heales, Simon J; Pocock, Jennifer M

    2012-04-01

    Microglia express three isoforms of the NADPH oxidase, Nox1, Nox2 and Nox4, with the potential to produce superoxide (O(2) ˙(-) ). Microglia also express neurotransmitter receptors, which can modulate microglial responses. In this study, microglial activity of Nox1, Nox2 and Nox4 in primary rat cultured microglia or the rodent BV2 cell line were altered by microglial neurotransmitter receptor modulation. Glutamate, GABA or ATP triggered microglial O(2) ˙(-) production via Nox activation. Nox activation was elicited by agonists of metabotropic mGlu3 receptors and by group III receptors, by GABA(A) but not GABA(B) receptors, and by purinergic P2X(7) or P2Y(2/4) receptors but not P2Y(1) receptors, and inhibited by metabotropic glutamate receptor 5 antagonists. The neurotransmitters also modulated Nox mRNA expression and NADPH activity. The activation of Nox by BzATP or GABA promoted a neuroprotective phenotype whilst the activation of Nox by glutamate promoted a neurotoxic phenotype. Taken together, these data indicate that microglial neurotransmitter receptors can signal via Nox to promote neuroprotection or neurotoxicity. This has implications for the subsequent neurotoxic profile of microglia when neurotransmitter levels may become skewed in neurodegeneration. PMID:22243365

  20. Identification of Gene Markers for Activation of the Nuclear Receptor Pregnane X Receptor

    EPA Science Inventory

    Many environmentally-relevant chemicals and drugs activate the nuclear receptor pregnane X receptor (PXR). Activation of PXR in the mouse liver can lead to increases in liver weight in part through increased hepatocyte replication similar to chemicals that activate other nuclear ...

  1. The role of group II metabotropic glutamate receptors in cognition and anxiety: comparative studies in GRM2(-/-), GRM3(-/-) and GRM2/3(-/-) knockout mice.

    PubMed

    De Filippis, Bianca; Lyon, Louisa; Taylor, Amy; Lane, Tracy; Burnet, Philip W J; Harrison, Paul J; Bannerman, David M

    2015-02-01

    Group II metabotropic glutamate receptors (mGlu2 and mGlu3, encoded by GRM2 and GRM3) have been implicated in both cognitive and emotional processes, although their precise role remains to be established. Studies with knockout (KO) mice provide an important approach for investigating the role of specific receptor genes in behaviour. In the present series of experiments we extended our prior characterisation of GRM2/3(-/-) double KO mice and, in complementary experiments, investigated the behavioural phenotype of single GRM2(-/-) and GRM3(-/-) mice. We found no consistent effect on anxiety in either the double or single KO mice. The lack of an anxiety phenotype in any of the lines contrasts with the clear anxiolytic effects of mGlu2/3 ligands. Motor co-ordination was impaired in GRM2/3(-/-) mice, but spared in single GRM2(-/-) and GRM3(-/-) mice. Spatial working memory (rewarded alternation) testing on the elevated T-maze revealed a deficit in GRM2(-/-) mice throughout testing, whereas GRM3(-/-) mice exhibited a biphasic effect (initially impaired, but performing better than controls by the end of training). A biphasic effect on activity levels was seen for the GRM2(-/-) mice. Overall, the phenotype in both GRM2(-/-) and GRM3(-/-) mice was less pronounced - if present at all - compared to GRM2/3(-/-) mice, across the range of task domains. This is consistent with possible redundancy of function and/or compensation in the single KO lines. Results are discussed with reference to a possible role for group II metabotropic glutamate receptors at the interface between arousal and behavioural performance, according to an inverted U-shaped function. PMID:25158312

  2. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  3. Agonist induced constitutive receptor activation as a novel regulatory mechanism. Mu receptor regulation.

    PubMed

    Sadée, W; Wang, Z

    1995-01-01

    We propose the hypothesis that certain G protein coupled receptors can become constitutively activated during agonist stimulation so that the receptor remains active even after the agonist is removed. This new paradigm of receptor regulation may account for some long term effects of neurotransmitters and hormones. We have tested the hypothesis that constitutive mu receptor activation represents a crucial step driving narcotic tolerance and dependence. Our results indeed support the conversion of mu to a constitutively active state, mu*, observed in neuroblastoma SK-N-SH and SH-SY5Y tissue culture, in U293 cells transfected with the mu receptor gene, and in vivo. Constitutive mu activation may result from receptor phosphorylation to yield mu*, and further, in vivo studies indicate that formation of mu* could account for narcotic tolerance and dependence.

  4. Modulation of Glucagon Receptor Pharmacology by Receptor Activity-modifying Protein-2 (RAMP2)*

    PubMed Central

    Weston, Cathryn; Lu, Jing; Li, Naichang; Barkan, Kerry; Richards, Gareth O.; Roberts, David J.; Skerry, Timothy M.; Poyner, David; Pardamwar, Meenakshi; Reynolds, Christopher A.; Dowell, Simon J.; Willars, Gary B.; Ladds, Graham

    2015-01-01

    The glucagon and glucagon-like peptide-1 (GLP-1) receptors play important, opposing roles in regulating blood glucose levels. Consequently, these receptors have been identified as targets for novel diabetes treatments. However, drugs acting at the GLP-1 receptor, although having clinical efficacy, have been associated with severe adverse side-effects, and targeting of the glucagon receptor has yet to be successful. Here we use a combination of yeast reporter assays and mammalian systems to provide a more complete understanding of glucagon receptor signaling, considering the effect of multiple ligands, association with the receptor-interacting protein receptor activity-modifying protein-2 (RAMP2), and the role of individual G protein α-subunits. We demonstrate that RAMP2 alters both ligand selectivity and G protein preference of the glucagon receptor. Importantly, we also uncover novel cross-reactivity of therapeutically used GLP-1 receptor ligands at the glucagon receptor that is abolished by RAMP2 interaction. This study reveals the glucagon receptor as a previously unidentified target for GLP-1 receptor agonists and highlights a role for RAMP2 in regulating its pharmacology. Such previously unrecognized functions of RAMPs highlight the need to consider all receptor-interacting proteins in future drug development. PMID:26198634

  5. Receptor Activity-modifying Proteins 2 and 3 Generate Adrenomedullin Receptor Subtypes with Distinct Molecular Properties*

    PubMed Central

    Watkins, Harriet A.; Chakravarthy, Madhuri; Abhayawardana, Rekhati S.; Gingell, Joseph J.; Garelja, Michael; Pardamwar, Meenakshi; McElhinney, James M. W. R.; Lathbridge, Alex; Constantine, Arran; Harris, Paul W. R.; Yuen, Tsz-Ying; Brimble, Margaret A.; Barwell, James; Poyner, David R.; Woolley, Michael J.; Conner, Alex C.; Pioszak, Augen A.; Reynolds, Christopher A.

    2016-01-01

    Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function. PMID:27013657

  6. G protein-coupled receptor signalling in astrocytes in health and disease: a focus on metabotropic glutamate receptors.

    PubMed

    Bradley, Sophie J; Challiss, R A John

    2012-08-01

    Work published over the past 10-15 years has caused the neuroscience community to engage in a process of constant re-evaluation of the roles of glial cells in the mammalian central nervous system. Recent emerging evidence suggests that, in addition to carrying out various homeostatic functions within the CNS, astrocytes can also engage in a two-way dialogue with neurons. Astrocytes possess many of the receptors, and some of the ion channels, present in neurons endowing them with an ability to sense and respond to an array of neuronal signals. In addition, an expanding number of small molecules and proteins have been shown to be released by astrocytes in both health and disease. In this commentary we will highlight advances in our understanding of G protein-coupled receptor signalling in astrocytes, with a particular emphasis on metabotropic glutamate (mGlu) receptors. Discussion will focus on the major mGlu receptors expressed in astrocytes, mGlu3 and mGlu5, how these receptors can influence different aspects of astrocyte physiology, and how signalling by these G protein-coupled receptors might change under pathophysiological circumstances. PMID:22531220

  7. A widely used retinoic acid receptor antagonist induces peroxisome proliferator-activated receptor-gamma activity.

    PubMed

    Schupp, Michael; Curtin, Joshua C; Kim, Roy J; Billin, Andrew N; Lazar, Mitchell A

    2007-05-01

    Nuclear receptors (NRs) are transcription factors whose activity is regulated by the binding of small lipophilic ligands, including hormones, vitamins, and metabolites. Pharmacological NR ligands serve as important therapeutic agents; for example, all-trans retinoic acid, an activating ligand for retinoic acid receptor alpha (RARalpha), is used to treat leukemia. Another RARalpha ligand, (E)-S,S-dioxide-4-(2-(7-(heptyloxy)-3,4-dihydro-4,4-dimethyl-2H-1-benzothiopyran-6-yl)-1-propenyl)-benzoic acid (Ro 41-5253), is a potent antagonist that has been a useful and purportedly specific probe of RARalpha function. Here, we report that Ro 41-5253 also activates the peroxisome proliferator-activated receptor gamma (PPARgamma), a master regulator of adipocyte differentiation and target of widely prescribed antidiabetic thiazolidinediones (TZDs). Ro 41-5253 enhanced differentiation of mouse and human preadipocytes and activated PPARgamma target genes in mature adipocytes. Like the TZDs, Ro 41-5253 also down-regulated PPARgamma protein expression in adipocytes. In addition, Ro 41-5253 activated the PPARgamma-ligand binding domain in transiently transfected HEK293T cells. These effects were not prevented by a potent RARalpha agonist or by depleting cells of RARalpha, indicating that PPARgamma activation was not related to RARalpha antagonism. Indeed, Ro 41-5253 was able to compete with TZD ligands for binding to PPARgamma, suggesting that Ro 41-5253 directly affects PPAR activity. These results vividly demonstrate that pharmacological NR ligands may have "off-target" effects on other NRs. Ro 41-5253 is a PPARgamma agonist as well as an RARalpha antagonist whose pleiotropic effects on NRs may signify a unique spectrum of biological responses.

  8. Mineralocorticoid receptor activation in obesity hypertension.

    PubMed

    Nagase, Miki; Fujita, Toshiro

    2009-08-01

    Obesity hypertension and metabolic syndrome have become major public health concerns. Nowadays, aldosterone is recognized as an important mediator of cardiovascular and renal damage. In the kidney, aldosterone injures glomerular visceral epithelial cells (podocytes), the final filtration barrier to plasma macromolecules, leading to proteinuria and glomerulosclerosis. Mineralocorticoid receptor (MR) antagonists effectively ameliorate proteinuria in patients or in animal models of hypertension, diabetes mellitus and chronic kidney disease (CKD), as well as in patients who experience 'aldosterone breakthrough.' Recently, clinical and experimental studies have shown that plasma aldosterone concentration is associated with obesity hypertension and metabolic syndrome. We showed that spontaneously hypertensive rats (SHR)/cp, an experimental model of obesity hypertension and metabolic syndrome, are prone to glomerular podocyte injury, proteinuria and left ventricular diastolic dysfunction, especially when the animals are fed a high-salt diet. Inappropriate activation of the aldosterone/MR system underlies the renal and cardiac injuries. Adipocyte-derived aldosterone-releasing factors (ARFs), although still unidentified, may account for aldosterone excess and the resultant target organ complication in SHR/cp. On the other hand, recent studies have shown that MR activation triggers target organ disease even in normal or low aldosterone states. We identified a small GTP (guanosine triphosphate)-binding protein, Rac1, as a novel activator of MR, and showed that this ligand-independent MR activation by Rac1 contributes to the nephropathy of several CKD models. We expect that ARFs and Rac1 can be novel therapeutic targets for metabolic syndrome and CKD. Future large-scale clinical trials are awaited to prove the efficacy of MR blockade in patients with obesity hypertension and metabolic syndrome.

  9. RELAXIN ACTIVATES PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR GAMMA

    PubMed Central

    Singh, Sudhir; Bennett, Robert G

    2009-01-01

    SUMMARY Relaxin is a polypeptide hormone that triggers multiple signaling pathways through its receptor RXFP1. Many of relaxin’s functions, including vascular and antifibrotic effects, are similar to those induced by activation of PPARγ. In this study, we tested the hypothesis that relaxin signaling through RXFP1 would activate PPARγ activity. In cells overexpressing RXFP1 (HEK-RXFP1), relaxin increased transcriptional activity through a PPAR response element (PPRE) in a concentration-dependent manner. In cells lacking RXFP1, relaxin had no effect. Relaxin increased both the baseline activity and the response to the PPARγ agonists rosiglitazone and 15d-PGJ2, but not to agonists of PPARα or PPARδ. In HEK-RXFP1 cells infected with adenovirus expressing PPARγ, relaxin increased transcriptional activity through PPRE, and this effect was blocked with an adenovirus expressing a dominant-negative PPARγ. Knockdown of PPARγ using siRNA resulted in a decrease in the response to both relaxin and rosiglitazone. Both relaxin and rosiglitazone increased expression of the PPARγ target genes CD36 and LXRα in HEK-RXFP1 and in THP-1 cells naturally expressing RXFP1. Relaxin did not increase PPARγ mRNA or protein levels. Treatment of cells with GW9662, an inhibitor of PPARγ ligand binding, effectively blocked rosiglitazone-induced PPARγ activation, but had no effect on relaxin activation of PPARγ. These results suggest that relaxin activates PPARγ activity, and increases the overall response in the presence PPARγ agonists. This activation is dependent on the presence of RXFP1. Furthermore, relaxin activates PPARγ via a ligand-independent mechanism. These studies represent the first report that relaxin can activate the transcriptional activity of PPARγ. PMID:19712722

  10. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  11. Neuropeptide Y receptor mediates activation of ERK1/2 via transactivation of the IGF receptor.

    PubMed

    Lecat, Sandra; Belemnaba, Lazare; Galzi, Jean-Luc; Bucher, Bernard

    2015-07-01

    Neuropeptide Y binds to G-protein coupled receptors whose action results in inhibition of adenylyl cyclase activity. Using HEK293 cells stably expressing the native neuropeptide Y Y1 receptors, we found that the NPY agonist elicits a transient phosphorylation of the extracellular signal-regulated kinases (ERK1/2). We first show that ERK1/2 activation following Y1 receptor stimulation is dependent on heterotrimeric Gi/o since it is completely inhibited by pre-treatment with pertussis toxin. In addition, ERK1/2 activation is internalization-independent since mutant Y1 receptors unable to recruit β-arrestins, can still activate ERK signaling to the same extent as wild-type receptors. We next show that this activation of the MAPK pathway is inhibited by the MEK inhibitor U0126, is not dependent on calcium signaling at the Y1 receptor (no effect upon inhibition of phospholipase C, protein kinase C or protein kinase D) but instead dependent on Gβ/γ and associated signaling pathways that activate PI3-kinase. Although inhibition of the epidermal-growth factor receptor tyrosine kinase did not influence NPY-induced ERK1/2 activation, we show that the inhibition of insulin growth factor receptor IGFR by AG1024 completely blocks activation of ERK1/2 by the Y1 receptor. This Gβ/γ-PI3K-AG1024-sensitive pathway does not involve activation of IGFR through the release of a soluble ligand by metalloproteinases since it is not affected by the metalloproteinase inhibitor marimastat. Finally, we found that a similar pathway, sensitive to wortmannin-AG1024 but insensitive to marimastat, is implicated in activation of ERK signaling in HEK293 cells by endogenously expressed GPCRs coupled to Gq-protein (muscarinic M3 receptors) or coupled to Gs-protein (endothelin ETB receptors). Our analysis is the first to show that β-arrestin recruitment to the NPY Y1 receptor is not necessary for MAPK activation by this receptor but that transactivation of the IGFR receptor is required.

  12. The role of group II metabotropic glutamate receptors in cognition and anxiety: Comparative studies in GRM2−/−, GRM3−/− and GRM2/3−/− knockout mice

    PubMed Central

    De Filippis, Bianca; Lyon, Louisa; Taylor, Amy; Lane, Tracy; Burnet, Philip W.J.; Harrison, Paul J.; Bannerman, David M.

    2015-01-01

    Group II metabotropic glutamate receptors (mGlu2 and mGlu3, encoded by GRM2 and GRM3) have been implicated in both cognitive and emotional processes, although their precise role remains to be established. Studies with knockout (KO) mice provide an important approach for investigating the role of specific receptor genes in behaviour. In the present series of experiments we extended our prior characterisation of GRM2/3−/− double KO mice and, in complementary experiments, investigated the behavioural phenotype of single GRM2−/− and GRM3−/− mice. We found no consistent effect on anxiety in either the double or single KO mice. The lack of an anxiety phenotype in any of the lines contrasts with the clear anxiolytic effects of mGlu2/3 ligands. Motor co-ordination was impaired in GRM2/3−/− mice, but spared in single GRM2−/− and GRM3−/− mice. Spatial working memory (rewarded alternation) testing on the elevated T-maze revealed a deficit in GRM2−/− mice throughout testing, whereas GRM3−/− mice exhibited a biphasic effect (initially impaired, but performing better than controls by the end of training). A biphasic effect on activity levels was seen for the GRM2−/− mice. Overall, the phenotype in both GRM2−/− and GRM3−/− mice was less pronounced – if present at all – compared to GRM2/3−/− mice, across the range of task domains. This is consistent with possible redundancy of function and/or compensation in the single KO lines. Results are discussed with reference to a possible role for group II metabotropic glutamate receptors at the interface between arousal and behavioural performance, according to an inverted U-shaped function. PMID:25158312

  13. The growth hormone receptor: mechanism of activation and clinical implications.

    PubMed

    Brooks, Andrew J; Waters, Michael J

    2010-09-01

    Growth hormone is widely used clinically to promote growth and anabolism and for other purposes. Its actions are mediated via the growth hormone receptor, both directly by tyrosine kinase activation and indirectly by induction of insulin-like growth factor 1 (IGF-1). Insensitivity to growth hormone (Laron syndrome) can result from mutations in the growth hormone receptor and can be treated with IGF-1. This treatment is, however, not fully effective owing to the loss of the direct actions of growth hormone and altered availability of exogenous IGF-1. Excessive activation of the growth hormone receptor by circulating growth hormone results in gigantism and acromegaly, whereas cell transformation and cancer can occur in response to autocrine activation of the receptor. Advances in understanding the mechanism of receptor activation have led to a model in which the growth hormone receptor exists as a constitutive dimer. Binding of the hormone realigns the subunits by rotation and closer apposition, resulting in juxtaposition of the catalytic domains of the associated tyrosine-protein kinase JAK2 below the cell membrane. This change results in activation of JAK2 by transphosphorylation, then phosphorylation of receptor tyrosines in the cytoplasmic domain, which enables binding of adaptor proteins, as well as direct phosphorylation of target proteins. This model is discussed in the light of salient information from closely related class 1 cytokine receptors, such as the erythropoietin, prolactin and thrombopoietin receptors. PMID:20664532

  14. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    SciTech Connect

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  15. Syntheses of 2-amino and 2-halothiazole derivatives as high-affinity metabotropic glutamate receptor subtype 5 ligands and potential radioligands for in vivo imaging.

    PubMed

    Siméon, Fabrice G; Wendahl, Matthew T; Pike, Victor W

    2011-02-10

    The structure of the potent selective mGlu(5) ligand, SP203 (1, 3-fluoro-5-[[2-(fluoromethyl)thiazol-4-yl]ethynyl]benzonitrile), was modified by replacing the 2-fluoromethyl substituent with an amino or halo substituent and by variation of substituents in the distal aromatic ring to provide a series of new high-affinity mGlu(5) ligands. In this series, among the most potent ligands obtained, the 2-chloro-thiazoles 7a and 7b and the 2-fluorothiazole 10b showed subnanomolar mGlu(5) affinity. 10b also displayed >10000-fold selectivity over all other metabotropic receptor subtypes plus a wide range of other receptors and binding sites. The 2-fluorothiazoles 10a and 10b were labeled using [(18)F]fluoride ion (t(1/2) = 109.7 min) in moderately high radiochemical yield to provide potential radioligands that may resist troublesome radiodefluorination during the imaging of brain mGlu(5) with position emission tomography. The iodo compound 9b has nanomolar affinity for mGlu(5) and may also serve as a lead to a potential (123)I-labeled ligand for imaging brain mGlu(5) with single photon emission computed tomography. PMID:21207959

  16. Syntheses of 2-Amino and 2-Halothiazole Derivatives as High-Affinity Metabotropic Glutamate Receptor Subtype 5 Ligands and Potential Radioligands for In Vivo Imaging

    PubMed Central

    Siméon, Fabrice G; Wendahl, Matthew T.; Pike, Victor W.

    2011-01-01

    The structure of the potent selective mGlu5 ligand, SP203 (1, 3-fluoro-5-[[2-(fluoromethyl)thiazol-4-yl]ethynyl]benzonitrile), was modified by replacing the 2-fluoromethyl substituent with an amino or halo substituent and by variation of substituents in the distal aromatic ring to provide a series of new high-affinity mGlu5 ligands. In this series, among the most potent ligands obtained, the 2-chloro-thiazoles 7a and 7b and the 2-fluorothiazole 10b showed sub-nanomolar mGlu5 affinity. 10b also displayed >10,000-fold selectivity over all other metabotropic receptor subtypes plus a wide range of other receptors and binding sites. The 2-fluorothiazoles 10a and 10b were labeled using [18F]fluoride ion (t1/2 = 109.7 min) in moderately high radiochemical yield to provide potential radioligands that may resist troublesome radiodefluorination during the imaging of brain mGlu5 with position emission tomography. The iodo compound 9b has nanomolar affinity for mGlu5 and may also serve as a lead to a potential 123I-labeled ligand for imaging brain mGlu5 with single photon emission computed tomography. PMID:21207959

  17. Group II and group III metabotropic glutamate receptor agonists depress synaptic transmission in the rat spinal cord dorsal horn.

    PubMed

    Gerber, G; Zhong, J; Youn, D; Randic, M

    2000-01-01

    The effects of group II and group III metabotropic glutamate receptor agonists on synaptic responses evoked by primary afferent stimulation in the dorsal horn, but mostly substantia gelatinosa, neurons were studied in the spinal cord slice preparation using conventional intracellular recording technique. Bath application of a potent metabotropic glutamate receptor 2- and 3-selective agonist (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine reversibly suppressed monosynaptic and polysynaptic excitatory postsynaptic potentials evoked by A primary afferent fibers stimulation, the effect likely mediated by mGlu3 receptor subtype. This suppressing effect of (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine on primary afferent neurotransmission was dose dependent and reduced by (S)-alpha-ethylglutamate, a group II metabotropic glutamate receptor antagonist. (2S,1'R,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl) glycine suppressed excitatory postsynaptic potentials without inducing detectable changes of postsynaptic membrane potential and neuronal input resistance in dorsal horn neurons. The paired-pulse depression at excitatory synapses between primary afferent fibers and dorsal horn neurons was reduced by (2S,1'R,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl) glycine application, suggesting a presynaptic site of action. The selective group III metabotropic glutamate receptor agonist (S)-2-amino-4-phosphonobutanoate also depressed A afferent fibers-evoked monosynaptic and polysynaptic excitatory postsynaptic potentials in a dose-dependent and reversible manner. The concentration-dependence of (S)-2-amino-4-phosphonobutanoate-mediated depression was most consistent with activation of mGlu receptor subtypes 4 and 7. However, on the basis of anatomical distribution of mGlu 4 and 7 subtypes, it is also possible that the (S)-2-amino-4-phosphonobatanoate effect is due to interaction with mGlu 7 receptor alone. (RS)-alpha-cyclopropyl-4-phosphonophenylglycine a preferential

  18. Conserved structure and adjacent location of the thrombin receptor and protease-activated receptor 2 genes define a protease-activated receptor gene cluster.

    PubMed Central

    Kahn, M.; Ishii, K.; Kuo, W. L.; Piper, M.; Connolly, A.; Shi, Y. P.; Wu, R.; Lin, C. C.; Coughlin, S. R.

    1996-01-01

    BACKGROUND: Thrombin is a serine protease that elicits a variety of cellular responses. Molecular cloning of a thrombin receptor revealed a G protein-coupled receptor that is activated by a novel proteolytic mechanism. Recently, a second protease-activated receptor was discovered and dubbed PAR2. PAR2 is highly related to the thrombin receptor by sequence and, like the thrombin receptor, is activated by cleavage of its amino terminal exodomain. Also like the thrombin receptor, PAR2 can be activated by the hexapeptide corresponding to its tethered ligand sequence independent of receptor cleavage. Thus, functionally, the thrombin receptor and PAR2 constitute a fledgling receptor family that shares a novel proteolytic activation mechanism. To further explore the relatedness of the two known protease-activated receptors and to examine the possibility that a protease-activated gene cluster might exist, we have compared the structure and chromosomal locations of the thrombin receptor and PAR2 genes. MATERIALS AND METHODS: The genomic structures of the two protease-activated receptor genes were determined by analysis of lambda phage, P1 bacteriophage, and bacterial artificial chromosome (BAC) genomic clones. Chromosomal location was determined with fluorescent in situ hybridization (FISH) on metaphase chromosomes, and the relative distance separating the two genes was evaluated both by means of two-color FISH and analysis of YACs and BACs containing both genes. RESULTS: Analysis of genomic clones revealed that the two protease-activated receptor genes share a two-exon genomic structure in which the first exon encodes 5'-untranslated sequence and signal peptide, and the second exon encodes the mature receptor protein and 3'-untranslated sequence. The two receptor genes also share a common locus with the two human genes located at 5q13 and the two mouse genes at 13D2, a syntenic region of the mouse genome. These techniques also suggest that the physical distance separating

  19. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity.

    PubMed

    Martini, P G; Delage-Mourroux, R; Kraichely, D M; Katzenellenbogen, B S

    2000-09-01

    We find that prothymosin alpha (PTalpha) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTalpha interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTalpha, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTalpha increases the magnitude of ERalpha transcriptional activity three- to fourfold. It shows lesser enhancement of ERbeta transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTalpha or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTalpha (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTalpha or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTalpha, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTalpha to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain

  20. Positive Allosteric Modulators of Metabotropic Glutamate 2 Receptors in Schizophrenia Treatment

    PubMed Central

    Ellaithy, Amr; Younkin, Jason; Gonzalez-Maeso, Javier; Logothetis, Diomedes E.

    2015-01-01

    The last two decades have witnessed a rise in the “NMDA receptor hypofunction” hypothesis for schizophrenia, a devastating disorder that affects around 1% of the population worldwide. A variety of presynaptic, postsynaptic and regulatory proteins involved in glutamatergic signaling have thus been proposed as potential therapeutic targets. This Review focuses on positive allosteric modulation of metabotropic glutamate 2 receptors (mGlu2Rs) and discusses how recent preclinical epigenetic data may provide a molecular explanation for the discrepant results of clinical studies, further stimulating the field to exploit the promise of mGlu2R as a target for schizophrenia treatment. PMID:26148747

  1. Cell Surface Epidermal Growth Factor Receptors Increase Src and c-Cbl Activity and Receptor Ubiquitylation*

    PubMed Central

    Parks, Eileen E.; Ceresa, Brian P.

    2014-01-01

    There is an established role for the endocytic pathway in regulation of epidermal growth factor receptor (EGFR) signaling to downstream effectors. However, because ligand-mediated EGFR endocytosis utilizes multiple “moving parts,” dissecting the spatial versus temporal contributions has been challenging. Blocking all endocytic trafficking can have unintended effects on other receptors as well as give rise to compensatory mechanisms, both of which impact interpretation of EGFR signaling. To overcome these limitations, we used epidermal growth factor (EGF) conjugated to polystyrene beads (EGF beads). EGF beads simultaneously activate the EGFR while blocking its endocytosis and allow analysis of EGFR signaling from the plasma membrane. Human telomerase immortalized corneal epithelial (hTCEpi) cells were used to model normal epithelial cell biology. In hTCEpi cells, both cell surface and intracellular EGFRs exhibited dose-dependent increases in effector activity after 15 min of ligand stimulation, but only the serine phosphorylation of signal transducer and activator of transcription 3 (STAT3) was statistically significant when accounting for receptor phosphorylation. However, over time with physiological levels of receptor phosphorylation, cell surface receptors produced either enhanced or sustained mitogen-activated protein kinase kinase (MEK), Casitas B-lineage lymphoma (c-Cbl), and the pro-oncogene Src activity. These increases in effector communication by cell surface receptors resulted in an increase in EGFR ubiquitylation with sustained ligand incubation. Together, these data indicate that spatial regulation of EGFR signaling may be an important regulatory mechanism in receptor down-regulation. PMID:25074934

  2. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells

    PubMed Central

    Freund, Jacquelyn; May, Rebecca M.; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K.; Kambayashi, Taku

    2016-01-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells. PMID:27500644

  3. Activating Receptor Signals Drive Receptor Diversity in Developing Natural Killer Cells.

    PubMed

    Freund, Jacquelyn; May, Rebecca M; Yang, Enjun; Li, Hongchuan; McCullen, Matthew; Zhang, Bin; Lenvik, Todd; Cichocki, Frank; Anderson, Stephen K; Kambayashi, Taku

    2016-08-01

    It has recently been appreciated that NK cells exhibit many features reminiscent of adaptive immune cells. Considerable heterogeneity exists with respect to the ligand specificity of individual NK cells and as such, a subset of NK cells can respond, expand, and differentiate into memory-like cells in a ligand-specific manner. MHC I-binding inhibitory receptors, including those belonging to the Ly49 and KIR families, are expressed in a variegated manner, which creates ligand-specific diversity within the NK cell pool. However, how NK cells determine which inhibitory receptors to express on their cell surface during a narrow window of development is largely unknown. In this manuscript, we demonstrate that signals from activating receptors are critical for induction of Ly49 and KIR receptors during NK cell development; activating receptor-derived signals increased the probability of the Ly49 bidirectional Pro1 promoter to transcribe in the forward versus the reverse direction, leading to stable expression of Ly49 receptors in mature NK cells. Our data support a model where the balance of activating and inhibitory receptor signaling in NK cells selects for the induction of appropriate inhibitory receptors during development, which NK cells use to create a diverse pool of ligand-specific NK cells.

  4. Biological activity of a polypeptide modulator of TRPV1 receptor.

    PubMed

    Dyachenko, I A; Andreev, Ya A; Logashina, Yu A; Murashev, A N; Grishin, E V

    2015-11-01

    This paper presents data on the activity of a new APHC2 polypeptide modulator of TRPV1 receptors, which was isolated from the sea anemone Heteractis crispa. It has been shown that APHC2 has an analgesic activity, does not impair normal motor activity, and does not change body temperature of experimental animals, which has a great practical value for design of potent analgesics of a new generation. Further study of the characteristics of binding of the polypeptide to the TRPV1 receptor may show approaches to the development of other antagonists of this receptor that do not influence the body temperature. PMID:26725234

  5. The activation of the nicotinic acetylcholine receptor by the transmitter.

    PubMed

    Taylor, D B; Spivak, C E

    1985-02-01

    Experimental evidence has been published from isolated guinea pig muscle in vitro, and from direct ligand binding to receptors from T. californica, indicating that two agonist ions react with the nicotinic receptor by exchanging for one magnesium ion. It is the basis of the ion exchange receptor pair model, in which two acetylcholine ions exchange for one magnesium ion in contact with and between a pair of negatively charged receptor groups about 4 A apart. In the resting state the electrostatic attraction between the negatively charged receptor groups and the Mg2+ ion exerts a binding force. This binding force is opposed by the quantum mechanical repulsions of the electron clouds of the charged groups and ions in contact, together with the mutual repulsion of the pair of receptor oxyanions. When the Mg2+ ion is replaced by two acetylcholine ions the quaternary heads of the latter are positioned so that they form two mutually repelling ACh+ receptor group dipoles. As the Mg2+ ion leaves, its rehydration energy contributes to the sum of the electron cloud repulsions and the ACh+ receptor group dipole repulsions, causing the receptor groups to be forced apart activating the receptor macromolecule. The subsequent decrease in ACh+ concentration results in the reestablishment of the resting state. The coulombic electrostatic energy, the Born repulsion energy, the London attraction energy and the oxyanion ACh+ dipole repulsion energies have been calculated and shown to be consistent with the model. The displacement of the Mg2+ by two ACh+ ions makes several hundred kcals of energy available for receptor group separation and receptor activation.

  6. Characterization of peroxisome proliferator-activiated receptor alpha (PPARalpha)-independent effects of PPARalpha activators in the rodent liver: Di(2-ethylehexyl) phthalate activates the constitutive activated receptor

    EPA Science Inventory

    Peroxisome proliferator chemicals (PPC) are thought to mediate their effects in rodents on hepatocyte growth and liver cancer through the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). Recent studies indicate that the plasticizer di-2-ethylhexyl ph...

  7. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  8. Tie2 and Eph Receptor Tyrosine Kinase Activation and Signaling

    PubMed Central

    Barton, William A.; Dalton, Annamarie C.; Seegar, Tom C.M.; Himanen, Juha P.

    2014-01-01

    The Eph and Tie cell surface receptors mediate a variety of signaling events during development and in the adult organism. As other receptor tyrosine kinases, they are activated on binding of extracellular ligands and their catalytic activity is tightly regulated on multiple levels. The Eph and Tie receptors display some unique characteristics, including the requirement of ligand-induced receptor clustering for efficient signaling. Interestingly, both Ephs and Ties can mediate different, even opposite, biological effects depending on the specific ligand eliciting the response and on the cellular context. Here we discuss the structural features of these receptors, their interactions with various ligands, as well as functional implications for downstream signaling initiation. The Eph/ephrin structures are already well reviewed and we only provide a brief overview on the initial binding events. We go into more detail discussing the Tie-angiopoietin structures and recognition. PMID:24478383

  9. Translational neurophysiological markers for activity of the metabotropic glutamate receptor (mGluR2) modulator JNJ-40411813: Sleep EEG correlates in rodents and healthy men.

    PubMed

    Ahnaou, A; de Boer, P; Lavreysen, H; Huysmans, H; Sinha, V; Raeymaekers, L; Van De Casteele, T; Cid, J M; Van Nueten, L; Macdonald, G J; Kemp, J A; Drinkenburg, W H I M

    2016-04-01

    Alterations in rapid eye movement sleep (REM) have been suggested as valid translational efficacy markers: activation of the metabotropic glutamate receptor 2 (mGluR2) was shown to increase REM latency and to decrease REM duration. The present paper addresses the effects on vigilance states of the mGluR2 positive allosteric modulator (PAM) JNJ-40411813 at different circadian times in rats and after afternoon dosing in humans. Due to its dual mGluR2 PAM/serotonin 2A (5-HT2A) receptor antagonism in rodents, mGlu2R specificity of effects was studied in wild-type (WT) and mGluR2 (-/-) mice. 5-HT2A receptor occupancy was determined in humans using positron emission tomography (PET). Tolerance development was examined in rats after chronic dosing. EEG oscillations and network connectivity were assessed using multi-channel EEG. In rats, JNJ-40411813 increased deep sleep time and latency of REM onset but reduced REM time when administered 2 h after 'lights on' (CT2): this was sustained after chronic dosing. At CT5 similar effects were elicited, at CT10 only deep sleep was enhanced. Withdrawal resulted in baseline values, while re-administration reinstated drug effects. Parieto-occipital cortical slow theta and gamma oscillations were correlated with low locomotion. The specificity of functional response was confirmed in WT but not mGluR2 (-/-) mice. A double-blind, placebo-controlled polysomnographic study in healthy, elderly subjects showed that 500 mg of JNJ-40411813 consistently increased deep sleep time, but had no effect on REM parameters. This deep sleep effect was not explained by 5-HT2A receptor binding, as in the PET study even 700 mg only marginally displaced the tracer. JNJ-40411813 elicited comparable functional responses in rodents and men if circadian time of dosing was taken into account. These findings underscore the translational potential of sleep mechanisms in evaluating mGluR2 therapeutics when administered at the appropriate circadian time.

  10. Activation of muscarinic acetylcholine receptors via their allosteric binding sites.

    PubMed Central

    Jakubík, J; Bacáková, L; Lisá, V; el-Fakahany, E E; Tucek, S

    1996-01-01

    Ligands that bind to the allosteric-binding sites on muscarinic acetylcholine receptors alter the conformation of the classical-binding sites of these receptors and either diminish or increase their affinity for muscarinic agonists and classical antagonists. It is not known whether the resulting conformational change also affects the interaction between the receptors and the G proteins. We have now found that the muscarinic receptor allosteric modulators alcuronium, gallamine, and strychnine (acting in the absence of an agonist) alter the synthesis of cAMP in Chinese hamster ovary (CHO) cells expressing the M2 or the M4 subtype of muscarinic receptors in the same direction as the agonist carbachol. In addition, most of their effects on the production of inositol phosphates in CHO cells expressing the M1 or the M3 muscarinic receptor subtypes are also similar to (although much weaker than) those of carbachol. The agonist-like effects of the allosteric modulators are not observed in CHO cells that have not been transfected with the gene for any of the subtypes of muscarinic receptors. The effects of alcuronium on the formation of cAMP and inositol phosphates are not prevented by the classical muscarinic antagonist quinuclidinyl benzilate. These observations demonstrate for the first time that the G protein-mediated functional responses of muscarinic receptors can be evoked not only from their classical, but also from their allosteric, binding sites. This represents a new mechanism of receptor activation. PMID:8710935

  11. Receptor activity-modifying proteins; multifunctional G protein-coupled receptor accessory proteins.

    PubMed

    Hay, Debbie L; Walker, Christopher S; Gingell, Joseph J; Ladds, Graham; Reynolds, Christopher A; Poyner, David R

    2016-04-15

    Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine. PMID:27068971

  12. Activation of G protein by opioid receptors: role of receptor number and G-protein concentration.

    PubMed

    Remmers, A E; Clark, M J; Alt, A; Medzihradsky, F; Woods, J H; Traynor, J R

    2000-05-19

    The collision-coupling model for receptor-G-protein interaction predicts that the rate of G-protein activation is dependent on receptor density, but not G-protein levels. C6 cells expressing mu- or delta-opioid receptors, or SH-SY5Y cells, were treated with beta-funaltrexamine (mu) or naltrindole-5'-isothiocyanate (delta) to decrease receptor number. The time course of full or partial agonist-stimulated ¿35SGTPgammaS binding did not vary in C6 cell membranes containing <1-25 pmol/mg mu-opioid receptor, or 1. 4-4.3 pmol/mg delta-opioid receptor, or in SHSY5Y cells containing 0. 16-0.39 pmol/mg receptor. The association of ¿35SGTPgammaS binding was faster in membranes from C6mu cells than from C6delta cells. A 10-fold reduction in functional G-protein, following pertussis toxin treatment, lowered the maximal level of ¿35SGTPgammaS binding but not the association rate. These data indicate a compartmentalization of opioid receptors and G protein at the cell membrane. PMID:10822058

  13. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    PubMed Central

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  14. An activation switch in the rhodopsin family of G protein-coupled receptors: the thyrotropin receptor.

    PubMed

    Urizar, Eneko; Claeysen, Sylvie; Deupí, Xavier; Govaerts, Cedric; Costagliola, Sabine; Vassart, Gilbert; Pardo, Leonardo

    2005-04-29

    We aimed at understanding molecular events involved in the activation of a member of the G protein-coupled receptor family, the thyrotropin receptor. We have focused on the transmembrane region and in particular on a network of polar interactions between highly conserved residues. Using molecular dynamics simulations and site-directed mutagenesis techniques we have identified residue Asn-7.49, of the NPxxY motif of TM 7, as a molecular switch in the mechanism of thyrotropin receptor (TSHr) activation. Asn-7.49 appears to adopt two different conformations in the inactive and active states. These two states are characterized by specific interactions between this Asn and polar residues in the transmembrane domain. The inactive gauche+ conformation is maintained by interactions with residues Thr-6.43 and Asp-6.44. Mutation of these residues into Ala increases the constitutive activity of the receptor by factors of approximately 14 and approximately 10 relative to wild type TSHr, respectively. Upon receptor activation Asn-7.49 adopts the trans conformation to interact with Asp-2.50 and a putatively charged residue that remains to be identified. In addition, the conserved Leu-2.46 of the (N/S)LxxxD motif also plays a significant role in restraining the receptor in the inactive state because the L2.46A mutation increases constitutive activity by a factor of approximately 13 relative to wild type TSHr. As residues Leu-2.46, Asp-2.50, and Asn-7.49 are strongly conserved, this molecular mechanism of TSHr activation can be extended to other members of the rhodopsin-like family of G protein-coupled receptors.

  15. Pharmacology of basimglurant (RO4917523, RG7090), a unique metabotropic glutamate receptor 5 negative allosteric modulator in clinical development for depression.

    PubMed

    Lindemann, Lothar; Porter, Richard H; Scharf, Sebastian H; Kuennecke, Basil; Bruns, Andreas; von Kienlin, Markus; Harrison, Anthony C; Paehler, Axel; Funk, Christoph; Gloge, Andreas; Schneider, Manfred; Parrott, Neil J; Polonchuk, Liudmila; Niederhauser, Urs; Morairty, Stephen R; Kilduff, Thomas S; Vieira, Eric; Kolczewski, Sabine; Wichmann, Juergen; Hartung, Thomas; Honer, Michael; Borroni, Edilio; Moreau, Jean-Luc; Prinssen, Eric; Spooren, Will; Wettstein, Joseph G; Jaeschke, Georg

    2015-04-01

    Major depressive disorder (MDD) is a serious public health burden and a leading cause of disability. Its pharmacotherapy is currently limited to modulators of monoamine neurotransmitters and second-generation antipsychotics. Recently, glutamatergic approaches for the treatment of MDD have increasingly received attention, and preclinical research suggests that metabotropic glutamate receptor 5 (mGlu5) inhibitors have antidepressant-like properties. Basimglurant (2-chloro-4-[1-(4-fluoro-phenyl)-2,5-dimethyl-1H-imidazol-4-ylethynyl]-pyridine) is a novel mGlu5 negative allosteric modulator currently in phase 2 clinical development for MDD and fragile X syndrome. Here, the comprehensive preclinical pharmacological profile of basimglurant is presented with a focus on its therapeutic potential for MDD and drug-like properties. Basimglurant is a potent, selective, and safe mGlu5 inhibitor with good oral bioavailability and long half-life supportive of once-daily administration, good brain penetration, and high in vivo potency. It has antidepressant properties that are corroborated by its functional magnetic imaging profile as well as anxiolytic-like and antinociceptive features. In electroencephalography recordings, basimglurant shows wake-promoting effects followed by increased delta power during subsequent non-rapid eye movement sleep. In microdialysis studies, basimglurant had no effect on monoamine transmitter levels in the frontal cortex or nucleus accumbens except for a moderate increase of accumbal dopamine, which is in line with its lack of pharmacological activity on monoamine reuptake transporters. These data taken together, basimglurant has favorable drug-like properties, a differentiated molecular mechanism of action, and antidepressant-like features that suggest the possibility of also addressing important comorbidities of MDD including anxiety and pain as well as daytime sleepiness and apathy or lethargy.

  16. Clinically used selective oestrogen receptor modulators increase LDL receptor activity in primary human lymphocytes

    PubMed Central

    Cerrato, F; Fernández-Suárez, M E; Alonso, R; Alonso, M; Vázquez, C; Pastor, O; Mata, P; Lasunción, M A; Gómez-Coronado, D

    2015-01-01

    Background and Purpose Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts. Experimental Approach Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry. Key Results Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182 780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes. Conclusions and Implications Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs. PMID:25395200

  17. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  18. Immunohistochemical quantitation of oestrogen receptors and proliferative activity in oestrogen receptor positive breast cancer.

    PubMed Central

    Jensen, V; Ladekarl, M

    1995-01-01

    AIM--To evaluate the effect of the duration of formalin fixation and of tumour heterogeneity on quantitative estimates of oestrogen receptor content (oestrogen receptor index) and proliferative activity (MIB-1 index) in breast cancer. METHODS--Two monoclonal antibodies, MIB-1 and oestrogen receptor, were applied to formalin fixed, paraffin wax embedded tissue from 25 prospectively collected oestrogen receptor positive breast carcinomas, using a microwave antigen retrieval method. Tumour tissue was allocated systematically to different periods of fixation to ensure minimal intraspecimen variation. The percentages of MIB-1 positive and oestrogen receptor positive nuclei were estimated in fields of vision sampled systematically from the entire specimen and from the whole tumour area of one "representative" cross-section. RESULTS--No correlation was found between the oestrogen receptor and MIB-1 indices and the duration of formalin fixation. The estimated MIB-1 and oestrogen receptor indices in tissue sampled systematically from the entire tumour were closely correlated with estimates obtained in a "representative" section. The intra- and interobserver correlation of the MIB-1 index was good, although a slight systematical error at the second assessment of the intraobserver study was noted. CONCLUSION--Quantitative estimates of oestrogen receptor content and proliferative activity are not significantly influenced by the period of fixation in formalin, varying from less than four hours to more than 48 hours. The MIB-1 and the oestrogen receptor indices obtained in a "representative" section do not deviate significantly from average indices determined in tissue samples from the entire tumour. Finally, the estimation of MIB-1 index is reproducible, justifying its routine use. PMID:7629289

  19. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    SciTech Connect

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H Eric

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

  20. Insulin and rabbit anti-insulin receptor antibodies stimulate additively the intrinsic receptor kinase activity.

    PubMed Central

    Ponzio, G; Dolais-Kitabgi, J; Louvard, D; Gautier, N; Rossi, B

    1987-01-01

    This paper describes the properties of rabbit polyclonal antibodies directed against purified human insulin receptor which strongly stimulate the intrinsic tyrosine kinase activity. The stimulatory effect of the antibodies on the kinase activity was obtained on the insulin receptor autophosphorylation as well as on the kinase activity towards a synthetic substrate. This stimulation is additive to that induced by insulin. Moreover, rabbit antibodies do not impair insulin binding. These data strongly suggest that antibodies and insulin act through separate pathways. This conclusion is reinforced by the differences observed on the phosphopeptide maps of the receptor's beta subunit whose phosphorylation was performed either in the presence of insulin or rabbit antibodies. Interestingly, these polyclonal antibodies can also induce an activation of the receptor autophosphorylation by interacting only with extracellular determinants. The anti-insulin receptor antibodies mimic insulin in their stimulatory effect on amino acid (AIB) uptake, but they have a different effect to that found on the kinase activity; the simultaneous addition of the antiserum and insulin failed to stimulate this amino acid transport over the level induced by a saturating concentration of hormone. Images Fig. 1. Fig. 3. Fig. 4. Fig. 6. Fig. 7. PMID:3034584

  1. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold.

  2. Monitoring leptin activity using the chicken leptin receptor.

    PubMed

    Hen, Gideon; Yosefi, Sera; Ronin, Ana; Einat, Paz; Rosenblum, Charles I; Denver, Robert J; Friedman-Einat, Miriam

    2008-05-01

    We report on the construction of a leptin bioassay based on the activation of chicken leptin receptor in cultured cells. A human embryonic kidney (HEK)-293 cell line, stably transfected with the full-length cDNA of chicken leptin receptor together with a STAT3-responsive reporter gene specifically responded to recombinant human and Xenopus leptins. The observed higher sensitivity of chicken leptin receptor to the former is in agreement with the degree of sequence similarity among these species (about 60 and 38% identical amino acids between humans and chickens, and between humans and Xenopus respectively). The specific activation of signal transduction through the chicken leptin receptor, shown here for the first time, suggests that the transition of Gln269 (implicated in the Gln-to-Pro Zucker fatty mutation in rats) to Glu in chickens does not impair its activity. Analysis of leptin-like activity in human serum samples of obese and lean subjects coincided well with leptin levels determined by RIA. Serum samples of pre- and post partum cows showed a tight correlation with the degree of adiposity. However, specific activation of the chicken leptin receptor in this assay was not observed with serum samples from broiler or layer chickens (representing fat and lean phenotypes respectively) or with those from turkey. Similar leptin receptor activation profiles were observed with cells transfected with human leptin receptor. Further work is needed to determine whether the lack of leptin-like activity in the chicken serum samples is due to a lack of leptin in this species or simply to a serum level of leptin that is below the detection threshold. PMID:18434362

  3. Flavonoids as dietary regulators of nuclear receptor activity

    PubMed Central

    Avior, Yishai; Bomze, David; Ramon, Ory

    2013-01-01

    Metabolic diseases such as obesity, type II diabetes, and dyslipidemia are a rising cause of mortality worldwide. The progression of many metabolic diseases is fundamentally regulated on the transcriptional level by a family of ligand-activated transcription factors, called nuclear receptors, which detect and respond to metabolic changes. Their role in maintaining metabolic homeostasis makes nuclear receptors an important pharmaceutical and dietary target. This review will present the growing evidence that flavonoids, natural secondary plant metabolites, are important regulators of nuclear receptor activity. Structural similarities between flavonoids and cholesterol derivatives combined with the promiscuous nature of most nuclear receptors provide a wealth of possibilities for pharmaceutical and dietary modulation of metabolism. While the challenges of bringing flavonoid-derived therapeutics to the market are significant, we consider this rapidly growing field to be an essential aspect of the functional food initiative and an important mine for pharmaceutical compounds. PMID:23598551

  4. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    PubMed

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  5. Allosteric Activation of a G Protein-coupled Receptor with Cell-penetrating Receptor Mimetics*

    PubMed Central

    Zhang, Ping; Leger, Andrew J.; Baleja, James D.; Rana, Rajashree; Corlin, Tiffany; Nguyen, Nga; Koukos, Georgios; Bohm, Andrew; Covic, Lidija; Kuliopulos, Athan

    2015-01-01

    G protein-coupled receptors (GPCRs) are remarkably versatile signaling systems that are activated by a large number of different agonists on the outside of the cell. However, the inside surface of the receptors that couple to G proteins has not yet been effectively modulated for activity or treatment of diseases. Pepducins are cell-penetrating lipopeptides that have enabled chemical and physical access to the intracellular face of GPCRs. The structure of a third intracellular (i3) loop agonist, pepducin, based on protease-activated receptor-1 (PAR1) was solved by NMR and found to closely resemble the i3 loop structure predicted for the intact receptor in the on-state. Mechanistic studies revealed that the pepducin directly interacts with the intracellular H8 helix region of PAR1 and allosterically activates the receptor through the adjacent (D/N)PXXYYY motif through a dimer-like mechanism. The i3 pepducin enhances PAR1/Gα subunit interactions and induces a conformational change in fluorescently labeled PAR1 in a very similar manner to that induced by thrombin. As pepducins can potentially be made to target any GPCR, these data provide insight into the identification of allosteric modulators to this major drug target class. PMID:25934391

  6. Investigation of allosteric modulation mechanism of metabotropic glutamate receptor 1 by molecular dynamics simulations, free energy and weak interaction analysis

    NASA Astrophysics Data System (ADS)

    Bai, Qifeng; Yao, Xiaojun

    2016-02-01

    Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1.

  7. Redefining the concept of protease-activated receptors: cathepsin S evokes itch via activation of Mrgprs

    PubMed Central

    Reddy, Vemuri B.; Sun, Shuohao; Azimi, Ehsan; Elmariah, Sarina B.; Dong, Xinzhong; Lerner, Ethan A.

    2015-01-01

    Sensory neurons expressing Mas-related G protein coupled receptors (Mrgprs) mediate histamine-independent itch. We show that the cysteine protease cathepsin S activates MrgprC11 and evokes receptor-dependent scratching in mice. In contrast to its activation of conventional protease-activated receptors, cathepsin S mediated activation of MrgprC11 did not involve the generation of a tethered ligand. We demonstrate further that different cysteine proteases selectively activate specific mouse and human Mrgpr family members. This expansion of our understanding by which proteases interact with GPCRs redefines the concept of what constitutes a protease-activated receptor. The findings also implicate proteases as ligands to members of this orphan receptor family while providing new insights into how cysteine proteases contribute to itch. PMID:26216096

  8. Steroid signaling activation and intracellular localization of sex steroid receptors.

    PubMed

    Giraldi, Tiziana; Giovannelli, Pia; Di Donato, Marzia; Castoria, Gabriella; Migliaccio, Antimo; Auricchio, Ferdinando

    2010-12-01

    In addition to stimulating gene transcription, sex steroids trigger rapid, non-genomic responses in the extra-nuclear compartment of target cells. These events take place within seconds or minutes after hormone administration and do not require transcriptional activity of sex steroid receptors. Depending on cell systems, activation of extra-nuclear signaling pathways by sex steroids fosters cell cycle progression, prevents apoptosis, leads to epigenetic modifications and increases cell migration through cytoskeleton changes. These findings have raised the question of intracellular localization of sex steroid receptors mediating these responses. During the past years, increasing evidence has shown that classical sex steroid receptors localized in the extra-nuclear compartment or close to membranes of target cells induce these events. The emerging picture is that a process of bidirectional control between signaling activation and sex steroid receptor localization regulates the outcome of hormonal responses in target cells. This mechanism ensures cell cycle progression in estradiol-treated breast cancer cells, and its derangement might occur in progression of human proliferative diseases. These findings will be reviewed here together with unexpected examples of the relationship between sex steroid receptor localization, signaling activation and biological responses in target cells. We apologize to scientists whose reports are not mentioned or extensively discussed owing to space limitations.

  9. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  10. Overexpression and activation of epidermal growth factor receptor in hemangioblastomas

    PubMed Central

    Chen, Gregory J.; Karajannis, Matthias A.; Newcomb, Elizabeth W.

    2010-01-01

    Hemangioblastomas frequently develop in patients with von Hippel-Lindau (VHL) disease, an autosomal dominant genetic disorder. The tumors are characterized by a dense network of blood capillaries, often in association with cysts. Although activation of receptor tyrosine kinase (RTK) signaling, including epidermal growth factor receptor (EGFR) has been implicated in the development of malignant brain tumors such as high-grade gliomas, little is known about the role of RTK signaling in hemangioblastomas. To address this issue, we examined hemangioblastoma tumor specimens using receptor tyrosine kinase (RTK) activation profiling and immunohistochemistry. Six human hemangioblastomas were analyzed with a phospho-RTK antibody array, revealing EGFR phosphorylation in all tumors. EGFR expression was confirmed by immunohistochemistry in all tumors analyzed and downstream effector pathway activation was demonstrated by positive staining for phospho-AKT. Our findings suggest that, in primary hemangioblastomas, RTK upregulation and signaling predominantly involves EGFR, providing an attractive molecular target for therapeutic intervention. PMID:20730556

  11. Interfering with mineralocorticoid receptor activation: the past, present, and future

    PubMed Central

    2014-01-01

    Aldosterone is a potent mineralocorticoid produced by the adrenal gland. Aldosterone binds to and activates the mineralocorticoid receptor (MR) in a plethora of tissues, but the cardiovascular actions of aldosterone are of primary interest clinically. Although MR antagonists were developed as antihypertensive agents, they are now considered to be important therapeutic options for patients with heart failure. Specifically, blocking only the MR has proven to be a difficult task because of its similarity to other steroid receptors, including the androgen and progesterone receptors. This lack of specificity caused the use of the first-generation mineralocorticoid receptor antagonists to be fraught with difficulty because of the side effects produced by drug administration. However, in recent years, several advances have been made that could potentially increase the clinical use of agents that inhibit the actions of aldosterone. These will be discussed here along with some examples of the beneficial effects of these new therapeutic agents. PMID:25165560

  12. Histamine 3 receptor activation reduces the expression of neuronal angiotensin II type 1 receptors in the heart.

    PubMed

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki; Levi, Roberto

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H₃) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na⁺/H⁺ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT₁) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H₃ receptors and AT₁ receptors. The purpose of this investigation was therefore to elucidate the H₃/AT₁ receptor interaction in myocardial ischemia/reperfusion. We found that H₃ receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT₁ receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT₁ receptor expression. Moreover, norepinephrine release and AT₁ receptor expression were increased by the nitric oxide (NO) synthase inhibitor N(G)-methyl-L-arginine and the protein kinase C activator phorbol myristate acetate. H₃ receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H₃ receptor cDNA caused a decrease in protein kinase C activity and AT₁ receptor protein abundance. Collectively, our findings suggest that neuronal H₃ receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT₁ receptor expression. Thus, H₃ receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT₁ receptor expression. Cardioprotection ultimately results from the combined

  13. Histamine 3 Receptor Activation Reduces the Expression of Neuronal Angiotensin II Type 1 Receptors in the Heart

    PubMed Central

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H3) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na+/H+ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT1) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H3 receptors and AT1 receptors. The purpose of this investigation was therefore to elucidate the H3/AT1 receptor interaction in myocardial ischemia/reperfusion. We found that H3 receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT1 receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT1 receptor expression. Moreover, norepinephrine release and AT1 receptor expression were increased by the nitric oxide (NO) synthase inhibitor NG-methyl-l-arginine and the protein kinase C activator phorbol myristate acetate. H3 receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H3 receptor cDNA caused a decrease in protein kinase C activity and AT1 receptor protein abundance. Collectively, our findings suggest that neuronal H3 receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT1 receptor expression. Thus, H3 receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT1 receptor expression. Cardioprotection ultimately results from the combined attenuation of angiotensin II and

  14. Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor a (PPARa)

    EPA Science Inventory

    The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARa) is activated by a large number of xenobiotic and hypolipidemic compounds called peroxisome proliferator chemicals (PPC). One agonist of PPARa (WY-14,643) regulates responses in the mouse liver to chemic...

  15. The cytoplasmic tails of protease-activated receptor-1 and substance P receptor specify sorting to lysosomes versus recycling.

    PubMed

    Trejo, J; Coughlin, S R

    1999-01-22

    The G protein-coupled receptor (GPCR) for thrombin, protease-activated receptor-1 (PAR1), is activated when thrombin cleaves its amino-terminal exodomain. The irreversibility of this proteolytic mechanism raises the question of how desensitization and resensitization are accomplished for thrombin signaling. PAR1 is phosphorylated, uncoupled from signaling, and internalized after activation like classic GPCRs. However, unlike classic GPCRs, which internalize and recycle, activated PAR1 is sorted to lysosomes. To identify the signals that specify the distinct sorting of PAR1, we constructed chimeras between PAR1 and the substance P receptor. Wild-type substance P receptor internalized and recycled after activation; PAR1 bearing the cytoplasmic tail of the substance P receptor (P/S) behaved similarly. By contrast, wild-type PAR1 and a substance P receptor bearing the cytoplasmic tail of PAR1 (S/P) sorted to lysosomes after activation. Consistent with these observations, PAR1 and the S/P chimera were effectively down-regulated by their respective agonists as assessed by both receptor protein levels and signaling. Substance P receptor and the P/S chimera showed little down-regulation. These data suggest that the cytoplasmic tails of PAR1 and substance P receptor specify their distinct intracellular sorting patterns after activation and internalization. Moreover, by altering the trafficking fates of PAR1 and substance P receptor, one can dictate the efficiency with which a cell maintains responsiveness to PAR1 or substance P receptor agonists over time.

  16. Mechanisms of Activation of Receptor Tyrosine Kinases: Monomers or Dimers

    PubMed Central

    Maruyama, Ichiro N.

    2014-01-01

    Receptor tyrosine kinases (RTKs) play essential roles in cellular processes, including metabolism, cell-cycle control, survival, proliferation, motility and differentiation. RTKs are all synthesized as single-pass transmembrane proteins and bind polypeptide ligands, mainly growth factors. It has long been thought that all RTKs, except for the insulin receptor (IR) family, are activated by ligand-induced dimerization of the receptors. An increasing number of diverse studies, however, indicate that RTKs, previously thought to exist as monomers, are present as pre-formed, yet inactive, dimers prior to ligand binding. The non-covalently associated dimeric structures are reminiscent of those of the IR family, which has a disulfide-linked dimeric structure. Furthermore, recent progress in structural studies has provided insight into the underpinnings of conformational changes during the activation of RTKs. In this review, I discuss two mutually exclusive models for the mechanisms of activation of the epidermal growth factor receptor, the neurotrophin receptor and IR families, based on these new insights. PMID:24758840

  17. Modulation of Receptor Phosphorylation Contributes to Activation of Peroxisome Proliferator Activated Receptor α by Dehydroepiandrosterone and Other Peroxisome Proliferators

    PubMed Central

    Tamasi, Viola; Miller, Kristy K. Michael; Ripp, Sharon L.; Vila, Ermin; Geoghagen, Thomas E.; Prough, Russell A.

    2008-01-01

    Dehydroepiandrosterone (DHEA), a C19 human adrenal steroid, activates peroxisome proliferator-activated receptor α (PPARα) in vivo but does not ligand-activate PPARα in transient transfection experiments. We demonstrate that DHEA regulates PPARα action by altering both the levels and phosphorylation status of the receptor. Human hepatoma cells (HepG2) were transiently transfected with the expression plasmid encoding PPARα and a plasmid containing two copies of fatty acyl coenzyme oxidase (FACO) peroxisome-proliferator activated receptor responsive element consensus oligonucleotide in a luciferase reporter gene. Nafenopin treatment increased reporter gene activity in this system, whereas DHEA treatment did not. Okadaic acid significantly decreased nafenopin-induced reporter activity in a concentration-dependent manner. Okadaic acid treatment of primary rat hepatocytes decreased both DHEA- and nafenopin-induced FACO activity in primary rat hepatocytes. DHEA induced both PPARα mRNA and protein levels, as well as PP2A message in primary rat hepatocytes. Western blot analysis showed that the serines at positions 12 and 21 were rapidly dephosphorylated upon treatment with DHEA and nafenopin. Results using specific protein phosphatase inhibitors suggested that protein phosphatase 2A (PP2A) is responsible for DHEA action, and protein phosphatase 1 might be involved in nafenopin induction. Mutation of serines at position 6, 12, and 21 to an uncharged alanine residue significantly increased transcriptional activity, whereas mutation to negative charged aspartate residues (mimicking receptor phosphorylation) decreased transcriptional activity. DHEA action involves induction of PPARα mRNA and protein levels as well as increased PPARα transcriptional activity through decreasing receptor phosphorylation at serines in the AF1 region. PMID:18079279

  18. Liver X Receptor and Peroxisome Proliferator-Activated Receptor Agonist from Cornus alternifolia

    PubMed Central

    He, Yang-Qing; Ma, Guo-Yi; Peng, Jiang-nan; Ma, Zhan-Ying; Hamann, Mark T.

    2012-01-01

    Background Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptors superfamily and are transcription factors activated by specific ligands. Liver X receptors (LXR) belong to the nuclear hormone receptors and have been shown to play an important role in cholesterol homeostasis. From the previous screening of several medicinal plants for potential partial PPARγ agonists, the extracts of Cornus alternifolia were found to exhibit promising bioactivity. In this paper, we report the isolation and structural elucidation of four new compounds and their potential as ligands for PPAR. Methods The new compounds were extracted from the leaves of Cornus alternifolia and fractionated by high-performance liquid chromatography. Their structures were elucidated on the basis of spectroscopic evidence and analysis of their hydrolysis products. Results Three new iridoid glycosides including an iridolactone, alternosides A-C (1–3), a new megastigmane glycoside, cornalternoside (4) and 10 known compounds, were obtained from the leaves of Cornus alternifolia. Kaempferol-3-O-β-glucopyranoside (5) exhibited potent agonistic activities for PPARα, PPARγ and LXR with EC50 values of 0.62, 3.0 and 1.8 μ M, respectively. Conclusions We isolated four new and ten known compounds from Cornus alternifolia, and one known compound showed agonistic activities for PPARα, PPARγ and LXR. General significance Compound 1 is the first example of a naturally occurring iridoid glycoside containing a β-glucopyranoside moiety at C-6. PMID:22353334

  19. Immunomodulatory effects of endogenous and synthetic peptides activating opioid receptors.

    PubMed

    Pomorska, Dorota K; Gach, Katarzyna; Janecka, Anna

    2014-01-01

    The main role of endogenous opioid peptides is the modulation of pain. Opioid peptides exert their analgesic activity by binding to the opioid receptors distributed widely in the central nervous system (CNS). However, opioid receptors are also found on tissues and organs outside the CNS, including the cells of the immune system, indicating that opioids are capable of exerting additional effects in periphery. Morphine, which is a gold standard in the treatment of chronic pain, is well-known for its immunosuppressive effects. Much less is known about the immunomodulatory effects exerted by endogenous (enkephalins, endorphins, dynorphins and endomorphins) and synthetic peptides activating opioid receptors. In this review we tried to summarize opioid peptide-mediated modulation of immune cell functions which can be stimulatory as well as inhibitory. PMID:25553430

  20. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation.

    PubMed

    Macho, Alberto P; Schwessinger, Benjamin; Ntoukakis, Vardis; Brutus, Alexandre; Segonzac, Cécile; Roy, Sonali; Kadota, Yasuhiro; Oh, Man-Ho; Sklenar, Jan; Derbyshire, Paul; Lozano-Durán, Rosa; Malinovsky, Frederikke Gro; Monaghan, Jacqueline; Menke, Frank L; Huber, Steven C; He, Sheng Yang; Zipfel, Cyril

    2014-03-28

    Innate immunity relies on the perception of pathogen-associated molecular patterns (PAMPs) by pattern-recognition receptors (PRRs) located on the host cell's surface. Many plant PRRs are kinases. Here, we report that the Arabidopsis receptor kinase EF-TU RECEPTOR (EFR), which perceives the elf18 peptide derived from bacterial elongation factor Tu, is activated upon ligand binding by phosphorylation on its tyrosine residues. Phosphorylation of a single tyrosine residue, Y836, is required for activation of EFR and downstream immunity to the phytopathogenic bacterium Pseudomonas syringae. A tyrosine phosphatase, HopAO1, secreted by P. syringae, reduces EFR phosphorylation and prevents subsequent immune responses. Thus, host and pathogen compete to take control of PRR tyrosine phosphorylation used to initiate antibacterial immunity.

  1. Structural basis for selective activation of ABA receptors

    SciTech Connect

    Peterson, Francis C.; Burgie, E. Sethe; Park, Sang-Youl; Jensen, Davin R.; Weiner, Joshua J.; Bingman, Craig A.; Chang, Chia-En A.; Cutler, Sean R.; Phillips, Jr., George N.; Volkman, Brian F.

    2010-11-01

    Changing environmental conditions and lessening fresh water supplies have sparked intense interest in understanding and manipulating abscisic acid (ABA) signaling, which controls adaptive responses to drought and other abiotic stressors. We recently discovered a selective ABA agonist, pyrabactin, and used it to discover its primary target PYR1, the founding member of the PYR/PYL family of soluble ABA receptors. To understand pyrabactin's selectivity, we have taken a combined structural, chemical and genetic approach. We show that subtle differences between receptor binding pockets control ligand orientation between productive and nonproductive modes. Nonproductive binding occurs without gate closure and prevents receptor activation. Observations in solution show that these orientations are in rapid equilibrium that can be shifted by mutations to control maximal agonist activity. Our results provide a robust framework for the design of new agonists and reveal a new mechanism for agonist selectivity.

  2. Novel positive allosteric modulators of GABAA receptors with anesthetic activity

    PubMed Central

    Maldifassi, Maria C.; Baur, Roland; Pierce, David; Nourmahnad, Anahita; Forman, Stuart A.; Sigel, Erwin

    2016-01-01

    GABAA receptors are the main inhibitory neurotransmitter receptors in the brain and are targets for numerous clinically important drugs such as benzodiazepines, anxiolytics and anesthetics. We previously identified novel ligands of the classical benzodiazepine binding pocket in α1β2γ2 GABAA receptors using an experiment-guided virtual screening (EGVS) method. This screen also identified novel ligands for intramembrane low affinity diazepam site(s). In the current study we have further characterized compounds 31 and 132 identified with EGVS as well as 4-O-methylhonokiol. We investigated the site of action of these compounds in α1β2γ2 GABAA receptors expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology combined with a benzodiazepine site antagonist and transmembrane domain mutations. All three compounds act mainly through the two β+/α− subunit transmembrane interfaces of the GABAA receptors. We then used concatenated receptors to dissect the involvement of individual β+/α− interfaces. We further demonstrated that these compounds have anesthetic activity in a small aquatic animal model, Xenopus laevis tadpoles. The newly identified compounds may serve as scaffolds for the development of novel anesthetics. PMID:27198062

  3. Cofactoring and Dimerization of Proteinase-Activated Receptors

    PubMed Central

    Lin, Huilan; Liu, Allen P.; Smith, Thomas H.

    2013-01-01

    Proteinase-activated receptors (PARs) are G protein–coupled receptors that transmit cellular responses to extracellular proteases and have important functions in vascular physiology, development, inflammation, and cancer progression. The established paradigm for PAR activation involves proteolytic cleavage of the extracellular N terminus, which reveals a new N terminus that functions as a tethered ligand by binding intramolecularly to the receptor to trigger transmembrane signaling. Most cells express more than one PAR, which can influence the mode of PAR activation and signaling. Clear examples include murine PAR3 cofactoring of PAR4 and transactivation of PAR2 by PAR1. Thrombin binds to and cleaves murine PAR3, which facilitates PAR4 cleavage and activation. This process is essential for thrombin signaling and platelet activation, since murine PAR3 cannot signal alone. Although PAR1 and PAR4 are both competent to signal, PAR1 is able to act as a cofactor for PAR4, facilitating more rapid cleavage and activation by thrombin. PAR1 can also facilitate PAR2 activation through a different mechanism. Cleavage of the PAR1 N terminus by thrombin generates a tethered ligand domain that can bind intermolecularly to PAR2 to activate signaling. Thus, PARs can regulate each other’s activity by localizing thrombin when in complex with PAR3 and PAR4 or by cleaved PAR1, providing its tethered ligand domain for PAR2 activation. The ability of PARs to cofactor or transactivate other PARs would necessitate that the two receptors be in close proximity, likely in the form of a heterodimer. Here, we discuss the cofactoring and dimerization of PARs and the functional consequences on signaling. PMID:24064459

  4. The Venus Fly Trap domain of the extracellular Ca2+ -sensing receptor is required for L-amino acid sensing.

    PubMed

    Mun, Hee-Chang; Franks, Alison H; Culverston, Emma L; Krapcho, Karen; Nemeth, Edward F; Conigrave, Arthur D

    2004-12-10

    We previously demonstrated that the human calcium-sensing receptor (CaR) is allosterically activated by L-amino acids (Conigrave, A. D., Quinn, S. J., and Brown, E. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 4814-4819). However, the domain-based location of amino acid binding has been uncertain. We now show that the Venus Fly Trap (VFT) domain of CaR, but none of its other major domains, is required for amino acid sensing. Several constructs were informative when expressed in HEK293 cells. First, the wild-type CaR exhibited allosteric activation by L-amino acids as previously observed. Second, two CaR-mGlu chimeric receptor constructs that retained the VFT domain of CaR, one containing the extracellular Cys-rich region of CaR and the other containing the Cys-rich region of the rat metabotropic glutamate type-1 (mGlu-1) receptor, together with the rat mGlu-1 transmembrane region and C-terminal tail, retained amino acid sensing. Third, a CaR lacking residues 1-599 of the N-terminal extracellular head but retaining an intact CaR transmembrane region and a functional but truncated C terminus (headless-T903 CaR) failed to respond to L-amino acids but retained responsiveness to the type-II calcimimetic NPS R-467. Finally, a T903 CaR control that retained an intact N terminus also retained L-amino acid sensing. Taken together, the data indicate that the VFT domain of CaR is necessary for L-amino acid sensing and are consistent with the hypothesis that the VFT domain is the site of L-amino acid binding. The findings support the concept that the mGlu-1 amino acid binding site for L-glutamate is conserved as an L-amino acid binding site in its homolog, the CaR.

  5. Peroxisome proliferator-activated receptors in the cardiovascular system

    PubMed Central

    Bishop-Bailey, David

    2000-01-01

    Peroxisome proliferator-activated receptor (PPAR)s are a family of three nuclear hormone receptors, PPARα, -δ, and -γ, which are members of the steriod receptor superfamily. The first member of the family (PPARα) was originally discovered as the mediator by which a number of xenobiotic drugs cause peroxisome proliferation in the liver. Defined functions for all these receptors, until recently, mainly concerned their ability to regulate energy balance, with PPARα being involved in β-oxidation pathways, and PPARγ in the differentiation of adipocytes. Little is known about the functions of PPARδ, though it is the most ubiquitously expressed. Since their discovery, PPARs have been shown to be expressed in monocytes/macrophages, the heart, vascular smooth muscle cells, endothelial cells, and in atherosclerotic lesions. Furthermore, PPARs can be activated by a vast number of compounds including synthetic drugs, of the clofibrate, and anti-diabetic thiazoldinedione classes, polyunsaturated fatty acids, and a number of eicosanoids, including prostaglandins, lipoxygenase products, and oxidized low density lipoprotein. This review will aim to introduce the field of PPAR nuclear hormone receptors, and discuss the discovery and actions of PPARs in the cardiovascular system, as well as the source of potential ligands. PMID:10696077

  6. Nuclear Receptor Activity and Liver Cancer Lesion Progression

    EPA Science Inventory

    Nuclear receptors (NRs) are ligand-activated transcription factors that control diverse cellular processes. Chronic stimulation of some NRs is a non-genotoxic mechanism of rodent liver cancer with unclear relevance to humans. We explored this question using human CAR, PXR, PPARα,...

  7. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. PMID:22269613

  8. Chronic treatment with LY341495 decreases 5-HT(2A) receptor binding and hallucinogenic effects of LSD in mice.

    PubMed

    Moreno, José L; Holloway, Terrell; Rayannavar, Vinayak; Sealfon, Stuart C; González-Maeso, Javier

    2013-03-01

    Hallucinogenic drugs, such as lysergic acid diethylamide (LSD), mescaline and psilocybin, alter perception and cognitive processes. All hallucinogenic drugs have in common a high affinity for the serotonin 5-HT(2A) receptor. Metabotropic glutamate 2/3 (mGlu2/3) receptor ligands show efficacy in modulating the cellular and behavioral responses induced by hallucinogenic drugs. Here, we explored the effect of chronic treatment with the mGlu2/3 receptor antagonist 2S-2-amino-2-(1S,2S-2-carboxycyclopropan-1-yl)-3-(xanth-9-yl)-propionic acid (LY341495) on the hallucinogenic-like effects induced by LSD (0.24mg/kg). Mice were chronically (21 days) treated with LY341495 (1.5mg/kg), or vehicle, and experiments were carried out one day after the last injection. Chronic treatment with LY341495 down-regulated [(3)H]ketanserin binding in somatosensory cortex of wild-type, but not mGlu2 knockout (KO), mice. Head-twitch behavior, and expression of c-fos, egr-1 and egr-2, which are responses induced by hallucinogenic 5-HT(2A) agonists, were found to be significantly decreased by chronic treatment with LY341495. These findings suggest that repeated blockade of the mGlu2 receptor by LY341495 results in reduced 5-HT(2A) receptor-dependent hallucinogenic effects of LSD.

  9. Protease-activated-receptor-2 affects protease-activated-receptor-1-driven breast cancer.

    PubMed

    Jaber, Mohammad; Maoz, Miriam; Kancharla, Arun; Agranovich, Daniel; Peretz, Tamar; Grisaru-Granovsky, Sorina; Uziely, Beatrice; Bar-Shavit, Rachel

    2014-07-01

    Mammalian protease-activated-receptor-1 and -2 (PAR1 and PAR2) are activated by proteases found in the flexible microenvironment of a tumor and play a central role in breast cancer. We propose in the present study that PAR1 and PAR2 act together as a functional unit during malignant and physiological invasion processes. This notion is supported by assessing pro-tumor functions in the presence of short hairpin; shRNA knocked-down hPar2 or by the use of a truncated PAR2 devoid of the entire cytoplasmic tail. Silencing of hPar2 by shRNA-attenuated thrombin induced PAR1 signaling as recapitulated by inhibiting the assembly of Etk/Bmx or Akt onto PAR1-C-tail, by thrombin-instigated colony formation and invasion. Strikingly, shRNA-hPar2 also inhibited the TFLLRN selective PAR1 pro-tumor functions. In addition, while evaluating the physiological invasion process of placenta extravillous trophoblast (EVT) organ culture, we observed inhibition of both thrombin or the selective PAR1 ligand; TFLLRNPNDK induced EVT invasion by shRNA-hPar2 but not by scrambled shRNA-hPar2. In parallel, when a truncated PAR2 was utilized in a xenograft mouse model, it inhibited PAR1-PAR2-driven tumor growth in vivo. Similarly, it also attenuated the interaction of Etk/Bmx with the PAR1-C-tail in vitro and decreased markedly selective PAR1-induced Matrigel invasion. Confocal images demonstrated co-localization of PAR1 and PAR2 in HEK293T cells over-expressing YFP-hPar2 and HA-hPar1. Co-immuno-precipitation analyses revealed PAR1-PAR2 complex formation but no PAR1-CXCR4 complex was formed. Taken together, our observations show that PAR1 and PAR2 act as a functional unit in tumor development and placenta-uterus interactions. This conclusion may have significant consequences on future breast cancer therapeutic modalities and improved late pregnancy outcome. PMID:24177339

  10. The aryl hydrocarbon receptor and glucocorticoid receptor interact to activate human metallothionein 2A

    SciTech Connect

    Sato, Shoko; Shirakawa, Hitoshi; Tomita, Shuhei; Tohkin, Masahiro; Gonzalez, Frank J.; Komai, Michio

    2013-11-15

    Although the aryl hydrocarbon receptor (AHR) and glucocorticoid receptor (GR) play essential roles in mammalian development, stress responses, and other physiological events, crosstalk between these receptors has been the subject of much debate. Metallothioneins are classic glucocorticoid-inducible genes that were reported to increase upon treatment with AHR agonists in rodent tissues and cultured human cells. In this study, the mechanism of human metallothionein 2A (MT2A) gene transcription activation by AHR was investigated. Cotreatment with 3-methylcholanthrene and dexamethasone, agonists of AHR and GR respectively, synergistically increased MT2A mRNA levels in HepG2 cells. MT2A induction was suppressed by RNA interference against AHR or GR. Coimmunoprecipitation experiments revealed a physical interaction between AHR and GR proteins. Moreover, chromatin immunoprecipitation assays indicated that AHR was recruited to the glucocorticoid response element in the MT2A promoter. Thus, we provide a novel mechanism whereby AHR modulates expression of human MT2A via the glucocorticoid response element and protein–protein interactions with GR. - Highlights: • Aryl hydrocarbon receptor forms a complex with glucocorticoid receptor in cells. • Human metallothionein gene is regulated by the AHR and GR interaction. • AHR–GR complex binds to glucocorticoid response element in metallothionein gene. • We demonstrated a novel transcriptional mechanism via AHR and GR interaction.

  11. Lysophosphatidylserine analogues differentially activate three LysoPS receptors.

    PubMed

    Uwamizu, Akiharu; Inoue, Asuka; Suzuki, Kensuke; Okudaira, Michiyo; Shuto, Akira; Shinjo, Yuji; Ishiguro, Jun; Makide, Kumiko; Ikubo, Masaya; Nakamura, Sho; Jung, Sejin; Sayama, Misa; Otani, Yuko; Ohwada, Tomohiko; Aoki, Junken

    2015-03-01

    Lysophosphatidylserine (1-oleoyl-2 R-lysophosphatidylserine, LysoPS) has been shown to have lipid mediator-like actions such as stimulation of mast cell degranulation and suppression of T lymphocyte proliferation, although the mechanisms of LysoPS actions have been elusive. Recently, three G protein-coupled receptors (LPS1/GPR34, LPS2/P2Y10 and LPS3/GPR174) were found to react specifically with LysoPS, raising the possibility that LysoPS serves as a lipid mediator that exerts its role through these receptors. Previously, we chemically synthesized a number of LysoPS analogues and evaluated them as agonists for mast-cell degranulation. Here, we used a transforming growth factor-α (TGFα) shedding assay to see if these LysoPS analogues activated the three LysoPS receptors. Modification of the serine moiety significantly reduced the ability of the analogues to activate the three LysoPS receptors, whereas modification of other parts resulted in loss of activity in receptor-specific manner. We found that introduction of methyl group to serine moiety (1-oleoyl-lysophosphatidylallothreonine) and removal of sn-2 hydroxyl group (1-oleoyl-2-deoxy-LysoPS) resulted in reduction of reactivity with LPS1 and LPS3, respectively. Accordingly, we synthesized a LysoPS analogue with the two modifications (1-oleoyl-2-deoxy-lysophosphatidylallothreonine) and found it to be an LPS2-selective agonist. These pharmacological tools will definitely help to identify the biological roles of these LysoPS receptors. PMID:25320102

  12. The Search for Endogenous Activators of the Aryl Hydrocarbon Receptor

    PubMed Central

    Nguyen, Linh P.; Bradfield, Christopher A.

    2008-01-01

    In its simplest aspect, this review is an attempt to describe the major ligand classes of the aryl hydrocarbon receptor (AHR). A grander objective is to provide models that may help define the physiological activator or “endogenous ligand” of the AHR. We begin by presenting evidence that supports a developmental function for the AHR. This is followed by proposing mechanisms by which an endogenous ligand and consequent AHR activation might be important during normal physiology and development. With this background, we then present a survey of the known xenobiotic, endogenous, dietary and “un-conventional” activators of the AHR. When possible, this includes information about their induction potency, receptor binding affinity and potential for exposure. Because of the essential function of the AHR in embryonic development, we discuss the candidacy of each of these compounds as physiologically important activators. PMID:18076143

  13. Receptor antagonism/agonism can be uncoupled from pharmacoperone activity.

    PubMed

    Janovick, Jo Ann; Spicer, Timothy P; Smith, Emery; Bannister, Thomas D; Kenakin, Terry; Scampavia, Louis; Conn, P Michael

    2016-10-15

    Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist. PMID:27389877

  14. Mechanisms of NOD-like receptor-associated inflammasome activation.

    PubMed

    Wen, Haitao; Miao, Edward A; Ting, Jenny P-Y

    2013-09-19

    A major function of a subfamily of NLR (nucleotide-binding domain, leucine-rich repeat containing, or NOD-like receptor) proteins is in inflammasome activation, which has been implicated in a multitude of disease models and human diseases. This work will highlight key progress in understanding the mechanisms that activate the best-studied NLRs (NLRP3, NLRC4, NAIP, and NLRP1) and in uncovering inflammasome NLRs. PMID:24054327

  15. A transgenic zebrafish model for monitoring glucocorticoid receptor activity.

    PubMed

    Krug, R G; Poshusta, T L; Skuster, K J; Berg, M R; Gardner, S L; Clark, K J

    2014-06-01

    Gene regulation resulting from glucocorticoid receptor and glucocorticoid response element interactions is a hallmark feature of stress response signaling. Imbalanced glucocorticoid production and glucocorticoid receptor activity have been linked to socioeconomically crippling neuropsychiatric disorders, and accordingly there is a need to develop in vivo models to help understand disease progression and management. Therefore, we developed the transgenic SR4G zebrafish reporter line with six glucocorticoid response elements used to promote expression of a short half-life green fluorescent protein following glucocorticoid receptor activation. Herein, we document the ability of this reporter line to respond to both chronic and acute exogenous glucocorticoid treatment. The green fluorescent protein expression in response to transgene activation was high in a variety of tissues including the brain, and provided single-cell resolution in the effected regions. The specificity of these responses is demonstrated using the partial agonist mifepristone and mutation of the glucocorticoid receptor. Importantly, the reporter line also modeled the temporal dynamics of endogenous stress response signaling, including the increased production of the glucocorticoid cortisol following hyperosmotic stress and the fluctuations of basal cortisol concentrations with the circadian rhythm. Taken together, these results characterize our newly developed reporter line for elucidating environmental or genetic modifiers of stress response signaling, which may provide insights to the neuronal mechanisms underlying neuropsychiatric disorders such as major depressive disorder.

  16. Structural insights into µ-opioid receptor activation.

    PubMed

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A J; Laeremans, Toon; Feinberg, Evan N; Sanborn, Adrian L; Kato, Hideaki E; Livingston, Kathryn E; Thorsen, Thor S; Kling, Ralf C; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M; Traynor, John R; Weis, William I; Steyaert, Jan; Dror, Ron O; Kobilka, Brian K

    2015-08-20

    Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To shed light on the structural basis for μOR activation, here we report a 2.1 Å X-ray crystal structure of the murine μOR bound to the morphinan agonist BU72 and a G protein mimetic camelid antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2-adrenergic receptor (β2AR) and the M2 muscarinic receptor. Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three G-protein-coupled receptors. PMID:26245379

  17. Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity

    PubMed Central

    2013-01-01

    Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [35S]GTPγS assay are predictive of the in vivo profile. PMID:23438330

  18. Orvinols with mixed kappa/mu opioid receptor agonist activity.

    PubMed

    Greedy, Benjamin M; Bradbury, Faye; Thomas, Mark P; Grivas, Konstantinos; Cami-Kobeci, Gerta; Archambeau, Ashley; Bosse, Kelly; Clark, Mary J; Aceto, Mario; Lewis, John W; Traynor, John R; Husbands, Stephen M

    2013-04-25

    Dual-acting kappa opioid receptor (KOR) agonist and mu opioid receptor (MOR) partial agonist ligands have been put forward as potential treatment agents for cocaine and other psychostimulant abuse. Members of the orvinol series of ligands are known for their high binding affinity to both KOR and MOR, but efficacy at the individual receptors has not been thoroughly evaluated. In this study, it is shown that a predictive model for efficacy at KOR can be derived, with efficacy being controlled by the length of the group attached to C20 and by the introduction of branching into the side chain. In vivo evaluation of two ligands with the desired in vitro profile confirms both display KOR, and to a lesser extent MOR, activity in an analgesic assay suggesting that, in this series, in vitro measures of efficacy using the [(35)S]GTPγS assay are predictive of the in vivo profile.

  19. Interaction of receptor-activity-modifying protein1 with tubulin.

    PubMed

    Kunz, Thomas H; Mueller-Steiner, Sarah; Schwerdtfeger, Kerstin; Kleinert, Peter; Troxler, Heinz; Kelm, Jens M; Ittner, Lars M; Fischer, Jan A; Born, Walter

    2007-08-01

    Receptor-activity-modifying protein (RAMP) 1 is an accessory protein of the G protein-coupled calcitonin receptor-like receptor (CLR). The CLR/RAMP1 heterodimer defines a receptor for the potent vasodilatory calcitonin gene-related peptide. A wider tissue distribution of RAMP1, as compared to that of the CLR, is consistent with additional biological functions. Here, glutathione S-transferase (GST) pull-down, coimmunoprecipitation and yeast two-hybrid experiments identified beta-tubulin as a novel RAMP1-interacting protein. GST pull-down experiments indicated interactions between the N- and C-terminal domains of RAMP1 and beta-tubulin. Yeast two-hybrid experiments confirmed the interaction between the N-terminal region of RAMP1 and beta-tubulin. Interestingly, alpha-tubulin was co-extracted with beta-tubulin in pull-down experiments and immunoprecipitation of RAMP1 coprecipitated alpha- and beta-tubulin. Confocal microscopy indicated colocalization of RAMP1 and tubulin predominantly in axon-like processes of neuronal differentiated human SH-SY5Y neuroblastoma cells. In conclusion, the findings point to biological roles of RAMP1 beyond its established interaction with G protein-coupled receptors. PMID:17493758

  20. CINPA1 Is an Inhibitor of Constitutive Androstane Receptor That Does Not Activate Pregnane X Receptor

    PubMed Central

    Cherian, Milu T; Lin, Wenwei; Wu, Jing

    2015-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic sensors that enhance the detoxification and elimination of xenobiotics and endobiotics by modulating the expression of genes encoding drug-metabolizing enzymes and transporters. Elevated levels of drug-metabolizing enzymes and efflux transporters, resulting from CAR activation in various cancers, promote the elimination of chemotherapeutic agents, leading to reduced therapeutic effectiveness and acquired drug resistance. CAR inhibitors, in combination with existing chemotherapeutics, could therefore be used to attenuate multidrug resistance in cancers. Interestingly, all previously reported CAR inverse-agonists are also activators of PXR, rendering them mechanistically counterproductive in tissues where both these xenobiotic receptors are present and active. We used a directed high-throughput screening approach, followed by subsequent mechanistic studies, to identify novel, potent, and specific small-molecule CAR inhibitors that do not activate PXR. We describe here one such inhibitor, CINPA1 (CAR inhibitor not PXR activator 1), capable of reducing CAR-mediated transcription with an IC50 of ∼70 nM. CINPA1 1) is a specific xenobiotic receptor inhibitor and has no cytotoxic effects up to 30 µM; 2) inhibits CAR-mediated gene expression in primary human hepatocytes, where CAR is endogenously expressed; 3) does not alter the protein levels or subcellular localization of CAR; 4) increases corepressor and reduces coactivator interaction with the CAR ligand-binding domain in mammalian two-hybrid assays; and 5) disrupts CAR binding to the promoter regions of target genes in chromatin immunoprecipitation assays. CINPA1 could be used as a novel molecular tool for understanding CAR function. PMID:25762023

  1. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand. PMID:25916672

  2. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand.

  3. Solubilization of a functionally active platelet-activating factor receptor from rabbit platelets.

    PubMed Central

    Rogers, J E; Duronio, V; Wong, S I; McNeil, M; Salari, H

    1991-01-01

    Binding of platelet-activating factor (PAF) to a specific high-affinity membrane receptor has been demonstrated in numerous cell types, but very little is known about the molecular nature of this receptor. The receptor from rabbit platelets was solubilized using CHAPS, digitonin, octyl glucoside, Nonidet P-40 or sodium cholate, either with pre-bound [3H]PAF or in the absence of ligand. We have been able to demonstrate for the first time that the receptor solubilized with CHAPS, in the absence of ligand, could retain its binding activity. It migrated as a high molecular mass complex (greater than 350 kDa) on a Bio-Gel A-0.5 m gel filtration column. Binding to solubilized receptor rapidly reached an equilibrium at room temperature, but was much slower at 0 degrees C. Scatchard plots were used to calculate the number (approx. 100 per cell) and the affinity (Kd 2.5 +/- 1.4 nM) of the solubilized receptors. These values were comparable with those obtained from whole-cell binding experiments. Competition by PAF antagonists also verified that the assay was measuring PAF receptor binding activity. The presence of a protein in the receptor complex was demonstrated by heat and trypsin inactivation of binding activity. Trypsin had no effect on binding of PAF to whole cells, but was able to decrease binding activity in solubilized receptor preparations. Attempts to demonstrate the involvement of a glycoprotein by use of various lectin columns proved unsuccessful. The latter results are consistent with findings suggesting that the binding site of the PAF receptor may not be exposed at the cell surface. PMID:1654881

  4. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    PubMed

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-12-15

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response.

  5. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  6. Allosteric receptor activation by the plant peptide hormone phytosulfokine.

    PubMed

    Wang, Jizong; Li, Hongju; Han, Zhifu; Zhang, Heqiao; Wang, Tong; Lin, Guangzhong; Chang, Junbiao; Yang, Weicai; Chai, Jijie

    2015-09-10

    Phytosulfokine (PSK) is a disulfated pentapeptide that has a ubiquitous role in plant growth and development. PSK is perceived by its receptor PSKR, a leucine-rich repeat receptor kinase (LRR-RK). The mechanisms underlying the recognition of PSK, the activation of PSKR and the identity of the components downstream of the initial binding remain elusive. Here we report the crystal structures of the extracellular LRR domain of PSKR in free, PSK- and co-receptor-bound forms. The structures reveal that PSK interacts mainly with a β-strand from the island domain of PSKR, forming an anti-β-sheet. The two sulfate moieties of PSK interact directly with PSKR, sensitizing PSKR recognition of PSK. Supported by biochemical, structural and genetic evidence, PSK binding enhances PSKR heterodimerization with the somatic embryogenesis receptor-like kinases (SERKs). However, PSK is not directly involved in PSKR-SERK interaction but stabilizes PSKR island domain for recruitment of a SERK. Our data reveal the structural basis for PSKR recognition of PSK and allosteric activation of PSKR by PSK, opening up new avenues for the design of PSKR-specific small molecules.

  7. The Molecular Mechanism of P2Y1 Receptor Activation

    PubMed Central

    Chan, H. C. Stephen; Vogel, Horst; Filipek, Slawomir

    2016-01-01

    Human purinergic G protein-coupled receptor P2Y1 (P2Y1R) is activated by adenosine 5’-diphosphate (ADP) to induce platelet activation and thereby serves as an important antithrombotic drug target. Crystal structures of P2Y1R revealed that one ligand (MRS2500) binds to the extracellular vestibule of this GPCR, whereas another (BPTU) occupies the surface between transmembrane (TM) helices TM2 and TM3. We introduced a total of 20 µs all-atom long-timescale molecular dynamic (MD) simulations to inquire why two molecules in completely different locations both serve as antagonists while ADP activates the receptor. Our results indicate that BPTU acts as an antagonist by stabilizing extracellular helix bundles leading to an increase of the lipid order, whereas MRS2500 blocks signaling by occupying the ligand binding site. Both antagonists stabilize an ionic lock within the receptor. However, binding of ADP breaks this ionic lock, forming a continuous water channel that leads to P2Y1R activation. PMID:27460867

  8. Bisphenol A and Its Analogues Activate Human Pregnane X Receptor

    PubMed Central

    Sui, Yipeng; Ai, Ni; Park, Se-Hyung; Rios-Pilier, Jennifer; Perkins, Jordan T.; Welsh, William J.

    2012-01-01

    Background: Bisphenol A (BPA) is a base chemical used extensively in many consumer products. BPA and its analogues are present in environmental and human samples. Many endocrine-disrupting chemicals, including BPA, have been shown to activate the pregnane X receptor (PXR), a nuclear receptor that functions as a master regulator of xenobiotic metabolism. However, the detailed mechanism by which these chemicals activate PXR remains unknown. Objective: We investigated the mechanism by which BPA interacts with and activates PXR and examined selected BPA analogues to determine whether they bind to and activate PXR. Methods: Cell-based reporter assays, in silico ligand–PXR docking studies, and site-directed mutagenesis were combined to study the interaction between BPA and PXR. We also investigated the influence of BPA and its analogues on the regulation of PXR target genes in human LS180 cells. Results: We found that BPA and several of its analogues are potent agonists for human PXR (hPXR) but do not affect mouse PXR activity. We identified key residues within hPXR’s ligand-binding pocket that constitute points of interaction with BPA. We also deduced the structural requirements of BPA analogues that activate hPXR. BPA and its analogues can also induce PXR target gene expression in human LS180 cells. Conclusions: The present study advances our understanding of the mechanism by which BPA interacts with and activates human PXR. Activation of PXR by BPA may explain some of the adverse effects of BPA in humans. PMID:22214767

  9. An integrative framework of the skin receptors activation: mechanoreceptors activity patterns versus "labeled lines".

    PubMed

    Zeveke, Alexander V; Efes, Ekaterina D; Polevaya, Sofia A

    2013-03-01

    The paper presents a review of electrophysiological data which indicate the integrative mechanisms of information coded in the human and animal peripheral skin receptors. The activity of the skin sensory receptors was examined by applying various natural stimuli. It was revealed that numerous identical receptors respond to various stimuli (mechanical, temperature, and pain ones), but the spike patterns of these receptors were found to be specific for each stimulus. The description of characteristic structures of spike patterns in the cutaneous nerve fibers in response to five major modalities, namely: "touch", "pain", "vibration/breath", "cold", and "heat", is being presented. The recordings of the cutaneous physical state revealed a correlation between the patterns of spatiotemporal skin deformation and the receptors activity. A rheological state of the skin can be changed either in response to external temperature variation or by the sympathetic pilomotor activation. These results indicate that the skin sensory receptors activity may be considered as an integrative process. It depends not only on the receptors themselves, but also on the changes in the surrounding tissue and on the adaptive influence of the central nervous system. A new framework for the sensory channel system related to the skin is proposed on the basis of experimental results.

  10. An allosteric role for receptor activity-modifying proteins in defining GPCR pharmacology

    PubMed Central

    J Gingell, Joseph; Simms, John; Barwell, James; Poyner, David R; Watkins, Harriet A; Pioszak, Augen A; Sexton, Patrick M; Hay, Debbie L

    2016-01-01

    G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor

  11. Human peroxisome proliferator-activated receptor mRNA and protein expression during development

    EPA Science Inventory

    The peroxisome proliferator-activated receptors (PPAR) are nuclear hormone receptors that regulate lipid and glucose homeostasis and are important in reproduction and development. PPARs are targets ofpharmaceuticals and are also activated by environmental contaminants, including ...

  12. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    SciTech Connect

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-04-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine ((R)-AHPIA) into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling.

  13. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  14. Monocyte Signal Transduction Receptors in Active and Latent Tuberculosis

    PubMed Central

    Druszczynska, Magdalena; Wlodarczyk, Marcin; Janiszewska-Drobinska, Beata; Kielnierowski, Grzegorz; Zawadzka, Joanna; Kowalewicz-Kulbat, Magdalena; Fol, Marek; Szpakowski, Piotr; Rudnicka, Karolina; Chmiela, Magdalena; Rudnicka, Wieslawa

    2013-01-01

    The mechanisms that promote either resistance or susceptibility to TB disease remain insufficiently understood. Our aim was to compare the expression of cell signaling transduction receptors, CD14, TLR2, CD206, and β2 integrin LFA-1 on monocytes from patients with active TB or nonmycobacterial lung disease and healthy individuals with M.tb latency and uninfected controls to explain the background of the differences between clinical and subclinical forms of M.tb infection. A simultaneous increase in the expression of the membrane bound mCD14 receptor and LFA-1 integrin in patients with active TB may be considered a prodrome of breaking immune control by M.tb bacilli in subjects with the latent TB and absence of clinical symptoms. PMID:23401703

  15. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo

    PubMed Central

    Kono, Mari; Tucker, Ana E.; Tran, Jennifer; Bergner, Jennifer B.; Turner, Ewa M.; Proia, Richard L.

    2014-01-01

    Activation of the GPCR sphingosine-1-phosphate receptor 1 (S1P1) by sphingosine-1-phosphate (S1P) regulates key physiological processes. S1P1 activation also has been implicated in pathologic processes, including autoimmunity and inflammation; however, the in vivo sites of S1P1 activation under normal and disease conditions are unclear. Here, we describe the development of a mouse model that allows in vivo evaluation of S1P1 activation. These mice, known as S1P1 GFP signaling mice, produce a S1P1 fusion protein containing a transcription factor linked by a protease cleavage site at the C terminus as well as a β-arrestin/protease fusion protein. Activated S1P1 recruits the β-arrestin/protease, resulting in the release of the transcription factor, which stimulates the expression of a GFP reporter gene. Under normal conditions, S1P1 was activated in endothelial cells of lymphoid tissues and in cells in the marginal zone of the spleen, while administration of an S1P1 agonist promoted S1P1 activation in endothelial cells and hepatocytes. In S1P1 GFP signaling mice, LPS-mediated systemic inflammation activated S1P1 in endothelial cells and hepatocytes via hematopoietically derived S1P. These data demonstrate that S1P1 GFP signaling mice can be used to evaluate S1P1 activation and S1P1-active compounds in vivo. Furthermore, this strategy could be potentially applied to any GPCR to identify sites of receptor activation during normal physiology and disease. PMID:24667638

  16. Models for the activation pathway of epidermal growth factor receptor protein-tyrosine kinase

    SciTech Connect

    Campion, S.R.; Niyogi, S.K. )

    1991-03-15

    Activation of the epidermal growth factor (EGF) receptor's intrinsic protein-tyrosine kinase activity, which occurs upon formation of the receptor-ligand complex, is the critical regulatory event affecting the subsequent EGF-dependent cellular responses leading to DNA synthesis and cell proliferation. The molecular mechanism by which EGF-dependent activation of receptor kinase activity takes place is not clearly understood. In this study, the growth factor-dependent activation of the EGF receptor tyrosine kinase was examined in vitro using detergent-solubilized, partially purified GEF receptors from A5431 human epidermoid carcinoma cells. Evaluation of the cooperativity observed in the EGF-dependent activation of soluble receptor tyrosine kinase would suggest a mechanism requiring the binding of the EGF peptide to both ligand binding sites on a receptor dimer to induce full receptor kinase activity. Equations describing potential cooperative kinase activation pathways have been examined. The theoretical system which best simulates the allosteric regulation observed in the experimental kinase activation data is that describing multiple essential activation. In addition, studies using mutant analogs of the EGF peptide ligand appear to confirm the requirement for an essential conformational change in the receptor-ligand complex to activate the receptor kinase activity. Several mutant growth factor analogues are able to occupy the ligand binding sites on the receptor without inducing the fully active receptor conformation.

  17. Activation of signalling by the activin receptor complex.

    PubMed Central

    Attisano, L; Wrana, J L; Montalvo, E; Massagué, J

    1996-01-01

    Activin exerts its effects by simultaneously binding to two types of p rotein serine/threonine kinase receptors, each type existing in various isoforms. Using the ActR-IB and ActR-IIB receptor isoforms, we have investigated the mechanism of activin receptor activation. ActR-IIB are phosphoproteins with demonstrable affinity for each other. However, activin addition strongly promotes an interaction between these two proteins. Activin binds directly to ActR-IIB, and this complex associates with ActR-IB, which does not bind ligand on its own. In the resulting complex, ActR-IB becomes hyperphosphorylated, and this requires the kinase activity of ActR-IIB. Mutation of conserved serines and threonines in the GS domain, a region just upstream of the kinase domain in ActR-IB, abrogates both phosphorylation and signal propagation, suggesting that this domain contains phosphorylation sites required for signalling. ActR-IB activation can be mimicked by mutation of Thr-206 to aspartic acid, which yields a construct, ActR-IB(T206D), that signals in the absence of ligand. Furthermore, the signalling activity of this mutant construct is undisturbed by overexpression of a dominant negative kinase-defective ActR-IIB construct, indicating that ActR-IB(T206D) can signal independently of ActR-IIB. The evidence suggests that ActR-IIB acts as a primary activin receptor and ActR-IB acts as a downstream transducer of activin signals. PMID:8622651

  18. Structural insights into μ-opioid receptor activation

    PubMed Central

    Huang, Weijiao; Manglik, Aashish; Venkatakrishnan, A. J.; Laeremans, Toon; Feinberg, Evan N.; Sanborn, Adrian L.; Kato, Hideaki E.; Livingston, Kathryn E.; Thorsen, Thor S.; Kling, Ralf; Granier, Sébastien; Gmeiner, Peter; Husbands, Stephen M.; Traynor, John R.; Weis, William I.; Steyaert, Jan; Dror, Ron O.; Kobilka, Brian K.

    2015-01-01

    Summary Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To understand the structural basis for μOR activation, we obtained a 2.1 Å X-ray crystal structure of the μOR bound to the morphinan agonist BU72 and stabilized by a G protein-mimetic camelid-antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2 adrenergic receptor (β2AR) and the M2 muscarinic receptor (M2R). Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three GPCRs. PMID:26245379

  19. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis

    PubMed Central

    Lin, Kuan-Hung; Ho, Ya-Hsuan; Chiang, Jui-Chung; Li, Meng-Wei; Lin, Shi-Hung; Chen, Wei-Min; Chiang, Chi-Ling; Lin, Yu-Nung; Yang, Ya-Jan; Chen, Chiung-Nien; Lu, Jenher; Huang, Chang-Jen; Tigyi, Gabor; Yao, Chao-Ling; Lee, Hsinyu

    2016-01-01

    Lysophosphatidic acid (LPA), a growth factor-like phospholipid, regulates numerous physiological functions, including cell proliferation and differentiation. In a previous study, we have demonstrated that LPA activates erythropoiesis by activating the LPA 3 receptor subtype (LPA3) under erythropoietin (EPO) induction. In the present study, we applied a pharmacological approach to further elucidate the functions of LPA receptors during red blood cell (RBC) differentiation. In K562 human erythroleukemia cells, knockdown of LPA2 enhanced erythropoiesis, whereas knockdown of LPA3 inhibited RBC differentiation. In CD34+ human hematopoietic stem cells (hHSC) and K526 cells, the LPA3 agonist 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate (2S-OMPT) promoted erythropoiesis, whereas the LPA2 agonist dodecyl monophosphate (DMP) and the nonlipid specific agonist GRI977143 (GRI) suppressed this process. In zebrafish embryos, hemoglobin expression was significantly increased by 2S-OMPT treatment but was inhibited by GRI. Furthermore, GRI treatment decreased, whereas 2S-OMPT treatment increased RBC counts and amount of hemoglobin level in adult BALB/c mice. These results indicate that LPA2 and LPA3 play opposing roles during RBC differentiation. The pharmacological activation of LPA receptor subtypes represent a novel strategies for augmenting or inhibiting erythropoiesis. PMID:27244685

  20. Androgen receptor antagonists (antiandrogens): structure-activity relationships.

    PubMed

    Singh, S M; Gauthier, S; Labrie, F

    2000-02-01

    Prostate cancer, acne, seborrhea, hirsutism, and androgenic alopecia are well recognized to depend upon an excess or increased sensitivity to androgens or to be at least sensitive to androgens. It thus seems logical to use antiandrogens as therapeutic agents to prevent androgens from binding to the androgen receptor. The two predominant naturally occurring androgens are testosterone (T) and dihydrotestosterone (DHT). DHT is the more potent androgen in vivo and in vitro. All androgen-responsive genes are activated by androgen receptor (AR) bound to either T or DHT and it is believed that AR is more transcriptionally active when bound to DHT than T. The two classes of antiandrogens, presently available, are the steroidal derivatives, all of which possess mixed agonistic and antagonistic activities, and the pure non-steroidal antiandrogens of the class of flutamide and its derivatives. The intrinsic androgenic, estrogenic and glucocorticoid activities of steroidal derivatives have limited their use in the treatment of prostate cancer. The non-steroidal flutamide and its derivatives display pure antiandrogenic activity, without exerting agonistic or any other hormonal activity. Flutamide (89) and its derivatives, Casodex (108) and Anandron (114), are highly effective in the treatment of prostate cancer. The combination of flutamide and Anandron with castration has shown prolongation of life in prostate cancer. Furthermore, combined androgen blockade in association with radical prostatectomy or radiotherapy are very effective in the treatment of localized prostate cancer. Such an approach certainly raises the hope of a further improvement in prostate cancer therapy. However, all antiandrogens, developed so-far display moderate affinity for the androgen receptor, and thus moderate efficacy in vitro and in vivo. There is thus a need for next-generation antiandrogens, which could display an equal or even higher affinity for AR compared to the natural androgens, and at the

  1. GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity.

    PubMed

    Brackley, Allison Doyle; Gomez, Ruben; Akopian, Armen N; Henry, Michael A; Jeske, Nathaniel A

    2016-09-01

    Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR), those that target the delta class (DOR) also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2) naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gβ subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP). protein kinase C (PKC)-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state. PMID:27568556

  2. Ultrastructural and biochemical analysis of fibrinogen receptors on activated thrombocytes

    SciTech Connect

    O'Toole, E.T.

    1989-01-01

    The present studies have been concerned with the role of fibrinogen and its receptor, GP IIb/IIIa, during the activation and early aggregation of pigeon thrombocytes. Thrombocytes were surface labeled with {sup 125}I then separated on SDS-PAGE. Analysis by gel autoradiography revealed major bands at MW 145 kd and 98 kd, which corresponded to human GPIIb and GPIIIa. Immunologic similarity of the pigeon and human receptor components was established by dot blot analysis using polyclonal antibodies directed against human GPIIb and GPIIIa. Pigeon fibrinogen, isolated by plasma precipitation with PEG-1000 and purified over Sepharose 4B, was used to study receptor-ligand interaction. Separation of pigeon fibrinogen on SDS-PAGE resulted in three peptides having apparent MW of 62kd, 55kd, and 47kd which are comparable to human fibrinogen. Further similarity of human and pigeon fibrinogen was verified by immonodiffusion against an antibody specific for the human protein. The role of fibrinogen and its receptor in thrombocyte function was established by turbidimetric aggregation using thrombin as an agonist under conditions requiring Ca++ and fibrinogen.

  3. Liver X Receptor β and Peroxisome Proliferator-Activated Receptor δ regulate cholesterol transport in cholangiocytes

    PubMed Central

    Xia, Xuefeng; Jung, Dongju; Webb, Paul; Zhang, Aijun; Zhang, Bin; Li, Lifei; Ayers, Stephen D.; Gabbi, Chiara; Ueno, Yoshiyuki; Gustafsson, Jan-Åke; Alpini, Gianfranco; Moore, David D.; LeSage, Gene D.

    2012-01-01

    Nuclear receptors (NRs) play crucial roles in regulation of hepatic cholesterol synthesis, metabolism and conversion to bile acids, but their actions in cholangiocytes have not been examined. In this study, we investigated the roles of NRs in cholangiocyte physiology and cholesterol metabolism and flux. We examined the expression of NRs and other genes involved in cholesterol homeostasis in freshly isolated and cultured rodent cholangiocytes and found that these cells express a specific subset of NRs which includes Liver X Receptor β (LXRβ) and Peroxisome Proliferator-Activated Receptor δ (PPARδ). Activation of LXRβ and/or PPARδ in cholangiocytes induces ATP-binding cassette cholesterol transporter A1 (ABCA1) and increases cholesterol export at the basolateral compartment in polarized cultured cholangiocytes. In addition, PPARδ induces Niemann Pick C1 Like L1 (NPC1L1), which imports cholesterol into cholangiocytes and is expressed on the apical cholangiocyte membrane, via specific interaction with a PPRE within the NPC1L1 promoter. Based on these studies, we propose that (i) LXRβ and PPARδ coordinate NPC1L1/ABCA1 dependent vectorial cholesterol flux from bile through cholangiocytes and (ii) manipulation of these processes may influence bile composition with important applications in cholestatic liver disease and gallstone disease, serious health concerns for humans. PMID:22729460

  4. Propofol Restores Transient Receptor Potential Vanilloid Receptor Subtype-1 Sensitivity via Activation of Transient Receptor Potential Ankyrin Receptor Subtype-1 in Sensory Neurons

    PubMed Central

    Zhang, Hongyu; Wickley, Peter J.; Sinha, Sayantani; Bratz, Ian N.; Damron, Derek S.

    2011-01-01

    Background Crosstalk between peripheral nociceptors belonging to the transient receptor potential vanilloid receptor subtype-1 (TRPV1) and ankyrin subtype-1 (TRPA1) family has recently been demonstrated. Moreover, the intravenous anesthetic propofol has been shown to directly activate TRPA1 receptors, and indirectly restore sensitivity of TRPV1 receptors in dorsal root ganglion (DRG) sensory neurons. Our objective was to determine the extent to which TRPA1 activation is involved in mediating the propofol-induced restoration of TRPV1 sensitivity. Methods Mouse DRG neurons were isolated by enzymatic dissociation and grown for 24 h. F-11 cells were transfected with complementary DNA for both TRPV1 and TRPA1 or TRPV1 only. Intracellular Ca2+ concentration was measured in individual cells via fluorescence microscopy. Following TRPV1 de-sensitization with capsaicin (100 nM), cells were treated with propofol (1, 5 and 10 μM) alone, propofol in the presence of the TRPA1 antagonist, HC-030031 (0.5 μM) or the TRPA1 agonist, Allyl isothiocyanate (AITC, 100 μM) and capsaicin was then reapplied. Results In DRG neurons that contain both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in DRG neurons containing only TRPV1 receptors, exposure to propofol or AITC following de-sensitization did not restore capsaicin-induced TRPV1 sensitivity. Similarly, in F-11 cells transfected with both TRPV1 and TRPA1, propofol and AITC restored TRPV1 sensitivity. However, in F-11 cells transfected with TRPV1 only, neither propofol nor AITC were capable of restoring TRPV1 sensitivity. Conclusions These data demonstrate that propofol restores TRPV1 sensitivity in primary DRG neurons and in cultured F-11 cells transfected with both the TRPV1 and TRPA1 receptors via a TRPA1-dependent process. Propofol’s effects on sensory neurons may be clinically important and contribute to peripheral sensitization to nociceptive stimuli in traumatized tissue. PMID:21364461

  5. The metabotropic glutamate 2/3 receptor agonist LY379268 induces anxiety-like behavior at the highest dose tested in two rat models of anxiety.

    PubMed

    Grivas, Vasilios; Markou, Athina; Pitsikas, Nikolaos

    2013-09-01

    The activation of Group II metabotropic glutamate 2/3 (mGlu2/3) receptors reduces the excessive glutamate release that is hypothesized to be associated with neurodegenerative and psychiatric disorders. LY379268 is a highly potent mGlu2/3 receptor agonist that has shown efficacy in several animal models of stroke, epilepsy, drug abuse, schizophrenia, and pain. The present study investigated the effects of LY379268 on anxiety-like behavior in rats assessed in the light/dark and open field tests. The effects of LY379268 on motility in a locomotor activity chamber were also investigated in rats. Administration of the two lower doses of LY379268 used (0.3 and 1mg/kg) did not influence rats' performance either in the light/dark or in the open field test. Importantly, the administration of a higher LY379268 dose (3mg/kg) induced decrease in the number of transitions between the light and dark chambers and time spent in the light chamber compared to the vehicle-treated animals in the light/dark test. In the open field test, rats that received 3mg/kg LY379268 made fewer entries and spent less time in the central zone of the apparatus, exhibited a decrease of rearing episodes, but displayed higher grooming activity compared to controls. Nevertheless, the 3mg/kg dose did not alter locomotor activity compared with vehicle-treated rats in a motility test. The present results indicate that the highest LY379268 dose used in this study induced an anxiety-like effect in the light/dark and open field tests that cannot be attributed to changes in locomotor activity, while lower doses had no effect.

  6. Differential effect of meclizine on the activity of human pregnane X receptor and constitutive androstane receptor.

    PubMed

    Lau, Aik Jiang; Yang, Guixiang; Rajaraman, Ganesh; Baucom, Christie C; Chang, Thomas K H

    2011-03-01

    Conflicting data exist as to whether meclizine is an activator of human pregnane X receptor (hPXR). Therefore, we conducted a detailed, systematic investigation to determine whether meclizine affects hPXR activity by performing a cell-based reporter gene assay, a time-resolved fluorescence resonance energy transfer competitive ligand-binding assay, a mammalian two-hybrid assay to assess coactivator recruitment, and a hPXR target gene expression assay. In pregnane X receptor (PXR)-transfected HepG2 cells, meclizine activated hPXR to a greater extent than rat PXR. It bound to hPXR ligand-binding domain and recruited steroid receptor coactivator-1 to the receptor. Consistent with its hPXR agonism, meclizine increased hPXR target gene expression (CYP3A4) in human hepatocytes. However, it did not increase but decreased testosterone 6β-hydroxylation, suggesting inhibition of CYP3A catalytic activity. Meclizine has also been reported to be an inverse agonist and antagonist of human constitutive androstane receptor (hCAR). Therefore, given that certain tissues (e.g., liver) express both hPXR and hCAR and that various genes are cross-regulated by them, we quantified the expression of a hCAR- and hPXR-regulated gene (CYP2B6) in cultured human hepatocytes treated with meclizine. This drug did not decrease constitutive CYP2B6 mRNA expression or attenuate hCAR agonist-mediated increase in CYP2B6 mRNA and CYP2B6-catalyzed bupropion hydroxylation levels. These observations reflect hPXR agonism and the lack of hCAR inverse agonism and antagonism by meclizine, which were assessed by a hCAR reporter gene assay and mammalian two-hybrid assay. In conclusion, meclizine is a hPXR agonist, and it does not act as a hCAR inverse agonist or antagonist in cultured human hepatocytes. PMID:21131266

  7. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  8. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation.

  9. Proteinase-activated receptors (PARs) as targets for antiplatelet therapy.

    PubMed

    Cunningham, Margaret; McIntosh, Kathryn; Bushell, Trevor; Sloan, Graeme; Plevin, Robin

    2016-04-15

    Since the identification of the proteinase-activated receptor (PAR) family as mediators of serine protease activity in the 1990s, there has been tremendous progress in the elucidation of their pathophysiological roles. The development of drugs that target PARs has been the focus of many laboratories for the potential treatment of thrombosis, cancer and other inflammatory diseases. Understanding the mechanisms of PAR activation and G protein signalling pathways evoked in response to the growing list of endogenous proteases has yielded great insight into receptor regulation at the molecular level. This has led to the development of new selective modulators of PAR activity, particularly PAR1. The mixed success of targeting PARs has been best exemplified in the context of inhibiting PAR1 as a new antiplatelet therapy. The development of the competitive PAR1 antagonist, vorapaxar (Zontivity), has clearly shown the value in targeting PAR1 in acute coronary syndrome (ACS); however the severity of associated bleeding with this drug has limited its use in the clinic. Due to the efficacy of thrombin acting via PAR1, strategies to selectively inhibit specific PAR1-mediated G protein signalling pathways or to target the second thrombin platelet receptor, PAR4, are being devised. The rationale behind these alternative approaches is to bias downstream thrombin activity via PARs to allow for inhibition of pro-thrombotic pathways but maintain other pathways that may preserve haemostatic balance and improve bleeding profiles for widespread clinical use. This review summarizes the structural determinants that regulate PARs and the modulators of PAR activity developed to date.

  10. Liver X Receptors Regulate the Transcriptional Activity of the Glucocorticoid Receptor: Implications for the Carbohydrate Metabolism

    PubMed Central

    Nader, Nancy; Ng, Sinnie Sin Man; Wang, Yonghong; Abel, Brent S.; Chrousos, George P.; Kino, Tomoshige

    2012-01-01

    GLUCOCORTICOIDS are steroid hormones that strongly influence intermediary carbohydrate metabolism by increasing the transcription rate of glucose-6-phosphatase (G6Pase), a key enzyme of gluconeogenesis, and suppress the immune system through the glucocorticoid receptor (GR). The liver X receptors (LXRs), on the other hand, bind to cholesterol metabolites, heterodimerize with the retinoid X receptor (RXR), and regulate the cholesterol turnover, the hepatic glucose metabolism by decreasing the expression of G6Pase, and repress a set of inflammatory genes in immune cells. Since the actions of these receptors overlap with each other, we evaluated the crosstalk between the GR- and LXR-mediated signaling systems. Transient transfection-based reporter assays and gene silencing methods using siRNAs for LXRs showed that overexpression/ligand (GW3965) activation of LXRs/RXRs repressed GR-stimulated transactivation of certain glucocorticoid response element (GRE)-driven promoters in a gene-specific fashion. Activation of LXRs by GW3965 attenuated dexamethasone-stimulated elevation of circulating glucose in rats. It also suppressed dexamethasone-induced mRNA expression of hepatic glucose-6-phosphatase (G6Pase) in rats, mice and human hepatoma HepG2 cells, whereas endogenous, unliganded LXRs were required for dexamethasone-induced mRNA expression of phosphoenolpyruvate carboxylase. In microarray transcriptomic analysis of rat liver, GW3965 differentially regulated glucocorticoid-induced transcriptional activity of about 15% of endogenous glucocorticoid-responsive genes. To examine the mechanism through which activated LXRs attenuated GR transcriptional activity, we examined LXRα/RXRα binding to GREs. Endogenous LXRα/RXRα bound GREs and inhibited GR binding to these DNA sequences both in in vitro and in vivo chromatin immunoprecipitation assays, while their recombinant proteins did so on classic or G6Pase GREs in gel mobility shift assays. We propose that administration of

  11. Type-1 cannabinoid receptor activity during Alzheimer's disease progression.

    PubMed

    Manuel, Iván; González de San Román, Estíbaliz; Giralt, M Teresa; Ferrer, Isidro; Rodríguez-Puertas, Rafael

    2014-01-01

    The activity of CB1 cannabinoid receptors was studied in postmortem brain samples of Alzheimer's disease (AD) patients during clinical deterioration. CB1 activity was higher at earlier AD stages in limited hippocampal areas and internal layers of frontal cortex, but a decrease was observed at the advanced stages. The pattern of modification appears to indicate initial hyperactivity of the endocannabinoid system in brain areas that lack classical histopathological markers at earlier stages of AD, indicating an attempt to compensate for the initial synaptic impairment, which is then surpassed by disease progression. These results suggest that initial CB1 stimulation might have therapeutic relevance.

  12. Static and dynamic activity of warm receptors in Boa constrictor.

    PubMed

    Hensel, H

    1975-01-01

    Afferent impulses from multi- and single-fiber preparations of the trigeminal nerve in Boa constrictor were recorded during exactly controlled thermal stimulation of the receptive field in the labial region. At constant temperatures in the range between 18 and 37 degrees C, multi-fiber preparations showed a continuous discharge with a maximum around 30 degrees C. Dynamic warming caused a high increase of the discharge, whereas dynamic cooling led to a complete inhibition. No cold-sensitive fivers have been found. Mechanical stimulation elicited large spikes from specific mechanoreceptors. Single-fiber preparations from labial warm receptors did not respond to mechanical stimulation. Their discharge was always regular at constant temperatures. The average frequency of a warm receptor population was zero at about 18 degrees C, reached a maximum of 13 sec-1 at 30 degrees C and fell again to zero at 37 degrees C. In addition, a few warm receptors increased their static discharge with temperature up to 36 degrees C, the highest frequency being 38 sec-1. Stepwise warming by delta T = + 5 degrees C caused a marked overshoot in frequency, after which the discharge usually fell to a minimum and then rose again to a new static level. Stepwise cooling by delta T = MINUS 5 DEGREES C led to a transient inhibition of activity followed by an increase until the new static level was reached. In the first group of warm receptors the height of the dynamic overshoot varied with the adapting temperature, the largest average overshoot of 160 sec-1 occurring at an adapting temperature of 30 degrees C. These receptors have their static maximum as well as their highest dynamic sensitivity in the temperature range of the natural tropical habitat of Boidae.

  13. Cleavage and activation of a Toll-like receptor by microbial proteases

    PubMed Central

    de Zoete, Marcel R.; Bouwman, Lieneke I.; Keestra, A. Marijke; van Putten, Jos P. M.

    2011-01-01

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB–dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  14. Cleavage and activation of a Toll-like receptor by microbial proteases.

    PubMed

    de Zoete, Marcel R; Bouwman, Lieneke I; Keestra, A Marijke; van Putten, Jos P M

    2011-03-22

    Toll-like receptors (TLRs) are innate receptors that show high conservation throughout the animal kingdom. Most TLRs can be clustered into phylogenetic groups that respond to similar types of ligands. One exception is avian TLR15. This receptor does not categorize into one of the existing groups of TLRs and its ligand is still unknown. Here we report that TLR15 is a sensor for secreted virulence-associated fungal and bacterial proteases. Activation of TLR15 involves proteolytic cleavage of the receptor ectodomain and stimulation of NF-κB-dependent gene transcription. Receptor activation can be mimicked by the expression of a truncated TLR15 of which the entire ectodomain is removed, suggesting that receptor cleavage alleviates receptor inhibition by the leucine-rich repeat domain. Our results indicate TLR15 as a unique type of innate immune receptor that combines TLR characteristics with an activation mechanism typical for the evolutionary distinct protease-activated receptors. PMID:21383168

  15. Allergens and Activation of the Toll-Like Receptor Response.

    PubMed

    Monie, Tom P; Bryant, Clare E

    2016-01-01

    Pattern recognition receptors (PRRs) provide a crucial function in the detection of exogenous and endogenous danger signals. The Toll-like receptors (TLRs) were the first family of PRRs to be discovered and have been extensively studied since. Whilst TLRs remain the best characterized family of PRRs there is still much to be learnt about their mode of activation and the mechanisms of signal transduction they employ. Much of our understanding of these processes has been gathered through the use of cell based signaling assays utilizing specific gene-reporters or cytokine secretion based readouts. More recently it has become apparent that the repertoire of ligands recognized by these receptors may be wider than originally assumed and that their activation may be sensitized, or at least modulated by the presence of common household allergens such as the cat dander protein Fel d 1, or the house dust mite allergen Der p 2. In this chapter we provide an overview of the cell culture and stimulation processes required to study TLR signaling in HEK293 based assays and in bone marrow-derived macrophages. PMID:26803639

  16. Modulation of stress-induced and stimulated hyperprolactinemia with the group II metabotropic glutamate receptor selective agonist, LY379268.

    PubMed

    Johnson, M P; Chamberlain, M

    2002-10-01

    It is well recognized that glutamate is an integral excitatory neurotransmitter in the neuroendocrine control of several hormonal factors. While the ability of pharmacological agents acting at ionotropic glutamate receptors to modulate the levels of serum prolactin levels has been investigated, there have been few reports of the effects mediated by the G-protein coupled, metabotropic glutamate (mGlu) receptors. The present work was undertaken to investigate the role of the Group II mGlu receptors, mGlu2 and mGlu3 in the regulation of serum polactin levels. LY379268, a Group II selective agonist, did not alter basal levels of circulating prolactin in young (36-40 day old) male rats. However, when an immobilization stress-induced hyperprolactinemia was examined, 10 mg/kg s.c. of LY379268 significantly lowered serum prolactin levels. Similarly, pretreatment with LY379268 was able to reverse the hyperprolactinemia induced with the catecholamine synthesis inhibitor, alpha-methyl-p-tyrosine (aMPT). This inhibition of hyperprolactinemia could be prevented by pretreatment with LY341495, a Group II mGlu receptor antagonist. The Group II antagonist alone had no effect on either basal nor stimulated prolactin levels. The agonist LY379268 was able to prevent the transient hyperprolactinemia associated with stimulation of serotonin 5-HT2A receptors by 2,5-dimethoxy-4-iodoamphetamine (DOI), but did not alter the high levels of circulating prolactin induced with the D2 antagonist, haloperidol. When treatment with LY379268 was delayed until 1 h after aMPT, a time demonstrated to show a full effect of aMPT on serum prolactin levels, the Group II agonist was similarly able to reverse hyperprolactinemia, suggesting LY379268 did not act by preventing the partial catecholamine depletion by aMPT. Similarly, high doses of amphetamine, a dopamine (DA) releaser, were able to reverse the aMPT-induced hyperprolactinemia, consistent with sufficient levels of dopamine remaining after a

  17. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors.

    PubMed

    Shytle, R Douglas; Mori, Takashi; Townsend, Kirk; Vendrame, Martina; Sun, Nan; Zeng, Jin; Ehrhart, Jared; Silver, Archie A; Sanberg, Paul R; Tan, Jun

    2004-04-01

    Almost all degenerative diseases of the CNS are associated with chronic inflammation. A central step in this process is the activation of brain mononuclear phagocyte cells, called microglia. While it is recognized that healthy neurons and astrocytes regulate the magnitude of microglia-mediated innate immune responses and limit excessive CNS inflammation, the endogenous signals governing this process are not fully understood. In the peripheral nervous system, recent studies suggest that an endogenous 'cholinergic anti-inflammatory pathway' regulates systemic inflammatory responses via alpha 7 nicotinic acetylcholinergic receptors (nAChR) found on blood-borne macrophages. These data led us to investigate whether a similar cholinergic pathway exists in the brain that could regulate microglial activation. Here we report for the first time that cultured microglial cells express alpha 7 nAChR subunit as determined by RT-PCR, western blot, immunofluorescent, and immunohistochemistry analyses. Acetylcholine and nicotine pre-treatment inhibit lipopolysaccharide (LPS)-induced TNF-alpha release in murine-derived microglial cells, an effect attenuated by alpha 7 selective nicotinic antagonist, alpha-bungarotoxin. Furthermore, this inhibition appears to be mediated by a reduction in phosphorylation of p44/42 and p38 mitogen-activated protein kinase (MAPK). Though preliminary, our findings suggest the existence of a brain cholinergic pathway that regulates microglial activation through alpha 7 nicotinic receptors. Negative regulation of microglia activation may also represent additional mechanism underlying nicotine's reported neuroprotective properties.

  18. Identification of intracellular receptor proteins for activated protein kinase C.

    PubMed Central

    Mochly-Rosen, D; Khaner, H; Lopez, J

    1991-01-01

    Protein kinase C (PKC) translocates from the cytosol to the particulate fraction on activation. This activation-induced translocation of PKC is thought to reflect PKC binding to the membrane lipids. However, immunological and biochemical data suggest that PKC may bind to proteins in the cytoskeletal elements in the particulate fraction and in the nuclei. Here we describe evidence for the presence of intracellular receptor proteins that bind activated PKC. Several proteins from the detergent-insoluble material of the particulate fraction bound PKC in the presence of phosphatidylserine and calcium; binding was further increased with the addition of diacylglycerol. Binding of PKC to two of these proteins was concentration-dependent, saturable, and specific, suggesting that these binding proteins are receptors for activated C-kinase, termed here "RACKs." PKC binds to RACKs via a site on PKC distinct from the substrate binding site. We suggest that binding to RACKs may play a role in activation-induced translocation of PKC. Images PMID:1850844

  19. The prostaglandin EP1 receptor potentiates kainate receptor activation via a protein kinase C pathway and exacerbates status epilepticus

    PubMed Central

    Rojas, Asheebo; Gueorguieva, Paoula; Lelutiu, Nadia; Quan, Yi; Shaw, Renee; Dingledine, Raymond

    2014-01-01

    Prostaglandin E2 (PGE2) regulates membrane excitability, synaptic transmission, plasticity, and neuronal survival. The consequences of PGE2 release following seizures has been the subject of much study. Here we demonstrate that the prostaglandin E2 receptor 1 (EP1, or Ptger1) modulates native kainate receptors, a family of ionotropic glutamate receptors widely expressed throughout the central nervous system. Global ablation of the EP1 gene in mice (EP1-KO) had no effect on seizure threshold after kainate injection but reduced the likelihood to enter status epilepticus. EP1-KO mice that did experience typical status epilepticus had reduced hippocampal neurodegeneration and a blunted inflammatory response. Further studies with native prostanoid and kainate receptors in cultured cortical neurons, as well as with recombinant prostanoid and kainate receptors expressed in Xenopus oocytes, demonstrated that EP1 receptor activation potentiates heteromeric but not homomeric kainate receptors via a second messenger cascade involving phospholipase C, calcium and protein kinase C. Three critical GluK5 C-terminal serines underlie the potentiation of the GluK2/GluK5 receptor by EP1 activation. Taken together, these results indicate that EP1 receptor activation during seizures, through a protein kinase C pathway, increases the probability of kainic acid induced status epilepticus, and independently promotes hippocampal neurodegeneration and a broad inflammatory response. PMID:24952362

  20. Detection of Neu1 Sialidase Activity in Regulating TOLL-like Receptor Activation

    PubMed Central

    Abdulkhalek, Samar

    2010-01-01

    Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed 1,2. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB 3, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors 4. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9 5. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a

  1. Identification of Modulators of the Nuclear Receptor Peroxisome Proliferator-Activated Receptor α (PPARα) in a Mouse Liver Gene Expression Compendium

    EPA Science Inventory

    The nuclear receptor family member peroxisome proliferator-activated receptor α (PPARα) is activated by therapeutic hypolipidemic drugs and environmentally-relevant chemicals to regulate genes involved in lipid transport and catabolism. Chronic activation of PPARα in rodents inc...

  2. Phagocytic receptors activate and immune inhibitory receptor SIRPα inhibits phagocytosis through paxillin and cofilin.

    PubMed

    Gitik, Miri; Kleinhaus, Rachel; Hadas, Smadar; Reichert, Fanny; Rotshenker, Shlomo

    2014-01-01

    The innate immune function of phagocytosis of apoptotic cells, tissue debris, pathogens, and cancer cells is essential for homeostasis, tissue repair, fighting infection, and combating malignancy. Phagocytosis is carried out in the central nervous system (CNS) by resident microglia and in both CNS and peripheral nervous system by recruited macrophages. While phagocytosis proceeds, bystander healthy cells protect themselves by sending a "do not eat me" message to phagocytes as CD47 on their surface ligates immune inhibitory receptor SIRPα on the surface of phagocytes and SIRPα then produces the signaling which inhibits phagocytosis. This helpful mechanism becomes harmful when tissue debris and unhealthy cells inhibit their own phagocytosis by employing the same mechanism. However, the inhibitory signaling that SIRPα produces has not been fully revealed. We focus here on how SIRPα inhibits the phagocytosis of the tissue debris "degenerated myelin" which hinders repair in axonal injury and neurodegenerative diseases. We tested whether SIRPα inhibits phagocytosis by regulating cytoskeleton function through paxillin and cofilin since (a) the cytoskeleton generates the mechanical forces that drive phagocytosis and (b) both paxillin and cofilin control cytoskeleton function. Paxillin and cofilin were transiently activated in microglia as phagocytosis was activated. In contrast, paxillin and cofilin were continuously activated and phagocytosis augmented in microglia in which SIRPα expression was knocked-down by SIRPα-shRNA. Further, levels of phagocytosis, paxillin activation, and cofilin activation positively correlated with one another. Taken together, these observations suggest a novel mechanism whereby paxillin and cofilin are targeted to control phagocytosis by both the activating signaling that phagocytic receptors produce by promoting the activation of paxillin and cofilin and the inhibiting signaling that immune inhibitory SIRPα produces by promoting the

  3. FATTY ACIDS MODULATE TOLL-LIKE RECEPTOR 4 ACTIVATION THROUGH REGULATION OF RECEPTOR DIMERIZATION AND RECRUITMENT INTO LIPID RAFTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The saturated fatty acids acylated on Lipid A of lipopolysaccharide (LPS) or bacterial lipoproteins play critical roles in ligand recognition and receptor activation for Toll-like Receptor 4 (TLR4) and TLR2. The results from our previous studies (J Biol Chem 2003, 2004) demonstrated that saturated ...

  4. Helix 11 dynamics is critical for constitutive androstane receptor activity.

    PubMed

    Wright, Edward; Busby, Scott A; Wisecarver, Sarah; Vincent, Jeremy; Griffin, Patrick R; Fernandez, Elias J

    2011-01-12

    The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Hydrogen/deuterium exchange (HDX) data indicate that the CAR activation function 2 (AF-2) is more stable in CAR(TCPOBOP):RXR and CAR(meclizine):RXR than in CAR:RXR. HDX kinetics also show significant differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Unlike CAR(meclizine):RXR, CAR(TCPOBOP):RXR shows a higher overall stabilization that extends into RXR. We identify residues 339-345 in CAR as an allosteric regulatory site with a greater magnitude reduction in exchange kinetics in CAR(TCPOBOP):RXR than CAR(meclizine):RXR. Accordingly, assays with mutations on CAR at leucine-340 and leucine-343 confirm this region as an important determinant of CAR activity. PMID:21220114

  5. The Pharmacochaperone Activity of Quinine on Bitter Taste Receptors

    PubMed Central

    Upadhyaya, Jasbir D.; Chakraborty, Raja; Shaik, Feroz A.; Jaggupilli, Appalaraju; Bhullar, Rajinder P.; Chelikani, Prashen

    2016-01-01

    Bitter taste is one of the five basic taste sensations which is mediated by 25 bitter taste receptors (T2Rs) in humans. The mechanism of bitter taste signal transduction is not yet elucidated. The cellular processes underlying T2R desensitization including receptor internalization, trafficking and degradation are yet to be studied. Here, using a combination of molecular and pharmacological techniques we show that T2R4 is not internalized upon agonist treatment. Pretreatment with bitter agonist quinine led to a reduction in subsequent quinine-mediated calcium responses to 35 ± 5% compared to the control untreated cells. Interestingly, treatment with different bitter agonists did not cause internalization of T2R4. Instead, quinine treatment led to a 2-fold increase in T2R4 cell surface expression which was sensitive to Brefeldin A, suggesting a novel pharmacochaperone activity of quinine. This phenomenon of chaperone activity of quinine was also observed for T2R7, T2R10, T2R39 and T2R46. Our results suggest that the observed action of quinine for these T2Rs is independent of its agonist activity. This study provides novel insights into the pharmacochaperone activity of quinine and possible mechanism of T2R desensitization, which is of fundamental importance in understanding the mechanism of bitter taste signal transduction. PMID:27223611

  6. The Pharmacochaperone Activity of Quinine on Bitter Taste Receptors.

    PubMed

    Upadhyaya, Jasbir D; Chakraborty, Raja; Shaik, Feroz A; Jaggupilli, Appalaraju; Bhullar, Rajinder P; Chelikani, Prashen

    2016-01-01

    Bitter taste is one of the five basic taste sensations which is mediated by 25 bitter taste receptors (T2Rs) in humans. The mechanism of bitter taste signal transduction is not yet elucidated. The cellular processes underlying T2R desensitization including receptor internalization, trafficking and degradation are yet to be studied. Here, using a combination of molecular and pharmacological techniques we show that T2R4 is not internalized upon agonist treatment. Pretreatment with bitter agonist quinine led to a reduction in subsequent quinine-mediated calcium responses to 35 ± 5% compared to the control untreated cells. Interestingly, treatment with different bitter agonists did not cause internalization of T2R4. Instead, quinine treatment led to a 2-fold increase in T2R4 cell surface expression which was sensitive to Brefeldin A, suggesting a novel pharmacochaperone activity of quinine. This phenomenon of chaperone activity of quinine was also observed for T2R7, T2R10, T2R39 and T2R46. Our results suggest that the observed action of quinine for these T2Rs is independent of its agonist activity. This study provides novel insights into the pharmacochaperone activity of quinine and possible mechanism of T2R desensitization, which is of fundamental importance in understanding the mechanism of bitter taste signal transduction. PMID:27223611

  7. Phosphorylation of the human leukemia inhibitory factor (LIF) receptor by mitogen-activated protein kinase and the regulation of LIF receptor function by heterologous receptor activation.

    PubMed Central

    Schiemann, W P; Graves, L M; Baumann, H; Morella, K K; Gearing, D P; Nielsen, M D; Krebs, E G; Nathanson, N M

    1995-01-01

    We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044. Images Fig. 2 Fig. 4 PMID:7777512

  8. Novel mechanisms for activated protein C cytoprotective activities involving noncanonical activation of protease-activated receptor 3.

    PubMed

    Burnier, Laurent; Mosnier, Laurent O

    2013-08-01

    The direct cytoprotective activities of activated protein C (APC) on cells convey therapeutic, relevant, beneficial effects in injury and disease models in vivo and require the endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR1). Thrombin also activates PAR1, but its effects on cells contrast APC's cytoprotective effects. To gain insights into mechanisms for these contrasting cellular effects, protease activated receptor 3 (PAR3) activation by APC and thrombin was studied. APC cleaved PAR3 on transfected and endothelial cells in the presence of EPCR. Remarkably, APC cleaved a synthetic PAR3 N-terminal peptide at Arg41, whereas thrombin cleaved at Lys38. On cells, APC failed to cleave R41Q-PAR3, whereas K38Q-PAR3 was still cleaved by APC but not by thrombin. PAR3 tethered-ligand peptides beginning at amino acid 42, but not those beginning at amino acid 39, conveyed endothelial barrier-protective effects. In vivo, the APC-derived PAR3 tethered-ligand peptide, but not the thrombin-derived PAR3 peptide, blunted vascular endothelial growth factor (VEGF)-induced vascular permeability. These data indicate that PAR3 cleavage by APC at Arg41 can initiate distinctive APC-like cytoprotective effects. These novel insights help explain the differentiation of APC's cytoprotective versus thrombin's proinflammatory effects on cells and suggest a unique contributory role for PAR3 in the complex mechanisms underlying APC cytoprotective effects. PMID:23788139

  9. Activation of family C G-protein-coupled receptors by the tripeptide glutathione.

    PubMed

    Wang, Minghua; Yao, Yi; Kuang, Donghui; Hampson, David R

    2006-03-31

    The Family C G-protein-coupled receptors include the metabotropic glutamate receptors, the gamma-aminobutyric acid, type B (GABAB) receptor, the calcium-sensing receptor (CaSR), which participates in the regulation of calcium homeostasis in the body, and a diverse group of sensory receptors that encompass the amino acid-activated fish 5.24 chemosensory receptor, the mammalian T1R taste receptors, and the V2R pheromone receptors. A common feature of Family C receptors is the presence of an amino acid binding site. In this study, a preliminary in silico analysis of the size and shape of the amino acid binding pocket in selected Family C receptors suggested that some members of this family could accommodate larger ligands such as peptides. Subsequent screening and docking experiments identified GSH as a potential ligand or co-ligand at the fish 5.24 receptor and the rat CaSR. These in silico predictions were confirmed using an [3H]GSH radioligand binding assay and a fluorescence-based functional assay performed on wild-type and chimeric receptors. Glutathione was shown to act as an orthosteric agonist at the 5.24 receptor and as a potent enhancer of calcium-induced activation of the CaSR. Within the mammalian receptors, this effect was specific to the CaSR because GSH neither directly activated nor potentiated other Family C receptors including GPRC6A (the putative mammalian homolog of the fish 5.24 receptor), the metabotropic glutamate receptors, or the GABAB receptor. Our findings reveal a potential new role for GSH and suggest that this peptide may act as an endogenous modulator of the CaSR in the parathyroid gland where this receptor is known to control the release of parathyroid hormone, and in other tissues such as the brain and gastrointestinal tract where the role of the calcium receptor appears to subserve other, as yet unknown, physiological functions. PMID:16455645

  10. Molecular details of the activation of the μ opioid receptor.

    PubMed

    Shim, Jihyun; Coop, Andrew; MacKerell, Alexander D

    2013-07-01

    Molecular details of μ opioid receptor activations were obtained using molecular dynamics simulations of the receptor in the presence of three agonists, three antagonists, and a partial agonist and on the constitutively active T279K mutant. Agonists have a higher probability of direct interactions of their basic nitrogen (N) with Asp147 as compared with antagonists, indicating that direct ligand-Asp147 interactions modulate activation. Medium-size substituents on the basic N of antagonists lead to steric interactions that perturb N-Asp147 interactions, while additional favorable interactions occur with larger basic N substituents, such as in N-phenethylnormorphine, restoring N-Asp147 interactions, leading to agonism. With the orvinols, the increased size of the C19 substituent in buprenorphine over diprenorphine leads to increased interactions with residues adjacent to Asp147, partially overcoming the presence of the cyclopropyl N substituent, such that buprenorphine is a partial agonist. Results also indicate different conformational properties of the intracellular regions of the transmembrane helices in agonists versus antagonists. PMID:23758404

  11. Peroxisome proliferator-activated receptor {alpha}-independent peroxisome proliferation

    SciTech Connect

    Zhang Xiuguo; Tanaka, Naoki . E-mail: naopi@hsp.md.shinshu-u.ac.jp; Nakajima, Takero; Kamijo, Yuji; Gonzalez, Frank J.; Aoyama, Toshifumi

    2006-08-11

    Hepatic peroxisome proliferation, increases in the numerical and volume density of peroxisomes, is believed to be closely related to peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) activation; however, it remains unknown whether peroxisome proliferation depends absolutely on this activation. To verify occurrence of PPAR{alpha}-independent peroxisome proliferation, fenofibrate treatment was used, which was expected to significantly enhance PPAR{alpha} dependence in the assay system. Surprisingly, a novel type of PPAR{alpha}-independent peroxisome proliferation and enlargement was uncovered in PPAR{alpha}-null mice. The increased expression of dynamin-like protein 1, but not peroxisome biogenesis factor 11{alpha}, might be associated with the PPAR{alpha}-independent peroxisome proliferation at least in part.

  12. Kainate receptor activation induces glycine receptor endocytosis through PKC deSUMOylation.

    PubMed

    Sun, Hao; Lu, Li; Zuo, Yong; Wang, Yan; Jiao, Yingfu; Zeng, Wei-Zheng; Huang, Chao; Zhu, Michael X; Zamponi, Gerald W; Zhou, Tong; Xu, Tian-Le; Cheng, Jinke; Li, Yong

    2014-01-01

    Surface expression and regulated endocytosis of glycine receptors (GlyRs) play a critical function in balancing neuronal excitability. SUMOylation (SUMO modification) is of critical importance for maintaining neuronal function in the central nervous system. Here we show that activation of kainate receptors (KARs) causes GlyR endocytosis in a calcium- and protein kinase C (PKC)-dependent manner, leading to reduced GlyR-mediated synaptic activity in cultured spinal cord neurons and the superficial dorsal horn of rat spinal cord slices. This effect requires SUMO1/sentrin-specific peptidase 1 (SENP1)-mediated deSUMOylation of PKC, indicating that the crosstalk between KARs and GlyRs relies on the SUMOylation status of PKC. SENP1-mediated deSUMOylation of PKC is involved in the kainate-induced GlyR endocytosis and thus plays an important role in the anti-homeostatic regulation between excitatory and inhibitory ligand-gated ion channels. Altogether, we have identified a SUMOylation-dependent regulatory pathway for GlyR endocytosis, which may have important physiological implications for proper neuronal excitability. PMID:25236484

  13. A new mechanism for growth hormone receptor activation of JAK2, and implications for related cytokine receptors

    PubMed Central

    Waters, Michael J; Brooks, Andrew J; Chhabra, Yash

    2014-01-01

    The growth hormone receptor was the first cytokine receptor to be cloned and crystallized, and provides a valuable exemplar for activation of its cognate kinase, JAK2. We review progress in understanding its activation mechanism, in particular the molecular movements made by this constitutively dimerized receptor in response to ligand binding, and how these lead to a separation of JAK-binding Box1 motifs. Such a separation leads to removal of the pseudokinase inhibitory domain from the kinase domain of a partner JAK2 bound to the receptor, and vice versa, leading to apposition of the kinase domains and transactivation. This may be a general mechanism for class I cytokine receptor action. PMID:25101218

  14. Artificial masculinization in tilapia involves androgen receptor activation.

    PubMed

    Golan, Matan; Levavi-Sivan, Berta

    2014-10-01

    Estrogens have a pivotal role in natural female sexual differentiation of tilapia while lack of steroids results in testicular development. Despite the fact that androgens do not participate in natural sex differentiation, synthetic androgens, mainly 17-α-methyltestosterone (MT) are effective in the production of all-male fish in aquaculture. The sex inversion potency of synthetic androgens may arise from their androgenic activity or else as inhibitors of aromatase activity. The current study is an attempt to differentiate between the two alleged activities in order to evaluate their contribution to the sex inversion process and aid the search for novel sex inversion agents. In the present study, MT inhibited aromatase activity, when applied in vitro as did the non-aromatizable androgen dihydrotestosterone (DHT). In comparison, exposure to fadrozole, a specific aromatase inhibitor, was considerably more effective. Androgenic activity of MT was evaluated by exposure of Sciaenochromis fryeri fry to the substance and testing for the appearance of blue color. Flutamide, an androgen antagonist, administered concomitantly with MT, reduced the appearance of the blue color and the sex inversion potency of MT in a dose-dependent manner. In tilapia, administration of MT, fadrozole or DHT resulted in efficient sex inversion while flutamide reduced the sex inversion potency of all three compounds. In the case of MT and DHT the decrease in sex inversion efficiency caused by flutamide is most likely due to the direct blocking of the androgen binding to its cognate receptor. The negative effect of flutamide on the efficiency of the fadrozole treatment may indicate that the masculinizing activity of fadrozole may be attributed to excess, un-aromatized, androgens accumulated in the differentiating gonad. The present study shows that when androgen receptors are blocked, there is a reduction in the efficiency of sex inversion treatments. Our results suggest that in contrast to

  15. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation.

    PubMed

    Hoeller, Alexandre A; Costa, Ana Paula R; Bicca, Maíra A; Matheus, Filipe C; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L; Walz, Roger; Collingridge, Graham L; Bortolotto, Zuner A; de Lima, Thereza C M

    2016-01-01

    Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine--a muscarinic receptor (mAChR) agonist--displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine--an NMDARs antagonist (4 mg/kg, i.p.)--prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies. PMID:26795565

  16. The Role of Hippocampal NMDA Receptors in Long-Term Emotional Responses following Muscarinic Receptor Activation.

    PubMed

    Hoeller, Alexandre A; Costa, Ana Paula R; Bicca, Maíra A; Matheus, Filipe C; Lach, Gilliard; Spiga, Francesca; Lightman, Stafford L; Walz, Roger; Collingridge, Graham L; Bortolotto, Zuner A; de Lima, Thereza C M

    2016-01-01

    Extensive evidence indicates the influence of the cholinergic system on emotional processing. Previous findings provided new insights into the underlying mechanisms of long-term anxiety, showing that rats injected with a single systemic dose of pilocarpine--a muscarinic receptor (mAChR) agonist--displayed persistent anxiogenic-like responses when evaluated in different behavioral tests and time-points (24 h up to 3 months later). Herein, we investigated whether the pilocarpine-induced long-term anxiogenesis modulates the HPA axis function and the putative involvement of NMDA receptors (NMDARs) following mAChRs activation. Accordingly, adult male Wistar rats presented anxiogenic-like behavior in the elevated plus-maze (EPM) after 24 h or 1 month of pilocarpine injection (150 mg/kg, i.p.). In these animals, mAChR activation disrupted HPA axis function inducing a long-term increase of corticosterone release associated with a reduced expression of hippocampal GRs, as well as consistently decreased NMDAR subunits expression. Furthermore, in another group of rats injected with memantine--an NMDARs antagonist (4 mg/kg, i.p.)--prior to pilocarpine, we found inhibition of anxiogenic-like behaviors in the EPM but no further alterations in the pilocarpine-induced NMDARs downregulation. Our data provide evidence that behavioral anxiogenesis induced by mAChR activation effectively yields short- and long-term alterations in hippocampal NMDARs expression associated with impairment of hippocampal inhibitory regulation of HPA axis activity. This is a novel mechanism associated with anxiety-like responses in rats, which comprise a putative target to future translational studies.

  17. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    SciTech Connect

    Onuma, Hirohisa; Inukai, Kouichi Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  18. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes.

    PubMed Central

    Santulli, R J; Derian, C K; Darrow, A L; Tomko, K A; Eckardt, A J; Seiberg, M; Scarborough, R M; Andrade-Gordon, P

    1995-01-01

    Thrombin receptor activation was explored in human epidermal keratinocytes and human dermal fibroblasts, cells that are actively involved in skin tissue repair. The effects of thrombin, trypsin, and the receptor agonist peptides SFLLRN and TFRIFD were assessed in inositolphospholipid hydrolysis and calcium mobilization studies. Thrombin and SFLLRN stimulated fibroblasts in both assays to a similar extent, whereas TFRIFD was less potent. Trypsin demonstrated weak efficacy in these assays in comparison with thrombin. Results in fibroblasts were consistent with human platelet thrombin receptor activation. Keratinocytes, however, exhibited a distinct profile, with trypsin being a far better activator of inositolphospholipid hydrolysis and calcium mobilization than thrombin. Furthermore, SFLLRN was more efficacious than thrombin, whereas no response was observed with TFRIFD. Since our data indicated that keratinocytes possess a trypsin-sensitive receptor, we addressed the possibility that these cells express the human homologue of the newly described murine protease-activated receptor, PAR-2 [Nystedt, S., Emilsson, K., Wahlestedt, C. & Sundelin, J. (1994) Proc. Natl. Acad. Sci. USA 91, 9208-9212]. PAR-2 is activated by nanomolar concentrations of trypsin and possesses the tethered ligand sequence SLIGRL. SLIGRL was found to be equipotent with SFLLRN in activating keratinocyte inositolphospholipid hydrolysis and calcium mobilization. Desensitization studies indicated that SFLLRN, SLIGRL, and trypsin activate a common receptor, PAR-2. Northern blot analyses detected a transcript of PAR-2 in total RNA from keratinocytes but not fibroblasts. Levels of thrombin receptor message were equivalent in the two cell types. Our results indicate that human keratinocytes possess PAR-2, suggesting a potential role for this receptor in tissue repair and/or skin-related disorders. Images Fig. 6 PMID:7568091

  19. Spontaneous olfactory receptor neuron activity determines follower cell response properties

    PubMed Central

    Joseph, Joby; Dunn, Felice A.; Stopfer, Mark

    2012-01-01

    Noisy or spontaneous activity is common in neural systems and poses a challenge to detecting and discriminating signals. Here we use the locust to answer fundamental questions about noise in the olfactory system: Where does spontaneous activity originate? How is this activity propagated or reduced throughout multiple stages of neural processing? What mechanisms favor the detection of signals despite the presence of spontaneous activity? We found that spontaneous activity long observed in the secondary projection neurons (PNs) originates almost entirely from the primary olfactory receptor neurons (ORNs) rather than from spontaneous circuit interactions in the antennal lobe, and that spontaneous activity in ORNs tonically depolarizes the resting membrane potentials of their target PNs and local neurons (LNs), and indirectly tonically depolarizes tertiary Kenyon cells (KCs). However, because these neurons have different response thresholds, in the absence of odor stimulation, ORNs and PNs display a high spontaneous firing rate but KCs are nearly silent. Finally, we used a simulation of the olfactory network to show that discrimination of signal and noise in the KCs is best when threshold levels are set so that baseline activity in PNs persists. Our results show how the olfactory system benefits from making a signal detection decision after a point of maximal information convergence, e.g., after KCs pool inputs from many PNs. PMID:22357872

  20. The First Structure–Activity Relationship Studies for Designer Receptors Exclusively Activated by Designer Drugs

    PubMed Central

    2016-01-01

    Over the past decade, two independent technologies have emerged and been widely adopted by the neuroscience community for remotely controlling neuronal activity: optogenetics which utilize engineered channelrhodopsin and other opsins, and chemogenetics which utilize engineered G protein-coupled receptors (Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)) and other orthologous ligand–receptor pairs. Using directed molecular evolution, two types of DREADDs derived from human muscarinic acetylcholine receptors have been developed: hM3Dq which activates neuronal firing, and hM4Di which inhibits neuronal firing. Importantly, these DREADDs were not activated by the native ligand acetylcholine (ACh), but selectively activated by clozapine N-oxide (CNO), a pharmacologically inert ligand. CNO has been used extensively in rodent models to activate DREADDs, and although CNO is not subject to significant metabolic transformation in mice, a small fraction of CNO is apparently metabolized to clozapine in humans and guinea pigs, lessening the translational potential of DREADDs. To effectively translate the DREADD technology, the next generation of DREADD agonists are needed and a thorough understanding of structure–activity relationships (SARs) of DREADDs is required for developing such ligands. We therefore conducted the first SAR studies of hM3Dq. We explored multiple regions of the scaffold represented by CNO, identified interesting SAR trends, and discovered several compounds that are very potent hM3Dq agonists but do not activate the native human M3 receptor (hM3). We also discovered that the approved drug perlapine is a novel hM3Dq agonist with >10 000-fold selectivity for hM3Dq over hM3. PMID:25587888

  1. In vitro neuronal network activity in NMDA receptor encephalitis

    PubMed Central

    2013-01-01

    Background Anti-NMDA-encephalitis is caused by antibodies against the N-methyl-D-aspartate receptor (NMDAR) and characterized by a severe encephalopathy with psychosis, epileptic seizures and autonomic disturbances. It predominantly occurs in young women and is associated in 59% with an ovarian teratoma. Results We describe effects of cerebrospinal fluid (CSF) from an anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis patient on in vitro neuronal network activity (ivNNA). In vitro NNA of dissociated primary rat cortical populations was recorded by the microelectrode array (MEA) system. The 23-year old patient was severely affected but showed an excellent recovery following multimodal immunomodulatory therapy and removal of an ovarian teratoma. Patient CSF (pCSF) taken during the initial weeks after disease onset suppressed global spike- and burst rates of ivNNA in contrast to pCSF sampled after clinical recovery and decrease of NMDAR antibody titers. The synchrony of pCSF-affected ivNNA remained unaltered during the course of the disease. Conclusion Patient CSF directly suppresses global activity of neuronal networks recorded by the MEA system. In contrast, pCSF did not regulate the synchrony of ivNNA suggesting that NMDAR antibodies selectively regulate distinct parameters of ivNNA while sparing their functional connectivity. Thus, assessing ivNNA could represent a new technique to evaluate functional consequences of autoimmune encephalitis-related CSF changes. PMID:23379293

  2. Evolution of the protease-activated receptor family in vertebrates

    PubMed Central

    JIN, MIN; YANG, HAI-WEI; TAO, AI-LIN; WEI, JI-FU

    2016-01-01

    Belonging to the G protein-coupled receptor (GPcr) family, the protease-activated receptors (Pars) consist of 4 members, PAR1-4. PARs mediate the activation of cells via thrombin, serine and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis and other normal pathological processes. In the present study, we examined the evolution of PARs by analyzing phylogenetic trees, chromosome location, selective pressure and functional divergence based on the 169 functional gene alignment sequences from 57 vertebrate gene sequences. We found that the 4 PARs originated from 4 invertebrate ancestors by phylogenetic trees analysis. The selective pressure results revealed that only PAR1 appeared by positive selection during its evolution, while the other PAR members did not. In addition, we noticed that although these PARs evolved separately, the results of functional divergence indicated that their evolutional rates were similar and their functions did not significantly diverge. The findings of our study provide valuable insight into the evolutionary history of the vertebrate PAR family. PMID:26820116

  3. Antitussive activity of Withania somnifera and opioid receptors.

    PubMed

    Nosálová, Gabriela; Sivová, Veronika; Ray, Bimalendu; Fraňová, Soňa; Ondrejka, Igor; Flešková, Dana

    2015-01-01

    Arabinogalactan is a polysaccharide isolated from the roots of the medicinal plant Withania somnifera L. It contains 65% arabinose and 18% galactose. The aim of the present study was to evaluate the antitussive activity of arabinogalactan in conscious, healthy adult guinea pigs and the role of the opioid pathway in the antitussive action. A polysaccharide extract was given orally in a dose of 50 mg/kg. Cough was induced by an aerosol of citric acid in a concentration 0.3 mol/L, generated by a jet nebulizer into a plethysmographic chamber. The intensity of cough response was defined as the number of cough efforts counted during a 3-min exposure to the aerosol. The major finding was that arabinogalactan clearly suppressed the cough reflex; the suppression was comparable with that of codeine that was taken as a reference drug. The involvement of the opioid system was tested with the use of a blood-brain barrier penetrable, naloxone hydrochloride, and non-penetrable, naloxone methiodide, to distinguish between the central and peripheral mu-opioid receptor pathways. Both opioid antagonists acted to reverse the arabinogalactan-induced cough suppression; the reversion was total over time with the latter antagonist. We failed to confirm the presence of a bronchodilating effect of the polysaccharide, which could be involved in its antitussive action. We conclude that the polysaccharide arabinogalactan from Withania somnifera has a distinct antitussive activity consisting of cough suppression and that this action involves the mu-opioid receptor pathways.

  4. ERK5 activation by Gq-coupled muscarinic receptors is independent of receptor internalization and β-arrestin recruitment.

    PubMed

    Sánchez-Fernández, Guzmán; Cabezudo, Sofía; García-Hoz, Carlota; Tobin, Andrew B; Mayor, Federico; Ribas, Catalina

    2013-01-01

    G-protein-coupled receptors (GPCRs) are known to activate both G protein- and β-arrestin-dependent signalling cascades. The initiation of mitogen-activated protein kinase (MAPK) pathways is a key downstream event in the control of cellular functions including proliferation, differentiation, migration and apoptosis. Both G proteins and β-arrestins have been reported to mediate context-specific activation of ERK1/2, p38 and JNK MAPKs. Recently, the activation of ERK5 MAPK by Gq-coupled receptors has been described to involve a direct interaction between Gαq and two novel effectors, PKCζ and MEK5. However, the possible contribution of β-arrestin towards this pathway has not yet been addressed. In the present work we sought to investigate the role of receptor internalization processes and β-arrestin recruitment in the activation of ERK5 by Gq-coupled GPCRs. Our results show that ERK5 activation is independent of M1 or M3 muscarinic receptor internalization. Furthermore, we demonstrate that phosphorylation-deficient muscarinic M1 and M3 receptors are still able to fully activate the ERK5 pathway, despite their reported inability to recruit β-arrestins. Indeed, the overexpression of Gαq, but not that of β-arrestin1 or β-arrestin2, was found to potently enhance ERK5 activation by GPCRs, whereas silencing of β-arrestin2 expression did not affect the activation of this pathway. Finally, we show that a β-arrestin-biased mutant form of angiotensin II (SII; Sar1-Ile4-Ile8 AngII) failed to promote ERK5 phosphorylation in primary cardiac fibroblasts, as compared to the natural ligand. Overall, this study shows that the activation of ERK5 MAPK by model Gq-coupled GPCRs does not depend on receptor internalization, β-arrestin recruitment or receptor phosphorylation but rather is dependent on Gαq-signalling.

  5. Mode of action framework analysis for receptor-mediated toxicity: the Peroxisome Proliferator-Activated Receptor alpha (PPARα) as a case study

    EPA Science Inventory

    Therapeutic hypolipidemic agents and industrial chemicals that cause peroxisome proliferation and induce liver tumors in rodents activate the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα). Research has elucidated the cellular and molecular events by w...

  6. Vasopeptidase-activated latent ligands of the histamine receptor-1.

    PubMed

    Gera, Lajos; Roy, Caroline; Charest-Morin, Xavier; Marceau, François

    2013-11-01

    Whether peptidases present in vascular cells can activate prodrugs active on vascular cells has been tested with 2 potential latent ligands of the histamine H1 receptor (H1R). First, a peptide consisting of the antihistamine cetirizine (CTZ) condensed at the N-terminus of ε-aminocaproyl-bradykinin (εACA-BK) was evaluated for an antihistamine activity that could be revealed by degradation of the peptide part of the molecule. CTZ-εACA-BK had a submicromolar affinity for the BK B2 receptor (B2R; IC50 of 590 nM, [(3)H]BK binding competition), but a non-negligible affinity for the human H1 receptor (H1R; IC50 of 11 μM for [(3)H]pyrilamine binding). In the human isolated umbilical vein, a system where both endogenous B2R and H1R mediate strong contractions, CTZ-εACA-BK exerted mild antagonist effects on histamine-induced contraction that were not modified by omapatrilat or by a B2R antagonist that prevents endocytosis of the BK conjugate. Cells expressing recombinant ACE or B2R incubated with CTZ-εACA-BK did not release a competitor of [(3)H]pyrilamine binding to H1Rs. Thus, there is no evidence that CTZ-εACA-BK can release free cetirizine in biological environments. The second prodrug was a blocked agonist, L-alanyl-histamine, potentially activated by aminopeptidase N (APN). This compound did not compete for [(3)H]pyrilamine binding to H1Rs. The human umbilical vein contractility assay responded to L-alanyl-histamine (EC50 54.7 μM), but the APN inhibitor amastatin massively (17-fold) reduced its apparent potency. Amastatin did not influence the potency of histamine as a contractile agent. One of the 2 tested latent H1R ligands, L-alanyl-histamine, supported the feasibility of pro-drug activation by vascular ectopeptidases.

  7. Engineered epidermal growth factor mutants with faster binding on-rates correlate with enhanced receptor activation

    PubMed Central

    Lahti, Jennifer L.; Lui, Bertrand H.; Beck, Stayce E.; Lee, Stephen S.; Ly, Daphne P.; Longaker, Michael T.; Yang, George P.; Cochran, Jennifer R.

    2011-01-01

    Receptor tyrosine kinases (RTKs) regulate critical cell signaling pathways, yet the properties