Sample records for mgo based mtjs

  1. Chemical and electronic studies of CoFeB / MgO / CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Read, J.; Cha, J.; Huang, P.; Egelhoff, W.; Muller, D.; Buhrman, R.

    2008-03-01

    MgO based magnetic tunnel junctions (MTJs), particularly the CoFeB/MgO/CoFeB system, exhibit large tunneling magnetoresistance (TMR) which makes them viable for MRAM [1] and sensor applications. Careful engineering of the MgO tunnel barriers, CoFeB electrodes, and their interfaces is essential for optimizing device performance [2,3], which motivates investigation of the chemical and electronic properties of high quality MTJs. We correlate scanning tunneling (STS), x-ray photoelectron (XPS) [4], and electron energy loss (EELS) [5] spectroscopies with current-in-plane tunneling (CIPT) measurements to gain insight on the electronic structure and chemistry of MgO MTJ structures. The measurements reveal that quite high TMR (>200%) can be obtained when there is substantial boron in the tunnel barrier, showing that proper doping of the MgO layer plays a significant role in the performance of such MTJs. We will discuss the impact of materials properties upon transport measurements and provide suggestions for greater control over MTJ device characteristics. [1] Parkin, Nat. Mater. 3, 862 (2004). [2] Nagamine, APL 89, 162507 (2006). [3] Lee, APL 90, 212507 (2007). [4] Read, APL 90, 132503 (2007). [5] Cha, APL 91, 062516 (2007).

  2. Barrier breakdown mechanism in nano-scale perpendicular magnetic tunnel junctions with ultrathin MgO barrier

    NASA Astrophysics Data System (ADS)

    Lv, Hua; Leitao, Diana C.; Hou, Zhiwei; Freitas, Paulo P.; Cardoso, Susana; Kämpfe, Thomas; Müller, Johannes; Langer, Juergen; Wrona, Jerzy

    2018-05-01

    Recently, the perpendicular magnetic tunnel junctions (p-MTJs) arouse great interest because of its unique features in the application of spin-transfer-torque magnetoresistive random access memory (STT-MRAM), such as low switching current density, good thermal stability and high access speed. In this paper, we investigated current induced switching (CIS) in ultrathin MgO barrier p-MTJs with dimension down to 50 nm. We obtained a CIS perpendicular tunnel magnetoresistance (p-TMR) of 123.9% and 7.0 Ω.μm2 resistance area product (RA) with a critical switching density of 1.4×1010 A/m2 in a 300 nm diameter junction. We observe that the extrinsic breakdown mechanism dominates, since the resistance of our p-MTJs decreases gradually with the increasing current. From the statistical analysis of differently sized p-MTJs, we observe that the breakdown voltage (Vb) of 1.4 V is 2 times the switching voltage (Vs) of 0.7 V and the breakdown process exhibits two different breakdown states, unsteady and steady state. Using Simmons' model, we find that the steady state is related with the barrier height of the MgO layer. Furthermore, our study suggests a more efficient method to evaluate the MTJ stability under high bias rather than measuring Vb. In conclusion, we developed well performant p-MTJs for the use in STT-MRAM and demonstrate the mechanism and control of breakdown in nano-scale ultrathin MgO barrier p-MTJs.

  3. Asymmetric angular dependence of spin-transfer torques in CoFe/Mg-B-O/CoFe magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ling, E-mail: lingtang@zjut.edu.cn; Xu, Zhi-Jun, E-mail: xzj@zjut.edu.cn; Zuo, Xian-Jun

    Using a first-principles noncollinear wave-function-matching method, we studied the spin-transfer torques (STTs) in CoFe/Mg-B-O/CoFe(001) magnetic tunnel junctions (MTJs), where three different types of B-doped MgO in the spacer are considered, including B atoms replacing Mg atoms (Mg{sub 3}BO{sub 4}), B atoms replacing O atoms (Mg{sub 4}BO{sub 3}), and B atoms occupying interstitial positions (Mg{sub 4}BO{sub 4}) in MgO. A strong asymmetric angular dependence of STT can be obtained both in ballistic CoFe/Mg{sub 3}BO{sub 4} and CoFe/Mg{sub 4}BO{sub 4} based MTJs, whereas a nearly symmetric STT curve is observed in the junctions based on CoFe/Mg{sub 4}BO{sub 3}. Furthermore, the asymmetry ofmore » the angular dependence of STT can be suppressed significantly by the disorder of B distribution. Such skewness of STTs in the CoFe/Mg-B-O/CoFe MTJs could be attributed to the interfacial resonance states induced by the B diffusion into MgO spacer.« less

  4. Enhanced voltage-controlled magnetic anisotropy in magnetic tunnel junctions with an MgO/PZT/MgO tunnel barrier

    NASA Astrophysics Data System (ADS)

    Chien, Diana; Li, Xiang; Wong, Kin; Zurbuchen, Mark A.; Robbennolt, Shauna; Yu, Guoqiang; Tolbert, Sarah; Kioussis, Nicholas; Khalili Amiri, Pedram; Wang, Kang L.; Chang, Jane P.

    2016-03-01

    Compared with current-controlled magnetization switching in a perpendicular magnetic tunnel junction (MTJ), electric field- or voltage-induced magnetization switching reduces the writing energy of the memory cell, which also results in increased memory density. In this work, an ultra-thin PZT film with high dielectric constant was integrated into the tunneling oxide layer to enhance the voltage-controlled magnetic anisotropy (VCMA) effect. The growth of MTJ stacks with an MgO/PZT/MgO tunnel barrier was performed using a combination of sputtering and atomic layer deposition techniques. The fabricated MTJs with the MgO/PZT/MgO barrier demonstrate a VCMA coefficient, which is ˜40% higher (19.8 ± 1.3 fJ/V m) than the control sample MTJs with an MgO barrier (14.3 ± 2.7 fJ/V m). The MTJs with the MgO/PZT/MgO barrier also possess a sizeable tunneling magnetoresistance (TMR) of more than 50% at room temperature, comparable to the control MTJs with an MgO barrier. The TMR and enhanced VCMA effect demonstrated simultaneously in this work make the MgO/PZT/MgO barrier-based MTJs potential candidates for future voltage-controlled, ultralow-power, and high-density magnetic random access memory devices.

  5. Self-organized ferromagnetic nanowires in MgO-based magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Seike, Masayoshi; Fukushima, Tetsuya; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2013-08-01

    The focus of this study is to examine the distribution of defects and defect-induced properties in MgO-based magnetic tunnel junctions (MTJs). To this end, first-principles calculations were performed to estimate the electronic structures and total energies of MgO with various defects by using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional. From connections drawn between the calculated results and previously reported experimental data, we propose that self-organized ferromagnetic nanowires of magnesium vacancies can be formed in MgO-based MTJs. This self-organization may provide the foundation for a comprehensive understanding of the conductivity, tunnel barriers and quantum oscillations of MgO-based MTJs. Further experimental verification is needed before firm conclusions can be drawn.

  6. Self-Organized Defects of Half-Metallic Nanowires in MgO-Based Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Seike, Masayoshi; Fukushima, Tetsuya; Sato, Kazunori; Katayama-Yoshida, Hiroshi

    2013-03-01

    The purpose of this study is to examine the possibility of self-organization of defects and defect-induced properties in MgO-based magnetic tunnel junctions (MTJs). Using the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional, first-principles calculations were performed to estimate the electronic structures and total energies of MgO with various defects. From our thorough evaluation of the calculated results and previously reported experimental data, we propose that self-organized half-metallic nanowires of magnesium vacancies can be formed in MgO-based MTJs. This self-organization may provide the foundation for a comprehensive understanding of the conductivity, tunnel barriers and quantum oscillations of MgO-based MTJs. Further experimental verification is needed before firm conclusions can be drawn.

  7. Interface formation of epitaxial MgO/Co2MnSi(001) structures: Elemental segregation and oxygen migration

    NASA Astrophysics Data System (ADS)

    McFadden, Anthony; Wilson, Nathaniel; Brown-Heft, Tobias; Pennachio, Daniel; Pendharkar, Mihir; Logan, John A.; Palmstrøm, Chris J.

    2017-12-01

    The interface formation in epitaxial MgO /Co2MnSi (001) films was studied using in-situ X-ray photoelectron spectroscopy (XPS). MgO was deposited on single crystal Co2MnSi (001) layers using e-beam evaporation: a technique which is expected to oxidize the Co2MnSi layer somewhat due to the rise in oxygen partial pressure during MgO deposition while leaving the deposited MgO oxygen deficient. Not unexpectedly, we find that e-beam evaporation of MgO raises the oxygen background in the deposition chamber to a level that readily oxidizes the Co2MnSi surface, with oxygen bonding preferentially to Mn and Si over Co. Interestingly, this oxidation causes an elemental segregation, with Mn-Si effectively moving toward the surface, resulting in an MgO /Co2MnSi interface with a composition significantly differing from the original surface of the unoxidized Co2MnSi film. As MgO is deposited on the oxidized Co2MnSi , the Mn-oxides are reduced, while the Si oxide remains, and is only somewhat reduced after additional annealing in ultrahigh vacuum. Annealing after the MgO is grown on Co2MnSi causes oxygen to move away from the oxidized Co2MnSi interface toward the surface and into the MgO. This observation is consistent with an increase in the tunneling magnetoresistance ratio with post-growth annealing measured in fabricated magnetic tunnel junctions (MTJs). The findings are discussed in light of fabrication of MgO/Heusler based MTJs, where the exponential decay of tunneling probability with contact separation exemplifies the importance of the ferromagnet/tunnel barrier interface.

  8. 230% room-temperature magnetoresistance in CoFeB /MgO/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Djayaprawira, David D.; Tsunekawa, Koji; Nagai, Motonobu; Maehara, Hiroki; Yamagata, Shinji; Watanabe, Naoki; Yuasa, Shinji; Suzuki, Yoshishige; Ando, Koji

    2005-02-01

    Magnetoresistance (MR) ratio up to 230% at room temperature (294% at 20 K) has been observed in spin-valve-type magnetic tunnel junctions (MTJs) using MgO tunnel barrier layer fabricated on thermally oxidized Si substrates. We found that such a high MR ratio can be obtained when the MgO barrier layer was sandwiched with amorphous CoFeB ferromagnetic electrodes. Microstructure analysis revealed that the MgO layer with (001) fiber texture was realized when the MgO layer was grown on amorphous CoFeB rather than on polycrystalline CoFe. Since there have been no theoretical studies on the MTJs with a crystalline tunnel barrier and amorphous electrodes, the detailed mechanism of the huge tunneling MR effect observed in this study is not clear at the present stage. Nevertheless, the present work is of paramount importance in realizing high-density magnetoresistive random access memory and read head for ultra high-density hard-disk drives into practical use.

  9. Ultra-senstitive magnesium oxide-based magnetic tunnel junctions for spintronic immunoassay

    NASA Astrophysics Data System (ADS)

    Shen, Weifeng

    We systematically studied the spin-dependent tunnel properties of MgO-based magnetic tunnel junctions (MTJs). Utilizing the spin-coherent tunnel effects of the MgO (001) insulating layer, we have achieved large tunneling magnetoresistance (TMR) ratios (above 200%) at room temperature in optimized MTJ devices. We have shown that the MgO surface roughness, and therefore device magnetoresistance, depends strongly on the pressure of the Ar sputtering gas. We have investigated the characteristics of MgO-MTJs, including their dependence on barrier thickness and bias voltage, their thermal stability and resistance to electrostatic discharge (ESD). We have also fabricated MgO-MTJs with a synthetic antiferromagnetic (SAF) free layer, which exhibits a coherent, single-domain-like switching. Our data show that MgO-MTJs have superior properties for low-field magnetic field sensing applications as compared with conventional AlOx-based MTJs. Based on this giant TMR effect, we designed and developed ultra-sensitive magnetic tunnel junction (MTJ) sensors and sensor arrays for biomagnetic sensing applications. By integrating MTJ sensor arrays into microfluidic channels, we were able to detect the presence of moving, micron-size superparamagnetic beads in real time. We have obtained an average signal of 80 mV for a single Dynal M-280 bead, with a signal-to-noise ratio (SNR) of 24 dB. We also biologically treated the MTJ sensor array surfaces, and demonstrated the detection of 2.5 muM single strand target DNA labeled with 16-nm-diameter Fe3O 4 nanoparticles (NPs). Our measured signal of 72 muV indicates that the current system's detection limit for analyte DNA is better than 150 nM. We also demonstrated the detection of live HeLa cells labeled with Fe 3O4 nanoparticles, with an effective signal of 8 mV and a signal-to-noise ratio of 6 dB. These results represent an important milestone in the development of spintronics immunoassay technology: the detection of a single live cell labeled with magnetic nanoparticles. All the data show conclusively that MTJ sensors and sensor arrays are very promising candidates for future applications involving the accurate detection and identification of biomolecules tagged with magnetic labels.

  10. Optimization of the buffer surface of CoFeB/MgO/CoFeB-based magnetic tunnel junctions by ion beam milling

    NASA Astrophysics Data System (ADS)

    Martins, L.; Ventura, J.; Ferreira, R.; Freitas, P. P.

    2017-12-01

    Due to their high tunnel magnetoresistance (TMR) ratios at room temperature, magnetic tunnel junctions (MTJs) with a crystalline MgO insulating barrier and CoFeB ferromagnetic (FM) layers are the best candidates for novel magnetic memory applications. To overcome impedance matching problems in electronic circuits, the MgO barrier must have an ultra-low thickness (∼1 nm). Therefore, it is mandatory to optimize the MTJ fabrication process, in order to prevent relevant defects in the MgO barrier that could affect the magnetic and electrical MTJ properties. Here, a smoothing process aiming to decrease the roughness of the buffer surface before the deposition of the full MTJ stack is proposed. An ion beam milling process was used to etch the surface of an MTJ buffer structure with a Ru top layer. The morphologic results prove an effective decrease of the Ru surface roughness with the etching time. The electrical and magnetic results obtained for MTJs with smoothed buffer structures show a direct influence of the buffer roughness and coupling field on the improvement of the TMR ratio.

  11. Simulation Study on Understanding the Spin Transport in MgO Adsorbed Graphene Based Magnetic Tunnel Junction

    NASA Astrophysics Data System (ADS)

    Raturi, Ashish; Choudhary, Sudhanshu

    2016-11-01

    First principles calculations of spin-dependent electronic transport properties of magnetic tunnel junction (MTJ) consisting of MgO adsorbed graphene nanosheet sandwiched between two CrO2 half-metallic ferromagnetic (HMF) electrodes is reported. MgO adsorption on graphene opens bandgap in graphene nanosheet which makes it more suitable for use as a tunnel barrier in MTJs. It was found that MgO adsorption suppresses transmission probabilities for spin-down channel in case of parallel configuration (PC) and also suppresses transmission in antiparallel configuration (APC) for both spin-up and spin-down channel. Tunnel magneto-resistance (TMR) of 100% is obtained at all bias voltages in MgO adsorbed graphene-based MTJ which is higher than that reported in pristine graphene-based MTJ. HMF electrodes were found suitable to achieve perfect spin filtration effect and high TMR. I-V characteristics for both parallel and antiparallel magnetization states of junction are calculated. High TMR suggests its usefulness in spin valves and other spintronics-based applications.

  12. Probing the electronic and spintronic properties of buried interfaces by extremely low energy photoemission spectroscopy

    PubMed Central

    Fetzer, Roman; Stadtmüller, Benjamin; Ohdaira, Yusuke; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Taira, Tomoyuki; Uemura, Tetsuya; Yamamoto, Masafumi; Aeschlimann, Martin; Cinchetti, Mirko

    2015-01-01

    Ultraviolet photoemission spectroscopy (UPS) is a powerful tool to study the electronic spin and symmetry features at both surfaces and interfaces to ultrathin top layers. However, the very low mean free path of the photoelectrons usually prevents a direct access to the properties of buried interfaces. The latter are of particular interest since they crucially influence the performance of spintronic devices like magnetic tunnel junctions (MTJs). Here, we introduce spin-resolved extremely low energy photoemission spectroscopy (ELEPS) to provide a powerful way for overcoming this limitation. We apply ELEPS to the interface formed between the half-metallic Heusler compound Co2MnSi and the insulator MgO, prepared as in state-of-the-art Co2MnSi/MgO-based MTJs. The high accordance between the spintronic fingerprint of the free Co2MnSi surface and the Co2MnSi/MgO interface buried below up to 4 nm MgO provides clear evidence for the high interface sensitivity of ELEPS to buried interfaces. Although the absolute values of the interface spin polarization are well below 100%, the now accessible spin- and symmetry-resolved wave functions are in line with the predicted existence of non-collinear spin moments at the Co2MnSi/MgO interface, one of the mechanisms evoked to explain the controversially discussed performance loss of Heusler-based MTJs at room temperature. PMID:25702631

  13. Negative tunneling magnetoresistance of Fe/MgO/NiO/Fe magnetic tunnel junction: Role of spin mixing and interface state

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yan, X. H.; Guo, Y. D.; Xiao, Y.

    2017-08-01

    Motivated by a recent tunneling magnetoresistance (TMR) measurement in which the negative TMR is observed in MgO/NiO-based magnetic tunnel junctions (MTJs), we have performed systematic calculations of transmission, current, and TMR of Fe/MgO/NiO/Fe MTJ with different thicknesses of NiO and MgO layers based on noncollinear density functional theory and non-equilibrium Green's function theory. The calculations show that, as the thickness of NiO and MgO layers is small, the negative TMR can be obtained which is attributed to the spin mixing effect and interface state. However, in the thick MTJ, the spin-flipping scattering becomes weaker, and thus, the MTJs recover positive TMR. Based on our theoretical results, we believe that the interface state at Fe/NiO interface and the spin mixing effect induced by noncollinear interfacial magnetization will play important role in determining transmission and current of Fe/MgO/NiO/Fe MTJ. The results reported here will be important in understanding the electron tunneling in MTJ with the barrier made by transition metal oxide.

  14. Characterization of Magnetic Tunnel Junctions by IETS and STS

    NASA Astrophysics Data System (ADS)

    Yang, Hyunsoo; Yang, See-Hun

    2005-03-01

    Inelastic electron tunneling spectroscopy (IETS) and superconducting tunneling spectroscopy (STS) have been employed to investigate spin-dependent tunneling in magnetic tunnel junctions (MTJs). MTJs were studied in which the ferromagnetic electrodes were formed from the 3d transition metals, Fe, Co and Ni and their alloys, and the tunnel barriers were formed from various nitrides and oxides including MgO. MTJs with MgO barriers exhibit more than 220% tunneling magnetoresistance (TMR) at room temperature[1]. IETS was used to measure the contributions of defects and impurities, as well as phonons and magnons, to the tunneling current. These processes give rise to conductance peaks at characteristic voltages according to their excitation energies. STS was used to measure the spin polarization of the tunneling current as well as to explore the role of spin-flip scattering in the tunneling process. The goal of this research is a more complete understanding of the mechanisms which gives rise to the bias voltage dependence of the TMR as well as indirect tunneling through states in the barrier. [1] S. S. P. Parkin, C. Kaiser, A. Panchula, P. Rice, B. Hughes, M. Samant, and S.-H. Yang, Nature Materials, vol. Published online: 31 October 2004, 2004.

  15. L10-Ordered Thin Films with High Perpendicular Magnetic Anisotropy for STT-MRAM Applications

    NASA Astrophysics Data System (ADS)

    Huang, Efrem Yuan-Fu

    The objective of the research conducted herein was to develop L10-ordered materials and thin film stack structures with high perpendicular magnetic anisotropy (PMA) for spin-transfertorque magnetoresistive random access memory (STT-MRAM) applications. A systematic approach was taken in this dissertation, culminating in exchange coupled L1 0-FePt and L10- MnAl heterogeneous structures showing great promise for developing perpendicular magnetic tunnel junctions (pMTJs) with both high thermal stability and low critical switching current. First, using MgO underlayers on Si substrates, sputtered MnAl films were systematically optimized, ultimately producing a Si substrate/MgO (20 nm)/MnAl (30)/Ta (5) film stack with a high degree of ordering and large PMA. Next, noting the incompatibility of insulating MgO underlayers with industrial-scale CMOS processes, attention was turned to using conductive underlayers. TiN was found to excel at promoting growth of L10-MnAl, with optimized films showing improved magnetic properties over those fabricated on MgO underlayers. The use of different post-annealing processes was then studied as an alternative to in situ annealing. Rapid thermal annealing (RTA) was found to produce PMA in films at lower annealing temperatures than tube furnace annealing, but tube furnace annealing produced films with higher maximum PMA than RTA. While annealed samples had lower surface roughness than those ordered by high in situ deposition temperatures, relying solely on annealing to achieve L10-ordering resulted drastically reduced PMA. Finally, heterogeneous L10-ordered FePt/MgO/MnAl film stacks were explored for pMTJs. Film stacks with MgO barrier layers thinner than 2 nm showed significant interdiffusion between the FePt and MnAl, while film stacks with thicker MgO barrier layers exhibited good ordering and high PMA in both the FePt and MnAl films. It is believed that this limitation is caused by the roughness of the underlying FePt, which was thicker than 2 nm. Unfortunately, MgO barrier layers thinner than 2 nm are needed to make good MTJs. With further study, thin, continuous barriers may be achievable for high-PMA, L10- ordered materials with more materials exploration, deposition optimization, and more advanced thin film processing techniques and fabrication equipment. Use of appropriate underlayers, capping layers, dopant elements, and improved fabrication techniques may help reduce surface roughness while preserving PMA. If smooth electrodes can be developed, the heterogeneous structures discussed have great potential in taking advantage of exchange coupling for developing pMTJs with both high thermal stability and low critical switching current. (Abstract shortened by ProQuest.).

  16. High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications

    PubMed Central

    Chen, Jun-Yang; Lau, Yong-Chang; Coey, J. M. D.; Li, Mo; Wang, Jian-Ping

    2017-01-01

    The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices‘ robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications. PMID:28150807

  17. High Performance MgO-barrier Magnetic Tunnel Junctions for Flexible and Wearable Spintronic Applications.

    PubMed

    Chen, Jun-Yang; Lau, Yong-Chang; Coey, J M D; Li, Mo; Wang, Jian-Ping

    2017-02-02

    The magnetic tunnel junction (MTJ) using MgO barrier is one of most important building blocks for spintronic devices and has been widely utilized as miniaturized magentic sensors. It could play an important role in wearable medical devices if they can be fabricated on flexible substrates. The required stringent fabrication processes to obtain high quality MgO-barrier MTJs, however, limit its integration with flexible electronics devices. In this work, we have developed a method to fabricate high-performance MgO-barrier MTJs directly onto ultrathin flexible silicon membrane with a thickness of 14 μm and then transfer-and-bond to plastic substrates. Remarkably, such flexible MTJs are fully functional, exhibiting a TMR ratio as high as 190% under bending radii as small as 5 mm. The devices' robustness is manifested by its retained excellent performance and unaltered TMR ratio after over 1000 bending cycles. The demonstrated flexible MgO-barrier MTJs opens the door to integrating high-performance spintronic devices in flexible and wearable electronics devices for a plethora of biomedical sensing applications.

  18. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films

    DOE PAGES

    Li, D. L.; Ma, Q. L.; Wang, S. G.; ...

    2014-12-02

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. In this paper, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δmore » 1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. Finally, in this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices.« less

  19. Controlling spin-dependent tunneling by bandgap tuning in epitaxial rocksalt MgZnO films

    PubMed Central

    Li, D. L.; Ma, Q. L.; Wang, S. G.; Ward, R. C. C.; Hesjedal, T.; Zhang, X.-G.; Kohn, A.; Amsellem, E.; Yang, G.; Liu, J. L.; Jiang, J.; Wei, H. X.; Han, X. F.

    2014-01-01

    Widespread application of magnetic tunnel junctions (MTJs) for information storage has so far been limited by the complicated interplay between tunnel magnetoresistance (TMR) ratio and the product of resistance and junction area (RA). An intricate connection exists between TMR ratio, RA value and the bandgap and crystal structure of the barrier, a connection that must be unravelled to optimise device performance and enable further applications to be developed. Here, we demonstrate a novel method to tailor the bandgap of an ultrathin, epitaxial Zn-doped MgO tunnel barrier with rocksalt structure. This structure is attractive due to its good Δ1 spin filtering effect, and we show that MTJs based on tunable MgZnO barriers allow effective balancing of TMR ratio and RA value. In this way spin-dependent transport properties can be controlled, a key challenge for the development of spintronic devices. PMID:25451163

  20. Ultrahigh Tunneling-Magnetoresistance Ratios in Nitride-Based Perpendicular Magnetic Tunnel Junctions from First Principles

    NASA Astrophysics Data System (ADS)

    Yang, Baishun; Tao, Lingling; Jiang, Leina; Chen, Weizhao; Tang, Ping; Yan, Yu; Han, Xiufeng

    2018-05-01

    We report a first-principles study of electronic structures, magnetic properties, and the tunneling-magnetoresistance (TMR) effect of a series of ferromagnetic nitride M4N (M =Fe , Co, Ni)-based magnetic tunnel junctions (MTJs). It is found that bulk Fe4 N reveals a half-metal nature in terms of the Δ1 state. A perpendicular magnetic anisotropy is observed in the periodic system Fe4 N /MgO . In particular, the ultrahigh TMR ratio of over 24 000% is predicted in the Fe4 N /MgO /Fe4N MTJ due to the interface resonance tunneling and relatively high transmission for states of other symmetry. Besides, the large TMR can be maintained with the change of atomic details at the interface, such as the order-disorder interface, the change of thickness of the MgO barrier, and different in-plane lattice constants of the MTJ. The physical origin of the TMR effect can be well understood by analyzing the band structure and transmission channel of bulk Fe4 N as well as the transmission in momentum space of Fe4 N /MgO /Fe4N . Our results suggest that the Fe4 N /MgO /Fe4N MTJ is a benefit for spintronic applications.

  1. Enhancement of tunneling magnetoresistance by inserting a diffusion barrier in L10-FePd perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Zhang, De-Lin; Schliep, Karl B.; Wu, Ryan J.; Quarterman, P.; Reifsnyder Hickey, Danielle; Lv, Yang; Chao, Xiaohui; Li, Hongshi; Chen, Jun-Yang; Zhao, Zhengyang; Jamali, Mahdi; Mkhoyan, K. Andre; Wang, Jian-Ping

    2018-04-01

    We studied the tunnel magnetoresistance (TMR) of L10-FePd perpendicular magnetic tunnel junctions (p-MTJs) with an FePd free layer and an inserted diffusion barrier. The diffusion barriers studied here (Ta and W) were shown to enhance the TMR ratio of the p-MTJs formed using high-temperature annealing, which are necessary for the formation of high quality L10-FePd films and MgO barriers. The L10-FePd p-MTJ stack was developed with an FePd free layer with a stack of FePd/X/Co20Fe60B20, where X is the diffusion barrier, and patterned into micron-sized MTJ pillars. The addition of the diffusion barrier was found to greatly enhance the magneto-transport behavior of the L10-FePd p-MTJ pillars such that those without a diffusion barrier exhibited negligible TMR ratios (<1.0%), whereas those with a Ta (W) diffusion barrier exhibited TMR ratios of 8.0% (7.0%) at room temperature and 35.0% (46.0%) at 10 K after post-annealing at 350 °C. These results indicate that diffusion barriers could play a crucial role in realizing high TMR ratios in bulk p-MTJs such as those based on FePd and Mn-based perpendicular magnetic anisotropy materials for spintronic applications.

  2. Ultra-low switching energy and scaling in electric-field-controlled nanoscale magnetic tunnel junctions with high resistance-area product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grezes, C.; Alzate, J. G.; Cai, X.

    2016-01-04

    We report electric-field-induced switching with write energies down to 6 fJ/bit for switching times of 0.5 ns, in nanoscale perpendicular magnetic tunnel junctions (MTJs) with high resistance-area product and diameters down to 50 nm. The ultra-low switching energy is made possible by a thick MgO barrier that ensures negligible spin-transfer torque contributions, along with a reduction of the Ohmic dissipation. We find that the switching voltage and time are insensitive to the junction diameter for high-resistance MTJs, a result accounted for by a macrospin model of purely voltage-induced switching. The measured performance enables integration with same-size CMOS transistors in compact memorymore » and logic integrated circuits.« less

  3. Investigation on the formation process of single-crystalline GaO x barrier in Fe/GaO x /MgO/Fe magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Krishna, N. S.; Doko, N.; Matsuo, N.; Saito, H.; Yuasa, S.

    2017-11-01

    We have grown Fe(0 0 1)/GaO x (0 0 1)/MgO(0 0 1)/Fe(0 0 1) magnetic tunnel junctions (MTJs) with or without in situ annealing after the deposition of GaO x layer and performed structural characterizations by focusing on the formation process of the single-crystalline GaO x . It was found that, even without the in situ annealing, the as-grown GaO x grown on the MgO was mostly single-crystalline except near the surface region (amorphous). The crystallization temperature of the amorphous region was reduced from 500 °C down to 250 °C by depositing the Fe upper electrode (poly-crystalline). It was clarified that the crystallization of the amorphous region near the Fe/GaO x interface caused the realignments of the crystal grains in the poly-crystalline Fe upper electrode, and, as a result, the fully epitaxial Fe/GaO x /MgO/Fe structure is eventually formed. All the MTJs showed high tunneling magnetoresistance ratios (about 100%) at room temperature, which was almost independent of the formation temperature of the single-crystalline GaO x .

  4. Properties of perpendicular-anisotropy magnetic tunnel junctions fabricated over the bottom electrode contact

    NASA Astrophysics Data System (ADS)

    Miura, Sadahiko; Honjo, Hiroaki; Kinoshita, Keizo; Tokutome, Keiichi; Koike, Hiroaki; Ikeda, Shoji; Endoh, Tetsuo; Ohno, Hideo

    2015-04-01

    Perpendicular-anisotropy magnetic tunnel junctions (MTJs) were prepared on four substrate geometries, i.e., directly on the axis of the bottom electrode contact, directly off the axis of the bottom electrode contact, on the axis of the bottom electrode contact with a polished bottom electrode, and off the axis of the bottom electrode contact with a polished bottom electrode. Electrical shorts were observed for direct on-axis geometry at a certain extent, whereas there were no electrical shorts for the other three geometries. The MR ratio/σR, JC0, and thermal stability factor of the devices for polish on-axis geometry were almost the same as those for polish off-axis geometry. From TEM observations of the polish on-axis device, the interface between the bottom contact and the base electrode was determined to be rough, whereas the MgO barrier layer was determined to be smooth, indicating that the polish process was effective for smooth magnetic tunnel junction fabrication over the bottom contact. MTJs for polish on-axis geometry eliminated the base electrode resistance and increased the magnetoresistance ratio. This technology contributes to the higher density of spin transfer torque magnetic random access memory.

  5. Role of CoFeB thickness in electric field controlled sub-100 nm sized magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Lourembam, James; Huang, Jiancheng; Lim, Sze Ter; Gerard, Ernult Franck

    2018-05-01

    We report a comprehensive study on the role of the free layer thickness (tF) in electric-field controlled nanoscale perpendicular magnetic tunnel junctions (MTJs), comprising of free layer structure Ta/Co40Fe40B20/MgO, by using dc magnetoresistance and ultra-short magnetization switching measurements. Focusing on MTJs that exhibits positive effective device anisotropy (Keff), we observe that both the voltage-controlled magnetic anisotropy (ξ) and voltage modulation of coercivity show strong dependence on tF. We found that ξ varies dramatically and unexpectedly from ˜-3 fJ/V-m to ˜-41 fJ/V-m with increasing tF. We discuss the possibilities of electric-field tuning of the effective surface anisotropy term, KS as well as an additional interfacial magnetoelastic anisotropy term, K3 that scales with 1 /tF2. Voltage pulse induced 180° magnetization reversal is also demonstrated in our MTJs. Unipolar switching and oscillatory function of switching probability vs. pulse duration can be observed at higher tF, and agrees well with the two key device parameters — Keff and ξ.

  6. Engineering Nanoscale Multiferroic Composites for Memory Applications with Atomic Layer Deposition of Pb(ZrxTi1-x)O3 Thin Films

    NASA Astrophysics Data System (ADS)

    Chien, Diana

    This work focuses on the development of atomic layer deposition (ALD) for lead zirconate titanate, Pb(ZrxTi1-x)O 3 (PZT). Leveraging the surface-reaction controlled process based on alternating self-limiting surface reactions, PZT can be synthesized not only with elemental precision to realize the desired composition (Zr/Ti = 52/48) but also with outstanding conformality. The latter enables the integration of PZT with a ferromagnetic phase to realize multiferroism (MF) and magnetoelectric (ME) effect. Since PZT is one of the best known ferroelectric and piezoelectric materials due the large displacements of the Pb ions at the morphotropic phase boundary, PZT based MF composites could lead to stronger ME coupling through strain coupling at the interface. Specifically, ALD PZT thin films were synthesized by using beta-diketonate metalorganic precursors Pb(TMHD)2, Zr(TMHD)4, and Ti(O.i-Pr) 2(TMHD)2 and H2O. The number of local cycles and global cycles were regulated to achieve the desired stoichiometry and thickness, respectively. ALD of PZT was studied to obtain (100) textured PZT on Pt (111) oriented platinized silicon substrates. In order to attain a highly oriented PZT thin film, a (100) textured PbTiO3 seed layer was required because PZT orientation is governed by nucleation. MF nanocomposites were engineered using ALD PZT thin films to achieve controlled complex nanoscale structures, enabling porosity to be studied as a new additional parameter for nanocomposite architectures to enhance ME effect. Specifically, 3--6 nm-thick ALD PZT thin films were deposited to uniformly coat the walls of mesoporous cobalt ferrite (CFO) template. The PZT/CFO nanocomposites were electrically poled ex-situ and the change in magnetic moment was measured. The inverse magnetoelectric coupling coefficient, a, was determined to be 85.6 Oe-cm/mV. The in-plane results show no significant change in magnetization (1--4%) as a function of electric field, which was expected due to the effect of substrate clamping. The out-of-plane magnetization showed that the mesoporous CFO coated with 3-nm-thick PZT film had a greater saturation magnetization change of 15% compared to 10% for the 6-nm-thick PZT film. This indicates that the flexibility in the partially filled pores enhances the ME coupling. Additionally, ALD PZT films were integrated between MgO and CoFeB layers to fabricate magnetic tunnel junctions (MTJ), which was the first work to demonstrate increased voltage controlled magnetic anisotropy (VCMA) effect in a complete MTJ stack using a high dielectric material within the tunnel barrier and exhibit sizeable tunneling magnetoresistance (TMR) at room temperature. The fabricated PZT MTJs with the MgO/PZT/MgO barrier demonstrated a VCMA coefficient which is ˜40% higher (20 fJ/V-m) than MgO MTJs (14 fJ/V-m) and TMR of more than 50% at room temperature, comparable to that of the MgO MTJs. The enhanced VCMA coefficient and sizeable TMR makes PZT MTJs potential candidates for future voltage-controlled, ultralow-power magnetic random access memory devices. ALD enables the growth of conformal ultra-thin PZT films, which can then be integrated to engineer nanoscale multiferroic composites for various applications.

  7. Perpendicular magnetic tunnel junctions with Mn-modified ultrathin MnGa layer

    NASA Astrophysics Data System (ADS)

    Suzuki, K. Z.; Miura, Y.; Ranjbar, R.; Bainsla, L.; Ono, A.; Sasaki, Y.; Mizukami, S.

    2018-02-01

    Perpendicular magnetic tunnel junctions (p-MTJs) with a MgO barrier and a 1-nm-thick MnGa electrode were investigated by inserting several monolayers (MLs) of Mn. The tunnel magnetoresistance (TMR) ratio systematically increased when increasing the Mn layer thickness with a maximum of 18 (38.4)% at 300 (5) K for a Mn layer thickness of 0.6-0.8 nm. This ratio is five times higher compared to that without the Mn layer. The perpendicular magnetic anisotropy (PMA) field and the PMA constant of the ultrathin MnGa layer also increased up to 62-90 kOe and 6.2-11.3 Merg/cm3, respectively, with an increase in the Mn interlayer thickness, even for the ultrathin regime of the MnGa layer. For p-MTJs showing a high TMR and PMA, electron microscopy indicated the presence of 3-4 MLs of Mn at the MnGa/MgO interface; thus, the Mn modification enhanced the TMR as well as improved the PMA. This may be a promising finding to develop a Mn-based free layer for spin-transfer-torque devices for high-recording-density magnetoresistive random access memory and a sub-THz oscillator/detector.

  8. Tunnel Magneto Resistance of Fe/Insulator/Fe

    NASA Astrophysics Data System (ADS)

    Aryee, Dennis; Seifu, Dereje

    Tri-layer thin films of Fe/Insulator/Fe were synthesized using magnetron DC/ RF sputtering with MgO insulator and Bi2Te3 topological insulators as middle buffer layer. The multi-layered samples thus produced were studied using in-house built magneto-optic Kerr effect (MOKE) instrument, vibrating sample magnetometer (VSM), torque magnetometer (TMM), AFM, MFM, and magneto-resistance (MR). This system, that is Fe/Insulator/Fe on MgO(100) substrate, is a well-known tunnel magneto resistance (TMR) structure often used in magnetic tunnel junction (MTJ) devices. TMR effect is a method by which MTJs are used in developing magneto-resistive random access memory (MRAM), magnetic sensors, and novel logic devices. The main purpose behind this research is to measure the magnetic anisotropy of Fe/Insulator /Fe structure and correlate it to magneto-resistance. In this presentation, we will present results from MOKE, VSM, TMM, AFM, MFM, and MR studies of Fe/Insulator/Fe on MgO(100). We would like to acknowledge support by NSF-MRI-DMR-1337339.

  9. Fabrication of magnetic tunnel junctions with a single-crystalline LiF tunnel barrier

    NASA Astrophysics Data System (ADS)

    Krishna Narayananellore, Sai; Doko, Naoki; Matsuo, Norihiro; Saito, Hidekazu; Yuasa, Shinji

    2018-04-01

    We fabricated Fe/LiF/Fe magnetic tunnel junctions (MTJs) by molecular beam epitaxy on a MgO(001) substrate, where LiF is an insulating tunnel barrier with the same crystal structure as MgO (rock-salt type). Crystallographical studies such as transmission electron microscopy and nanobeam electron diffraction observations revealed that the LiF tunnel barrier is single-crystalline and has a LiF(001)[100] ∥ bottom Fe(001)[110] crystal orientation, which is constructed in the same manner as MgO(001) on Fe(001). Also, the in-plane lattice mismatch between the LiF tunnel barrier and the Fe bottom electrode was estimated to be small (about 0.5%). Despite such advantages for the tunnel barrier of the MTJ, the observed tunnel magnetoresistance (MR) ratio was low (˜6% at 20 K) and showed a significant decrease with increasing temperature (˜1% at room temperature). The results imply that indirect tunneling and/or thermally excited carriers in the LiF tunnel barrier, in which the current basically is not spin-polarized, play a major role in electrical transport in the MTJ.

  10. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions

    PubMed Central

    Loong, Li Ming; Qiu, Xuepeng; Neo, Zhi Peng; Deorani, Praveen; Wu, Yang; Bhatia, Charanjit S.; Saeys, Mark; Yang, Hyunsoo

    2014-01-01

    While the effects of lattice mismatch-induced strain, mechanical strain, as well as the intrinsic strain of thin films are sometimes detrimental, resulting in mechanical deformation and failure, strain can also be usefully harnessed for applications such as data storage, transistors, solar cells, and strain gauges, among other things. Here, we demonstrate that quantum transport across magnetic tunnel junctions (MTJs) can be significantly affected by the introduction of controllable mechanical strain, achieving an enhancement factor of ~2 in the experimental tunneling magnetoresistance (TMR) ratio. We further correlate this strain-enhanced TMR with coherent spin tunneling through the MgO barrier. Moreover, the strain-enhanced TMR is analyzed using non-equilibrium Green's function (NEGF) quantum transport calculations. Our results help elucidate the TMR mechanism at the atomic level and can provide a new way to enhance, as well as tune, the quantum properties in nanoscale materials and devices. PMID:25266219

  11. Tunneling spin polarization in planar tunnel junctions: measurements using NbN superconducting electrodes and evidence for Kondo-assisted tunneling

    NASA Astrophysics Data System (ADS)

    Yang, Hyunsoo

    2006-03-01

    The fundamental origin of tunneling magnetoresistance in magnetic tunnel junctions (MTJs) is the spin-polarized tunneling current, which can be measured directly using superconducting tunneling spectroscopy (STS). The STS technique was first developed by Meservey and Tedrow using aluminum superconducting electrodes. Al has been widely used because of its low spin orbit scattering. However, measurements must be made at low temperatures (<0.4 K) because of the low superconducting transition temperature of Al. Here, we demonstrate that superconducting electrodes formed from NbN can be used to measure tunneling spin polarization (TSP) at higher temperatures up to ˜1.2K. The tunneling magnetoresistance and polarization of the tunneling current in MTJs is highly sensitive to the detailed structure of the tunneling barrier. Using MgO tunnel barriers we find TSP values as high as 90% at 0.25K. The TMR is, however, depressed by insertion of ultra thin layers of both non-magnetic and magnetic metals in the middle of the MgO barrier. For ultra-thin, discontinuous magnetic layers of CoFe, we find evidence of Kondo assisted tunneling, from increased conductance at low temperatures (<50K) and bias voltage (<20 mV). Over the same temperature and bias voltage regimes the tunneling magnetoresistance is strongly depressed. We present other evidence of Kondo resonance including the logarithmic temperature dependence of the zero bias conductance peak. We infer the Kondo temperature from both the spectra width of this conductance peak as well as the temperature dependence of the TMR depression. The Kondo temperature is sensitive to the thickness of the inserted CoFe layer and decreases with increased CoFe thickness. * performed in collaboration with S-H. Yang, C. Kaiser, and S. Parkin.

  12. The tunneling magnetoresistance current dependence on cross sectional area, angle and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. H., E-mail: zhaohui@physics.umanitoba.ca; Bai, Lihui; Hu, C.-M.

    2015-03-15

    The magnetoresistance of a MgO-based magnetic tunnel junction (MTJ) was studied experimentally. The magnetoresistance as a function of current was measured systematically on MTJs for various MgO cross sectional areas and at various temperatures from 7.5 to 290.1 K. The resistance current dependence of the MTJ was also measured for different angles between the two ferromagnetic layers. By considering particle and angular momentum conservation of transport electrons, the current dependence of magnetoresistance can be explained by the changing of spin polarization in the free magnetic layer of the MTJ. The changing of spin polarization is related to the magnetoresistance, itsmore » angular dependence and the threshold current where TMR ratio equals zero. A phenomenological model is used which avoid the complicated barrier details and also describes the data.« less

  13. Oscillation characteristics of zero-field spin transfer oscillators with field-like torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yuan-Yuan; Xue, Hai-Bin, E-mail: xuehaibin@tyut.edu.cn; Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024

    2015-05-15

    We theoretically investigate the influence of the field-like spin torque term on the oscillation characteristics of spin transfer oscillators, which are based on MgO magnetic tunnel junctions (MTJs) consisting of a perpendicular magnetized free layer and an in-plane magnetized pinned layer. It is demonstrated that the field-like torque has a strong impact on the steady-state precession current region and the oscillation frequency. In particular, the steady-state precession can occur at zero applied magnetic field when the ratio between the field-like torque and the spin transfer torque takes up a negative value. In addition, the dependence of the oscillation properties onmore » the junction sizes has also been analyzed. The results indicate that this compact structure of spin transfer oscillator without the applied magnetic field is practicable under certain conditions, and it may be a promising configuration for the new generation of on-chip oscillators.« less

  14. Fabrication of magnetic tunnel junctions connected through a continuous free layer to enable spin logic devices

    NASA Astrophysics Data System (ADS)

    Wan, Danny; Manfrini, Mauricio; Vaysset, Adrien; Souriau, Laurent; Wouters, Lennaert; Thiam, Arame; Raymenants, Eline; Sayan, Safak; Jussot, Julien; Swerts, Johan; Couet, Sebastien; Rassoul, Nouredine; Babaei Gavan, Khashayar; Paredis, Kristof; Huyghebaert, Cedric; Ercken, Monique; Wilson, Christopher J.; Mocuta, Dan; Radu, Iuliana P.

    2018-04-01

    Magnetic tunnel junctions (MTJs) interconnected via a continuous ferromagnetic free layer were fabricated for spin torque majority gate (STMG) logic. The MTJs are biased independently and show magnetoelectric response under spin transfer torque. The electrical control of these devices paves the way to future spin logic devices based on domain wall (DW) motion. In particular, it is a significant step towards the realization of a majority gate. To our knowledge, this is the first fabrication of a cross-shaped free layer shared by several perpendicular MTJs. The fabrication process can be generalized to any geometry and any number of MTJs. Thus, this framework can be applied to other spin logic concepts based on magnetic interconnect. Moreover, it allows exploration of spin dynamics for logic applications.

  15. Engineering and characterization of aluminum oxide-based Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Ji, Chengxiang

    Magnetic Tunnel Junctions (MTJs) consisting of two ferromagnetic layers separated by an insulator layer have attracted great interest due to their applications in magnetic read heads and potential applications in magnetic random access memory. Materials science plays an important role in the performance of the MTJs. The goal of this research was to focus on how the materials properties affect the tunneling magnetoresistance (TMR) of AlOx-based MTJs with (Co, Fe) electrodes. A method was developed to fabricate epitaxial (Co, Fe) (001) thin films on Si substrates using TiN buffer and a novel processing technique in order to achieve smooth interfaces between the electrode and the AlOx tunnel barrier. The (Co, Fe) thin films with other orientations, i.e. (110) and (211), were also grown on TiN buffered substrates of Si (111) and (011). Numerous MTJs with epitaxial bottom electrode were fabricated to investigate the effect of the materials properties of the (Co, Fe) electrode on the TMR of these junctions. A strain induced TMR enhancement was discovered, where the trend of increasing TMR of the MTJs is the same as that of the strain of the bottom electrode. The strain was originated from the lattice mismatch between (Co, Fe) electrode and the buffer layers in the MTJs, which will vary with annealing temperatures. Since the interface roughness and the barrier properties were the same within the uncertainties of the measurement, this TMR enhancement was attributed to the presence of strain. The TMR values were also compared for MTJs with the bottom electrode in the (001), (110) and (211) orientations. The anisotropic property of (Co, Fe) was confirmed and the (001) orientation has larger spin polarization than the (110) and (211) orientations. By careful manipulation of the bottom electrode, including strain, roughness and orientation, 77% TMR was obtained for AlOx-based MTJs. The phase transformation of Pt0.5-xMn0.5+x from fcc to Ll0 was investigated. The experimental results showed the onset temperature for phase transformation increase as the composition deviates from stoichiometry but slows down the kinetics of transformation.

  16. Voltage-induced ferromagnetic resonance in magnetic tunnel junctions.

    PubMed

    Zhu, Jian; Katine, J A; Rowlands, Graham E; Chen, Yu-Jin; Duan, Zheng; Alzate, Juan G; Upadhyaya, Pramey; Langer, Juergen; Amiri, Pedram Khalili; Wang, Kang L; Krivorotov, Ilya N

    2012-05-11

    We demonstrate excitation of ferromagnetic resonance in CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) by the combined action of voltage-controlled magnetic anisotropy (VCMA) and spin transfer torque (ST). Our measurements reveal that GHz-frequency VCMA torque and ST in low-resistance MTJs have similar magnitudes, and thus that both torques are equally important for understanding high-frequency voltage-driven magnetization dynamics in MTJs. As an example, we show that VCMA can increase the sensitivity of an MTJ-based microwave signal detector to the sensitivity level of semiconductor Schottky diodes.

  17. Spin dependent transport properties of Mn-Ga/MgO/Mn-Ga magnetic tunnel junctions with metal(Mg, Co, Cr) insertion layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, S. H.; Tao, L. L.; Liu, D. P., E-mail: dpliu@iphy.ac.cn

    We report a first principles theoretical investigation of spin polarized quantum transport in Mn{sub 2}Ga/MgO/Mn{sub 2}Ga and Mn{sub 3}Ga/MgO/Mn{sub 3}Ga magnetic tunneling junctions (MTJs) with the consideration of metal(Mg, Co, Cr) insertion layer effect. By changing the concentration of Mn, our calculation shows a considerable disparity in transport properties: A tunneling magnetoresistance (TMR) ratio of 852% was obtained for Mn{sub 2}Ga-based MTJs, however, only a 5% TMR ratio for Mn{sub 3}Ga-based MTJs. In addition, the influence of insertion layer has been considered in our calculation. We found the Co insertion layer can increase the TMR of Mn{sub 2}Ga-based MTJ tomore » 904%; however, the Cr insertion layer can decrease the TMR by 668%; A negative TMR ratio can be obtained with Mg insertion layer. Our work gives a comprehensive understanding of the influence of different insertion layer in Mn-Ga based MTJs. It is proved that, due to the transmission can be modulated by the interfacial electronic structure of insertion, the magnetoresistance ratio of Mn{sub 2}Ga/MgO/Mn{sub 2}Ga MTJ can be improved by inserting Co layer.« less

  18. Spin-transfer torque switched magnetic tunnel junctions in magnetic random access memory

    NASA Astrophysics Data System (ADS)

    Sun, Jonathan Z.

    2016-10-01

    Spin-transfer torque (or spin-torque, or STT) based magnetic tunnel junction (MTJ) is at the heart of a new generation of magnetism-based solid-state memory, the so-called spin-transfer-torque magnetic random access memory, or STT-MRAM. Over the past decades, STT-based switchable magnetic tunnel junction has seen progress on many fronts, including the discovery of (001) MgO as the most favored tunnel barrier, which together with (bcc) Fe or FeCo alloy are yielding best demonstrated tunnel magneto-resistance (TMR); the development of perpendicularly magnetized ultrathin CoFeB-type of thin films sufficient to support high density memories with junction sizes demonstrated down to 11nm in diameter; and record-low spin-torque switching threshold current, giving best reported switching efficiency over 5 kBT/μA. Here we review the basic device properties focusing on the perpendicularly magnetized MTJs, both in terms of switching efficiency as measured by sub-threshold, quasi-static methods, and of switching speed at super-threshold, forced switching. We focus on device behaviors important for memory applications that are rooted in fundamental device physics, which highlights the trade-off of device parameters for best suitable system integration.

  19. Tunnel magnetoresistance in ultrathin L10 MnGa/MgO perpendicular magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Suzuki, K. Z.; Miura, Y.; Ranjbar, R.; Sugihara, A.; Mizukami, S.

    2018-06-01

    L10 MnGa is one of the interesting magnetic alloys for spin-transfer-torque based applications because such alloys have high perpendicular magnetic anisotropy, small magnetization, and low Gilbert damping. Magnetic tunnel junctions (MTJs) with ultrathin MnGa electrodes have recently been demonstrated using the room temperature growth technique of MnGa on paramagnetic B2-ordered CoGa templates, which exhibited a small TMR ratio of  ∼3%. To obtain a higher TMR ratio, we systematically investigated the annealing dependence of the TMR ratio with MTJs with 1–5 nm thick MnGa electrodes in this study. The TMR ratios were 2%–3% without annealing, which were the same as those reported previously, and the TMR ratios reached their maximum values of 6%–8% at an annealing temperature of approximately 250 °C for the MTJs with 2–5 nm MnGa electrodes. The TMR ratio increased to approximately 25% at 10 K for those MTJs. These TMR ratios were slightly higher than those reported in MTJs with 30 nm-thick MnGa electrodes. The annealing temperature at which TMR showed the maximum value tended to decrease with decreasing MnGa thickness, and this low annealing endurance may be attributed to the atomic mixing between MnGa and barrier/buffer layers. The TMR ratio was discussed in terms of both coherent tunneling based on first principles calculations with different element terminations at the interface and incoherent tunneling.

  20. Perpendicular magnetic anisotropy in Mo/Co2FeAl0.5Si0.5/MgO/Mo multilayers with optimal Mo buffer layer thickness

    NASA Astrophysics Data System (ADS)

    Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Pandiyarasan, V.; Ikeda, H.; Therese, H. A.

    2018-05-01

    Perpendicular Magnetic Anisotropy (PMA) was realized in as-deposited Mo(10)/Co2FeAl0.5Si0.5(CFAS)(3)/MgO(0.5)/Mo multilayer stacks with large perpendicular magnetic anisotropy energy (Keff). PMA of this multilayer is found to be strongly dependent on the thickness of the individual CFAS (tCFAS), Mo (tMo) and MgO (tMgO) layers and annealing temperatures. The interactions at the Mo/CFAS/MgO interfaces are critical to induce PMA and are tuned by the interfacial oxidation. The major contribution to PMA is due to iron oxide at the CFAS/MgO interface. X-ray diffraction (XRD) and infrared spectroscopic (FT-IR) studies further ascertain this. However, an adequate oxidation of MgO and the formation of (0 2 4) and (0 1 8) planes of α-Fe2O3 at the optimal Mo buffer layer thickness is mainly inducing PMA in Mo/CFAS/MgO/Mo stack. Microstructural changes in the films are observed by atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) demonstrates the oxidation of CFAS/MgO interface and the formation of Fe-O bonds confirming that the real origin of PMA in Mo/CFAS/MgO is due to hybridization of Fe (3dz2) and O (2pz) orbitals and the resulted spin-orbit interaction at their interface. The half-metallic nature CFAS with Mo layer exhibiting PMA can be a potential candidate as p-MTJs electrodes for the new generation spintronic devices.

  1. Fabrication of pseudo-spin-MOSFETs using a multi-project wafer CMOS chip

    NASA Astrophysics Data System (ADS)

    Nakane, R.; Shuto, Y.; Sukegawa, H.; Wen, Z. C.; Yamamoto, S.; Mitani, S.; Tanaka, M.; Inomata, K.; Sugahara, S.

    2014-12-01

    We demonstrate monolithic integration of pseudo-spin-MOSFETs (PS-MOSFETs) using vendor-made MOSFETs fabricated in a low-cost multi-project wafer (MPW) product and lab-made magnetic tunnel junctions (MTJs) formed on the topmost passivation film of the MPW chip. The tunneling magnetoresistance (TMR) ratio of the fabricated MTJs strongly depends on the surface roughness of the passivation film. Nevertheless, after the chip surface was atomically flattened by SiO2 deposition on it and successive chemical-mechanical polish (CMP) process for the surface, the fabricated MTJs on the chip exhibits a sufficiently large TMR ratio (>140%) adaptable to the PS-MOSFET application. The implemented PS-MOSFETs show clear modulation of the output current controlled by the magnetization configuration of the MTJs, and a maximum magnetocurrent ratio of 90% is achieved. These magnetocurrent behaviour is quantitatively consistent with those predicted by HSPICE simulations. The developed integration technique using a MPW CMOS chip would also be applied to monolithic integration of CMOS devices/circuits and other various functional devices/materials, which would open the door for exploring CMOS-based new functional hybrid circuits.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kan, Jimmy J.; Gottwald, Matthias; Fullerton, Eric E.

    We describe low-temperature characterization of magnetic tunnel junctions (MTJs) patterned by reactive ion etching for spin-transfer-torque magnetic random access memory. Magnetotransport measurements of typical MTJs show increasing tunneling magnetoresistance (TMR) and larger coercive fields as temperature is decreased down to 10 K. However, MTJs selected from the high-resistance population of an MTJ array exhibit stable intermediate magnetic states when measured at low temperature and show TMR roll-off below 100 K. These non-ideal low-temperature behaviors arise from edge damage during the etch process and can have negative impacts on thermal stability of the MTJs.

  3. Spin Transfer Torque in Spin Filter Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mair

    2014-03-01

    STT in MTJs is well known for its potential spin electronic applications. However, recently a new class of MTJs based on spin filtering across magnetic insulators (SFTJ) has been attracting much attention since in such MTJs electrons with a certain spin orientation tunnel much more efficiently. In this structure, STT remains to be addressed and clarified. Here we present a systematic study of its angular and voltage bias dependences consisting of one or two FM layers separated by a magnetic insulator (MI). The calculations were performed within the tight-binding model using NEGF technique in the framework of Keldysh formalism. We predict that STT is higher in magnitude compared to regular MTJs, which strongly depends in the relative directions of the magnetic states of the free layer (FM2) and MI. Namely, in case of parallel orientation of MI and FM2 moments in a FM1|MI|FM2 structure, the system behaves as a regular MTJ with a modest increase of STT magnitude. However, as the angle between MI and FM2 moments increases, the field-like torque becomes three orders of magnitude higher than the Slonczewski component and oscillates with bias as band-filling increases. This may have practical implications.

  4. Complex capacitance spectroscopy as a probe for oxidation process of AlO{sub x}-based magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J.C.A.; Hsu, C.Y.; Taiwan SPIN Research Center, National Chung Cheng University, Chiayi, Taiwan

    2004-12-13

    Proper as well as under- and over-oxided CoFe-AlO{sub x}-CoFe magnetic tunnel junctions (MTJs) have been systematically investigated in a frequency range from 10{sup 2} to 10{sup 8} Hz by complex capacitance spectroscopy. The dielectric relaxation behavior of the MTJs remarkably disobeys the typical Cole-Cole arc law probably due to the existence of imperfectly blocked Schottky barrier in the metal-insulator interface. The dielectric relaxation response can be successfully modeled on the basis of Debye relaxation by incorporating an interfacial dielectric contribution. In addition, complex capacitance spectroscopy demonstrates significant sensitivity to the oxidation process of metallic Al layers, i.e., almost a fingerprintmore » of under, proper, and over oxidation. This technique provides a fast and simple method to inspect the AlO{sub x} barrier quality of MTJs.« less

  5. Engineering and characterizing inverse tunneling magnetoresistance magnetic tunnel junctions with novel ferromagnetic electrodes

    NASA Astrophysics Data System (ADS)

    Xiang, Hua

    Magnetic tunnel junctions (MTJs) have attracted great interest for applications in read heads and nonvolatile magnetic random access memories. MTJs exhibit tunneling magnetoresistance (TMR), which is proportional to the spin polarization (SP) of ferromagnetic (FM) electrodes. This thesis describes the fabrication and characterization of inverse TMR MTJs with novel FM electrodes and tunnel barriers, including Fe3O4 and Fe4N electrodes and Ta2O5 tunnel barriers. Fe3O4 has been predicted to have perfect negative SP at the Fermi level, making it a promising FM electrode for inverse TMR MTJs. Two approaches were developed to grow epitaxial Fe3O 4 films on Si substrates, reactive sputtering and selective oxidation, and the physical properties were characterized. Epitaxial Fe3O 4 films with smooth surfaces were achieved using a TiN buffer and low temperature selective oxidation. Fe4N has also been predicted to have nearly perfect negative SP. Epitaxial Fe4N films were fabricated on Si substrates by reactive sputtering, and the magnetic properties and thermal stability were characterized. Fe4N is metastable with respect to decomposition into Fe and N 2. During room temperature air oxidation, an epitaxial Fe3O 4 layer formed on Fe4N surface, by incorporation of oxygen, decomposition of Fe4N, and release of N. We fabricated Fe4N/AlOx/Fe MTJs and found normal TMR for the as-prepared junction but inverse TMR with abnormal bias dependence after annealing. The TMR inversion is caused by an Fe3O4 layer at the Fe4N/AlO, interface. The abnormal bias dependence is caused by an imperfect Fe3O4/AlOx interface. Fe3O4 (or Fe4N)/Ta2O5/Fe MTJs show relatively low junction resistance and noisy TMR signals, due to the difficulty of preparing high quality Ta2O5 barriers. The effect of composition of bcc Co100-xFex electrodes on the TMR for AlOx-based MTJs has been studied. The TMR increases with x until it reaches a maximum of 66.7% at 28 at.% Fe, and then decreases. The reason for this TMR variation is the s-like electron dominant tunneling and the variation of the s-like electron density of state with different compositions.

  6. Macrophage activation and muscle remodeling at myotendinous junctions after modifications in muscle loading.

    PubMed Central

    St Pierre, B. A.; Tidball, J. G.

    1994-01-01

    Modifications in muscle loading have been reported previously to result in increased numbers of mononucleated cells and changes in myofibril organization at myotendinous junctions (MTJs). The goals of this study were to determine the identity of those mononucleated cells and to examine the relationships between changes in their structure, location, and number with structural aspects of remodeling at MTJs experiencing modified loading. Soleus muscles from rats subjected to 10 days of hindlimb suspension were analyzed 0, 2, 4, and 7 days after return to weight bearing. Immunohistochemistry showed that ED1+, ED2+ and Ia+ macrophages were present at the MTJ and microtendon of control muscle. After reloading, ED2+ macrophages increased in number and size at MTJs and microtendons, indicating their activation. ED1+ cells showed no change in size or number whereas Ia+ cells were increased in size at day 7 of reloading. Electron microscopic observations showed that mononucleated cells near MTJs of control or suspended muscle were not highly active in protein synthesis or secretion. However, in reloaded muscle, mononucleated cells were found to be in close proximity to MTJs and to contain a high concentration of organelles associated with protein secretion. During these stages of reloading, extensive remodeling of myofibril-membrane associations occurred and nascent sarcomeres appeared in the MTJ regions of muscle fibers. Immunohistochemistry showed that during these stages of nascent sarcomere formation, there was renewed expression of developmental myosin heavy chain at MTJs, with this heavy chain appearing most prominently at the MTJ at day 7 of reloading. The activation and increased numbers of macrophages at MTJs and the close apposition of secretory cells to the MTJ membrane during remodeling lead us to propose that macrophage-derived factors may influence remodeling of MTJs in muscles experiencing modified loading. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:7992849

  7. Giant tunneling magnetoresistance and tunneling spin polarization in magnetic tunnel junctions with MgO (100) tunnel barriers

    NASA Astrophysics Data System (ADS)

    Parkin, Stuart

    2006-03-01

    Recent advances in generating, manipulating and detecting spin-polarized electrons and electrical current make possible new classes of spin based sensor, memory and logic devices [1]. One key component of many such devices is the magnetic tunneling junction (MTJ) - a sandwich of thin layers of metallic ferromagnetic electrodes separated by a tunneling barrier, typically an oxide material only a few atoms thick. The magnitude of the tunneling current passing through the barrier can be adjusted by varying the relative magnetic orientation of the adjacent ferromagnetic layers. As a result, MTJs can be used to sense the magnitude of magnetic fields or to store information. The electronic structure of the ferromagnet together with that of the insulator determines the spin polarization of the current through an MTJ -- the ratio of 'up' to 'down' spin electrons. Using conventional amorphous alumina tunnel barriers tunneling spin polarization (TSP) values of up to ˜55% are found for conventional 3d ferromagnets, such as CoFe, but using highly textured crystalline MgO tunnel barriers TSP values of more than 90% can be achieved for otherwise the same ferromagnet [2]. Such TSP values rival those previously observed only with half-metallic ferromagnets. Corresponding giant values of tunneling magnetoresistance (TMR) are found, exceeding 350% at room temperature and nearly 600% at 3K. Perhaps surprisingly the MgO tunnel barrier can be quite rough: its thickness depends on the local crystalline texture of the barrier, which itself is influenced by structural defects in the underlayer. We show that the magnitude and the sign of the TMR is strongly influenced by defects in the tunnel barrier and by the detailed structure of the barrier/ferromagnet interfaces. The observation of Kondo-assisted tunneling phenomena will be discussed as well as the detailed dependence of TMR on chemical bonding at the interfaces [3]. [1] .S.S.P. Parkin, X. Jiang, C. Kaiser, et al., Proc. IEEE 91, 661 (2003). [2] S. S. P. Parkin, C. Kaiser, A. Panchula, et al., Nature Mater. 3, 862 (2004). [3] C. Kaiser, S. van Dijken, S.-H. Yang, H. Yang and S.S.P. Parkin, Phys. Rev. Lett. 94, 247203 (2005).

  8. A novel architecture of non-volatile magnetic arithmetic logic unit using magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Prenat, Guillaume; Dieny, Bernard

    2014-04-01

    Complementary metal-oxide-semiconductor (CMOS) technology is facing increasingly difficult obstacles such as power consumption and interconnection delay. Novel hybrid technologies and architectures are being investigated with the aim to circumvent some of these limits. In particular, hybrid CMOS/magnetic technology based on magnetic tunnel junctions (MTJs) is considered as a very promising approach thanks to the full compatibility of MTJs with CMOS technology. By tightly merging the conventional electronics with magnetism, both logic and memory functions can be implemented in the same device. As a result, non-volatility is directly brought into logic circuits, yielding significant improvement of device performances and new functionalities as well. We have conceived an innovative methodology to construct non-volatile magnetic arithmetic logic units (MALUs) combining spin-transfer torque MTJs with MOS transistors. The present 4-bit MALU utilizes 4 MTJ pairs to store its operation code (opcode). Its operations and performances have been confirmed and evaluated through electrical simulations.

  9. Annealing free magnetic tunnel junction sensors

    NASA Astrophysics Data System (ADS)

    Knudde, S.; Leitao, D. C.; Cardoso, S.; Freitas, P. P.

    2017-04-01

    Annealing is a major step in the fabrication of magnetic tunnel junctions (MTJs). It sets the exchange bias between the pinned and antiferromagnetic layers, and helps to increase the tunnel magnetoresistance (TMR) in both amorphous and crystalline junctions. Recent research on MTJs has focused on MgO-based structures due to their high TMR. However, the strict process control and mandatory annealing step can limit the scope of the application of these structures as sensors. In this paper, we present AlOx-based MTJs that are produced by ion beam sputtering and remote plasma oxidation and show optimum transport properties with no annealing. The microfabricated devices show TMR values of up to 35% and using NiFe/CoFeB free layers provides tunable linear ranges, leading to coercivity-free linear responses with sensitivities of up to 5.5%/mT. The top-pinned synthetic antiferromagnetic reference shows a stability of about 30 mT in the microfabricated devices. Sensors with linear ranges of up to 60 mT are demonstrated. This paves the way for the integration of MTJ sensors in heat-sensitive applications such as flexible substrates, or for the design of low-footprint on-chip multiaxial sensing devices.

  10. Engineering and characterizing nanoscale multilayered structures for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Yang, J. Joshua

    Magnetic tunnel junction (MTJ) has generated considerable attention due to its potential applications in improved magnetic sensors, read heads in HDDs and nonvolatile RAM. The materials issues play a crucial role in the performance of MTJs. In the work described in this thesis, we have engineered some interesting nanoscale multilayered structures mainly via thermodynamics considerations for MTJs. The insulator is usually an ultra-thin (<2nm) oxide, formed by oxidizing a pre-deposited metal, such as Al etc. We have developed novel fabrication approaches for obtaining clean and smooth interfaces between the insulator and the ferromagnets. These approaches include selectively oxidizing the pre-deposited tunnel barrier precursor metal, amorphizing the tunnel barrier precursor metal by alloying it with other elements, and in-situ annealing the bottom ferromagnetic layer. About 72% tunneling magnetoresistance (TMR) has been achieved at room temperature with AlOx and CoFe based MTJs. We have made a systemic study of the TMR vs. the Co1-xFe x electrode composition for AlOx based MTJs. A significant variation of TMR with Fe concentration has been observed. It is well known that the crystal structure of Co1-xFex changes from fcc to bcc with increasing Fe concentration. The concomitant composition change cast doubts on the role played by the crystal structure of the Co1-x Fex electrode on the TMR. By introducing different strains to an epitaxial Co1-xFex layer, we were able to fix its composition but alter its crystalline structure from fcc to bcc and found that the bcc structure resulted in much higher TMR values than found for the fcc structure. This is one of the few direct experimental confirmatory results showing the role of the FM electronic structure on the MTJ properties. Using Ag as a template, different 3d ferromagnets have been epitaxially grown on the Si substrate with hcp, fcc and bcc crystalline structures, respectively. By combining the selective oxidation method with the epitaxial growth technique, we have successfully created a single-crystal-like layer on top of an amorphous layer, which may have broad applications in thin film devices including MTJs.

  11. Nonlocal and local magnetization dynamics excited by an RF magnetic field in magnetic multilayers

    NASA Astrophysics Data System (ADS)

    Moriyama, Takahiro

    A microwave study in spintronic devices has been actively pursued in the past several years due to the fertile physics and potential applications. On one hand, a passive use of microwave can be very helpful to analyze and understand the magnetization dynamics in spintronic devices. Examples include ferromagnetic resonance (FMR) measurements, and various microwave spectrum analyses in ferromagnetic materials. The most important chrematistic parameter for the phenomenological analysis on the magnetization dynamics is, so called, the Gilbert damping constant. In this work, a relatively new measurement technique, a flip-chip FMR measurement, to conduct the ferromagnetic resonance measurements has been developed. The measurement technique is equally comparable to a conventional FMR measurement. The Gilbert damping constants were extracted for single ferromagnetic layer, spin vale structures, and magnetic tunnel junctions (MTJs). On the other hand, an active use of microwave yields a great potential for interesting phenomena which give new functionalities into spintronic devices. For instance, a spin wave excitation by an rf field can be used to reduce the switching field of a ferromagnet, i.e. microwave assisted magnetization reversal, which could be a potential application in advanced recording media. More interestingly, a precessing magnetization driven by an rf field can generate a pure spin current into a neighboring layer, i.e. spin pumping effect, which is one of the candidates for generating a pure spin current. A ferromagnetic tunnel junction (MTJ) is one of the important devices in spintronics, which is also the key device to investigate the local and nonlocal magnetization dynamics in this work. Therefore, it is also important to develop high quality MTJs. My work starts from the development of MTJ with AlOx and MgO tunnel barriers where it was found it is crucial to find the proper condition for forming a few nanometers thick tunnel barrier. After obtaining quality MTJs, we proceeded to the study on magnetization dynamics using the MTJs. First interesting phenomenon found in this work is the microwave assisted magnetization reversal (MAMR). It is found that magnetization reversal can be achieved efficiently by an appropriate power and frequency microwave. Moreover, there is a mutual relationship between microwave power and frequency for achieving a maximum switching field reduction. This effect can be very useful in magnetic data storage device which essentially needs to reduce the "effective" coercivity field. In the study of nonlocal magnetization dynamics, we tried to detect the spin accumulation induced by spin pumping effect in FM/NM/I/FM, FM/I/NM and FM/I/FM structures with a microwave excitation (FM: ferromagnetic material, NM: nonmagnetic material, and I: tunnel barrier). Interestingly, in the FM/I/NM and FM/I/FM structures, we observed ˜muV dc voltage due to the precessing magnetizations. It is found that the dc voltage we observed is much larger than the current the spin pumping theory predicts. Therefore we speculated a new mechanism to explain the results. Although we discussed only a portion of the magnetization dynamics involving nonlinear and nonequilibrium phenomena, it reveals that there is still a fertile physics which has not yet been investigated or explained.

  12. Analog Approach to Constraint Satisfaction Enabled by Spin Orbit Torque Magnetic Tunnel Junctions.

    PubMed

    Wijesinghe, Parami; Liyanagedera, Chamika; Roy, Kaushik

    2018-05-02

    Boolean satisfiability (k-SAT) is an NP-complete (k ≥ 3) problem that constitute one of the hardest classes of constraint satisfaction problems. In this work, we provide a proof of concept hardware based analog k-SAT solver, that is built using Magnetic Tunnel Junctions (MTJs). The inherent physics of MTJs, enhanced by device level modifications, is harnessed here to emulate the intricate dynamics of an analog satisfiability (SAT) solver. In the presence of thermal noise, the MTJ based system can successfully solve Boolean satisfiability problems. Most importantly, our results exhibit that, the proposed MTJ based hardware SAT solver is capable of finding a solution to a significant fraction (at least 85%) of hard 3-SAT problems, within a time that has a polynomial relationship with the number of variables(<50).

  13. Giant thermal spin torque assisted magnetic tunnel junction switching

    NASA Astrophysics Data System (ADS)

    Pushp, Aakash

    Spin-polarized charge-currents induce magnetic tunnel junction (MTJ) switching by virtue of spin-transfer-torque (STT). Recently, by taking advantage of the spin-dependent thermoelectric properties of magnetic materials, novel means of generating spin-currents from temperature gradients, and their associated thermal-spin-torques (TSTs) have been proposed, but so far these TSTs have not been large enough to influence MTJ switching. Here we demonstrate significant TSTs in MTJs by generating large temperature gradients across ultrathin MgO tunnel barriers that considerably affect the switching fields of the MTJ. We attribute the origin of the TST to an asymmetry of the tunneling conductance across the zero-bias voltage of the MTJ. Remarkably, we estimate through magneto-Seebeck voltage measurements that the charge-currents that would be generated due to the temperature gradient would give rise to STT that is a thousand times too small to account for the changes in switching fields that we observe. Reference: A. Pushp*, T. Phung*, C. Rettner, B. P. Hughes, S.-H. Yang, S. S. P. Parkin, 112, 6585-6590 (2015).

  14. Recent Trends in Spintronics-Based Nanomagnetic Logic

    NASA Astrophysics Data System (ADS)

    Das, Jayita; Alam, Syed M.; Bhanja, Sanjukta

    2014-09-01

    With the growing concerns of standby power in sub-100-nm CMOS technologies, alternative computing techniques and memory technologies are explored. Spin transfer torque magnetoresistive RAM (STT-MRAM) is one such nonvolatile memory relying on magnetic tunnel junctions (MTJs) to store information. It uses spin transfer torque to write information and magnetoresistance to read information. In 2012, Everspin Technologies, Inc. commercialized the first 64Mbit Spin Torque MRAM. On the computing end, nanomagnetic logic (NML) is a promising technique with zero leakage and high data retention. In 2000, Cowburn and Welland first demonstrated its potential in logic and information propagation through magnetostatic interaction in a chain of single domain circular nanomagnetic dots of Supermalloy (Ni80Fe14Mo5X1, X is other metals). In 2006, Imre et al. demonstrated wires and majority gates followed by coplanar cross wire systems demonstration in 2010 by Pulecio et al. Since 2004 researchers have also investigated the potential of MTJs in logic. More recently with dipolar coupling between MTJs demonstrated in 2012, logic-in-memory architecture with STT-MRAM have been investigated. The architecture borrows the computing concept from NML and read and write style from MRAM. The architecture can switch its operation between logic and memory modes with clock as classifier. Further through logic partitioning between MTJ and CMOS plane, a significant performance boost has been observed in basic computing blocks within the architecture. In this work, we have explored the developments in NML, in MTJs and more recent developments in hybrid MTJ/CMOS logic-in-memory architecture and its unique logic partitioning capability.

  15. Acoustically assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid writing scheme for non-volatile memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Ayan K.; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    We show that the energy dissipated to write bits in spin-transfer-torque random access memory can be reduced by an order of magnitude if a surface acoustic wave (SAW) is launched underneath the magneto-tunneling junctions (MTJs) storing the bits. The SAW-generated strain rotates the magnetization of every MTJs' soft magnet from the easy towards the hard axis, whereupon passage of a small spin-polarized current through a target MTJ selectively switches it to the desired state with > 99.99% probability at room temperature, thereby writing the bit. The other MTJs return to their original states at the completion of the SAW cycle.

  16. Magnetotransport in magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Panchula, Alex F.

    The unifying theme of this dissertation is the exploration of novel magnetic thin film materials to improve our understanding of spin-dependent transport in such materials, especially with regard to their use in the nascent field of spin based devices. Such devices, which rely on controlling the electron's spin rather than its charge as in conventional micro-electronics, may be important for applications in sensing, memory and computation. This dissertation covers research performed at the IBM Almaden Research Center between 2000 and 2003. One class of spin-based devices are magnetic tunnel junctions (MTJs), which display large changes in resistance in small magnetic fields. This tunneling magnetoresistance (TMR) is derived from changes in the relative alignment of the magnetic moments of thin ferromagnetic layers which are separated by thin insulating layers. The tunneling current spin polarization (TSP) determines the magnitude of the TMR. For typical transition-metal ferromagnets and their alloys the TSP is ˜50% although it is anticipated that half-metals should display nearly 100%. Confirming theoretical predictions, MTJs with electrodes of magnetite and a conventional ferromagnet such as a CoFe alloy, display an inverted TMR, consistent with negatively spin polarized magnetite electrodes. However, the magnitude of TSP of -48% at low temperatures, is not much larger than that exhibited by conventional 3d transition metal ferromagnets. At high temperatures, transport through the MTJ is dominated by tunneling across the alumina tunnel barrier, while at low temperatures the bulk properties of the magnetite dominates at low bias voltage. Another class of half-metals, the semi-heuslers exhibit low TSP, most likely due to surface disorder and, as revealed in this work, the possible formation of MnSb. The MnSb alloys studied in MTJs are found to behave as typical ferromagnets with a small positive TMR. Also considered are MTJs whose barriers are comprised of the wide band-gap semiconductors, ZnSe and Cr2O3. These low barrier height materials show typical tunneling behavior, although the TMR is lower than found for wide-gap insulators. Finally, the development of a high precision SQUID based voltmeter for application to low resistance devices with the current perpendicular to the plane of the materials is outlined.

  17. MgAl{sub 2}O{sub 4}(001) based magnetic tunnel junctions made by direct sputtering of a sintered spinel target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belmoubarik, Mohamed; Sukegawa, Hiroaki, E-mail: sukegawa.hiroaki@nims.go.jp; Ohkubo, Tadakatsu

    We developed a fabrication process of an epitaxial MgAl{sub 2}O{sub 4} barrier for magnetic tunnel junctions (MTJs) using a direct sputtering method from an MgAl{sub 2}O{sub 4} spinel sintered target. Annealing the sputter-deposited MgAl{sub 2}O{sub 4} layer sandwiched between Fe electrodes led to the formation of a (001)-oriented cation-disorder spinel with atomically sharp interfaces and lattice-matching with the Fe electrodes. A large tunnel magnetoresistance ratio up to 245% at 297 K (436% at 3 K) was achieved in the Fe/MgAl{sub 2}O{sub 4}/Fe(001) MTJ as well as an excellent bias voltage dependence. These results indicate that the direct sputtering is an alternative methodmore » for the realization of high performance MTJs with a spinel-based tunnel barrier.« less

  18. Chemical fabrication of heterometallic nanogaps for molecular transport junctions.

    PubMed

    Chen, Xiaodong; Yeganeh, Sina; Qin, Lidong; Li, Shuzhou; Xue, Can; Braunschweig, Adam B; Schatz, George C; Ratner, Mark A; Mirkin, Chad A

    2009-12-01

    We report a simple and reproducible method for fabricating heterometallic nanogaps, which are made of two different metal nanorods separated by a nanometer-sized gap. The method is based upon on-wire lithography, which is a chemically enabled technique used to synthesize a wide variety of nanowire-based structures (e.g., nanogaps and disk arrays). This method can be used to fabricate pairs of metallic electrodes, which exhibit distinct work functions and are separated by gaps as small as 2 nm. Furthermore, we demonstrate that a symmetric thiol-terminated molecule can be assembled into such heterometallic nanogaps to form molecular transport junctions (MTJs) that exhibit molecular diode behavior. Theoretical calculations demonstrate that the coupling strength between gold and sulfur (Au-S) is 2.5 times stronger than that of Pt-S. In addition, the structures form Raman hot spots in the gap, allowing the spectroscopic characterization of the molecules that make up the MTJs.

  19. Proposal for a graphene-based all-spin logic gate

    NASA Astrophysics Data System (ADS)

    Su, Li; Zhao, Weisheng; Zhang, Yue; Querlioz, Damien; Zhang, Youguang; Klein, Jacques-Olivier; Dollfus, Philippe; Bournel, Arnaud

    2015-02-01

    In this work, we present a graphene-based all-spin logic gate (G-ASLG) that integrates the functionalities of perpendicular anisotropy magnetic tunnel junctions (p-MTJs) with spin transport in graphene-channel. It provides an ideal integration of logic and memory. The input and output states are defined as the relative magnetization between free layer and fixed layer of p-MTJs. They can be probed by the tunnel magnetoresistance and controlled by spin transfer torque effect. Using lateral non-local spin valve, the spin information is transmitted by the spin-current interaction through graphene channels. By using a physics-based spin current compact model, the operation of G-ASLG is demonstrated and its performance is analyzed. It allows us to evaluate the influence of parameters, such as spin injection efficiency, spin diffusion length, contact area, the device length, and their interdependence, and to optimize the energy and dynamic performance. Compared to other beyond-CMOS solutions, longer spin information transport length (˜μm), higher data throughput, faster computing speed (˜ns), and lower power consumption (˜μA) can be expected from the G-ASLG.

  20. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures

    DOE PAGES

    Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan; ...

    2018-05-03

    Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less

  1. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Tiancheng; Cai, Xinghan; Tu, Matisse Wei-Yuan

    Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here, we report multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures in which atomically thin chromium triiodide (CrI3) acts as a spin-filter tunnel barrier sandwiched between graphene contacts. We demonstrate tunneling magnetoresistance which is drastically enhanced with increasing CrI 3 layer thickness, reaching a record 19,000% for magnetic multilayer structures using four-layer sf-MTJs at low temperatures. Using magnetic circular dichroism measurements, we attribute these effects to the intrinsic layer-by-layer antiferromagnetic ordering of the atomically thin CrI 3. In conclusion, ourmore » work reveals the possibility to push magnetic information storage to the atomically thin limit and highlights CrI 3 as a superlative magnetic tunnel barrier for vdW heterostructure spintronic devices.« less

  2. Magnetization reversal mechanism of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Liu, Cun-Ye; Li, Jian; Wang, Yue; Chen, Jian-Yong; Xu, Qing-Yu; Ni, Gang; Sang, Hai; Du, You-Wei

    2002-01-01

    Using the ion-beam-sputtering technique, we have fabricated Fe/Al2O3/Fe magnetic tunnelling junctions (MTJs). We have observed double-peaked shapes of curves, which have a level summit and a symmetrical feature, showing the magnetoresistance of the junction as a function of applied field. We have measured the tunnel conductance of MTJs which have insulating layers of different thicknesses. We have studied the dependence of the magnetoresistance of MTJs on tunnel conductance. The microstructures of hard- and soft-magnetic layers and interfaces of ferromagnets and insulators were probed. Analysing the influence of MJT microstructures, including those having clusters or/and granules in magnetic and non-magnetic films, a magnetization reversal mechanism (MRM) is proposed, which suggests that the MRM of tunnelling junctions may be explained by using a group-by-group reversal model of magnetic moments of the mesoscopical particles. We discuss the influence of MTJ microstructures, including those with clusters or/and granules in the ferromagnetic and non-magnetic films, on the MRM.

  3. Effect of Food Thickener on Dissolution and Laxative Activity of Magnesium Oxide Tablets in Mice.

    PubMed

    Tomita, Takashi; Goto, Hidekazu; Yoshimura, Yuya; Kato, Kazushige; Yoshida, Tadashi; Tanaka, Katsuya; Sumiya, Kenji; Kohda, Yukinao

    2016-01-01

    The present study examined the dissolution of magnesium oxide (MgO) from MgO tablets placed in a food thickening agent (food thickener) and its effects on laxative activity. We prepared mixtures of MgO tablets suspended in an aqueous suspension and food thickeners in order to evaluate the dissolution of MgO. The results of the dissolution tests revealed that agar-based food thickeners did not affect the MgO dissolution. In contrast, some xanthan gum-based food-thickener products show dissolution rates with certain mixtures containing disintegrated MgO tablets suspended in a food thickener that decrease over time. However, other xanthan gum-based food-thickener products show dissolution rates that decrease immediately after mixing, regardless of the time they were allowed to stand. In order to investigate the laxative activity of MgO, we orally administered a mixture of MgO suspension and food thickener to mice and observed their bowel movements. The animal experiments showed that when agar-based food thickeners were used, the laxative activity of MgO was not affected, but it decreased when xanthan gum-based food thickeners were used.

  4. Methods to induce perpendicular magnetic anisotropy in full-Heusler Co2FeSi thin layers in a magnetic tunnel junction structure

    NASA Astrophysics Data System (ADS)

    Shinohara, Koki; Suzuki, Takahiro; Takamura, Yota; Nakagawa, Shigeki

    2018-05-01

    In this study, to obtain perpendicular magnetic tunnel junctions (p-MTJs) using half-metallic ferromagnets (HMFs), several methods were developed to induce perpendicular magnetic anisotropy (PMA) in full-Heusler Co2FeSi (CFS) alloy thin layers in an MTJ multilayer composed of a layered CFS/MgO/CFS structure. Oxygen exposure at 2.0 Pa for 10 min after deposition of the bottom CFS layer was effective for obtaining PMA in the CFS layer. One of the reasons for the PMA is the formation of nearly ideal CFS/MgO interfaces due to oxygen exposure before the deposition of the MgO layer. The annealing process was effective for obtaining PMA in the top CFS layer capped with a Pd layer. PMA was clearly observed in the top CFS layer of a Cr(40 nm)/Pd(50 nm)/bottom CFS(0.6 nm)/MgO(2.0 nm)/top CFS(0.6 nm)/ Pd(10 nm) multilayer, where the top CFS and Pd thin films were deposited at RT and subsequently annealed at 300°C. In addition to the continuous layer growth of the films, the crystalline orientation alignment at the top CFS/Pd interface probably attributes to the origin of PMA at the top CFS layer.

  5. TOPICAL REVIEW: Spin-dependent tunnelling in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Tsymbal, Evgeny Y.; Mryasov, Oleg N.; LeClair, Patrick R.

    2003-02-01

    The phenomenon of electron tunnelling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunnelling (SDT) in magnetic tunnel junctions (MTJs) has recently aroused enormous interest and has developed in a vigorous field of research. The large tunnelling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible applications in non-volatile random-access memories and next-generation magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. In this review article we present an overview of this field of research. We discuss various factors that control the spin polarization and magnetoresistance in MTJs. Starting from early experiments on SDT and their interpretation, we consider thereafter recent experiments and models which highlight the role of the electronic structure of the ferromagnets, the insulating layer, and the ferromagnet/insulator interfaces. We also discuss the role of disorder in the barrier and in the ferromagnetic electrodes and their influence on TMR.

  6. Magnetic tunnel junction thermocouple for thermoelectric power harvesting

    NASA Astrophysics Data System (ADS)

    Böhnert, T.; Paz, E.; Ferreira, R.; Freitas, P. P.

    2018-05-01

    The thermoelectric power generated in magnetic tunnel junctions (MTJs) is determined as a function of the tunnel barrier thickness for a matched electric circuit. This study suggests that lower resistance area product and higher tunnel magnetoresistance will maximize the thermoelectric power output of the MTJ structures. Further, the thermoelectric behavior of a series of two MTJs, a MTJ thermocouple, is investigated as a function of its magnetic configurations. In an alternating magnetic configurations the thermovoltages cancel each other, while the magnetic contribution remains. A large array of MTJ thermocouples could amplify the magnetic thermovoltage signal significantly.

  7. Voltage control of a magnetic switching field for magnetic tunnel junctions with low resistance and perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Tezuka, N.; Oikawa, S.; Matsuura, M.; Sugimoto, S.; Nishimura, K.; Irisawa, T.; Nagamine, Y.; Tsunekawa, K.

    2018-05-01

    The authors investigated the voltage control of a magnetic anisotropy field for perpendicular-magnetic tunnel junctions (p-MTJs) with low and high resistance-area (RA) products and for synthetic antiferromagnetic free and pinned layers. It was found that the sample with low RA products was more sensitive to the applied bias voltage than the sample with high RA products. The bias voltage effect was less pronounced for our sample with the synthetic antiferromagnetic layer for high RA products compared to the MTJs with single free and pinned layers.

  8. Antibacterial Properties of Nonwoven Wound Dressings Coated with Manuka Honey or Methylglyoxal

    PubMed Central

    Bulman, Sophie E. L.; Carr, Chris; Russell, Stephen J.

    2017-01-01

    Manuka honey (MH) is used as an antibacterial agent in bioactive wound dressings via direct impregnation onto a suitable substrate. MH provides unique antibacterial activity when compared with conventional honeys, owing partly to one of its constituents, methylglyoxal (MGO). Aiming to investigate an antibiotic-free antimicrobial strategy, we studied the antibacterial activity of both MH and MGO (at equivalent MGO concentrations) when applied as a physical coating to a nonwoven fabric wound dressing. When physically coated on to a cellulosic hydroentangled nonwoven fabric, it was found that concentrations of 0.0054 mg cm−2 of MGO in the form of MH and MGO were sufficient to achieve a 100 colony forming unit % bacteria reduction against gram-positive Staphylococcus aureus and gram-negative Klebsiella pneumoniae, based on BS EN ISO 20743:2007. A 3- to 20-fold increase in MGO concentration (0.0170–0.1 mg cm−2) was required to facilitate a good antibacterial effect (based on BS EN ISO 20645:2004) in terms of zone of inhibition and lack of growth under the sample. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) was also assessed for MGO in liquid form against three prevalent wound and healthcare-associated pathogens, i.e., Staphylococcus aureus, gram-negative Pseudomonas aeruginosa and gram-positive Enterococcus faecalis. Other than the case of MGO-containing fabrics, solutions with much higher MGO concentrations (128 mg L−1–1024 mg L−1) were required to provide either a bacteriostatic or bactericidal effect. The results presented in this study therefore demonstrate the relevance of an MGO-based coating as an environmentally friendly strategy for the design of functional dressings with antibiotic-free antimicrobial chemistries. PMID:28813014

  9. Effect of magnesium oxide content on oxidation behavior of some superalloy-base cermets

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1975-01-01

    The effect of increasing magnesium oxide (MgO) content on the cyclic oxidation resistance of hot-pressed cermets of MgO in NiCrAlY, MgO in Hoskins-875, MgO in Inconel-702, and MgO in Hastelloy-X was investigated. The cermets with magnesium oxide levels of 5, 10, 20, and 40 vol percent were examined. The cyclic oxidation behavior of these cermets at 1100 and 1200 C in still air was determined by a thermogravimetric method supplemented by X-ray diffraction analysis and light and electron microscopy. In all instances, MgO prevented grain growth in the metallic phase. No evidence of oxidation along interphase boundaries was detected. Cermets of MgO in NiCrAlY and MgO in Hoskins-875 were superior to cermets of MgO in Inconel-702 and MgO in Hastelloy-X. Their oxidation resistance was degraded only when the MgO content was 40 vol percent. The oxidation behavior of MgO-in-Inconel-702 powder cermets containing 5- and 10-vol percent MgO was approximately similar to that of pure Inconel-702 compacts. The 20- and 40-vol percent MgO content reduced the oxidation resistance of MgO-in-Inconel-702 powder cermets relative to that of pure Inconel-702.

  10. Magnetic tunnel junction based spintronic logic devices

    NASA Astrophysics Data System (ADS)

    Lyle, Andrew Paul

    The International Technology Roadmap for Semiconductors (ITRS) predicts that complimentary metal oxide semiconductor (CMOS) based technologies will hit their last generation on or near the 16 nm node, which we expect to reach by the year 2025. Thus future advances in computational power will not be realized from ever-shrinking device sizes, but rather by 'outside the box' designs and new physics, including molecular or DNA based computation, organics, magnonics, or spintronic. This dissertation investigates magnetic logic devices for post-CMOS computation. Three different architectures were studied, each relying on a different magnetic mechanism to compute logic functions. Each design has it benefits and challenges that must be overcome. This dissertation focuses on pushing each design from the drawing board to a realistic logic technology. The first logic architecture is based on electrically connected magnetic tunnel junctions (MTJs) that allow direct communication between elements without intermediate sensing amplifiers. Two and three input logic gates, which consist of two and three MTJs connected in parallel, respectively were fabricated and are compared. The direct communication is realized by electrically connecting the output in series with the input and applying voltage across the series connections. The logic gates rely on the fact that a change in resistance at the input modulates the voltage that is needed to supply the critical current for spin transfer torque switching the output. The change in resistance at the input resulted in a voltage margin of 50--200 mV and 250--300 mV for the closest input states for the three and two input designs, respectively. The two input logic gate realizes the AND, NAND, NOR, and OR logic functions. The three input logic function realizes the Majority, AND, NAND, NOR, and OR logic operations. The second logic architecture utilizes magnetostatically coupled nanomagnets to compute logic functions, which is the basis of Magnetic Quantum Cellular Automata (MQCA). MQCA has the potential to be thousands of times more energy efficient than CMOS technology. While interesting, these systems are academic unless they can be interfaced into current technologies. This dissertation pushed past a major hurdle by experimentally demonstrating a spintronic input/output (I/O) interface for the magnetostatically coupled nanomagnets by incorporating MTJs. This spintronic interface allows individual nanomagnets to be programmed using spin transfer torque and read using magneto resistance structure. Additionally the spintronic interface allows statistical data on the reliability of the magnetic coupling utilized for data propagation to be easily measured. The integration of spintronics and MQCA for an electrical interface to achieve a magnetic logic device with low power creates a competitive post-CMOS logic device. The final logic architecture that was studied used MTJs to compute logic functions and magnetic domain walls to communicate between gates. Simulations were used to optimize the design of this architecture. Spin transfer torque was used to compute logic function at each MTJ gate and was used to drive the domain walls. The design demonstrated that multiple nanochannels could be connected to each MTJ to realize fan-out from the logic gates. As a result this logic scheme eliminates the need for intermediate reads and conversions to pass information from one logic gate to another.

  11. Fewer Defects in the Surface Slows the Hydrolysis Rate, Decreases the ROS Generation Potential, and Improves the Non-ROS Antimicrobial Activity of MgO.

    PubMed

    Anicˇić, Nemanja; Vukomanović, Marija; Koklicˇ, Tilen; Suvorov, Danilo

    2018-05-21

    Magnesium oxide (MgO) is recognised as exhibiting a contact-based antibacterial activity. However, a comprehensive study of the impact of atomic-scale surface features on MgO's antibacterial activity is lacking. In this study, the nature and abundance of the native surface defects on different MgO powders are thoroughly investigated. Their impacts on the hydrolysis kinetics, antibacterial activity against Escherichia coli (ATCC 47076), Staphylococcus epidermidis and Pseudomonas aeruginosa and the reactive oxygen species (ROS) generation potential are determined and explained. It is shown that a reduction in the abundance of low-coordinated oxygen atoms on the surface of the MgO improves its resistance to both hydrolysis and antibacterial activity. The ROS generation potential, determined in-situ using a fluorescence microplate assay and electron paramagnetic resonance spectroscopy, is not an inherent property of the studied MgO, rather it is a side product of hydrolysis (only for the most highly defected MgO particles) and/or a consequence of the MgO/bacteria interaction. The evaluation of the mutual correlations of the hydrolysis, the antibacterial activity and the ROS generation, with their origin in the surface defects' peculiarities, led to the conclusion that the acid/base reaction between the MgO surface and the bacterial wall contributes considerably to the MgO's antibacterial activity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Designing lateral spintronic devices with giant tunnel magnetoresistance and perfect spin injection efficiency based on transition metal dichalcogenides.

    PubMed

    Zhao, Pei; Li, Jianwei; Jin, Hao; Yu, Lin; Huang, Baibiao; Ying, Dai

    2018-04-18

    Giant tunnel magnetoresistance (TMR) and perfect spin-injection efficiency (SIE) are extremely significant for modern spintronic devices. Quantum transport properties in a two-dimensional (2D) VS2/MoS2/VS2 magnetic tunneling junction (MTJ) are investigated theoretically within the framework of density functional theory combining with the non-equilibrium Green's functions (DFT-NEGF) method. Our results indicate that the designed MTJ exhibits a TMR with a value up to 4 × 103, which can be used as a switch of spin-electron devices. And due to the huge barrier for spin-down transport, the spin-down electrons could hardly cross the central scattering region, thus achieving a perfect SIE. Furthermore, we also explore for the effect of bias voltage on the TMR and SIE. We find that the TMR increases with the increasing bias voltage, and the SIE is robust against either bias or gate voltage in MTJs, which can serve as effective spin filter devices. Our results can not only give fresh impetus to the research community to build MTJs but also provide potential materials for spintronic devices.

  13. Low frequency noise peak near magnon emission energy in magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Liang; Xiang, Li; Guo, Huiqiang

    2014-12-15

    We report on the low frequency (LF) noise measurements in magnetic tunnel junctions (MTJs) below 4 K and at low bias, where the transport is strongly affected by scattering with magnons emitted by hot tunnelling electrons, as thermal activation of magnons from the environment is suppressed. For both CoFeB/MgO/CoFeB and CoFeB/AlO{sub x}/CoFeB MTJs, enhanced LF noise is observed at bias voltage around magnon emission energy, forming a peak in the bias dependence of noise power spectra density, independent of magnetic configurations. The noise peak is much higher and broader for unannealed AlO{sub x}-based MTJ, and besides Lorentzian shape noise spectramore » in the frequency domain, random telegraph noise (RTN) is visible in the time traces. During repeated measurements the noise peak reduces and the RTN becomes difficult to resolve, suggesting defects being annealed. The Lorentzian shape noise spectra can be fitted with bias-dependent activation of RTN, with the attempt frequency in the MHz range, consistent with magnon dynamics. These findings suggest magnon-assisted activation of defects as the origin of the enhanced LF noise.« less

  14. The characterization of a zebrafish mid-hindbrain mutant, mid-hindbrain gone (mgo).

    PubMed

    Shima, Takaki; Znosko, Wade; Tsang, Michael

    2009-04-01

    The vertebrate mid-hindbrain boundary (MHB) is a crucial morphological structure required for patterning and neural differentiation of the midbrain and anterior hindbrain. We isolated a novel zebrafish mutant, MHB gone (mgo), that exhibited a defective MHB. Expression of engrailed3 in the prospective MHB was absent at the 1-somite stage, suggesting that initiation of the isthmic organizer was disrupted in mgo mutants. Complementation test with mgo and noi, in which the pax2a gene is mutated, infer that the mgo mutant may represent a novel noi allele. However, pronephric, otic vesicle, and commissural axonal defects described in noi mutants were not associated with mgo mutants. Genetic mapping revealed that the mgo mutation is linked to the Pax2a locus, but no mutation was detected in pax2a exons or within intron-exon boundaries. Based on these findings, we propose that the mgo mutation genetically interacts with pax2a required for the initiation of MHB formation. Copyright 2009 Wiley-Liss, Inc.

  15. Proximal hamstring morphology and morphometry in men: an anatomic and MRI investigation.

    PubMed

    Storey, R N; Meikle, G R; Stringer, M D; Woodley, S J

    2016-12-01

    The proximal musculo-tendinous junction (MTJ) is a common site of hamstring strain injury but the anatomy of this region is not well defined. A morphometric analysis of the proximal MTJs of biceps femoris long head (BFlh), semitendinosus (ST), and semimembranosus (SM) was undertaken from dissection of 10 thighs from five male cadavers and magnetic resonance imaging of 20 thighs of 10 active young men. The length, volume, and cross-sectional area of the proximal tendon, MTJ and muscle belly, and muscle-tendon interface area were calculated. In both groups, MTJs were reconstructed three-dimensionally. The proximal tendons and MTJs were expansive, particularly within SM and BFlh. Morphology varied between muscles although length measurements within individual muscles were similar in cadavers and young men. Semimembranosus had the longest proximal tendon (cadavers: mean 33.6 ± 2.0 cm; young men: mean 31.7 ± 1.6 cm) and MTJ (>20 cm in both groups) and the greatest muscle-tendon interface area, followed by BFlh and ST. Mean muscle belly volumes were more than three times greater in young men than elderly male cadavers (P < 0.001). These unique morphometric data contribute to a better understanding of hamstring anatomy, an important factor in the pathogenesis of hamstring strain injury. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Nonvolatile flip-flop based on pseudo-spin-transistor architecture and its nonvolatile power-gating applications for low-power CMOS logic

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shuu'ichirou; Shuto, Yusuke; Sugahara, Satoshi

    2013-07-01

    We computationally analyzed performance and power-gating (PG) ability of a new nonvolatile delay flip-flop (NV-DFF) based on pseudo-spin-MOSFET (PS-MOSFET) architecture using spin-transfer-torque magnetic tunnel junctions (STT-MTJs). The high-performance energy-efficient PG operations of the NV-DFF can be achieved owing to its cell structure employing PS-MOSFETs that can electrically separate the STT-MTJs from the ordinary DFF part of the NV-DFF. This separation also makes it possible that the break-even time (BET) of the NV-DFF is designed by the size of the PS-MOSFETs without performance degradation of the normal DFF operations. The effect of the area occupation ratio of the NV-DFFs to a CMOS logic system on the BET was also analyzed. Although the optimized BET was varied depending on the area occupation ratio, energy-efficient fine-grained PG with a BET of several sub-microseconds was revealed to be achieved. We also proposed microprocessors and system-on-chip (SoC) devices using nonvolatile hierarchical-memory systems wherein NV-DFF and nonvolatile static random access memory (NV-SRAM) circuits are used as fundamental building blocks. Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  17. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    NASA Astrophysics Data System (ADS)

    Jovanović, B.; Brum, R. M.; Torres, L.

    2014-04-01

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  18. Dissolution behavior of MgO based inert matrix fuel for the transmutation of minor actinides

    NASA Astrophysics Data System (ADS)

    Mühr-Ebert, E. L.; Lichte, E.; Bukaemskiy, A.; Finkeldei, S.; Klinkenberg, M.; Brandt, F.; Bosbach, D.; Modolo, G.

    2018-07-01

    This study explores the dissolution properties of magnesia-based inert matrix nuclear fuel (IMF) containing transuranium elements (TRU). Pure MgO pellets as well as MgO pellets containing CeO2, as surrogate for TRU oxides, and are considered as model systems for genuine magnesia based inert matrix fuel were fabricated. The aim of this study is to identify conditions at which the matrix material can be selectively dissolved during the head-end reprocessing step, allowing a separation of MgO from the actinides, whereas the actinides remain undissolved. The dissolution behavior was studied in macroscopic batch experiments as a function of nitric acid concentration, dissolution medium volume, temperature, stirring velocity, and pellet density (85, 90, 96, and 99%TD). To mimic pellets with various burn-ups the density of the here fabricated pellets was varied. MgO is soluble even under mild conditions (RT, 2.5 mol/L HNO3). The dissolution rates of MgO at different acid concentrations are rather similar, whereas the dissolution rate is strongly dependent on the temperature. Via a microscopic approach, a model was developed to describe the evolution of the pellet surface area during dissolution and determine a surface normalized dissolution rate. Moreover, dissolution rates of the inert matrix fuel containing CeO2 were determined as a function of the acid concentration and temperature. During the dissolution of MgO/CeO2 pellets the MgO dissolves completely, while CeO2 (>99%) remains undissolved. This study intends to provide a profound understanding of the chemical performance of magnesia based IMF containing fissile material. The feasibility of the dissolution of magnesia based IMF with nitric acid is discussed.

  19. Experimental investigation of engine emissions with marine gas oil-oxygenate blends.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions. Copyright 2010 Elsevier B.V. All rights reserved.

  20. On-wire lithography-generated molecule-based transport junctions: a new testbed for molecular electronics.

    PubMed

    Chen, Xiaodong; Jeon, You-Moon; Jang, Jae-Won; Qin, Lidong; Huo, Fengwei; Wei, Wei; Mirkin, Chad A

    2008-07-02

    On-wire lithography (OWL) fabricated nanogaps are used as a new testbed to construct molecular transport junctions (MTJs) through the assembly of thiolated molecular wires across a nanogap formed between two Au electrodes. In addition, we show that one can use OWL to rapidly characterize a MTJ and optimize gap size for two molecular wires of different dimensions. Finally, we have used this new testbed to identify unusual temperature-dependent transport mechanisms for alpha,omega-dithiol terminated oligo(phenylene ethynylene).

  1. Ultrathin hexagonal MgO nanoflakes coated medical textiles and their enhanced antibacterial activity

    NASA Astrophysics Data System (ADS)

    Veeran Ponnuvelu, Dinesh; Selvaraj, Aravind; Prema Suriyaraj, Shanmugam; Selvakumar, Rajendran; Pulithadathail, Biji

    2016-10-01

    A facile hydrothermal method for development of ultrathin MgO nanoplates from different precursors and their enhanced antibacterial activity after coating onto medical textiles is reported. Ultrathin MgO nanoplates having hexagonal structure were characterized using UV-visible spectroscopy, atomic force microscopy, field emission scanning electron microscopy, x-ray diffraction and high resolution transmission electron microscopy. The formation of MgO nanoplates was found to exhibit profound anionic effect leading to ultrathin, planar structures with exposed MgO [111] facets, which may be responsible for enhanced antimicrobial activity. Medical fabrics (bleached 100% cotton) were coated with MgO nanoplates using pad-dry-cure method. The antibacterial activity of these fabrics was tested against Bacillus subtilis and Escherichia coli. The MgO nanoplates coated onto the fabric were found to have good adherence properties owing to their two-dimensional structure and were durable even after repeated washings without substantial reduction in the antimicrobial activity. The enhanced antibacterial activity may be attributed to the presence of oxygen vacancies, surface oxygen anions and hydroxyl groups on the surface of MgO nanoplates. This cost-effective functional finish (anti-microbial) to cotton fabric using MgO nanoplates may be suitable for many prospective medical applications and can serve as an alternative to the costlier silver based antimicrobial textiles.

  2. Melting temperatures of MgO under high pressure by micro-texture analysis

    PubMed Central

    Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.

    2017-01-01

    Periclase (MgO) is the second most abundant mineral after bridgmanite in the Earth's lower mantle, and its melting behaviour under pressure is important to constrain rheological properties and melting behaviours of the lower mantle materials. Significant discrepancies exist between the melting temperatures of MgO determined by laser-heated diamond anvil cell (LHDAC) and those based on dynamic compressions and theoretical predictions. Here we show the melting temperatures in earlier LHDAC experiments are underestimated due to misjudgment of melting, based on micro-texture observations of the quenched samples. The high melting temperatures of MgO suggest that the subducted cold slabs should have higher viscosities than previously thought, suggesting that the inter-connecting textural feature of MgO would not play important roles for the slab stagnation in the lower mantle. The present results also predict that the ultra-deep magmas produced in the lower mantle are peridotitic, which are stabilized near the core–mantle boundary. PMID:28580945

  3. Effect of annealing on microstructure evolution in CoFeB/MgO/CoFeB heterostructures by positron annihilation

    NASA Astrophysics Data System (ADS)

    Zhao, Chong-Jun; Lu, Xiang-An; Zhao, Zhi-Duo; Li, Ming-Hua; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Zhang, Jing-Yan; Yu, Guang-Hua

    2013-09-01

    As one of the most powerful tools for investigation of defects of materials, positron annihilation spectroscopy was employed to explore the thermal effects on the film microstructure evolution in CoFeB/MgO/CoFeB heterostructures. It is found that high annealing temperature can drive vacancy defects agglomeration and ordering acceleration in the MgO barrier. Meanwhile, another important type of defects, vacancy clusters, which are formed via the agglomeration of vacancy defects in the MgO barrier after annealing, still exists inside the MgO barrier. All these behaviors in the MgO barrier could potentially impact the overall performance in MgO based magnetic tunnel junctions.

  4. XPS studies of MgO based magnetic tunnel junction structures

    NASA Astrophysics Data System (ADS)

    Read, John; Mather, Phil; Tan, Eileen; Buhrman, Robert

    2006-03-01

    The very high tunneling magnetoresistance (TMR) obtained in MgO magnetic tunnel junctions (MTJ)^(1,2) motivates the investigation of the electronic properties of the MgO barrier layer and the study of the ferromagnetic metal - MgO interface chemistry. Such large TMR values are predicted by theory due to the high degree of order apparent in the barrier and electrode materials. However, as grown ultra-thin MgO films generally contain defects that can influence electron transport properties through the creation of low energy states within the bulk MgO band-gap. We will report the results of x-ray photoelectron spectroscopy (XPS) studies of (001) textured ultra-thin MgO layers that are prepared by RF magnetron sputtering and electron beam evaporation on ordered ferromagnetic electrodes and in ordered MTJ structures with and without post growth vacuum annealing. XPS spectra for both MgO deposition techniques clearly indicate a surface oxygen species that is likely bound by defects in the oxide^(3) in half-formed junctions and improvements in MgO quality after counter electrode deposition. We will discuss our results regarding the chemical properties of the oxide and its interfaces directed towards possibly providing guidance to engineer improved MgO MTJ devices. [1] S.S.P. Parkin et. al., Nature Materials, 3, 862 (2004). [2] S. Yuasa et. al., Nature Materials, 3, 868 (2004). [3] E. Tan et. al. , Phys. Rev. B. , 71, 161401 (2005).

  5. Spin-Torque Diode Effect in Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshishige

    2007-03-01

    Spin-injection magnetization switching (SIMS) technique [1] made it possible to control magnetization by a direct current. A discovery of spontaneous rf oscillation from CPP-GMR nano-pillars and a real time observation of the switching process have revealed essential amplification function of a precession in the magnetic nano-pillars under a direct current [2]. Beside of those progresses, developments of giant tunneling magneto-resistive (GTMR) effect using an MgO barrier [3] made it possible to utilize a very large resistance change according to the magnetization switching. In this talk, several attempts to utilize interplay between spin-torque and giant-TMR effect will be presented referring to a ``spin-torque diode effect'' [4] and other properties such like rf noise control and possible signal amplification using magnetic tunnel junctions (MTJs). [1] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996) , L. Berger, Phys. Rev. B 54, 9353 (1996), and E. B. Myers, et al., Science 285, 867 (1999). [2] S. I. Kiselev et al., Nature 425, 380 (2003), I. N. Krivorotov et al., Science, 307, 228 (2005). [3] W. Wulfhekel, et al. Appl. Phys. Lett. 78, 509--511 (2001), M. Bowen, et al. Appl. Phys. Lett. 79, 1655--1657 (2001), J. Faure-Vincent, et al. Appl. Phys. Lett. 82, 4507--4509 (2003), S. Yuasa, et al., Jpn. J. Appl. Phys. Part 2, 43, L588 (2004), S. Yuasa, et al., Nature Mat. 3, 868 (2004), S. S. P. Parkin et al., Nature Mat. 3, 862 (2004), and D. D. Djayaprawira et al., Appl. Phys. Lett. 86, 092502 (2005). [4] A. A. Tulapurkar, et al., Nature, 438, 339 (2005).

  6. Incipient plasticity and indentation response of MgO surfaces using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Tran, Anh-Son; Hong, Zheng-Han; Chen, Ming-Yuan; Fang, Te-Hua

    2018-05-01

    The mechanical characteristics of magnesium oxide (MgO) based on nanoindentation are studied using molecular dynamics (MD) simulation. The effects of indenting speed and temperature on the structural deformation and loading-unloading curve are investigated. Results show that the strained surface of the MgO expands to produce a greater relaxation of atoms in the surroundings of the indent. The dislocation propagation and pile-up for MgO occur more significantly with the increasing temperature from 300 K to 973 K. In addition, with increasing temperature, the high strained atoms with a great perturbation appearing at the groove location.

  7. Buffer layer dependence of magnetoresistance effects in Co2Fe0.4Mn0.6Si/MgO/Co50Fe50 tunnel junctions

    NASA Astrophysics Data System (ADS)

    Sun, Mingling; Kubota, Takahide; Takahashi, Shigeki; Kawato, Yoshiaki; Sonobe, Yoshiaki; Takanashi, Koki

    2018-05-01

    Buffer layer dependence of tunnel magnetoresistance (TMR) effects was investigated in Co2Fe0.4Mn0.6Si (CFMS)/MgO/Co50Fe50 magnetic tunnel junctions (MTJs). Pd, Ru and Cr were selected for the buffer layer materials, and MTJs with three different CFMS thicknesses (30, 5, and 0.8 nm) were fabricated. A maximum TMR ratio of 136% was observed in the Ru buffer layer sample with a 30-nm-thick CFMS layer. TMR ratios drastically degraded for the CFMS thickness of 0.8 nm, and the values were 26% for Cr buffer layer and less than 1% for Pd and Ru buffer layers. From the annealing temperature dependence of the TMR ratios, amounts of interdiffusion and effects from the lattice mismatch were discussed.

  8. Giant magnetoresistance in perpendicularly magnetized synthetic antiferromagnetic coupling with Ir spacer

    NASA Astrophysics Data System (ADS)

    Fukushima, A.; Taniguchi, T.; Sugihara, A.; Yakushiji, K.; Kubota, H.; Yuasa, S.

    2018-05-01

    Perpendicularly magnetized magnetic tunnel junction (p-MTJ) is a key element for developing high-density spin-transfer torque switching magnetoresistive random access memory. Recently, a large exchange coupling (IEC) in the synthetic antiferromagnetic reference layer with Ir interlayer was observed in p-MTJs. The evaluation of the IEC is, however, difficult due to the electrostatic breakdown of MTJs. This study demonstrates the evaluation of the IEC with Ir interlayer in giant magnetoresistive (GMR) nanopillar. We fabricated three kinds of perpendicularly magnetized GMR elements; bottom-free structures with Cu or Ir spacer, and top-free structure with Ir spacer. The magnetoresistance (RH) loops of all samples show sharp changes of the magnetoresistance at the magnetic fields over ±10 kOe, indicating the existence of the large IECs. In particular, a sharp change of the magnetoresistance at the field over ±20 kOe was found for the element with Cu of 2 nm thickness.

  9. Transparent Al+3 doped MgO thin films for functional applications

    NASA Astrophysics Data System (ADS)

    Maiti, Payel; Sekhar Das, Pradip; Bhattacharya, Manjima; Mukherjee, Smita; Saha, Biswajit; Mullick, Awadesh Kumar; Mukhopadhyay, Anoop Kumar

    2017-08-01

    The present work reports the utilization of a relatively simple, cost effective sol-gel technique based route to synthesize highly transparent, spin coated 4.1 at% Al+3 doped MgO thin films on quartz substrates. The films were characterized by XRD, XPS, Raman spectroscopy, and SIMS techniques. The microstructures were characterized by FESEM and TEM while the nanomechanical properties were assessed by the nanoindentation technique. Finally the optical transmittance was measured by UV-vis technique. The x-ray diffraction (XRD) study suggests the crystal facet (2 0 0) of MgO lattice to be distorted after incorporation of Al+3 into MgO lattice. From FESEM the doped films were found to have a dense microstructure with a crystallite size of about 20 nm as revealed by the TEM studies. Nanoindentation measurements indicated drastic increase of elastic modulus for the Al+3 doped MgO thin films by ~73% compared to that of the pristine MgO thin films along with retaining the nanohardness at ~8 GPa. The transmittance of Al+3 doped MgO thin films in the visible range was significantly higher (~99%) than that of pristine MgO (~90%) thin films. The films also had a relatively higher refractive index of about 1.45 as evaluated from the optical properties. The enhanced transmittance as well as the improved elastic modulus of Al+3 doped MgO thin films suggest its promising candidature in magnetic memory devices and as buffer layers of solar cells.

  10. The influence of incorporating MgO into Ni-based cermets by plasma spraying on anode microstructural and chemical stability in dry methane

    NASA Astrophysics Data System (ADS)

    Lay, E.; Metcalfe, C.; Kesler, O.

    2012-11-01

    The Solution Precursor Plasma Spray (SPPS) process was successfully used to deposit cermet coatings that exhibit fine microstructures with high surface area. MgO addition in Ni-YSZ and Ni-SDC cermets results in (Ni,Mg)O solid solution formation, and nickel particles after reduction are finer than in coatings without magnesia. The influence of MgO on the chemical stability of cermets in anodic operating conditions is discussed. It was found that a sufficient amount of magnesia addition (Ni0.9(MgO)0.1) helps to reduce carbon deposition in dry methane.

  11. XRD investigation of the Effect of MgO Additives on ZTA-TiO2 Ceramic Composites

    NASA Astrophysics Data System (ADS)

    Azhar, Ahmad Zahirani Ahmad; Manshor, Hanisah; Ali, Afifah Mohd

    2018-01-01

    Alumina (Al2O3) based ceramics possess good mechanical properties and suitable for the application of cutting inserts. However, this monolithic ceramics suffer from lack of toughness. Hence, there are some modification were made such as the addition of yttria stabilized zirconia (YSZ) to the Al2O3 helps in increasing the toughness of the Al2O3 ceramics. Some additives such as MgO and TiO2 were used to further improve the mechanical properties of ZTA. In this study, high purity raw materials which consist of ZTA-TiO2 were mixed with different amount of MgO (0.0 - 1.0 wt %). The mixture of materials was going through wet mixing, compaction and pressureless sintering at 1600°C for one hour. The samples were characterized for phase analysis, microstructure, shrinkage rate, bulk density, Vickers hardness and fracture toughness. Based on the XRD analysis results, the secondary phase (MgAl2O4) was detected in the sample with 0.5 wt% of MgO onwards which leads to grains refinement, thus improve the density and hardness of ZTA-TiO2-MgO ceramics composites.

  12. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  13. Grain boundaries at the surface of consolidated MgO nanocrystals and acid-base functionality.

    PubMed

    Vingurt, Dima; Fuks, David; Landau, Miron V; Vidruk, Roxana; Herskowitz, Moti

    2013-09-21

    The increase of the surface basicity-acidity of MgO material by factors of 1.8-3.0 due to consolidation of its nanocrystals was demonstrated by the indicator titration. It was shown that the parallel increase of surface acidity and basicity is attributed to the formation of grain boundaries (GB) after MgO aerogel densification. A simple model predicting the increase of surface acidity-basicity of MgO that correlates with the results of direct measurements was proposed. The model is based on the study of the fine atomic structure at GB surface areas in consolidated MgO nanocrystals in the framework of Density Functional Theory. It is found that the displacements of coordinatively unsaturated surface ions near the GB are significant at the distances ~3-4 atomic layers from the geometrical contact plane between nanocrystals. The detailed analysis of atomic positions inside GB demonstrated the coordination deficiency of surface atoms at the GB areas leading to the formation of stretched bonds and to creation of low coordinated surface ions due to splitting of coordination numbers of surface atoms belonging to GB areas. Density of states for electrons shows the existence of additional states in the band gap close to the bottom of the conduction band. The adsorption energy of CO2 molecules atop oxygen atoms exposed at surface GB areas is of the same order of magnitude as that reported for oxygen atoms at crystallographic edges and corners of MgO crystals. It provides additional options for bonding of molecules at the surface of nanocrystalline MgO increasing the adsorption capacity and catalytic activity.

  14. Apple polyphenols, phloretin and phloridzin: new trapping agents of reactive dicarbonyl species.

    PubMed

    Shao, Xi; Bai, Naisheng; He, Kan; Ho, Chi-Tang; Yang, Chung S; Sang, Shengmin

    2008-10-01

    Reactive dicarbonyl species, such as methylglyoxal (MGO) and glyoxal (GO), have received extensive attention recently due to their high reactivity and ability to form advanced glycation end products (AGEs) with biological substances such as proteins, phospholipids, and DNA. In the present study, we found that both phloretin and its glucoside, phloridzin, the major bioactive apple polyphenols, could efficiently trap reactive MGO or GO to form mono- and di-MGO or GO adducts under physiological conditions (pH 7.4, 37 degrees C). More than 80% MGO was trapped within 10 min, and 68% GO was trapped within 24 h by phloretin. Phloridzin also had strong trapping efficiency by quenching more than 70% MGO and 60% GO within 24 h. The glucosylation of the hydroxyl group at position 2 could significantly slow down the trapping rate and the formation of MGO or GO adducts. The products formed from phloretin (or phloridzin) and MGO (or GO), combined at different ratios, were analyzed using LC/MS. We successfully purified the major mono-MGO adduct of phloridzin and found that it was a mixture of tautomers based on the one- and two-dimensional NMR spectra. Our LC/MS and NMR data showed that positions 3 and 5 of the phloretin or phloridzin A ring were the major active sites for trapping reactive dicarbonyl species. We also found that phloretin was more reactive than lysine and arginine in terms of trapping reactive dicarbonyl species, MGO or GO. Our results suggest that dietary flavonoids that have the same A ring structure as phloretin may have the potential to trap reactive dicarbonyl species and therefore inhibit the formation of AGEs.

  15. Evidence of martensitic phase transitions in magnetic Ni-Mn-In thin films

    NASA Astrophysics Data System (ADS)

    Sokolov, A.; Zhang, Le; Dubenko, I.; Samanta, T.; Stadler, S.; Ali, N.

    2013-02-01

    Ni50Mn35In15 Heusler alloy thin films (with thicknesses of about 10 nm) have been grown on single crystal MgO and SrTiO3 (STO) (100) substrates using a laser-assisted molecular beam epitaxy method. Films of mixed austenitic and martensitic phases and of pure martensitic phase have been detected for those grown on MgO and STO substrates, respectively. Thermomagnetic curves were measured using a SQUID magnetometer and are consistent with those of off-stoichiometric In-based bulk Heusler alloys, including a martensitic transition at T = 315 K for films grown on MgO. The differences in the properties of the films grown on MgO and STO are discussed.

  16. Nanocrystal ghosting: Extensive radiation damage in MgO induced by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Frankenfield, Zackery; Kane, Kenneth; Sawyer, William H.

    2017-03-01

    We report direct evidence of extensive radiation damage in MgO nanocrystals due to intense bombardment (2 × 10 electrons/nm sec) by electrons with beam energies between 60 keV and 120 keV. Based upon a minimum intensity necessary to produce the observed damage, we present an explanation based on the Knotek-Feibelman process.

  17. MgO Nanoparticle Modified Anode for Highly Efficient SnO2-Based Planar Perovskite Solar Cells.

    PubMed

    Ma, Junjie; Yang, Guang; Qin, Minchao; Zheng, Xiaolu; Lei, Hongwei; Chen, Cong; Chen, Zhiliang; Guo, Yaxiong; Han, Hongwei; Zhao, Xingzhong; Fang, Guojia

    2017-09-01

    Reducing the energy loss and retarding the carrier recombination at the interface are crucial to improve the performance of the perovskite solar cell (PSCs). However, little is known about the recombination mechanism at the interface of anode and SnO 2 electron transfer layer (ETL). In this work, an ultrathin wide bandgap dielectric MgO nanolayer is incorporated between SnO 2 :F (FTO) electrode and SnO 2 ETL of planar PSCs, realizing enhanced electron transporting and hole blocking properties. With the use of this electrode modifier, a power conversion efficiency of 18.23% is demonstrated, an 11% increment compared with that without MgO modifier. These improvements are attributed to the better properties of MgO-modified FTO/SnO 2 as compared to FTO/SnO 2 , such as smoother surface, less FTO surface defects due to MgO passivation, and suppressed electron-hole recombinations. Also, MgO nanolayer with lower valance band minimum level played a better role in hole blocking. When FTO is replaced with Sn-doped In 2 O 3 (ITO), a higher power conversion efficiency of 18.82% is demonstrated. As a result, the device with the MgO hole-blocking layer exhibits a remarkable improvement of all J-V parameters. This work presents a new direction to improve the performance of the PSCs based on SnO 2 ETL by transparent conductive electrode surface modification.

  18. Improved passive treatment of high Zn and Mn concentrations using caustic magnesia (MgO): particle size effects.

    PubMed

    Rötting, Tobias S; Ayora, Carlos; Carrera, Jesus

    2008-12-15

    High concentrations of divalent metals such as Zn, Mn, Cu, Pb, Ni, Cd, Co, etc. are not removed satisfactorily in conventional (calcite- or organic matter-based) passive treatment systems. Caustic magnesia ("MgO") has been used successfully as an alternative alkaline material to remove these metals almost completely from water, but columns with coarse-grained MgO lost reactivity or permeability due to the accumulation of precipitates when only a small portion of the reagent had been spent. In the present study, MgO was mixed with wood chips to overcome these problems. Two columns with different MgO grain sizes were used to treat Zn- and Mn-rich water during one year. Performance was compared by measuring depth profiles of chemical parameters and hydraulic conductivity. The column containing 25% (v/v) of MgO with median particle size of about 3 mm displayed low reactivity and poor metal retention. In contrast, the column containing only 12.5% (v/v) of MgO with median particle size of 0.15 mm depleted Zn and Mn below detection limit throughout the study and had a good hydraulic performance. 95% of the applied MgO was consumed in the zone where Zn and Mn accumulated. The fine alkaline grains can dissolve almost completely before the growing layer of precipitates passivates them, whereas clogging is prevented by the large pores of the coarse inert matrix (wood chips). A reactive transport model corroborated the hypotheses that Zn(II) was removed due to its low solubility at pH near 10 achieved by MgO dissolution, whereas Mn(II) was removed due to rapid oxidation to Mn(III) at this pH and subsequent precipitation. The model also confirmed that the small size and large specific surface area of the MgO particles are the key factor to achieve a sufficiently fast dissolution.

  19. Bias Dependence of the Electrical Spin Injection into GaAs from Co -Fe -B /MgO Injectors with Different MgO Growth Processes

    NASA Astrophysics Data System (ADS)

    Barate, P.; Liang, S. H.; Zhang, T. T.; Frougier, J.; Xu, B.; Schieffer, P.; Vidal, M.; Jaffrès, H.; Lépine, B.; Tricot, S.; Cadiz, F.; Garandel, T.; George, J. M.; Amand, T.; Devaux, X.; Hehn, M.; Mangin, S.; Tao, B.; Han, X. F.; Wang, Z. G.; Marie, X.; Lu, Y.; Renucci, P.

    2017-11-01

    We investigate the influence of the MgO growth process on the bias dependence of the electrical spin injection from a Co -Fe -B /MgO spin injector into a GaAs-based light-emitting diode (spin LED). With this aim, textured MgO tunnel barriers are fabricated either by sputtering or molecular-beam-epitaxy (MBE) methods. For the given growth parameters used for the two techniques, we observe that the circular polarization of the electroluminescence emitted by spin LEDs is rather stable as a function of the injected current or applied bias for the samples with sputtered tunnel barriers, whereas the corresponding circular polarization decreases abruptly for tunnel barriers grown by MBE. We attribute these different behaviors to the different kinetic energies of the injected carriers linked to differing amplitudes of the parasitic hole current flowing from GaAs to Co-Fe-B in both cases.

  20. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone.

    PubMed

    Rückriemen, Jana; Klemm, Oliver; Henle, Thomas

    2017-09-01

    Manuka honey (Leptospermum scoparium) exerts a strong antibacterial effect. Bacterial enzymes are an important target for antibacterial compounds. The enzyme urease produces ammonia and enables bacteria to adapt to an acidic environment. A new enzymatic assay, based on photometric detection of ammonia with ninhydrin, was developed to study urease activity. Methylglyoxal (MGO) and its precursor dihydroxyacetone (DHA), which are naturally present in manuka honey, were identified as jack bean urease inhibitors with IC 50 values of 2.8 and 5.0mM, respectively. Urease inhibition of manuka honey correlates with its MGO and DHA content. Non-manuka honeys, which lack MGO and DHA, showed significantly less urease inhibition. MGO depletion from manuka honey with glyoxalase reduced urease inhibition. Therefore, urease inhibition by manuka honey is mainly due to MGO and DHA. The results obtained with jack bean urease as a model urease, may contribute to the understanding of bacterial inhibition by manuka honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Insulator at the ultrathin limit: MgO on Ag(001).

    PubMed

    Schintke, S; Messerli, S; Pivetta, M; Patthey, F; Libioulle, L; Stengel, M; De Vita, A; Schneider, W D

    2001-12-31

    The electronic structure and morphology of ultrathin MgO films epitaxially grown on Ag(001) were investigated using low-temperature scanning tunneling spectroscopy and scanning tunneling microscopy. Layer-resolved differential conductance (dI/dU) measurements reveal that, even at a film thickness of three monolayers, a band gap of about 6 eV is formed corresponding to that of the MgO(001) single-crystal surface. This finding is confirmed by layer-resolved calculations of the local density of states based on density functional theory.

  2. Structure-dependent magnetoresistance and spin-transfer torque in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions

    NASA Astrophysics Data System (ADS)

    Jia, Xingtao; Tang, Huimin; Wang, Shizhuo; Qin, Minghui

    2017-02-01

    We predict large magnetoresistance (MR) and spin transfer torque (STT) in antiferromagnetic Fe |MgO |FeMn |Cu tunnel junctions based on first-principles scattering theory. MR as large as ˜100 % is found in one junction. Magnetic dynamic simulations show that STT acting on the antiferromagnetic order parameter dominates the spin dynamics, and an electronic bias of order 10-1mV and current density of order 105Acm-2 can switches a junction of three-layer MgO, they are about one order smaller than that in Fe |MgO |Fe junction with the same barrier thickness, respectively. The multiple scattering in the antiferromagnetic region is considered to be responsible for the enhanced spin torque and smaller switching current density.

  3. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination ofmore » the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.« less

  4. The solidification behavior of calcium oxide-aluminum oxide slags

    NASA Astrophysics Data System (ADS)

    Prapakorn, Kritsada

    The binary CaO-Al2O3 based slag and the ternary CaO-Al2O3-MgO based slag are common slags covering and inclusions that are found in calcium treated Al-killed, continuously cast steels. However, the effect of cooling conditions and chemistry on the solidification behavior of these slags is not well characterized. To better understand this phenomena, the solidification behavior of these slags was studied by using double hot thermocouple technique. TTT and CCT diagrams of these slags were determined to quantify the solidification behavior in both dry and humid atmospheres. In this work, these slag samples were easily undercooled and the solidification behavior of these slags was found to be a strong function of cooling conditions. The crystallization tendency of these slags follows the trends suggested by the phase diagram. In CaO-Al2O3 based slags, The eutectic composition (50%CaO) give the lowest crystallization tendency due to the lowest liquidus temperature. In a eutectic CaO-Al2O3 slag sample, dissolved water in the sample increases crystallization tendency and enhances the growth. It was also found that the crystalline phase that formed during cooling in both the dry and humid conditions is the mixture between 3CaO.Al2O 3 and CaO.Al2O3 phases. In CaO-Al2O3-MgO based slags, the crystallization tendency increases with MgO content because the high MgO content leads to the high liquidus temperature. The effect of dissolved of water on the crystallization of CaO-Al2O3-MgO based slags is not as prominent as in the eutectic CaO-Al2O3 slag. Thus, the addition of MgO to CaO-Al2O3 slags was seen to minimize or eliminate the effect of humidity on the solidification of CaO-Al2O3 based slags. In this work, Uhlmann's method was used to estimate the solid-liquid interfacial energy of CaO-Al2O3 based slag for the temperature between 1100--1250°C. The result is between 0.25--0.4 Joules/m 2.

  5. A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection

    NASA Astrophysics Data System (ADS)

    Thirupathi, Rampelly; Solleti, Goutham; Sreekanth, Tirumala; Sadasivuni, Kishor Kumar; Venkateswara Rao, Kalagadda

    2018-03-01

    The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product's functional properties were analyzed by Fourier transform-infrared spectroscopy and UV-visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.

  6. A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection

    NASA Astrophysics Data System (ADS)

    Thirupathi, Rampelly; Solleti, Goutham; Sreekanth, Tirumala; Sadasivuni, Kishor Kumar; Venkateswara Rao, Kalagadda

    2018-07-01

    The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product's functional properties were analyzed by Fourier transform-infrared spectroscopy and UV-visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.

  7. Metal spintronics: Tunneling spectroscopy in junctions with magnetic and superconducting electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Hyunsoo

    Recent advances in generating, manipulating and detecting spin-polarized electrons and their electrical current make possible entirely new classes of spin-based sensor, logic and storage devices. An important such device is the magnetic tunnel junction (MTJ) which has been under intensive study in recent years: important applications include nonvolatile memory cells for high performance magnetic random access memory (MRAMs), and magnetic field sensors for high density hard disk drive read heads. Many aspects of the tunneling magnetoresistance (TMR) phenomenon are poorly understood although it is clear that the fundamental origin of TMR is the spin-polarization of the tunneling current. Thus, the measurement of the magnitude and sign of the tunneling spin polarization (TSP) is very important to help the further understanding of TMR. Recently, an extremely high TMR value, of up to 350% at room temperature, has been reported in practical MTJ devices. These MTJs are fabricated with highly oriented crystalline MgO(100) tunnel barriers by straightforward magnetron sputter deposition at room temperature. In parallel with this observation, we report extremely high TSP values exceeding 90% from CoFe/MgO tunnel spin injectors. These TSP values rival the highest polarization values previously reported using exotic half-metallic oxide ferromagnets. The spin polarization of electrons extracted from ferromagnetic films can be probed by a variety of techniques. Amongst these techniques, STS is perhaps the most relevant with respect to TMR but until now all measurements have been made with Al superconducting films which have low superconducting transition temperatures (Tc) so that the measurements must be made at temperatures below 400mK. We demonstrate the use of superconducting electrodes formed from NbN which has a much higher Tc (˜16K) than Al. The use of NbN allows measurements of TSP at higher temperatures above 1K. We have observed the phenomenon of Kondo-assisted tunneling in planar magnetic tunnel junctions. We demonstrate not only an increased conductance at low bias but also show that the tunneling magnetoresistance is quenched in the Kondo regime. The Kondo effect may be a useful means of detecting and possibly manipulating the spins of individual electrons in nanodots.

  8. High-Temperature Wettability and Interactions between Y-Containing Ni-Based Alloys and Various Oxide Ceramics.

    PubMed

    Li, Jinpeng; Zhang, Huarui; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu

    2018-05-07

    To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y₂O₃, Al₂O₃, and ZrO₂, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y₂O₃), 154° (Al₂O₃), and 157° (ZrO₂), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y₂O₃ reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al₂O₃, and ZrO₂ systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al₂O₃), 0.09% (ZrO₂), and 0.02% (Y₂O₃), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y₂O₃ system. Y₂O₃ ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys.

  9. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO

    NASA Astrophysics Data System (ADS)

    Qureshi, T. S.; Al-Tabbaa, A.

    2016-08-01

    Excessive drying shrinkage is one of the major issues of concern for longevity and reduced strength performance of concrete structures. It can cause the formation of cracks in the concrete. This research aims to improve the autogenous self-healing capacity of traditional Portland cement (PC) systems, adding expansive minerals such as reactive magnesium oxide (MgO) in terms of drying shrinkage crack healing. Two different reactive grades (high ‘N50’and moderately high ‘92-200’) of MgO were added with PC. Cracks were induced in the samples with restraining end prisms through natural drying shrinkage over 28 days after casting. Samples were then cured under water for 28 and 56 days, and self-healing capacity was investigated in terms of mechanical strength recovery, crack sealing efficiency and improvement in durability. Finally, microstructures of the healing materials were investigated using FT-IR, XRD, and SEM-EDX. Overall N50 mixes show higher expansion and drying shrinkage compared to 92-200 mixes. Autogenous self-healing performance of the MgO containing samples were much higher compared to control (only PC) mixes. Cracks up to 500 μm were sealed in most MgO containing samples after 28 days. In the microstructural investigations, highly expansive Mg-rich hydro-carbonate bridges were found along with traditional calcium-based, self-healing compounds (calcite, portlandite, calcium silicate hydrates and ettringite).

  10. First-principles calculations of perpendicular magnetic anisotropy for spintronic applications

    NASA Astrophysics Data System (ADS)

    Ansarino, Masoud; Ravan, Bahram Abedi

    2017-01-01

    A combination of density functional theory and non-equilibrium Green’s function methods are used to simulate spin-dependent electronic transport in monatomic Au-nanowires sandwiched between ferromagnetic electrodes. Electrodes of the junction are in turn composed of tetragonal FeCo, FePd and FePt alloys. Magnetic anisotropy energies of the electrodes are calculated for different values of the c/a ratios of the electrode lattice constants and it is shown that at c/a = 1.05, the FePt electrodes gain a relatively large amount of magnetic anisotropy energy (MAE). Hence, it is concluded that the ferromagnetic FePt alloy can be used as a suitable type of electrode for applications in perpendicular magnetic tunnel junctions (MTJs). We observe that increasing the c/a ratio leads to notable improvements in the spin filtering of the FeCo and FePd MTJs while it only has a slight effect on the filtering of the FePt MTJ. Later, we show that by removing the interfacial Pt atoms of the FePt MTJ, we are able to enhance its filtering property.

  11. The role of cPLA2 in Methylglyoxal-induced cell apoptosis of HUVECs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jie; Zhu, Chao; Hong, Yali

    2017-05-15

    Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is mainly formed as a byproduct of glycolysis. Elevated MGO level is known to induce apoptosis of vascular endothelial cells, which is implicated with progression of atherosclerosis and diabetic complications. However, the underlying mechanisms have not been exhaustively investigated yet. Here, we further characterized the mechanisms how MGO induced apoptosis in human umbilical vein endothelial cells (HUVECs). Our data revealed that cytosolic phospholipase A2 (cPLA2) played an important role in MGO-induced cell apoptosis. It was found that MGO could increase both the activity and expression of cPLA2. Inhibition of cPLA2 by Pyrrophenone (PYR)more » or siRNA significantly attenuated the MGO-induced apoptosis. Additionally, MGO time-dependently decreased the phosphorylation of nuclear factor κB (NF-κB). Pretreatment of the cells with NF-κB inhibitor, BAY11-7082, further increased MGO-induced apoptosis of HUVECs, indicating that NF-κB played a survival role in this MGO-induced apoptosis. Furthermore, in the presence of si-cPLA2 or PYR, MGO no longer decreased NF-κB phosphorylation. Beyond that, the antioxidant N-acetyl cysteine (NAC) could reverse the changes of both cPLA2 and NF-κB caused by MGO. p38, the upstream of cPLA2, was also significantly phosphorylated by MGO. However, p38 inhibitor failed to reverse the apoptosis induced by MGO. This study gives an important insight into the downstream signaling mechanisms of MGO, cPLA2-NF-κB, in endothelial apoptosis. - Highlights: • cPLA2 participated in MGO-induced HUVECs apoptosis. • Inhibition of NF-κB was involved in MGO-cPLA2-mediated cell apoptosis. • Antioxidant NAC attenuated MGO-induced cPLA2 activation and cell apoptosis.« less

  12. Fabrication of Single Crystal MgO Capsules

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa

    2012-01-01

    A method has been developed for machining MgO crystal blocks into forms for containing metallic and silicate liquids at temperatures up to 2,400 C, and pressures up to at least 320 kilobars. Possible custom shapes include tubes, rods, insulators, capsules, and guides. Key differences in this innovative method include drilling along the crystallographic zone axes, use of a vibration minimizing material to secure the workpiece, and constant flushing of material swarf with a cooling medium/lubricant (water). A single crystal MgO block is cut into a section .5 mm thick, 1 cm on a side, using a low-speed saw with a 0.004 blade. The cut is made parallel to the direction of cleavage. The block may be cut to any thickness to achieve the desired length of the piece. To minimize drilling vibrations, the MgO block is mounted on a piece of adhesive putty in a vise. The putty wad cradles the bottom half of the entire block. Diamond coring tools are used to drill the MgO to the desired custom shape, with water used to wet and wash the surface of swarf. Compressed air may also be used to remove swarf during breaks in drilling. The MgO workpiece must be kept cool at all times with water. After all the swarf is rinsed off, the piece is left to dry overnight. If the workpiece is still attached to the base of the MgO block after drilling, it may be cut off by using a diamond cutoff wheel on a rotary hand tool or by using a low-speed saw.

  13. Crystal orientation of monoclinic β-Ga2O3 thin films formed on cubic MgO substrates with a γ-Ga2O3 interfacial layer

    NASA Astrophysics Data System (ADS)

    Nakagomi, Shinji; Kokubun, Yoshihiro

    2017-12-01

    The crystal orientation relationship between β-Ga2O3 and MgO in β-Ga2O3 thin films prepared on (1 0 0), (1 1 1), and (1 1 0) MgO substrates was investigated by X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The γ-Ga2O3 interfacial layer was present between β-Ga2O3 and MgO acted as a buffer to connect β-Ga2O3 on MgO. The following conditions were satisfied under each case: β-Ga2O3 (1 0 0)||MgO (1 0 0) and β-Ga2O3 [0 0 1]||MgO 〈0 1 1〉 for the formation of β-Ga2O3 on (1 0 0) MgO, and β-Ga2O3 (2 bar 0 1)||MgO (1 1 1) for the formation of β-Ga2O3 on (1 1 1) MgO, as well as each condition of β-Ga2O3 [0 1 0] (1 0 0)||MgO [ 1 bar 1 0 ] (0 0 1), β-Ga2O3 [0 1 0] (1 0 0)||MgO [ 0 1 bar 1 ] (1 0 0), and β-Ga2O3 [0 1 0] (1 0 0)||MgO [ 1 0 1 bar ] (0 1 0). β-Ga2O3 (1 bar 0 2)||MgO(1 1 0) and β-Ga2O3 [0 1 0] ⊥ MgO [0 0 1] for β-Ga2O3 formed on (1 1 0) MgO. The β-Ga2O3 formed on (1 1 1) MgO at 800 °C exhibited a threefold structure. The β-Ga2O3 formed on (1 1 0) MgO had a twofold structure but different by 90° from the result reported previously.

  14. Magnesium Oxide (MgO) pH-sensitive Sensing Membrane in Electrolyte-Insulator-Semiconductor Structures with CF4 Plasma Treatment.

    PubMed

    Kao, Chyuan-Haur; Chang, Chia Lung; Su, Wei Ming; Chen, Yu Tzu; Lu, Chien Cheng; Lee, Yu Shan; Hong, Chen Hao; Lin, Chan-Yu; Chen, Hsiang

    2017-08-03

    Magnesium oxide (MgO) sensing membranes in pH-sensitive electrolyte-insulator-semiconductor structures were fabricated on silicon substrate. To optimize the sensing capability of the membrane, CF 4 plasma was incorporated to improve the material quality of MgO films. Multiple material analyses including FESEM, XRD, AFM, and SIMS indicate that plasma treatment might enhance the crystallization and increase the grain size. Therefore, the sensing behaviors in terms of sensitivity, linearity, hysteresis effects, and drift rates might be improved. MgO-based EIS membranes with CF 4 plasma treatment show promise for future industrial biosensing applications.

  15. Effect of MgO and MnO on Phosphorus Utilization in P-Bearing Steelmaking Slag

    NASA Astrophysics Data System (ADS)

    Lin, Lu; Bao, Yan-Ping; Wang, Min; Li, Xiang

    2016-04-01

    In order to recycle the phosphorus in P-bearing converter slag and make it used as slag phosphate fertilizer, the effect of MgO and MnO in P-bearing steelmaking slag on phosphorus existence form, P2O5 solubility and magnetic separation behavior were researched systematically. The results show that the phosphorus in slag is mainly in the form of n2CaO · SiO2-3CaO · P2O5 (for short nC2S-C3P) solid solution in the P-rich phase for CaO-SiO2-FetO-P2O5-X (X stands for MgO and MnO, respectively). And the increasing of MgO and MnO content has no influence on precipitation of nC2S-C3P solid solution in slag, MnO and MgO mainly enter into RO phase and base phase to form MnFe2O4 and MgFe2O4, which has little effect on the P2O5 content of P-rich phase, so which has little effect on the degree of phosphorus enrichment and phosphorus occurrence form of the P-bearing slag. And adding MgO and MnO into CaO-SiO2-P2O5-Fe2O3 slag system can break the complex net structure formed by Si-O on certain degree, and also hinder the precipitation of β-Ca3(PO4)2 crystal with low citric acid solubility during the melting-cooling process. Therefore, adding appropriate MgO and MnO content into slag can improve the slag P2O5 solubility, but the effect of different amounts of MgO and MnO on the P2O5 solubility has little difference. Meanwhile, adding MgO and MnO into slag can improve the metallization of slag and magnetism of iron-rich phase, make the magnetic substances content increase and separation of phosphorus and iron incomplete, so it is adverse to phosphorus resources recovery from P-bearing slag by magnetic separation method. In order to recycle the phosphorus in P-bearing converter slag, the MgO and MnO content in the P-bearing slag should be controlled in the steelmaking process.

  16. Hydrogen production from steam reforming of ethylene glycol over iron loaded on MgO

    NASA Astrophysics Data System (ADS)

    Chen, Mingqiang; Wang, Yishuang; Liang, Tian; Yang, Jie; Yang, Zhonglian

    2017-01-01

    In this study, a series of Fe-based catalysts loaded on MgO were prepared by a precipitation technique. And they were tested in hydrogen production from steam reforming of ethylene glycol (SRE), which was a representative model compound of fast bio-oil. The catalysts were characterized by XRD, SEM and H2-TPR analysis. The results showed that the crystalline phases of catalysts contained Fe2O3 (Hematite), Fe3O4 (Magnetite), Fe2MgO4 (iron magnesium oxide) and MgO, and morphology of MgO was changed from the rugby-ball like particles to spherical particles with the addition of Fe. In addition, the catalytic test results indicated that the 18%Fe/MgO catalyst exhibited the highest ethylene glycol conversion (˜99.8%) and H2 molar percent (˜77%) during at the following conditions: H2O/C molar ratio is 5˜7, the feeding rate is 14 mL/h and the reaction temperature at 600˜650°C. Furthermore, the 18%Fe/MgO catalyst can keep outstanding stability during SRE for 12 h.

  17. Dual effects of phloretin and phloridzin on the glycation induced by methylglyoxal in model systems.

    PubMed

    Ma, Jinyu; Peng, Xiaofang; Zhang, Xinchen; Chen, Feng; Wang, Mingfu

    2011-08-15

    In the present study, the dual effects of phloretin and phloridzin on methylglyoxal (MGO)-induced glycation were investigated in three N(α)-acetyl amino acid (arginine, cysteine, and lysine) models and three N-terminal polypeptide (PP01, PP02, and PP03 containing arginine, cysteine, and lysine, respectively) models. In both N(α)-acetyl amino acids and N-terminal polypeptides models, the arginine residue was confirmed as the major target for modification induced by MGO. Meanwhile, MGO modification was significantly inhibited by the addition of phloretin or phloridzin via their MGO-trapping abilities, with phloretin being more effective. Interestingly, the cysteine residue was intact when solely incubated with MGO, whereas the consumption of N(α)-acetylcysteine and PP02 was promoted by the addition of phloretin. Additional adducts, [N(α)-acetylcysteine + 2MGO + phloretin-H(2)O] and [2N(α)-acetylcysteine + 2MGO + phloretin-2H(2)O] were formed in the model composed of N(α)-acetylcysteine, MGO, and phloretin. Another adduct, [PP02 + 2MGO + phloretin-H(2)O] was observed in the model composed of PP02, MGO, and phloretin. The generation of adducts indicates that phloretin could directly participate in the modification of the cysteine residue in the presence of MGO. When creatine kinase (model protein) was exposed to MGO, the addition of phloridzin did not show a significant effect on retaining the activity of creatine kinase impaired by MGO, whereas the addition of phloretin completely inactivated creatine kinase. Results of the mass spectrometric analysis of intact creatine kinase in different models demonstrated that phloretin could directly participate in the reaction between creatine kinase and MGO, which would lead to the inactivation of creatine kinase. Furthermore, the addition of N(α)-acetylcysteine was found to maintain the activity of creatine kinase incubated with phloretin and MGO. These results showed that phloretin and phloridzin could inhibit the modification of the arginine residue by MGO and that phloretin could directly participate in the reaction between the thiol group and MGO.

  18. Identification and Characterization of Reaction Products of 5-Hydroxytryptamine with Methylglyoxal and Glyoxal by LC/MS/MS.

    PubMed

    Sai Sachin, L; Nagarjuna Chary, R; Pavankumar, P; Prabhakar, S

    2018-06-06

    The methylglyoxal (MGO) and glyoxal (GO) are known to be at high levels in the diabetic humans. They react with amine containing proteins and amino acids to form advanced glycation end products, however, the reactivity with the other amine containing metabolites, such as neurotransmitters are not explored. In this study, we aimed at studying the reactivity of 5-hydroxytryptamine (5-HT) with MGO or GO, which may alter the metabolic function of 5-HT. The stock solutions of 5-HT, MGO and GO were made in PBS buffer at pH 7.4 and incubated 5-HT with MGO or GO at difference concentrations. The reactions were also performed at physiological concentrations. The reaction mixtures collected at different incubation times were analyzed by direct ESI-HRMS, LC/MS and LC/MS/MS conditions to detect/characterize the products. Agilent 6545 Q-TOF and Agilent 6420 triple quadrupole mass spectrometer were used for the study, and LC separations were performed on a C18 column. The direct ESI-HRMS data of the reaction mixtures showed formation of three and four reaction products when 5-HT reacted with MGO and GO, respectively. All the products showed dominant [M+H] + ions. The products were characterized by HRMS, LC/MS/MS and the literature reports on similar compounds. The products can easily be identified by LC/MS based on the accurate mass values together with retention time information. The MS/MS of the reaction products showed structure indicative fragment ions. 5-HT reacts with one or two MGO/GO to form a set of reaction products. The reaction between 5-HT and MGO or GO was faster at higher concentrations of MGO/GO (<10 min), and the same products were found even at physiological concentrations (<48 hrs). The LC-MS/MS (SRM) method can be used to screen the reaction products when present at low level. This article is protected by copyright. All rights reserved.

  19. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens

    NASA Astrophysics Data System (ADS)

    Jin, Tony; He, Yiping

    2011-12-01

    The antibacterial activities of magnesium oxide nanoparticles (MgO NP) alone or in combination with other antimicrobials (nisin and ZnO NP) against Escherichia coli O157:H7 and Salmonella Stanley were investigated. The results show that MgO NP have strong bactericidal activity against the pathogens, achieving more than 7 log reductions in bacterial counts. The antibacterial activity of MgO NP increased as the concentrations of MgO increased. A synergistic effect of MgO in combination with nisin was observed as well. However, the addition of ZnO NP to MgO NP did not enhance the antibacterial activity of MgO against both pathogens. Scanning electron microscopy was used to characterize the morphological changes of E. coli O157:H7 before and after antimicrobial treatments. It was revealed that MgO NP treatments distort and damage the cell membrane, resulting in a leakage of intracellular contents and eventually the death of bacterial cells. These results suggest that MgO NP alone or in combination with nisin could potentially be used as an effective antibacterial agent to enhance food safety.

  20. Characterization of the surface properties of MgO using paper spray mass spectrometry.

    PubMed

    Zheng, Yajun; Zhang, Xiaoling; Bai, Zongquan; Zhang, Zhiping

    2016-08-01

    Significant advances have been made in the preparation of different morphologies of magnesium oxide (MgO), but the relationship between MgO morphology and its interactions with therapeutic drugs is rarely studied. Herein, we investigated the interactions between different morphologies of MgO and therapeutic drugs using paper spray mass spectrometry. Different morphologies of MgO including trapezoidal, needle-like, flower-like and nest-like structures were prepared through a facile precipitation method. The as-obtained MgO particles were then coated onto the surface of filter paper via vacuum filtration strategy. The coated papers with different morphologies of MgO were used as the substrates for paper spray mass spectrometry to explore the interactions between different MgO and therapeutic drugs. Through investigating the interactions between different morphologies of MgO coated papers and therapeutic drugs, it demonstrated that, in contrast to the trapezoidal, needle-like and nest-like MgO coated papers, different drugs in dried blood spots (DBS) were more favourably eluted off from the paper coated with flower-like MgO due to its weaker surface basicity. Also, the signal intensities of different drugs during paper spray were highly dependent on their elution behaviours. Paper spray mass spectrometry (MS) provides an avenue to elaborate the surface properties of MgO with different structures. The surface basicity of MgO played a crucial role in determining the elution behaviours of therapeutic drugs in DBS, and a more favourable elution behaviour tended to result in a higher MS signal. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  2. L1 0 Fe -Pd Synthetic Antiferromagnet through an fcc Ru Spacer Utilized for Perpendicular Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Zhang, De-Lin; Sun, Congli; Lv, Yang; Schliep, Karl B.; Zhao, Zhengyang; Chen, Jun-Yang; Voyles, Paul M.; Wang, Jian-Ping

    2018-04-01

    Magnetic materials that possess large bulk perpendicular magnetic anisotropy (PMA) are essential for the development of magnetic tunnel junctions (MTJs) used in future spintronic memory and logic devices. The addition of an antiferromagnetic layer to these MTJs was recently predicted to facilitate ultrafast magnetization switching. Here, we report a demonstration of a bulk perpendicular synthetic antiferromagnetic (PSAFM) structure comprised of a (001) textured Fe -Pd /Ru /Fe -Pd trilayer with a face-centered-cubic (fcc) phase Ru spacer. The L1 0 Fe -Pd PSAFM structure shows a large bulk PMA (Ku˜10.2 Merg /cm3 ) and strong antiferromagnetic coupling (-JIEC˜2.60 erg /cm2 ). Full perpendicular magnetic tunnel junctions (PMTJs) with a L1 0 Fe -Pd PSAFM layer are then fabricated. Tunneling magnetoresistance ratios of up to approximately 25% (approximately 60%) are observed at room temperature (5 K) after postannealing at 350 °C . Exhibiting high thermal stabilities and large Ku , the bulk PMTJs with an L1 0 Fe -Pd PSAFM layer could pave a way for next-generation ultrahigh-density and ultralow-energy spintronic applications.

  3. High-Temperature Wettability and Interactions between Y-Containing Ni-Based Alloys and Various Oxide Ceramics

    PubMed Central

    Li, Jinpeng; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu

    2018-01-01

    To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y2O3, Al2O3, and ZrO2, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y2O3), 154° (Al2O3), and 157° (ZrO2), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y2O3 reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al2O3, and ZrO2 systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al2O3), 0.09% (ZrO2), and 0.02% (Y2O3), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y2O3 system. Y2O3 ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys. PMID:29735958

  4. 40 CFR 98.86 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Monthly fraction of total CaO, total MgO, non-calcined CaO and non-calcined MgO in clinker for each kiln (as wt-fractions). (7) Method used to determine non-calcined CaO and non-calcined MgO in clinker. (8) Quarterly fraction of total CaO, total MgO, non-calcined CaO and non-calcined MgO in CKD not recycled to the...

  5. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  6. Additive Capacity of [6]-Shogaol and Epicatechin To Trap Methylglyoxal.

    PubMed

    Huang, Qiju; Wang, Pei; Zhu, Yingdong; Lv, Lishuang; Sang, Shengmin

    2017-09-27

    Methylglyoxal (MGO), a reactive dicarbonyl species, is thought to contribute to the development of long-term pathological diabetes as a direct toxin or as an active precursor of advanced glycation end products (AGEs). Trapping MGO by dietary phenols to inhibit the MGO induced AGE formation is an approach for alleviating diabetic complications. The present study investigated whether dietary compounds with different structures and active sites have the additive capacity to trap MGO. Ginger phenolic constituent [6]-shogaol and tea flavonoid (-)-epicatechin were selected and tested under simulated physiological conditions, showing that they additively trapped about 41% MGO at a concentration of 10 μM within 24 h. Furthermore, whether [6]-shogaol and epicatechin can retain their MGO trapping efficacy in vivo or a biotransformation limits their MGO trapping capacity remain virtually unknown. An acute mouse study was carried out by giving a single dose of [6]-shogaol, epicatechin, and the combination of both ([6]-shogaol + epicatechin) through oral gavage. A mono-MGO adduct of [6]-shogaol was identified from [6]-shogaol and [6]-shogaol + epicatechin treated mice, and mono- and di-MGO adducts of epicatechin and its metabolite, 3'-O-methyl epicatichin, were detected in urine samples collected from epicatechin and [6]-shogaol + epicatechin treated mice. To our knowledge, this is the first study demonstrating the additive MGO trapping efficacy of [6]-shogaol and epicatechin and that [6]-shogaol and epicatechin retained their MGO trapping capacity in mice.

  7. Experimental and Statistical Analysis of MgO Nanofluids for Thermal Enhancement in a Novel Flat Plate Heat Pipes

    NASA Astrophysics Data System (ADS)

    Pandiaraj, P.; Gnanavelbabu, A.; Saravanan, P.

    Metallic fluids like CuO, Al2O3, ZnO, SiO2 and TiO2 nanofluids were widely used for the development of working fluids in flat plate heat pipes except magnesium oxide (MgO). So, we initiate our idea to use MgO nanofluids in flat plate heat pipe as a working fluid material. MgO nanopowders were synthesized by wet chemical method. Solid state characterizations of synthesized nanopowders were carried out by Ultraviolet Spectroscopy (UV), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) techniques. Synthesized nanopowders were prepared as nanofluids by adding water and as well as water/ethylene glycol as a binary mixture. Thermal conductivity measurements of prepared nanofluids were studied using transient hot-wire apparatus. Response surface methodology based on the Box-Behnken design was implemented to investigate the influence of temperature (30-60∘C), particle fraction (1.5-4.5 vol.%), and solution pH (4-12) of nanofluids as the independent variables. A total of 17 experiments were accomplished for the construction of second-order polynomial equations for target output. All the influential factors, their mutual effects and their quadratic terms were statistically validated by analysis of variance (ANOVA). The optimum stability and thermal conductivity of MgO nanofluids with various temperature, volume fraction and solution pH were predicted and compared with experimental results. The results revealed that increase in particle fraction and pH of MgO nanofluids at certain points would increase thermal conductivity and become stable at nominal temperature.

  8. Wettability of eutectic NaLiCO3 salt on magnesium oxide substrates at 778 K

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Li, Qi; Cao, Hui; Leng, Guanghui; Li, Yongliang; Wang, Li; Zheng, Lifang; Ding, Yulong

    2018-06-01

    We investigated the wetting behavior of a eutectic carbonate salt of NaLiCO3 on MgO substrates at an elevated temperature of 778 K by measuring contact angle with a sessile drop method. Both sintered and non-sintered MgO were prepared and used as the substrates. The sintered substrates were obtained by sintering compacted MgO powders at 500-1300 °C. For comparison purposes, a single crystal MgO substrate was also used in the work. The different sintering temperatures provided MgO substrates with different structures, allowing their effects on salt penetration and hence wettability and surface energy to be investigated. A scanning electron microscope equipped with energy dispersive spectrometry and an atomic force microscope were used to observe the morphology and structures of the MgO substrates as well as the salt penetration. The results showed a good wettability of the carbonate salt on both the sintered and non-sintered MgO substrates and the wettability depended strongly on the structure of the substrates. The non-sintered MgO substrate has a loose surface particle packing with large pores and crevices, leading to significant salt infiltration, and the corresponding contact angle was measured to be ∼25°. The contact angle of the salt on the sintered MgO substrates increased with an increase in the sintering temperature of the MgO substrate, and the contact angle of the salt on the single crystal substrate was the highest at ∼40°. The effect of the sintering temperature for making the MgO substrate could be linked to the surface energy, and the linkage is validated by the AFM measurements of the adhesion forces of the MgO substrates.

  9. Metalliclike behavior of the exchange coupling in (001) Fe/MgO/Fe junctions

    NASA Astrophysics Data System (ADS)

    Bellouard, C.; Duluard, A.; Snoeck, E.; Lu, Y.; Negulescu, B.; Lacour, D.; Senet, C.; Robert, S.; Maloufi, N.; Andrieu, S.; Hehn, M.; Tiusan, C.

    2017-10-01

    Exchange magnetic coupling between Fe electrodes through a thin MgO interlayer in epitaxial junctions has been investigated as a function of temperature, MgO thickness, and interface quality. Depending on the MgO thickness, which has been varied from 1.5 to 4 monolayers, two opposite temperature dependences are clearly disentangled. For a thin MgO spacer, the main component decreases with temperature following a metalliclike behavior. On the contrary, for the thickest MgO layers, the main component increases with temperature, following an Arrhenius law. Moreover, the insertion of a monoatomic roughness at the bottom MgO interface, induced by the addition of a fraction of a Fe monolayer, exacerbates the metallic features as an oscillatory behavior from antiferromagnetic to ferromagnetic is observed. These results allow questioning the simple tunneling mechanism usually invoked for MgO coupling, and suggest a crossover behavior of the thin MgO spacer from metallic to insulating with a progressive opening of the gap.

  10. Demonstration of the Potential of Magnetic Tunnel Junctions for a Universal RAM Technology

    NASA Astrophysics Data System (ADS)

    Gallagher, William J.

    2000-03-01

    Over the past four years, tunnel junctions with magnetic electrodes have emerged as promising devices for future magnetoresistive sensing and for information storage. This talk will review advances in these devices, focusing particularly on the use of magnetic tunnel junctions for magnetic random access memory (MRAM). Exchange-biased versions of magnetic tunnel junctions (MTJs) in particular will be shown to have useful properties for forming magnetic memory storage elements in a novel cross-point architecture. Exchange-biased MTJ elements have been made with areas as small as 0.1 square microns and have shown magnetoresistance values exceeding 40 The potential of exchange-biased MTJs for MRAM has been most seriously explored in a demonstration experiment involving the integration of 0.25 micron CMOS technology with a special magnetic tunnel junction "back end." The magnetic back end is based upon multi-layer magnetic tunnel junction growth technology which was developed using research-scale equipment and one-inch size substrates. For the demonstration, the CMOS wafers processed through two metal layers were cut into one-inch squares for depositions of bottom-pinned exchange-biased magnetic tunnel junctions. The samples were then processed through four additional lithographic levels to complete the circuits. The demonstration focused attention on a number of processing and device issues that were addressed successfully enough that key performance aspects of MTJ MRAM were demonstrated in 1 K bit arrays, including reads and writes in less than 10 ns and nonvolatility. While other key issues remain to be addressed, these results suggest that MTJ MRAM might simultaneously provide much of the functionality now provided separately by SRAM, DRAM, and NVRAM.

  11. Effect of magnesium oxide nanoparticles on microbial diversity and removal performance of sequencing batch reactor.

    PubMed

    Ma, Bingrui; Yu, Naling; Han, Yuetong; Gao, Mengchun; Wang, Sen; Li, Shanshan; Guo, Liang; She, Zonglian; Zhao, Yangguo; Jin, Chunji; Gao, Feng

    2018-06-13

    The performance, microbial enzymatic activity and microbial community of a sequencing batch reactor (SBR) have been explored under magnesium oxide nanoparticles (MgO NPs) stress. The NH 4 + -N removal efficiency kept relatively stable during the whole operational process. The MgO NPs at 30-60 mg/L slightly restrained the removal of chemical oxygen demand (COD), and the presence of MgO NPs also affected the denitrification and phosphorus removal. The specific oxygen uptake rate, nitrifying and denitrifying rates, phosphorus removal rate, and microbial enzymatic activities distinctly varied with the increase of MgO NPs concentration. The appearance of MgO NPs promoted more reactive oxygen species generation and lactate dehydrogenase leakage from activated sludge, suggesting that MgO NPs had obvious toxicity to activated sludge in the SBR. The protein and polysaccharide contents of extracellular polymeric substances from activated sludge increased with the increase of MgO NPs concentration. The microbial richness and diversity at different MgO NPs concentrations obviously varied at the phylum, class and genus levels due to the biological toxicity of MgO NPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Enabling rechargeable non-aqueous Mg-O2 battery operations with dual redox mediators.

    PubMed

    Dong, Qi; Yao, Xiahui; Luo, Jingru; Zhang, Xizi; Hwang, Hajin; Wang, Dunwei

    2016-12-11

    Dual redox mediators (RMs) were introduced for Mg-O 2 batteries. 1,4-Benzoquinone (BQ) facilitates the discharge with an overpotential reduction of 0.3 V. 5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt(ii) (Co(ii)TPP) facilitates the recharge with an overpotential decrease of up to 0.3 V. Importantly, the two redox mediators are compatible in the same DMSO-based electrolyte.

  13. Degradation of paraoxon (VX chemical agent simulant) and bacteria by magnesium oxide depends on the crystalline structure of magnesium oxide.

    PubMed

    Sellik, A; Pollet, T; Ouvry, L; Briançon, S; Fessi, H; Hartmann, D J; Renaud, F N R

    2017-04-01

    In this work, our goal was to study the capability of a single metallic oxide to neutralize a chemical agent and to exhibit an antibacterial effect. We tested two types of magnesium oxides, MgO. The first MgO sample tested, which commercial data size characteristic was -325 mesh (MgO-1) destroyed in 3 h, 89.7% of paraoxon and 93.2% of 4-nitrophenol, the first degradation product. The second MgO sample, which commercial data size was <50 nm (MgO-2) neutralized in the same time, 19.5% of paraoxon and 10.9% of 4-nitrophenol. For MgO-1 no degradation products could be detected by GC-MS. MgO-1 had a bactericidal activity on Escherichia coli (6 log in 1 h), and showed a decrease of almost 3 log on a Staphylococcus aureus population in 3 h. MgO-2 caused a decrease of 2 log of a E.coli culture but had no activity against S. aureus. Neither of these two products had an activity on Bacillus subtilis spores. Analytical investigations showed that the real sizes of MgO nanoparticles were 11 nm for MgO-1 and 25 nm for MgO-2. Moreover, their crystalline structures were different. These results highlighted the importance of the size of the nanoparticles and their microscopic arrangements to detoxify chemical products and to inhibit or kill microbial strains. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Effect of Oral Magnesium Oxide Supplementation on Cisplatin-Induced Hypomagnesemia in Cancer Patients: A Randomized Controlled Trial

    PubMed Central

    ZARIF YEGANEH, Maryam; VAKILI, Masoud; SHAHRIARI-AHMADI, Ali; NOJOMI, Marzieh

    2016-01-01

    Background: Hypomagnesaemia is one of the main side effects of cisplatin-based chemotherapy regimens in cancer patients. The aim of the current investigation was to evaluate the effect of oral magnesium oxide (MgO) supplementation on cisplatin-induced hypomagnesemia. Methods: This parallel-randomized controlled, open label trial was conducted in a hospital of Iran University of Medical Sciences in Tehran between December 2009 and May 2011. Participants were 69 adult patients with newly diagnosed non- leukemia neoplasms candidate for starting cisplatin-based chemotherapy. Oral MgO supplement according to cisplatin dose (500 mg MgO per 50 mg/m2 of cisplatin) as 2–3 divided daily doses was started after completion of each chemotherapy cycle and continued to the next cycle for the intervention group. Patients in the control group did not receive any supplementation. Serum magnesium (Mg) was measured before each chemotherapy cycle. The main outcome was measuring serum Mg change and hypomagnesaemia rate during chemotherapy treatment. Results: Sixty-two participants (31 intervention- 31 controls) enrolled into the study. Serum Mg levels showed significant difference between the two groups (P=0.01). There was a significant decrease in serum Mg of the control group (P=0.001). At the end of follow-up period prevalence of hypomagnesaemia in the intervention group was 10.7% versus 23.1% in the control group. Conclusion: Continuously oral supplementation with MgO according to cisplatin dose (500 mg MgO per 50 mg/m2 cisplatin) as 2–3 divided daily doses at rest days between chemotherapy cycles reduces the decline in serum Mg levels and also the prevalence of hypomagnesaemia in cancer patients. PMID:27057522

  15. The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil.

    PubMed

    Tahvildari, Kambiz; Anaraki, Yasaman Naghavi; Fazaeli, Reza; Mirpanji, Sogol; Delrish, Elham

    2015-01-01

    Fossil fuels' pollution and their non-renewability have motivated the search for alternative fuels. Some common example of seed oils are sunflower oil, date seed oil, soy bean oil. For instance, soy methyl and soy-based biodiesel are the main biodiesel. Biodiesel is a clean diesel fuel that can be produced through transesterification reaction. Recycled cooking oil, on the other hand, is one of the inexpensive, easily available sources for producing biodiesel. This article is aimed at production of biodiesel via trans-esterification method, Nano CaO synthesis using sol-gel method, and Nano MgO synthesis using sol-gel self-combustion. Two catalysts' combination affecting the reaction's efficacy was also discussed. Optimum conditions for the reaction in the presence of Nano CaO are 1.5 % weight fracture, 1:7 alcohol to oil proportion and 6 h in which biodiesel and glycerin (the byproduct) are produced. Moreover, the optimum conditions for this reaction in the presence of Nano CaO and Nano MgO mixture are 3 % weight fracture (0.7 g of Nano CaO and 0.5 g of Nano MgO), 1:7 alcohols to oil proportion and 6 h. Nano MgO is not capable of catalyzing the transesterification by itself, because it has a much weaker basic affinity but when used with Nano CaO due to its surface structure, the basic properties increase and it becomes a proper base for the catalyst so that CaO contact surface increases and transesterification reaction yield significantly increases as well. This study investigates the repeatability of transesterification reaction in the presence of these Nano catalysts as well.

  16. Methylglyoxal is associated with bacteriostatic activity of high fructose agave syrups.

    PubMed

    Corrales Escobosa, Alma Rosa; Gomez Ojeda, Armando; Wrobel, Kazimierz; Magana, Armando Alcazar; Wrobel, Katarzyna

    2014-12-15

    Three α-ketoaldehydes, potentially present in high fructose agave syrups (HFASs) as intermediates of the Maillard reaction, were determined. A previously reported HPLC-FLD procedure based on pre-column derivatisation with 4-methoxy-o-phenylenediamine was adopted, yielding the method quantification limits 0.11 mg/kg, 0.10mg/kg, 0.09 mg/kg for glyoxal, methylglyoxal (MGo) and diacetyl, respectively. The obtained results revealed high concentrations of methylglyoxal in HFASs (average 102 ± 91 mg/kg, range 15.6-315 mg/kg) as compared to commercial Mexican bee honeys or corn syrups. Hydrogen peroxide was generated in all HFASs upon dilution, yet to less extent than in bee honeys. HFASs presented bacteriostatic activity against Bacillus subtilis and Escherichia coli; catalase addition had minimum effect on the assay results in syrups with elevated MGo. Principal component analysis revealed direct association between growth inhibition and MGo. It is concluded that elevated concentration of MGo in HFASs is at least in part responsible for their non-peroxide bacteriostatic activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Tunable reactivity of supported single metal atoms by impurity engineering of the MgO(001) support.

    PubMed

    Pašti, Igor A; Johansson, Börje; Skorodumova, Natalia V

    2018-02-28

    Development of novel materials may often require a rational use of high price components, like noble metals, in combination with the possibility to tune their properties in a desirable way. Here we present a theoretical DFT study of Au and Pd single atoms supported by doped MgO(001). By introducing B, C and N impurities into the MgO(001) surface, the interaction between the surface and the supported metal adatoms can be adjusted. Impurity atoms act as strong binding sites for Au and Pd adatoms and can help to produce highly dispersed metal particles. The reactivity of metal atoms supported by doped MgO(001), as probed by CO, is altered compared to their counterparts on pristine MgO(001). We find that Pd atoms on doped MgO(001) are less reactive than on perfect MgO(001). In contrast, Au adatoms bind CO much more strongly when placed on doped MgO(001). In the case of Au on N-doped MgO(001) we find that charge redistribution between the metal atom and impurity takes place even when not in direct contact, which enhances the interaction of Au with CO. The presented results suggest possible ways for optimizing the reactivity of oxide supported metal catalysts through impurity engineering.

  18. Mechanism by Which Magnesium Oxide Suppresses Tablet Hardness Reduction during Storage.

    PubMed

    Sakamoto, Takatoshi; Kachi, Shigeto; Nakamura, Shohei; Miki, Shinsuke; Kitajima, Hideaki; Yuasa, Hiroshi

    2016-01-01

    This study investigated how the inclusion of magnesium oxide (MgO) maintained tablet hardness during storage in an unpackaged state. Tablets were prepared with a range of MgO levels and stored at 40°C with 75% relative humidity for up to 14 d. The hardness of tablets prepared without MgO decreased over time. The amount of added MgO was positively associated with tablet hardness and mass from an early stage during storage. Investigation of the water sorption properties of the tablet components showed that carmellose water sorption correlated positively with the relative humidity, while MgO absorbed and retained moisture, even when the relative humidity was reduced. In tablets prepared using only MgO, a petal- or plate-like material was observed during storage. Fourier transform infrared spectrophotometry showed that this material was hydromagnesite, produced when MgO reacts with water and CO2. The estimated level of hydromagnesite at each time-point showed a significant negative correlation with tablet porosity. These results suggested that MgO suppressed storage-associated softening by absorbing moisture from the environment. The conversion of MgO to hydromagnesite results in solid bridge formation between the powder particles comprising the tablets, suppressing the storage-related increase in volume and increasing tablet hardness.

  19. Spectroscopic, thermal, and electrical properties of MgO/ polyvinyl pyrrolidone/ polyvinyl alcohol nanocomposites

    NASA Astrophysics Data System (ADS)

    Mohammed, Gh.; El Sayed, Adel M.; Morsi, W. M.

    2018-04-01

    In this study, we aimed to control the optical and electrical properties of polyvinyl alcohol (PVA) in order to broaden its industrial and technological applications, which we achieved by blending PVA with polyvinyl pyrrolidone (PVP) and adding sol-gel prepared MgO nanopowder. The blended film and nanocomposite films were prepared using the solution casting technique. X-ray diffraction analyses showed that the crystallite size was ∼18.4 nm for MgO and the highest degree of crystallinity (XC) in the films was about 24.34% at 1.0 wt% MgO. High resolution transmission electron microscopy determined the nanoribbon morphology of MgO. Scanning electron microscopy (SEM) indicated the uniform distribution of the MgO nanoribbons on the surfaces of the PVA/PVP films. SEM and Fourier transform infrared spectroscopy also confirmed the interaction between the blend and MgO fillers. The effects of the additives on the glass transition (Tg) and melting (Tm) temperatures were evaluated by differential thermal analysis and differential scanning calorimetry. The appearance of one melting point confirmed the miscibility of the two polymers. According to ultraviolet-visible-near infrared spectroscopy measurements, the optical properties and optical constants of PVA could be adjusted by the addition of PVP and MgO, where the optical band gap (Eg) determined for PVA increased with the PVP content, whereas it decreased to 4.8 eV as the MgO content increased. The DC conductivity (σdc) of the films increased whereas the activation energy (Ea) decreased after the addition of MgO, possibly because the nanoribbon shape fixed the preferred conducting pathways. In addition, MgO could break the H-bond in sbnd OH groups of the blends to allow the free movement of the molecular chains.

  20. Structural, optical, and electrical properties of unintentionally doped NiO layers grown on MgO by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Budde, Melanie; Tschammer, Carsten; Franz, Philipp; Feldl, Johannes; Ramsteiner, Manfred; Goldhahn, Rüdiger; Feneberg, Martin; Barsan, Nicolae; Oprea, Alexandru; Bierwagen, Oliver

    2018-05-01

    NiO layers were grown on MgO(100), MgO(110), and MgO(111) substrates by plasma-assisted molecular beam epitaxy under Ni-flux limited growth conditions. Single crystalline growth with a cube-on-cube epitaxial relationship was confirmed by X-ray diffraction measurements for all used growth conditions and substrates except MgO(111). A detailed growth series on MgO(100) was prepared using substrate temperatures ranging from 20 °C to 900 °C to investigate the influence on the layer characteristics. Energy-dispersive X-ray spectroscopy indicated close-to-stoichiometric layers with an oxygen content of ≈ 47 at. % and ≈ 50 at. % grown under low and high O-flux, respectively. All NiO layers had a root-mean-square surface roughness below 1 nm, measured by atomic force microscopy, except for rougher layers grown at 900 °C or using molecular oxygen. Growth at 900 °C led to a significant diffusion of Mg from the substrate into the film. The relative intensity of the quasi-forbidden one-phonon Raman peak is introduced as a gauge of the crystal quality, indicating the highest layer quality for growth at low oxygen flux and high growth temperature, likely due to the resulting high adatom diffusion length during growth. The optical and electrical properties were investigated by spectroscopic ellipsometry and resistance measurements, respectively. All NiO layers were transparent with an optical bandgap around 3.6 eV and semi-insulating at room temperature. However, changes upon exposure to reducing or oxidizing gases of the resistance of a representative layer at elevated temperature were able to confirm p-type conductivity, highlighting their suitability as a model system for research on oxide-based gas sensing.

  1. MgO NPs synthesis, capping and enhanced free radical effect on the bacteria and its cell morphology

    NASA Astrophysics Data System (ADS)

    Kushwaha, Amisha; Bagchi, T.

    2018-05-01

    Magnesium Oxide Nanoparticles (MgO NPs) commonly known as Magnesia is a white powder, hygroscopic material. MgO NPs were synthesized through four methods Co-precipitation method (Co-PM), Solution combustion (S-CoM) and Sol-gel method with starch (So-GSM) and CTAB (So-GCM), classified as template dependent and template independent method using magnesium nitrate hexahydrate (Mg(NO3).6H2O) as the precursor and comparative analysis was done through DLS. The order of hydrodynamic diameters of four different synthesis method of MgO NPs is Co-PM LA-MgO NPs> MgO NPs responding.

  2. MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing.

    PubMed

    Graf, Philipp; Dolzblasz, Alicja; Würschum, Tobias; Lenhard, Michael; Pfreundt, Ulrike; Laux, Thomas

    2010-03-01

    Maintenance of stem cells in the Arabidopsis thaliana shoot meristem is regulated by signals from the underlying cells of the organizing center, provided through the transcription factor WUSCHEL (WUS). Here, we report the isolation of several independent mutants of MGOUN1 (MGO1) as genetic suppressors of ectopic WUS activity and enhancers of stem cell defects in hypomorphic wus alleles. mgo1 mutants have previously been reported to result in a delayed progression of meristem cells into differentiating organ primordia (Laufs et al., 1998). Genetic analyses indicate that MGO1 functions together with WUS in stem cell maintenance at all stages of shoot and floral meristems. Synergistic interactions of mgo1 with several chromatin mutants suggest that MGO1 affects gene expression together with chromatin remodeling pathways. In addition, the expression states of developmentally regulated genes are randomly switched in mgo1 in a mitotically inheritable way, indicating that MGO1 stabilizes epigenetic states against stochastically occurring changes. Positional cloning revealed that MGO1 encodes a putative type IB topoisomerase, which in animals and yeast has been shown to be required for regulation of DNA coiling during transcription and replication. The specific developmental defects in mgo1 mutants link topoisomerase IB function in Arabidopsis to stable propagation of developmentally regulated gene expression.

  3. Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer

    NASA Astrophysics Data System (ADS)

    Liu, W. Z.; Xu, H. Y.; Zhang, L. X.; Zhang, C.; Ma, J. G.; Wang, J. N.; Liu, Y. C.

    2012-10-01

    Localized surface plasmon (LSP)-enhanced ultraviolet light-emitting diodes were manufactured by introducing Ag nanoparticles and MgO spacer layer into n-ZnO/i-ZnO/p-GaN heterostructures. By optimizing the MgO thickness, which can suppress the undesired charge transfer and nonradiative Förster resonant energy transfer between Ag and ZnO, a 7-fold electroluminescence enhancement was achieved. Time-resolved and temperature-dependent photoluminescence measurements reveal that both spontaneous emission rate and internal quantum efficiency are increased as a result of coupling between ZnO excitons and Ag LSPs, and simple calculations, based on experimental data, also indicate that most of LSP's energy can be converted into the photon energy.

  4. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    NASA Astrophysics Data System (ADS)

    Xie, Huaqing; Li, Yang; Yu, Wei

    2010-05-01

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2O 3, ZnO, TiO 2, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2O 3, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  5. Memristive switching of MgO based magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Krzysteczko, Patryk; Reiss, Günter; Thomas, Andy

    2009-09-01

    Here we demonstrate that both, tunnel magnetoresistance (TMR) and resistive switching (RS), can be observed simultaneously in nanoscale magnetic tunnel junctions. The devices show bipolar RS of 6% and TMR ratios of about 100%. For each magnetic state, multiple resistive states are created depending on the bias history, which provides a method for multibit data storage and logic. The electronic transport measurements are discussed in the framework of a memristive system. Differently prepared MgO barriers are compared to gain insight into the switching mechanism.

  6. Complex-Shaped Microcomponents by the Reactive Conversion of Biology Templates

    DTIC Science & Technology

    2003-12-15

    luminescent Eu-doped BaTiO3) and as structures for microfluidic mixing devices (e.g., based on electroosmotic flow). Optimization of the MgO conversion...ends of the iron tube. The tube was then crimped in the middle (to avoid physical mixing of the reactants) and the ends were welded shut. Upon heating...luminescent coatings (i.e., Eu-doped BaTiO 3 coatings on MgO), and ii) 3-D micro-structures for incorporation in electro-osmotic mixing devices (i.e., to

  7. Experimental and DFT studies of gold nanoparticles supported on MgO(111) nano-sheets and their catalytic activity.

    PubMed

    Li, Zhi; Ciobanu, Cristian V; Hu, Juncheng; Palomares-Báez, Juan-Pedro; Rodríguez-López, José-Luis; Richards, Ryan

    2011-02-21

    A wet chemical preparation of MgO with the (111) facet as the primary surface has recently been reported and with alternating layers of oxygen anions and magnesium cations, this material shows unique chemical and physical properties. The potential to utilize the MgO(111) surface for the immobilization of metal particles is intriguing because the surface itself offers a very different environment for the metal particle with an all oxygen interface, as opposed to the typical (100) facet that possesses alternating oxygen anion and magnesium cation sites on the surface. Gold nanoparticles have demonstrated a broad range of interesting catalytic properties, but are often susceptible to aggregation at high temperatures and are very sensitive to substrate effects. Here, we investigate gold-supported on MgO(111) nanosheets as a catalyst system for the aerobic oxidation of benzyl alcohol. Gold nanoparticles deposited on MgO(111) show an increased level of activity in the solvent-free benzyl alcohol aerobic oxidation as compared to gold nanoparticles deposited on a typical MgO aerogel. TEM studies reveal that the gold nanoparticles have a hemispherical shape while sitting on the main surface of MgO(111) nanosheets, with a large Au-MgO interface. Given that the gold nanoparticles deposited on the two types of MgO have similar size, and that the two types of unmodified MgO show almost the same activities in the blank reaction, we infer that the high activity of Au/MgO(111) is due to the properties of the (111) support and/or those of the gold-support interface. To understand the binding of Au on low-index MgO surfaces and the charge distribution at the surface of the support, we have performed density functional theory (DFT) calculations on all low-index MgO substrates (with and without gold), using a model Au(10) cluster. Due to similar lattice constants of Au(111) and MgO(111) planes, the Au cluster retains its structural integrity and binds strongly on MgO(111) with either oxygen or magnesium termination. Furthermore, we have found that for the (001) and (110) substrates the charges of the ions in the top surface layer have similar values as in bulk MgO, but that on (111) surfaces these charges are significantly different. This difference in surface charge determines the direction of the electronic transfer upon adsorption of gold, such transfer occurring so as to restore the bulk MgO charge values. Using the results from theoretical calculations, we provide an explanation of our observations of increased catalytic activity in the case of the Au/MgO(111) system.

  8. Quantitative transmission electron microscopy analysis of multi-variant grains in present L1{sub 0}-FePt based heat assisted magnetic recording media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Hoan, E-mail: hoan.ho@wdc.com; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Zhu, Jingxi, E-mail: jingxiz@andrew.cmu.edu

    2014-11-21

    We present a study on atomic ordering within individual grains in granular L1{sub 0}-FePt thin films using transmission electron microscopy techniques. The film, used as a medium for heat assisted magnetic recording, consists of a single layer of FePt grains separated by non-magnetic grain boundaries and is grown on an MgO underlayer. Using convergent-beam techniques, diffraction patterns of individual grains are obtained for a large number of crystallites. The study found that although the majority of grains are ordered in the perpendicular direction, more than 15% of them are multi-variant, or of in-plane c-axis orientation, or disordered fcc. It wasmore » also found that these multi-variant and in-plane grains have always grown across MgO grain boundaries separating two or more MgO grains of the underlayer. The in-plane ordered portion within a multi-variant L1{sub 0}-FePt grain always lacks atomic coherence with the MgO directly underneath it, whereas, the perpendicularly ordered portion is always coherent with the underlying MgO grain. Since the existence of multi-variant and in-plane ordered grains are severely detrimental to high density data storage capability, the understanding of their formation mechanism obtained here should make a significant impact on the future development of hard disk drive technology.« less

  9. A first-principles and experimental study of helium diffusion in periclase MgO

    NASA Astrophysics Data System (ADS)

    Song, Zhewen; Wu, Henry; Shu, Shipeng; Krawczynski, Mike; Van Orman, James; Cherniak, Daniele J.; Bruce Watson, E.; Mukhopadhyay, Sujoy; Morgan, Dane

    2018-02-01

    The distribution of He isotopes is used to trace heterogeneities in the Earth's mantle, and is particularly useful for constraining the length scale of heterogeneity due to the generally rapid diffusivity of helium. However, such an analysis is challenging because He diffusivities are largely unknown in lower mantle phases, which can influence the He profiles in regions that cycle through the lower mantle. With this motivation, we have used first-principles simulations based on density functional theory to study He diffusion in MgO, an important lower mantle phase. We first studied the case of interstitial helium diffusion in perfect MgO and found a migration barrier of 0.73 eV at zero pressure. Then we used the kinetic Monte Carlo method to study the case of substitutional He diffusion in MgO, where we assumed that He diffuses on the cation sublattice through cation vacancies. We also performed experiments on He diffusion at atmospheric pressure using ion implantation and nuclear reaction analysis in both as-received and Ga-doped samples. A comparison between the experimental and simulation results are shown. This work provides a foundation for further studies at high-pressure.

  10. Role of basic and acidic centers of MgO and modified MgO in catalytic transfer hydrogenation of ketones studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Szöllösi, György; Bartók, Mihály

    1999-05-01

    In this study our aim was to identify the active sites and the surface species responsible for deactivation of MgO during catalytic transfer hydrogenations (CTH) of ketones using alcohols as hydrogen donors. Our previous studies showed that deactivation of MgO could be prevented by previous treatment with chloromethanes. Therefore the surface species formed during the reaction were studied before and after treatment with chloroform or chloroform- d by in situ infrared spectroscopy (IR). As a result, it was concluded that the reaction requires the presence of surface basic and acidic centers. The presence of Lewis acid centers was not necessary, the reaction could proceed on weakly acidic surface Brönsted sites, as the alterations in intensity and position of the ν(OH) bands indicated. Modification with chloroform resulted also in the generation of surface OH groups with a proper acidity for the reaction. The shift in carbonyl vibrations led us to the conclusion that Lewis acid and base centers were responsible for the catalyst poisoning, so covering these acid sites by Cl - led to a stable catalyst.

  11. Genotoxicity and apoptotic activity of biologically synthesized magnesium oxide nanoparticles against human lung cancer A-549 cell line

    NASA Astrophysics Data System (ADS)

    Majeed, Shahnaz; Danish, Mohammed; Muhadi, Nur Farisyah Bahriah Binti

    2018-06-01

    The study focussed on the synthesis of magnesium oxide (MgO) nanoparticles from an aqueous extract of Penicillium species isolated from soil. A suitable amount of magnesium nitrate (MgNO3) was mixed with the aqueous extract of Penicillium. Then the colour of the solution changed due to the formation of MgO nanoparticles. These nascent formed MgO nanoparticles were further confirmed by using UV spectrophotometry which showed the maximum absorption at 215 nm indicating the formation of MgO nanoparticles. Fourier transform infrared spectroscopy (FTIR) was used to find the possible functional groups and proteins involving the stabilization of MgO nanoparticles. Transmission electron microscopy (TEM) study revealed the size, the shape as well as the dispersity of the prepared MgO nanoparticles and showed that they were well dispersed around 12–24 nm (scale 200 nm). The anticancer activity against A-549 cell line of these green synthesized MgO nanoparticles was evaluated. The result showed good anticancer effect after 24 h of incubation. Nevertheless these MgO nanoparticles showed less effect on normal Vero cells. Further apoptotic study clearly displayed the effect of MgO nanoparticles on cancer cells. The effect was observed through chromatin condensation by forming apoptotic bodies using propidium iodide, acridine orange and ethidium bromide (AO/EB) staining technique. The DNA was isolated to confirm the DNA damage; the observation clearly showed DNA damage when compared with DNA ladder.

  12. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca- and Fe-doped MgO(001) surface basic sites.

    PubMed

    Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto

    2012-08-02

    The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.

  13. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca and Fe doped MgO (001) surface basic sites

    PubMed Central

    Hatch, Courtney; Orlando, Roberto

    2012-01-01

    The electronic properties of undoped and Ca or Fe doped MgO (001) surfaces, as well as their propensity towards atmospheric acidic gas (CO2, SO2 and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, Osurf, using periodic Density Functional Theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the Osurf sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe doped MgO (001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca doped MgO (001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces. PMID:22775293

  14. The role of the substrate surface morphology and water in growth of vertically aligned single-walled carbon nanotubes.

    PubMed

    Pint, Cary; Pheasant, Sean; Nicholas, Nolan; Horton, Charles; Hauge, Robert

    2008-11-01

    Growth of high quality, vertically aligned single-walled carbon nanotubes (carpets) is achieved using a rapid insertion hot filament chemical vapor deposition (HF-CVD) technique. The effect of the substrate morphology on growth is explored by comparing carpets grown on epitaxially polished MgO substrates to those grown on "as-cut", macroscopically rough MgO substrates. Depending on the substrate morphology, we observe differences in both the overall carpet morphology as well as the diameter distribution of nanotubes grown in the carpet based on optical measurements. In addition, we explore the role of water in the growth of carpets on MgO and the conventional Al2O3 coated Si substrates. We find that the addition of a small amount of water is beneficial to the growth rates of the SWNT carpets, enhancing the growth rates by up to eight times.

  15. Gilbert Damping Parameter in MgO-Based Magnetic Tunnel Junctions from First Principles

    NASA Astrophysics Data System (ADS)

    Tang, Hui-Min; Xia, Ke

    2017-03-01

    We perform a first-principles study of the Gilbert damping parameter (α ) in normal-metal/MgO-cap/ferromagnet/MgO-barrier/ferromagnetic magnetic tunnel junctions. The damping is enhanced by interface spin pumping, which can be parametrized by the spin-mixing conductance (G↑↓ ). The calculated dependence of Gilbert damping on the thickness of the MgO capping layer is consistent with experiment and indicates that the decreases in α with increasing thickness of the MgO capping layer is caused by suppression of spin pumping. Smaller α can be achieved by using a clean interface and alloys. For a thick MgO capping layer, the imaginary part of the spin-mixing conductance nearly equals the real part, and the large imaginary mixing conductance implies that the change in the frequency of ferromagnetic resonance can be observed experimentally. The normal-metal cap significantly affects the Gilbert damping.

  16. Electronic, magnetic and optical properties of B, C, N and F doped MgO monolayer

    NASA Astrophysics Data System (ADS)

    Moghadam, A. Dashti; Maskane, P.; Esfandiari, S.

    2018-06-01

    MgO as one of the alkaline earth oxides has various applications in industry. In this work, we aim to investigate the electronic, optical and magnetic properties of MgO monolayers. Furthermore, monolayer structures with substituted B, N, C and F atoms instead of O atom are studied. These results indicate that MgO layer has possessed potential application in optoelectronic and spintronic nano-devices.

  17. Ultrathin IBAD MgO films for epitaxial growth on amorphous substrates and sub-50 nm membranes

    DOE PAGES

    Wang, Siming; Antonakos, C.; Bordel, C.; ...

    2016-11-07

    Here, a fabrication process has been developed for high energy ion beam assisted deposition (IBAD) biaxial texturing of ultrathin (~1 nm) MgO films, using a high ion-to-atom ratio and post-deposition annealing instead of a homoepitaxial MgO layer. These films serve as the seed layer for epitaxial growth of materials on amorphous substrates such as electron/X-ray transparent membranes or nanocalorimetry devices. Stress measurements and atomic force microscopy of the MgO films reveal decreased stress and surface roughness, while X-ray diffraction of epitaxial overlayers demonstrates the improved crystal quality of films grown epitaxially on IBAD MgO. The process simplifies the synthesis ofmore » IBAD MgO, fundamentally solves the “wrinkle” issue induced by the homoepitaxial layer on sub-50 nm membranes, and enables studies of epitaxial materials in electron/X-ray transmission and nanocalorimetry.« less

  18. Correlation between ferromagnetism and defects in MgO nanocrystals studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Wang, D. D.; Chen, Z. Q.; Li, C. Y.; Li, X. F.; Cao, C. Y.; Tang, Z.

    2012-07-01

    High purity MgO nanopowders were pressed into pellets and annealed in air from 100 to 1400 °C. Variation of the microstructures was investigated by X-ray diffraction and positron annihilation spectroscopy. Annealing induces an increase in the MgO grain size from 27 to 60 nm with temperature increasing up to 1400 °C. Positron annihilation measurements reveal vacancy defects including Mg vacancies, vacancy clusters, microvoids and large pores in the grain boundary region. Rapid recovery of Mg monovacancies and vacancy clusters was observed after annealing above 1200 °C. Room temperature ferromagnetism was observed for MgO nanocrystals annealed at 100, 700, and 1000 °C. However, after 1400 °C annealing, MgO nanocrystals turn into diamagnetic. Our results suggest that the room temperature ferromagnetism in MgO nanocrystals might originate from the interfacial defects.

  19. Giant Tunnel Magnetoresistance with a Single Magnetic Phase-Transition Electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Chen, X. Z.; Song, C.; Feng, J. F.; Wei, H. X.; Lü, Jing-Tao

    2018-04-01

    The magnetic phase-transition tunnel-magnetoresistance (MPT-TMR) effect with a single magnetic electrode is investigated by first-principles calculations. The calculations show that the MPT-TMR of an α'-FeRh /MgO /Cu tunnel junction can be as high as hundreds of percent when the magnetic structure of α'-FeRh changes from G -type antiferromagnetic (G -AFM ) to ferromagnetic order. This type of MPT-TMR may be superior to the tunnel anisotropic magnetoresistance because of its huge magnetoresistance effect and similar structural simplicity. The main mechanism for the giant MPT-TMR can be attributed to the formation of interface resonant states at the G -AFM FeRh /MgO interface. A direct FeRh /MgO interface is found to be necessary for achieving a high MPT-TMR experimentally. Moreover, we find the α'-FeRh /MgO interface with FeRh in the ferromagnetic phase has nearly full spin polarization due to the negligible majority transmission and significantly different Fermi surface of two spin channels. Thus, it may act as a highly efficient and tunable spin injector. In addition, the electric-field-driven MPT of FeRh-based heteromagnetic nanostructures can be utilized to design various energy-efficient tunnel-junction structures and the corresponding lower-power-consumption devices. We also discuss the consequence of various junction defects on MPT-TMR. The interface oxygen layer is found to be detrimental to MPT-TMR. The sign of MPT-TMR is reversed with Rh termination due to the lack of contribution from the interface resonance states. However, the MPT-TMR may be robust against the oxygen vacancy inside of MgO and the shift of the Fermi energy. Our results will stimulate further experimental investigations of MPT-TMR and other fascinating phenomenon of FeRh-based tunnel junctions that may be promising in antiferromagnetic spintronics.

  20. Multi-orbit tight binding calculations for spin transfer torque in magnetic tunneling junctions

    NASA Astrophysics Data System (ADS)

    You, Chun-Yeol; Han, Jae-Ho; Lee, Hyun-Woo

    2012-04-01

    We investigate the spin transfer torque (STT) with multi-orbit tight binding model in the magnetic tunneling junctions (MTJs). So far, most of the theoretical works based on the non-equilibrium Keldysh Green's function method employ a single band model for the simplicity, except a few first principle studies. Even though the single band model captures main physics of STT in MTJ, multi-band calculation reveals new features of the STT that depend on band parameters, such as insulator bandgap, inter-band hopping energy of the ferromagnetic layer. We find that the sign change of perpendicular torkance with bandgap of the insulator layer, and when we allow the inter-band hopping, the bias dependences of perpendicular STT are dramatically changed, while no noticeable changes in parallel STT are found.

  1. Inhibition of Methylglyoxal-Induced AGEs/RAGE Expression Contributes to Dermal Protection by N-Acetyl-L-Cysteine.

    PubMed

    Yang, Chun-Tao; Meng, Fu-Hui; Chen, Li; Li, Xiang; Cen, Lai-Jian; Wen, Yu-Hua; Li, Cai-Chen; Zhang, Hui

    2017-01-01

    Accumulation of advanced glycation end products (AGEs) is a major cause of diabetes mellitus (DM) skin complications. Methylglyoxal (MGO), a reactive dicarbonyl compound, is a crucial intermediate of AGEs generation. N-acetyl-L-cysteine (NAC), an active ingredient of some medicines, can induce endogenous GSH and hydrogen sulfide generation, and set off a condensation reaction with MGO. However, there is rare evidence to show NAC can alleviate DM-induced skin injury through inhibition of AGEs generation or toxicity. The present study aimed to observe the effects of NAC on MGO-induced inflammatory injury and investigate the roles of AGEs and its receptor (RAGE) in NAC's dermal protection in human HaCaT keratinocytes. The cells were exposed to MGO to simulate a high MGO status in diabetic blood or tissues. The content of AGEs in serum or cell medium was measured with ELISA. The protective effects of NAC against MGO-induce injury were evaluated by administration before MGO one hour, in virtue of cell viability, mitochondrial membrane potential, inflammation reaction, nuclear factor (NF)-κB activation, matrix metalloproteinase (MMP)-9 expression, as well as cellular behavioral function. We found the AGEs levels of patients with DM were elevated comparing with healthy volunteers. The in vitro AGEs generation was also able to be enhanced by the exposure of HaCaT cells to MGO, which reduced dose-dependently cellular viability, damaged mitochondrial function, triggered secretion of interleukin (IL)-6 and IL-8, activated NF-κB and upregulated MMP-9 expression. Furthermore, the exposure caused cellular adhesion and migration dysfunction, as well as collagen type I inhibition. Importantly, before the exposure to MGO, the preconditioning with NAC significantly attenuated MGO-induced AGEs generation, improved cellular viability and mitochondrial function, partially reversed the overexpression of proinflammatory factors and MMP-9, as well as the activation of NF-κB. Lastly, NAC blocked MGO-induced RAGE upregulation, and inhibition of RAGE with its neutralizing antibody significantly alleviated MGO-induced NF-κB activation, MMP-9 upregulation and inflammatory injury in HaCaT cells. The present work indicates the administration of NAC can prevent MGO-induced dermal inflammatory injury through inhibition of AGEs/RAGE signal, which may provide a basal support for the treatment of diabetic skin complications with NAC-containing medicines in the future. © 2017 The Author(s)Published by S. Karger AG, Basel.

  2. Nano SiO2 and MgO improve the properties of porous β-TCP scaffolds via advanced manufacturing technology.

    PubMed

    Gao, Chengde; Wei, Pingpin; Feng, Pei; Xiao, Tao; Shuai, Cijun; Peng, Shuping

    2015-03-25

    Nano SiO2 and MgO particles were incorporated into β-tricalcium phosphate (β-TCP) scaffolds to improve the mechanical and biological properties. The porous cylindrical β-TCP scaffolds doped with 0.5 wt % SiO2, 1.0 wt % MgO, 0.5 wt % SiO2 + 1.0 wt % MgO were fabricated via selective laser sintering respectively and undoped β-TCP scaffold was also prepared as control. The phase composition and mechanical strength of the scaffolds were evaluated. X-ray diffraction analysis indicated that the phase transformation from β-TCP to α-TCP was inhibited after the addition of MgO. The compressive strength of scaffold was improved from 3.12 ± 0.36 MPa (β-TCP) to 5.74 ± 0.62 MPa (β-TCP/SiO2), 9.02 ± 0.55 MPa (β-TCP/MgO) and 10.43 ± 0.28 MPa (β-TCP/SiO2/MgO), respectively. The weight loss and apatite-forming ability of the scaffolds were evaluated by soaking them in simulated body fluid. The results demonstrated that both SiO2 and MgO dopings slowed down the degradation rate and improved the bioactivity of β-TCP scaffolds. In vitro cell culture studies indicated that SiO2 and MgO dopings facilitated cell attachment and proliferation. Combined addition of SiO2 and MgO were found optimal in enhancing both the mechanical and biological properties of β-TCP scaffold.

  3. Nano SiO2 and MgO Improve the Properties of Porous β-TCP Scaffolds via Advanced Manufacturing Technology

    PubMed Central

    Gao, Chengde; Wei, Pingpin; Feng, Pei; Xiao, Tao; Shuai, Cijun; Peng, Shuping

    2015-01-01

    Nano SiO2 and MgO particles were incorporated into β-tricalcium phosphate (β-TCP) scaffolds to improve the mechanical and biological properties. The porous cylindrical β-TCP scaffolds doped with 0.5 wt % SiO2, 1.0 wt % MgO, 0.5 wt % SiO2 + 1.0 wt % MgO were fabricated via selective laser sintering respectively and undoped β-TCP scaffold was also prepared as control. The phase composition and mechanical strength of the scaffolds were evaluated. X-ray diffraction analysis indicated that the phase transformation from β-TCP to α-TCP was inhibited after the addition of MgO. The compressive strength of scaffold was improved from 3.12 ± 0.36 MPa (β-TCP) to 5.74 ± 0.62 MPa (β-TCP/SiO2), 9.02 ± 0.55 MPa (β-TCP/MgO) and 10.43 ± 0.28 MPa (β-TCP/SiO2/MgO), respectively. The weight loss and apatite-forming ability of the scaffolds were evaluated by soaking them in simulated body fluid. The results demonstrated that both SiO2 and MgO dopings slowed down the degradation rate and improved the bioactivity of β-TCP scaffolds. In vitro cell culture studies indicated that SiO2 and MgO dopings facilitated cell attachment and proliferation. Combined addition of SiO2 and MgO were found optimal in enhancing both the mechanical and biological properties of β-TCP scaffold. PMID:25815597

  4. Tuning the properties of an MgO layer for spin-polarized electron transport

    NASA Astrophysics Data System (ADS)

    Zhao, Chong-Jun; Ding, Lei; Zhao, Zhi-Duo; Zhang, Peng; Cao, Xing-Zhong; Wang, Bao-Yi; Zhang, Jing-Yan; Yu, Guang-Hua

    2014-08-01

    The influence of substrate temperature and annealing on quality/microstructural evolution of MgO, as well as the resultant magnetoresistance (MR) ratio, has been investigated. It has been found that the crystallinity of MgO in the MgO/NiFe/MgO heterostructures gradually improves with increasing substrate temperature. This behavior facilitates the transport of spin-polarized electrons, resulting in a high MR value. After annealing, the formation of vacancy clusters in MgO layers observed through positron annihilation spectroscopy leads to an increase in MR at different levels because of the crystallinity improvement of MgO. However, these vacancy clusters as another important defect can limit further improvement in MR.

  5. Polyethylene Nanocomposites for the Next Generation of Ultralow-Transmission-Loss HVDC Cables: Insulation Containing Moisture-Resistant MgO Nanoparticles.

    PubMed

    Pourrahimi, Amir Masoud; Pallon, Love K H; Liu, Dongming; Hoang, Tuan Anh; Gubanski, Stanislaw; Hedenqvist, Mikael S; Olsson, Richard T; Gedde, Ulf W

    2016-06-15

    The use of MgO nanoparticles in polyethylene for cable insulation has attracted considerable interest, although in humid media the surface regions of the nanoparticles undergo a conversion to a hydroxide phase. A facile method to obtain MgO nanoparticles with a large surface area and remarkable inertness to humidity is presented. The method involves (a) low temperature (400 °C) thermal decomposition of Mg(OH)2, (b) a silicone oxide coating to conceal the nanoparticles and prevent interparticle sintering upon exposure to high temperatures, and (c) heat treatment at 1000 °C. The formation of the hydroxide phase on these silicone oxide-coated MgO nanoparticles after extended exposure to humid air was assessed by thermogravimetry, infrared spectroscopy, and X-ray diffraction. The nanoparticles showed essentially no sign of any hydroxide phase compared to particles prepared by the conventional single-step thermal decomposition of Mg(OH)2. The moisture-resistant MgO nanoparticles showed improved dispersion and interfacial adhesion in the LDPE matrix with smaller nanosized particle clusters compared with conventionally prepared MgO. The addition of 1 wt % moisture-resistant MgO nanoparticles was sufficient to decrease the conductivity of polyethylene 30 times. The reduction in conductivity is discussed in terms of defect concentration on the surface of the moisture-resistant MgO nanoparticles at the polymer/nanoparticle interface.

  6. Characterizations of low-temperature electroluminescence from ZnO nanowire light-emitting arrays on the p-GaN layer.

    PubMed

    Lu, Tzu-Chun; Ke, Min-Yung; Yang, Sheng-Chieh; Cheng, Yun-Wei; Chen, Liang-Yi; Lin, Guan-Jhong; Lu, Yu-Hsin; He, Jr-Hau; Kuo, Hao-Chung; Huang, JianJang

    2010-12-15

    Low-temperature electroluminescence from ZnO nanowire light-emitting arrays is reported. By inserting a thin MgO current blocking layer in between ZnO nanowire and p-GaN, high-purity UV light emission at wavelength 398 nm was obtained. As the temperature is decreased, contrary to the typical GaN-based light emitting diodes, our device shows a decrease of optical output intensity. The results are associated with various carrier tunneling processes and frozen MgO defects.

  7. Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity.

    PubMed

    Bellucci, Devis; Sola, Antonella; Salvatori, Roberta; Anesi, Alexandre; Chiarini, Luigi; Cannillo, Valeria

    2017-03-01

    The composition of a CaO-rich silicate bioglass (BG_Ca-Mix, in mol%: 2.3 Na 2 O; 2.3 K 2 O; 45.6 CaO; 2.6 P 2 O 5 ; 47.2 SiO 2 ) was modified by replacing a fixed 10mol% of CaO with MgO or SrO or fifty-fifty MgO-SrO. The thermal behaviour of the modified glasses was accurately evaluated via differential thermal analysis (DTA), heating microscopy and direct sintering tests. The presence of MgO and/or SrO didn't interfere with the thermal stability of the parent glass, since all the new glasses remained completely amorphous after sintering (treatment performed at 753°C for the glass with MgO; at 750°C with SrO; at 759°C with MgO and SrO). The sintered samples achieved good mechanical properties, with a Young's modulus ranging between 57.9±6.7 for the MgO-SrO modified composition and 112.6±8.0GPa for the MgO-modified one. If immersed in a simulated body fluid (SBF), the modified glasses after sintering retained the strong apatite forming ability of the parent glass, in spite of the presence of MgO and/or SrO. Moreover, the sintered glasses, tested with MLO-Y4 osteocytes by means of a multi-parametrical approach, showed a good bioactivity in vitro, since neither the glasses nor their extracts caused any negative effect on cell viability or any inhibition on cell growth. The best results were achieved by the MgO-modified glasses, both BGMIX_Mg and BGMIX_MgSr, which were able to exert a strong stimulating effect on the cell growth, thus confirming the beneficial effect of MgO on the glass bioactivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. WIPP Magnesium Oxide (MgO) - Planned Change Request

    EPA Pesticide Factsheets

    On April 10, 2006, the DOE submitted a planned change request pertaining to the amount of MgO emplaced in the WIPP repository. MgO is an engineered barrier that DOE included as part of the original WIPP Certification Decision.

  9. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  10. Methylglyoxal, the foe and friend of glyoxalase and Trx/TrxR systems in HT22 nerve cells.

    PubMed

    Dafre, A L; Goldberg, J; Wang, T; Spiegel, D A; Maher, P

    2015-12-01

    Methylglyoxal (MGO) is a major glycating agent that reacts with basic residues of proteins and promotes the formation of advanced glycation end products (AGEs) which are believed to play key roles in a number of pathologies, such as diabetes, Alzheimer's disease, and inflammation. Here, we examined the effects of MGO on immortalized mouse hippocampal HT22 nerve cells. The endpoints analyzed were MGO and thiol status, the glyoxalase system, comprising glyoxalase 1 and 2 (GLO1/2), and the cytosolic and mitochondrial Trx/TrxR systems, as well as nuclear Nrf2 and its target genes. We found that nuclear Nrf2 is induced by MGO treatment in HT22 cells, as corroborated by induction of the Nrf2-controlled target genes and proteins glutamate cysteine ligase and heme oxygenase 1. Nrf2 knockdown prevented MGO-dependent induction of glutamate cysteine ligase and heme oxygenase 1. The cystine/glutamate antiporter, system xc(-), which is also controlled by Nrf2, was also induced. The increased cystine import (system xc(-)) activity and GCL expression promoted GSH synthesis, leading to increased levels of GSH. The data indicate that MGO can act as both a foe and a friend of the glyoxalase and the Trx/TrxR systems. At low concentrations of MGO (0.3mM), GLO2 is strongly induced, but at high MGO (0.75 mM) concentrations, GLO1 is inhibited and GLO2 is downregulated. The cytosolic Trx/TrxR system is impaired by MGO, where Trx is downregulated yet TrxR is induced, but strong MGO-dependent glycation may explain the loss in TrxR activity. We propose that Nrf2 can be the unifying element to explain the observed upregulation of GSH, GCL, HO1, TrxR1, Trx2, TrxR2, and system xc(-) system activity. Copyright © 2015. Published by Elsevier Inc.

  11. Methylglyoxal, the foe and friend of glyoxalase and Trx/TrxR systems in HT22 nerve cells

    PubMed Central

    Dafre, A.L.; Goldberg, J.; Wang, T.; Spiegel, D.A.; Maher, P.

    2017-01-01

    Methylglyoxal (MGO) is a major glycating agent that reacts with basic residues of proteins and promotes the formation of advanced glycation end products (AGEs) which are believed to play key roles in a number of pathologies, such as diabetes, Alzheimer’s disease, and inflammation. Here, we examined the effects of MGO on immortalized mouse hippocampal HT22 nerve cells. The endpoints analyzed were MGO and thiol status, the glyoxalase system, comprising glyoxalase 1 and 2 (GLO1/2), and the cytosolic and mitochondrial Trx/TrxR systems, as well as nuclear Nrf2 and its target genes. We found that nuclear Nrf2 is induced by MGO treatment in HT22 cells, as corroborated by induction of the Nrf2-controlled target genes and proteins glutamate cysteine ligase and heme oxygenase 1. Nrf2 knockdown prevented MGO-dependent induction of glutamate cysteine ligase and heme oxygenase 1. The cystine/glutamate antiporter, system xc−, which is also controlled by Nrf2, was also induced. The increased cystine import (system xc−) activity and GCL expression promoted GSH synthesis, leading to increased levels of GSH. The data indicate that MGO can act as both a foe and a friend of the glyoxalase and the Trx/TrxR systems. At low concentrations of MGO (0.3 mM), GLO2 is strongly induced, but at high MGO (0.75 mM) concentrations, GLO1 is inhibited and GLO2 is downregulated. The cytosolic Trx/TrxR system is impaired by MGO, where Trx is downregulated yet TrxR is induced, but strong MGO-dependent glycation may explain the loss in TrxR activity. We propose that Nrf2 can be the unifying element to explain the observed upregulation of GSH, GCL, HO1, TrxR1, Trx2, TrxR2, and system xc− system activity. PMID:26165190

  12. Testing and Validation Studies of the NSMII-Benthic Sediment Diagenesis Module

    DTIC Science & Technology

    2016-07-01

    NSMII analytical vs. numerical solutions of sediment methane ............................ 27 3.2.4 Comparisons of the diagenesis rates of three sediment...26 Figure 12. Comparisons of NSMII analytical vs. numerical solutions of sediment methane : (a) layer 2’s CH4, (b...oxygen demand mg-O2 L-1 0-10 CH4 Methane mg-O2 L-1 On/Off HxS Total dissolved sulfides mg-O2 L-1 On/Off DO Dissolved oxygen mg-O2 L-1 On BSi

  13. Analytical electron microscopic studies and positron lifetime measurements in Al-doped MgO crystals

    NASA Astrophysics Data System (ADS)

    Pedrosa, M. A.; Pareja, R.; González, R.; Abraham, M. M.

    1987-07-01

    MgO crystals intentionally doped with Al were characterized by analytical electron microscopic examinations and positron lifetime measurements. Large spinel (MgO Al2O3) precipitates were observed in samples with high contents of Al. A well-defined crystallographic relationship between the precipitates and the matrix was found. The characteristics of positron lifetime spectra appear to depend on the valence state of the different impurities in the MgO lattice suggesting that positrons are trapped by vacancy impurity complexes.

  14. Well-isolated FePt grains with high coercivity on TiN underlayers for heat-assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Santos, Tiffany; Jain, Shikha; Hirotsune, Akemi; Hellwig, Olav

    2015-03-01

    MgO is the underlayer material of choice for granular FePt thin film media for heat assisted magnetic recording, because MgO (001) seeds L10-ordered FePt with c-axis perpendicular to the film plane and high perpendicular magnetic anisotropy. MgO is also an effective diffusion barrier between the FePt grains and the metallic underlayers beneath the MgO. However, there are possible concerns associated with using MgO in the media structure. MgO is highly sensitive to moisture, and hydration of MgO could potentially degrade film properties. In addition, many particulates are incorporated into the film during the RF-sputter process, which can be sources of delamination, pinholes and damage to the low-flying recording heads. TiN is an attractive alternative to MgO because it is chemically and mechanically robust, and TiN can be DC-sputtered, which produces fewer particles and has a faster deposition rate. Even though TiN has the same rocksalt crystal structure and lattice constant as MgO, the higher surface energy of TiN causes more wetting of the FePt grains on the TiN surface. As a result, deposition of granular FePt on TiN most often produces inter-connected, worm-like grains with low coercivity. We will show that by optimizing the deposition of FePt and segregant material on the TiN underlayer, we are able to fabricate FePt media with well-isolated grains and high coercivity reaching nearly 4 Tesla. In addition, the FePt has excellent structural properties with a high degree of L10 atomic ordering and minimal c-axis in-plane oriented grains.

  15. Dielectric properties and microstructure of nano-MgO dispersed Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} thin films prepared by sputter deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.-F.; Chu, Jinn P.; Lin, C.C.

    2005-07-01

    In this study, thin films prepared from the targets of Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} (BST), BST/5 mol % MgO, BST/10 mol % MgO, and BST/20 mol % MgO composites, using radio frequency magnetron sputtering, have been reported. As-deposited films were found to be amorphous and began to crystallize after annealing at temperatures of 650 deg. C and above. The addition of MgO in the BST films resulted in the hindrance of crystallization and inhibition of grain growth. MgO was substituted into the BST lattices to a certain degree. High-resolution transmission electron microscopy results revealed some MgO dispersed in the BSTmore » matrix. The MgO dispersed in the dense BST matrix was found to be around 25 nm in size. The dielectric constant was estimated to be 90 for the pure BST film annealed at 700 deg. C, and observed to be slightly reduced with the MgO addition. The dielectric losses of the Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} (0.006) and BST/MgO films (0.002-0.004) were much less than those of the Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}(0.013) and Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} films (0.11-0.13). The leakage current was smaller for the BST/10 mol % MgO film compared to the pure BST film and this low leakage current may be attributed to the substitution of Mg in the B sites of BST lattices which might have behaved as an electron acceptors.« less

  16. Pulsed laser deposition of YBCO films on ISD MgO buffered metal tapes

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, M.; Koritala, R. E.; Fisher, B. L.; Markowitz, A. R.; Erck, R. A.; Baurceanu, R.; Dorris, S. E.; Miller, D. J.; Balachandran, U.

    2003-04-01

    Biaxially textured magnesium oxide (MgO) films deposited by inclined-substrate deposition (ISD) are desirable for rapid production of high-quality template layers for YBCO-coated conductors. High-quality YBCO films were grown on ISD MgO buffered metallic substrates by pulsed laser deposition (PLD). Columnar grains with a roof-tile surface structure were observed in the ISD MgO films. X-ray pole figure analysis revealed that the (002) planes of the ISD MgO films are tilted at an angle from the substrate normal. A small full-width at half maximum (FWHM) of approx9° was observed in the phi-scan for ISD MgO films deposited at an inclination angle of 55°. In-plane texture in the ISD MgO films developed in the first approx0.5 mum from the substrate surface, and then stabilized with further increases in film thickness. Yttria-stabilized zirconia and ceria buffer layers were deposited on the ISD MgO grown on metallic substrates prior to the deposition of YBCO by PLD. YBCO films with the c-axis parallel to the substrate normal have a unique orientation relationship with the ISD MgO films. An orientation relationship of YBCOlangle100rangleparallelMgOlangle111rangle and YBCOlangle010rangleparallelMgOlangle110rangle was measured by x-ray pole figure analyses and confirmed by transmission electron microscopy. A Tc of 91 K with a sharp transition and transport Jc of 5.5 × 105 A cm-2 at 77 K in self-field were measured on a YBCO film that was 0.46 mum thick, 4 mm wide and 10 mm long.

  17. Multifunctional MgO Layer in Perovskite Solar Cells.

    PubMed

    Guo, Xudong; Dong, Haopeng; Li, Wenzhe; Li, Nan; Wang, Liduo

    2015-06-08

    A multifunctional magnesium oxide (MgO) layer was successfully introduced into perovskite solar cells (PSCs) to enhance their performance. MgO was coated onto the surface of mesoporous TiO(2) by the decomposition of magnesium acetate and, therefore, could block contact between the perovskite and TiO(2). X-ray photoelectron spectroscopy and infrared spectroscopy showed that the amount of H(2)O/hydroxyl absorbed on the TiO(2) decreased after MgO modification. The UV/Vis absorption spectra of the perovskite with MgO modification revealed an enhanced photoelectric performance compared with that of unmodified perovskite after UV illumination. In addition to the photocurrent, the photovoltage and fill factor also showed an enhancement after modification, which resulted in an increase in the overall efficiency of the cell from 9.6 to 13.9 %. Electrochemical impedance spectroscopy (EIS) confirmed that MgO acts as an insulating layer to reduce charge recombination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Sijun, E-mail: sluo1@tulane.edu; Riggs, Brian C.; Shipman, Joshua T.

    Direct integration of proton conductor films on Pt-coated substrates opens the way to film-based proton transport devices. Columnar SrZr{sub 0.95}Y{sub 0.05}O{sub 3−δ} (SZY) films with dense microstructure were deposited on Pt-coated MgO(100) substrates at 830 °C by pulsed laser deposition. The optimal window of ambient O{sub 2} pressure for good crystallinity of SZY films is from 400 to 600 mTorr. The ambient O{sub 2} compresses the plasma plume of SZY and increases the deposition rate. The 10 nm thick Ti adhesion layer on MgO(100) greatly affects the orientation of the sputtered Pt layers. Pt deposited directly on MgO shows a highly (111)-preferredmore » orientation and leads to preferentially oriented SZY films while the addition of a Ti adhesion layer makes Pt show a less preferential orientation that leads to randomly oriented SZY films. The RMS surface roughness of preferentially oriented SZY films is larger than that of randomly oriented SZY films deposited under the same ambient O{sub 2} pressure. As the O{sub 2} pressure increased, the RMS surface roughness of preferentially oriented SZY films increased, reaching 45.7 nm (2.61% of film thickness) at 600 mTorr. This study revealed the ambient O{sub 2} pressure and orientation dependent surface roughness of SZY films grown on Pt-coated MgO substrates, which provides the potential to control the surface microstructure of SZY films for electrochemical applications in film-based hydrogen devices.« less

  19. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey.

    PubMed

    Hellwig, Michael; Rückriemen, Jana; Sandner, Daniel; Henle, Thomas

    2017-05-03

    As a unique feature, honey from the New Zealand manuka tree (Leptospermum scoparium) contains substantial amounts of dihydroxyacetone (DHA) and methylglyoxal (MGO). Although MGO is a reactive intermediate in the Maillard reaction, very little is known about reactions of MGO with honey proteins. We hypothesized that the abundance of MGO should result in a particular pattern of protein-bound Maillard reaction products (MRPs) in manuka honey. A protein-rich high-molecular-weight fraction was isolated from 12 manuka and 8 non-manuka honeys and hydrolyzed enzymatically. By HPLC-MS/MS, 8 MRPs, namely, N-ε-fructosyllysine, N-ε-maltulosyllysine, carboxymethyllysine, carboxyethyllysine (CEL), pyrraline, formyline, maltosine, and methylglyoxal-derived hydroimidazolone 1 (MG-H1), were quantitated. Compared to non-manuka honeys, the manuka honeys were characterized by high concentrations of CEL and MG-H1, whereas the formation of N-ε-fructosyllysine was suppressed, indicating concurrence reactions of glucose and MGO at the ε-amino group of protein-bound lysine. Up to 31% of the lysine and 8% of the arginine residues, respectively, in the manuka honey protein can be modified to CEL and MG-H1, respectively. CEL and MG-H1 concentrations correlated strongly with the MGO concentration of the honeys. Manuka honey possesses a special pattern of protein-bound MRPs, which might be used to prove the reliability of labeled MGO levels in honeys and possibly enable the detection of fraudulent MGO or DHA addition to honey.

  20. The melting points of MgO up to 4 TPa predicted based on ab initio thermodynamic integration molecular dynamics

    NASA Astrophysics Data System (ADS)

    Taniuchi, Takashi; Tsuchiya, Taku

    2018-03-01

    The melting curve of MgO is extended up to 4 TPa, corresponding to the Jovian core pressure, based on the one-step thermodynamic integration method implemented on ab initio molecular dynamics. The calculated melting temperatures are 3100 and 16 000 K at 0 and 500 GPa, respectively, which are consistent with previous experimental results, and 20 600 K at 3900 GPa, which is inconsistent with a recent experimental extrapolation, which implies the molten Jovian core. A quite small Clapeyron slope (dT/dP ) of 0.0+/- 0.5 is found at 3900 GPa due to comparable densities of the liquid and B2 phases under extreme compression. The Mg-O coordination number in the liquid phase is saturated at around 7.5 above 1 TPa and remains smaller than that in the B2 phase (8) even at 4 TPa, suggesting no density crossover between liquid and crystal and thus no further denser crystalline phases. Dynamical properties (atomic diffusivity and viscosity) are also investigated along the melting curve to understand these behaviors in greater detail.

  1. Effect of the MgO on microstructure and optical properties of TAG (Tb3Al5O12) transparent ceramics using hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Zhang, Shouyi; Liu, Peng; Xu, Xiaodong; Zhang, Jian

    2018-06-01

    In this work, the TAG transparent ceramics doped with 0.4 wt.% TEOS and different concentration of MgO were fabricated by a reactive sintering process under vacuum sintering combined with hot isostatic pressing (HIP) treatment. The effect of MgO on the microstructure evolution and optical properties of delivered ceramics were investigated. The results showed that the TAG ceramics doped with 0.4 wt.% TEOS and 0.1 wt.% MgO exhibited the optimum optical transmittance, which can reach about 81% in the visible and near-infrared (NIR) regions. The addition of MgO inhibited the grain growth and accelerated the densification of TAG ceramic at the sintering temperature reached about 1600 °C.

  2. Stabilization of arsenic and lead by magnesium oxide (MgO) in different seawater concentrations.

    PubMed

    Kameda, Kentaro; Hashimoto, Yohey; Ok, Yong Sik

    2018-02-01

    Ongoing sea level rise will have a major impact on mobility and migration of contaminants by changing a number of natural phenomena that alter geochemistry and hydrology of subsurface environment. In-situ immobilization techniques may be a promising remediation strategy for mitigating contaminant mobility induced by sea level rise. This study investigated the reaction mechanisms of magnesium oxide (MgO) with aqueous Pb and As under freshwater and seawater using XAFS spectroscopy. Initial concentrations of Pb and As in freshwater strongly controlled the characteristics of the reaction product of MgO. Our study revealed that i) the removal of aqueous Pb and As by MgO was increased by the elevation of seawater concentration, and ii) the removal of As was attributed primarily to (inner-sphere) surface adsorption on MgO, independent on seawater concentrations, and iii) the retention mechanism of Pb was dependent on seawater concentrations where formations of Pb oxides and adsorption on the MgO surface were predominant in solutions with low and high salinity, respectively. The release of As fixed with MgO significantly increased in seawater compared to freshwater, although the amount of As desorbed accounted for <0.2% of total As. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  4. Experimental Work Conducted on MgO Inundated Hydration in WIPP-Relevant Brines

    NASA Astrophysics Data System (ADS)

    Deng, H.; Xiong, Y.; Nemer, M. B.; Johnsen, S.

    2009-12-01

    Magnesium oxide (MgO) is being emplaced in the Waste Isolation Pilot Plant (WIPP) as an engineered barrier to mitigate the effect of microbial CO2 generation on actinide mobility in a postclosure repository environment. MgO will sequester CO2 and consume water in brine or water vapor in the gaseous phase. Martin Marietta (MM) MgO is currently being emplaced in the WIPP. A fractional-factorial experiment has been performed to study the inundated-hydration of MM MgO as a function of its particle size, solid-to-liquid ratio, and brine type. MgO hydration experiments have been carried out with three MgO particle sizes and two solid-to-liquid ratios in three WIPP-related brines: ERDA-6, GWB and simplified GWB. ERDA-6 is a synthetic NaCl-rich brine typical of a Castile brine reservoir below the repository. GWB is a synthetic MgCl2- and NaCl-rich brine representative of intergranular brines from the Salado Formation at or near the stratigraphic horizon of the repository. Simplified GWB contains amounts of Mg, Na, and Cl similar to those in GWB without other minor constituents. The hydration products include brucite (Mg(OH)2) and phase 5 (Mg3(OH)5Cl4H2O). In addition to phase 5, MgO hydration in GWB or simplified GWB produces brucite, whereas MgO hydrated in ERDA-6 only produces brucite. The MgO particle size has had a significant effect on the formation of hydration products: small MgO particles have hydrated before the large particles. MgO has hydrated faster in simplified GWB than in the other two brines. In ERDA-6, the solid-to-liquid ratio has affected the brine pH due to the presence of CaO (~1 wt %) as an impurity in MM MgO. GWB has sufficient dissolved Mg to buffer pH despite small amounts of CaO. Both our results and thermodynamic modeling indicate that phase-5 is the stable Mg-OH-Cl phase in Mg-Na-Cl-dominated brines with ionic strengths and chemical compositions similar to that of GWB. In contrast, phase-3 (Mg2(OH)3Cl4H2O) is the stable phase in the MgCl2-saturated Q-brine, a high-ionic-strength (up to 15 m) brine from Asse, Germany. We used EQ3/6 to simulate MgO hydration and carbonation in a closed system containing brine and CO2 at atmospheric concentration by titrating periclase into the system. (EQ3/6 is a geochemical software package for speciation, solubility calculations and reaction path modeling.) EQ3/6 predicted Mg and Cl concentrations and pH similar to the experimentally observed values. EQ3/6 also predicted hydration products similar to thsoe observed experimentally. * This research is funded by WIPP programs administered by the U.S. Department of Energy. ** Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Low-current-density spin-transfer switching in Gd{sub 22}Fe{sub 78}-MgO magnetic tunnel junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinjo, Hidekazu, E-mail: kinjou.h-lk@nhk.or.jp; Machida, Kenji; Aoshima, Ken-ichi

    2014-05-28

    Magnetization switching of a relatively thick (9 nm) Gd-Fe free layer was achieved with a low spin injection current density of 1.0 × 10{sup 6} A/cm{sup 2} using MgO based magnetic tunnel junction devices, fabricated for light modulators. At about 560 × 560 nm{sup 2} in size, the devices exhibited a tunneling magnetoresistance ratio of 7%. This low-current switching is mainly attributed to thermally assisted spin-transfer switching in consequence of its thermal magnetic behavior arising from Joule heating.

  6. Nitrogen utilization and digestibility of amino acids by lambs fed a high-concentrate diet with limestone or magnesium oxide.

    PubMed

    Christiansen, M L; Webb, K E

    1990-07-01

    Effects were evaluated of high dietary levels of magnesium oxide (MgO) or limestone on DM, OM and CP digestibility, N balance and intestinal absorption of amino acids by lambs fed a high concentrate diet. Twelve wether lambs equipped with abomasal and ileal cannulas were blocked by weight and breeding and allotted to treatments in a randomized block design in two consecutive trials. Diets were control (800 g), control plus 1.5% MgO (812 g), control plus 1.5% limestone (812 g) and control plus 3.0% limestone (824 g) fed in two equal portions at 12-h intervals. Ruminal fluid pH differences were small. The pH of ileal digesta was greater (P less than .05) with MgO than with limestone (8.23 vs 7.73). Fecal pH was higher (P less than .01) for lambs fed all mineral treatments (avg 8.75) than for lambs fed the control (7.61) and was higher (P less than .01) when MgO (9.53) rather than limestone (8.36) was fed. Ruminal NH3N was lower (P less than .01) when lambs were fed MgO (11.9 mg/dl) compared with limestone (avg 31.2 mg/dl). Preintestinal DM digestibility was greatest (P less than .10) with limestone (avg 49.5%) feeding compared with feeding MgO (31.2%) or the control (35.4%). About 41.5% more essential (P less than .05) and 48% more nonessential (P less than .03) amino acids reached the small intestine when MgO was fed than when limestone was fed. Partial digestibility of amino acids in the small intestine was reduced (P less than .03) an average of 5 percentage units when MgO or limestone was fed. Feeding high levels of MgO or limestone to lambs did not improve the overall digestibility of DM, OM or CP. In fact, feeding high levels of MgO or limestone appeared to be detrimental, reducing intestinal absorption of amino acids.

  7. Improved thermal stability of Mn-Ir-based magnetic tunnel junction with nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Yoon, S. Y.; Kim, Y. I.; Lee, D. H.; Kim, Y. S.; Suh, S. J.

    2004-06-01

    Si/SiO2/Ta/NiFe/Mn-Ir/CoFe/NOL/CoFe/Al-O/CoFe/NiFe/Ta bottom conventional (without nano-oxide layer, NOL) and specular (with NOL) MTJs were prepared by DC magnetron sputtering methods. In the case of a conventional MTJ, the TMR ratio increased up to 300 °C but the TMR ratio of a specular MTJ increased up to 400 °C. The highest TMR ratios of two samples after annealing at each optimal temperature were 21.6% (conventional MTJ) and 22.7% (specular MTJ), respectively, This improved thermal property of the specular MTJ is due to the NOL, which could act as a diffusion barrier for Mn. The bias-voltage dependence of both samples was vastly improved after annealing at each optimal temperature.

  8. Magnetotransport and interdiffusion characteristics of magnetic tunnel junctions comprising nano-oxide layers upon exposure to postdeposition annealing

    NASA Astrophysics Data System (ADS)

    Chu, In Chang; Song, Min Sung; Chun, Byong Sun; Lee, Seong Rae; Kim, Young Keun

    2005-08-01

    Magnetic tunnel junction (MTJ) structures based on underlayer (CoNbZr)/bufferlayer (CoFe)/antiferromagnet (IrMn)/pinned layer (CoFe)/tunnel barrier (AlO x)/free layer (CoFe)/capping (CoNbZr) have been prepared to investigate thermal degradation of magnetoresistive responses. Some junctions possess a nano-oxide layer (NOL) inside either in the underlayer or bufferlayer. The main purpose of the NOL inclusion was to control interdiffusion path of Mn from the antiferromagnet so that improved thermal stability could be achieved. The MTJs with NOLs were found to have reduced interfacial roughness, resulting in improved tunneling magnetoresistance (TMR) and reduced interlayer coupling field. We also confirmed that the NOL effectively suppressed the Mn interdiffusion toward the tunnel barrier by dragging Mn atoms toward NOL during annealing.

  9. Evidence for large compositional ranges in coeval melts erupted from Kīlauea's summit reservoir: Chapter 7

    USGS Publications Warehouse

    Helz, Rosalind T.; Clague, David A.; Mastin, Larry G.; Rose, Timothy R.; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Petrologic observations on Kīlauea's lavas include abundant microprobe analyses of glasses, which show the range of melts available in Kīlauea's summit reservoir over time. During the past two centuries, compositions of melts erupted within the caldera have been limited to MgO = 6.3–7.5 wt%. Extracaldera lavas of the 1959, 1971, and 1974 eruptions contain melts with up to 10.2, 8.9, and 9.2 wt% MgO, respectively, and the 1924 tephra contains juvenile Pele's tears with up to 9.1 wt% MgO. Melt compositions from explosive deposits at Kīlauea, including the Keanakāko‘i (A.D. 1500–1800), Kulanaokuaiki (A.D. 400–1000), and Pāhala (10–25 ka) tephra units, show large ranges of MgO contents. The range of melt MgO is 6.5–11.0 wt% for the Keanakāko‘i; the Kulanaokuaiki extends to 12.5% MgO and the Pāhala Ash includes rare shards with 13–14.5% MgO. The frequency distributions for MgO in the Keanakāko‘i and Kulanaokuaiki glasses are bimodal, suggesting preferential magma storage at two different depths. Kīlauea's summit reservoir contains melts ranging from 6.5 to at least 11.0 wt% MgO, and such melts were available for sampling near instantaneously and repeatedly over centuries. More magnesian melts are inferred to have risen directly from greater depth.

  10. Application of flowerlike MgO for highly sensitive determination of lead via matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Hou, Jian; Chen, Suming; Cao, Changyan; Liu, Huihui; Xiong, Caiqiao; Zhang, Ning; He, Qing; Song, Weiguo; Nie, Zongxiu

    2016-08-01

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) is a high-throughput method to achieve fast and accurate identification of lead (Pb) exposure, but is seldom used because of low ionization efficiency and insufficient sensitivity. Nanomaterials applied in MS are a promising technique to overcome the obstacles of MALDI. Flowerlike MgO nanostructures are applied for highly sensitive lead profiling in real samples. They can be used in two ways: (a) MgO is mixed with N-naphthylethylenediamine dihydrochloride (NEDC) as a novel matrix MgO/NEDC; (b) MgO is applied as an absorbent to enrich Pb ions in very dilute solution. The signal intensities of lead by MgO/NEDC were ten times higher than the NEDC matrix. It also shows superior anti-interference ability when analyzing 10 μmol/L Pb ions in the presence of organic substances or interfering metal ions. By applying MgO as adsorbent, the LOD of lead before enrichment is 1 nmol/L. Blood lead test can be achieved using this enrichment process. Besides, MgO can play the role of internal standard to achieve quantitative analysis. Flowerlike MgO nanostructures were applied for highly sensitive lead profiling in real samples. The method is helpful to prevent Pb contamination in a wide range. Further, the combination of MgO with MALDI MS could inspire more nanomaterials being applied in highly sensitive profiling of pollutants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Tunable magnetic properties by interfacial manipulation of L1(0)-FePt perpendicular ultrathin film with island-like structures.

    PubMed

    Feng, C; Wang, S G; Yang, M Y; Zhang, E; Zhan, Q; Jiang, Y; Li, B H; Yu, G H

    2012-02-01

    Based on interfacial manipulation of the MgO single crystal substrate and non-magnetic AIN compound, a L1(0)-FePt perpendicular ultrathin film with the structure of MgO/FePt-AIN/Ta was designed, prepared, and investigated. The film is comprised of L1(0)-FePt "magnetic islands," which exhibits a perpendicular magnetic anisotropy (PMA), tunable coercivity (Hc), and interparticle exchange coupling (IEC). The MgO substrate promotes PMA of the film because of interfacial control of the FePt lattice orientation. The AIN compound is doped to increase the difference of surface energy between FePt layer and MgO substrate and to suppress the growth of FePt grains, which takes control of island growth mode of FePt atoms. The AIN compound also acts as isolator of L1(0)-FePt islands to pin the sites of FePt domains, resulting in the tunability of Hc and IEC of the films.

  12. Precipitation of ammonium from concentrated industrial wastes as struvite: a search for the optimal reagents.

    PubMed

    Borojovich, Eitan J C; Münster, Meshulam; Rafailov, Gennady; Porat, Ze'ev

    2010-07-01

    Precipitation of struvite (MgNH4PO4) is a known process for purification of wastewater from high concentrations of ammonium. The optimal conditions for precipitation are basic pH (around 9) and sufficient concentrations of magnesium and phosphate ions. In this work, we accomplished efficient precipitation of ammonium from concentrated industrial waste stream by using magnesium oxide (MgO) both as a source of magnesium ions and as a base. Best results were obtained with technical-grade MgO, which provided 99% removal of ammonium. Moreover, ammonium removal occurred already at pH 7, and the residual ammonium concentration (50 mg/L) remained constant upon addition of more MgO without rising again, as occurs with sodium hydroxide (NaOH). This process may have two other advantages; it also can be relevant for the problem of uncontrolled precipitation of struvite in the supernatant of anaerobic sludge treatment plants, and the precipitate can be used as a fertilizer.

  13. Tunneling-Magnetoresistance Ratio Comparison of MgO-Based Perpendicular-Magnetic-Tunneling-Junction Spin Valve Between Top and Bottom Co2Fe6B2 Free Layer Structure.

    PubMed

    Lee, Du-Yeong; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2016-12-01

    For the perpendicular-magnetic-tunneling-junction (p-MTJ) spin valve with a nanoscale-thick bottom Co2Fe6B2 free layer ex situ annealed at 400 °C, which has been used as a common p-MTJ structure, the Pt atoms of the Pt buffer layer diffused into the MgO tunneling barrier. This transformed the MgO tunneling barrier from a body-centered cubic (b.c.c) crystallized layer into a mixture of b.c.c, face-centered cubic, and amorphous layers and rapidly decreased the tunneling-magnetoresistance (TMR) ratio. The p-MTJ spin valve with a nanoscale-thick top Co2Fe6B2 free layer could prevent the Pt atoms diffusing into the MgO tunneling barrier during ex situ annealing at 400 °C because of non-necessity of a Pt buffer layer, demonstrating the TMR ratio of ~143 %.

  14. Effect of Relative Humidity and CO2 Concentration on the Properties of Carbonated Reactive MgO Cement Based Materials

    NASA Astrophysics Data System (ADS)

    Bilan, Yaroslav

    Sustainability of modern concrete industry recently has become an important topic of scientific discussion, and consequently there is an effort to study the potential of the emerging new supplementary cementitious materials. This study has a purpose to investigate the effect of reactive magnesia (reactive MgO) as a replacement for general use (GU) Portland Cements and the effect of environmental factors (CO2 concentrations and relative humidity) on accelerated carbonation curing results. The findings of this study revealed that improvement of physical properties is related directly to the increase in CO2 concentrations and inversely to the increase in relative humidity and also depends much on %MgO in the mixture. The conclusions of this study helped to clarify the effect of variable environmental factors and the material replacement range on carbonation of reactive magnesia concrete materials, as well as providing an assessment of the optimal conditions for the effective usage of the material.

  15. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal.

    PubMed

    Shen, Yixiao; Xu, Zhimin; Sheng, Zhanwu

    2017-02-01

    Glycation can generate advanced glycation end products (AGE) and its intermediates methylglyoxal (MGO) and glyoxal in foods, which increase the risk of developing diabetes diseases. In this study, the effect of resveratrol against AGE formation, carbohydrate-hydrolyzing enzyme activity and trapping MGO capability were evaluated. Resveratrol showed a significant inhibition capability against AGE formation in bovine serum albumin (BSA)-fructose, BSA-MGO and arginine-MGO models with inhibition percentages of 57.94, 85.95 and 99.35%, respectively. Furthermore, resveratrol acted as a competitive inhibitor for α-amylase with IC50 3.62μg/ml, while it behaved in an uncompetitive manner for α-glucosidase with an IC50 of 17.54μg/l. A prevention of BSA protein glycation was observed in the BSA-fructose model with addition of resveratrol. Three types of resveratrol-MGO adducts were identified in the model consisting of MGO and resveratrol. The results demonstrated that resveratrol has potential in reducing glycation in foods and retarding carbohydrate-hydrolyzing enzyme activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    NASA Astrophysics Data System (ADS)

    Kumar, Danith; Yadav, L. S. Reddy; Lingaraju, K.; Manjunath, K.; Suresh, D.; Prasad, Daruka; Nagabhushana, H.; Sharma, S. C.; Naika, H. Raja; Chikkahanumantharayappa, Nagaraju, G.

    2015-06-01

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm-1 indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV -Vis spectrum was found to be in the range 5.40-5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  17. Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion

    DOEpatents

    Siriwardane, Ranjani V.; Miller, Duane D.

    2014-08-19

    The disclosure provides an oxygen carrier comprised of a plurality of metal oxide particles in contact with a plurality of MgO promoter particles. The MgO promoter particles increase the reaction rate and oxygen utilization of the metal oxide when contacting with a gaseous hydrocarbon at a temperature greater than about 725.degree. C. The promoted oxide solid is generally comprised of less than about 25 wt. % MgO, and may be prepared by physical mixing, incipient wetness impregnation, or other methods known in the art. The oxygen carrier exhibits a crystalline structure of the metal oxide and a crystalline structure of MgO under XRD crystallography, and retains these crystalline structures over subsequent redox cycles. In an embodiment, the metal oxide is Fe.sub.2O.sub.3, and the gaseous hydrocarbon is comprised of methane.

  18. Formation mechanism, degradation behavior, and cytocompatibility of a nanorod-shaped HA and pore-sealed MgO bilayer coating on magnesium.

    PubMed

    Li, Bo; Han, Yong; Qi, Kai

    2014-10-22

    A novel bilayer coating (HT24h) was fabricated on magnesium using microarc oxidation (MAO) and hydrothermal treatment (HT). The coating comprises an outer layer of narrow interrod spaced hydroxyapatite (HA) nanorods and an inner layer of MgO containing Mg(OH)2/HA-sealing-pores. The hydrothermal formation mechanism of HA nanorods on MAO-formed MgO was explored. Also, evolution of structure and bonding integrity of HT24h coating with immersion in physiological saline (PS) for 0-90 days, corrosion resistance and cytocompatibility of the coating were investigated, together with MgO containing Mg(OH)2-sealing-pores (HT2h) and porous MgO (MAO) coatings. Corrosion resistance was identified by three-point bending and electrochemical tests in PS, while cytocompatibility was determined by MTT, live/dead staining, and vinculin-actin-nucleus tricolor staining assays of hFOB1.19 cells. Immersion tests indicate that cracking rather than delamination is a common feature in most areas of the coatings up to day 90 and degradation is the reason for thinning in thickness of the coatings. MAO and HT2h coatings exhibit a significant thinning due to fast degradation of MgO. However, HT24h coating shows a quite small thinning, owing to the fact that the HA nanorods underwent quite slow degradation while the underlying MgO only underwent conversion to Mg(OH)2 without dissolution of the Mg(OH)2. Scratch tests reveal that HT24h coating still retains relatively high bonding integrity, although the failure position changes from the MgO interior to a point between the HA and MgO layers after 90 days of immersion. HT24h coating appears far more effective than MAO and HT2h coatings in reducing degradation and maintaining the mechanical integrity of Mg, as well as enhancing the mitochondrial activity, adhesion, and proliferation of osteoblasts.

  19. Surfactant-mediated growth of cobalt on magnesium oxide(111)

    NASA Astrophysics Data System (ADS)

    Johnson-Steigelman, Harry Trevor

    Monolayer films of Co have been deposited using an electrostatic electron-beam evaporator on single-crystal MgO(111)-( 3x3 ) R 30° and MgO(111)-(1x1) substrates held at room temperature (RT), with subsequent annealing of temperatures 400°C to 800°C. These films have been characterized using low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Upon RT deposition of Co, the LEED pattern of the substrate disappears and the XPS signal of MgO features reduce in intensity. After short anneals of 400°C, the LEED pattern returns and the MgO features increase in intensity. AFM images suggest that islanding has occurred at the surface. This conclusion is supported by the behavior of thicker films of Co on MgO(111), which showed pronounced changes in the MgO related XPS features. The behavior of the Mg 2p and O 1s features were analyzed and compared to previously reported reconstructions of the MgO(111)-(1x1) and MgO(111)-( 3x3 ) R 30° surfaces. Ag was examined as a potential surfactant to aid in the growth of smooth Co films. Ag was deposited onto MgO(111)-( 3x3 ) R 30° substrates and investigated using XPS, LEED, and AFM. It was found that Ag formed islands upon annealing. Despite the fact that Ag formed islands, it was found that the presence of Ag did have a surfactant effect upon the thin-film growth of Co on Ag/MgO(111)-( 3x3 ) R 30° substrates with 1-2 ML of Ag. Co islands were still present, but much more smooth than islands formed without the Ag surfactant. XPS peak intensity changes and AFM suggest strongly that Ag floated to the top of these samples at temperatures above 400°C. The Co growth mode appears to be Volmer-Weber island growth, as seen in AFM.

  20. Tailoring oxide properties: An impact on adsorption characteristics of molecules and metals

    NASA Astrophysics Data System (ADS)

    Honkala, Karoliina

    2014-12-01

    Both density functional theory calculations and numerous experimental studies demonstrate a variety of unique features in metal supported oxide films and transition metal doped simple oxides, which are markedly different from their unmodified counterparts. This review highlights, from the computational perspective, recent literature on the properties of the above mentioned surfaces and how they adsorb and activate different species, support metal aggregates, and even catalyse reactions. The adsorption of Au atoms and clusters on metal-supported MgO films are reviewed together with the cluster's theoretically predicted ability to activate and dissociate O2 at the Au-MgO(100)/Ag(100) interface, as well as the impact of an interface vacancy to the binding of an Au atom. In contrast to a bulk MgO surface, an Au atom binds strongly on a metal-supported ultra-thin MgO film and becomes negatively charged. Similarly, Au clusters bind strongly on a supported MgO(100) film and are negatively charged favouring 2D planar structures. The adsorption of other metal atoms is briefly considered and compared to that of Au. Existing computational literature of adsorption and reactivity of simple molecules including O2, CO, NO2, and H2O on mainly metal-supported MgO(100) films is discussed. Chemical reactions such as CO oxidation and O2 dissociation are discussed on the bare thin MgO film and on selected Au clusters supported on MgO(100)/metal surfaces. The Au atoms at the perimeter of the cluster are responsible for catalytic activity and calculations predict that they facilitate dissociative adsorption of oxygen even at ambient conditions. The interaction of H2O with a flat and stepped Ag-supported MgO film is summarized and compared to bulk MgO. The computational results highlight spontaneous dissociation on MgO steps. Furthermore, the impact of water coverage on adsorption and dissociation is addressed. The modifications, such as oxygen vacancies and dopants, at the oxide-metal interface and their effect on the adsorption characteristics of water and Au are summarized. Finally, more limited computational literature on transition metal (TM) doped CaO(100) and MgO(100) surfaces is presented. Again, Au is used as a probe species. Similar to metal-supported MgO films, Au binds more strongly than on undoped CaO(100) and becomes negatively charged. The discussion focuses on rationalization of Au adsorption with the help of Born-Haber cycle, which reveals that the so-called redox energy including the electron transfer from the dopant to the Au atom together with the simultaneous structural relaxation of lattice atoms is responsible for enhanced binding. In addition, adsorption energy dependence on the position and type of the dopant is summarized.

  1. High-precision Pb Isotopes Reveal Two Small Magma Bodies Beneath the Summit of Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Pietruszka, A. J.; Heaton, D. E.; Marske, J. P.; Garcia, M. O.

    2013-12-01

    The summit magma storage reservoir of Kilauea Volcano is one of the most important components of the volcano's magmatic plumbing system, but its geometry is poorly known. High-precision Pb isotopic analyses of Kilauea summit lavas (1959-1982) define the minimum number of magma bodies within the summit reservoir and their volumes. The 206Pb/204Pb ratios of these lavas display a temporal decrease due to changes in the composition of the parental magma delivered to the volcano. Analyses of multiple lavas from some individual eruptions reveal small but significant differences in 206Pb/204Pb. The extra-caldera lavas from Aug. 1971 and Jul. 1974 display lower Pb isotope ratios and higher MgO contents (10 wt. %) than the intra-caldera lavas (MgO ~7-8 wt. %) from each eruption. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate decreasing temporal trends. The intra-caldera lavas from 1971, 1974, 1975, Apr. 1982 and the lower MgO lavas from Sep. 1982 have higher 206Pb/204Pb ratios at a given time (compared to the extra-caldera lavas and the higher MgO lavas from Sep. 1982). These trends require that the intra- and extra-caldera lavas (and the Sep. 1982 lavas) were supplied from two separate, partially isolated magma bodies. Numerous studies (Fiske and Kinoshita, 1969; Klein et al., 1987) have long identified the locus of Kilauea's summit reservoir ~2 km southeast of Halemaumau (HMM) at a depth of ~2-7 km, but more recent investigations have discovered a second magma body located <1 km below the east rim of HMM (Battaglia et al., 2003; Johnson et al., 2010). The association between the vent locations of the extra-caldera lavas near the southeast rim of the caldera and their higher MgO contents suggests that these lavas tapped the deeper magma body. In contrast, the lower MgO intra-caldera lavas were likely derived from the shallow magma body beneath HMM. Residence time modeling based on the Pb isotope ratios of the lavas suggests that the magma volume of the deeper body is ~0.2 km3, whereas the shallow body holds a minimum of ~0.04 km3 of magma. These estimates are smaller than a previous calculation of ~2-3 km3 for Kilauea's summit reservoir based on trace element ratios (Pietruszka and Garcia, 1999), but are similar to the volume of the magma body that underlies Piton de la Fournaise Volcano on Réunion Island (Albarède, 1993).

  2. Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: Response surface methodological optimization.

    PubMed

    Darvishi Cheshmeh Soltani, Reza; Safari, Mahdi

    2016-09-01

    The improvement of sonocatalytic treatment of real textile wastewater in the presence of MgO nanoparticles was the main goal of the present study. According to our preliminary results, the application of pulse mode of sonication, together with the addition of periodate ions, produced the greatest sonocatalytic activity and consequently, the highest chemical oxygen demand (COD) removal efficiency (73.95%) among all the assessed options. In the following, pulsed sonocatalysis of real textile wastewater in the presence of periodate ions was evaluated response surface methodologically on the basis of central composite design. Accordingly, a high correlation coefficient of 0.95 was attained for the applied statistical strategy to optimize the process. As results, a pulsed sonication time of 141min, MgO dosage of 2.4g/L, solution temperature of 314K and periodate concentration of 0.11M gave the maximum COD removal of about 85%. Under aforementioned operational conditions, the removal of total organic carbon (TOC) was obtained to be 63.34% with the reaction rate constant of 7.1×10(-3)min(-1) based on the pseudo-first order kinetic model (R(2)=0.99). Overall, periodate-assisted pulsed sonocatalysis over MgO nanoparticles can be applied as an efficient alternative process for treating and mineralizing real textile wastewater with good reusability potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. F + centre generation in MgO crystals at high density of excitation by accelerated electrons of subthreshold energy

    NASA Astrophysics Data System (ADS)

    Annenkov, Y. M.; Surzhikov, A. P.; Surzhikov, V. P.; Pogrebnjak, A. D.

    1981-07-01

    Optical absorption spectra and the angular distribution of annihilated positrons in MgO crystals irradiated by subtreshold superdense electron pulses are measured. The experimental results obtained show the effective contribution of the creation mechanism of non-impact radiation defects in MgO crystals at the highest electron irradiation densities.

  4. Lavas and Sills in the Ferrar Large Igneous Province: Field and Geochemical Evidence for the Order of Emplacement.

    NASA Astrophysics Data System (ADS)

    Elliot, D. H.; Fleming, T. H.

    2005-12-01

    Many large igneous provinces, particularly those associated with Gondwana break-up, include major sill complexes as well as flood basalt fields. In the Ferrar province, radiometric dates of lavas and sills are indistinguishable. Nevertheless, in north Victoria Land (NVL) field evidence suggests the lavas had to have been erupted first in order to create the overburden needed for emplacement at shallow depths of thick sills, lacking vesicles, in a thin (100 m) Upper Triassic sedimentary sequence overlying basement. Elsewhere in the Transantarctic Mountains sills occur almost exclusively in a thick (2-2.5 km) Devonian-Triassic sedimentary sequence (Beacon Supergroup) that was possibly capped by 500+m of lavas before sill emplacement. For south Victoria Land (SVL), Marsh (2004) proposed that the most evolved rocks were erupted first as lavas, and sills were emplaced at progressively greater depth as increasingly more magnesian magmas and crystal mushes were injected into supracrustal and finally basement rocks. In NVL most lavas have MgO between 6-8% with a few as low as 4.5% MgO, whereas analyzed chilled margins of sills range from 3.7-5.6% MgO. In the Prince Albert Mountains (PAM), SVL, lava and sill compositions overlap (3.9-7.3% MgO). In the greater Dry Valleys region (SVL) lavas at Carapace Nunatak range from 3.6-6.7% MgO; chilled margins of Dry Valleys sills range from about 4.2 to 7.2% MgO. In the Queen Alexandra Range, central Transantarctic Mountains (CTM), lavas are predominantly 2.6-5.7% MgO; sills in the region range from 4.5% to 10.7% MgO. In the Otway Massif region (head of the Shackleton Glacier, CTM) most lavas are strongly evolved (2.7-3.4% MgO); sills in the Shackleton Glacier region range from 4.3-7.3% MgO. Nowhere do lavas show unequivocal systematic temporal change in MgO, and notably in CTM the initial flows are the most mafic (7.5-8.0% MgO). Olivine dolerite sills (chilled margins: -9% MgO) tend to occur low in the stratigraphic section. Except for NVL where Beacon strata exposures are limited, sills are thicker (100-200 m) and more regular in lower stratigraphic levels. Sills with orthopyroxene crystal-mush tongues are not known outside the Dry Valleys except perhaps the Warren Range (SVL). No province-wide systematic relationship is apparent between compositions of lavas and sill chilled margins. Nevertheless, in CTM most lavas are significantly more evolved than the sills; within the sills there is no clear relationship between MgO and stratigraphy, and some less evolved compositions occur at relatively high stratigraphic levels. In SVL compositional overlap is almost complete; locally, cross-cutting relations show more mafic sills and sheets cutting less mafic compositions. In NVL the chemical relations between lavas and sills are opposite from those that have been advocated for SVL. Interpretation is compounded by sills that exchange stratigraphic position or climb stratigraphically. Factors affecting magma emplacement include magma density, lithostatic pressure, overpressures required for lateral emplacement, and rock physical properties; when and where the evolving source was tapped may play an equal role in the emplacement order. Further, detailed work on the sills will show whether crystallization might have yielded lower density residual liquids that could have migrated and formed distal fingers of sills or migrated to higher stratigraphic levels.

  5. Edaravone Protected Human Brain Microvascular Endothelial Cells from Methylglyoxal-Induced Injury by Inhibiting AGEs/RAGE/Oxidative Stress

    PubMed Central

    Li, Wenlu; Xu, Hongjiao; Hu, Yangmin; He, Ping; Ni, Zhenzhen; Xu, Huimin; Zhang, Zhongmiao; Dai, Haibin

    2013-01-01

    Subjects with diabetes experience an increased risk of cerebrovascular disease and stroke compared with nondiabetic age-matched individuals. Increased formation of reactive physiological dicarbonyl compound methylglyoxal (MGO) seems to be implicated in the development of diabetic vascular complication due to its protein glycation and oxidative stress effect. Edaravone, a novel radical scavenger, has been reported to display the advantageous effects on ischemic stroke both in animals and clinical trials; however, little is known about whether edaravone has protective effects on diabetic cerebrovascular injury. Using cultured human brain microvascular endothelial cells (HBMEC), protective effects of edaravone on MGO and MGO enhancing oxygen-glucose deprivation (OGD) induced injury were investigated. Cell injury was measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formation, cell account, lactate dehydrogenase (LDH) release and Rhodamine 123 staining. Advanced glycation end-products (AGEs) formation and receptor for advanced glycation end-products (RAGE) expression were measured by western blotting. Cellular oxidative stress was measured by reactive oxygen species (ROS) release. Treatment of MGO for 24 h significantly induced HBMEC injury, which was inhibited by pretreatment of edaravone from 10–100 µmol/l. What’s more, treatment of MGO enhanced AGEs accumulation, RAGE expression and ROS release in the cultured HBMEC, which were inhibited by 100 µmol/l edaravone. Finally, treatment of MGO for 24 h and then followed by 3 h OGD insult significantly enhanced cell injury when compared with OGD insult only, which was also protected by 100 µmol/l edaravone. Thus, edaravone protected HBMEC from MGO and MGO enhancing OGD-induced injury by inhibiting AGEs/RAGE/oxidative stress. PMID:24098758

  6. Probing specific oxides as potential supports for metal/oxide model catalysts: MgO(111) polar film

    NASA Astrophysics Data System (ADS)

    Grigorkina, G. S.; Ramonova, A. G.; Kibizov, D. D.; Kozyrev, E. N.; Zaalishvili, V. B.; Fukutani, K.; Magkoev, T. T.

    2017-05-01

    The growth of thermally evaporated magnesium oxide thin film on Mo(110) substrate in ultra-high vacuum was studied by means of Auger electron spectroscopy (AES), low-energy electron diffraction (LEED) and work function (WF) measurements. It is shown that at a growth rate of c.a. 0.1 monolayer per minute and the substrate temperature of 600 K the film acquires the MgO(111) structure. This structure begins to form at two monolayers and holds up to six monolayers. At higher thickness the film disorders due to weakening of the ordering effect of the isosymmetric Mo(110) support. Adsorption of CO and H2 on the formed MgO(111) film cooled down to 90 K was studied by means of ultraviolet photoelectron spectroscopy (UPS) and reflection absorption infrared spectroscopy (RAIRS) and compared with in-situ obtained results for CO on Pt(111). Comparison of UPS data of CO on MgO(111) and Pt(111) in combination with RAIRS results reveals quite different bonding mechanisms on the metal and the oxide supports. The main feature of CO on MgO(111) is quite high intensity of CO stretch vibration, considerably exceeding that on amorphous MgO, and comparable to that of CO on Pt(111). This is presumably due to the electrostatic effect of the uncompensated microscopic dipole moment of ultrathin MgO(111) film on the enhancing of CO dynamical dipole moment. Adsorption of H2 dramatically reduces the CO stretch intensity as a possible result of removing of dipole moment of MgO(111) surface by hydrogen and (CO+H2) interaction.

  7. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Danith; Chikkahanumantharayappa; Yadav, L. S. Reddy

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm{sup −1} indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV –Vis spectrum was found to be in the range 5.40–5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emissionmore » at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.« less

  8. Enhancements of magnetic properties and planar magnetoresistance by electric fields in γ-Fe{sub 2}O{sub 3}/MgO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Bin; Qin, Hongwei; Pei, Jinliang

    2016-05-23

    The treatment of perpendicular electric field upon γ-Fe{sub 2}O{sub 3}/MgO film at room temperature could adjust the magnetic properties (saturation magnetization, magnetic remanence, coercivity, and saturation magnetizing field) of the film. The enhancement of saturation magnetization after the treatment of electric field may be connected with the combined shift effects of Mg ions from MgO to γ-Fe{sub 2}O{sub 3} and O{sup 2−} ions from γ-Fe{sub 2}O{sub 3} to MgO. The negative magnetoresistance of the γ-Fe{sub 2}O{sub 3}/MgO film also enhances with the treatment of perpendicular electric field at room temperature, possibly due to the increasing of electron hopping rate betweenmore » Fe{sup 2+} and Fe{sup 3+}.« less

  9. Epitaxial growth of MgO/Ga2O3 heterostructure and its band alignment studied by X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsuo, Norihiro; Doko, Naoki; Yasukawa, Yukiko; Saito, Hidekazu; Yuasa, Shinji

    2018-07-01

    We have grown an epitaxial MgO/Ga2O3 heterostructure on a MgO(001) substrate by molecular beam epitaxy. Crystallographic studies revealed the out-of-plane and in-plane crystal orientations between the MgO overlayer and the Ga2O3 layer, which were MgO(001) ∥ β-Ga2O3(001) and MgO[100] ∥ β-Ga2O3 [02\\bar{1}], respectively. The valence band offset at the MgO/β-Ga2O3 interface was determined to be 0.19 eV (type-II band alignment) by X-ray photoelectron spectroscopy, resulting in a large conduction band offset of 2.7–3.2 eV. These results indicate that MgO is a promising potential barrier for electrons in an epitaxial MgO/Ga2O3 multilayered structure.

  10. Glycation of β-lactoglobulin and antiglycation by genistein in different reactive carbonyl model systems.

    PubMed

    Kong, Yanghui; Li, Xiaoming; Zheng, Tiesong; Lv, Lishuang

    2015-09-15

    Advanced glycation end products (AGEs), which are formed in β-lactoglobulin (β-lg) glycation systems via the Maillard reaction, have been implicated in diabetes-related long-term complications. In the present study, we found that reaction conditions, including temperature, time, pH, reactant type and molar ratio of beta-lg to a sugar/MGO/GO, can significantly affect the formation of AGEs. Using SDS-PAGE, we further demonstrated that genistein, a natural isoflavone found in a number of plants including soybeans and kudzu, can efficiently inhibit cross-links of the glycated β-lg, and suppress the formation AGEs in a dose-dependent manner by trapping reactive dicarbonyl compounds. The products formed from genistein and methylglyoxal (MGO) in the β-lg-MGO assay were analyzed using LC/MS. Both mono-MGO and di-MGO adducts of genistein were detected with this method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Preparation and characterization of epitaxial MgO thin film by atmospheric-pressure metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zeng, J. M.; Wang, H.; Shang, S. X.; Wang, Z.; Wang, M.

    1996-12-01

    Magnesium oxide (MgO) thin films have been prepared on Si(100), {SiO2(100) }/{Si} and {Pt(111) }/{Si} substrates by atmospheric-pressure metalorganic chemical vapor deposition (AP-MOCVD) for the first time. The relationship between the temperature of substrates ( Ts) and crystallographic orientations was also investigated. Magnesium acetylacetonate [Mg(CH 2COCH 2COCH 3) 2] was used as the metalorganic source. The relatively low temperature of substrates is about 480°C and the MgO thin films obtained were uniform, dense and well-ordered single crystal. X-ray diffraction experiments provided evidence that the MgO thin films on Si(100) ( Ts ≈ 400-680°C), {SiO2}/{Si} and {Pt}/{Si} were fully textured with (100) orientation. The deliquescent character of MgO thin films was also studied.

  12. Perpendicular magnetic anisotropy in Ta|Co{sub 40}Fe{sub 40}B{sub 20}|MgAl{sub 2}O{sub 4} structures and perpendicular CoFeB|MgAl{sub 2}O{sub 4}|CoFeB magnetic tunnel junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, B. S.; Li, D. L.; Yuan, Z. H.

    2014-09-08

    Magnetic properties of Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) thin films sandwiched between Ta and MgAl{sub 2}O{sub 4} layers have been systematically studied. For as-grown state, Ta/CoFeB/MgAl{sub 2}O{sub 4} structures exhibit good perpendicular magnetic anisotropy (PMA) with interface anisotropy K{sub i} = 1.22 erg/cm{sup 2}, which further increases to 1.30 erg/cm{sup 2} after annealing, while MgAl{sub 2}O{sub 4}/CoFeB/Ta multilayer shows in-plane magnetic anisotropy and must be annealed in order to achieve PMA. For bottom CoFeB layer, the thickness window for PMA is from 0.6 to 1.0 nm, while that for top CoFeB layer is between 0.8 and 1.4 nm. Perpendicular magnetic tunnel junctions (p-MTJs) with a coremore » structure of CoFeB/MgAl{sub 2}O{sub 4}/CoFeB have also been fabricated and tunneling magnetoresistance ratio of about 36% at room temperature and 63% at low temperature have been obtained. The intrinsic excitations in the p-MTJs have been identified by inelastic electron-tunneling spectroscopy.« less

  13. Perpendicular magnetic tunnel junction with a strained Mn-based nanolayer

    PubMed Central

    Suzuki, K. Z.; Ranjbar, R.; Okabayashi, J.; Miura, Y.; Sugihara, A.; Tsuchiura, H.; Mizukami, S.

    2016-01-01

    A magnetic tunnel junction with a perpendicular magnetic easy-axis (p-MTJ) is a key device for spintronic non-volatile magnetoresistive random access memory (MRAM). Co-Fe-B alloy-based p-MTJs are being developed, although they have a large magnetisation and medium perpendicular magnetic anisotropy (PMA), which make it difficult to apply them to a future dense MRAM. Here, we demonstrate a p-MTJ with an epitaxially strained MnGa nanolayer grown on a unique CoGa buffer material, which exhibits a large PMA of more than 5 Merg/cm3 and magnetisation below 500 emu/cm3; these properties are sufficient for application to advanced MRAM. Although the experimental tunnel magnetoresistance (TMR) ratio is still low, first principles calculations confirm that the strain-induced crystal lattice distortion modifies the band dispersion along the tetragonal c-axis into the fully spin-polarised state; thus, a huge TMR effect can be generated in this p-MTJ. PMID:27457186

  14. Sub-nanometer Atomic Layer Deposition for Spintronics in Magnetic Tunnel Junctions Based on Graphene Spin-Filtering Membranes

    PubMed Central

    2014-01-01

    We report on the successful integration of low-cost, conformal, and versatile atomic layer deposited (ALD) dielectric in Ni–Al2O3–Co magnetic tunnel junctions (MTJs) where the Ni is coated with a spin-filtering graphene membrane. The ALD tunnel barriers, as thin as 0.6 nm, are grown layer-by-layer in a simple, low-vacuum, ozone-based process, which yields high-quality electron-transport barriers as revealed by tunneling characterization. Even under these relaxed conditions, including air exposure of the interfaces, a significant tunnel magnetoresistance is measured highlighting the robustness of the process. The spin-filtering effect of graphene is enhanced, leading to an almost fully inversed spin polarization for the Ni electrode of −42%. This unlocks the potential of ALD for spintronics with conformal, layer-by-layer control of tunnel barriers in magnetic tunnel junctions toward low-cost fabrication and down-scaling of tunnel resistances. PMID:24988469

  15. Positron annihilation 2D-ACAR study of semi-coherent Li nanoclusters in MgO( 1 0 0 ) and MgO( 1 1 0 )

    NASA Astrophysics Data System (ADS)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W. H.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-05-01

    Depth selective positron annihilation two-dimensional angular correlation of annihilation radiation (2D-ACAR) is used to determine the electronic structure of Li nanoclusters formed by implantation of 10 16 cm -26Li ions (with an energy of 30 keV) in MgO(1 0 0) and (1 1 0) crystals, and subsequently annealed at 950 K. The 2D-ACAR spectra of Li-implanted MgO obtained with 4 keV positrons reveal the semi-coherent ordering state of the embedded metallic Li nanoclusters. The results agree with ab initio Korringa-Kohn-Rostoker calculations.

  16. Pressure-induced photoluminescence of MgO

    NASA Astrophysics Data System (ADS)

    Li, Xin; Yuan, Ye; Zhang, Jinbo; Kim, Taehyun; Zhang, Dongzhou; Yang, Ke; Lee, Yongjae; Wang, Lin

    2018-05-01

    It is reported in this paper that pressure can promote strong photoluminescence (PL) in MgO. The PL measurements of MgO indicate that it has no obvious luminescence at pressures lower than 13 GPa. PL starts to appear upon further compression and reaches a maximum intensity at about 35 GPa. The center of the emission band shows a red shift at lower pressures and turns to a blue shift as pressure exceeds 25 GPa. The PL is preserved upon complete decompression. The defects and micro-strain due to the plastic deformation of MgO are likely responsible for the origin of the luminescence.

  17. Structural and optical characterization of Er-alkali-metals codoped MgO nanoparticles synthesized by solution combustion route

    NASA Astrophysics Data System (ADS)

    Sivasankari, J.; Selvakumar Sellaiyan, S.; Sankar, S.; Devi, L. Vimala; Sivaji, K.

    2017-01-01

    Pure MgO, rare-earth (Er) doped MgO (MgO:Er), and alkali metal ions (Li, Na and K) co-doped MgO:Er [i.e. MgO: Er+X (X=Li, Na, and K)] nanopowders were synthesized by solution combustion method and characterized. The XRD analysis reveals the cubic structure and the substitution of dopants and co-dopants in MgO. Annealing at 800 °C, increases the sizes of nano-crystallites of all samples appreciably, indicating the grain growth and the improvement in crystallinity of all the samples. Increase in lattice parameter, d spacing and band gap were observed after annealing. Structural and morphological analysis using scanning electron microscope (SEM) and transmission electron microscope (TEM) studies has shown that the samples contain structures like agglomerated clusters. FT-IR spectra confirm the stretching mode of hydroxyl groups, carbonate and presence of MgO bonding. The characteristic wavelength ranging from 2600 cm-1 to 3000 cm-1 were assigned to transition of 4S3/2→4I13/2 and 4I11/2→4I15/2 of Er3+.

  18. Crystallization Behavior of the CaO-Al2O3-MgO System Studied with a Confocal Laser Scanning Microscope

    NASA Astrophysics Data System (ADS)

    Jung, Sung Suk; Sohn, Il

    2012-12-01

    The crystallization behavior of a calcium-aluminate system with various MgO content from 2.5 to 7.5 wt pct and CaO/Al2O3 ratios between 0.8 and 1.2 has been examined using a confocal laser scanning microscope (CLSM). CCT (continuous cooling transformation) and time temperature transformation (TTT) diagrams were constructed to identify the primary crystal phase of slag at different compositions and at cooling rates between 25 and 800 K/minutes. In the slag at a CaO/Al2O3 ratio of 1.0, crystallization temperature increased during isothermal and continuous cooling with higher MgO content, and the shortest incubation time was observed at 5 wt pct MgO. When MgO content was fixed to be 5 wt pct, crystallization temperature increased with lower CaO/Al2O3 ratio. According to the slag composition, cooling rates and temperature, the primary phase could be CA, or C5A3, or C3A, or C3MA2, or MgO, and the crystal morphology changes from dendrites to faceted crystals to columnar crystals in this composition range.

  19. Electronic structure of sputter deposited MgO(100) tunnel barriers in magnetic tunnel junction structures exhibiting giant tunneling magnetoresistance

    NASA Astrophysics Data System (ADS)

    Yang, See-Hun; Samant, Mahesh; Parkin, Stuart

    2007-03-01

    Giant tunneling magnetoresistance (TMR) in magnetic tunnel junctions formed with crystalline MgO tunnel barriers [1] have potential applications in a wide variety of spintronic devices. However, the relationship of the TMR to the detailed chemical and electronic structure of the MgO barrier and its interfaces with the ferromagnetic electrodes is not yet fully understood. We have carried out valence band photoemission spectroscopy and x-ray absorption spectroscopy to characterize the chemical state and electronic structure of sputter deposited, highly oriented, MgO (001) barriers and its interfaces with ferromagnetic electrodes. A large band gap of ˜7.5 eV is found even for ultrathin MgO layers. This is consistent with barrier heights found from fitting current versus voltage curves providing that very small effective electron masses are used. We discuss the role of thin Mg interface layers that we have used to reduce oxidation of the underlying ferromagnetic layer during the MgO layer formation [1]. [1] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, S.-H. Yang, Nature Materials 3, 862 (2004).

  20. External electric field driven modification of the anomalous and spin Hall conductivities in Fe thin films on MgO(001)

    NASA Astrophysics Data System (ADS)

    Pradipto, Abdul-Muizz; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji

    2018-01-01

    The effects of applying external electric fields to the anomalous and spin Hall conductivities in Fe thin-film models with different layer thicknesses on MgO(001) are investigated by using first-principles calculations. We observe that, for the considered systems, the application of positive electric field associated with the accumulation of negative charges on the Fe side generally decreases (increases) the anomalous (spin) Hall conductivities. The mapping of the Hall conductivities within the two-dimensional Brillouin zone shows that the electric-field-induced modifications are related to the modification of the band structures of the atoms at the interface with the MgO substrate. In particular, the external electric field affects the Hall conductivities via the modifications of the dx z,dy z orbitals, in which the application of positive electric field pushes the minority-spin states of the dx z,dy z bands closer to the Fermi level. Better agreement with the anomalous Hall conductivity for bulk Fe and a more realistic scenario for the electric field modification of Hall conductivities are obtained by using the thicker layers of Fe on MgO (Fe3/MgO and Fe5/MgO).

  1. On the synthesis, structural, optical and magnetic properties of nano-size Zn-MgO

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Dwivedi, Sonam

    2015-09-01

    Chemical co-precipitation method is employed to synthesize ZnO, MgO and Zn0.5Mg0.5O nanoparticles. X-ray diffraction (XRD) pattern infers that the sample of ZnO is in single-phase wurtzite structure (hexagonal phase, P63mc), MgO crystallizes in cubic Fd3m space group and Zn0.5Mg0.5O represents mixed nature of ZnO and MgO lattices. MgO nanocrystals band around 1078 cm-1 is ascribed to the TO-LO surface phonon modes in MgO lattice. In case of Zn0.5Mg0.5O lattice illustrating two bands at 436 and 1087 cm-1. FTIR spectra clearly show the broad band within 450-600 cm-1 is associated with the special vibration of magnesium oxide. FT-IR spectrum of Zn0.5Mg0.5O represents the combined bands of both ZnO-MgO oxides. Further the optical study obtained value of MgO (4.08 eV) is much lower than the corresponding bulk value (7.08 eV). All samples show diamagnetic nature at room temperature.

  2. Oxidation behavior of nickel-chromium-aluminum-yttrium - Magnesium oxide and nickel-chromium-aluminum-yttrium - zirconate type of cermets

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1976-01-01

    The 1100 and 1200 C cyclic oxidation resistance of dense Ni-Cr-Al-Y - MgO, Ni-Cr-Al-Y - CaZrO3, Ni-Cr-Al-Y - SrZrO3, Ni-Cr-Al-Y - MgZro3 cermets and a 70 percent dense Ni-Cr-Al-Y developmental material was determined. The cermets contained 60 and 50 volume percent of Ni-Cr-Al-Y which formed a matrix with the oxide particles imbedded in it. The cermets containing MgO were superior to cermets based on zirconates and to the porous Ni-Cr-Al-Y material.

  3. Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium

    NASA Astrophysics Data System (ADS)

    Peng, G. S.; Wang, Y.; Fan, Z.

    2018-04-01

    Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.

  4. Functionalized metal-organic framework nanocomposites for dispersive solid phase extraction and enantioselective capture of chiral drug intermediates.

    PubMed

    Ma, Xue; Zhou, Xiaohua; Yu, Ajuan; Zhao, Wuduo; Zhang, Wenfen; Zhang, Shusheng; Wei, Linlin; Cook, Debra J; Roy, Anirban

    2018-02-16

    The facile preparation, characterization and application of a novel magnetic graphene oxide- metal organic framework [Zn 2 (d-Cam) 2 (4, 4'-bpy)] n (MGO-ZnCB) as a sorbent for fast, simple and enantioselective capture of chiral drug intermediates are presented in this paper. The MGO-ZnCB nanocomposite, developed by encapsulating MGO nanoparticles into the homochiral metal organic framework of ZnCB, can integrate the advantages from each component endowing the hybrids with improved synergystic effects. The enantioselective performance of MGO-ZnCB was evaluated by dispersive magnetic nanoparticle solid phase extraction (d-MNSPE) of 1, 1'-bi-2-naphthol (BN) and 2, 2'-furoin (Furoin) racemic solutions. Due to the excellent dispersive capability, high stability, relatively larger saturation magnetization and distinct enrichment capacity of MGO-ZnCB, the d-MNSPE method provids good enantioselective separation of these compounds with enantiomeric excess (ee) values as high as 74.8% and 57.4%, respectively. The entire process with BN or Furoin can be completed within 3 min or less. After washing with methanol, the host MGO-ZnCB can be easily recycled and reused six times without any apparent loss of performance. Furthermore, the adsorbed BN and Furoin in nanodomains of the MGO-ZnCB composite were directly investigated for the first time by atomic force microscopy-infrared (AFM-IR) technique. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effect of MgO spacer and annealing on interface and magnetic properties of ion beam sputtered NiFe/Mg/MgO/CoFe layer structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhusan Singh, Braj; Chaudhary, Sujeet

    2012-09-15

    The effect of variation in the thickness of ion assisted ion beam sputtered MgO spacer layer deposited at oxygen ion assisted energy of 50 eV on the extent of magnetic coupling of NiFe and CoFe layers in Si/NiFe(10 nm)/Mg(1 nm)/MgO(2,4,6 nm)/CoFe(10 nm) sandwich structure is investigated. At MgO spacer layer thickness of 4 nm, the separate reversal of magnetizations of the two ferromagnetic layers is observed in the hystresis loop recorded along easy direction. This results in a 3.5 Oe wide plateau like region during magnetization reversal, which became 4.5 Oe at 6 nm thin MgO. At 2 nm thinmore » MgO, the absence of plateau during magnetization reversal region revealed ferromagnetic coupling between the two ferromagnetic layers, which is understood to arise due to the growth of very thin and low density (1.22 gm/cc) MgO spacer layer, indicating the presence of pinholes as revealed by x-ray reflectometry. After vaccum annealing (200 Degree-Sign C/1 h), the plateau region for 4 and 6 nm thin MgO case decreased to 1.5 Oe and 2.0 Oe, respectively, due to enhanced interface roughness/mixing. In addition, an enhancement of the in-plane magnetic anisotropy is also observed.« less

  6. Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization.

    PubMed

    Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang

    2014-11-01

    An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO 2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO 2 from by-products was summarized. Results showed that the SO 2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO 2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900-1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO 2 as well as MgO, a temperature range of 900-927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries.

  7. Theoretical aspects of methyl acetate and methanol activation on MgO(100) and (501) catalyst surfaces with application in FAME production

    NASA Astrophysics Data System (ADS)

    Man, Isabela-Costinela; Soriga, Stefan Gabriel; Parvulescu, Vasile

    2017-01-01

    Density functional theory (DFT) calculations were carried out to study the activation of methyl acetate and methanol on MgO(100) and MgO(501) surfaces and integrated in the context of transesterification, interesterification and glycerolysis reactions used in biodiesel industry. First results indicate the importance of including of dispersion forces in the calculations. On MgO(100) the reverse reactions steps of Csbnd O and Csbnd H dissociations and on MgO(501) the same reverse reaction step of Csbnd H dissociations of methyl acetate are energetically favorable, while the dissociation of Csbnd O bond into methoxide and acetate fragments on the edge of MgO(501) was found to be exothermic with a low activation energy. For methanol, the dissociation of Osbnd H bond on MgO(100) surface in the presence of the second coadsorbed methanol molecule becomes more energetically favoured compared to the isolated molecule, due to the fact that the methoxide fragment is stabilized by intermolecular hydrogen bonding. This is reflected by the decrease of the activation energy of the forward reaction step and the increase of the activation energy of the backward reaction step, increasing the probability to have dissociated molecules among the undissociated ones. These results represent a step forward for better understanding from atomistic point of view the paths of these reactions on these surfaces for the corresponding catalytic processes.

  8. Competitive Heterogeneous Nucleation Between Zr and MgO Particles in Commercial Purity Magnesium

    NASA Astrophysics Data System (ADS)

    Peng, G. S.; Wang, Y.; Fan, Z.

    2018-06-01

    Grain refining of commercial purity (CP) Mg by Zr addition with intensive melt shearing prior to solidification has been investigated. Experimental results showed that, when intensive melt shearing is imposed prior to solidification, the grain structure of CP Mg exhibits a complex changing pattern with increasing Zr addition. This complex behavior can be attributed to the change of nucleating particles in terms of their crystal structure, size, and number density with varied Zr additions. Naturally occurring MgO particles are found to be {100} faceted with a cubic morphology and 50 to 300 nm in size. Such MgO particles are usually populated densely in a liquid film (usually referred as oxide film) and can be effectively dispersed by intensive melt shearing. It has been confirmed that the dispersed MgO particles can act as nucleating substrates resulting in a significant grain refinement of CP Mg when no other more potent particles are present in the melt. However, Zr particles in the Mg-Zr alloys are more potent than MgO particles for nucleation of Mg due to their same crystal structure and similar lattice parameters with Mg. With the addition of Zr, Zr and the MgO particles co-exist in the melt. Grain refining efficiency is closely related to the competition for heterogeneous nucleation between Zr and the MgO particles. The final solidified microstructure is mainly determined by the interplay of three factors: nucleation potency (measured by lattice misfit), particle size, and particle number density.

  9. A study of Lux-Flood acid-base reactions in KBr melts at 800°C

    NASA Astrophysics Data System (ADS)

    Rebrova, T. P.; Cherginets, V. L.; Ponomarenko, T. V.

    2009-11-01

    The dissociation of CO{3/2-} (p K = 2.4 ± 0.2) and precipitation of MgO (p L MgO = 10.66 ± 0.1) in a KBr melt at 800°C were studied potentiometrically with the use of a Pt(O2)|ZrO2|(Y2O3) membrane oxygen electrode. The direct calibration of the electrochemical circuit allowed only the equilibrium concentration of O2- (of strong bases) to be determined in the melt. The total concentration of oxygen-containing impurities, including CO{3/2-} and CO{4/2-} weak bases, can be found by the potentiometric titration of a sample of KBr by adding MgCl2 (Mg2+), a strong Lux-Flood acid, which causes the decomposition of these oxygen-containing anions. This reaction can also be used to remove oxo anions from alkali metal halide melts.

  10. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission

    NASA Astrophysics Data System (ADS)

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications.Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications. Electronic supplementary information (ESI) available: Representative SEM and TEM images of 700 °C annealed ZnO/MgO core/shell NWs, a TEM image of an individual MgO nanocrystal inside the MgO NTs and SEM images of SnO2 NP chains embedded in MgO NTs and comb-shaped MgO hollow nanostructures. See DOI: 10.1039/c1nr10352k

  11. Optical and thermodynamic properties of MgO from radiative shock temperature and sound speed measurements on samples preheated to 2300 K

    NASA Astrophysics Data System (ADS)

    Fatýanov, O. V.; Asimow, P. D.

    2013-12-01

    Thermodynamic properties of MgO, one of the major end-members of deep planetary interiors, play a significant role in the processes inside the Earth's lower mantle. Of particular importance in geophysics and geochemistry is the MgO melting behavior at high pressure. Despite considerable theoretical and experimental efforts over decades, it remains essentially unknown. The melting temperature predictions for MgO at 135 GPa, the Earth's core-mantle boundary pressure, range from 5 to 9 kK. In a continuous effort to resolve this inconsistency and to probe the P-T region previously unexplored, we developed a technique for radiative shock temperature measurements in single-crystal MgO preheated to 2300 K. Large ventilated Mo capsules were employed to hold ~20 mm long MgO crystals with controlled longitudinal thermal gradients. These hot targets were impacted by 0.8 mm thick Ta flyers launched at 6.5 to 7.5 km/s on the Caltech two-stage light-gas gun. Six spectral radiance histories from MgO shock front were recorded in every shot with 3 ns time resolution over 440-750 nm or 500-830 nm spectral range. The majority of our experiments showed smooth pressure dependence of MgO shock temperature and sound speed consistent with the solid phase at 197-243 GPa. Although most observed temperatures are ~700 K lower and sound speeds ~1 km/s higher than the model predictions, the pressure slopes for both parameters are in close agreement with those calculated for the solid phase. Unconfirmed data from a single experiment at 239 GPa and 8.3 kK showed correlated temperature and sound speed anomalies (both values lower than expected) that may be explained by partial melting. Our past and recent data on shock-compressed preheated MgO suggest its melting curve above 200 GPa is higher than the extrapolation of the experiments of Zerr & Boehler or the theoretical calculation by Strachan et. al. These results, features of shock experiments with 2300 K pre-heat temperatures, data analysis, and future plans will be discussed.

  12. The need for control of magnetic parameters for energy efficient performance of magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Farhat, I. A. H.; Gale, E.; Alpha, C.; Isakovic, A. F.

    2017-07-01

    Optimizing energy performance of Magnetic Tunnel Junctions (MTJs) is the key for embedding Spin Transfer Torque-Random Access Memory (STT-RAM) in low power circuits. Due to the complex interdependencies of the parameters and variables of the device operating energy, it is important to analyse parameters with most effective control of MTJ power. The impact of threshold current density, Jco , on the energy and the impact of HK on Jco are studied analytically, following the expressions that stem from Landau-Lifshitz-Gilbert-Slonczewski (LLGS-STT) model. In addition, the impact of other magnetic material parameters, such as Ms , and geometric parameters such as tfree and λ is discussed. Device modelling study was conducted to analyse the impact at the circuit level. Nano-magnetism simulation based on NMAGTM package was conducted to analyse the impact of controlling HK on the switching dynamics of the film.

  13. Dependence of magnetic anisotropy on MgO sputtering pressure in Co20Fe60B20/MgO stacks

    NASA Astrophysics Data System (ADS)

    Kaidatzis, A.; Serletis, C.; Niarchos, D.

    2017-10-01

    We investigated the dependence of magnetic anisotropy of Ta/Co20Fe60B20/MgO stacks on the Ar partial pressure during MgO deposition, in the range between 0.5 and 15 mTorr. The stacks are studied before and after annealing at 300°C and it is shown that magnetic anisotropy significantly depends on Ar partial pressure. High pressure results in stacks with very low perpendicular magnetic anisotropy even after annealing, while low pressure results in stacks with perpendicular anisotropy even at the as-deposited state. A monotonic increase of magnetic anisotropy energy is observed as Ar partial pressure is decreased.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallegos, N.G.; Alvarez, A.M.; Cagnoli, M.V.

    SiO{sub 2} covered with MgO has been used as support of iron catalysts in the Fischer-Tropsch reaction. Catalysts of 5% (w/w) iron concentration and 2, 4, and 8% (w/w) of MgO on SiO{sub 2} were prepared. Selective chemisorption of CO, volumetric oxidation, and Moessbauer spectroscopy were used to characterize the type of iron species and the metallic crystal sizes. MgO covers the SiO{sub 2} surface and modifies the metallic crystal size. The activity to total hydrocarbons increases with the amount of MgO added. An optimal concentration of about 4% (w/w) was found to have the highest selectivity to olefins. 45more » refs., 13 figs., 3 tabs.« less

  15. Misfit paradox on nucleation potency of MgO and MgAl{sub 2}O{sub 4} for Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D.; Wang, L.

    MgO and MgAl{sub 2}O{sub 4} are believed to be effective heterogeneous nuclei for Al based alloys due to their small lattice misfits with Al. However, there is a strong evidence to suggest that liquid Al reacts with MgO and MgAl{sub 2}O{sub 4} phases but the heterogeneous nucleation behavior of such phases is rarely discussed. In order to identify the nucleation mechanism of Al, under the interference of the chemical reaction, the heterogeneous nucleation process is systematically investigated through thermal analysis and high resolution transmission electron microscopy (HRTEM). The observed multi-nucleation interfaces (Al/MgO, Al/MgAl{sub 2}O{sub 4} and Al/Al{sub 2}O{sub 3}) andmore » scattered experimental undercooling data indicate an independent multi-phase nucleation process in these systems. - Highlights: •Theoretical lattice misfit doesn’t always disclose nucleation potency. •The nucleation of liquid can be triggered by multi-nucleation interfaces. •An independent multi-agents nucleation was verified in the study.« less

  16. Study of interlayer coupling between FePt and FeCoB thin films through MgO spacer layer

    NASA Astrophysics Data System (ADS)

    Singh, Sadhana; Kumar, Dileep; Gupta, Mukul; Reddy, V. Raghvendra

    2017-05-01

    Interlayer exchange coupling between hard-FePt and soft-FeCoB magnetic layers has been studied with increasing thickness of insulator MgO spacer layer in FePt/MgO/FeCoB sandwiched structure. A series of the samples were prepared in identical condition using ion beam sputtering method and characterized for their magnetic and structural properties using magneto-optical Kerr effect (MOKE) and X-ray reflectivity measurements. The nature of coupling between FePt and FeCoB was found to be ferromagnetic which decreases exponentially with increasing thickness of MgO layer. At very low thickness of MgO layer, both layers were found strongly coupled thus exhibiting coherent magnetization reversal. At higher thickness, both layers were found decoupled and magnetization reversal occurred at different switching fields. Strong coupling at very low thickness is attributed to pin holes in MgO layer which lead to direct coupling whereas on increasing thickness, coupling may arise due to magneto-static interactions.

  17. Structural, spectral, NLO and MEP analysis of the [MgO2Ti2(OPri)6], [MgO2Ti2(OPri)2(acac)4] and [MgO2Ti2(OPri)2(bzac)4] by DFT method

    NASA Astrophysics Data System (ADS)

    Sayin, Koray; Karakaş, Duran

    2015-06-01

    Quantum chemical calculations are performed on [MgO2Ti2(OPri)6] and [MgO2Ti2(OPri)2(L)4] complexes. L is acetylacetonate (acac) and benzoylacetonate (bzac) anion. The crystal structures of these complexes have not been obtained as experimentally but optimized structures of these complexes are obtained as theoretically in this study. Universal force field (UFF) and DFT/B3LYP method are used to obtain optimized structures. Theoretical spectral analysis (IR, 1H and 13C NMR) is compared with their experimental values. A good agreement is found between experimental and theoretical spectral analysis. These results mean that the optimized structures of mentioned complexes are appropriate. Additionally, the active sites of mentioned complexes are determined by molecular electrostatic potential (MEP) diagrams and non-linear optical (NLO) properties are investigated.

  18. Role of chemical interaction between MgH2 and TiO2 additive on the hydrogen storage behavior of MgH2

    NASA Astrophysics Data System (ADS)

    Pukazhselvan, D.; Nasani, Narendar; Sandhya, K. S.; Singh, Budhendra; Bdikin, Igor; Koga, Nobuaki; Fagg, Duncan Paul

    2017-10-01

    The present study explores how the additive titania chemically reacts with magnesium hydride and influences the dehydrogenation of MgH2. Quantitative X - ray diffraction study of ball milled MgH2 + xTiO2 (x = 0.25, 0.33, 0.5 and 1) suggests that Ti substituted MgO is the main reaction product in all the product powders. Convincing evidence is obtained to conclude that Ti dissolution in MgO makes a dramatic behavioral change to MgO; passive MgO turns as an active in-built catalyst. The analysis correlating the dehydrogenation kinetics, composition of in-situ catalyst and sample durability suggests that effectiveness of Ti substituted MgO (MgxTiyOx+y) as a catalyst for MgH2 depends on the concentration of Ti in MgxTiyOx+y rock salt. These observations are immensely helpful for understanding the hydrogen desorption mechanism of metal oxide additives loaded MgH2 system.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, J.; Ajo, H.; Brown, L.

    Analysis of the recent WIPP samples are summarized in this report; WIPP Cam Filters 4, 6, 9 (3, 7, 11 were analyzed with FAS-118 in a separate campaign); WIPP Drum Lip R16 C4; WIPP Standard Waste Box R15 C5; WIPP MgO R16 C2; WIPP MgO R16 C4; WIPP MgO R16 C6; LANL swipes of parent drum; LANL parent drum debris; LANL parent drum; IAEA Swipe; Unused “undeployed” Swheat; Unused “undeployed” MgO; and Masselin cloth “smears”. Analysis showed that the MgO samples were very pure with low carbonate and water content. Other samples showed the expected dominant presence of Mg, Namore » and Pb. Parent drum debris sample was mildly acidic. Interpretation of results is not provided in this document, but rather to present and preserve the analytical work that was performed. The WIPP Technical Analysis Team is responsible for result interpretation which will be written separately.« less

  20. Band offsets and growth mode of molecular beam epitaxy grown MgO (111) on GaN (0002) by x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Craft, H. S.; Collazo, R.; Losego, M. D.; Mita, S.; Sitar, Z.; Maria, J.-P.

    2007-10-01

    MgO is a proposed dielectric for use as a tunneling barrier in devices integrating GaN and ferroelectric oxides. In this study, we present data regarding the growth mode and band offsets of MgO grown epitaxially on GaN (0002) surfaces using molecular beam epitaxy. Using in situ x-ray photoelectron spectroscopy (XPS) and molecular beam epitaxy, we determine, from sequential growth experiments, that the growth of MgO proceeds via the Volmer-Weber (three-dimensional) mode, and full coalescence of the film does not occur until approximately 12nm of MgO has been deposited. The observation of a three-dimensional growth mode is in agreement with previously published data. For the valence band offset, we find a value of 1.2±0.2eV, which corresponds to a 3.2eV conduction band offset. XPS measurements suggest a chemically abrupt interface and no effect on band lineup due to the slow coalescence behavior.

  1. Evaluation of novel reactive MgO activated slag binder for the immobilisation of lead and zinc.

    PubMed

    Jin, Fei; Al-Tabbaa, Abir

    2014-12-01

    Although Portland cement is the most widely used binder in the stabilisation/solidification (S/S) processes, slag-based binders have gained significant attention recently due to their economic and environmental merits. In the present study, a novel binder, reactive MgO activated slag, is compared with hydrated lime activated slag in the immobilisation of lead and zinc. A series of lead or zinc-doped pastes and mortars were prepared with metal to binder ratio from 0.25% to 1%. The hydration products and microstructure were studied by X-ray diffraction, thermogravimetric analysis and scanning electron microscopy. The major hydration products were calcium silicate hydrate and hydrotalcite-like phases. The unconfined compressive strength was measured up to 160 d. Findings show that lead had a slight influence on the strength of MgO-slag paste while zinc reduced the strength significantly as its concentration increased. Leachate results using the TCLP tests revealed that the immobilisation degree was dependent on the pH and reactive MgO activated slag showed an increased pH buffering capacity, and thus improved the immobilisation efficiency compared to lime activated slag. It was proposed that zinc was mainly immobilised within the structure of the hydrotalcite-like phases or in the form of calcium zincate, while lead was primarily precipitated as the hydroxide. It is concluded, therefore, that reactive MgO activated slag can serve as clinker-free alternative binder in the S/S process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O.; Asimow, P.

    2013-06-01

    In a continuous effort to determine experimentally the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. The limit was primarily caused by intense sublimation of pure MgO in vacuum above ~2050 K. Completely redesigned Mo capsules holding ~20 mm long MgO crystals with controlled thermal gradients were impacted by thin Ta flyers launched at 6.5 to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel pyrometer with 3 ns time resolution, over 440-750 nm spectral range. All our experiments showed smooth pressure dependence of MgO sound speed consistent with the solid phase at 204-239 GPa. Observed temperatures are ~1000 K lower than those predicted by the solid phase model, but the plot of measured shock temperature versus pressure exhibits a pattern typical of shock melting at the highest pressure investigated. This may suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line at 220-240 GPa. Sound speed data indistinguishable from the solid phase model do not exclude the possibility of melting there.

  3. Surface exciton emission of MgO crystals

    NASA Astrophysics Data System (ADS)

    Kuang, Wen-Jian; Li, Qing; Chen, Yu-Xiang; Hu, Kai; Wang, Ning-Hui; Xing, Fang-Li; Yan, Qun; Sun, Shuai-Shuai; Huang, Yan; Tao, Ye; Tolner, Harm

    2013-09-01

    MgO crystals have been exposed to vacuum ultraviolet (VUV) radiation from a synchrotron, with energies up to 9 eV, and the emitted light, at wavelengths above 200 nm, was observed. It is concluded that bulk excitons, play an important role in the diffusion of energy inside MgO crystals, resulting in 5.85 eV (212 nm) emission from the MgO terraces of large (0.2-2 µm) MgO : F crystals. In the case of aliovalent impurity doping, then the bulk exciton energy is also transferred to the Vk centres and 5.3 eV (235 nm) light is emitted. Both fluorine and silicon doping appear to promote UV surface emission, acting similarly to an ns2 ion inside MgO, while strong scandium doping is killing the surface emission completely. The 212 nm surface UV emission and the 235 nm bulk UV emission can be excited only at the bandgap edge. Broadband visible light, centred around 400 nm, is also emitted. Contrary to the UV emission, this is not generated when excited at the bandgap edge; instead, we find that it is only excited at sub-bandgap energies, with a maximum at the 5C surface excitation energy of 5.71 eV (217 nm) for the MgO terraces.

  4. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt.

    PubMed

    Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong; Ryou, Jae-Suk

    2018-05-14

    Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl₂ deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl₂ solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases.

  5. Size effects in MgO cube dissolution.

    PubMed

    Baumann, Stefan O; Schneider, Johannes; Sternig, Andreas; Thomele, Daniel; Stankic, Slavica; Berger, Thomas; Grönbeck, Henrik; Diwald, Oliver

    2015-03-10

    Stability parameters and dissolution behavior of engineered nanomaterials in aqueous systems are critical to assess their functionality and fate under environmental conditions. Using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction, we investigated the stability of cubic MgO particles in water. MgO dissolution proceeding via water dissociation at the oxide surface, disintegration of Mg(2+)-O(2-) surface elements, and their subsequent solvation ultimately leads to precipitation of Mg(OH)2 nanosheets. At a pH ≥ 10, MgO nanocubes with a size distribution below 10 nm quantitatively dissolve within few minutes and convert into Mg(OH)2 nanosheets. This effect is different from MgO cubes originating from magnesium combustion in air. With a size distribution in the range 10 nm ≤ d ≤ 1000 nm they dissolve with a significantly smaller dissolution rate in water. On these particles water induced etching generates (110) faces which, above a certain face area, dissolve at a rate equal to that of (100) planes.1 The delayed solubility of microcrystalline MgO is attributed to surface hydroxide induced self-inhibition effects occurring at the (100) and (110) microplanes. The present work underlines the importance of morphology evolution and surface faceting of engineered nanomaterials particles during their dissolution.

  6. Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films

    PubMed Central

    Mahadeva, Sreekanth K.; Fan, Jincheng; Biswas, Anis; Sreelatha, K.S.; Belova, Lyubov; Rao, K.V.

    2013-01-01

    We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O2 containing working gas atmosphere of (N2 + O2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (MS) value of 2.68 emu/cm3 obtained for the MgO film deposited in PO2 of 10% increases to 9.62 emu/cm3 for film deposited at PO2 of 40%. However, the MS values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, MS decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies. PMID:28348346

  7. Preparation of low cost n-ZnO/MgO/p-Si heterojunction photodetector by laser ablation in liquid and spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Ismail, Raid A.; Khashan, Khawla S.; Jawad, Muslim F.; Mousa, Ali M.; Mahdi, Farah

    2018-05-01

    In this study, low cost ZnO/Si and ZnO/MgO/Si heterojunction (HJ) photodetectors were fabricated using laser ablation and spray Pyrolysis techniques. MgO nanofibers were synthesized by laser ablation of Mg target in distilled water. Also; the ZnO films were prepared by spray pyrolysis technique. The optical and structural properties of nanostructured MgO were investigated using XRD, SEM and FT-IR. The XRD results showed that the MgO was polycrystalline with cubic structure. SEM investigation confirmed the formation of MgO nanofibers and sub-microparticles. The optical energy gaps of MgO and ZnO were calculated and found to be 5.7 eV and 3.3 eV, respectively. For the electrical properties; responsivity, quantum efficiency, specific detectivity, and speed of response of the photodetector were measured and found to enhance after the insertion of nanostructured MgO film. The Photoresponse results at 3 V reverse bias showed that the maximum responsivity of ZnO/Si and ZnO/MgO/Si photodetectors were 185 and 331 mAW‑1 at 500 nm, respectively. The specific detectivity of ZnO/MgO/Si Photodetector was higher than that of ZnO/Si.

  8. A novel approach for arsenic adsorbents regeneration using MgO.

    PubMed

    Tresintsi, Sofia; Simeonidis, Konstantinos; Katsikini, Maria; Paloura, Eleni C; Bantsis, Georgios; Mitrakas, Manassis

    2014-01-30

    An integrated procedure for the regeneration of iron oxy-hydroxide arsenic adsorbents by granulated MgO is proposed in this study. A continuous recirculation configuration, with a NaOH solution flowing sequentially through the saturated adsorbent (leaching step) and the MgO (adsorption step) column beds, was optimized by utilizing the high arsenic adsorption efficiency of MgO at strong alkaline environments. Experimental results indicated that the total amount of leached arsenic was captured by MgO whereas the regenerated iron oxy-hydroxide recovered around 80% of its removal capacity upon reuse. The improved adsorption capacity of MgO for As(V), which is maximized at pH 10, is explained by the intermediate hydration to Mg(OH)2 and the following As(V) oxy-anions adsorption on its surface through the formation of monodentate inner sphere complexes, as it is deduced from the AsK-edge X-ray absorption fine structure (EXAFS) analysis. In addition to the economical-benefits, corresponding tests proved that the solid wastes of this process, namely spent MgO/Mg(OH)2, can be environmentally safely disposed as stable additives in cement products, while the alkaline solution is completely detoxified and can be recycled to the regeneration task. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Effect of MgO on Liquidus Temperatures in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO System in Equilibrium with Metallic Iron

    NASA Astrophysics Data System (ADS)

    Zhao, Baojun; Hayes, Peter C.; Jak, Evgueni

    2011-06-01

    The phase equilibria in the ZnO-"FeO"-Al2O3-CaO-SiO2-MgO system have been determined experimentally in equilibrium with metallic iron. Synthetic slags were equilibrated at a high temperature, quenched, and then the compositions of the phases in equilibrium were measured using electron probe X-ray microanalysis. Pseudoternary sections of the form ZnO-"FeO"-(Al2O3 + CaO + SiO2) for CaO/SiO2 = 0.71, (CaO + SiO2)/Al2O3 = 5 and fixed MgO concentrations of 2, 4, and 6 wt pct have been constructed. Wustite (Fe2+,Mg,Zn)O and spinel (Fe2+,Mg,Zn)O·(Al,Fe3+)2O3 are the major primary phases in the temperature and composition ranges investigated. The liquidus temperatures are increased by 140 K in the wustite primary phase field and by 70 K in the spinel primary phase field with the addition of 6 wt pct MgO in the slag. The partitioning of MgO and ZnO between the solid and liquid phases has been discussed.

  10. CH3Br adsorption on MgO/Mo ultrathin films: A DFT study

    NASA Astrophysics Data System (ADS)

    Cipriano, Luis A.; Tosoni, Sergio; Pacchioni, Gianfranco

    2018-06-01

    The adsorption of methyl bromide on MgO ultrathin films supported on Mo(100) was studied by means of density functional theory calculations, in comparison to the MgO(100) and Mo(100) surfaces. The adsorption energy and geometry were shown to depend on the thickness of the supported oxide film. MgO films as thick as 2ML (or more) display adsorptive properties similar to MgO(100), i.e. the adsorption of CH3Br is mostly due to dispersion and the molecule lies in a tilted geometry almost parallel to the surface. The CH3Br HOMO-LUMO gap is almost unaltered with respect to the gas phase. On metallic Mo(100) surfaces the bonding is completely different with the CH3Br molecule strongly bound and the C-Br bond axis almost vertical with respect to the metal surface. The MgO monolayer supported on Mo exhibits somehow intermediate properties: the tilt angle is larger and the bonding is stronger than on MgO(100), due to the effect of the supporting metal. In this case, a small reduction of the HOMO-LUMO gap of the adsorbed molecule is reported. The results help to rationalize the observed behavior in photodissociation of CH3Br supported on different substrates.

  11. High mobility La-doped BaSnO3 on non-perovskite MgO substrate

    NASA Astrophysics Data System (ADS)

    Kim, Youjung; Shin, Juyeon; Kim, Young Mo; Char, Kookrin

    (Ba,La)SnO3 is a transparent perovskite oxide with high electron mobility and excellent oxygen stability. Field effect device with (Ba,La)SnO3 channel was reported to show good output characteristics on STO substrate. Here, we fabricated (Ba,La)SnO3\\ films and field effect devices with (Ba,La)SnO3 channel on non-perovskite MgO substrates, which are available in large size wafers. X-ray diffraction and transmission electron microscope (TEM) images of (Ba,La)SnO3\\ films on MgO substrates show that the films are epitaxial with many threading dislocations. (Ba,La)SnO3 exhibits the high mobility with 97.2 cm2/Vs at 2 % La doping on top of 150 nm thick BaSnO3 buffer layer. Excellent carrier modulation was observed in field effect devices. FET performances on MgO substrates are slightly better than those on SrTiO3 substrates in spite of the higher dislocation density on MgO than on SrTiO3 substrates. These high mobility BaSnO3 thin films and transistors on MgO substrates will accelerate development for applications in high temperature and high power electronics. Samsung Science and Technology Foundation.

  12. Electrochemical reduction of UO2 in LiCl-Li2O molten salt using porous and nonporous anode shrouds

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Won, Chan Yeon; Cha, Ju-Sun; Park, Wooshin; Im, Hun Suk; Hong, Sun-Seok; Hur, Jin-Mok

    2014-01-01

    Electrochemical reductions of uranium oxide in a molten LiCl-Li2O electrolyte were carried out using porous and nonporous anode shrouds. The study focused on the effect of the type of anode shroud on the current density by running experiments with six anode shrouds. Dense ceramics, MgO, and MgO (3 wt%) stabilized ZrO2 (ZrO2-MgO) were used as nonporous shrouds. STS 20, 100, and 300 meshes and ZrO2-MgO coated STS 40 mesh were used as porous shrouds. The current densities (0.34-0.40 A cm-2) of the electrolysis runs using the nonporous anode shrouds were much lower than those (0.76-0.79 A cm-2) of the runs using the porous shrouds. The ZrO2-MgO shroud (600-700 MPa at 25 °C) showed better bending strength than that of MgO (170 MPa at 25 °C). The high current densities achieved in the electrolysis runs using the porous anode shrouds were attributed to the transport of O2- ions through the pores in meshes of the shroud wall. ZrO2-MgO coating on STS mesh was chemically unstable in a molten LiCl-Li2O electrolyte containing Li metal. The electrochemical reduction runs using STS 20, 100, and 300 meshes showed similar current densities in spite of their different opening sizes. The STS mesh shrouds which were immersed in a LiCl-Li2O electrolyte were stable without any damage or corrosion.

  13. Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization

    PubMed Central

    Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang

    2014-01-01

    Abstract An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO2 from by-products was summarized. Results showed that the SO2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900–1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO2 as well as MgO, a temperature range of 900–927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries. PMID:25371652

  14. Perpendicular magnetic anisotropy in CoXPd100-X alloys for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Clark, B. D.; Natarajarathinam, A.; Tadisina, Z. R.; Chen, P. J.; Shull, R. D.; Gupta, S.

    2017-08-01

    CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ's) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L10 alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular CoxPd alloy-pinned Co20Fe60B20/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the CoxPd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied CoxPd MTJ stacks. The CoxPd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO2/MgO (13)/CoXPd100-x (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  15. Phosphate base laser glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izumitani, T.; Tsuru, M.

    1980-12-16

    A phosphate base laser glass comprising 55-70% P2O5, 1-15% Al2O3, 0-25% Li2O, 0-25% Na2O, 0-8% K2O, the total proportion of Li2O, Na2O, and K2O being 10-25%, 0-15% BaO, 0-15% ZnO, 0-15% CaO , 0-15%, sro, 0-15% MgO, the total proportion of BaO, ZnO, CaO, SrO, and MgO being 5-15%, 0-5% Y2O3, 0-5% La2O3, 0-5% GeO2, 0-5% CeO2, 0-3% Nb2O5, 0-3% MnO2, 0-2% Ta2O5, 0-1% Sb2O3, and 0.01-5% Nd2O3, all % being mole %. The phosphate base laser glass of this invention has a high induced emission cross section, a low non-linear refractive index coefficient, and excellent acid resistance and divitrificationmore » resistance. By replacing partially or wholely one or more of LiO2, Na2O, K2O, BaO, ZnO, CaO, SrO, MgO or Al2O3 by LiF, NaF, KF , BaF2ZnF2, CaF2, SrF2, MgF2 or AlF3, respectively, the above properties of the laser glass are further improved.« less

  16. Static and dynamic properties of Co2FeAl thin films: Effect of MgO and Ta as capping layers

    NASA Astrophysics Data System (ADS)

    Husain, Sajid; Barwal, Vineet; Kumar, Ankit; Behera, Nilamani; Akansel, Serkan; Goyat, Ekta; Svedlindh, Peter; Chaudhary, Sujeet

    2017-05-01

    The influence of MgO and Ta capping layers on the static and dynamic magnetic properties of Co2FeAl (CFA) Heusler alloy thin films has been investigated. It is observed that the CFA film deposited with MgO capping layer is preeminent compared to the uncapped or Ta capped CFA film. In particular, the magnetic inhomogeneity contribution to the ferromagnetic resonance line broadening and damping constant are found to be minimal for the MgO capped CFA thin film i.e., 0.12±0.01 Oe and 0.0074±0.00014, respectively. The saturation magnetization was found to be 960±25emu/cc.

  17. Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Nitesh; Sanyal, D.; Sundaresan, A.

    2009-08-01

    Positron annihilation spectroscopy has been used to explore the nature of defects and to estimate the defect concentrations in ferromagnetic MgO nanoparticles. Our experimental results show that Mg vacancies or Mg vacancy concentration are present approximately at the concentration of 3.4 × 10 16 cm -3 in the nano-crystalline MgO which is twice the value that obtained for bulk sample. This is in correlation with the decrease of the intensity of blue luminescence and the saturation magnetic moment with increasing particle size. These results clearly demonstrate that the origin of magnetic moment and thus the ferromagnetism in MgO nanoparticles is due to Mg related vacancies at the surface of the particles.

  18. Protective effects of ferulic acid and related polyphenols against glyoxal- or methylglyoxal-induced cytotoxicity and oxidative stress in isolated rat hepatocytes.

    PubMed

    Maruf, Abdullah Al; Lip, HoYin; Wong, Horace; O'Brien, Peter J

    2015-06-05

    Glyoxal (GO) and methylglyoxal (MGO) cause protein and nucleic acid carbonylation and oxidative stress by forming reactive oxygen and carbonyl species which have been associated with toxic effects that may contribute to cardiovascular disease, complications associated with diabetes mellitus, Alzheimer's and Parkinson's disease. GO and MGO can be formed through oxidation of commonly used reducing sugars e.g., fructose under chronic hyperglycemic conditions. GO and MGO form advanced glycation end products which lead to an increased potential for developing inflammatory diseases. In the current study, we have investigated the protective effects of ferulic acid and related polyphenols e.g., caffeic acid, p-coumaric acid, methyl ferulate, ethyl ferulate, and ferulaldehyde on GO- or MGO-induced cytotoxicity and oxidative stress (ROS formation, protein carbonylation and mitochondrial membrane potential maintenance) in freshly isolated rat hepatocytes. To investigate and compare the protective effects of ferulic acid and related polyphenols against GO- or MGO-induced toxicity, five hepatocyte models were used: (a) control hepatocytes, (b) GSH-depleted hepatocytes, (c) catalase-inhibited hepatocytes, (d) aldehyde dehydrogenase (ALDH2)-inhibited hepatocytes, and (e) hepatocyte inflammation system (a non-toxic H2O2-generating system). All of the polyphenols tested significantly decreased GO- or MGO-induced cytotoxicity, ROS formation and improved mitochondrial membrane potential in these models. The rank order of their effectiveness was caffeic acid∼ferulaldehyde>ferulic acid>ethyl ferulate>methyl ferulate>p-coumaric acid. Ferulic acid was found to decrease protein carbonylation in GSH-depleted hepatocytes. This study suggests that ferulic acid and related polyphenols can be used therapeutically to inhibit or decrease GO- or MGO-induced hepatotoxicity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonakou, E.V.; Kalogiannis, K.G.; Stephanidis, S.D.

    Highlights: • Thermal and catalytic pyrolysis is a powerful method for recycling of WEEEs. • Liquid products obtained from the pyrolysis of PC or HIPS found in waste CDs are very different. • Mainly phenols are obtained from pyrolysis PC based wastes while aromatics from HIPS. • Use of MgO catalyst increases the amount of phenols from CD recycling compared to ZSM-5. • Use of MgO or ZSM-5 catalysts reduces the amount of styrene recovered from HIPS. - Abstract: Pyrolysis appears to be a promising recycling process since it could convert the disposed polymers to hydrocarbon based fuels or variousmore » useful chemicals. In the current study, two model polymers found in WEEEs, namely polycarbonate (PC) and high impact polystyrene (HIPS) and their counterparts found in waste commercial Compact Discs (CDs) were pyrolysed in a bench scale reactor. Both, thermal pyrolysis and pyrolysis in the presence of two catalytic materials (basic MgO and acidic ZSM-5 zeolite) was performed for all four types of polymers. Results have shown significant recovery of the monomers and valuable chemicals (phenols in the case of PC and aromatic hydrocarbons in the case of HIPS), while catalysts seem to decrease the selectivity towards the monomers and enhance the selectivity towards other desirable compounds.« less

  20. Reduction of CaO and MgO Slag Components by Al in Liquid Fe

    NASA Astrophysics Data System (ADS)

    Mu, Haoyuan; Zhang, Tongsheng; Fruehan, Richard J.; Webler, Bryan A.

    2018-05-01

    This study documents laboratory-scale observations of reactions between Fe-Al alloys (0.1 to 2 wt pct Al) with slags and refractories. Al in steels is known to reduce oxide components in slag and refractory. With continued development of Al-containing Advanced High-Strength Steel (AHSS) grade, the effects of higher Al must be examined because reduction of components such as CaO and MgO could lead to uncontrolled modification of non-metallic inclusions. This may lead to castability or in-service performance problems. In this work, Fe-Al alloys and CaO-MgO-Al2O3 slags were melted in an MgO crucible and samples were taken at various times up to 60 minutes. Inclusions from these samples were characterized using an automated scanning electron microscope equipped with energy dispersive x-ray analysis (SEM/EDS). Initially Al2O3 inclusions were modified to MgAl2O4, then MgO, then MgO + CaO-Al2O3-MgO liquid inclusions. Modification of the inclusions was faster at higher Al levels. Very little Ca modification was observed except at 2 wt pct Al level. The thermodynamic feasibility of inclusion modification and some of the mass transfer considerations that may have led to the differences in the Mg and Ca modification behavior were discussed.

  1. Reaction Behaviors of Al-Killed Medium-Manganese Steel with Different Refractories

    NASA Astrophysics Data System (ADS)

    Kong, Lingzhong; Deng, Zhiyin; Zhu, Miaoyong

    2018-03-01

    In order to understand the reaction mechanism between medium-manganese steel and different refractories, some laboratory experiments were carried out at 1873 K (1600 °C). Three types of refractory plates (Al2O3, MgO, and MgO·Al2O3) were used. The results show that Mn in liquid medium-manganese steel does not react easily with the Al2O3 refractory, but can react with the MgO refractory to generate a (Mn, Mg)O layer at the boundary between the refractory plate and liquid steel. After the formation of (Mn, Mg)O, a layer of (Mn, Mg)O·Al2O3 spinel is also formed at the edge of the MgO refractory. Similar to the MgO refractory, the dissolved Mn can react with the MgO·Al2O3 refractory as well, and a layer of (Mn, Mg)O·Al2O3 was also detected after reaction. It was found that the formation of (Mn, Mg)O·Al2O3 at the edge of the refractory is a source of (Mn, Mg)O·Al2O3 inclusions in liquid steel. The flush-off of the (Mn, Mg)O·Al2O3 layer would result in the formation of (Mn, Mg)O·Al2O3 inclusions.

  2. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells

    PubMed Central

    Figarola, James L.; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay

    2014-01-01

    Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis. PMID:24615331

  3. The Evaluation of Damage Effects on MgO Added Concrete with Slag Cement Exposed to Calcium Chloride Deicing Salt

    PubMed Central

    Jang, Jae-Kyeong; Kim, Hong-Gi; Kim, Jun-Hyeong

    2018-01-01

    Concrete systems exposed to deicers are damaged in physical and chemical ways. In mitigating the damage from CaCl2 deicers, the usage of ground slag cement and MgO are investigated. Ordinary Portland cement (OPC) and slag cement are used in different proportions as the binding material, and MgO in doses of 0%, 5%, 7%, and 10% are added to the systems. After 28 days of water-curing, the specimens are immersed in 30% CaCl2 solution by mass for 180 days. Compressive strength test, carbonation test, chloride penetration test, chloride content test, XRD analysis, and SEM-EDAX analysis are conducted to evaluate the damage effects of the deicing solution. Up to 28 days, plain specimens with increasing MgO show a decrease in compressive strength, an increase in carbonation resistance, and a decrease in chloride penetration resistance, whereas the S30- and S50- specimens show a slight increase in compressive strength, an increase in carbonation resistance, and a slight increase in chloride penetration resistance. After 180 days of immersion in deicing solution, specimens with MgO retain their compressive strength longer and show improved durability. Furthermore, the addition of MgO to concrete systems with slag cement induces the formation of magnesium silicate hydrate (M-S-H) phases. PMID:29758008

  4. Reaction Behaviors of Al-Killed Medium-Manganese Steel with Different Refractories

    NASA Astrophysics Data System (ADS)

    Kong, Lingzhong; Deng, Zhiyin; Zhu, Miaoyong

    2018-06-01

    In order to understand the reaction mechanism between medium-manganese steel and different refractories, some laboratory experiments were carried out at 1873 K (1600 °C). Three types of refractory plates (Al2O3, MgO, and MgO·Al2O3) were used. The results show that Mn in liquid medium-manganese steel does not react easily with the Al2O3 refractory, but can react with the MgO refractory to generate a (Mn, Mg)O layer at the boundary between the refractory plate and liquid steel. After the formation of (Mn, Mg)O, a layer of (Mn, Mg)O·Al2O3 spinel is also formed at the edge of the MgO refractory. Similar to the MgO refractory, the dissolved Mn can react with the MgO·Al2O3 refractory as well, and a layer of (Mn, Mg)O·Al2O3 was also detected after reaction. It was found that the formation of (Mn, Mg)O·Al2O3 at the edge of the refractory is a source of (Mn, Mg)O·Al2O3 inclusions in liquid steel. The flush-off of the (Mn, Mg)O·Al2O3 layer would result in the formation of (Mn, Mg)O·Al2O3 inclusions.

  5. Thermodynamics of MgO shocked to 250 GPa and 9000 K

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.; Ahrens, T. J.

    2011-06-01

    Plate impact experiments in the 200-250 GPa pressure range were done on <100 > single-crystal MgO preheated before compression to 1850 K. Hot Mo(driver)-MgO targets were impacted with Ta flyers launched by the Caltech two-stage light-gas gun up to 7.5 km/s. Radiative temperatures and shock velocities were measured with 3-5% and 1-2% respective uncertainty by a 6-channel pyrometer with 3 ns time resolution, over 500-900 nm spectral range. MgO shock front reflectivity was determined in additional experiments at 220 and 250 GPa using 50/50 high-temperature sapphire beamsplitters. Shock temperatures and preheated MgO Hugoniot data reported here are in good agreement with the corresponding values calculated using Mie-Grüneisen equation of state with γ0 = 1.4 and constant γ / V . Our experiments showed no evidence of MgO melting up to 250 GPa and 9.2 kK. The highest shock temperatures exceed the extrapolated melting curve of Zerr & Boehler by >3000 K at 250 GPa, which seems too much for any realistic superheating.

  6. Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide.

    PubMed

    Ponraj, Rubha; Kannan, Aravindaraj G; Ahn, Jun Hwan; Kim, Dong-Won

    2016-02-17

    Trapping lithium polysulfides formed in the sulfur positive electrode of lithium-sulfur batteries is one of the promising approaches to overcome the issues related to polysulfide dissolution. In this work, we demonstrate that intrinsically hydrophilic magnesium oxide (MgO) nanoparticles having surface hydroxyl groups can be used as effective additives to trap lithium polysulfides in the positive electrode. MgO nanoparticles were uniformly distributed on the surface of the active sulfur, and the addition of MgO into the sulfur electrode resulted in an increase in capacity retention of the lithium-sulfur cell compared to a cell with pristine sulfur electrode. The improvement in cycling stability was attributed to the strong chemical interactions between MgO and lithium polysulfide species, which suppressed the shuttling effect of lithium polysulfides and enhanced the utilization of the sulfur active material. To the best of our knowledge, this report is the first demonstration of MgO as an effective functional additive to trap lithium polysulfides in lithium-sulfur cells.

  7. The effect of the MgO buffer layer thickness on magnetic anisotropy in MgO/Fe/Cr/MgO buffer/MgO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozioł-Rachwał, Anna, E-mail: a.koziolrachwal@aist.go.jp; AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. Mickiewicza 30, 30-059 Kraków; Nozaki, Takayuki

    2016-08-28

    The relationship between the magnetic properties and MgO buffer layer thickness d was studied in epitaxial MgO/Fe(t)/Cr/MgO(d) layers grown on MgO(001) substrate in which the Fe thickness t ranged from 0.4 nm to 1.1 nm. For 0.4 nm ≤ t ≤ 0.7 nm, a non-monotonic coercivity dependence on the MgO buffer thickness was shown by perpendicular magneto-optic Kerr effect magnetometry. For thicker Fe films, an increase in the buffer layer thickness resulted in a spin reorientation transition from perpendicular to the in-plane magnetization direction. Possible origins of these unusual behaviors were discussed in terms of the suppression of carbon contamination at the Fe surface and changes inmore » the magnetoelastic anisotropy in the system. These results illustrate a method to control magnetic anisotropy in MgO/Fe/Cr/MgO(d) via an appropriate choice of MgO buffer layer thickness d.« less

  8. Experimental ammonia-free phosphate-bonded investments using Mg(H2PO4)2 solution.

    PubMed

    Takashiba, Shigeyuki; Zhang, Zutai; Tamaki, Yukimichi

    2002-12-01

    In our previous study, we investigated ammonia-free phosphate-bonded investments using Mg (H2PO4)2 powder. The purpose of the present study was to attempt usage of 50 wt% Mg (H2PO4)2 solution instead of powder. Magnesium oxide (MgO) was prepared as a binder and cristobalite was selected as a refractory. After arranging six kinds of experimental investments (A-F) with different cristobalite/MgO ratios, the fundamental properties of the dental investments were examined. The properties of the molds were influenced by the amount of MgO. Decreases in MgO showed lower mold strengths, longer setting time and larger setting expansion. According to XRD analysis, the peaks of MgH(PO4)3 x 3H2O newly formed, cristobalite and MgO were detected in the A set, but MgO peaks in F set were reduced. On the other hand, the surface of F was entirely covered by phosphorus. From these results, it was found that the usage of Mg(H2PO4)2 solution was possible for ammonia-free investments.

  9. Preparation and characterization of magnesium borate for special glass

    NASA Astrophysics Data System (ADS)

    Dou, Lishuang; Zhong, Jianchu; Wang, Hongzhi

    2010-05-01

    Magnesium borate with a variety of B2O3/MgO molar ratios, which can be applied for special glass, has been prepared through the reaction of light-burned magnesia with boric acid by a hydrothermal method. The effects of the B2O3/MgO molar ratio of raw materials, reaction time, temperature and liquid to solid ratio (ml g-1) on the synthetic product are investigated. The XRD and TG-DTG analyses indicate that the prepared magnesium borate is a mixture of magnesium hexaborate hydrate and ascharite. The results show that high B2O3/MgO molar ratios of raw materials and low reaction liquid-solid ratios favour the product with a high B2O3/MgO molar ratio and vice versa. There exists free MgO in the product when the reaction temperature is below 140 °C or the reaction time is not enough, because of the incomplete reaction of magnesium oxide with boric acid. The process of fractional crystallization for the magnesium borate mixture is also discussed.

  10. Epitaxial growth of (001)-oriented Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films on a-plane sapphire with an MgO/ZnO bridge layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Bo; Liu Hongrui; Avrutin, Vitaliy

    2009-11-23

    High quality (001)-oriented Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown on a-plane sapphire (1120) by rf magnetron sputtering using a double bridge layer consisting of (0001)-oriented ZnO (50 nm) and (001)-oriented MgO (10 nm) prepared by plasma-assisted molecular beam epitaxy. X-ray diffraction revealed the formation of three sets of in-plane BST domains, offset from one another by 30 deg., which is consistent with the in-plane symmetry of the MgO layer observed by in situ reflective high electron energy diffraction. The in-plane epitaxial relationship of BST, MgO, and ZnO has been determined to be BST [110]//MgO [110]//ZnO [1120]more » and BST [110]/MgO [110]//ZnO [1100]. Capacitance-voltage measurements performed on BST coplanar interdigitated capacitor structures revealed a high dielectric tunability of up to 84% at 1 MHz.« less

  11. Economic Evaluation of the Production Magnesium Oxide Nanoparticles via Liquid-Phase Route

    NASA Astrophysics Data System (ADS)

    Nandiyanto, A. B. D.; Fariansyah, R.; Ramadhan, M. F.; Abdullah, A. G.; Widiaty, I.

    2018-02-01

    The purpose of this study was to evaluate the production of magnesium oxide (MgO) nanoparticles. The evaluation was done in two perspectives: engineering and economic evaluation. The engineering perspective concerned about the analysis of the production rate based on the available apparatuses and raw materials, completed with mass balance calculation. The economic analysis was conducted based on several economic parameters: gross profit margin (GPM), internal return rate (IRR), payback period (PBP), cumulative net present value (CNPV), break even point (BEP), and profit to investment (PI). The engineering perspective showed that the production of MgO is feasibly done in small scale industry. This is verified by the potential production using current available apparatuses and raw materials in the market. Economic analysis obtained that the present project is profitable. But, for some cases, further studies must be done to get the present production process is attractive for investor.

  12. Pure ultraviolet emission from ZnO quantum dots-based/GaN heterojunction diodes by MgO interlayer

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Liang, Renli; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhao, Chong; Zhang, Wei; Dai, Jiangnan; Chen, Changqing

    2017-07-01

    We demonstrate the fabrication and characterization of ZnO/GaN-based heterojunction light-emitting diodes (LEDs) by using air-stable and solution-processable ZnO quantum dots (QDs) with a thin MgO interlayer acting as an electron blocking layer (EBL). The ZnO QDs/MgO/ p-GaN heterojunction can only display electroluminescence (EL) characteristic in reverse bias regime. Under sufficient reverse bias, a fairly pure ultraviolet EL emission located at 370 nm deriving from near band edge of ZnO with a full width at half maximum (FWHM) of 8.3 nm had been obtained, while the deep-level emission had been almost totally suppressed. The EL origination and corresponding carrier transport mechanisms were investigated qualitatively in terms of photoluminescence (PL) results and energy band diagram.[Figure not available: see fulltext.

  13. Low-power, high-uniform, and forming-free resistive memory based on Mg-deficient amorphous MgO film with rough surface

    NASA Astrophysics Data System (ADS)

    Guo, Jiajun; Ren, Shuxia; Wu, Liqian; Kang, Xin; Chen, Wei; Zhao, Xu

    2018-03-01

    Saving energy and reducing operation parameter fluctuations remain crucial for enabling resistive random access memory (RRAM) to emerge as a universal memory. In this work, we report a resistive memory device based on an amorphous MgO (a-MgO) film that not only exhibits ultralow programming voltage (just 0.22 V) and low power consumption (less than 176.7 μW) but also shows excellent operative uniformity (the coefficient of variation is only 1.7% and 2.2% for SET and RESET voltage, respectively). Moreover, it also shows a forming-free characteristic. Further analysis indicates that these distinctive properties can be attributed to the unstable local structures and the rough surface of the Mg-deficient a-MgO film. These findings show the potential of using a-MgO in high-performance nonvolatile memory applications.

  14. The effect of MgO on the optical properties of lithium sodium borate doped with Cu+ ions

    NASA Astrophysics Data System (ADS)

    Alajerami, Yasser Saleh Mustafa; Hashim, Suhairul; Hassan, Wan Muhamad Saridan Wan; Ramli, Ahmad Termizi; Saleh, Muneer Aziz

    2013-04-01

    The current work presented the photoluminescence (PL) properties of a new glass system, which are reported for the first time. Based on the attractive properties of borate glass, a mixture of boric acid (70-x mol %) modified with lithium (20 mol %) and sodium carbonate (10 mol %) was prepared. The current study illustrated the effect of dopant and co-dopant techniques on the lithium sodium borate (LNB). Firstly, 0.1 mol % of copper ions doped with LNB was excited at 610 nm. The emission spectrum showed two prominent peaks in the violet region (403 and 440 nm). Then, we remarked the effect of adding different concentration of MgO on the optical properties of LNB. The results showed the great effect of magnesium oxide on the PL intensities (enhanced more than two times). Moreover, an obvious shifting has been defined toward the blue region (440 → 475 nm). The up-conversion optical properties were observed in all emission spectra. This enhancement is contributed to the energy transfer from MgO ions to monovalent Cu+ ion. It is well known that magnesium oxide alone generates weak emission intensity, but during this increment the MgO act as an activator (co-doped) for Cu+ ions. Finally, energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance all were measured for the current samples. The current samples were subjected to XRD for amorphous confirmation and IR for glass characterization before and after dopants addition. Finally, some of significant physical and optical parameters were also calculated.

  15. Defect Initiation/Growth and Energy Dissipation Induced by Deformation and Fracture

    DTIC Science & Technology

    1993-01-01

    deformation in MgO single crystals . 4 III. Molecular CO emission accompanying fracture of polycarbonate: evidence for chain cleavage J. T. Dickinson, L. C... Crystal MgO Although not a polymer, we wish to point out that the fracture-induced phE and EE from the fracture of single crystal MgQ 17 (Fig. 7) is...long times. This is a good qualitative description of the behavior exhibited by EE from in some systems. C. Single Crystal MgO Williams et al. have

  16. Sensitive photo-thermal response of graphene oxide for mid-infrared detection

    NASA Astrophysics Data System (ADS)

    Bae, Jung Jun; Yoon, Jung Hyun; Jeong, Sooyeon; Moon, Byoung Hee; Han, Joong Tark; Jeong, Hee Jin; Lee, Geon-Woong; Hwang, Ha Ryong; Lee, Young Hee; Jeong, Seung Yol; Lim, Seong Chu

    2015-09-01

    This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability.This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04039f

  17. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation.

    PubMed

    Li, Wenlu; Chen, Zhigang; Yan, Min; He, Ping; Chen, Zhong; Dai, Haibin

    2016-02-01

    As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured human brain microvascular endothelial cells. Isorhamnetin inhibits FasL-mediated extrinsic apoptosis and neurotrophic factor κB (NF-κB) nuclear translocation, which can induce the cell DNA damage. Therefore, the protective effect of isorhamnetin occurs through multiple functions, including anti-inflammation, anti-oxidative stress and anti-apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. © 2015 International Society for Neurochemistry.

  18. First stage of reaction of molten Al with MgO substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgiel, J., E-mail: j.morgiel@imim.pl; Sobczak, N.; Motor Transport Institute, 80 Jagiellońska St., 03-301 Warsaw

    The Al/MgO couple was produced in vacuum (~ 5 × 10{sup −} {sup 4} Pa) by contact heating from RT up to 1000 °C and holding at that temperature for 1 h of a small 4 × 4 × 4 mm aluminium (5 N) sample placed on the [100] MgO single crystal substrate. TEM observations backed with electron diffraction analysis indicated that the interaction between liquid aluminium and MgO starts from a redox reaction producing a continuous layer of MgAl{sub 2}O{sub 4} spinel on the substrate surface. Its growth is controlled by solid state out-diffusion of magnesium and oxygen towardsmore » the surface being in contact with liquid metal. The thickening of spinel layer is accompanied by its cracking and infiltration with aluminium. The above process enables local dissolution of the MgO substrate and formation in it of a thin region of interpenetrating metallic channels walled with spinel. The removal of dissolved magnesium through open aluminium channels towards the drop and to vacuum locally produces areas of aluminium enriched with dissolved oxygen, which results in the nucleation of α-Al{sub 2}O{sub 3} at spinel clad walls. The growth of α-Al{sub 2}O{sub 3} is controlled only by the dissolution rate of MgO by aluminium, liquid state diffusion of Mg to drop/vacuum and oxygen to the front of the of α-Al{sub 2}O{sub 3} crystallites growing into MgO substrate. - Highlights: • New unique evidence of first stages of interaction of liquid Al with MgO substrates • Interaction of liquid Al with MgO starts with the formation of a layer MgAl{sub 2}O{sub 4}. • Growth of MgAl{sub 2}O{sub 4} is slow as controlled by solid state out-diffusion of Mg and O. • MgAl{sub 2}O{sub 4} serves as a nucleation site for Al{sub 2}O{sub 3} and consumed by it soon after. • Growth of Al{sub 2}O{sub 3} is fast as controlled by diffusion in liquid state.« less

  19. Destructive adsorption of Diazinon pesticide by activated carbon nanofibers containing Al2O3 and MgO nanoparticles.

    PubMed

    Behnam, Roghaye; Morshed, Mohammad; Tavanai, Hossein; Ghiaci, Mehran

    2013-10-01

    We report the destructive adsorption of Diazinon pesticide by porous webs of activated carbon nanofibers containing Al2O3 and MgO nanoparticles. The results show that, the presence of Al2O3 and MgO nanoparticles in the activated carbon nanofibers increases the amount of destructively adsorbed Diazinon pesticide by activated carbon nanofibers. Moreover, type, amount, and specific surface area of metal oxide nanoparticles affect the adsorption rate as well as the total destructively adsorbed Diazinon. Liquid chromatography proved the degradation of Diazinon by chemical reaction with Al2O3 and MgO nanoparticles. Liquid chromatography-mass spectrometry showed that the main product of reaction between Diazinon and the metal oxides is 2-isopropyl-6-methyl-4-pyrimidinol with less toxicity than Diazinon.

  20. Magnetic graphene oxide for adsorption of organic dyes from aqueous solution

    NASA Astrophysics Data System (ADS)

    Drashya, Lal, Shyam; Hooda, Sunita

    2018-05-01

    Graphene oxide (GO), a 2-D carbon nanomaterial, large surface area, oxygen-containing groups (like: hydroxyl, epoxy and carboxyl) and excellent water dispersibility due to it is good adsorbent dye removal from pollutant water1. But it's difficult to separate GO from water after adsorption. Therefore, Iron oxide was introduced in Graphene oxide by decorating method to make separation more efficient2. We present herein a one step process to prepare Magnetic Graphene oxide (MGO). The Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Raman Spectroscopy characterized the chemical structure of the MGO composite. The adsorption of dyes onto MGO was studied in relation to initial concentration of Dyes, contact time, adsorbent dose, temperature and pH value of solution. We have studied adsorption capacity of different dyes (Methylene blue and crystal violet) by MGO.

  1. Contribution of methylglyoxal to delayed healing of bone injury in diabetes.

    PubMed

    Aikawa, Takao; Matsubara, Hidenori; Ugaji, Shuhei; Shirakawa, Junichi; Nagai, Ryoji; Munesue, Seiichi; Harashima, Ai; Yamamoto, Yasuhiko; Tsuchiya, Hiroyuki

    2017-07-01

    Patients with diabetes are vulnerable to delayed bone fracture healing or pseudoarthrosis. Chronic sustained hyperglycemia, reactive intermediate derivatives of glucose metabolism, such as methylglyoxal (MGO), and advanced glycation end‑products (AGEs) are implicated in diabetic complications. In the present study, it was examined whether MGO is able to cause disturbed bone healing in diabetes. Diabetes was induced in male mice by injection of streptozotocin (50 mg/kg) for 5 days. A bone defect (1.0‑mm diameter) was created in the left distal femur, and bone repair was assessed from an examination of computed tomography scans. ST2 cells were exposed to MGO (0‑400 µM) to investigate osteoblastic differentiation, cell viability, and damage. Consequently, blood glucose and hemoglobin A1c levels in diabetic mice were determined to be 493±14.1 mg/dl and 8.0±0.05%, respectively. Compared with non‑diabetic control mice, diabetic mice exhibited markedly delayed bone healing, with increased levels of the MGO‑derived AGEs, Nε‑(carboxymethyl)‑lysine and Nδ‑(5‑hydro‑5‑methyl‑4‑imidazolone‑2‑yl)‑ornithine, in the sera and femurs. MGO inhibited the osteoblastic differentiation of ST2 cells in a dose‑dependent manner, and markedly decreased cell proliferation through cytotoxicity. In conclusion, MGO has been demonstrated to cause impaired osteoblastic differentiation and delayed bone repair in diabetes. Therefore, detoxification of MGO may be a potentially useful strategy against bone problems in patients with diabetes.

  2. Lowering of the firing voltage and reducing of the discharge delay time in alternating current plasma display panels by a discontinuous spin-coated LaB{sub 6} film on the MgO protective layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Jiang, E-mail: dj78291@163.com; Zeng, Baoqing; Zhongshan Institute, University of Electronic Science and Technology of China, 528402 zhongshan

    2014-03-15

    A spin coated LaB{sub 6} discontinuous film is covered on MgO protective layer to improve the discharge performance of alternating current plasma display panels. Under the premise of high transmittance of more than 90%, a very small amount of polycrystal LaB{sub 6} powders added in an organic solvent are chosen as the coating solution. The discharge characteristics results show that with 250 torr 5% Xe-Ne pressure, the firing voltage and discharge delay time of the test panel with LaB{sub 6}/MgO double protective layer are decreased by 13.4% and 36.5%, respectively, compared with that of conventional MgO protective layer, likely owingmore » to the low work function of LaB{sub 6.} Furthermore, the aging time of the proposed structure is comparable to that of pure MgO protective layer. Therefore, it will not increase the production costs and is highly suitable to be applied for alternating current plasma display panels with low electrical power consumption.« less

  3. Vacancies in MgO at ultrahigh pressure: About mantle rheology of super-Earths

    NASA Astrophysics Data System (ADS)

    Ritterbex, Sebastian; Harada, Takafumi; Tsuchiya, Taku

    2018-05-01

    First-principles calculations are performed to investigate vacancy formation and migration in the B2 phase of MgO. Defect energetics suggest the importance of intrinsic non-interacting vacancy pairs, even though the extrinsic vacancy concentration might govern atomic diffusion in the B2 phase of MgO. The enthalpies of ionic vacancy migration are generally found to decrease across the B1-B2 phase transition around a pressure of 500 GPa. It is shown that this enthalpy change induces a substantial increase in the rate of vacancy diffusion in MgO of almost four orders of magnitude (∼104) when the B1 phase transforms into the B2 phase with increasing pressure. If plastic deformation is controlled by vacancy diffusion, mantle viscosity is expected to decrease in relation to this enhanced diffusion rate in MgO across the B1-B2 transition in the interior of Earth-like large exoplanets. Our results of atomic relaxations near the defects suggest that diffusion controlled creep viscosity may generally decrease across high-pressure phase transitions with increasing coordination number. Plastic flow and resulting mantle convection in the interior of these super-Earths may be therefore less sluggish than previously thought.

  4. Wavelength-selective thermal emitters using Si-rods on MgO

    NASA Astrophysics Data System (ADS)

    Suemitsu, Masahiro; Asano, Takashi; De Zoysa, Menaka; Noda, Susumu

    2018-01-01

    Supporting substrates for Si rod-type photonic crystals (PCs) are investigated for realizing highly wavelength-selective near-infrared thermal emitters. Three materials—SiO2, Al2O3, and MgO—are considered for their low infrared emission (transparency) and remarkable heat resistance. Theoretical calculations of the emissivity spectra of Si-rod PCs (rod height = 500 nm, rod diameter = 300 nm, and lattice constant = 600 nm) on 50 μm-thick supporting substrates at 1400 K indicate that the long-wavelength (>3 μm) emission power from the emitter using MgO is less than 1/10 of that of the other two materials. Fabrication of the Si-rod PCs on the 50 μm-thick MgO substrate requires the insertion of a thin (30 nm) HfO2 film between MgO and Si to improve the stability at high temperatures (>1400 K). Experimental results of the fabricated structure show that at 1400 K, the ratio of emissive power at wavelengths <1.8 μm to the total emissive power is 34% and that this can be increased to over 53% in an optimized rod-array structure with a 10 μm-thick MgO substrate.

  5. Method for electrically isolating an electrically conductive member from another such member

    DOEpatents

    Tsang, K.L.; Chen, Y.

    1984-02-09

    The invention relates to methods for electrically isolating a first electrically conductive member from another such member by means of an electrically insulating medium. In accordance with the invention, the insulating medium is provided in the form of MgO which contains a dopant selected from lithium, copper, cobalt, sodium, silver, gold and hydrogen. The dopant is present in the MgO in an amount effective to suppress dielectric breakdown of the MgO, even at elevated temperatures and in the presence of electrical fields.

  6. Space Reflector Materials for Prometheus Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Nash; V. Munne; LL Stimely

    2006-01-31

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relativemore » to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be-bearing materials require significant controls, handling of clean, finished products requires only modest controls. Neither material was initially considered to be viable as a structural material, however, based on improved understanding of its unirradiated properties, Be should be evaluated due to having potentially acceptable structural properties in the unirradiated condition, i. e., during launch, when loads might be most limiting. All three of the alternative materials are non-hazardous, and thus do not engender the ES&H concerns associated with use of Be or BeO. Aluminum oxide is a widely available ceramic material with well characterized physical properties and well developed processing practices. Although the densest (3.97 g/cm{sup 3} versus Be: 1.85, BeO: 3.01, MgO: 3.58, and MgAl{sub 2}O{sub 4}: 3.60, all theoretical density), and therefore the heaviest, of all the materials considered for this application, its ease of fabrication, mechanical properties, availability and neutronic characteristics warrant its evaluation. Similarly, MgO is widely used in the refractory materials industry and has a large established manufacturing base while being lighter than Al{sub 2}O{sub 3}. Most of the commercially available MgO products incorporate additives or a second phase to avoid the formation of Mg(OH){sub 2} due to spontaneous reaction with ambient humidity. The hygroscopicity of MgO makes it a more difficult material to work with than Al{sub 2}O{sub 3} or MgAl{sub 2}O{sub 4}. Magnesium aluminate spinel, although not as widely available as either Al{sub 2}O{sub 3} or MgO, has the advantage of a density almost as low as MgO without being hygroscopic, and shares comparable neutronic performance characteristics in the reflector application.« less

  7. Thermodynamic Properties of Magnesium Chloride Hydroxide Hydrate (Mg3Cl(OH)5:4H2O, Phase 5), and Its importance to Nuclear Waste Isolation in Geological Repositories in Salt Formations

    NASA Astrophysics Data System (ADS)

    Xiong, Y.; Deng, H.; Nemer, M. B.; Johnsen, S.

    2009-12-01

    MgO (bulk, pure MgO corresponding to the mineral periclase) is the only engineered barrier certified by the Environmental Protection Agency for emplacement in the Waste Isolation Pilot Plant (WIPP) in the US, and an Mg(OH)2-based engineered barrier (bulk, pure Mg(OH)2 corresponding to brucite) is to be employed in the Asse repository in Germany. Both the WIPP and the Asse are located in salt formations. The WIPP is a U.S. Department of Energy geological repository being used for the permanent disposal of defense-related transuranic waste (TRU waste). The repository is 655 m below the surface, and is situated in the Salado Formation, a Permian salt bed mainly composed of halite, and of lesser amounts of polyhalite, anhydrite, gypsum, magnesite, clays and quartz. The WIPP Generic Weep Brine (GWB), a Na-Mg-Cl dominated brine, is associated with the Salado Formation. The previous vendor for MgO for the WIPP was Premier Chemicals and the current vendor is Martin Marietta Materials. Experimental studies of both Premier MgO and Martin Marietta MgO with the GWB at SNL indicate the formation of magnesium chloride hydroxide hydrate, Mg3Cl(OH)5:4H2O, termed as phase 5. However, this important phase is lacking in the existing thermodynamic database. In this study, the solubility constant of phase 5 is determined from a series of solubility experiments in MgCl2-NaCl solutions. The solubility constant at 25 oC for the following reaction, Mg3Cl(OH)5:4H2O + 5H+ = 3Mg2+ + 9H2O(l) + Cl- is recommended as 43.21±0.33 (2σ) based on the Specific Interaction Theory (SIT) model for extrapolation to infinite dilution. The log K obtained via the Pitzer equations is identical to the above value within the quoted uncertainty. The Gibbs free energy and enthalpy of formation for phase 5 at 25 oC are derived as -3384±2 (2σ) kJ mol-1 and -3896±6 (2σ) kJ mol-1, respectively. The standard entropy and heat capacity of phase 5 at 25 oC are estimated as 393±20 J mol-1 K-1 and 374±19 J mol-1 K-1, respectively. Phase 5, and its similar phase, phase 3 (Mg2Cl(OH)3:4H2O), could have a significant role in influencing the geochemical conditions in geological repositories for nuclear waste in salt formations where MgO or brucite is employed as engineered barriers, when Na-Mg-Cl dominated brines react with MgO or brucite. Based on our solubility constant for phase 5 in combination with the literature value for phase 3, we predict that the composition for the invariant point of phase 5 and phase 3 would be mMg = 1.70 and pmH = 8.93 in the Mg-Cl binary system. The recent WIPP Compliance Recertification Application PA Baseline Calculations indicate that phase 5 instead of phase 3 is indeed a stable phase when GWB equilibrates with actinide-source-term phases, brucite, magnesium carbonates, halite and anhydrite. 1. This research is funded by WIPP programs administered by the U.S. Department of Energy. 2. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. The Effect of Cooling Conditions on the Evolution of Non-metallic Inclusions in High Manganese TWIP Steels

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Nan; Yang, Jian; Xin, Xiu-Ling; Wang, Rui-Zhi; Xu, Long-Yun

    2016-04-01

    In the present study, the effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels was investigated based on experiments and thermodynamic calculations. In addition, the formation and growth behavior of AlN inclusions during solidification under different cooling conditions were analyzed with the help of thermodynamics and dynamics. The inclusions formed in the high manganese TWIP steels are classified into nine types: (1) AlN; (2) MgO; (3) CaS; (4) MgAl2O4; (5) AlN + MgO; (6) MgO + MgS; (7) MgO + MgS + CaS; (8) MgO + CaS; (9) MgAl2O4 + MgS. With the increase in the cooling rate, the volume fraction and area ratio of inclusions are almost constant; the size of inclusions decreases and the number density of inclusions increases in the steels. The thermodynamic results of inclusion types calculated with FactSage are consistent with the observed results. With increasing cooling rate, the diameter of AlN decreases. When the cooling rate increases from 0.75 to 4.83 K s-1, the measured average diameter of AlN decreases from 4.49 to 2.42 μm. Under the high cooling rate of 4.83 K s-1, the calculated diameter of AlN reaches 3.59 μm at the end of solidification. However, the calculated diameter of AlN increases to approximately 5.93 μm at the end of solidification under the low cooling rate of 0.75 K s-1. The calculated diameter of AlN decreases with increasing cooling rate. The theoretical calculation results of the change in diameter of AlN under the different cooling rates have the same trend with the observed results. The existences of inclusions in the steels, especially AlN which average sizes are 2.42 and 4.49 μm, respectively, are not considered to have obvious influences on the hot ductility.

  9. Al embedded MgO barrier MTJ: A first principle study for application in fast and compact STT-MRAMs

    NASA Astrophysics Data System (ADS)

    Yadav, Manoj Kumar; Gupta, Santosh Kumar; Rai, Sanjeev; Pandey, Avinash C.

    2017-03-01

    The first principle comparative study of a novel single Al sheet embedded MgO and pure MgO barrier having Fe electrodes magnetic tunnel junction has been presented. Al embedded MgO is reported to provide enhanced spin polarised tunnelling current due to increase of spin-polarized density of states at Fermi energy in the barrier region. This novel MTJ provides a current density and resistance area (RA) product of 94.497 ×107 A / cm2 and 0.105  Ω - μm2 respectively. With such a low RA product; it allows higher deriving current due to which switching time of magnetization reversal reduces without inducing barrier related breakdowns in non-volatile magnetic random access memories. The low RA product and high current density of the proposed MTJ may have possible applications in integration with existing MOS circuits.

  10. Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)

    NASA Astrophysics Data System (ADS)

    Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.

    2005-06-01

    Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.

  11. Annealing temperature effects on the magnetic properties and induced defects in C/N/O implanted MgO

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Kong, Wei; Ye, Bangjiao

    2013-02-01

    Virgin MgO single crystals were implanted with 70 keV C/N/O ions at room temperature to a dose of 2 × 1017/cm2. After implantation the samples showed room temperature hysteresis in magnetization loops. The annealing effects on the magnetic properties and induced defects of these samples were determined by vibrating sample magnetometer and positron annihilation spectroscopy, respectively. The experimental results indicate that ferromagnetism can be introduced to MgO single crystals by doping with C, N or introduction of Mg related vacancy defects. However, the Mg vacancies coexistence with C or N ions in the C-/N-implanted samples may play a negative role in magnetic performance in these MgO samples. The rapid increase of magnetic moment in O-implanted sample is attributed to the formation of new type of vacancy defects.

  12. Method for fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam; Ma, Beihai; Miller, Dean

    2006-03-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y2O3 and then a layer of CeO2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  13. Method for fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam [Hinsdale, IL; Ma, Beihai [Naperville, IL; Miller, Dean [Darien, IL

    2009-07-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y.sub.2O.sub.3 and then a layer of CeO.sub.2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO.sub.2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  14. Direct estimation of the oxygen requirements of Achromobacter xylosoxidans for aerobic degradation of monoaromatic hydrocarbons (BTEX) in a bioscrubber.

    PubMed

    Nielsen, David R; McLellan, P James; Daugulis, Andrew J

    2006-08-01

    The O2 requirements for biomass production and supplying maintenance energy demands during the degradation of both benzene and ethylbenzene by Achromobacter xylosoxidans Y234 were measured using a newly proposed technique involving a bioscrubber. Using this approach, relevant microbial parameter estimates were directly and simultaneously obtained via linear regression of pseudo steady-state data. For benzene and ethylbenzene, the biomass yield on O2, Y(X/O2), was estimated on a cell dry weight (CDW) basis as 1.96 +/- 0.25 mg CDW mgO2(-1) and 0.98 +/- 0.17 mg CDW mgO2(-1), while the specific rate of O2 consumption for maintenance, m(O2), was estimated as 0.041 +/- 0.008 mgO(2) mg CDW(-1) h(-1) and 0.053 +/- 0.022 mgO(2) mg CDW(-1) h(-1), respectively.

  15. Growth of epitaxial Pb(Zr,Ti)O3 films by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lee, J.; Safari, A.; Pfeffer, R. L.

    1992-10-01

    Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary have been grown on MgO (100) and Y1Ba2Cu3Ox (YBCO) coated MgO substrates. Substrate temperature and oxygen pressure were varied to achieve ferroelectric films with a perovskite structure. Films grown on MgO had the perovskite structure with an epitaxial relationship with the MgO substrate. On the other hand, films grown on the YBCO/MgO substrate had an oriented structure to the surface normal with a misorientation in the plane parallel to the surface. The measured dielectric constant and loss tangent at 1 kHz were 670 and 0.05, respectively. The remnant polarization and coercive field were 42 μC/cm2 and 53 kV/cm. A large internal bias field (12 kV/cm) was observed in the as-deposited state of the undoped PZT films.

  16. Saturation of VCMA in out-of-plane magnetized CoFeB/MgO/CoFeB magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Williamson, M.; de Rozieres, M.; Almasi, H.; Chao, X.; Wang, W.; Wang, J.-P.; Tsoi, M.

    2018-05-01

    Voltage controlled magnetic anisotropy (VCMA) currently attracts considerable attention as a novel method to control and manipulate magnetic moments in high-speed and low-power spintronic applications based on magnetic tunnel junctions (MTJs). In our experiments, we use ferromagnetic resonance (FMR) to study and quantify VCMA in out-of-plane magnetized CoFeB/MgO/CoFeB MTJ pillars. FMR is excited by applying a microwave current and detected via a small rectified voltage which develops across MTJ at resonance. The VCMA effective field can be extracted from the measured resonance field and was found to vary as a function of electrical bias applied to MTJ. At low applied biases, we observe a linear shift of the VCMA field as a function of the applied voltage which is consistent with the VCMA picture based on the bias-induced electron migration across the MgO/CoFeB interface. At higher biases, both positive and negative, we observe a deviation from the linear behavior which may indicate a saturation of the VCMA effect. These results are important for the design of MTJ-based applications.

  17. Low resistance AL2O3 magnetic tunnel junctions optimized through in situ conductance measurements

    NASA Astrophysics Data System (ADS)

    Wolfman, J.; Mauri, D.; Lin, T.; Yang, J.; Chen, T.

    2005-06-01

    In situ electrical conductance is used to monitor the growth and natural oxidation of aluminum on top of a CoFe electrode. Light oxidation is found to enhance the electron specular scattering of the CoFe/vacuum interface. Aluminum deposited onto CoFe intermixes to a depth of a few atomic layers, however, subsequent natural oxidation tends to reverse this interdiffusion through oxygen-driven A1 segregation. At the right A1 thickness, natural oxidation creates a clean and specular CoFe /AlOx interface very similar to the best achievable CoFe/vacuum interface. For thicker A1, natural oxidation leaves behind underoxidized AlOx and most importantly an interdiffused CoFe /Al interface. Using 2Torr×150-s natural oxidation, we have fabricated magnetic tunnel junctions (MTJs) with a peak tunnel magnetoresistance (TMR) of 18% for a resistance area product of 7Ωμm2, at the A1 metal thickness of 6 Å. With the same oxidation process TMR drops to only 8% when A1 is increased to 9 Å. Contrary to the accepted view, we do not attribute this TMR drop to A1 underoxidation, but primarily to the interdiffusion at the CoFe /Al interface. This assertion is strongly supported by a second set of MTJs differing only by the insertion of a nano-oxide layer (NOL) on top of CoFe. In this case when Al is increased from 6 to 9 Å, the TMR does not drop but increases from 16% to 27%. This is significant because NOL is found to effectively prevent Al diffusion into CoFe. NOL is also found to act as a reservoir of oxygen, which is subsequently consumed by Al.

  18. Exploration of perpendicular magnetic anisotropy material system for application in spin transfer torque - Random access memory

    NASA Astrophysics Data System (ADS)

    Natarajarathinam, Anusha

    Perpendicular magnetic anisotropy (PMA) materials have unique advantages when used in magnetic tunnel junctions (MTJ) which are the most critical part of spin-torque transfer random access memory devices (STT-RAMs) that are being researched intensively as future non-volatile memory technology. They have high magnetoresistance which improves their sensitivity. The STT-RAM has several advantages over competing technologies, for instance, low power consumption, non-volatility, ultra-fast read and write speed and high endurance. In personal computers, it can replace SRAM for high-speed applications, Flash for non-volatility, and PSRAM and DRAM for high-speed program execution. The main aim of this research is to identify and optimize the best perpendicular magnetic anisotropy (PMA) material system for application to STT-RAM technology. Preliminary search for perpendicular magnetic anisotropy (PMA) materials for pinned layer for MTJs started with the exploration and optimization of crystalline alloys such as Co50Pd50 alloy, Mn50Al50 and amorphous alloys such as Tb21Fe72Co7 and are first presented in this work. Further optimization includes the study of Co/[Pd/Pt]x multilayers (ML), and the development of perpendicular synthetic antiferromagnets (SAF) utilizing these multilayers. Focused work on capping and seed layers to evaluate interfacial perpendicular anisotropy in free layers for pMTJs is then discussed. Optimization of the full perpendicular magnetic tunnel junction (pMTJ) includes the CoFeB/MgO/CoFeB trilayer coupled to a pinned/pinning layer with perpendicular Co/[Pd/Pt]x SAF and a thin Ta seeded CoFeB free layer. Magnetometry, simulations, annealing studies, transport measurements and TEM analysis on these samples will then be presented.

  19. Effect of annealing on the temperature dependence of inelastic tunneling contributions vis-à-vis tunneling magnetoresistance and barrier parameters in CoFe/MgO/NiFe magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhusan Singh, Braj; Chaudhary, Sujeet, E-mail: sujeetc@physics.iitd.ac.in

    The effect of annealing on the changes in the inelastic tunneling contributions in tunneling conductance of ion beam sputtered CoFe/MgO/NiFe magnetic tunnel junctions (MTJs) is investigated. The inelastic contributions are evaluated using hopping conduction model of Glazman and Matveev in the temperature range of 25–300 K. The hopping through number of series of localized states present in the barrier due to structural defects increases from 9 (in as deposited MTJ) to 18 after annealing (at 200 °C/1 h); although no changes in the interface roughness of CoFe-MgO and MgO-NiFe interfaces are observed as revealed by the x-ray reflectance studies on planar MTJs. Themore » bias dependence of tunneling magnetoresistance (TMR) at 25 K is found to get improved after annealing as revealed by the value V{sub 1/2} (the bias value at which the TMR reaches to half of its value at nearly zero bias); which is 78 mV (in MTJ annealed at 200 °C/1 h) 2.5 times the value of 33 mV (in as deposited MTJ). At 25 K the inelastic tunneling spectra revealed the presence of zero bias anomaly and magnon excitations in the range of 10–15 mV. While the barrier height exhibited a strong temperature dependence with nearly 100% increase from the value at 300 K to 25 K, the temperature dependence of TMR becomes steep after annealing.« less

  20. In vitro and in vivo evaluation of an oral sustained release hepatoprotective caffeine loaded w/o Pickering emulsion formula - containing wheat germ oil and stabilized by magnesium oxide nanoparticles.

    PubMed

    Elmotasem, Heba; Farag, Hala K; Salama, Abeer A A

    2018-05-16

    The objective of this study was to innovate an effective oral sustained release hepatoprotective formula for - the water soluble drug - caffeine. Caffeine is rapidly absorbed and eliminated which dictates frequent administration to achieve adequate therapeutic effect. A w/o Pickering emulsion incorporating caffeine in the internal phase was primed. It contained wheat germ oil and was stabilized by synthesized magnesium oxide nanoparticles (MgO NPs). Components selection was based on their antioxidant, hepatoprotective and anticarcinogenic effects. The MgO NPs were prepared via sol-gel method, and then were characterized using X-ray diffractometry, transmission electron microscopy, contact angle and cytotoxicity. The Pickering emulsion formula stabilized by MgO NPs (F1) was compared to another stabilized by conventional MgO particles (F2). Both were evaluated regarding droplet size, stability and caffeine release. F1 was stable against phase separation for a 2 months period. Its droplets mean size was 665.9 ± 90 nm. F1 afforded sustained release for caffeine that reached 70% within 48 h that followed zero order kinetics. 100 ppm of F1 showed nearly 36% growth inhibition of hepatocellular carcinoma (HEPG2). In vivo and histopathalogical evaluations were conducted on CCl 4 intoxicated rats. Biochemical analysis for liver enzymes - (ALT and AST), oxidative stress biomarkers and the inflammation marker (protein kinase C) - revealed that the selected formula elicited significant hepatoprotection. This formula acted as an economical approach to multiple therapy and afforded safe effective sustained level for caffeine. Copyright © 2018. Published by Elsevier B.V.

  1. Comprehensive thermal and structural characterization of antimony-phosphate glass

    NASA Astrophysics Data System (ADS)

    Moustafa, S. Y.; Sahar, M. R.; Ghoshal, S. K.

    For the first time, we prepare new ternary glass systems of composition (95-x)Sb2O3-xP2O5-5MgO, where x = 45, 40, 35 mol%; (85-x)Sb2O3-xP2O5-15MgO, where x = 55, 35, 25 mol%; (75-x)Sb2O3-xP2O5-25MgO, where x = 45, 35, 25 mol%; and 60Sb2O3-(40-x)P2O5-xMgO, where x = 10, 20 mol% via melt-quenching method. Synthesized glasses are characterized using XRD, FESEM, EDX, and TG/DTA measurements. The influence of varying modifier concentrations on their thermal properties is evaluated. The XRD patterns confirmed the amorphous nature of samples. SEM images demonstrated interesting phase formation with ribbons-like texture. Five crystalline phases are evidenced in the ternary diagram which are antimony phosphate and antimony orthophosphate as major phases as well as magnesium phosphate, magnesium cyclo-tetraphosphate and cervantite as minor phases. EDX spectra detected the right elemental traces. Detailed thermal analysis of these glasses revealed their high-molecular polymer character for Sb2O3 content greater than 50 mol%. Three different glass transition temperatures are achieved around 276, 380-381 and 422-470 °C depending on the composition. Furthermore, the solidus and liquidus temperature are found to decrease with increasing Sb2O3 and increases for MgO contents till 15 mol% and then decrease, where the lowest recorded solidus temperature is 426 °C. This observation may open up new research avenues for antimony based ternary glasses and an exploitation of the derived results for optoelectronics applications, photonic devices and non-linear optical devices.

  2. Organic-inorganic interface-induced multi-fluorescence of MgO nanocrystal clusters and their applications in cellular imaging.

    PubMed

    Xie, Shuifen; Bao, Shixiong; Ouyang, Junjie; Zhou, Xi; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2014-04-25

    Surface functionalization of inorganic nanomaterials through chemical binding of organic ligands on the surface unsaturated atoms, forming unique organic-inorganic interfaces, is a powerful approach for creating special functions for inorganic nanomaterials. Herein, we report the synthesis of hierarchical MgO nanocrystal clusters (NCs) with an organic-inorganic interface induced multi-fluorescence and their application as new alternative labels for cellular imaging. The synthetic method was established by a dissolution and regrowth process with the assistance of carboxylic acid, in which the as-prepared MgO NCs were modified with carboxylic groups at the coordinatively unsaturated atoms of the surface. By introducing acetic acid to partially replace oleic acid in the reaction, the optical absorption of the produced MgO NCs was progressively engineered from the UV to the visible region. Importantly, with wider and continuous absorption profile, those MgO NCs presented bright and tunable multicolor emissions from blue-violet to green and yellow, with the highest absolute quantum yield up to (33±1) %. The overlap for the energy levels of the inorganic-organic interface and low-coordinated states stimulated a unique fluorescence resonance energy transfer phenomenon. Considering the potential application in cellular imaging, such multi-fluorescent MgO NCs were further encapsulated with a silica shell to improve the water solubility and stability. As expected, the as-formed MgO@SiO2 NCs possessed great biocompatibility and high performance in cellular imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. First principles and Debye model study of the thermodynamic, electronic and optical properties of MgO under high-temperature and pressure

    NASA Astrophysics Data System (ADS)

    Miao, Yurun; Li, Huayang; Wang, Hongjuan; He, Kaihua; Wang, Qingbo

    2018-02-01

    First principles and quasi-harmonic Debye model have been used to study the thermodynamic properties, enthalpies, electronic and optical properties of MgO up to the core-mantle boundary (CMB) condition (137 GPa and 3700 K). Thermodynamic properties calculation includes thermal expansion coefficient and capacity, which have been studied up to the CMB pressure (137 GPa) and temperature (3700 K) by the Debye model with generalized gradient approximation (GGA) and local-density approximation (LDA). First principles with hybrid functional method (PBE0) has been used to calculate the electronic and optical properties under pressure up to 137 GPa and 0 K. Our results show the Debye model with LDA and first principles with PBE0 can provide accurate thermodynamic properties, enthalpies, electronic and optical properties. Calculated enthalpies show that MgO keep NaCl (B1) structure up to 137 GPa. And MgO is a direct bandgap insulator with a 7.23 eV calculated bandgap. The bandgap increased with increasing pressure, which will induce a blue shift of optical properties. We also calculated the density of states (DOS) and discussed the relation between DOS and band, optical properties. Equations were used to fit the relations between pressure and bandgaps, absorption coefficient (α(ω)) of MgO. The equations can be used to evaluate pressure after careful calibration. Our calculations can not only be used to identify some geological processes, but also offer a reference to the applications of MgO in the future.

  4. ZnO Nanoparticles Protect RNA from Degradation Better than DNA.

    PubMed

    McCall, Jayden; Smith, Joshua J; Marquardt, Kelsey N; Knight, Katelin R; Bane, Hunter; Barber, Alice; DeLong, Robert K

    2017-11-08

    Gene therapy and RNA delivery require a nanoparticle (NP) to stabilize these nucleic acids when administered in vivo. The presence of degradative hydrolytic enzymes within these environments limits the nucleic acids' pharmacologic activity. This study compared the effects of nanoscale ZnO and MgO in the protection afforded to DNA and RNA from degradation by DNase, serum or tumor homogenate. For double-stranded plasmid DNA degradation by DNase, our results suggest that the presence of MgO NP can protect DNA from DNase digestion at an elevated temperature (65 °C), a biochemical activity not present in ZnO NP-containing samples at any temperature. In this case, intact DNA was remarkably present for MgO NP after ethidium bromide staining and agarose gel electrophoresis where these same stained DNA bands were notably absent for ZnO NP. Anticancer RNA, polyinosinic-polycytidylic acid (poly I:C) is now considered an anti-metastatic RNA targeting agent and as such there is great interest in its delivery by NP. For it to function, the NP must protect it from degradation in serum and the tumor environment. Surprisingly, ZnO NP protected the RNA from degradation in either serum-containing media or melanoma tumor homogenate after gel electrophoretic analysis, whereas the band was much more diminished in the presence of MgO. For both MgO and ZnO NP, buffer-dependent rescue from degradation occurred. These data suggest a fundamental difference in the ability of MgO and ZnO NP to stabilize nucleic acids with implications for DNA and RNA delivery and therapy.

  5. Shape and structural motifs control of MgTi bimetallic nanoparticles using hydrogen and methane as trace impurities.

    PubMed

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Verheijen, Marcel A; Kooi, Bart J; Palasantzas, George

    2018-01-18

    In this work we report the influence of methane/hydrogen on the nucleation and formation of MgTi bimetallic nanoparticles (NPs) prepared by gas phase synthesis. We show that a diverse variety of structural motifs can be obtained from MgTi alloy, TiC x /Mg/MgO, TiC x /MgO and TiH x /MgO core/shell NPs via synthesis using CH 4 /H 2 as a trace gas, and with good control of the final NP morphology and size distribution. Moreover, depending on the concentration of Ti and type of employed trace gas, the as prepared MgTi NPs can be tuned from truncated hexagonal pyramid to triangular and hexagonal platelet shapes. The shape of MgTi NPs is identified using detailed analysis from selected area electron diffraction (SAED) patterns and tomography (3D reconstruction based on a tilt series of Bright-Field transmission electron microscopy (TEM) micrographs). We observe the truncated hexagonal pyramid as a shape of MgTi alloy NPs in contrast to Mg NPs that show a hexagonal prismatic shape. Moreover, based on our experimental observations and generic geometrical model analysis, we also prove that the formation of the various structural motifs is based on a sequential growth mechanism instead of phase separation. One of the prime reasons for such mechanism is based on the inadequacy of Mg to nucleate without template in the synthesis condition. In addition, the shape of the TiC x /TiH x core, and the concentration of Mg have strong influence on the shape evolution of TiC x /MgO and TiH x /MgO NPs compared to TiC x /Mg/MgO NPs, where the thermodynamics and growth rates of the Mg crystal planes dominate the final shape. Finally, it is demonstrated that the core shape of TiC x and TiH x is affected by the Mg/Ti target ratio (affecting the composition in the plasma), and the type of the trace gas employed. In the case of CH 4 the TiC x core forms a triangular platelet, while in the case of H 2 the TiH x core transforms into a hexagonal platelet. We elucidate the reason for the TiC x /TiH x core shape based on the presence of (i) defects, and (ii) hydrogen and carbon adsorption on {111} planes that alter the growth rates and surface facet stabilization.

  6. Ag-Decorated Localized Surface Plasmon-Enhanced Ultraviolet Electroluminescence from ZnO Quantum Dot-Based/GaN Heterojunction Diodes by Optimizing MgO Interlayer Thickness.

    PubMed

    Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing

    2016-12-01

    We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.

  7. Ag-Decorated Localized Surface Plasmon-Enhanced Ultraviolet Electroluminescence from ZnO Quantum Dot-Based/GaN Heterojunction Diodes by Optimizing MgO Interlayer Thickness

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhang, Wei; Liang, Renli; Dai, Jiangnan; Chen, Changqing

    2016-10-01

    We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The EL origination was investigated qualitatively in terms of photoluminescence (PL) results. Through analysis of the energy band structure of device and carrier transport mechanisms, it suggests that the EL enhancement is attributed to the increased rate of spontaneous emission and improved internal quantum efficiency induced by exciton-LSP coupling.

  8. Time-of-flight spectroscopy of positronium emission from quartz and magnesium oxide

    NASA Astrophysics Data System (ADS)

    Sferlazzo, P.; Berko, S.; Canter, K. F.

    1987-04-01

    The energy distribution of Ps emitted from SiO2 and MgO single crystals bombarded by 500-900-eV positrons was measured. For SiO2 a nearly monoenergetic component at 3.27(4) is observed and is consistent with a bulk excitonlike Ps emitted from the surface. A broader component of ~1.5 eV full width at half maximum is also observed. For MgO the Ps spectrum is characterized by a high-energy tail extending up to 6-7 eV. Possible models which would explain the MgO results are discussed.

  9. MgO melting curve constraints from shock temperature and rarefaction overtake measurements in samples preheated to 2300 K

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2014-05-01

    Continuing our effort to obtain experimental constraints on the melting curve of MgO at 100-200 GPa, we extended our target preheating capability to 2300 K. Our new Mo capsule design holds a long MgO crystal in a controlled thermal gradient until impact by a Ta flyer launched at up to 7.5 km/s on the Caltech two-stage light-gas gun. Radiative shock temperatures and rarefaction overtake times were measured simultaneously by a 6-channel VIS/NIR pyrometer with 3 ns time resolution. The majority of our experiments showed smooth monotonic increases in MgO sound speed and shock temperature with pressure from 197 to 243 GPa. The measured temperatures as well as the slopes of the pressure dependences for both temperature and sound speed were in good agreement with those calculated numerically for the solid phase at our peak shock compression conditions. Most observed sound speeds, however, were ~800 m/s higher than those predicted by the model. A single unconfirmed data point at 239 GPa showed anomalously low temperature and sound speed, which could both be explained by partial melting in this experiment and could suggest that the Hugoniot of MgO preheated to 2300 K crosses its melting line just slightly above 240 GPa.

  10. Unique fluorescence and high-molecular weight characteristics of protein isolates from manuka honey (Leptospermum scoparium).

    PubMed

    Rückriemen, Jana; Hohmann, Christoph; Hellwig, Michael; Henle, Thomas

    2017-09-01

    This study compared the fluorescence properties (λ ex/em =350/450nm) and molecular size of proteins from manuka and non-manuka honey. The fluorescence characteristics of non-manuka and manuka proteins differ markedly, whereby manuka honey protein fluorescence increases with increasing methylglyoxal (MGO) content of the honey. It was concluded that manuka honey proteins are modified due to MGO-derived glycation and crosslinking reactions, thus resulting in fluorescent structures. The molecular size of honey proteins was studied using size exclusion chromatography. Manuka honey proteins contain a significantly higher amount of high molecular weight (HMW) fraction compared to non-manuka honey proteins. Moreover, HMW fraction of manuka honey proteins was stable against reducing agents such as dithiothreitol, whereas HMW fraction of non-manuka honey proteins was significantly decreased. Thus, the chemical nature of manuka honey HMW fraction is probably covalent MGO crosslinking, whereas non-manuka HMW fraction is caused by disulfide bonds. Storage of a non-manuka honey, which was artificially spiked with MGO and DHA, did not induce above mentioned fluorescence properties of proteins during 84days of storage. Hence, MGO-derived fluorescence and crosslinking of honey proteins can be useful parameters to characterize manuka honey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. SO2 Initiates the Efficient Conversion of NO2 to HONO on MgO Surface.

    PubMed

    Ma, Qingxin; Wang, Tao; Liu, Chang; He, Hong; Wang, Zhe; Wang, Weihao; Liang, Yutong

    2017-04-04

    Nitrous acid (HONO) is an important source of hydroxyl radical (OH) that determines the fate of many chemically active and climate relevant trace gases. However, the sources and the formation mechanisms of HONO remain poorly understood. In this study, the effect of SO 2 on the heterogeneous reactions of NO 2 on MgO as a mineral dust surrogate was investigated. The reactivity of MgO to NO 2 is weak, while coexisting SO 2 can increase the uptake coefficients of NO 2 on MgO by 2-3 orders of magnitude. The uptake coefficients of NO 2 on SO 2 -aged MgO are independent of NO 2 concentrations in the range of 20-160 ppbv and relative humidity (0-70%RH). The reaction mechanism was demonstrated to be a redox reaction between NO 2 and surface sulfite. In the presence of SO 2 , NO 2 was reduced to nitrite under dry conditions, which could be further converted to gas-phase HONO in humid conditions. These results suggest that the reductive effect of SO 2 on the heterogeneous conversion of NO 2 to HONO may have a significant contribution to the unknown sources of HONO observed in polluted areas (for example, in China).

  12. Effect of hot extrusion, other constituents, and temperature on the strength and fracture of polycrystalline MgO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, R.W.

    Improved agreement was confirmed between the Petch intercept and single-crystal yield stresses at 22 C. Hot-extruded MgO crystal specimens stressed parallel with the resultant axial texture (1) gave the highest and least-scattered strength-grain size results at 22 C, (2) showed direct fractographic evidence of microplastic initiated fracture at 22 C and showed macroscopic yield at 1,315 and especially 1,540 C, and (3) fractured entirely via transgranular cleavage, except for intergranular failure initiation from one or a few grain boundary surfaces exposed on the subsequent fracture surface, mainly at 1,540 C. Hot-extruded, hot-pressed MgO billets gave comparable strength when fracture initiatedmore » transgranularly, but lower strength when fracture initiated from one or especially a few grain boundary surfaces exposed on the fracture. The extent and frequency of such boundary fracture increased with test temperature. While oxide additions of [<=] 5% or impurities in hot-pressed or hot-extruded MgO can make limited strength increases at larger grain sizes, those having limited solubility can limit strength at finer grain sizes, as can coarser surface finish. Overall, MgO strength is seen as a balance between flaw and microplastic controlled failure, with several parameters shifting the balance.« less

  13. Development of coated conductors by inclined substrate deposition

    NASA Astrophysics Data System (ADS)

    Balachandran, U.; Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Miller, D. J.; Dorris, S. E.

    2003-10-01

    Inclined substrate deposition (ISD) offers the potential for rapid production of high-quality biaxially textured buffer layers suitable for YBa 2Cu 3O 7- δ (YBCO)-coated conductors. We have grown biaxially textured magnesium oxide (MgO) films on Hastelloy C276 (HC) substrates by ISD at deposition rates of 20-100 Å/s. Scanning electron microscopy of the ISD MgO films showed columnar grain structures with a roof-tile-shaped surface. X-ray pole figure analysis revealed that the c-axis of the ISD MgO films is titled at an angle ≈32° from the substrate normal. A small full-width at half maximum of ≈9° was observed for the φ-scan of MgO films. YBCO films were grown on ISD MgO buffered HC substrates by pulsed laser deposition and were determined to be biaxially aligned with the c-axis parallel to the substrate normal. The orientation relationship between the ISD template and the top YBCO film was investigated by X-ray pole figure analysis and transmission electron microscopy. A transport critical current density of Jc=5.5×10 5 A/cm 2 at 77 K in self-field was measured on a YBCO film that was 0.46-μm thick, 4-mm wide, 10-mm long.

  14. Detailed Analysis of Criteria and Particle Emissions from a Very Large Crude Carrier Using a Novel ECA Fuel.

    PubMed

    Gysel, Nicholas R; Welch, William A; Johnson, Kent; Miller, Wayne; Cocker, David R

    2017-02-07

    Ocean going vessels (OGVs) operating within emission control areas (ECA) are required to use fuels with ≤0.1 wt % sulfur. Up to now only distillate fuels could meet the sulfur limits. Recently refiners created a novel low-sulfur heavy-fuel oil (LSHFO) meeting the sulfur limits so questions were posed whether nitric oxide (NO x ) and particulate matter (PM) emissions were the same for the two fuels. This project characterized criteria pollutants and undertook a detailed analysis of PM emissions from a very large crude oil carrier (VLCC) using a distillate ECA fuel (MGO) and novel LSHFO. Results showed emission factors of NO x were ∼5% higher with MGO than LSHFO. PM 2.5 emission factors were ∼3 times higher with LSHFO than MGO, while both were below values reported by Lloyds, U.S. EPA and CARB. A detailed analysis of PM revealed it was >90% organic carbon (OC) for both fuels. Elemental carbon (EC) and soot measured with an AVL microsoot sensor (MSS) reflected black carbon. PM size distributions showed unimodal peaks for both MGO (20-30 nm) and LSHFO (30-50 nm). Particle number (PN) emissions were 28% and 17% higher with the PPS-M compared to the SMPS for LSHFO and MGO, respectively.

  15. Magnetic anisotropy modulation of epitaxial Fe3O4 films on MgO substrates

    NASA Astrophysics Data System (ADS)

    Chichvarina, O.; Herng, T. S.; Xiao, W.; Hong, X.; Ding, J.

    2015-05-01

    Fe3O4 has been widely studied because of its great potential in spintronics and other applications. As a magnetic electrode, it is highly desired if magnetic anisotropy can be controlled. Here, we report the results from our systematic study on the magnetic properties of magnetite (Fe3O4) thin films epitaxially grown on various MgO substrates. Strikingly, we observed a prominent perpendicular magnetic anisotropy in Fe3O4 film deposited on MgO (111) substrate. When measured in out-of-plane direction, the film (40 nm thick) exhibits a well-defined square hysteresis loop with coercivity (Hc) above 1 kOe, while much lower coercivity was obtained in the in-plane orientation. In sharp contrast, the films deposited onto MgO (100) and MgO (110) substrates show in-plane magnetic anisotropy. These films exhibit a typical soft magnet characteristic—Hc lies within the range of 200-400 Oe. All the films showed a clear Verwey transition near 120 K—a characteristic of Fe3O4 material. In addition, a series of magnetoresistance (MR) measurements is performed and the MR results are in good agreement with the magnetic observations. The role of the substrate orientation and film thickness dependency is also investigated.

  16. Characterization of MgO Based Tunnel Barriers in Graphene Based Spin Valve Devices

    NASA Astrophysics Data System (ADS)

    Avsar, Ahmet; Balakrishnan, Jayakumar; Koon, Gavin; Ho, Yuda; Patra, Ajit; Bae, Sukang; Hong, Byung-Hee; Özyilmaz, Barbaros

    2012-02-01

    The low spin orbit coupling and hyperfine interaction in graphene allows a high spin relaxation length even at room temperature [1]. The demonstration of comparable spin transport properties in CVD synthesized single layer and bilayer graphene with its exfoliated counterparts raised hopes for the realization of possible room temperature spintronic applications [2]. To improve the spin transport properties of CVD Graphene based spin valves further, contact induced spin relaxation should be reduced by creating pin-hole free tunneling barriers. In this presentation, we will compare MgO barriers deposited under different conditions towards establishing pin-hole free barriers. We will discuss the effect of the substrate smoothness on the formation of high quality tunnel barriers by studying growth on different substrates. [4pt] [1] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature 448, 571-574 (2007) [0pt] [2] A. Avsar, T. Yang, S. Bae, J. Balakrishnan, F. Volmer, M. Jaiswal, Z. Yi, S. R. Ali, G. Guntherodt, B. H. Hong, B. Beschoten, B. Ozyilmaz, Nano Lett. 10.10.1021/nl200714q (2011)

  17. Basic refractory and slag management for petcoke carbon feedstock in gasifiers

    DOEpatents

    Kwong, Kyei-Sing; Bennett, James P; Nakano, Jinichiro

    2014-04-22

    The disclosure provides methods of operating a slagging gasifier using a carbon feedstock having a relatively high V.sub.2O.sub.5 to SiO.sub.2 ratio, such as petcoke. The disclosure generates a combined chemical composition in the feed mixture having less than 25 wt. % SiO.sub.2, greater than 20 wt. % V.sub.2O.sub.5, and greater than 20 wt. % CaO. The method takes advantage of a novel recognition that increased levels of SiO.sub.2 tend to decrease dissolution of the V.sub.2O.sub.3 which forms under the reducing conditions of the gasifier, and utilizes the CaO additive to establish a chemical phase equilibria comprised of lower melting compounds. The method further provides for control based on the presence of Al.sub.2O.sub.3 and FeO, and provides for a total combined chemical composition of greater than about 5 wt. % MgO for use with refractory linings comprised of MgO based refractory brick.

  18. Subsurface synthesis and characterization of Ag nanoparticles embedded in MgO

    NASA Astrophysics Data System (ADS)

    Vilayurganapathy, S.; Devaraj, A.; Colby, R.; Pandey, A.; Varga, T.; Shutthanandan, V.; Manandhar, S.; El-Khoury, P. Z.; Kayani, Asghar; Hess, W. P.; Thevuthasan, S.

    2013-03-01

    Metal nanoparticles exhibit a localized surface plasmon resonance (LSPR) which is very sensitive to the size and shape of the nanoparticle and the surrounding dielectric medium. The coupling between the electromagnetic radiation and the localized surface plasmon in metallic nanoparticles results in a sizable enhancement of the incident fields, making them possible candidates for plasmonic applications. In particular, partially exposed metallic nanoparticles distributed in a dielectric matrix can provide prime locations for LSPR spectroscopy and sensing. We report the synthesis and characterization of a plasmonic substrate consisting of Ag nanoparticles partially buried in MgO. Ag nanoparticles of different shapes and size distributions were synthesized below the surface of MgO by implanting 200 keV Ag+ ions followed by annealing at 1000 °C for 10 and 30 h. A detailed optical and structural characterization was carried out to understand the evolution of the Ag nanoparticle and size distribution inside the MgO matrix. Micro x-ray diffraction (Micro-XRD) was employed to investigate the structural properties and estimate the crystallite size. The nanoparticles evolved from a spherical to a faceted morphology with annealing time, assuming an octahedral shape truncated at the (001) planes, as visualized from aberration-corrected transmission electron microscopy (TEM) images. The nanoparticles embedded in MgO were shown to be pure metallic Ag using atom probe tomography (APT). The nanoparticles were partially exposed to the surface by employing plasma etch techniques to remove the overlaying MgO. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to study the surface morphology and obtain a height distribution for the partially exposed nanoparticles.

  19. Prediction of novel stable compounds in the Mg-Si-O system under exoplanet pressures

    PubMed Central

    Niu, Haiyang; Oganov, Artem R.; Chen, Xing-Qiu; Li, Dianzhong

    2015-01-01

    The Mg-Si-O system is the major Earth and rocky planet-forming system. Here, through quantum variable-composition evolutionary structure explorations, we have discovered several unexpected stable binary and ternary compounds in the Mg-Si-O system. Besides the well-known SiO2 phases, we have found two extraordinary silicon oxides, SiO3 and SiO, which become stable at pressures above 0.51 TPa and 1.89 TPa, respectively. In the Mg-O system, we have found one new compound, MgO3, which becomes stable at 0.89 TPa. We find that not only the (MgO)x·(SiO2)y compounds, but also two (MgO3)x·(SiO3)y compounds, MgSi3O12 and MgSiO6, have stability fields above 2.41 TPa and 2.95 TPa, respectively. The highly oxidized MgSi3O12 can form in deep mantles of mega-Earths with masses above 20 M⊕ (M⊕:Earth’s mass). Furthermore, the dissociation pathways of pPv-MgSiO3 are also clarified, and found to be different at low and high temperatures. The low-temperature pathway is MgSiO3 ⇒ Mg2SiO4 + MgSi2O5 ⇒ SiO2 + Mg2SiO4 ⇒ MgO + SiO2, while the high-temperature pathway is MgSiO3 ⇒ Mg2SiO4 + MgSi2O5 ⇒ MgO + MgSi2O5 ⇒ MgO + SiO2. Present results are relevant for models of the internal structure of giant exoplanets, and for understanding the high-pressure behavior of materials. PMID:26691903

  20. Lespedeza bicolor ameliorates endothelial dysfunction induced by methylglyoxal glucotoxicity.

    PubMed

    Do, Moon Ho; Lee, Jae Hyuk; Wahedi, Hussain Mustatab; Pak, Chaeho; Lee, Choong Hwan; Yeo, Eui-Ju; Lim, Yunsook; Ha, Sang Keun; Choi, Inwook; Kim, Sun Yeou

    2017-12-01

    Lespedeza species have been used as a traditional medicine to treat nephritis, azotemia, inflammation, energy depletion, diabetes, and diuresis. The purpose of this study is to screen the most potent Lespedeza species against methylglyoxal (MGO)-induced glucotoxicity, and to elucidate the mechanisms of action. Also, we will attempt to identify small chemical metabolites that might be responsible for such anti-glucotoxicity effects. Firstly, the protective effect of 26 different Lespedeza species against MGO-induced toxicity in human umbilical vein endothelial cells was investigated. The chemical metabolites of the most potent species (Lespedeza bicolor 1 (LB1) were identified by high pressure liquid chromatography quadrupole time-of-flight tandem mass spectrometry (HPLC-Q-TOF-MS/MS), then quantified by HPLC. The effects of LB1 on MGO-induced apoptosis were measured by annexin V-FITC staining and western blot. Inhibitory effects of LB1 on MGO-induced ROS generation, and effect of LB1 on advanced glycation end products (AGEs) inhibitor or a glycated cross-link breaker are also measured. Among different Lespedeza species, LB1 extract was shown to reduce intracellular reactive oxidative species, exhibit anti-apoptotic effects, strongly inhibit all the mitogen-activated protein kinase signals, inhibit MGO-induced AGEs formation, and break down preformed AGEs. We tentatively identified 17 chemical constituents of LB1 by HPLC-Q-TOF-MS/MS. Among those, some components, such as genistein and quercetin, significantly reduced the AGEs formation and increased the AGEs-breaking activity, resulting in the reduction of glucotoxicity. LB1 extract has shown to be effective in preventing or treating MGO-induced endothelial dysfunction. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash.

    PubMed

    Li, Ronghua; Liang, Wen; Wang, Jim J; Gaston, Lewis A; Huang, Di; Huang, Hui; Lei, Shuang; Awasthi, Mukesh Kumar; Zhou, Baoyue; Xiao, Ran; Zhang, Zengqiang

    2018-04-15

    Enhancing the contaminant adsorption capacity is a key factor affecting utilization of carbon-based adsorbents in wastewater treatment and encouraging development of biomass thermo-disposal. In this study, a novel MgO hybrid sponge-like carbonaceous composite (HSC) derived from sugarcane leafy trash was prepared through an integrated adsorption-pyrolysis method. The resulted HSC composite was characterized and employed as adsorbent for the removal of negatively charged arsenate (As(V)), positively charged Pb(II), and the organic pollutant methylene blue (MB) from aqueous solutions in batch experiments. The effects of solution pH, contact time, initial concentration, temperature, and ionic strength on As(V), Pb(II) and MB adsorption were investigated. HSC was composed of nano-size MgO flakes and nanotube-like carbon sponge. Hybridization significantly improved As(V), Pb(II) and methylene blue (MB) adsorption when compared with the material without hybridization. The maximum As(V), Pb(II) and MB adsorption capacities obtained from Langmuir model were 157 mg/g, 103 mg/g and 297 mg/g, respectively. As(V) adsorption onto HSC was best fit by the pseudo-second-order model, and Pb(II) and MB with the intraparticle diffusion model. Increased temperature and ionic strength decreased Pb(II) and MB adsorption onto HSC more than As(V). Further FT-IR, XRD and XPS analysis demonstrated that the removal of As(V) by HSC was mainly dominated by surface deposition of MgHAsO 4 and Mg(H 2 AsO 4 ) 2 crystals on the HSC composite, while carbon π-π* transition and carbon π-electron played key roles in Pb(II) and MB adsorption. The interaction of Pb(II) with carbon matrix carboxylate was also evident. Overall, MgO hybridization improves the preparation of the nanotube-like carbon sponge composite and provides a potential agricultual residue-based adsorbent for As(V), Pb(II) and MB removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Magnetization distribution and spin transport of graphene/h-BN/graphene nanoribbon-based magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yan, X. H.; Guo, Y. D.; Xiao, Y.

    2017-09-01

    Motivated by recent electronic transport measurement of boron nitride-graphene hybrid atomic layers, we studied magnetization distribution, transmission and current-bias relation of graphene/h-BN/graphene (C/BN/C) nanoribbon-based magnetic tunnel junctions (MTJ) based on density functional theory and non-equilibrium Green's function methods. Three types of MTJs, i.e. asymmetric, symmetric (S) and symmetric (SS), and two types of lead magnetization alignment, i.e. parallel (PC) and antiparallel (APC), are considered. The results show that the magnetization distribution is closely related to the interface structure. Especially for asymmetric MTJ, the B/N atoms at the C/BN interface are spin-polarized and give finite magnetic moments. More interesting, it is found that the APC transmission of asymmetric MTJ with the thinnest barrier dominates over the PC one. By analyzing the projected density of states, one finds that the unusual higher APC transmission than PC is due to the coupling of electronic states of left ZGNR and right ZGNR. By integrating transmission, we calculate the current-bias voltage relation and find that the APC current is larger than PC current at small bias voltage and therefore reproduces a negative tunnel magnetoresistance. The results reported here will be useful and important for the design of C/BN/C-based MTJ.

  3. Effects of MgO on the Reduction of Vanadium Titanomagnetite Concentrates with Char

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Sun, TiChang; Wang, XiaoPing; Hu, TianYang

    2017-10-01

    The effects of MgO on the carbothermic reduction behavior of vanadium titanomagnetite concentrates (VTC) from Chengde, China, were investigated via temperature-programmed heating under nitrogen atmosphere in a sealed furnace. Gaseous product content was measured by using an infrared gas analyzer, and it was found that the addition of MgO to VTC with char decreased the reduction rate and reduction degree, and the utilization of CO in VTC reduction was also reduced. X-ray diffraction results showed that magnesium titanate (Mg2TiO4) was formed but FeTi2O5 was not observed in the VTC reduction process by adding 6 wt.% MgO, which can be explained by thermodynamic analysis. Scanning electron microscopy revealed that the enrichment of Mg in the unreacted core was the main reason that the further reduction of VTC was restricted. However, comparatively pure particles of Mg2TiO4 were generated, and the titanium and iron were separated well due to the combination of magnesium and titanium.

  4. Synthesis and characterization of Chitosan-CuO-MgO polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Praffulla, S. R.; Bubbly, S. G.

    2018-05-01

    In the present work, we have synthesized Chitosan-CuO-MgO nanocomposites by incorporating CuO and MgO nanoparticles in chitosan matrix. Copper oxide and magnesium oxide nanoparticles synthesized by precipitation method were characterized by X-ray diffraction and the diffraction patterns confirmed the monoclinic and cubic crystalline structures of CuO and MgO nanoparticles respectively. Chitosan-CuO-MgO composite films were prepared using solution- cast method with different concentrations of CuO and MgO nanoparticles (15 - 50 wt % with respect to chitosan) and characterized by XRD, FTIR and UV-Vis spectroscopy. The X-ray diffraction pattern shows that the crystallinity of the chitosan composite increases with increase in nanoparticle concentration. FTIR spectra confirm the chemical interaction between chitosan and metal oxide nanoparticles (CuO and MgO). UV absorbance of chitosan nanocomposites were up to 17% better than pure chitosan, thus confirming its UV shielding properties. The mechanical and electrical properties of the prepared composites are in progress.

  5. Nanostructured magnesium oxide as cure activator for polychloroprene rubber.

    PubMed

    Kar, Sritama; Bhowmick, Anil K

    2009-05-01

    The aim of this research was to synthesize magnesium oxide nanoparticles and to use them as cure activator for polychloroprene rubber (CR). The effects of counterions of magnesium salts on the homogeneous phase precipitation reaction to control size, monodispersity, crystallinity, and morphology of Mg(OH)2 nanoparticles were also investigated. Magnesium oxide nanoparticles were synthesized by optimizing the calcination temperature of Mg(OH)2 nanoparticles. Finally, the MgO nanoparticles were dispersed in polychloroprene rubber (CR) solution along with zinc oxide (ZnO) powder. The influence of MgO nanoparticles on the mechanical, dynamic mechanical and thermal properties of the resulting nanocomposites was quantified. The modulus and strength of ZnO-cured polychloroprene rubber with 4% MgO nanoparticles appeared to be superior to those with ZnO particles or ZnO with rubber grade MgO particles. These composites were further characterized by transmission electron microscopy and infrared spectroscopy in order to understand the morphology of the resulting system and the load transfer mechanism.

  6. Nanodomain induced anomalous magnetic and electronic transport properties of LaBaCo{sub 2}O{sub 5.5+δ} highly epitaxial thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz-Zepeda, F.; Ma, C.; Bahena Uribe, D.

    2014-01-14

    A giant magnetoresistance effect (∼46% at 20 K under 7 T) and anomalous magnetic properties were found in a highly epitaxial double perovskite LaBaCo{sub 2}O{sub 5.5+δ} (LBCO) thin film on (001) MgO. Aberration-corrected Electron Microscopy and related analytical techniques were employed to understand the nature of these unusual physical properties. The as-grown film is epitaxial with the c-axis of the LBCO structure lying in the film plane and with an interface relationship given by (100){sub LBCO} || (001){sub MgO} and [001]{sub LBCO} || [100]{sub MgO} or [010]{sub MgO}. Orderly oxygen vacancies were observed by line profile electron energy loss spectroscopy and bymore » atomic resolution imaging. Especially, oxygen vacancy and nanodomain structures were found to have a crucial effect on the electronic transport and magnetic properties.« less

  7. Room temperature stable COx-free H2 production from methanol with magnesium oxide nanophotocatalysts

    PubMed Central

    Liu, Zhengqing; Yin, Zongyou; Cox, Casandra; Bosman, Michel; Qian, Xiaofeng; Li, Na; Zhao, Hongyang; Du, Yaping; Li, Ju; Nocera, Daniel G.

    2016-01-01

    Methanol, which contains 12.6 weight percent hydrogen, is a good hydrogen storage medium because it is a liquid at room temperature. However, by releasing the hydrogen, undesirable CO and/or CO2 byproducts are formed during catalytic fuel reforming. We show that alkaline earth metal oxides, in our case MgO nanocrystals, exhibit stable photocatalytic activity for CO/CO2-free H2 production from liquid methanol at room temperature. The performance of MgO nanocrystals toward methanol dehydrogenation increases with time and approaches ~320 μmol g−1 hour−1 after a 2-day photocatalytic reaction. The COx-free H2 production is attributed to methanol photodecomposition to formaldehyde, photocatalyzed by surface electronic states of unique monodispersed, porous MgO nanocrystals, which were synthesized with a novel facile colloidal chemical strategy. An oxygen plasma treatment allows for the removal of organic surfactants, producing MgO nanocrystals that are well dispersible in methanol. PMID:28508036

  8. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality.

    PubMed

    Fan, Liangliang; Chen, Paul; Zhang, Yaning; Liu, Shiyu; Liu, Yuhuan; Wang, Yunpu; Dai, Leilei; Ruan, Roger

    2017-02-01

    Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene (LDPE) with HZSM-5 and MgO was investigated. Effects of pyrolysis temperature, lignin to LDPE ratio, MgO to HZSM-5 ratio, and feedstock to catalyst ratio on the products yields and chemical profiles were examined. 500°C was the optimal co-pyrolysis temperature in terms of the maximum bio-oil yield. The proportion of aromatics increased with increasing LDPE content. In addition, with the addition of LDPE (lignin/LDPE=1/2), methoxyl group in the phenols was completely removed. A synergistic effect was found between lignin and LDPE. The proportion of aromatics increased and alkylated phenols decreased with increasing HZSM-5 to MgO ratio. The bio-oil yield increased with the addition of appropriate amount of catalyst and the proportion of alkylated phenols increased with increasing catalyst to feedstock ratio. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Direct graphene growth on MgO: origin of the band gap.

    PubMed

    Gaddam, Sneha; Bjelkevig, Cameron; Ge, Siping; Fukutani, Keisuke; Dowben, Peter A; Kelber, Jeffry A

    2011-02-23

    A 2.5 monolayer (ML) thick graphene film grown by chemical vapor deposition of thermally dissociated C(2)H(4) on MgO(111), displays a significant band gap. The apparent six-fold low energy electron diffraction (LEED) pattern actually consists of two three-fold patterns with different 'A' and 'B' site diffraction intensities. Similar effects are observed for the LEED patterns of a 1 ML carbon film derived from annealing adventitious carbon on MgO(111), and for a 1.5 ML thick graphene film grown by sputter deposition on the 1 ML film. The LEED data indicate different electron densities at the A and B sites of the graphene lattice, suggesting that the observed band gap results from lifting the graphene HOMO/LUMO degeneracy at the Dirac point. The data also indicate that disparities in A site/B site LEED intensities decrease with increasing carbon overlayer thickness, suggesting that the graphene band gap size decreases with increasing number of graphene layers on MgO(111). © 2011 IOP Publishing Ltd

  10. Electron microscopy and positron annihilation study of CdSe nanoclusters embedded in MgO

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Eijt, S. W. H.; Kooi, B. J.; De Hosson, J. Th. M.

    2004-06-01

    CdSe nanoclusters are created in MgO by means of co-implantation of 280 keV, 1 × 10 16 Cd ions cm -2 and 210 keV, 1 × 10 16 Se ions cm -2 in single crystals of MgO(0 0 1) and subsequent thermal annealing at a temperature of 1300 K. The structural properties and the orientation relationship between the CdSe and the MgO are investigated using cross-sectional transmission electron microscopy (XTEM). The crystal structure of the nanoclusters depends on their size. The smallest nanoclusters with a size below 5 nm have the cubic rocksalt crystal structure. The larger nanoclusters have a different (most likely the cubic sphalerite) crystal structure. The defect evolution in the sample after ion implantation and during thermal annealing is investigated using Doppler broadening positron beam analysis (PBA). The defect evolution in samples co-implanted with Cd and Se is compared to the defect evolution in samples implanted with only Cd or only Se ions.

  11. In Vitro Cytotoxic Evaluation of MgO Nanoparticles and Their Effect on the Expression of ROS Genes

    PubMed Central

    Kumaran, Rangarajulu Senthil; Choi, Yong-Keun; Singh, Vijay; Song, Hak-Jin; Song, Kyung-Guen; Kim, Kwang Jin; Kim, Hyung Joo

    2015-01-01

    Water-dispersible MgO nanoparticles were tested to investigate their cytotoxic effects on oxidative stress gene expression. In this in vitro study, genes related to reactive oxygen species (ROS), glutathione S-transferase (GST) and catalase, were quantified using real-time polymerase chain reactions (molecular level) and molecular beacon technologies (cellular level). The monodispersed MgO nanoparticles, 20 nm in size, were used to treat human cancer cell lines (liver cancer epithelial cells) at different concentrations (25, 75 and 150 µg/mL) and incubation times (24, 48 and 72 h). Both the genetic and cellular cytotoxic screening methods produced consistent results, showing that GST and catalase ROS gene expression was maximized at 150 µg/mL nanoparticle treatment with 48 h incubation. However, the genotoxic effect of MgO nanoparticles was not significant compared with control experiments, which indicates its significant potential applications in nanomedicine as a diagnostic and therapeutic tool. PMID:25854426

  12. Room temperature stable CO x -free H2 production from methanol with magnesium oxide nanophotocatalysts.

    PubMed

    Liu, Zhengqing; Yin, Zongyou; Cox, Casandra; Bosman, Michel; Qian, Xiaofeng; Li, Na; Zhao, Hongyang; Du, Yaping; Li, Ju; Nocera, Daniel G

    2016-09-01

    Methanol, which contains 12.6 weight percent hydrogen, is a good hydrogen storage medium because it is a liquid at room temperature. However, by releasing the hydrogen, undesirable CO and/or CO 2 byproducts are formed during catalytic fuel reforming. We show that alkaline earth metal oxides, in our case MgO nanocrystals, exhibit stable photocatalytic activity for CO/CO 2 -free H 2 production from liquid methanol at room temperature. The performance of MgO nanocrystals toward methanol dehydrogenation increases with time and approaches ~320 μmol g -1 hour -1 after a 2-day photocatalytic reaction. The CO x -free H 2 production is attributed to methanol photodecomposition to formaldehyde, photocatalyzed by surface electronic states of unique monodispersed, porous MgO nanocrystals, which were synthesized with a novel facile colloidal chemical strategy. An oxygen plasma treatment allows for the removal of organic surfactants, producing MgO nanocrystals that are well dispersible in methanol.

  13. Ceramicrete stabilization of U-and Pu-bearing materials

    DOEpatents

    Wagh, Arun S.; Maloney, M. David; Thompson, Gary H.

    2007-11-13

    A method of stabilizing nuclear material is disclosed. Oxides or halides of actinides and/or transuranics (TRUs) and/or hydrocarbons and/or acids contaminated with actinides and/or TRUs are treated by adjusting the pH of the nuclear material to not less than about 5 and adding sufficient MgO to convert fluorides present to MgF.sub.2; alumina is added in an amount sufficient to absorb substantially all hydrocarbon liquid present, after which a binder including MgO and KH.sub.2PO.sub.4 is added to the treated nuclear material to form a slurry. Additional MgO may be added. A crystalline radioactive material is also disclosed having a binder of the reaction product of calcined MgO and KH.sub.2PO.sub.4 and a radioactive material of the oxides and/or halides of actinides and/or transuranics (TRUs). Acids contaminated with actinides and/or TRUs, and/or actinides and/or TRUs with or without oils and/or greases may be encapsulated and stabilized by the binder.

  14. Beneficial effects of cinnamon proanthocyanidins on the formation of specific advanced glycation endproducts and methylglyoxal-induced impairment on glucose consumption.

    PubMed

    Peng, Xiaofang; Ma, Jinyu; Chao, Jianfei; Sun, Zheng; Chang, Raymond Chuen-Chung; Tse, Iris; Li, Edmund T S; Chen, Feng; Wang, Mingfu

    2010-06-09

    Advanced glycation endproducts (AGEs) are a group of complex and heterogeneous compounds formed from nonenzymatic reactions. The accumulation of AGEs in vivo has been implicated as a major pathogenic process in diabetic complications and other health disorders, such as atherosclerosis and Alzheimer's disease, and normal aging. In this study, we investigate the inhibitory effects of cinnamon bark proanthocyanidins, catechin, epicatechin, and procyanidin B2 on the formation of specific AGE representatives including pentosidine, N(epsilon)-(carboxymethyl)lysine (CML), and methylglyoxal (MGO) derived AGEs. These compounds displayed obvious inhibitory effects on these specific AGEs, which are largely attributed to both their antioxidant activities and carbonyl scavenging capacities. Meanwhile, in terms of their potent MGO scavenging capacities, effects of these proanthocyanidins on insulin signaling pathways interfered by MGO were evaluated in 3T3-L1 adipocytes. According to the results, proanthocyanidins exerted protective effects on glucose consumption impaired by MGO in 3T3-L1 fat cells.

  15. High-precision Pb isotopes reveal two small magma bodies beneath the summit of Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Pietruszka, A. J.; Heaton, D. E.; Marske, J. P.; Garcia, M. O.

    2011-12-01

    The summit magma storage reservoir of Kilauea Volcano is one of the most important components of the volcano's magmatic pluming system, but the geometry (size and shape) of this reservoir is poorly known. Here we use high-precision Pb isotopic analyses of historical Kilauea summit lavas (1823-2010) to define the minimum number of magma bodies within the summit reservoir and their volumes. The 206Pb/204Pb ratios of these lavas display a systematic temporal fluctuation characterized by low values in 1823, a gradual increase to a maximum in 1921, an abrupt drop to relatively constant intermediate values from 1929 to 1959, and a rapid decrease to 2010. These variations indicate that Kilauea's summit reservoir is being supplied by rapidly changing parental magma compositions derived from a mantle source that is heterogeneous on a small scale. Analyses of multiple lavas from several individual eruptions reveal small but significant differences in 206Pb/204Pb ratios (~0.01-0.03). For example, the extra-caldera lavas from Aug. 1971 and Jul. 1974 display significantly lower Pb isotope ratios and higher MgO contents (10 wt. %) than the intra-caldera lavas (MgO ~7-8 wt. %) from each eruption. From 1971 to 1982, the 206Pb/204Pb ratios of the lavas define two separate decreasing temporal trends. The intra-caldera lavas from 1971, 1974, 1975, Apr. 1982 and the lower MgO lavas from Sep. 1982 have consistently higher 206Pb/204Pb ratios at a given time (compared to the extra-caldera lavas and the higher MgO lavas from Sep. 1982). These trends require that the intra- and extra-caldera lavas (and the Sep. 1982 lavas) were supplied from two separate magma bodies. Numerous studies by HVO scientists (e.g., Fiske and Kinoshita, 1969; Klein et al., 1987) have long identified the main locus of Kilauea's summit reservoir ~2 km southeast of Halemaumau (near the caldera rim) at a depth of ~2-7 km, but more recent investigations have discovered a secondary magma body located <1 km below the southeast rim of Halemaumau (e.g., Battaglia et al., 2003; Johnson et al., 2010). The association between the vent locations of the extra-caldera lavas near the southeast rim of the caldera and their higher MgO contents suggest that these lavas tapped into the main (deeper) body of the volcano's summit reservoir. In contrast, the lower MgO intra-caldera lavas were likely derived from the secondary (shallow) body beneath Halemaumau. Residence time modeling based on the Pb isotope ratios of the lavas suggests that the magma volume of the deeper body is ~0.2 km3, whereas the shallow body holds a minimum of ~0.04 km3 of magma. These estimates are much smaller than our previous calculation of ~2-3 km3 for Kilauea's summit reservoir based on trace element ratios (Pietruszka and Garcia, 1999), but are similar to the volume of the magma body that underlies Piton de la Fournaise Volcano on Réunion Island (Albarède, 1993).

  16. Critical review of electrical conductivity measurements and charge distribution analysis of magnesium oxide

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Freund, Minoru M.; Batllo, Francois

    1993-01-01

    The electrical conductivity sigma of MgO single crystals shows a sharp increase at 500-800 C, in particular of sigma surface, generally attributed to surface contamination. Charge Distribution Analysis (CDA), a new technique providing information on fundamental properties that was previously unavailable, allows for the determination of surface charges, their sign and associated internal electric field. Data on 99.99% purity, arc-fusion grown MgO crystals show that mobile charge carriers start to appear in the bulk of the MgO crystals between 200 and 400 C when sigma (measured by conventional techniques) is in t he 10(exp -14) to 10(exp -16) /omega/cm range. Above 500 C, as sigma increases to 10(exp -6) to 10(exp -7)/omega/cm, more charges appear giving rise to a strong positive surface charge supported by a strong internal field. This indicates that charges are generated in the bulk and diffuse to the surface by an internally controlled process. On the basis of their positive sign they are identified as holes (defect electrons). Because of the low cation content of these very pure MgO crystals, theses holes cannnot be associated with transition metal impurties. Instead, they are associated with the O(2-) sublattice, e.g. consist of O(-) states or positive holes. This conclusion is supported by magnetic susceptibility data showing the appearance of 1000 +/- 500 ppm paramagnetic species between 200-500 C. The magnetic data are consistent with strongly coupled, diamagnetic O(-) pairs below 200-500 C, chemically equivalent to peroxy anions, O2(2-), and probably associated with cation vacancies in the MgO matrix. The formation of O2(2-) in arc-fusion grown MgO crystals is very unexpected because of the highly reducing growth conditions. Their presence implies an internal redox reaction involving dissolved 'water' by which OH(-) pairs convert to O2(2-) plus H2 molecules. This redox conversion is supported by mass spectroscopic measurements of the H2 release from highly OH(-)-doped, finely divided MgO and by wet-chemical analysis of its oxidant concentration.

  17. Properties of MgO to 1.2 TPa from high-precision experiments on Sandia's Z machine and first-principles simulations using QMC and DFT

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke

    2015-11-01

    MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine the phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility a low entropy solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. The calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties requires particular care because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. Finally, understanding the behavior of MgO as the pressure releases from the Hugoniot state is a key ingredient to modeling giant impact events. We explore this regime both through additional DFT calculations and by observing the release state of the MgO into lower impedance materials. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Magnesia-Based Cements: A Journey of 150 Years, and Cements for the Future?

    PubMed

    Walling, Sam A; Provis, John L

    2016-04-13

    This review examines the detailed chemical insights that have been generated through 150 years of work worldwide on magnesium-based inorganic cements, with a focus on both scientific and patent literature. Magnesium carbonate, phosphate, silicate-hydrate, and oxysalt (both chloride and sulfate) cements are all assessed. Many such cements are ideally suited to specialist applications in precast construction, road repair, and other fields including nuclear waste immobilization. The majority of MgO-based cements are more costly to produce than Portland cement because of the relatively high cost of reactive sources of MgO and do not have a sufficiently high internal pH to passivate mild steel reinforcing bars. This precludes MgO-based cements from providing a large-scale replacement for Portland cement in the production of steel-reinforced concretes for civil engineering applications, despite the potential for CO2 emissions reductions offered by some such systems. Nonetheless, in uses that do not require steel reinforcement, and in locations where the MgO can be sourced at a competitive price, a detailed understanding of these systems enables their specification, design, and selection as advanced engineering materials with a strongly defined chemical basis.

  19. Ramp compression of magnesium oxide to 234 GPa

    DOE PAGES

    Wang, Jue; Smith, R. F.; Coppari, F.; ...

    2014-05-07

    Single-crystal magnesium oxide (MgO) samples were ramp compressed to above 200 GPa pressure at the Omega laser facility. Multi-stepped MgO targets were prepared using lithography and wet etching techniques. Free surface velocities of ramp-compressed MgO were measured with a VISAR. The sound velocity and stress-density response were determined using an iterative Lagrangian analysis. The measured equation of state is consistent with expectations from previous shock and static data as well as with a recent X-ray diffraction measurement under ramp loading. The peak elastic stresses observed in our samples had amplitudes of 3-5.5 GPa, decreasing with propagation distance.

  20. Bulk and surface electronic structures of MgO

    NASA Astrophysics Data System (ADS)

    Schönberger, U.; Aryasetiawan, F.

    1995-09-01

    The bulk electronic structure of MgO is calculated from first principles including correlation effects within the GW approximation. The band gap, the position of the 2s O band, and the valence band width are in good agreement with experiment. From the quasiparticle band structure, optical transitions corresponding to the main optical absorption peaks are identified. The energy-loss spectrum is also calculated and compared with experiment. The surface electronic structure of MgO(100) is calculated self-consistently within the local-density approximation. It is found that states observed in a recent photoemission experiment outside the bulk allowed states are close to surface states.

  1. High-Mg basalts as a Signal of Magma System Replenishment at Lopevi Island, Vanuatu

    NASA Astrophysics Data System (ADS)

    Stewart, R. B.; Smith, I. E.; Turner, M. B.; Cronin, S. J.

    2007-05-01

    Lopevi is is a basalt to basaltic andesite island stratovolcano in central Vanuatu and is part of a long-lived, mature Island Arc chain. Central Vanuatu is tectonically influenced by the subduction of the D'Entrecasteaux zone. Primitive rock types that have been identified from the arc include picrites, ankaramites and high MgO basalts. High MgO rocks are generally considered to be a relatively rare component of arc-type magma suites but as detailed sequence sampling of individual volcanoes occurs, they have been identified more often. Here we report on the occurrence of high-Mg basalts in a sequence of lavas erupted in the last 100 years from Lopevi volcano. Activity at Lopevi is characteristically intermittent with eruptive sequences occurring over a c. 6 year period, separated by longer periods of repose. A major eruptive episode in 1939 caused evacuation of the island and the next eruptive episode in the 1960's also led to evacuation. The 1960's cycle of activity ended in 1982. The most recent phase of activity commenced in 1998 with a return to eruption of more siliceous, high alumina basaltic andesite. Geochemical data show that the 1960's lavas were different from those erupted earlier and later. They are olivine basalts with up to 9 wt percent MgO, 70 ppm Ni and 300 ppm Cr; Al2O3 content is about 12 wt percent. The 2003 lavas and pre-1960's lavas, in contrast, are basaltic andesites with c. 4 wt percent MgO, less than 25 ppm Ni, less than 100 ppm Cr and c. 20 wt percent Al2O3. The 1960's Lopevi sequence of eruptions represents an injection of a more primitive, high MgO magma at the end of a 21 year quiescent period after the major eruptions of 1939. Injection of small batches of more primitive magmas over decadal time periods at Lopevi marks the initiation of a new magmatic cycle. The occurrence of high MgO magmas as part of a cycle that includes typically low MgO arc type rocks demonstrates a consanguineous relationship and shows that high MgO arc type rocks are part of a genetically linked suite rather than a distinct magma type. Their comparative scarcity in many subduction related associations is probably a function of tectonic environment rather than of fundamental petrological factors.

  2. Smaller-lateral-size graphene oxide hydrosols sealed in dialysis bags for enhanced trace Pb(II) removal from water without re-pollution

    NASA Astrophysics Data System (ADS)

    Guo, Lanyu; Liu, Liyun; Zhuo, Mingpeng; Fu, Shulei; Xu, Yunpeng; Zhou, Wenwei; Shi, Ce; Ye, Bin; Li, Yongxiu; Chen, Weifan

    2018-07-01

    In this work, presented is a novel and facile strategy to enhance Pb(II) adsorption capacity of graphene oxide (GO) hydrosols via the modified Hummers' method, using the smaller-sized natural flake graphite as starting materials. The as-prepared micron GO (MGO) and submicron GO (SMGO) hydrosols were sealed in dialysis bags for adsorptive separation of Pb(II) from water to avoid secondary pollution. The effects of pH and contact duration on Pb(II) adsorption on MGO and SMGO as well as their thermodynamics and kinetics were investigated comparatively. Their performances for recycling and regeneration were also evaluated. The results indicated that SMGO exhibited an enhanced maximum sorption capacity for Pb(II) up to 1162.60 mg·g-1 higher than MGO by 25.75% and achieved adsorption equilibrium faster, which can be attributed to the fact that SMGO has more oxygen-containing functional groups on the sheet basal planes and especially at the sheet edges than SMGO. The adsorption of Pb(II) on MGO and SMGO was a spontaneous and endothermic process and well fitted the pseudo-second-order kinetics and the Langmuir sorption model. Significantly, MGO and SMGO nanosheets still kept the high sorption capacities of 514.26 mg·g-1 and 700.35 mg·g-1 after the 5 cycles, respectively, promising of enormous potential applications.

  3. Physicochemical and adsorptive characteristics of activated carbons from waste polyester textiles utilizing MgO template method.

    PubMed

    Xu, Zhihua; Zhang, Daofang; Yuan, Zhihang; Chen, Weifang; Zhang, Tianqi; Tian, Danqi; Deng, Haixuan

    2017-10-01

    Activated carbons with high specific surface areas were produced, utilizing waste polyester textiles as carbon precursor by magnesium oxide (MgO) template method. Magnesium chloride (MgCl 2 ), magnesium citrate (MgCi), and MgO were employed as MgO precursors to prepare activated carbons (AC-MgCl 2 , AC-MgCi, and AC-MgO). Thermogravimetry-differential scanning calorimetry was conducted to investigate the pore-forming mechanism, and N 2 adsorption/desorption isotherms, XRD, SEM-EDS, TEM, FTIR and pH pzc were achieved to analyze physicochemical characteristics of the samples. The specific surface areas of AC-MgCl 2 (1173 m 2 /g) and AC-MgCi (1336 m 2 /g) were much higher than that of AC-MgO (450 m 2 /g), and the pores sizes of which were micro-mesoporous, mesoporous, and macropores, respectively, due to the formation of MgO crystal with different sizes. All activated carbons had abundant acidic oxygen groups. In addition, batch adsorption experiments were carried out to investigate the adsorptive characteristics of the prepared activated carbons toward Cr(VI). The adsorption kinetics fitted well with the pseudo-second order, and the adsorptive capacity of AC-MgCl 2 (42.55 mg/g) was higher than those of AC-MgCi (40.93 mg/g) and AC-MgO (35.87 mg/g).

  4. Investigation of the combined effect of MgO and PEG on the release profile of mefenamic acid prepared via hot-melt extrusion techniques.

    PubMed

    Alshehri, Sultan M; Tiwari, Roshan V; Alsulays, Bader B; Ashour, Eman A; Alshetaili, Abdullah S; Almutairy, Bjad; Park, Jun-Bom; Morott, Joseph; Sandhu, Bhupinder; Majumdar, Soumyajit; Repka, Michael A

    2017-09-01

    This study aimed to investigate the combined effect of magnesium oxide (MgO) as an alkalizer and polyethylene glycol (PEG) as a plasticizer and wetting agent in the presence of Kollidon® 12 PF and 17 PF polymer carriers on the release profile of mefenamic acid (MA), which was prepared via hot-melt extrusion technique. Various drug loads of MA and various ratios of the polymers, PEG 3350 and MgO were blended using a V-shell blender and extruded using a twin-screw extruder (16-mm Prism EuroLab, ThermoFisher Scientific, Carlsbad, CA) at different screw speeds and temperatures to prepare a solid dispersion system. Differential scanning calorimetry and X-ray diffraction data of the extruded material confirmed that the drug existed in the amorphous form, as evidenced by the absence of corresponding peaks. MgO and PEG altered the micro-environmental pH to be more alkaline (pH 9) and increased the hydrophilicity and dispersibility of the extrudates to enhance MA solubility and release, respectively. The in vitro release study demonstrated an immediate release for 2 h with more than 80% drug release within 45 min in matrices containing MgO and PEG in combination with polyvinylpyrrolidone when compared to the binary mixture, physical mixture and pure drug.

  5. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery

    NASA Astrophysics Data System (ADS)

    Huang, Xiao; Liu, Cai; Lu, Yang; Xiu, Tongping; Jin, Jun; Badding, Michael E.; Wen, Zhaoyin

    2018-04-01

    A high strength Li-Garnet solid electrolyte composite ceramic is successfully prepared via conventional solid state method with Li6.4La3Zr1.4Ta0.6O12 and nano MgO powders. Well sintered ceramic pellets and bars are obtained with 0-9 wt.% MgO. Fracture strength is approximately 135 MPa for composite ceramics with 5-9 wt.% MgO, which is ∼50% higher than that of pure Li6.4La3Zr1.4Ta0.6O12 (90 MPa). Lithium-ion conductivity of the composite is above 5 × 10-4 S cm-1 at room temperature; comparable to the pure Li6.4La3Zr1.4Ta0.6O12 material. SEM cross-sections of the composite ceramic shows a much more uniform microstructure comparing with pure ones, owing to the grain growth inhibition effect of the MgO second phase. A battery cell consisting of Li/composite ceramics/Sulfur-Carbon at 25 °C exhibits a capacity of 685 mAh g-1 at 0.2 C at the 200th cycle, while maintaining a coulombic efficiency of 100%. These results indicate that the composite ceramic Li6.4La3Zr1.4Ta0.6O12-MgO is promising for the production of electrolyte membrane and fabrication of Li-Sulfur batteries.

  6. The Effects of Gravity on the Combustion Synthesis of B2O3-Al2O3-MgO Glass Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Manerbino, A. R.; Yi, H. C.; Guigne, J. Y.; Moore, J. J.; Schowengerdt, F. D.

    2000-01-01

    Glass ceramic composites based on B2O3-Al2O3-MgO have been produced by combustion synthesis in a Self-propagating mode. The gravitational effects on the combustion characteristics such as combustion wave velocity (V), and combustion temperature (T(sub c)) were studied. The results showed that the gravitational effects on these parameters were inconclusive. The microstructure of this system has also been analyzed with X-ray Diffraction and light microscopy. These results showed a higher amount of divitrification occurs under both reduced gravity and high gravity conditions. The gravitational effects on formation of pores, overall porosity and apparent porosity for this family of glass-ceramics also shows to be inconclusive. Possible reasons for these results are discussed.

  7. Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens

    USDA-ARS?s Scientific Manuscript database

    Magnesium oxide nanoparticles (MgO nanoparticles, with average size of 20 nm) have strong antibacterial activities against several important foodborne pathogens. Resazurin (a redox sensitive dye) microplate assay was used for measuring growth inhibition of bacteria treated with MgO nanoparticles. Th...

  8. Magnetic coherent tunnel junctions with periodic grating barrier

    PubMed Central

    Fang, Henan; Xiao, Mingwen; Rui, Wenbin; Du, Jun; Tao, Zhikuo

    2016-01-01

    A new spintronic theory has been developed for the magnetic tunnel junction (MTJ) with single-crystal barrier. The barrier will be treated as a diffraction grating with intralayer periodicity, the diffracted waves of tunneling electrons thus contain strong coherence, both in charge and especially in spin. The theory can answer the two basic problems present in MgO-based MTJs: (1) Why does the tunneling magnetoresistance (TMR) oscillate with the barrier thickness? (2) Why is the TMR still far away from infinity when the two electrodes are both half-metallic? Other principal features of TMR can also be explained and reproduced by the present work. It also provides possible ways to modulate the oscillation of TMR, and to enhance TMR so that it can tend to infinity. Within the theory, the barrier, as a periodic diffraction grating, can get rid of the confinement in width, it can vary from nanoscale to microscale. Based on those results, a future-generation MTJ is proposed where the three pieces can be fabricated separately and then assembled together, it is especially appropriate for the layered materials, e.g., MoS2 and graphite, and most feasible for industries. PMID:27063998

  9. Surface and local electronic structure modification of MgO film using Zn and Fe ion implantation

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra Pal; Lim, Weon Cheol; Lee, Jihye; Song, Jonghan; Lee, Ik-Jae; Chae, Keun Hwa

    2018-02-01

    Present work is motivated to investigate the surface and local electronic structure modifications of MgO films implanted with Zn and Fe ions. MgO film was deposited using radio frequency sputtering method. Atomic force microscopy measurements exhibit morphological changes associated with implantation. Implantation of Fe and Zn ions leads to the reduction of co-ordination geometry of Mg2+ ions in host lattice. The effect is dominant at bulk of film rather than surface as the large concentration of implanted ions resides inside bulk. Moreover, the evidences of interaction among implanted ions and oxygen are not being observed using near edge fine structure measurements.

  10. Mechanism of magnetoresistance ratio enhancement in MgO/NiFe/MgO heterostructure by rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Zhao, Chong-Jun; Liu, Yang; Zhang, Jing-Yan; Sun, Li; Ding, Lei; Zhang, Peng; Wang, Bao-Yi; Cao, Xing-Zhong; Yu, Guang-Hua

    2012-08-01

    To reveal thermal effects on the film quality/microstructure evolution and the resulted magnetoresistance (MR) ratio in MgO/NiFe/MgO heterostructures, positron annihilation spectroscopy studies have been performed. It is found that the ionic interstitials in the MgO layers recombine with the nearby vacancies at lower annealing temperatures (200-300 °C) and lead to a slow increase in sample MR. Meanwhile, vacancy defects agglomeration/removal and ordering acceleration in MgO will occur at higher annealing temperatures (450-550 °C) and the improved MgO and MgO/NiFe interfaces microstructure are responsible for the observed significant MR enhancement.

  11. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    NASA Astrophysics Data System (ADS)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  12. Synthesis and characterization of β-Ni(OH)2 embedded with MgO and ZnO nanoparticles as nanohybrids for energy storage devices

    NASA Astrophysics Data System (ADS)

    Kumar, C. R. Ravi; Santosh, M. S.; Nagaswarupa, H. P.; Prashantha, S. C.; Yallappa, S.; Kumar, M. R. Anil

    2017-06-01

    In this study, the electrode material (nickel hydroxide powder) has been synthesized by a co-precipitation method using sodium hydroxide and nickel sulphate as precipitator and nickel source, respectively. The obtained nickel hydroxide powder has been subsequently embedded with biosynthesized MgO and ZnO nanoparticles as nanohybrids, which have been investigated as a novel hybrid electrode material for power-storage applications. The powder x-ray diffraction pattern of nickel hydroxide (Ni(OH)2)-based nanohybrid materials reveals a typical β-phase. Fourier transform infrared spectroscopy confirms the embedded structures of nanohybrids and thermal stability by thermogravimetry and differential thermal) analysis. The electrochemical properties of these materials have been studied using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The specific capacitance values are found to be 439, 1076, and 622 F g-1 for bare β-Ni(OH)2, and for β-Ni(OH)2 embedded with ZnO and MgO nanohybrids, respectively, at a scan rate of 10 mVs-1. The enhanced capacitance of nanohybrids is also evident from EIS measurements. Galvanostatic charge-discharge tests for these designed nanohybrids show excellent capacitance performance in battery and supercapacitor applications. These innovative results could be considered for the expansion of novel resources to scale for power-storage applications and may contribute to the development of this niche area at large.

  13. Work function and quantum efficiency study of metal oxide thin films on Ag(100)

    NASA Astrophysics Data System (ADS)

    Chang, V.; Noakes, T. C. Q.; Harrison, N. M.

    2018-04-01

    Increasing the quantum efficiency (QE) of metal photocathodes is in the design and development of photocathodes for free-electron laser applications. The growth of metal oxide thin films on certain metal surfaces has previously been shown to reduce the work function (WF). Using a photoemission model B. Camino et al. [Comput. Mater. Sci. 122, 331 (2016), 10.1016/j.commatsci.2016.05.025] based on the three-step model combined with density functional theory calculations we predict that the growth of a finite number of MgO(100) or BaO(100) layers on the Ag(100) surface increases significantly the QE compared with the clean Ag(100) surface for a photon energy of 4.7 eV. Different mechanisms for affecting the QE are identified for the different metal oxide thin films. The addition of MgO(100) increases the QE due to the reduction of the WF and the direct excitation of electrons from the Ag surface to the MgO conduction band. For BaO(100) thin films, an additional mechanism is in operation as the oxide film also photoemits at this energy. We also note that a significant increase in the QE for photons with an energy of a few eV above the WF is achieved due to an increase in the inelastic mean-free path of the electrons.

  14. Investigation of Corrosion Protection in Oil Mineral Reservoirs by Nanocomposites Used as Coating Layers

    NASA Astrophysics Data System (ADS)

    Al-Sarraf, Abdulhameed R.; Al-Saaidi, Samer A.

    2018-05-01

    In this study, a number of nanocomposites were prepared by adding magnesium oxide (MgO) with weight percentages (1, 2 & 3)% to cellulose nitrate and sodium silicate as an intermediate layer and other nanocomposites by adding MgO, coal coke and hybrid (MgO & coal coke with ratio 1:1) with weight percentages (1, 2 & 3)% to epoxy resin as final layer. The identity of the used metal is determined by spectrometer OE thermo. The nature and topography of the surface layers were examined by optical microscope and atomic force microscope (AFM). Mechanical properties are indicated by hardness, wear rate, impact strength and adhesion strength. The efficiency of the layers prepared to inhibit corrosion in the oil mineral reservoirs of the oil products distribution company was studied by electrochemical corrosion test in addition to the chemical corrosion test. The used metal is (St-37) according to (ASTM). It was found that the best intermediate layer (cellulose nitrate+3%MgO) and the final layer is the epoxy resin reinforced by 2% hybrid.

  15. Gold atoms and clusters on MgO(100) films; an EPR and IRAS study

    NASA Astrophysics Data System (ADS)

    Yulikov, M.; Sterrer, M.; Risse, T.; Freund, H.-J.

    2009-06-01

    Single gold atoms deposited on single crystalline MgO(1 0 0) films grown on Mo(1 0 0) are characterized by electron paramagnetic resonance spectroscopy as well as IR spectroscopy using CO as probe molecules. In this article we describe the first angular dependent measurements to determine the principal hyperfine components of a secondary hyperfine interaction, namely, with 17O of the MgO. The values determined here are in perfect agreement with theoretical expectations and corroborate the previously reported binding mechanism of Au atoms on the oxygen anions of the MgO terrace. The temperature dependent EPR data reveal an onset of Au atom mobility at about 80 K while the formation of Au particles occurs only above 125 K. By an analysis of the EPR line width in combination with STM measurements it is possible to deduce an increase of the interatomic distance above 80 K. The Au/CO complexes show a somewhat smaller temperature stability as compared to the Au atoms. The observed thermal stability is in perfect agreement with theoretical predictions for CO desorption.

  16. Trap characterization by photo-transferred thermoluminescence in MgO nanoparticles

    NASA Astrophysics Data System (ADS)

    Isik, M.; Gasanly, N. M.

    2018-05-01

    Shallow trapping centers in MgO nanoparticles were characterized using photo-transferred thermoluminescence (TL) measurements. Experiments were carried out in low temperature range of 10-280 K with constant heating rate. Shallow traps were filled with charge carriers firstly by irradiating the sample at room temperature using S90/Y90 source and then illuminating at 10 K using blue LED. TL glow curve exhibited one peak around 150 K. Curve fitting analyses showed that this peak is composed of two individual peaks with maximum temperatures of 149.0 and 155.3 K. The activation energies of corresponding trapping centers were revealed as 0.70 and 0.91 eV. The dominant mechanism for TL process was found as second order kinetics which represent that fast retrapping is effective transitions taking place within the band gap. Structural characterization of MgO nanoparticles were investigated using x-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. Analyses of experimental observations indicated that MgO nanoparticles show good crystallinity with particle size in nanometer scale.

  17. Grain boundary mobility in anion doped MgO

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Certain anions OH(-), F(-) and Gl(-) are shown to enhance grain growth in MgO. The magnitude of their effect decreases in the order in which the anions are listed and depends on their location (solid-solution, second phase) in the MgO lattice. As most anions exhibit relatively high vapor pressures at sintering temperatures, they retard densification and invariably promote residual porosity. The role of anions on grain growth rates was studied in relation to their effect on pore mobility and pore removal; the atomic process controlling the actual rates was determined from observed kinetics in conjunction with the microstructural features. With respect to controlling mechanisms, the effects of all anions are not the same. OH(-) and F(-) control behavior through creation of a defect structure and a grain boundary liquid phase while Cl(-) promotes matter transport within pores by evaporation-condensation. Studies on an additional anion, S to the minus 2nd power gave results which were no different from undoped MgO, possibly because of evaporative losses during hot pressing. Hence, the effect of sulphur is negligible or undetermined.

  18. All Spin Artificial Neural Networks Based on Compound Spintronic Synapse and Neuron.

    PubMed

    Zhang, Deming; Zeng, Lang; Cao, Kaihua; Wang, Mengxing; Peng, Shouzhong; Zhang, Yue; Zhang, Youguang; Klein, Jacques-Olivier; Wang, Yu; Zhao, Weisheng

    2016-08-01

    Artificial synaptic devices implemented by emerging post-CMOS non-volatile memory technologies such as Resistive RAM (RRAM) have made great progress recently. However, it is still a big challenge to fabricate stable and controllable multilevel RRAM. Benefitting from the control of electron spin instead of electron charge, spintronic devices, e.g., magnetic tunnel junction (MTJ) as a binary device, have been explored for neuromorphic computing with low power dissipation. In this paper, a compound spintronic device consisting of multiple vertically stacked MTJs is proposed to jointly behave as a synaptic device, termed as compound spintronic synapse (CSS). Based on our theoretical and experimental work, it has been demonstrated that the proposed compound spintronic device can achieve designable and stable multiple resistance states by interfacial and materials engineering of its components. Additionally, a compound spintronic neuron (CSN) circuit based on the proposed compound spintronic device is presented, enabling a multi-step transfer function. Then, an All Spin Artificial Neural Network (ASANN) is constructed with the CSS and CSN circuit. By conducting system-level simulations on the MNIST database for handwritten digital recognition, the performance of such ASANN has been investigated. Moreover, the impact of the resolution of both the CSS and CSN and device variation on the system performance are discussed in this work.

  19. Structural Properties of Alternate Monatomic Layered [Fe/Co]n Epitaxial Films on MgO Substrate

    NASA Astrophysics Data System (ADS)

    Chu, In Chang; Saki, Yoshinobu; Kawasaki, Shohei; Doi, Masaaki; Sahashi, Masashi

    2008-06-01

    Body-centered-cubic (bcc) Fe50Co50 material is reported to show a high bulk spin scattering coefficient on current perpendicular to plane-giant magneto-resistance (CPP-GMR) system. But the origin of that phenomenon does not make sure yet. We prepared artificially alternate monatomic layered (AML) [Fe/Co] 41 MLs epitaxial films (Ts: 75, 250 °C) by monatomic deposition method and investigated the topology of AML [Fe/Co]n epitaxial films on MgO substrate with different orientation (001), (011) by the scanning tunnel microscopy (STM) and reflection high energy electron diffraction (RHEED), which we could confirm Frank-van der Merwe (FM) growth mode for AML [Fe/Co]n on MgO(001) and Volmer-Weber (VW) growth mode for that on Mg(011). The roughness of surface, Ra (0.20 nm) of AML [Fe/Co] 41 MLs epitaxial film grown at 75 °C on MgO(001) is smaller than that (0.46 nm) of AML [Fe/Co] grown at 250 °C on MgO(001), which has the large terraces of over 50 nm (Ra: 0.17 nm), even though there are some valleys between large terraces. Moreover we confirmed the structural properties of trilayered epitaxial films with AML [Fe/Co]n (Ra: 0.18 nm) and Fe50Co50 alloy epitaxial film on Au electrode by RHEED before confirming the characteristics of CPP-GMR devices.

  20. Structural characterization and magnetic properties of L10-MnAl films grown on different underlayers by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Takata, Fumiya; Gushi, Toshiki; Anzai, Akihito; Toko, Kaoru; Suemasu, Takashi

    2018-03-01

    We grow MnAl films on different underlayers by molecular beam epitaxy (MBE), and investigate their structural and magnetic properties. L10-ordered MnAl films were successfully grown both on an MgO(0 0 1) single-crystalline substrate and on an Mn4N(0 0 1) buffer layer formed on MgO(0 0 1) and SrTiO3(0 0 1) substrates. For the MgO substrate, post rapid thermal annealing (RTA) drastically improved the crystalline quality and the degree of L10-ordering, whereas no improvement in the crystallinity was achieved by altering the substrate temperature (TS) during MBE growth. However, high-quality L10-MnAl films were formed on the Mn4N buffer layer by simply varying TS. Structural analysis using X-ray diffraction showed MnAl on an MgO substrate had a cubic structure whereas MnAl on the Mn4N buffer had a tetragonal structure. This difference in crystal structure affected the magnetic properties of the MnAl films. The uniaxial magnetic anisotropy constant (Ku) was drastically improved by inserting an Mn4N buffer layer. We achieved a perpendicular magnetic anisotropy of Ku = 5.0 ± 0.7 Merg/cm3 for MnAl/Mn4N film on MgO and 6.0 ± 0.2 Merg/cm3 on STO. These results suggest that Mn4N has potential as an underlayer for L10-MnAl.

  1. Tunneling spectra and superconducting gaps observed by scanning tunneling microscopy near the grain boundaries of FeSe0.3Te0.7 films

    NASA Astrophysics Data System (ADS)

    Lin, K. C.; Li, Y. S.; Shen, Y. T.; Wu, M. K.; Chi, C. C.

    2013-12-01

    We used scanning tunneling microscopy (STM) to study the tunneling spectra of FeSe0.3Te0.7 films with two orientations of the ab-planes and a connection ramp between them. We discovered that by pulsed laser deposition (PLD) method, the a- and b-axis of the FeSe0.3Te0.7 film deposited on an Ar-ion-milled magnesium oxide (MgO) substrate were rotated 45° with respect to those of MgO, whereas the a- and b-axis of the film grown on a pristine MgO substrate were parallel to those of MgO. With photolithography and this technique, we can prepare FeSe0.3Te0.7 films with two orientations on the same MgO substrate so that the connection between them forms a ramp at an angle of about 25° to the substrate plane. In the planar region, for either the 0° or 45° orientation, we observed tunneling spectra with a superconducting gap of about 5 meV and 1.78 meV, respectively. However, a much larger gap at about 18 meV was observed in the ramp region. Furthermore, we observed a small zero-bias conductance peak (ZBCP) inside the large gap at T = 4.3 K. The ZBCP becomes smaller with increasing temperature and disappeared at temperature above 7 K.

  2. Blockage of both the extrinsic and intrinsic pathways of diazinon-induced apoptosis in PaTu cells by magnesium oxide and selenium nanoparticles.

    PubMed

    Shiri, Mahdi; Navaei-Nigjeh, Mona; Baeeri, Maryam; Rahimifard, Mahban; Mahboudi, Hossein; Shahverdi, Ahmad Reza; Kebriaeezadeh, Abbas; Abdollahi, Mohammad

    Diazinon (DZ) is an organophosphorus insecticide that acts as an acetylcholinesterase inhibitor. It is important to note that it can induce oxidative stress, lipid peroxidation, diabetic disorders, and cytotoxicity. Magnesium oxide (MgO) and selenium nanoparticles (Se NPs) showed promising protection against oxidative stress, lipid peroxidation, cytotoxicity, and diabetic disorders. Therefore, this study was conducted to explore the possible protective mechanisms of MgO and Se NPs against DZ-induced cytotoxicity in PaTu cell line. Cytotoxicity of DZ, in the presence or absence of effective doses of MgO and Se NPs, was determined in human pancreatic cancer cell line (PaTu cells) after 24 hours of exposure by using mitochondrial activity and mitochondrial membrane potential assays. Then, the insulin, proinsulin, and C-peptide release; caspase-3 and -9 activities; and total thiol molecule levels were assessed. Determination of cell viability, including apoptotic and necrotic cells, was assessed via acridine orange/ethidium bromide double staining. Furthermore, expression of 15 genes associated with cell death/apoptosis in various phenomena was examined after 24 hours of contact with DZ and NPs by using real-time polymerase chain reaction. Compared to the individual cases, the group receiving the combination of MgO and Se NPs showed more beneficial effects in reducing the toxicity of DZ. Cotreatment of PaTu cell lines with MgO and Se NPs counteracts the toxicity of DZ on insulin-producing cells.

  3. Phase Transitions of MgO Along the Hugoniot (Invited)

    NASA Astrophysics Data System (ADS)

    Root, S.; Shulenburger, L.; Lemke, R. W.; Cochrane, K. R.; Mattsson, T. R.

    2013-12-01

    The formation of terrestrial planets and planetary structure has become of great interest because of recent exoplanet discoveries of super earths. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants such as Jupiter, and likely constitutes the interiors of many exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine single crystal MgO under shock compression utilizing experimental and density functional theory (DFT) methods to determine phase transformations along the Hugoniot. We perform plate impact experiments using Sandia's Z - facility on MgO up to 11.6 Mbar. The plate impact experiments generate highly accurate Hugoniot state data. The experimental results show the B1 - B2 solid - solid phase transition occurs near 4 Mbar on the Hugoniot. The solid - liquid transition is determined to be near 7 Mbar with a large region of B2-liquid coexistence. Using DFT methods, we also determine melt along the B1 and B2 solid phase boundaries as well as along the Hugoniot. The combined experimental and DFT results have determined the phase boundaries along the Hugoniot, which can be implemented into new planetary and EOS models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  4. Carboxylic and dicarboxylic acids extracted from crushed magnesium oxide single crystals

    NASA Technical Reports Server (NTRS)

    Freund, F.; Gupta, A. D.; Kumar, D.

    1999-01-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THF) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and 1H-NMR. The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P21/c with ao = 5.543 A, bo = 8.845 A, co = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg g-1 MgO. The MgO crystals from which these organic acids were extracted grew from the 2860 degrees C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)n-. The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.

  5. Effects of buffers on milk fatty acids and mammary arteriovenous differences in dairy cows fed Ca salts of fatty acids.

    PubMed

    Thivierge, M C; Chouinard, P Y; Lévesque, J; Girard, V; Seoane, J R; Brisson, G J

    1998-07-01

    Ten Holstein cows in early lactation were used in a replicated 5 x 5 Latin square design to study the effects of MgO and three buffers added to diets containing Ca salts of canola oil fatty acids. Treatments were 1) control (basal diet; no buffer). 2) 1.1% NaHCO3 plus 1.1% KHCO3, 3) 1.9% NaHCO3, 4) 0.5% MgO, and 5) 2.0% Na sesquicarbonate (percentage of dry matter). The control diet contained 53% grass silage, 43% concentrate, and 4% Ca salts. Body weight, intake, milk yield, and percentages of milk fat, protein, and lactose were unaffected by treatments. Buffers and MgO tended to increase triacylglycerol extraction by the mammary gland and changed the proportions of some fatty acids in milk. Arterial concentrations of acetate and triacylglycerol were correlated with their respective arteriovenous differences. Extraction by the mammary gland was high for acetate (approximately equal to 58.2%), triacylglycerol (approximately equal to 47.3%) propionate (approximately equal to 34.6%), and glucose (approximately equal to 24.3%). Extraction of free fatty acids, phospholipids, or cholesterol was negligible. Mammary triacylglycerol arteriovenous difference tended to be higher than when MgO was fed than when NaHCO3 was fed. Sodium sesquicarbonate, NaHCO3, and the blend of bicarbonate buffers increased C18:2 in milk fat when compared with the control treatment. The concentration of C18:2 in milk fat decreased when MgO was fed, but the ratio of cis-C18:1 to trans-C18:1 increased compared with effects of dietary NaHCO3. Medium-chain fatty acids in milk fat tended to be higher than Na sesquicarbonate than with NaHCO3. Buffers and MgO modified the profiles of fatty acids in milk.

  6. Multilayer graphene growth on polar dielectric substrates using chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Karamat, S.; Çelik, K.; Shah Zaman, S.; Oral, A.

    2018-06-01

    High quality of graphene is necessary for its applications at industrial scale production. The most convenient way is its direct growth on dielectrics which avoid the transfer route of graphene from metal to dielectric substrate usually followed by graphene community. The choice of a suitable dielectric for the gate material which can replace silicon dioxide (SiO2) is in high demand. Various properties like permittivity, thermodynamic stability, film morphology, interface quality, bandgap and band alignment of other dielectrics with graphene needs more exploration. A potential dielectric material is required which could be used to grow graphene with all these qualities. Direct growth of graphene on magnesium oxide (MgO) substrates is an interesting idea and will be a new addition in the library of 2D materials. The present work is about the direct growth of graphene on MgO substrates by an ambient pressure chemical vapour deposition (CVD) method. We address the surface instability issue of the polar oxides which is the most challenging factor in MgO. Atomic force microscopy (AFM) measurements showed the topographical features of the graphene coated on MgO. X-ray photoelectron spectroscopy (XPS) study is carried out to extract information regarding the presence of necessary elements, their bonding with substrates and to confirm the sp-2 hybridization of carbon, which is a characteristic feature of graphene film. The chemical shift is due to the surface reconstruction of MgO in the prepared samples. For graphene-MgO interface, valence band offset (VBO) and conduction band offset (CBO) extracted from valence band spectra reported. Further, we predicted the energy band diagram for single layer and thin film of graphene. By using the room-temperature energy band gap values of MgO and graphene, the CBO is calculated to be 6.85 eV for single layer and 5.66 eV for few layer (1-3) of graphene layers.

  7. Direct catalytic conversion of methane and light hydrocarbon gases. Quarterly report No. 9, October 1--December 31, 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R.B. Jr.; Posin, B.M.; Chan, Yee Wai

    The goal of this research is to develop catalysts that directly convert methane and light hydrocarbons to intermediates that later can be converted to either liquid fuels or value-added chemicals, as economics dictate. During this reporting period, we completed our IR spectroscopic examination of the Ru{sub 4}/MgO and FeRu{sub 3}/MgO systems under nitrogen and methane by examining FeRu{sub 3}/MgO under methane. This system behaved quite differently than the same system under nitrogen. Under methane, only one very broad peak is observed at room temperature. Upon heating, the catalyst transformed so that by 300{degrees}C, the spectrum of FeRu{sub 3}/MgO under methanemore » was the same as that of Ru{sub 4}/MgO. This suggests that methane promotes the segregation of the metals in the mixed metal system. The differences in catalytic activity between the FeRu{sub 3}/MgO and Ru{sub 4}/MgO systems may then be due to the presence of IR transparent species such as iron ions which cause different nucleation in the ruthenium clusters. We examined several systems for activity in the methane dehydrogenation reaction. Focusing on systems which produce C{sub 6} hydrocarbons since this is the most useful product. These systems all displayed low activity so that the amount of hydrocarbon product is very low. Some C{sub 6} hydrocarbon is observed over zeolite supports, but its production ceases after the first few hours of reaction. We prepared a new system, Ru{sub 4} supported on carbon, and examined its reactivity. Its activity was very low and in fact the carbon support had the same level of activity. We synthesized four new systems for examination as catalysts in the partial oxidation of methane. Three of these (PtTSPC/MgO, PtTSPC and PdTSPC on carbon) are analogs of PdTSPC/MgO. This system is of interest because we have observed the production of ethane from methane oxidation over PdTSPC/MgO at relatively low temperatures and we wished to explore its generality among close analogs.« less

  8. A new model for magnesium chemistry in the upper atmosphere.

    PubMed

    Plane, John M C; Whalley, Charlotte L

    2012-06-21

    This paper describes the kinetic study of a number of gas-phase reactions involving neutral Mg-containing species, which are important for the chemistry of meteor-ablated magnesium in the upper mesosphere/lower thermosphere region. The study is motivated by the very recent observation of the global atomic Mg layer around 90 km, using satellite-born UV-visible spectroscopy. In the laboratory, Mg atoms were produced thermally in the upstream section of a fast flow tube and then converted to the molecular species MgO, MgO(2), OMgO(2), and MgCO(3) by the addition of appropriate reagents. Atomic O was added further downstream, and Mg was detected at the downstream end of the flow tube by laser-induced fluorescence. The following rate coefficients were determined at 300 K: k(MgO + O → Mg + O(2)) = (6.2 ± 1.1) × 10(-10); k(MgO(2) + O → MgO + O(2)) = (8.4 ± 2.8) × 10(-11); k(MgCO(3) + O → MgO(2) + CO(2)) ≥ 4.9 × 10(-12); and k(MgO + CO → Mg + CO(2)) = (1.1 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1). Electronic structure calculations of the relevant potential energy surfaces combined with RRKM theory were performed to interpret the experimental results and also to explore the likely reaction pathways that convert MgCO(3) and OMgO(2) into long-lived reservoir species such as Mg(OH)(2). Although no reaction was observed in the laboratory between OMgO(2) and O, this is most likely due to the rapid recombination of O(2) with the product MgO(2) to form the relatively stable O(2)MgO(2). Indeed, one significant finding is the role of O(2) in the mesosphere, where it initiates holding cycles by recombining with radical species such as MgO(2) and MgOH. A new atmospheric model was then constructed which combines these results together with recent work on magnesium ion-molecule chemistry. The model is able to reproduce satisfactorily some of the key features of the Mg and Mg(+) layers, including the heights of the layers, the seasonal variations of their column abundances, and the unusually large Mg(+)/Mg ratio.

  9. Constraining the potential temperature of the Archaean mantle: A review of the evidence from komatiites

    NASA Astrophysics Data System (ADS)

    Nisbet, E. G.; Cheadle, M. J.; Arndt, N. T.; Bickle, M. J.

    1993-09-01

    The maximum potential temperature of the Archaean mantle is poorly known, and is best constrained by the MgO contents of komatiitic liquids, which are directly related to eruptive temperatures. However, most Archaean komatiites are significantly altered and it is difficult to assess the composition of the erupted liquid. Relatively fresh lavas from the SASKMAR suite, Belingwe Greenstone Belt, Zimbabwe (2.7 Ga) include chills of 25.6 wt.% MgO, and olivines ranging to Fo 93.6, implying eruption at around 1520°C. A chill sample from Alexo Township, Ontario (also 2.7 Ga) is 28 wt.% MgO, and associated olivines range to Fo 94.1, implying eruption at 1560°C. However, inferences of erupted liquids containing 32-33 wt.% MgO, from lavas in the Barberton Greenstone Belt, South Africa (3.45 Ga) and from the Perseverance Complex, Western Australia (2.7 Ga) may be challenged on the grounds that they contain excess (cumulate) olivine, or were enriched in Mg during alteration or metamorphism. Re-interpretation of olivine compositions from these rocks shows that they most likely contained a maximum of 29 wt.% MgO corresponding to an eruption temperature of 1580°C. This composition is the highest liquid MgO content of an erupted lava that can be supported with any confidence. The hottest modern magma, on Gorgona Island (0.155 Ga) contained 18-20% MgO and erupted at circa 1400°C. If 1580°C is taken as the temperature of the most magnesian known eruption, then the source mantle from which the liquids rose would have been at up to 2200°C at pressures of 18 GPa corresponding to a mantle potential temperature of 1900°C. These temperatures are in excess of the mantle temperatures predicted by secular cooling models, and thus komatiites can only be formed in hot rising convective jets in the mantle. This result requires that Archaean mantle jets may have been 300°C hotter than the Archaean ambient mantle temperature. This temperature difference is similar to the 200-300°C temperature difference between present day jets and ambient mantle temperatures. An important subsidiary result of this study is the confirmation that spinifex rocks may be cumulates and do not necessarily represent liquid compositions.

  10. Microsoft excel spreadsheets for calculation of P-V-T relations and thermodynamic properties from equations of state of MgO, diamond and nine metals as pressure markers in high-pressure and high-temperature experiments

    NASA Astrophysics Data System (ADS)

    Sokolova, Tatiana S.; Dorogokupets, Peter I.; Dymshits, Anna M.; Danilov, Boris S.; Litasov, Konstantin D.

    2016-09-01

    We present Microsoft Excel spreadsheets for calculation of thermodynamic functions and P-V-T properties of MgO, diamond and 9 metals, Al, Cu, Ag, Au, Pt, Nb, Ta, Mo, and W, depending on temperature and volume or temperature and pressure. The spreadsheets include the most common pressure markers used in in situ experiments with diamond anvil cell and multianvil techniques. The calculations are based on the equation of state formalism via the Helmholtz free energy. The program was developed using Visual Basic for Applications in Microsoft Excel and is a time-efficient tool to evaluate volume, pressure and other thermodynamic functions using T-P and T-V data only as input parameters. This application is aimed to solve practical issues of high pressure experiments in geosciences and mineral physics.

  11. Increased magnetic damping in ultrathin films of Co2FeAl with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Takahashi, Y. K.; Miura, Y.; Choi, R.; Ohkubo, T.; Wen, Z. C.; Ishioka, K.; Mandal, R.; Medapalli, R.; Sukegawa, H.; Mitani, S.; Fullerton, E. E.; Hono, K.

    2017-06-01

    We estimated the magnetic damping constant α of Co2FeAl (CFA) Heusler alloy films of different thicknesses with an MgO capping layer by means of time-resolved magneto-optical Kerr effect and ferromagnetic resonance measurements. CFA films with thicknesses of 1.2 nm and below exhibited perpendicular magnetic anisotropy arising from the presence of the interface with MgO. While α increased gradually with decreasing CFA film thickness down to 1.2 nm, it was increased substantially when the thickness was reduced further to 1.0 nm. Based on the microstructure analyses and first-principles calculations, we attributed the origin of the large α in the ultrathin CFA film primarily to the Al deficiency in the CFA layer, which caused an increase in the density of states and thereby in the scatterings of their spins.

  12. Nucléation et croissance de films YBa_{2Cu3O_{7 - δ}} déposés par ablation laser sur substrat de MgO(001)

    NASA Astrophysics Data System (ADS)

    Keller, D.; Gervais, A.; Chambonnet, D.; Belouet, C.; Audry, C.

    1995-02-01

    In the field of superconducting devices devoted to microwave applications, the crystalline texture of high quality thin films based on YBa{2}Cu{3}O{7 - δ} is of primary importance. This study presents the formation of this texture on MgO substrates with the nucleation and growth steps up to a film thickness of 300 nm as observed by means of AFM, HRTEM and XRD. The influence of deposition temperature on the growth mode is shown and a nucleation/growth model is discussed. The minimum roughness of c_{bot 0}{(^1)} textured films, 300 nm thick and 20 × 20 mm2 in size is as slow as 2 nm. Dans le cadre de la réalisation de composants supraconducteurs de haute qualité à base du composé YBa{2}Cu{3}O{7 - δ} destinés aux applications en hyperfréquences, le contrôle de la texture cristalline des films est de première importance. La formation de celle-ci sur substrat MgO est étudiée depuis la nucléation jusqu'à une épaisseur de 300 nm au moyen de la microscopie à force atomique, de la microscopie électronique en transmission à haute résolution et de la diffraction des rayons X. L'influence de la température de dépôt sur le mode de croissance est abordée et un modèle de nucléation/croissance est discuté. La rugosité minimale des films d'épaisseur 300 nm et de dimensions 20 × 20 mm2 de texture c_{bot 0}{(^1)} est voisine de 2 nm.

  13. CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure.

    PubMed

    Yang, Yu; Jin, Shu; Medvedeva, Julia E; Ireland, John R; Metz, Andrew W; Ni, Jun; Hersam, Mark C; Freeman, Arthur J; Marks, Tobin J

    2005-06-22

    A series of yttrium-doped CdO (CYO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates at 410 degrees C by metal-organic chemical vapor deposition (MOCVD), and their phase structure, microstructure, electrical, and optical properties have been investigated. XRD data reveal that all as-deposited CYO thin films are phase-pure and polycrystalline, with features assignable to a cubic CdO-type crystal structure. Epitaxial films grown on single-crystal MgO(100) exhibit biaxial, highly textured microstructures. These as-deposited CYO thin films exhibit excellent optical transparency, with an average transmittance of >80% in the visible range. Y doping widens the optical band gap from 2.86 to 3.27 eV via a Burstein-Moss shift. Room temperature thin film conductivities of 8,540 and 17,800 S/cm on glass and MgO(100), respectively, are obtained at an optimum Y doping level of 1.2-1.3%. Finally, electronic band structure calculations are carried out to systematically compare the structural, electronic, and optical properties of the In-, Sc-, and Y-doped CdO systems. Both experimental and theoretical results reveal that dopant ionic radius and electronic structure have a significant influence on the CdO-based TCO crystal and band structure: (1) lattice parameters contract as a function of dopant ionic radii in the order Y (1.09 A) < In (0.94 A) < Sc (0.89 A); (2) the carrier mobilities and doping efficiencies decrease in the order In > Y > Sc; (3) the dopant d state has substantial influence on the position and width of the s-based conduction band, which ultimately determines the intrinsic charge transport characteristics.

  14. Dependency of tunneling magneto-resistance on Fe insertion-layer thickness in Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based magnetic tunneling junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Kyo-Suk; Samsung Electronics Co., Ltd., San #16 Banwol-dong, Hwasung-City, Gyeonggi-Do 445-701; Park, Jea-Gun, E-mail: parkjgL@hanyang.ac.kr

    For Co{sub 2}Fe{sub 6}B{sub 2}/MgO-based perpendicular magnetic tunneling junctions spin valves with [Co/Pd]{sub n}-synthetic-antiferromagnetic (SyAF) layers, the tunneling-magneto-resistance (TMR) ratio strongly depends on the nanoscale Fe insertion-layer thickness (t{sub Fe}) between the Co{sub 2}Fe{sub 6}B{sub 2} pinned layer and MgO tunneling barrier. The TMR ratio rapidly increased as t{sub Fe} increased up to 0.4 nm by improving the crystalline linearity of a MgO tunneling barrier and by suppressing the diffusion of Pd atoms from a [Co/Pd]{sub n}-SyAF. However, it abruptly decreased by further increasing t{sub Fe} in transferring interfacial-perpendicular magnetic anisotropy into the IMA characteristic of the Co{sub 2}Fe{sub 6}B{sub 2}more » pinned layer. Thus, the TMR ratio peaked at t{sub Fe} = 0.4 nm: i.e., 120% at 29 Ωμm{sup 2}.« less

  15. Superconducting antennas for telecommunication applications based on dual mode cross slotted patches

    NASA Astrophysics Data System (ADS)

    Cassinese, A.; Barra, M.; Fragalà, I.; Kusunoki, M.; Malandrino, G.; Nakagawa, T.; Perdicaro, L. M. S.; Sato, K.; Ohshima, S.; Vaglio, R.

    2002-08-01

    Dual mode devices based on high temperature superconducting films represent an interesting class for telecommunication applications since they combine a miniaturized size with a good power handling. Here we report on a novel compact antenna obtained by crossing a square patch with two or more slots. The proposed design has an antenna size reduction of about 40% as compared to the conventional square patch microstrip antennas. Single patch antenna both with linear (LP) and circular (CP) polarization operating in the X-band have been designed and tested at prototype level. They are realized by using double sided (YBa 2Cu 3O 7- x) YBCO and Tl 2Ba 2Ca 1Cu 2O 8 (Tl-2212) superconducting films grown on MgO substrates and tested with a portable cryocooler. They showed at T=77 K a return loss <25 dB and a power handling of 23 dBm. Exemplary 16 elements arrays LP antennas operating in the X band have been also realized by using YBCO film grown on 2 ″ diameter MgO substrate.

  16. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents.

    PubMed

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Donat, Felix; Schäublin, Robin; Kierzkowska, Agnieszka; Müller, Christoph R

    2018-06-19

    Calcium looping, a CO 2 capture technique, may offer a mid-term if not near-term solution to mitigate climate change, triggered by the yet increasing anthropogenic CO 2 emissions. A key requirement for the economic operation of calcium looping is the availability of highly effective CaO-based CO 2 sorbents. Here we report a facile synthesis route that yields hollow, MgO-stabilized, CaO microspheres featuring highly porous multishelled morphologies. As a thermal stabilizer, MgO minimized the sintering-induced decay of the sorbents' CO 2 capacity and ensured a stable CO 2 uptake over multiple operation cycles. Detailed electron microscopy-based analyses confirm a compositional homogeneity which is identified, together with the characteristics of its porous structure, as an essential feature to yield a high-performance sorbent. After 30 cycles of repeated CO 2 capture and sorbent regeneration, the best performing material requires as little as 11 wt.% MgO for structural stabilization and exceeds the CO 2 uptake of the limestone-derived reference material by ~500%.

  17. Using Variable Temperature Powder X-Ray Diffraction to Determine the Thermal Expansion Coefficient of Solid MgO

    ERIC Educational Resources Information Center

    Corsepius, Nicholas C.; DeVore, Thomas C.; Reisner, Barbara A.; Warnaar, Deborah L.

    2007-01-01

    A laboratory exercise was developed by using variable temperature powder X-ray diffraction (XRD) to determine [alpha] for MgO (periclase)and was tested in the Applied Physical Chemistry and Materials Characterization Laboratories at James Madison University. The experiment which was originally designed to provide undergraduate students with a…

  18. FeO and MgO in plagioclase of lunar anorthosites: Igneous or metamorphic?

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.

    1994-01-01

    The combined evidence from terrestrial anorthosites and experimental laboratory studies strongly implies that lunar anorthosites have been subjected to high-grade metamorphic events that have erased the igneous signatures of FeO and MgO in their plagioclases. Arguments to the contrary have, to this point, been more hopeful than rigorous.

  19. Ion beam synthesis of Fe nanoparticles in MgO and yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Potzger, K.; Reuther, H.; Zhou, Shengqiang; Mücklich, A.; Grötzschel, R.; Eichhorn, F.; Liedke, M. O.; Fassbender, J.; Lichte, H.; Lenk, A.

    2006-04-01

    To form embedded Fe nanoparticles, MgO(001) and YSZ(001) single crystals have been implanted at elevated temperatures with Fe ions at energies of 100 keV and 110 keV, respectively. The ion fluence was fixed at 6×1016 cm-2. As a result, γ- and α-phase Fe nanoparticles were synthesized inside MgO and YSZ, respectively. A synthesis efficiency of 100% has been achieved for implantation at 1273 K into YSZ. The ferromagnetic behavior of the α-Fe nanoparticles is reflected by a magnetic hyperfine field of 330 kOe and a hysteretic magnetization reversal. Electron holography showed a fringing magnetic field around some, but not all of the particles.

  20. Process for growing a film epitaxially upon a MgO surface

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1997-01-01

    A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  1. The effect of Al2O3, CaO, Cr2O3 and MgO on devitrification of silica

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor

    1988-01-01

    The effect of doping on devitrification of vitreous silica was studied at 1100, 1200, and 1300 C. Dispersion of dopants on a molecular scale was accomplished via a sol-gel technique. All dopants accelerated the devitrification of silica but to different degrees. The most active was CaO followed by MgO, Al2O3, and Cr2O3. Pure silica and silica containing Cr2O3 and Al2O3 devitrified to alpha-cristobalite only, whereas silica doped with CaO and MgO produced alpha-quartz and alpha-cristobalite. It appears that prolonged heat treatment would cause alpha-quartz to transform to alpha-cristobalite.

  2. Synthesis and structural characterization of transition metal doped MgO: Mg0.95Mn0.01TM0.04O (TM = Co, Ni, Cu)

    NASA Astrophysics Data System (ADS)

    Islam, Ishtihadah; Khandy, Shakeel Ahmad; Hafiz, Aurangzeb Khurram

    2018-05-01

    In the present work, preparation and characterization of transition metal doped MgO: Zn0.94Mn0.01TM0.05O (TM = Co, Ni and Cu) nano-particles have been reported. Transition metal doped samples of MgO were synthesized by Sol gel auto combustion method. Structural characterisation from XRD and SEM show the formation of single-phase primary particles, nearly of spherical shaped nano-crystallites. The crystallite size was found to be 78.2, 67.02, 78.11 and 64 nm for pure, Co, Cu and Ni doped MgMnO nano-particles, respectively. Hence, the average crystallite size increases monotonously from Co to Cu doping.

  3. High-MgO Vitric Ash in Upper Kulanaokuaiki Tephra, Kilauea Volcano, Hawai`i: A Preliminary Description

    NASA Astrophysics Data System (ADS)

    Rose, T. R.; Fiske, R. S.; Swanson, D.

    2011-12-01

    Small, well-formed Pele's tears containing anomalously high values of MgO were recently discovered in outcrops of the upper Kulanaokuaiki Tephra at and near the base of Uwekahuna Bluff, the western wall of Kilauea Caldera. Electron microprobe analyses of more than 60 high-MgO tears, which are 1-3 mm in diameter, show that most contain 11 to 12 wt. % MgO with a few approaching 13 % MgO. Separate microprobe analyses for sulfur and chlorine of 20 grains revealed no appreciable amounts of either, indicating the magma was largely degassed. Polished-section studies employing an analytical scanning electron microscope show most tears are composed of pure microvesicular glass with scattered skeletal olivine crystals and rare chromite. The abundance of skeletal olivine appears to increase with decreasing MgO content of the glass. These tears contain among the highest known MgO values of any material erupted subaerially from Kilauea. The high-MgO tears occur in a 1-6 cm thick layer of medium-coarse lithic-crystal-vitric ash. The top of this layer consists of 2-3 mm of very fine lithic-crystal ash. The lithics and many of the olivine crystals in this layer are highly oxidized. This deposit is at the top of a sequence of several lithic beds that are interspersed with thinner vitric units totaling about 75 cm in thickness. It is overlain by 9-13 cm of medium pumice lapilli and coarse vitric ash at the top of the "Bluff base" and "mid-Bluff" tephra sections described by Fiske et al. (2009). This high-MgO glass layer has been found thus far in only one other locality, a 2 m-deep soils study pit within Kipuka Puaulu, 3.5 km northwest of the caldera. Based upon stratigraphic relationships and preliminary microprobe data, a few other likely exposures of the high-MgO deposit have been identified north and west of the caldera. The high-MgO vitric ash in the upper Kulanaokuaiki Tephra has a primitive composition that suggests little if any shallow level storage of magma. Instead, the magma probably rose rapidly from deep within, or below, the volcano just before its eruption. Remnants of the Kulanaokuaiki-3 scoria deposit, a subunit of the upper Kulanaokuaiki Tephra, are preserved over wide areas 7-12 km south and southeast of the summit and have characteristics also suggesting rapid rise and eruption (Fiske et al., this meeting). Some relatively primitive vitric ash occurs in the younger Keanakako`i Tephra (Garcia et al., this meeting) and can be interpreted to indicate little if any shallow storage. Thus the high-MgO glass reported here may be an end member in a family of relatively primitive compositions that can erupt under some circumstances at Kilauea's summit. Most recent tephra deposits at and near Kilauea's summit are attributed to phreatic or phreatomagmatic explosive eruptions that originated at relatively shallow depth. One important implication of our findings is that some highly energetic pyroclastic eruptions at Kilauea likely originated at far greater depths.

  4. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    PubMed Central

    Mantilaka, M. M. M. G. P. G.; Goh, K. L.; Ratnayake, S. P.; Amaratunga, G. A. J.; de Silva, K. M. Nalin

    2017-01-01

    Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P < 0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues. PMID:28694826

  5. Cross-point-type spin-transfer-torque magnetoresistive random access memory cell with multi-pillar vertical body channel MOSFET

    NASA Astrophysics Data System (ADS)

    Sasaki, Taro; Endoh, Tetsuo

    2018-04-01

    In this paper, from the viewpoint of cell size and sensing margin, the impact of a novel cross-point-type one transistor and one magnetic tunnel junction (1T–1MTJ) spin-transfer-torque magnetoresistive random access memory (STT-MRAM) cell with a multi-pillar vertical body channel (BC) MOSFET is shown for high density and wide sensing margin STT-MRAM, with a 10 ns writing period and 1.2 V V DD. For that purpose, all combinations of n/p-type MOSFETs and bottom/top-pin MTJs are compared, where the diameter of MTJ (D MTJ) is scaled down from 55 to 15 nm and the tunnel magnetoresistance (TMR) ratio is increased from 100 to 200%. The results show that, benefiting from the proposed STT-MRAM cell with no back bias effect, the MTJ with a high TMR ratio (200%) can be used in the design of smaller STT-MRAM cells (over 72.6% cell size reduction), which is a difficult task for conventional planar MOSFET based design.

  6. The catalytic destruction of antibiotic tetracycline by sulfur-doped manganese oxide (S-MgO) nanoparticles.

    PubMed

    Moussavi, Gholamreza; Mashayekh-Salehi, Ali; Yaghmaeian, Kamyar; Mohseni-Bandpei, Anoshiravan

    2018-03-15

    The present study evaluates the efficacy of S-doped MgO (S-MgO) as compared with the plain MgO as a catalyst for destructive removal of tetracycline (TTC) in aqueous solutions. The S-MgO had around 6% S in its structure. Doping MgO with S caused increase in surface oxygen vacancy defects. Adding S-MgO (12 g/L) to a TTC aqueous solution (50 mg/L) caused removal of around 99% TTC at the neutral pH (ca. 5.1) and a short reaction time of 10 min. In comparison, plain MgO could remove only around 15% of TTC under similar experimental conditions. Diffusing O 2 into the TTC solution under the reaction with S-MgO resulted in a considerable improvement of TTC removal as compared to diffusing N 2 . Complete removal of TTC and 86.4% removal of its TOC could be obtained using 2 g/L S-MgO nanoparticles. The removal of TTC increased with the increase in solution temperature. The presence of nitrate, sulfate and chloride did not considerably affect the removal of TTC using S-MgO while TTC removal significantly decreased at the presence of bicarbonate and phosphate. The S-MgO was a stable and reusable catalyst exhibiting much higher catalytic activity than plain MgO for the TTC destruction. Accordingly, S-MgO is an emerging and efficient catalyst for catalytic decomposition and mineralization of such pharmaceutical compounds as TTC under atmospheric temperature and pressure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Energetics and magnetic properties of V-doped MgO bulk and (001) surface: A GGA, GGA+U , and hybrid density functional study

    NASA Astrophysics Data System (ADS)

    Århammar, C.; Moyses Araujo, C.; Rao, K. V.; Norgren, Susanne; Johansson, Börje; Ahuja, Rajeev

    2010-10-01

    In this work, a first-principles study of the energetic and magnetic properties of V-doped MgO is presented, where both the bulk and (001) surface were investigated. It is found that V assumes a high-spin state with a local moment of about 3μB . In the bulk, the interaction between these local moments is very short ranged and the antiferromagnetic (AFM) ordering is energetically more favorable. The formation of V-VMg-V defect clusters is found to weaken the antiferromagnetic coupling in bulk MgO, degenerating the AFM and ferromagnetic state. However, these clusters are high in energy and will not form at equilibrium conditions. By employing the GGA+U approach, with U=5eV , the V3d states on the (001) surface are shifted below the Fermi level, and a reasonable surface geometry was achieved. A calculation with the hybrid HSE03 functional, contradicts the GGA+U results, indicating that the V-MgO surface should be metallic at this concentration. From the energetics it is concluded that, at the modeled concentration, VxOy phases will limit the solubility of V in MgO at equilibrium conditions, which is in agreement with previous experimental findings. In order to achieve higher concentrations of V, an off-equilibrium synthesis method is needed. Finally, we find that the formation energy of V at the surface is considerably higher than in the bulk and V is thus expected to diffuse from the surface into the bulk of MgO.

  8. Reaction of water with MgO(100) surfaces: Part III. X-ray standing wave studies

    NASA Astrophysics Data System (ADS)

    Liu, P.; Kendelewicz, T.; Nelson, E. J.; Brown, G. E.

    1998-09-01

    Clean MgO(100) surfaces cleaved in vacuum and exposed to water vapor or bulk water were studied using the X-ray standing wave (XSW) technique in back reflection mode and surface sensitive, element specific O KLL and Mg KLL Auger electron yield detection. The effects of surface charging were mitigated, but not entirely eliminated, by using a low-energy electron flood gun. Simulation of the XSW signal showed that the effect of surface charging on the XSW data could be minimized with careful experimental design. We demonstrate that the XSW method can be applied to studies of insulating surfaces, and our results for MgO(100) surfaces exposed to water vapor or bulk water indicate the following: (1) the vacuum-cleaved clean surface undergoes no surface reconstruction or significant relaxation perpendicular to the surface; (2) Mg-OH distances on surfaces exposed to water vapor or bulk water measured perpendicular to the (100) surface are the same as in bulk MgO; and (3) the z-position of the surface Mg atoms does not change within the estimated error [±2% of the (200) spacing] after the surface is fully hydroxylated. Our results for the clean, vacuum-cleaved surface disagree with results from impact collision ion-scattering spectroscopy and surface-extended electron-loss fine structure for MgO(100), which indicate 15 and 17% inward relaxation, respectively, and they support results from low-energy electron diffraction, reflection high-energy electron diffraction, and photoelectron diffraction that show little, if any, relaxation or rumpling of the surface.

  9. Formation of ZrO{sub 2} in coating on Mg–3 wt.%Al–1 wt.%Zn alloy via plasma electrolytic oxidation: Phase and structure of zirconia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kang Min; Kim, Yeon Sung; Yang, Hae Woong

    2015-01-15

    An investigation of the coating structure formed on Mg–3 wt.%Al–1 wt.%Zn alloy sample subjected to plasma electrolytic oxidation was examined by field-emission transmission electron microscopy. The plasma electrolytic oxidation process was conducted in a phosphoric acid electrolyte containing K{sub 2}ZrF{sub 6} for 600 s. Microstructural observations showed that the coating consisting of MgO, MgF{sub 2}, and ZrO{sub 2} phases was divided into three distinctive parts, the barrier, intermediate, and outer layers. Nanocrystalline MgO and MgF{sub 2} compounds were observed mainly in the barrier layer of ~ 1 μm thick near to the substrate. From the intermediate to outer layers, variousmore » ZrO{sub 2} polymorphs appeared due to the effects of the plasma arcing temperature on the phase transition of ZrO{sub 2} compounds during the plasma electrolytic oxidation process. In the outer layer, MgO compound grew in the form of a dendrite-like structure surrounded by cubic ZrO{sub 2}. - Highlights: • The barrier layer containing MgO and MgF{sub 2} was observed near to the Mg substrate. • In the intermediate layer, m-, t-, and o-ZrO{sub 2} compounds were additionally detected. • The outer layer contained MgO with the dendrite-like structure surrounded by c-ZrO{sub 2}. • The grain sizes of compounds in oxide layer increased from barrier to outer layer.« less

  10. Nanocavity formation processes in MgO( 1 0 0 ) by light ion (D, He, Li) and heavy ion (Kr, Cu, Au) implantation

    NASA Astrophysics Data System (ADS)

    van Veen, A.; van Huis, M. A.; Fedorov, A. V.; Schut, H.; Labohm, F.; Kooi, B. J.; De Hosson, J. Th. M.

    2002-05-01

    In studies on the controlled growth of metallic precipitates in MgO it is attempted to use nanometer size cavities as precursors for formation of metallic precipitates. In MgO nanocavities can easily be generated by light gas ion bombardment at room temperature with typically 30 keV ion energy to a dose of 10 16 cm -2, followed by annealing to 1300 K. It has been shown earlier by transmission electron microscopy (TEM) that the cavities (thickness 2-3 nm and length/width 5-10 nm) have a perfectly rectangular shape bounded by {1 0 0} faces. The majority of the gas has been released at this temperature and the cavities are stable until annealing at 1500 K. The depth location of the cavities and the implanted ions is monitored by positron beam analysis, neutron depth profiling, RBS/channeling and energy dispersive spectroscopy. The presence of metallic nanoprecipitates is detected by optical absorption measurements and by high-resolution XTEM. Surprisingly, all the metallic implants induce, in addition to metallic precipitates in a band at the mean ion range, small rectangular and cubic nanocavities. These are most clearly observed at a depth shallower than the precipitate band. In the case of gold the cavities are produced in close proximity to the crystal surface. The results indicate that in MgO vacancy clustering dominates over Frenkel-pair recombination. Results of molecular dynamics calculations will be used to discuss the observed defect recovery and clustering processes in MgO.

  11. The Antibacterial Activity of Australian Leptospermum Honey Correlates with Methylglyoxal Levels

    PubMed Central

    Campbell, Leona T.; Brooks, Peter; Carter, Dee A.; Blair, Shona E.

    2016-01-01

    Most commercially available therapeutic honey is derived from flowering Leptospermum scoparium (manuka) plants from New Zealand. Australia has more than 80 Leptospermum species, and limited research to date has found at least some produce honey with high non-peroxide antibacterial activity (NPA) similar to New Zealand manuka, suggesting Australia may have a ready supply of medical-grade honey. The activity of manuka honey is largely due to the presence of methylglyoxal (MGO), which is produced non-enzymatically from dihydroxyacetone (DHA) present in manuka nectar. The aims of the current study were to chemically quantify the compounds contributing to antibacterial activity in a collection of Australian Leptospermum honeys, to assess the relationship between MGO and NPA in these samples, and to determine whether NPA changes during honey storage. Eighty different Leptospermum honey samples were analysed, and therapeutically useful NPA was seen in samples derived from species including L. liversidgei and L. polygalifolium. Exceptionally high levels of up to 1100 mg/kg MGO were present in L. polygalifolium honey samples sourced from the Northern Rivers region in NSW and Byfield, QLD, with considerable diversity among samples. There was a strong positive relationship between NPA and MGO concentration, and DHA was present in all of the active honey samples, indicating a potential for ongoing conversion to MGO. NPA was stable, with most samples showing little change following seven years of storage in the dark at 4°C. This study demonstrates the potential for Australian Leptospermum honey as a wound care product, and argues for an extension of this analysis to other Leptospermum species. PMID:28030589

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Xiaoyu; Shetty, Smitha; Garten, Lauren

    Dielectric and piezoelectric properties for Zn 1-xMg xO (ZMO) thin films are reported as a function of MgO composition up to and including the phase separation region. Zn 1-xMg xO (0.25 ≤ x ≤ 0.5) thin films with c-axis textures were deposited by pulsed laser deposition on platinized sapphire substrates. The films were phase pure wurtzite for MgO concentrations up to 40%; above that limit, a second phase with rocksalt structure evolves with strong {100} texture. With increasing MgO concentration, the out-of-plane ( d33,f) and in-plane ( e31,f) piezoelectric coefficients increase by 360% and 290%, respectively. The increase in piezoelectricmore » coefficients is accompanied by a 35% increase in relative permittivity. Loss tangent values fall monotonically with increasing MgO concentration, reaching a minimum of 0.001 for x ≥ 0.30, at which point the band gap is reported to be 4 eV. As a result, the enhanced piezoelectric response, the large band gap, and the low dielectric loss make Zn 1-xMg xO an interesting candidate for thin film piezoelectric devices, and demonstrate that compositional phase transformations provide opportunities for property engineering.« less

  13. Sono-photocatalytic production of hydrogen by interface modified metal oxide insulators.

    PubMed

    Senevirathne, Rushdi D; Abeykoon, Lahiru K; De Silva, Nuwan L; Yan, Chang-Feng; Bandara, Jayasundera

    2018-07-01

    Dielectric oxide materials are well-known insulators that have many applications in catalysis as well as in device manufacturing industries. However, these dielectric materials cannot be employed directly in photochemical reactions that are initiated by the absorption of UV-Vis photons. Despite their insensitivity to solar energy, dielectric materials can be made sono-photoactive even for low energy IR photons by modifications of the interfacial properties of dielectric materials by noble metals and metal oxides. In this investigation, by way of interface modification of dielectric MgO nanoparticles by Ag metal and Ag 2 O nanoparticles, IR photon initiated sono-photocatalytic activity of MgO is reported. The observed photocatalytic activity is found to be the synergic action of both IR light and sonication effect and sonication assisted a multi-step, sub-bandgap excitation of electrons in the MgO is proposed for the observed catalytic activity of Ag/Ag 2 O coated MgO nanoparticles. Our investigation reveals that other dielectric materials such as silver coated SiO 2 and Al 2 O 3 also exhibit IR active sono-photocatalytic activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Characterization of changes of lignin structure in the processes of cooking with solid alkali and different active oxygen.

    PubMed

    Yang, Qiulin; Shi, Jianbin; Lin, Lu; Peng, Lincai; Zhuang, Junping

    2012-11-01

    The cooking with solid alkali and active oxygen has a high selectivity for delignification. In the present work, the O(2) and H(2)O(2) were separately combined with MgO used in cornstalk cooking for investigating their effects on delignification. After cooking, the lignins in raw material, pulp, and yellow liquor were all characterized by HSQC NMR. The results showed that the syringyl (S/S'/S″) units and β-O-4' (A/A'/A″) structures had different reactivity in the cooking with MgO and H(2)O(2) due to their different structures on side-chains. Whereas the syringyl (S/S'/S″) units could be completely decomposed when the MgO and O(2) were used, and the β-O-4' (A/A'/A″) structures could be partly degraded. A novel structure G' unit with a carbonyl group was only generated in the cooking with MgO and O(2). In addition, the H unit, non-phenolic β-β' (B) and β-5' (C) structures were all stable in both of the two cooking processes. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. Positron confinement in embedded lithium nanoclusters

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Falub, C. V.; Eijt, S. W.; Mijnarends, P. E.; Kuriplach, J.

    2002-02-01

    Quantum confinement of positrons in nanoclusters offers the opportunity to obtain detailed information on the electronic structure of nanoclusters by application of positron annihilation spectroscopy techniques. In this work, positron confinement is investigated in lithium nanoclusters embedded in monocrystalline MgO. These nanoclusters were created by means of ion implantation and subsequent annealing. It was found from the results of Doppler broadening positron beam analysis that approximately 92% of the implanted positrons annihilate in lithium nanoclusters rather than in the embedding MgO, while the local fraction of lithium at the implantation depth is only 1.3 at. %. The results of two-dimensional angular correlation of annihilation radiation confirm the presence of crystalline bulk lithium. The confinement of positrons is ascribed to the difference in positron affinity between lithium and MgO. The nanocluster acts as a potential well for positrons, where the depth of the potential well is equal to the difference in the positron affinities of lithium and MgO. These affinities were calculated using the linear muffin-tin orbital atomic sphere approximation method. This yields a positronic potential step at the MgO||Li interface of 1.8 eV using the generalized gradient approximation and 2.8 eV using the insulator model.

  16. The influence of an MgO nanolayer on the planar Hall effect in NiFe films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minghua, E-mail: mhli@ustb.edu.cn; Department of Electrical Engineering, University of California, Los Angeles, California 90095; Zhao, Zhiduo

    2015-03-28

    The Planar Hall Effect (PHE) in NiFe films was studied using MgO as the buffer and capping layer to reduce the shunt effect. The thermal annealing was found to be effective in increasing the sensitivity. The sensitivity of the magnetic field reached as high as 865 V/AT in a MgO (3 nm)/NiFe (5 nm)/MgO(3 nm)/Ta(3 nm) structure after annealing at 500 °C for 2 h, which is close to the sensitivity of semiconductor Hall Effect (HE) sensors. X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) were used to study the sample. The results show that the top crystallization of MgO and NiFemore » (111) texture were improved by proper annealing. The smooth and clear bottom MgO/NiFe and top NiFe/MgO interface is evident from our data. In addition, the shunt current of Ta was decreased. These combined factors facilitate the improvement of the sensitivity of the magnetic field.« less

  17. Epitaxial structure and electronic property of β-Ga2O3 films grown on MgO (100) substrates by pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Ryo; Yoshimatsu, Kohei; Hattori, Mai; Ohtomo, Akira

    2017-10-01

    We investigated heteroepitaxial growth of Si-doped Ga2O3 films on MgO (100) substrates by pulsed-laser deposition as a function of growth temperature (Tg) to find a strong correlation between the structural and electronic properties. The films were found to contain cubic γ-phase and monoclinic β-phase, the latter of which indicated rotational twin domains when grown at higher Tg. The formation of the metastable γ-phase and twin-domain structure in the stable β-phase are discussed in terms of the in-plane epitaxial relationships with a square MgO lattice, while crystallinity of the β-phase degraded monotonically with decreasing Tg. The room-temperature conductivity indicated a maximum at the middle of Tg, where the β-Ga2O3 layer was relatively highly crystalline and free from the twin-domain structure. Moreover, both crystallinity and conductivity of β-Ga2O3 films on the MgO substrates were found superior to those on α-Al2O3 (0001) substrates. A ratio of the conductivity, attained to the highest quantity on each substrate, was almost three orders of magnitude.

  18. Grape skin extracts from winemaking by-products as a source of trapping agents for reactive carbonyl species.

    PubMed

    Sri Harsha, Pedapati S C; Mesias, Marta; Lavelli, Vera; Morales, Francisco J

    2016-01-30

    Clinical evidence supports the relationship between carbonyl stress and type II diabetes and its related pathologies. Methylglyoxal (MGO) is the major dicarbonyl compound involved in carbonyl stress. Efforts are therefore being made to find dietary compounds from natural sources that could exert an MGO trapping response. The in vitro MGO trapping capacity of six red and seven white grape skin extracts (GSE) obtained from winemaking by-products was investigated. Methanolic GSE exhibited a promising MGO trapping capacity that was higher in red GSE (IC50 2.8 mg mL(-1)) when compared with white GSE (IC50 3.2 mg mL(-1)). The trapping ability for red GSE correlated significantly with total phenolic content and antioxidant capacity. However, no correlations were observed for white GSE, which suggests that other compounds were involved in the trapping activity. GSE may be considered a natural source of carbonyl stress inhibitors, thus opening up its possible utilization as a nutraceutical ingredient. Further investigations are required to understand the mechanism involved in the carbonyl trapping ability of red and white grape skin samples and their relationship with glycation. © 2015 Society of Chemical Industry.

  19. Electronic structure and orientation relationship of Li nanoclusters embedded in MgO studied by depth-selective positron annihilation two-dimensional angular correlation

    NASA Astrophysics Data System (ADS)

    Falub, C. V.; Mijnarends, P. E.; Eijt, S. W.; van Huis, M. A.; van Veen, A.; Schut, H.

    2002-08-01

    Quantum-confined positrons are sensitive probes for determining the electronic structure of nanoclusters embedded in materials. In this work, a depth-selective positron annihilation 2D-ACAR (two-dimensional angular correlation of annihilation radiation) method is used to determine the electronic structure of Li nanoclusters formed by implantation of 1016-cm-2 30-keV 6Li ions in MgO (100) and (110) crystals and by subsequent annealing at 950 K. Owing to the difference between the positron affinities of lithium and MgO, the Li nanoclusters act as quantum dots for positrons. 2D-ACAR distributions for different projections reveal a semicoherent fitting of the embedded metallic Li nanoclusters to the host MgO lattice. Ab initio Korringa-Kohn-Rostoker calculations of the momentum density show that the anisotropies of the experimental distributions are consistent with an fcc crystal structure of the Li nanoclusters. The observed reduction of the width of the experimental 2D-ACAR distribution is attributed to positron trapping in vacancies associated with Li clusters. This work proposes a method for studying the electronic structure of metallic quantum dots embedded in an insulating material.

  20. The role of thin MgO(100) epilayer for polarized charge injection into top-emitting OLED

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hee; Jong Lee, Nyun; Bae, Yu Jeong; Cho, Hyunduck; Lee, Changhee; Ito, Eisuke

    2012-02-01

    A new top-emitting OLED (TOLED) structure, which is formed on an Si(100) substrate and an epitaxial MgO(100)/Fe(100)/MgO(100) bottom electrode, was investigated. Our TOLED design included a semi-transparent cathode Al, a stack of conventional organic electroluminescent layers (α-NPD/Alq3/LiF) and a thin Cu-Phthalocyanine (CuPc) film to enhance the hole injection into the luminescent layers. At room temperature (RT), magnetoluminescence of ˜5 % was observed in low magnetic field up to 1 Tesla , which is obviously larger than that of the OLEDs with epitaxial and polycrystalline Fe anodes without MgO(100) covering layer. Our results indicate that the magnetic field effect on the electroluminescence could be strongly related to the magnetic properties of bottom electrode, more precisely the interfacial properties between CuPc layer and the anode. Therefore, we focused on understanding interface electronic states and energy alignment by using x-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy. Our results showed that the use of appropriate oxide layers could represent a new interface engineering technique for improving reliability and functionality in organic semiconductor devices.

  1. Process for growing a film epitaxially upon a MGO surface and structures formed with the process

    DOEpatents

    McKee, Rodney Allen; Walker, Frederick Joseph

    1998-01-01

    A process and structure wherein optical quality perovskites, such as BaTiO.sub.3 or SrTiO.sub.3, are grown upon a single crystal MgO substrate involves the epitaxial build up of alternating planes of TiO.sub.2 and metal oxide wherein the first plane grown upon the MgO substrate is a plane of TiO.sub.2. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.

  2. A comparison study of Co and Cu doped MgO diluted magnetic thin films

    NASA Astrophysics Data System (ADS)

    Sarıtaş, S.; ćakıcı, T.; Muǧlu, G. Merhan; Kundakcı, M.; Yıldırım, M.

    2017-02-01

    Transition metal-doped MgO diluted magnetic thin films are appropriate candidates for spintronic applications and designing magnetic devices and sensors. Therefore, MgO:Co and MgO:Cu films were deposited on glass substrates by Chemical Spray Pyrolysis (CSP) method different thin film deposition parameters. Deposited different transition metal doped MgO thin films were compared in terms of optic and structural properties. Comparison optic analysis of the films was investigated spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. Comparison structural analysis of the thin films was examined by using XRD, Raman Analysis, SEM, EDX and AFM techniques. The transition metal-doped; MgO:Co and MgO:Cu thin films maybe have potential applications in spintronics and magnetic data storage.

  3. Construction material

    DOEpatents

    Wagh, Arun S [Orland Park, IL; Antink, Allison L [Bolingbrook, IL

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  4. Melting temperatures of MgO under high pressure determined by micro-texture observation

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Ohfuji, H.; Nishi, M.; Irifune, T.

    2016-12-01

    Periclase (MgO) is the second abundant mineral after bridgmanite in the Earth's lower mantle, and its melting temperature (Tm) under pressure is important to constrain the chemical composition of ultra-deep magma formed near the mantle-core boundary. However, the melting behavior is highly controversial among previous studies: a laser-heated diamond anvil cell (LHDAC) study reported a melting curve with a dTm/dP of 30 K/GPa at zero pressure [1], while several theoretical computations gave substantially higher dTm/dP of 90 100 K/GPa [2,3]. We performed a series of LHDAC experiments for measurements of Tm of MgO under high pressure, using single crystal MgO as the starting material. The melting was detected by using micro-texture observations of the quenched samples. We found that the laser-heated area of the sample quenched from the Tm in previous LHDAC experiments [1] showed randomly aggregated granular crystals, which was not caused by melting, but by plastic deformation of the sample. This suggests that the Tms of their study were substantially underestimated. On the other hand, the sample recovered from the temperature higher by 1500-1700 K than the Tms in previous LHDAC experiments showed a characteristic internal texture comparable to the solidification texture typically shown in metal casting. We determined the Tms based on the observation of this texture up to 32 GPa. Fitting our Tms to the Simon equation yields dTm/dP of 82 K/GPa at zero pressure, which is consistent with those of the theoretical predictions (90 100 K/GPa) [2,3]. Extrapolation of the present melting curve of MgO to the pressure of the CMB (135 GPa) gives a melting temperature of 8900 K. The present steep melting slope offers the eutectic composition close to peridotite (in terms of Mg/Si ratio) throughout the lower mantle conditions. According to the model for sink/float relationship between the solid mantle and the magma [4], a considerable amount of iron (Fe/(Mg+Fe) > 0.24) is expected for the peridotitic partial melt so that it is gravitationally stable to form the ULVZs at the bottom of the lower mantle. Reference 1 A. Zerr and R. Boehler, Nature 371, 506 (1994). 2 D. Alfe, Phys. Rev. Lett. 94, 235701 (2005). 3 N. de Koker and L. Stixrude, Geophys. J. Int. 178, 162 (2009). 4 Funamori, and N. Sato, Earth Planet. Sci. Lett. 295, 435 (2010).

  5. Observations of seismic anisotropy above/below D" discontinuity and its mineral physics interpretation

    NASA Astrophysics Data System (ADS)

    Usui, Y.; Tsuchiya, T.

    2011-12-01

    Many studies have reported a VSV < VSH anisotropy in various places of the D" layer. However, the depth distribution of the anisotropy is still unclear because the anisotropy has not been investigated above the D" layer. Here, to get a large number of data sets, we used seismic data recorded by new five broad-band stations at East Antarctica. Then we carefully analyzed the shear wave splitting focusing above the D" layer beneath the Antarctic Ocean. Most of the data showed that SH waves arrive earlier than SV waves. We also found that shear wave splitting occurs even above the D" discontinuity. Although the lattice preferred orientation (LPO) of MgSiO3 post-perovskite (PPv) is now thought to be the major source of anisotropy below the discontinuity, this strongly suggests that the anisotropy is caused not only by the PPv phase. The root mean square minimization using seismic waveform modeling has been performed to construct a new transverse isotropic shear wave velocity model. The obtained velocity model has a 2.0 % velocity discontinuity at 2500 km for VSH and undetectable discontinuity for VSV. The anisotropy is estimated to be about 0.5% and 2.5% above and below the discontinuity, respectively. Since perovskite (Pv) and MgO are expected as the primary lower mantle phases and also anisotropic, they could be a source of the anisotropy. However deformation mechanisms of the minerals under high-P,T condition are still under debate. In order to clarify the origin of the anisotropy above/below the discontinuity, we examined the elastic anisotropy of two phase polycrystalline aggregates (Pv + MgO) and (PPv + MgO). We modeled the anisotropy in several different LPO directions with different degree. Results suggest that transversely isotropic aggregate (TIA) of MgO[100] in two phase aggregates (Pv + MgO) reproduces the anisotropy above the discontinuity. This is consistent with a (100) slip plane determined by experiments [Karato, 1998]. Since this system corresponds to TIA of MgO with [100] oriented vertically, the MgO LPO model could explain the anisotropy above the discontinuity. On the other hand, we found that TIA of PPv[001] in the aggregates (PPv + MgO) can explain the anisotropy below the discontinuity. Recent deformation experiment [Miyagi et al., 2010] and theoretical calculation [Metsue and Tsuchiya, 2011] suggest that the deformation texture of PPv is dominated by the (001) slip plane under the lowermost mantle condition. This slip system can make the TIA of PPv with [001] oriented vertically under the stressed condition. Therefore, the TIA of PPv[001] could be a main cause of the anisotropy in the D" layer. The LPO pattern is very limited to explain the observation. The VSV < VSH anisotropy could be caused by horizontal shear in the lowermost mantle. Thus, the shear stress may exist even above D" layer. Research supported by the Ehime Univ. G-COE program "Deep Earth Mineralogy".

  6. Fractionation of the platinum-group elments and Re during crystallization of basalt in Kilauea Iki Lava Lake, Hawaii

    USGS Publications Warehouse

    Pitcher, L.; Helz, R.T.; Walker, R.J.; Piccoli, P.

    2009-01-01

    Kilauea Iki lava lake formed during the 1959 summit eruption of Kilauea Volcano, then crystallized and differentiated over a period of 35??years. It offers an opportunity to evaluate the fractionation behavior of trace elements in a uniquely well-documented basaltic system. A suite of 14 core samples recovered from 1967 to 1981 has been analyzed for 5 platinum-group elements (PGE: Ir, Os, Ru, Pt, Pd), plus Re. These samples have MgO ranging from 2.4 to 26.9??wt.%, with temperatures prior to quench ranging from 1140????C to ambient (110????C). Five eruption samples were also analyzed. Osmium and Ru concentrations vary by nearly four orders of magnitude (0.0006-1.40??ppb for Os and 0.0006-2.01??ppb for Ru) and are positively correlated with MgO content. These elements behaved compatibly during crystallization, mostly likely being concentrated in trace phases (alloy or sulfide) present in olivine phenocrysts or included chromite. Iridium also correlates positively with MgO, although less strongly than Os and Ru. The somewhat poorer correlation for Ir, compared with Os and Ru, may reflect variable loss of Ir as volatile IrF6 in some of the most magnesian samples. Rhenium is negatively correlated with MgO, behaving as an incompatible trace element. Its behavior in the lava lake is complicated by apparent volatile loss of Re, as suggested by a decrease in Re concentration with time of quenching for lake samples vs. eruption samples. Platinum and Pd concentrations are negatively, albeit weakly, correlated with MgO, so these elements were modestly incompatible during crystallization of the major silicate phases. Palladium contents peaked before precipitation of immiscible sulfide liquid, however, and decline sharply in the most differentiated samples. In contrast, Pt appears to have been unaffected by sulfide precipitation. Microprobe data confirm that Pd entered the sulfide liquid before Re, and that Pt is not strongly chalcophile in this system. Occasional high Pt values in both eruption and lava lake samples suggest the presence of unevenly distributed, unidentified Pt-rich trace phases in some Kilauea Iki materials. Estimated mineral (olivine + chromite)/melt D values for Os, Ir, Ru and Pt for equilibrium crystallization for samples from ~ 7 to 27??wt.% MgO are 26, 8.2, 19 and 0.55, respectively. These Os, Ir and Ru estimates are somewhat higher than previous estimates for similar systems. If fractional crystallization is instead assumed, D values are much more similar. Results confirm many prior observations in other mafic systems that olivine (together with included phases) has a major effect on absolute and relative abundances of Re and the PGE. The relatively linear correlations between these elements and MgO potentially permit accurate estimation of the concentrations of these elements in the primary melts of comparable systems, especially in instances where the MgO content of the primary melt is well constrained. ?? 2008 Elsevier B.V.

  7. Thermodynamically complete equation of state of MgO from true radiative shock temperature measurements on samples preheated to 1850 K

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.; Ahrens, T. J.

    2018-01-01

    Plate impact experiments in the 100-250 GPa pressure range were done on a 〈100 〉 single-crystal MgO preheated before compression to 1850 K. Hot Mo(driver)-MgO targets were impacted with Mo or Ta flyers launched by the Caltech two-stage light-gas gun up to 7.5 km/s. Radiative temperatures and shock velocities were measured with 3%-4% and 1%-2% uncertainty, respectively, by a six-channel pyrometer with 3-ns time resolution, over a 500-900-nm spectral range. MgO shock front reflectivity was determined in additional experiments at 220 and 248 GPa using ≈50 /50 high-temperature sapphire beam splitters. Our measurements yield accurate experimental data on the mechanical, optical, and thermodynamic properties of B1 phase MgO from 102 GPa and 3900 K to 248 GPa and 9100 K, a region not sampled by previous studies. Reported Hugoniot data for MgO initially at ambient temperature, T =298 K, and the results of our current Hugoniot measurements on samples preheated to 1850 K were analyzed using the most general methods of least-squares fitting to constrain the Grüneisen model. This equation of state (EOS) was then used to construct maximum likelihood linear Hugoniots of MgO with initial temperatures from 298 to 2400 K. A parametrization of all EOS values and best-fit coefficients was done over the entire range of relevant particle velocities. Total uncertainties of all the EOS parameters and correlation coefficients for these uncertainties are also given. The predictive capabilities of our updated Mie-Grüneisen EOS were confirmed by (1) the good agreement between our Grüneisen data and five semiempirical γ (V ) models derived from porous shock data only or from combined static and shock data sets, (2) the very good agreement between our 1-bar Grüneisen values and γ (T ) at ambient pressure recalculated from reported experimental data on the adiabatic bulk modulus Ks(T ) , and (3) the good agreement of the brightness temperatures, corrected for shock reflectivity, with the corresponding values calculated using the current EOS or predicted by other groups via first-principles molecular dynamics simulations. Our experiments showed no evidence of MgO melting up to 250 GPa and 9100 K. The highest shock temperatures exceed the extrapolated melting curve of Zerr and Boehler by >3300 K and the upper limit for the melting boundary predictions of Aguado and Madden by >2600 K and those of Strachan et al. by >2100 K. We show that the potential for superheating in our shock experiments is negligible and therefore out data put a lower limit on the melting curve of B1 phase MgO in P -T space close to the set of consistent independent predictions by Sun et al., Liu et al., and de Koker and Stixrude.

  8. Effect of various additives on microstructure, mechanical properties, and in vitro bioactivity of sodium oxide-calcium oxide-silica-phosphorus pentoxide glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Hu, J H; Chen, C Z

    2013-09-01

    The partial substitution of MgO, TiO2, or CaF2 for CaO in the Na2O-CaO-SiO2-P2O5 (45S5) system was conducted by the sol-gel method and a comparative study on structural, mechanical properties, and bioactivity of the glasses was reported. Based on thermogravimetric and differential thermal analysis, the gels were sintered with a suitable heat treatment procedure. The glass-ceramic properties were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and so on, and the bioactivity of the glass-ceramic was evaluated by in vitro assays in simulated body fluid (SBF). Results indicate that with the partial substitution of MgO, TiO2, CaF2 for CaO in glass composition, the mechanical properties of the glass-ceramics have been significantly improved. Furthermore, CaF2 promotes glass crystallization and the crystallization does not inhibit the glass-ceramic bioactivity. All samples possess bioactivity; however, the bioactivity of these glass-ceramics is quite different. Compared with 45S5, the introduction of MgO decreases the ability of apatite induction. The addition of TiO2 does not significantly improve the bioactivity, and the replacement of CaO by CaF2 shows a higher bioactivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Perpendicular magnetic anisotropy and magnetization dynamics in oxidized CoFeAl films

    PubMed Central

    Wu, Di; Zhang, Zhe; Li, Le; Zhang, Zongzhi; Zhao, H. B.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-01-01

    Half-metallic Co-based full-Heusler alloys with perpendicular magnetic anisotropy (PMA), such as Co2FeAl in contact with MgO, are receiving increased attention recently due to its full spin polarization for high density memory applications. However, the PMA induced by MgO interface can only be realized for very thin magnetic layers (usually below 1.3 nm), which would have strong adverse effects on the material properties of spin polarization, Gilbert damping parameter, and magnetic stability. In order to solve this issue, we fabricated oxidized Co50Fe25Al25 (CFAO) films with proper thicknesses without employing the MgO layer. The samples show controllable PMA by tuning the oxygen pressure (PO2) and CFAO thickness (tCFAO), large perpendicular anisotropy field of ~8.0 kOe can be achieved at PO2 = 12% for the sample of tCFAO = 2.1 nm or at PO2 = 7% for tCFAO = 2.8 nm. The loss of PMA at thick tCFAO or high PO2 results mainly from the formation of large amount of CoFe oxides, which are superparamagnetic at room temperature but become hard magnetic at low temperatures. The magnetic CFAO films, with strong PMA in a relatively wide thickness range and small intrinsic damping parameter below 0.028, would find great applications in developing advanced spintronic devices. PMID:26190066

  10. Oxygen Effect on the Properties of Epitaxial (110) La0.7Sr0.3MnO3 by Defect Engineering.

    PubMed

    Rasic, Daniel; Sachan, Ritesh; Temizer, Namik K; Prater, John; Narayan, Jagdish

    2018-06-20

    The multiferroic properties of mixed valence perovskites such as lanthanum strontium manganese oxide (La 0.7 Sr 0.3 MnO 3 ) (LSMO) demonstrate a unique dependence on oxygen concentration, thickness, strain, and orientation. To better understand the role of each variable, a systematic study has been performed. In this study, epitaxial growth of LSMO (110) thin films with thicknesses ∼15 nm are reported on epitaxial magnesium oxide (111) buffered Al 2 O 3 (0001) substrates. Four LSMO films with changing oxygen concentration have been investigated. The oxygen content in the films was controlled by varying the oxygen partial pressure from 1 × 10 -4 to 1 × 10 -1 Torr during deposition and subsequent cooldown. X-ray diffraction established the out-of-plane and in-plane plane matching to be (111) MgO ∥ (0001) Al 2 O 3 and ⟨11̅0⟩ MgO ∥ ⟨101̅0⟩ Al 2 O 3 for the buffer layer with the substrate, and an out-of-plane lattice matching of (110) LSMO ∥ (111) MgO for the LSMO layer. For the case of the LSMO growth on MgO, a novel growth mode has been demonstrated, showing that three in-plane matching variants are present: (i) ⟨11̅0⟩ LSMO ∥ ⟨11̅0⟩ MgO , (ii) ⟨11̅0⟩ LSMO ∥ ⟨101̅⟩ MgO , and (iii) ⟨11̅0⟩ LSMO ∥ ⟨01̅1⟩ MgO . The atomic resolution scanning transmission electron microscopy (STEM) images were taken of the interfaces that showed a thin, ∼2 monolayer intermixed phase while high-angle annular dark field (HAADF) cross-section images revealed 4/5 plane matching between the film and the buffer and similar domain sizes between different samples. Magnetic properties were measured for all films and the gradual decrease in saturation magnetization is reported with decreasing oxygen partial pressure during growth. A systematic increase in the interplanar spacing was observed by X-ray diffraction of the films with lower oxygen concentration, indicating the decrease in the lattice constant in the plane due to the point defects. Samples demonstrated an insulating behavior for samples grown under low oxygen partial pressure and semiconducting behavior for the highest oxygen partial pressures. Magnetotransport measurements showed ∼36.2% decrease in electrical resistivity with an applied magnetic field of 10 T at 50 K and ∼1.3% at room temperature for the highly oxygenated sample.

  11. Platinum-group element geochemistry of the Forest Reef Volcanics, southeastern Australia: Implications for porphyry Au-Cu mineralisation

    NASA Astrophysics Data System (ADS)

    Lowczak, Jessica N.; Campbell, Ian H.; Cocker, Helen; Park, Jung-Woo; Cooke, David R.

    2018-01-01

    Platinum-group element concentrations in felsic to intermediate rocks from the Forest Reef Volcanics, Cadia-Neville region, southeastern Australia have been analysed by the Ni-S fire assay-isotope dilution method. The Forest Reef Volcanics are shoshonitic to calc-alkaline in composition and fractionated to produce a wide range of compositions, with MgO varying between 9.7 and 1.8 wt.%. The interest in this suite is that it is coeval with Au-Cu porphyry-style mineralisation in the Cadia mineral district. This study uses PGE geochemistry to determine the timing of sulfide saturation, relative to volatile (ore-fluid) saturation, in the magma that gave rise to the Forest Reef Volcanics and, in turn, to assess how this timing affected the mineralisation potential of the evolving magmatic system. The Forest Reef Volcanics can be subdivided, on the basis of their contrasting PGE geochemistry, into high-Mg (>6.8 wt.% MgO) and low-Mg suites (≤6.8 wt.% MgO). Platinum, Pd and Re concentrations increase in the high-Mg samples, whereas Ir and Ru decrease and Rh concentrations remain steady, with decreasing MgO. The coupled Ir, Ru and Rh depletion is attributed to the partitioning of these elements into magnetite. The rate of Pt and Pd enrichment is not possible by closed-system fractional crystallisation alone, which suggests that the parent magma was replenished by a Pt-Pd-rich melt. In contrast, the PGE concentrations in the low-Mg samples decrease with decreasing MgO indicating the onset of sulfide saturation at 6.8 wt.% MgO, which is confirmed by the presence of spheroidal sulfide inclusions in liquidus crystals (i.e. clinopyroxene, plagioclase, magnetite). The rate of Pd depletion is appreciably less than for any other sulfide saturated felsic system for which data are available. This requires either that the amount of sulfide melt to have precipitated was unusually low, or that the rate of Pd depletion was limited by the mass of silicate melt the sulfide melt reached equilibrium with, or both. In any event, the fraction of sulfide melt that precipitated was too small to have had a significant effect on the Cu and Au content of the magma so that both Cu and Au were available to enter the ore-forming fluid when the magma became volatile saturated at, or shortly after, it reached ca. 2.9 wt.% MgO.

  12. Carboxylic and Dicarboxylic Acids Extracted from Crushed Magnesium Oxide Single Crystals

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Gupta, Alka D.; Kumar, Devendra; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THE) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and (sup 1)H-NMR (Nuclear Magnetic Resonance). The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS (Gas Chromatography - Mass Spectroscopy) analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P2(sub 1)/c with a(sub o) = 5.543 A, b(sub o) = 8.845 A, c(sub o) = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg/g MgO. The MgO crystals from which these organic acids were extracted grew from the 2360 C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H, and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)(sup n-). The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.

  13. [Influence of MgO and TiO2 on mechanical properties of zirconia toughened alumina ceramics formed by gel-casting technique].

    PubMed

    Wang, Si-Qian; Wang, Wei; Du, Ruo-Xi; Zhang, Da-Feng; Liu, Chuan-Tong; Ma, Jian-Feng

    2009-06-01

    The objective of this study is to investigate the influence of mechanical properties and sintering performance by adding 5% weight percentage aids to nano-compound zirconia toughened alumina (ZTA) ceramics. Micrometer Al2O3 and nanometer ZrO2 (quality ratio 4:1) were used to get 55% volume percentage slurry. Magnesium oxide and titanium oxide were taken as aids which were 5% weight percentage of the Al2O3 and ZrO2 powder. Five groups (number 0, 1, 2, 3, 4 group) were divided according to different proportion of aids. After gel-casting, the porcelain pieces were sintered at 1150, 1200, 1300, 1400, 1450, 1500, 1600 degrees C for 2 hours. Static three-point flexure strength, line shrinkage, relative density were measured and scanning electron microscopy (SEM) was used to observe section. Number 1 (MgO 1%, TiO2 4%) group had the highest bending strength. It was (401.78+/-19.50) MPa after sintering at 1600 degrees C for 2 hours and was higher than 0 group (380.64+/-44.50) MPa. Bending strength became lower than 0 group when MgO was more than 2% or more than that weight percentage of ZTA powder. When MgO content was higher than 2% or more than that weight percentage, there was no difference in relative density raising rate between each sintering assistants groups. When the sintering temperature was higher than 1200 degrees C, all groups showed obvious line-shrinkage and the groups which contained sintering assistants were all was higher than 0 group. Adding MgO and TiO2 aids from 1% to 4% weight percentage of ZTA will promote fritting and increase ZTA nano-compound ceramics mechanical properties. Adding 2% MgO aids or more than that weight percent will has no obvious help to increase the relative density raising rate of ZTA nano-compound ceramics and will degrade the mechanical properties of ZTA nano-compound ceramics.

  14. Fast Low-Current Spin-Orbit-Torque Switching of Magnetic Tunnel Junctions through Atomic Modifications of the Free-Layer Interfaces

    NASA Astrophysics Data System (ADS)

    Shi, Shengjie; Ou, Yongxi; Aradhya, S. V.; Ralph, D. C.; Buhrman, R. A.

    2018-01-01

    Future applications of spin-orbit torque will require new mechanisms to improve the efficiency of switching nanoscale magnetic tunnel junctions (MTJs), while also controlling the magnetic dynamics to achieve fast nanosecond-scale performance with low-write-error rates. Here, we demonstrate a strategy to simultaneously enhance the interfacial magnetic anisotropy energy and suppress interfacial spin-memory loss by introducing subatomic and monatomic layers of Hf at the top and bottom interfaces of the ferromagnetic free layer of an in-plane magnetized three-terminal MTJ device. When combined with a β -W spin Hall channel that generates spin-orbit torque, the cumulative effect is a switching current density of 5.4 ×106 A /cm2 .

  15. Glyoxalase I is critical for human retinal capillary pericyte survival under hyperglycemic conditions.

    PubMed

    Miller, Antonia G; Smith, Dawn G; Bhat, Manjunatha; Nagaraj, Ram H

    2006-04-28

    Retinal capillary pericytes undergo premature death, possibly by apoptosis, during the early stages of diabetic retinopathy. The alpha-oxoaldehyde, methylglyoxal (MGO), has been implicated as a cause of cell damage in diabetes. We have investigated the role of MGO and its metabolizing enzyme, glyoxalase I, in high glucose-induced apoptosis (annexin V binding) of human retinal pericyte (HRP). HRP incubated with high glucose (30 mm d-glucose) for 7 days did not undergo apoptosis despite accumulation of MGO. However, treatment with a combination of high glucose and S-p-bromobenzylglutathione cyclopentyl diester, a competitive inhibitor of glyoxalase I, resulted in apoptosis along with a dramatic increase in MGO. Overexpression of glyoxalase I in HRP protected against S-p-bromobenzylglutathione cyclopentyl diester-induced apoptosis under high glucose conditions. Incubation of HRP with high concentrations of MGO resulted in an increase of apoptosis relative to untreated controls. We found an elevation of nitric oxide (NO.) in HRP that was incubated with high glucose when compared with those incubated with either the l-glucose or untreated controls. When HRP were incubated with an NO. donor, DETANONOATE ((Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), we observed both decreased glyoxalase I expression and activity relative to untreated control cells. Further studies showed that HRP underwent apoptosis when incubated with DETANONOATE and that apoptosis increased further on co-incubation with high glucose. Our findings indicate that glyoxalase I is critical for pericyte survival under hyperglycemic conditions, and its inactivation and/or down-regulation by NO. may contribute to pericyte death by apoptosis during the early stages of diabetic retinopathy.

  16. Bioactive compounds isolated from apple, tea, and ginger protect against dicarbonyl induced stress in cultured human retinal epithelial cells.

    PubMed

    Sampath, Chethan; Zhu, Yingdong; Sang, Shengmin; Ahmedna, Mohamed

    2016-02-15

    Methylglyoxal (MGO) is known to be a major precursor of advanced glycation end products (AGEs) which are linked to diabetes and its related complications. Naturally occurring bioactive compounds could play an important role in countering AGEs thereby minimizing the risk associated with their formation. In this study, eight specific bioactive compounds isolated from apple, tea and ginger were evaluated for their AGEs scavenging activity using Human Retinal Pigment Epithelial (H-RPE) cells treated with MGO. Among the eight specific compounds evaluated, (-)-epigallocatechin 3-gallate (EGCG) from tea, phloretin in apple, and [6]-shogaol and [6]-gingerol from ginger were found to be most effective in preventing MGO-induced cytotoxicity in the epithelial cells. Investigation of possible underlying mechanisms suggests that that these compounds could act by modulating key regulative detoxifying enzymes via modifying nuclear factor-erythroid 2-related factor 2 (Nrf2) function. MGO-induced cytotoxicity led to increased levels of AGEs causing increase in Nε-(Carboxymethyl) lysine (CML) and glutathione (GSH) levels and over expression of receptor for advanced glycation end products (RAGE). Data also showed that translocation of Nrf2 from cytosol to nucleus was inhibited, which decreased the expression of detoxifying enzyme like heme oxygenase-1 (HO-1). The most potent bioactive compounds scavenged dicarbonyl compounds, inhibited AGEs formation and significantly reduced carbonyl stress by Nrf2 related pathway and restoration of HO-1 expression. These findings demonstrated the protective effect of bioactive compounds derived from food sources against MGO-induced carbonyl stress through activation of the Nrf2 related defense pathway, which is of significant importance for therapeutic interventions in complementary treatment/management of diabetes-related complications. Copyright © 2016. Published by Elsevier GmbH.

  17. The role of Zn2+ dopants in the acid-basic catalysis on MgO(001) surface: Ab initio simulations of the dissociative chemisorption of R-O-R‧ and R-S-R‧ (R, R ‧ = H , CH3, C2H5)

    NASA Astrophysics Data System (ADS)

    Fonseca, Carla G.; Tavares, Sérgio R.; Soares, Carla V.; daFonseca, Bruno G.; Henrique, Fábio J. F. S.; Vaiss, Viviane S.; Souza, Wladmir F.; Chiaro, Sandra S. X.; Diniz, Renata; Leitão, Alexandre A.

    2017-07-01

    Ab initio calculations were performed to study the effect of the Zn2+ dopant on the reactivity and the catalytic activity of the MgO(001) surface toward molecular adsorption and dissociation reactions of the H2O, H2S, CH3CH2OH, CH3CH2SH and CH3SCH3 molecules. The electronic analysis showed that Zn2+ cation increased the reactivity of the surface locally. All molecules dissociate on both surfaces except for water and ethanol which only dissociate on the MgO:Zn(001) surface, confirming the increased reactivity in this surface. The ΔG ° for the dissociation reactions of the CH3CH2SH and CH3SCH3 molecules on pure MgO(001) surface is positive in the entire temperature range. On the other hand, the ΔG ° for H2S molecule is negative until 148.7 °C. In the case of the MgO:Zn(001) surface, the CH3CH2SH molecule dissociates in the entire temperature range and, for H2S molecule, the dissociation is spontaneous until 349.7 °C. The rate constants obtained for the dissociation reactions were very large because the reaction barriers are very low in both surfaces for all the studied molecules, except for CH3SCH3 molecule. The Zn-doped MgO(001) surface, besides being more reactive, presented a better catalytic activity than the MgO(001) surface for the dissociation of this molecule.

  18. Defect induced ferromagnetism in MgO and its exceptional enhancement upon thermal annealing: a case of transformation of various defect states.

    PubMed

    Pathak, Nimai; Gupta, Santosh Kumar; Prajapat, C L; Sharma, S K; Ghosh, P S; Kanrar, Buddhadev; Pujari, P K; Kadam, R M

    2017-05-17

    MgO particles of few micron size are synthesized through a sol-gel method at different annealing temperatures such as 600 °C (MgO-600), 800 °C (MgO-800) and 1000 °C (MgO-1000). EDX and ICP-AES studies confirmed a near total purity of the sample with respect to paramagnetic metal ion impurities. Magnetic measurements showed a low temperature weak ferromagnetic ordering with a T C (Curie temperature) around 65 K (±5 K). Unexpectedly, the saturation magnetization (M s ) was found to be increased with increasing annealing temperature during synthesis. It was observed that with J = 1 or 3/2 or S = 1 or 3/2, the experimental points are fitted well with the Brillouin function of weak ferromagnetic ordering. A positron annihilation lifetime measurement study indicated the presence of a divacancy (2V Mg + 2V O ) cluster in the case of the low temperature annealed compound, which underwent dissociations into isolated monovacancies of Mg and O at higher annealing temperatures. An EPR study showed that both singly charged Mg vacancies and oxygen vacancies are responsible for ferromagnetic ordering. It also showed that at lower annealing temperatures the contribution from was very low while at higher annealing temperatures, it increased significantly. A PL study showed that most of the F + centers were present in their dimer form, i.e. as centers. DFT calculation implied that this dimer form has a higher magnetic moment than the monomer. After a careful consideration of all these observations, which have been reported for the first time, this thermally tunable unusual magnetism phenomenon was attributed to a transformation mechanism of one kind of cluster vacancy to another.

  19. Elevated levels of liver methylglyoxal and d-lactate in early-stage hepatitis in rats.

    PubMed

    Wang, Wen-Chuang; Chou, Chu-Kuang; Chuang, Ming-Cheng; Li, Yi-Chieh; Lee, Jen-Ai

    2018-02-01

    Methylglyoxal (MGO) is highly cytotoxic and its levels are elevated in diabetes, nephropathy and atherosclerosis. However, it has never been studied in liver disease. For this reason, we aimed to assess the levels of MGO and its metabolite d-lactate in an early hepatitis model. Wistar rats were administered CCl 4 (0.75 mL/kg, i.p.) to induce hepatitis. In either CCl 4 -treated or untreated rats, alanine transaminase and aspartate transaminase levels did not change over the course of the study, indicating that significant liver damage did not occur following CCl 4 treatment. However, the levels of MGO and d-lactate were higher in the livers of CCl 4 -treated animals than in untreated animals (MGO: 128.2 ± 18.8 and 248.1 ± 64.9 μg/g protein, p < 0.01; d-lactate: 0.860 ± 0.040 and 1.293 ± 0.078 μmol/g protein, respectively p < 0.01). Furthermore, in untreated and treated animals, serum d-lactate levels were 57.65 ± 2.59 and 92.16 ± 16.69 μm and urine d-lactate levels were 1.060 ± 0.007 and 1.555 ± 0.366 μmol/mg UCr, respectively (p < 0.01). These data show that in this model of early-stage liver damage, the levels of MGO and its metabolite d-lactate are elevated and that d-lactate could be useful as a reference marker for the early stage of hepatitis. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Preparation of a Ni-MgO-Al2O3 catalyst with high activity and resistance to potassium poisoning during direct internal reforming of methane in molten carbonate fuel cells

    NASA Astrophysics Data System (ADS)

    Jang, Won-Jun; Jung, You-Shick; Shim, Jae-Oh; Roh, Hyun-Seog; Yoon, Wang Lai

    2018-02-01

    Steam reforming of methane (SRM) is conducted using a series of Ni-MgO-Al2O3 catalysts for direct internal reforming (DIR) in molten carbonate fuel cells (MCFCs). Ni-MgO-Al2O3 catalysts are prepared by the homogeneous precipitation method with a variety of MgO loading amounts ranging from 3 to 15 wt%. In addition, each precursor concentrations are systemically changed (Ni: 1.2-4.8 mol L-1; Mg: 0.3-1.2 mol L-1; Al: 0.4-1.6 mol L-1) at the optimized composition (10 wt% MgO). The effects of MgO loading and precursor concentration on the catalytic performance and resistance against poisoning of the catalyst by potassium (K) are investigated. The Ni-MgO-Al2O3 catalyst with 10 wt% MgO and the original precursor concentration (Ni: 1.2 mol L-1; Mg: 0.3 mol L-1; Al: 0.4 mol L-1) exhibits the highest CH4 conversion and resistance against K poisoning even at the extremely high gas space velocity (GHSV) of 1,512,000 h-1. Excellent SRM performance of the Ni-MgO-Al2O3 catalyst is attributed to strong metal (Ni) to alumina support interaction (SMSI) when magnesium oxide (MgO) is co-precipitated with the Ni-Al2O3. The enhanced interaction of the Ni with MgO-Al2O3 support is found to protect the active Ni species against K poisoning.

  1. Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO

    NASA Astrophysics Data System (ADS)

    Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.

    2016-06-01

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.

  2. Effect of Pre-Ozonation and UF Membrane Modification with CNT on Fouling Control

    NASA Astrophysics Data System (ADS)

    Wang, Kailun; Guan, Yuqi; Zhu, Xuedong; Dong, Dan; Guo, Jin

    2018-01-01

    The effect of carbon nanotubes (CNT) modification on ultrafiltration membrane fouling control was explored. Three kinds of base membrane were chosen in the study: 20 kDa polysulfone (PS) membrane, 20 kDa and 100 kDa polyethersulfone (PES) membrane. Besides, the effect of pre-ozonation on the three CNT modified membranes for fouling alleviation was further studied. CNT modification presented antifouling properties at the beginning of filtration, while the recoverability of the CNT modified membranes are relatively lower as for the blocking of CNT layer by foulants. Pre-ozonation with a lower ozone concentration (0.25 mgO3/mgDOC) did not efficiently alleviate the fouling of CNT modified membranes. With the ozone concentration increased to 0.81 mgO3/mgDOC, the CNT modified membranes exhibited their higher antifouling properties. Water quality analysis results showed that CNT modification presented a higher capture ability for the humic-like and protein-like substances. After pre-ozonation, more organic materials could be retained in the interior of CNT layer, which decreased the fouling of base membranes and increased the permeate quality as well. Base membrane with large molecular size cut-off is more helpful for the synergistic effect of pre-ozonation and CNT modification.

  3. High Ni in Archean tholeiites

    NASA Astrophysics Data System (ADS)

    Arndt, Nicholas T.

    1991-03-01

    Archean tholeiites generally have higher Ni, Co. Cr and Fe than most younger tholeiites with similar MgO contents. These characteristics cannot be attributed to high T or P batch melting in the Archean mantle, because, although such melts are enriched in siderophile elements, they have higher MgO than normal tholeiites. As primary melts fractionate to lower MgO, they lose Ni, Co and Cr. Nor can the differences between Archean and younger tholeiites be attributed to secular variation in mantle compositions because Archean komatiites have Ni, Co, Cr contents similar to modern (Gorgona) komatiites. It is suggested that the high siderophile element content of Archean tholeiites results from mixing of either komatiitic with basaltic magmas, as might occur in an ascending, melting mantle plume or column, or of komatiite and more evolved rocks, as may take place when komatiite encounters and assimilates crustal rocks.

  4. Role of Y2O3, CaO, MgO additives on structural and microstructural behavior of zirconia/mullite aggregates

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Prusty, Sasmita; Mohapatra, B. K.; Singh, S. K.; Behera, S. N.

    2012-07-01

    Zirconia mullite (MUZ), Y2O3-MUZ, CaO-MUZ and MgO-MUZ composites, synthesized through plasma fusion technique, are becoming important due to their commercial scale of production within five minutes of plasma treatment from sillimanite, zircon and alumina mixture. The X-ray diffraction studies reveal the monoclinic zirconia phase in MUZ composite whereas mixed monoclinic, tetragonal and cubic phases of zirconia have been observed in Y2O3, CaO, MgO added MUZ composites. The Y2O3, CaO and MgO additives act as sintering aids to favour the transformation and stabilisation of tetragonal and cubic zirconia phases at room temperature. These additives also play a key role in the development of various forms of microstructure to achieve dense MUZ composites.

  5. Resonant tunneling through electronic trapping states in thin MgO magnetic junctions.

    PubMed

    Teixeira, J M; Ventura, J; Araujo, J P; Sousa, J B; Wisniowski, P; Cardoso, S; Freitas, P P

    2011-05-13

    We report an inelastic electron tunneling spectroscopy study on MgO magnetic junctions with thin barriers (0.85-1.35 nm). Inelastic electron tunneling spectroscopy reveals resonant electronic trapping within the barrier for voltages V>0.15  V. These trapping features are associated with defects in the barrier crystalline structure, as confirmed by high-resolution transmission electron microscopy. Such defects are responsible for resonant tunneling due to energy levels that are formed in the barrier. A model was applied to determine the average location and energy level of the traps, indicating that they are mostly located in the middle of the MgO barrier, in accordance with the high-resolution transmission electron microscopy data and trap-assisted tunneling conductance theory. Evidence of the influence of trapping on the voltage dependence of tunnel magnetoresistance is shown.

  6. O(minus 2) grain boundary diffusion and grain growth in pure dense MgO

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.

  7. Structural study of some divalent aluminoborate glasses using ultrasonic and positron annihilation techniques

    NASA Astrophysics Data System (ADS)

    Saddeek, Yasser B.; Mohamed, Hamdy F. M.; Azooz, Moenis A.

    2004-07-01

    Positron annihilation lifetime (PAL), ultrasonic techniques, and differential thermal analysis (DTA) were performed to study the structure of some aluminoborate glasses. The basic compositions of these glasses are 50 B2O3 + 10 Al2O3 + 40 RO (wt%), where RO is the divalent oxide (MgO, CaO, SrO, and CdO). The ultrasonic data show that the rigidity increases from MgO to CaO then decrease at SrO and again increases at CdO. The glass transition temperature (determined from DTA) decreases from MgO to SrO then increases at CdO. The trend of the thermal properties was attributed to thermal stability. The experimental data are correlated with the internal glass structure and its connectivity. The PAL data show that an inversely correlation between the relative fractional of the open hole volume and the density of the samples. Also, there is a good correlation between the ortho-positronium (o-Ps) lifetime (open hole volume size) and the bulk modulus of the samples (determined from ultrasonic technique). The open volume hole size distribution for the samples shows that the open volume holes expand in size for CaO, SrO, MgO, and CdO, respectively with their distribution function moving to higher volume size.

  8. The analysis of magnesium oxide hydration in three-phase reaction system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xiaojia; Guo, Lin; Chen, Chen

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phasemore » system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.« less

  9. Thermodynamic and Neutron Scattering Investigation of Ethylene Wetting on MgO (100)

    NASA Astrophysics Data System (ADS)

    Barbour, Andi; Brown, Craig; Larese, J. Z.

    2008-03-01

    The adsorption properties of a molecular film on a solid substrate are governed by the relative strength of the molecule-substrate versus molecule-molecule interaction. The wetting properties of ethylene (C2H4) molecular thin films on graphite are of fundamental interest because the number of observed adlayers increases as the isothermal temperature increases with T<=104K (bulk triple point). In adsorbate/substrate systems like C2H4/graphite, it is accepted that triple point wetting occurs. For our studies, we employed MgO nanocubes because they represent a prototypical metal oxide with a wide variety of technological uses including catalyst support. Of particular interest are wetting/layering transitions and the changes that take place in the neighborhood of the bulk triple point. We report our experimental investigation of the adsorption behavior of evidence C2H4 on MgO (100) using high-precision adsorption isotherms and neutron diffraction and scattering. We demonstrate the dominate role that molecule-molecule interaction plays in the wetting phenomena by comparing the behavior of ethylene on graphite and MgO. U.S. Department of Energy (DE-AC05-00OR22725) at ORNL managed and operated by UT-Battelle, LLC, and the NSF (DMR-0412231).

  10. Thermodynamics of fission products in dispersion fuel designs - first principles modeling of defect behavior in bulk and at interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang-yand; Uberuaga, Blas P; Nerikar, Pankaj

    2009-01-01

    Density functional theory (DFT) calculations of fission product (Xe, Sr, and Cs) incorporation and segregation in alkaline earth metal oxides, HfO{sub 2} and UO{sub 2} oxides, and the MgO/(U, Hf, Ce)O{sub 2} interfaces have been carried out. In the case of UO{sub 2}, the calculations were performed using spin polarization and with a Hubbard U term characterizing the on-sit Coulomb repulsion between the localized 5f electrons. The fission product solution energies in bulk UO{sub 2{+-}x} have been calculated as a function of non-stoichiometry x, and were compared to that in MgO. These calculations demonstrate that the fission product incorporation energiesmore » in MgO are higher than in HfO{sub 2}. However, this trend is reversed or reduced for alkaline earth oxides with larger cation sizes. The solution energies of fission products in MgO are substantially higher than in UO{sub 2{+-}x}, except for the case of Sr in the hypostoichiometric case. Due to size effects, the thermodynamic driving force of segregation for Xe and Cs from bulk MgO to the MgO/fluorite interface is strong. However, this driving force is relatively weak for Sr.« less

  11. Search for O[-1] earthquake-like precursors: a ME μSR MgO study

    NASA Astrophysics Data System (ADS)

    Boekema, C.; Cabot, A.; Lee, A.-L.; Lin, I.; Colebaugh, A.; Freund, Ft

    We study O-1 earthquake-like precursor effects by analyzing Muon-Spin-Resonance (μSR) MgO data using Maximum Entropy (ME). Due to its presence in the Earth's crust, MgO is ideal to study these features. O-1 formation results from a 2-stage break-up in an O anion pair at high-temperature or high-pressure conditions. As T increases above room temperature, a small % of oxygen is predicted to produce an O-1 state. ME analysis of 100-Oe μSR data of a pure 3N-MgO single crystal produces a broad Gaussian at 1.36 MHz and a sharp Lorentzian at 1.4 MHz. The latter could be effects of extended O-1 states, as positive muons probe near O ions. There is no sharp 1.4-MHz signal observed in the μSR data of insulators Al2O3 and PrBCO6 data, only the expected 100-Oe Gaussian. We have fitted ME μSR transforms of MgO to obtain an empirical description of 1.36- and 1.4- MHz peaks. Their T dependences above room temperature appear to be positive-hole effects. Relations to precursor earthquake-like O-valency effects are discussed. Research supported by ISIS-UK, LANL-DOE, SETI-NASA, SJSU & AFC.

  12. Optimizing the Synthesis of Alumina Inserts Using Hot Isostatic Pressing (HIP)

    NASA Astrophysics Data System (ADS)

    Ariff, T. F.; Azhar, A. Z.; Sariff, M. N.; Rasid, S. N.; Zahari, S. Z.; Bahar, R.; Karim, M.; Nurul Amin, AKM

    2018-01-01

    Alumina or Aluminium Oxide (Al2O3) is well known for its high strength and hardness. Its low heat retention and low specific heat characteristics make it attractive to be used widely as a cutting tool for grinding, milling and turning processes. Various synthesis methods have been used for the purpose of enhancing the properties of the alumina inserts. However, the optimization process using Hot Isostatic Pressing (HIP) has not been performed. This research aims in finding the optimum parameters in synthesizing the alumina inserts (98Al2O3 1.6ZrO2 0.4MgO, 93Al2O3 6.4ZrO2 0.6MgO and 85Al2O3 14.5ZrO2 0.5MgO) using HIP at different temperatures (1200, 1250 and 1300°C) and sintering time (10, 30 and 60 minutes). Hardness, density, shrinkage and microstructure using SEM were analysed. The optimum sintering condition for the alumina insert was found in 98Al2O3 1.6ZrO2 0.4MgO sintered at 1300°C for 60 minutes for it exhibited the highest values of hardness (1917HV), density (3.95g/cm3), shrinkage (9.6%).

  13. Enhanced dielectric and piezoelectric responses in Zn 1 -xMg xO thin films near the phase separation boundary

    DOE PAGES

    Kang, Xiaoyu; Shetty, Smitha; Garten, Lauren; ...

    2017-01-23

    Dielectric and piezoelectric properties for Zn 1-xMg xO (ZMO) thin films are reported as a function of MgO composition up to and including the phase separation region. Zn 1-xMg xO (0.25 ≤ x ≤ 0.5) thin films with c-axis textures were deposited by pulsed laser deposition on platinized sapphire substrates. The films were phase pure wurtzite for MgO concentrations up to 40%; above that limit, a second phase with rocksalt structure evolves with strong {100} texture. With increasing MgO concentration, the out-of-plane ( d33,f) and in-plane ( e31,f) piezoelectric coefficients increase by 360% and 290%, respectively. The increase in piezoelectricmore » coefficients is accompanied by a 35% increase in relative permittivity. Loss tangent values fall monotonically with increasing MgO concentration, reaching a minimum of 0.001 for x ≥ 0.30, at which point the band gap is reported to be 4 eV. As a result, the enhanced piezoelectric response, the large band gap, and the low dielectric loss make Zn 1-xMg xO an interesting candidate for thin film piezoelectric devices, and demonstrate that compositional phase transformations provide opportunities for property engineering.« less

  14. A Novel Method to Improve the Anticancer Activity of Natural-Based Hydroxyapatite against the Liver Cancer Cell Line HepG2 Using Mesoporous Magnesia as a Micro-Carrier.

    PubMed

    2017-11-24

    Micro-carriers are the best known vehicles to transport different kinds of drugs to achieve high impact. In this study, mesoporous magnesium oxide has been harnessed as a micro-carrier to encapsulate the anticancer candidate drug natural-based cubic hydroxyapatite (HAP). HAP@MgO composites with different HAP loading (0-60 wt %), were prepared by a hydrothermal treatment method using triethanol amine as a template. The characterization of the prepared composites were achieved by using XRD, Raman spectroscopy, FTIR and SEM. Characterization data confirm the formation of sphere-like structures of MgO containing HAP particles. It was observed that the size of the spheres increased with HAP loading up to 40 wt %, then collapsed. Furthermore, the anticancer property of the prepared composites was evaluated against the HepG2 liver cancer cell line. The HAP@MgO composites exhibited higher activity than neat MgO or HAP. The 20 wt % of HAP was the optimum loading to control cell proliferation by inducing apoptosis. Apoptosis was determined by typical apoptotic bodies produced by the cell membrane.

  15. Electric measurement and magnetic control of spin transport in InSb-based lateral spin devices

    NASA Astrophysics Data System (ADS)

    Viglin, N. A.; Ustinov, V. V.; Demokritov, S. O.; Shorikov, A. O.; Bebenin, N. G.; Tsvelikhovskaya, V. M.; Pavlov, T. N.; Patrakov, E. I.

    2017-12-01

    Electric injection and detection of spin-polarized electrons in InSb semiconductors have been realized in nonlocal experimental geometry using an InSb-based "lateral spin valve." The valve of the InSb /MgO /C o0.9F e0.1 composition has semiconductor/insulator/ferromagnet nanoheterojunctions in which the thickness of the InSb layer considerably exceeded the spin diffusion length of conduction electrons. The spin direction in spin diffusion current has been manipulated by a magnetic field under the Hanle effect conditions. The spin polarization of the electron gas has been registered using ferromagnetic C o0.9F e0.1 probes by measuring electrical potentials arising in the probes in accordance with the Johnson-Silsbee concept of the spin-charge coupling. The developed theory is valid at any degree of degeneracy of electron gas in a semiconductor. The spin relaxation time and spin diffusion length of conduction electrons in InSb have been determined, and the electron-spin polarization in InSb has been evaluated for electrons injected from C o0.9F e0.1 through an MgO tunnel barrier.

  16. Viscosity Measurements of SiO2-"FeO"-MgO System in Equilibrium with Metallic Fe

    NASA Astrophysics Data System (ADS)

    Chen, Mao; Raghunath, Sreekanth; Zhao, Baojun

    2014-01-01

    The present study delivers the measurements of viscosities in the SiO2-"FeO"-MgO system in equilibrium with metallic Fe. The rotational spindle technique was used for the measurements at the temperature range of 1523 K to 1773 K (1250 °C to 1500 °C). Molybdenum crucibles and spindles were employed in all measurements. The viscosity measurements were carried out at 31 to 47 mol pct SiO2 and up to 18.8 mol pct MgO. Analysis of the quenched sample by Electron probe X-ray microanalysis after the viscosity measurement enables the composition and microstructure of the slag to be directly linked with the viscosity. The replacement of "FeO" by MgO was found to increase viscosity and activation energy of the SiO2-"FeO"-MgO slags. The modified Quasi-chemical Viscosity Model was further optimized in this system based on the current viscosity measurements.

  17. Highly oriented Bi-based thin films with zero resistance at 106 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kula, W.; Sobolewski, R.; Gorecka, J.

    1991-03-01

    This paper reports on fabrication and characterization of nearly single-phase superconducting Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} thin films. The films were dc magnetron sputtered from heavily Pb-doped (Pb/Bi molar ratios up to 1.25), sintered targets on unheated MgO, SrTiO{sub 3}, CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals. For the films grown on the (100) oriented MgO substrate, less than 1 hour of annealing in air at 870{degrees} C was sufficient to obtain more than 90% of the 110-K-phase material, with highly c-axis oriented crystalline structure and zero resistivity at 106 K. The films fabricated on the other substrates alsomore » exhibited a narrow superconducting transition and were fully superconducting above 100 K, but they consisted of a mixed-phase material with a large percentage of the 80 K phase.« less

  18. Magnesium Vacancy Segregation and Fast Pipe Diffusion for the ½<110>{110} Edge Dislocation in MgO

    NASA Astrophysics Data System (ADS)

    Walker, A. M.; Zhang, F.; Wright, K.; Gale, J. D.

    2009-12-01

    The movement of point defects in minerals plays a key role in determining their rheological properties, both by permitting diffusional creep and by allowing recovery by dislocation climb. Point defect diffusion can also control the kinetics of phase transitions and grain growth, and can determine the rate of chemical equilibration between phases. Because of this, and the difficulties associated with experimental studies of diffusion, the simulation of point defect formation and migration has been a subject of considerable interest in computational mineral physics. So far, studies have concentrated on point defects moving through otherwise perfect crystals. In this work we examine the behavior of magnesium vacancies close to the core of an edge dislocation in MgO and find that the dislocation dramatically changes the behavior of the point defect. An atomic scale model of the ½<110>{110} edge dislocation in MgO was constructed by applying the anisotropic linear elastic displacement field to the crystal structure and subsequently minimizing the energy of the crystal close to the dislocation core using a parameterized potential model. This process yielded the structure of an isolated edge dislocation in an otherwise perfect crystal. The energy cost associated with introducing magnesium vacancies around the dislocation was then mapped and compared to the formation energy of an isolated magnesium vacancy in bulk MgO. We find that the formation energy of magnesium vacancies around the dislocation mirrors the elastic strain field. Above the dislocation line σxx and σyy are negative and the strain field is compressional. Atoms are squeezed together to make room for the extra half plane effectively increasing the pressure in this region. Below the dislocation line σxx and σyy are positive and the strain field is dilatational. Planes of atoms are pulled apart to avoid a discontinuity across the glide plane and the effective pressure is decreased. In the region with a compressional strain field the vacancies become less stable than those in perfect MgO. In contrast, the region with a dilatational strain field hosts vacancies which are stabilized compared to the perfect crystal. This is in agreement with the previously observed tendency for increasing pressure to decrease the stability of vacancies in MgO. The most stable position for a magnesium vacancy was found to be 1.7 eV more stable than the vacancy in the bulk crystal, suggesting that vacancies will strongly partition to dislocations in MgO. Finally, the energy profile traced out by a vacancy moving through the bulk crystal was compared with that experienced by a vacancy moving along the dislocation core. A low energy pathway for vacancy migration along the dislocation line was found with a migration energy of 1.6 eV compared with a migration energy in the perfect crystal of 1.9 eV. This shows that vacancies segregated to the dislocation line will be significantly more mobile than vacancies in the perfect crystal. Dislocations will act as pipes, allowing material to be rapidly transported through crystals of MgO.

  19. Construction Material And Method

    DOEpatents

    Wagh, Arun S.; Antink, Allison L.

    2006-02-21

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  20. Method of binding structural material

    DOEpatents

    Wagh, Arun S.; Antink, Allison L.

    2007-12-25

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic. The ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  1. Improvement microstructural and damage characterization of ceramic composites Y{sub 2}O{sub 3} – V{sub 2}O{sub 5} with MgO nano particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Issa, T. T., E-mail: alazbrh@yahoo.com; Hasan, J. M.; Abdullah, E. T.

    2016-04-21

    Compacted samples of Y{sub 2}O{sub 3}-V{sub 2}O{sub 5} – MgO Nano – particles wt. % sintered at different sintering temperature (700, 900, 1100, 1300) ) C° for 2 hours under static air were investigated by x-ray diffraction and differential thermal analysis(DTA), to identify the phase present .Microstructure examination achieved by scanning electron microscopy .Sintered density and porosity were measured for all sintered samples .Compression was tested too and the Brake down voltage and dielectric strength were measure for all sintered samples .The clear improvement were noticed in both microstructure and damage characterization respectively after existing the MgO Nano-particles, by increasingmore » in about 30% in sintered density and 25% for the compressive strength .The improvement also noticed on both brake down voltage and dielectric strength.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder,more » plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.« less

  3. Characterization of the Surface Film Formed on Molten AZ91D Magnesium Alloy in Atmospheres Containing SO2

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Fei; Xiong, Shou-Mei

    2012-11-01

    The surface film formed on molten AZ91D magnesium alloy in an atmosphere containing SO2 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS). The surface film primarily contained MgO and MgS and had a network structure. MgS increased the Pilling-Bedworth ratio of the film and enhanced its protective capability. The films with a few pores at the surface consisted of two layers with an outer MgO layer and an inner layer of MgO and MgS. The film without pores at the surface also contained MgS and small amounts of MgSO4 in the outer layer. Increasing the SO2 content in the atmosphere promoted film growth and the formation of the protective film was prevented with the increased temperature.

  4. Effects of Surface-Modified MgO Nanoparticles on Inclusion Characteristics and Microstructure in Carbon Structural Steel

    NASA Astrophysics Data System (ADS)

    Guo, Hao; Yang, Shufeng; Li, Jingshe; Zhao, Mengjing; Chen, Zhengyang; Zhang, Xueliang; Li, Jikang

    2018-05-01

    An innovative approach involving chemical modification of the surface of MgO nanoparticles (NPs) for steelmaking and application of NPs to carbon structural steel has been investigated. The results show that the inclusions in the test steels were completely converted to MgAl2O4 spinel or MnS complex inclusions. The mean inclusion size decreased with increasing NP content from 0.01% to 0.03%, but increased at 0.05% because of NP aggregation. Addition of NPs increased the amount of intragranular ferrite and prevented polygonal ferrite formation, thereby enhancing the impact toughness. Impact tests showed that the dimple fractures in steel with 0.05% NP content were deeper than those in the other samples because the MgAl2O4 inclusions were larger. The surface-modified MgO NPs had a major effect on the inclusion characteristics and microstructure of carbon structural steel.

  5. Phenomenological in-situ TEM gas exposure studies of palladium particles on MgO at room temperature

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.; Osaka, T.

    1983-01-01

    It has been found that very small vapor-deposited catalytically active metal particles in the 1-2 nm size range on metal oxide substrates can undergo significant changes when they are exposed to gases such as oxygen or air, or even when allowed to 'anneal' at room temperature (RT) under vacuum conditions. The present investigation is concerned with continued in-situ gas exposures of as-deposited, 1 to 2 nm size palladium particles on MgO to air, oxygen, nitrogen, hydrogen, CO, and water vapor at RT. It is found that the low-pressure exposure to various gases at RT can significantly affect small palladium particles supported on MgO surfaces. Exposure to oxygen for 3 min at 0.0002 m bar produces a considerable amount of coalescence, flattening of the particles, and some distinct crystallographic particle shapes.

  6. Ultrasonic pretreatment effects on the co-pyrolysis of municipal solid waste and paper sludge through orthogonal test.

    PubMed

    Fang, Shiwen; Gu, Wenlu; Chen, Lin; Yu, Zhaosheng; Dai, Minquan; Lin, Yan; Liao, Yanfen; Ma, Xiaoqian

    2018-06-01

    In this study, the influences of ultrasonic pretreatment factors (frequency, power, treatment time) on blends of municipal solid waste (MSW) and paper sludge (PS) with additive (MgO) was explored, through orthogonal experiments design. The optimum operating condition wanted to be acquired. However, for the ultimate (H/C) and ash analysis after pretreatment, solid residue mass and oxygenates compounds contents in products, the influences of factors were in different results. With adding PS unceasingly, the contents of hydrocarbon compounds decreased. And the ultrasonic pretreatment had the obvious influence with high PS percentage. Longer treatment time resulted to the lower content of oxygenates compounds. After adding MgO, the residue mass reduced, which meant MgO had the catalytic action, and the oxygenates compounds content reduced only with 100 kHz, which had the sonochemical effect. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Interstitial Fe in MgO

    NASA Astrophysics Data System (ADS)

    Mølholt, T. E.; Mantovan, R.; Gunnlaugsson, H. P.; Svane, A.; Masenda, H.; Naidoo, D.; Bharuth-Ram, K.; Fanciulli, M.; Gislason, H. P.; Johnston, K.; Langouche, G.; Ólafsson, S.; Sielemann, R.; Weyer, G.

    2014-01-01

    Isolated 57Fe atoms were studied in MgO single-crystals by emission Mössbauer spectroscopy following implantation of 57Mn decaying to 57Fe. Four Mössbauer spectral components were found corresponding to different Fe lattice positions and/or charge states. Two components represent Fe atoms substituting Mg as Fe2+ and Fe3+, respectively; a third component is due to Fe in a strongly implantation-induced disturbed region. The fourth component, which is the focus of this paper, can be assigned to Fe at an interstitial site. Comparison of its measured isomer shift with ab initio calculations suggests that the interstitial Fe is located on, or close to, the face of the rock-salt MgO structure. To harmonize such an assignment with the measured near-zero quadrupole interaction a local motion process (cage motion) of the Fe has to be stipulated. The relation of such a local motion as a starting point for long range diffusion is discussed.

  8. Band alignment of atomic layer deposited MgO/Zn0.8Al0.2O heterointerface determined by charge corrected X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Yan, Baojun; Liu, Shulin; Yang, Yuzhen; Heng, Yuekun

    2016-05-01

    Pure magnesium (MgO) and zinc oxide doped with aluminum oxide (Zn0.8Al0.2O) were prepared via atomic layer deposition. We have studied the structure and band gap of bulk Zn0.8Al0.2O material by X-ray diffractometer (XRD) and Tauc method, and the band offsets and alignment of atomic layer deposited MgO/Zn0.8Al0.2O heterointerface were investigated systematically using X-ray photoelectron spectroscopy (XPS) in this study. Different methodologies, such as neutralizing electron gun, the use of C 1s peak recalibration and zero charging method, were applied to recover the actual position of the core levels in insulator materials which were easily influenced by differential charging phenomena. Schematic band alignment diagram, valence band offset (ΔEV) and conduction band offset (ΔEC) for the interface of the MgO/Zn0.8Al0.2O heterostructure have been constructed. An accurate value of ΔEV = 0.72 ± 0.11 eV was obtained from various combinations of core levels of heterojunction with varied MgO thickness. Given the experimental band gaps of 7.83 eV for MgO and 5.29 eV for Zn0.8Al0.2O, a type-II heterojunction with a ΔEC of 3.26 ± 0.11 eV was found. Band offsets and alignment studies of these heterojunctions are important for gaining deep consideration to the design of various optoelectronic devices based on such heterointerface.

  9. Theoretical evaluation on selective adsorption characteristics of alkali metal-based sorbents for gaseous oxidized mercury.

    PubMed

    Tang, Hongjian; Duan, Yufeng; Zhu, Chun; Cai, Tianyi; Li, Chunfeng; Cai, Liang

    2017-10-01

    Alkali metal-based sorbents are potential for oxidized mercury (Hg 2+ ) selective adsorption but show hardly effect to elemental mercury (Hg 0 ) in flue gas. Density functional theory (DFT) was employed to investigate the Hg 0 and HgCl 2 adsorption mechanism over alkali metal-based sorbents, including calcium oxide (CaO), magnesium oxide (MgO), potassium chloride (KCl) and sodium chloride (NaCl). Hg 0 was found to weakly interact with CaO (001), MgO (001), KCl (001) and NaCl (001) surfaces while HgCl 2 was effectively adsorbed on top-O and top-Cl sites. Charge transfer and bond population were calculated to discuss the covalency and ionicity of HgCl 2 bonding with the adsorption sites. The partial density of states (PDOS) analysis manifests that HgCl 2 strongly interacts with surface sites through the orbital hybridizations between Hg and top O or Cl. Frontier molecular orbital (FMO) energy and Mulliken electronegativity are introduced as the quantitative criteria to evaluate the reactivity of mercury species and alkali metal-based sorbents. HgCl 2 is identified as a Lewis acid and more reactive than Hg 0 . The Lewis basicity of the four alkali metal-based sorbents is predicted as the increasing order: NaCl < MgO < KCl < CaO, in consistence with the trend of HgCl 2 adsorption energies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Analysis and design of a calcium-based sulfur sorbent for applications in integrated gasification combined cycle energy systems

    NASA Astrophysics Data System (ADS)

    Hasler, David Johann Ludwig

    The reactivity of various Ca-based sorbent materials in pelletized form with H2S or CO2 was investigated at high temperatures (750--880°C). An extensive study was conducted to compare the performance of sorbent pellets derived from plaster of Paris and limestone. Multicycle absorption and regeneration tests showed that plaster-based pellets out performed the limestone-based pellets primarily due to a higher surface area and mesoporosity. The effect of pore-modifiers on the reactivity of limestone with H 2S was investigated by incorporating additives such as cornstarch, graphite and polyvinylalcohol (PVA) in the sorbent. Multicycle sulfidation and regeneration tests of the modified sorbent showed that starch did not improve the reactivity of the limestone, graphite reduced the reactivity, while PVA improved it. The effect of the chemical additives MgO and SrO on the performance of CaO-based sorbent pellets was investigated. The effect of MgO was tested by starting with materials that contained MgCO3 in a natural form, such as dolomite. The effect of SrO was tested by starting with SrCO 3 either co-precipitated with CaCO3 or by wet-mixing SrCO 3 with limestone in slurry form. The MgO was found to improve the thermal stability of the CaO-based sorbent but lowered the overall absorption capacity of the material when reacted with CO2 or H2S, while SrO decreased the thermal stability of the sorbent when it was reacted with CO2; no absorption tests were run with H2S. A study of the performance of pelletized CaO-based cores coated with a refractory material such as alumina and limestone or alumina and kaolin was conducted. The reactivity of the core and shell pellets with H2S was determined. The strength and durability of the pellets were determined by using crushing strength analysis and abrasion resistance tests. Pellets coated with either alumina and limestone or alumina and kaolin proved to be strong and adequate for use in industrial reactors. A semi-empirical mathematical model was developed to represent the reaction of H2S with a sorbent pellet. The model was based on the well-known shrinking core model and it was applied successfully for the analysis of both pellet cores and core and shell pellets reacting with H2S.

  11. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    NASA Astrophysics Data System (ADS)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  12. Glyoxal and methylglyoxal as urinary markers of diabetes. Determination using a dispersive liquid-liquid microextraction procedure combined with gas chromatography-mass spectrometry.

    PubMed

    Pastor-Belda, M; Fernández-García, A J; Campillo, N; Pérez-Cárceles, M D; Motas, M; Hernández-Córdoba, M; Viñas, P

    2017-08-04

    Glyoxal (GO) and methylglyoxal (MGO) are α-oxoaldehydes that can be used as urinary diabetes markers. In this study, their levels were measured using a sample preparation procedure based on salting-out assisted liquid-liquid extraction (SALLE) and dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography-mass spectrometry (GC-MS). The effect of the derivatization reaction with 2,3-diaminonaphthalene, the addition of acetonitrile and sodium chloride to urine, and the DLLME step using the acetonitrile extract as dispersant solvent and carbon tetrachloride as extractant solvent were carefully optimized. Quantification was performed by the internal standard method, using 5-bromo-2-chloroanisole. The intraday and interday precisions were lower than 6%. Limits of detection were 0.12 and 0.06ngmL -1 , and enrichment factors 140 and 130 for GO and MGO, respectively. The concentrations of these α-oxoaldehydes in urine were between 0.9 and 35.8ngg -1 levels (creatinine adjusted). A statistical comparison of the analyte contents of urine samples from non-diabetic and diabetic patients pointed to significant differences (P=0.046, 24 subjects investigated), particularly regarding MGO, which was higher in diabetic patients. The novelty of this study compared with previous procedures lies in the treatment of the urine sample by SALLE based on the addition of acetonitrile and sodium chloride to the urine. The DLLME procedure is performed with a sedimented drop of the extractant solvent, without a surfactant reagent, and using acetonitrile as dispersant solvent. Separation of the analytes was performed using GC-MS detection, being the analytes unequivocal identified. The proposed procedure is the first microextraction method applied to the analysis of urine samples from diabetic and non-diabetic patients that allows a clear differentiation between both groups using a simple analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. I. Measuring and Reducing Stress and Surface Roughness in IBAD MgO Films and II. Developing Tools to Measure Transfer in Undergraduate Chemistry Students

    NASA Astrophysics Data System (ADS)

    Antonakos, Cory Dale

    I. MgO may be grown with a biaxial texture onto an amorphous substrate with the use of ion beam assisted deposition (IBAD). This MgO film may then be used as a platform on which to grow epitaxial films on an amorphous membrane for characterization purposes. However, the IBAD MgO film is stressed, causing buckles in the amorphous membrane and problems with further film growth on the IBAD MgO. This dissertation work explores the source of this film stress and develops methods to relax the stress and reduce surface roughness with annealing and increased growth temperature. It is determined that annealing and increased growth temperature coupled with a higher ion-to-atom ratio (IAR) during film growth reduce stress and surface roughness sufficiently to use even thinner IBAD MgO films as an intermediate layer between an amorphous membrane and epitaxial film. II. Much of the existing literature on knowledge transfer concludes that transfer is rare and does not occur spontaneously. However, studies supporting that transfer is rare often use methods that focus on binary success or failure to solve a problem correctly and do not analyze thought process. This dissertation work aims at developing transfer questions that allow open-ended responses, developing a method of analysis for these responses that looks for transfer in the problem-solving process, and assessing the methodology itself and its sensitivity, validity, and utility as a general transfer measurement technique for use across a broad range of expertise levels in chemistry. Detailed analysis of responses to each transfer question show that some transfer questions are more effective at distinguishing between expertise levels while also allowing responders of all levels to show knowledge transfer. Simpler questions that are more accessible to students of introductory chemistry proved the most useful at eliciting a range of responses that correlate with expertise level while still showing some degree of transfer in all levels of responders. More challenging questions with complex systems and common misconceptions are too advanced for lower level undergraduates to show knowledge transfer, but may be useful to show transfer in advanced undergraduates and experts.

  14. Geochemical stratigraphy of lava flows sampled by the Hawaii Scientific Drilling Project

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.

    1996-05-01

    Geochemical discriminants are used to place the boundary between Mauna Loa flows and underlying Mauna Kea flows at a depth of about 280 m. At a given MgO content the Mauna Kea flows are lower in SiO2 and total iron and higher in total alkali, TiO2, and incompatible elements than the Mauna Loa lavas. The uppermost Mauna Kea lavas (280 to 340 m) contain alkali basalts interlayered with tholeiites and correlate with the postshield Hamakua Volcanics. In addition to total alkalis, the alkali basalts have higher TiO2, P2O5, Sr, Ba, Ce, La, Zr, Nb, Y, and V relative to the tholeiites and lower Zr/Nb and Sr/Nb ratios. Some of the alkali basalts are extensively differentiated. Below 340 m all the flows are tholeiitic, with compositions broadly similar to the few "fresh" subaerial shield-building Mauna Kea tholeiites studied to date. High-MgO lavas are unusually abundant, although there is a wide range (7-28%) in MgO content reflecting olivine control. FeO/MgO relationships are used to infer parental picritic magmas with about 15 wt % MgO. Lavas with more MgO than this have accumulated olivine. The Mauna Loa lavas have compositional trends that are controlled by olivine crystallization and accumulation. They compare closely with trends for historical (1843-1984) flows, tending toward the depleted end of the spectrum. They are, though, much more MgO-rich (9-30%) than is typical for most historical and young (<30 ka) prehistoric lavas. The unusual abundance of high-MgO and picritic lavas is attributed to the likelihood that only large-volume, hot, mobile flows will reach Hilo Bay from the northeast rift zone. FeO/MgO relationships are used to infer parental picritic magmas with about 17 wt % MgO. Again, lavas with more MgO than this have accumulated olivine. Systematic changes in incompatible element ratios are used to argue that the magma supply rate has diminished over time. On the other hand, the relatively constant Zr/Nb and Sr/Nb ratios that compare closely with historical and young (<30 kyr) prehistoric flows are used to argue that the source components for these lavas in the Hawaiian plume have remained relatively uniform over the last 100 kyr.

  15. Laser MBE-grown CoFeB epitaxial layers on MgO: Surface morphology, crystal structure, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, Andrey K.; Bursian, Viktor E.; Krichevtsov, Boris B.; Mashkov, Konstantin V.; Suturin, Sergey M.; Volkov, Mikhail P.; Tabuchi, Masao; Sokolov, Nikolai S.

    2018-01-01

    Epitaxial layers of CoFeB were grown on MgO by means of laser molecular beam epitaxy using C o40F e40B20 target. The growth was combined with in situ structural characterization by three-dimensional reciprocal space mapping obtained from reflection high energy electron diffraction (RHEED) data. High-temperature single stage growth regime was adopted to fabricate CoFeB layers. As confirmed by the atomic force microscopy, the surface of CoFeB layers consists of closely spaced nanometer sized islands with dimensions dependent on the growth temperature. As shown by RHEED and XRD analysis, the CoFeB layers grown at high-temperature on MgO(001) possess body centered cubic (bcc) crystal structure with the lattice constant a =2.87 Å close to that of the C o75F e25 alloy. It was further shown that following the same high-temperature growth technique the MgO/CoFeB/MgO(001) heterostructures can be fabricated with top and bottom MgO layers of the same crystallographic orientation. The CoFeB layers were also grown on the GaN(0001) substrates using MgO(111) as a buffer layer. In this case, the CoFeB layers crystallize in bcc crystal structure with the (111) axis perpendicular to the substrate surface. The magnetic properties of the CoFeB/MgO (001) heterostructures have been investigated by measuring magnetization curves with a vibrating sample magnetometer as well as by performing magneto-optical Kerr effect (MOKE) and ferromagnetic resonance (FMR) studies. FMR spectra were obtained for the variety of the magnetic field directions and typically consisted of a single relatively narrow resonance line. The magnetization orientations and the resonance conditions were calculated in the framework of a standard magnetic energy minimization procedure involving a single K1 c cubic term for the magnetocrystalline anisotropy. This allows a fairly accurate description of the angular dependences of the resonance fields—both in-plane and out-of-plane. It was shown that CoFeB layers exhibit in-plane fourth-order magnetic anisotropy. A two-step magnetization reversal model has been adopted for the CoFeB layers based on the VSM measurement analysis. Magnetization reversal studies performed by polar MOKE indicate that the magnetization lies in-plane in absence of magnetic field. Observed magnetic field dependences of reflected light ellipticity in geometry of longitudinal Kerr effect give convincing evidence for contribution of quadratic in magnetization terms in the dielectric tensor and clearly show the in-plane magnetization rotation.

  16. Large-area thin self-supporting carbon foils with MgO coatings

    NASA Astrophysics Data System (ADS)

    Stolarz, Anna; Maier-Komor, Peter

    2002-03-01

    Large area self-supporting carbon foils in the thickness of range of 8-22 μg/cm 2, coated with approximately 4 μg/cm 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  17. Current-driven thermo-magnetic switching in magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kravets, A. F.; Polishchuk, D. M.; Pashchenko, V. A.; Tovstolytkin, A. I.; Korenivski, V.

    2017-12-01

    We investigate switching of magnetic tunnel junctions (MTJs) driven by the thermal effect of the transport current through the junctions. The switching occurs in a specially designed composite free layer, which acts as one of the MTJ electrodes, and is due to a current-driven ferro-to-paramagnetic Curie transition with the associated exchange decoupling within the free layer leading to magnetic reversal. We simulate the current and heat propagation through the device and show how heat focusing can be used to improve the power efficiency. The Curie-switch MTJ demonstrated in this work has the advantage of being highly tunable in terms of its operating temperature range, conveniently to or just above room temperature, which can be of technological significance and competitive with the known switching methods using spin-transfer torques.

  18. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission.

    PubMed

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO(2) and In(2)O(3) are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications. This journal is © The Royal Society of Chemistry 2011

  19. New insights into microstructural evolution of epitaxial Ni-Mn-Ga films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam

    2018-04-01

    In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.

  20. The impact of using biodiesel/marine gas oil blends on exhaust emissions from a stationary diesel engine.

    PubMed

    Karavalakis, G; Tzirakis, E; Mattheou, L; Stournas, S; Zannikos, F; Karonis, D

    2008-12-01

    The purpose of this work was to investigate the impact of marine gas oil (MGO)/biodiesel blends on the exhaust emissions and fuel consumption in a single cylinder, stationary, diesel engine. Three different origins of biodiesel were used as the blending feedstock with the reference MGO, at proportions of 5 and 10% by volume. Methyl esters were examined according to the automotive FAME standard EN 14214. The baseline MGO and biodiesel blends were examined according to ISO 8217:2005 specifications for the DMA category. Independently of the biodiesel used, a decrease of PM, HC, CO and CO(2) emissions was observed. Emissions of NO(x) were also lower with respect to MGO. This reduction in NO(x) may be attributed to some physicochemical properties of the fuels applied, such as the higher cetane number and the lower volatility of methyl esters. Reductions in PM for biodiesel blends were lower in the exhaust than those of the reference fuel which was attributed to the oxygen content and the near absence of sulphur and aromatics compounds in biodiesel. However, a slight increase in fuel consumption was observed for the biodiesel blends that may be tolerated due to the exhaust emissions benefits. Brake thermal efficiency was also determined. Unregulated emissions were characterized by determining the soluble organic fraction content of the particulate matter.

  1. Ligand binding affinity and changes in the lateral diffusion of receptor for advanced glycation endproducts (RAGE).

    PubMed

    Syed, Aleem; Zhu, Qiaochu; Smith, Emily A

    2016-12-01

    The effect of ligand on the lateral diffusion of receptor for advanced glycation endproducts (RAGE), a receptor involved in numerous pathological conditions, remains unknown. Single particle tracking experiments that use quantum dots specifically bound to hemagglutinin (HA)-tagged RAGE (HA-RAGE) are reported to elucidate the effect of ligand binding on HA-RAGE diffusion in GM07373 cell membranes. The ligand used in these studies is methylglyoxal modified-bovine serum albumin (MGO-BSA) containing advanced glycation end products modifications. The binding affinity between soluble RAGE and MGO-BSA increases by 1.8 to 9.7-fold as the percent primary amine modification increases from 24 to 74% and with increasing negative charge on the MGO-BSA. Ligand incubation affects the HA-RAGE diffusion coefficient, the radius of confinement, and duration of confinement. There is, however, no correlation between MGO-BSA ligand binding affinity with soluble RAGE and the extent of the changes in HA-RAGE lateral diffusion. The ligand induced changes to HA-RAGE lateral diffusion do not occur when cholesterol is depleted from the cell membrane, indicating the mechanism for ligand-induced changes to HA-RAGE diffusion is cholesterol dependent. The results presented here serve as a first step in unraveling how ligand influences RAGE lateral diffusion. Copyright © 2016. Published by Elsevier B.V.

  2. The structural damages of lens crystallins induced by peroxynitrite and methylglyoxal, two causative players in diabetic complications and preventive role of lens antioxidant components.

    PubMed

    Moghadam, Sogand Sasan; Oryan, Ahmad; Kurganov, Boris I; Tamaddon, Ali-Mohammad; Alavianehr, Mohammad Mehdi; Moosavi-Movahedi, Ali Akbar; Yousefi, Reza

    2017-10-01

    Peroxynitrite (PON) and methylglyoxal (MGO), two diabetes-associated compounds, are believed to be important causative players in development of diabetic cataracts. In the current study, different spectroscopic methods, gel electrophoresis, lens culture and microscopic assessments were applied to examine the impact of individual, subsequent or simultaneous modification of lens crystallins with MGO and PON on their structure, oligomerization and aggregation. The protein modifications were confirmed with detection of the significantly increased quantity of carbonyl groups and decreased levels of sulfhydryl, tyrosine and tryptophan. Also, lens proteins modification with these chemical agents was accompanied with important structural alteration, oligomerization, disulfide/chromophore mediated protein crosslinking and important proteolytic instability. All these structural damages were more pronounced when the lens proteins were modified in the presence of both mentioned chemical agents, either in sequential or simultaneous manner. Ascorbic acid and glutathione, as the main components of lens antioxidant defense mechanism, were also capable to markedly prevent the damaging effects of PON and MGO on lens crystallins, as indicated by gel electrophoresis. The results of this study may highlight the importance of lens antioxidant defense system in protection of crystallins against the structural insults induced by PON and MGO during chronic hyperglycemia in the diabetic patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Evolution of magnetic properties in the vicinity of the Verwey transition in Fe3O4 thin films

    NASA Astrophysics Data System (ADS)

    Liu, X. H.; Liu, W.; Zhang, Z. D.

    2017-09-01

    We have systematically studied the evolution of magnetic properties, especially the coercivity and the remanence ratio in the vicinity of the Verwey transition temperature (TV), of high-quality epitaxial Fe3O4 thin films grown on MgO (001), MgAl2O4 (MAO) (001), and SrTiO3 (STO) (001) substrates. We observed rapid change of magnetization, coercivity, and remanence ratio at TV, which are consistent with the behaviors of resistivity versus temperature [ρ (T )] curves for the different thin films. In particular, we found quite different magnetic behaviors for the thin films on MgO from those on MAO and STO, in which the domain size and the strain state play very important roles. The coercivity is mainly determined by the domain size but the demagnetization process is mainly dependent on the strain state. Furthermore, we observed a reversal of remanence ratio at TV with thickness for the thin films grown on MgO: from a rapid enhancement for 40-nm- to a sharp drop for 200-nm-thick film, and the critical thickness is about 80 nm. Finally, we found an obvious hysteretic loop of coercivity (or remanence ratio) with temperature around TV, corresponding to the hysteretic loop of the ρ (T ) curve, in Fe3O4 thin film grown on MgO.

  4. Neutron monochromators of BeO, MgO and ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Adib, M.; Habib, N.; Bashter, I. I.; Morcos, H. N.; El-Mesiry, M. S.; Mansy, M. S.

    2014-05-01

    The monochromatic features of BeO, MgO and ZnO single crystals are discussed in terms of orientation, mosaic spread, and thickness within the wavelength band from 0.05 up to 0.5 nm. A computer program MONO, written in “FORTRAN”, has been developed to carry out the required calculations. Calculation shows that a 5 mm thick MgO single crystal cut along its (2 0 0) plane having mosaic spread of 0.5° FWHM has the optimum parameters when it is used as a neutron monochromator. Moreover, at wavelengths shorter than 0.24 nm the reflected monochromatic neutrons are almost free from the higher order ones. The same features are seen with BeO (0 0 2) with less reflectivity than that of the former. Also, ZnO cut along its (0 0 2) plane is preferred over the others only at wavelengths longer than 0.20 nm. When the selected monochromatic wavelength is longer than 0.24 nm, the neutron intensities of higher orders from a thermal reactor flux are higher than those of the first-order one. For a cold reactor flux, the first order of BeO and MgO single crystals is free from the higher orders up to 0.4 nm, and ZnO at wavelengths up to 0.5 nm.

  5. Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction

    NASA Astrophysics Data System (ADS)

    Lee, Hochul; Ebrahimi, Farbod; Amiri, Pedram Khalili; Wang, Kang L.

    2017-05-01

    A true random number generator based on perpendicularly magnetized voltage-controlled magnetic tunnel junction devices (MRNG) is presented. Unlike MTJs used in memory applications where a stable bit is needed to store information, in this work, the MTJ is intentionally designed with small perpendicular magnetic anisotropy (PMA). This allows one to take advantage of the thermally activated fluctuations of its free layer as a stochastic noise source. Furthermore, we take advantage of the voltage dependence of anisotropy to temporarily change the MTJ state into an unstable state when a voltage is applied. Since the MTJ has two energetically stable states, the final state is randomly chosen by thermal fluctuation. The voltage controlled magnetic anisotropy (VCMA) effect is used to generate the metastable state of the MTJ by lowering its energy barrier. The proposed MRNG achieves a high throughput (32 Gbps) by implementing a 64 ×64 MTJ array into CMOS circuits and executing operations in a parallel manner. Furthermore, the circuit consumes very low energy to generate a random bit (31.5 fJ/bit) due to the high energy efficiency of the voltage-controlled MTJ switching.

  6. Camphene, a Plant-Derived Monoterpene, Reduces Plasma Cholesterol and Triglycerides in Hyperlipidemic Rats Independently of HMG-CoA Reductase Activity

    PubMed Central

    Vallianou, Ioanna; Peroulis, Nikolaos; Pantazis, Panayotis; Hadzopoulou-Cladaras, Margarita

    2011-01-01

    Background Central to the pathology of coronary heart disease is the accumulation of lipids, cholesterol and triglycerides, within the intima of arterial blood vessels. The search for drugs to treat dislipidemia, remains a major pharmaceutical focus. In this study, we evaluated the hypolipidemic properties of the essential oil from Chios mastic gum (MGO). Methodology/Principal Findings The hypolipidemic effect of MGO was investigated in naïve as well as in rats susceptible to detergent-induced hyperlipidemia. Serum cholesterol and triglycerides were determined using commercial kits. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase activity was measured in HepG2 cell extracts using a radioactive assay; cellular cholesterol and cholesterol esters were assessed using gas chromatography. MGO administration into naïve rats resulted in a dose-dependent reduction in the constitutive synthesis of serum cholesterol and triglycerides. In hyperlipidemic rats, MGO treatment had also a strong hypolipidemic effect. By testing various components of MGO, we show for the first time that the hypolipidemic action is associated with camphene. Administration of camphene at a dose of 30 µg/gr of body weight in hyperlipidemic rats resulted in a 54.5% reduction of total cholesterol (p<0.001), 54% of Low Density Lipoprotein (LDL)-cholesterol (p<0.001) and 34.5% of triglycerides (p<0.001). Treatment of HepG2 cells with camphene led to a decrease in cellular cholesterol content to the same extend as mevinolin, a known HMG-CoA reductase inhibitor. The hypolipidemic action of camphene is independent of HMG-CoA reductase activity, suggesting that its hypocholesterolemic and hypotriglyceridemic effects are associated with a mechanism of action different than that of statins. Conclusions Given the critical role that the control of hyperlipidemia plays in cardiovascular disease, the results of our study provide insights into the use of camphene as an alternative lipid lowering agent and merits further evaluation. PMID:22073134

  7. Concentrated solar energy used for sintering magnesium titanates for electronic applications

    NASA Astrophysics Data System (ADS)

    Apostol, Irina; Rodríguez, Jose; Cañadas, Inmaculada; Galindo, Jose; Mendez, Senen Lanceros; de Abreu Martins, Pedro Libȃnio; Cunha, Luis; Saravanan, Kandasamy Venkata

    2018-04-01

    Solar energy is an important renewable source of energy with many advantages: it is unlimited, clean and free. The main objective of this work was to sinter magnesium titanate ceramics in a solar furnace using concentrated solar energy, which is a novel and original process. The direct conversion of solar power into high temperature makes this process simple, feasible and ecologically viable/environmentally sustainable. We performed the solar sintering experiments at Plataforma Solar de Almeria-CIEMAT, Spain. This process takes place in a vertical axis solar furnace (SF5-5 kW) hosting a mobile flat mirror heliostat, a fixed parabolic mirror concentrator, an attenuator and a test table the concentrator focus. We sintered (MgO)0.63(TiO2)0.37, (MgO)0.49(TiO2)0.51, (MgO)0.50(TiO2)0.50 ceramics samples in air at about 1100 °C for a duration of 16 min, 1 h, 2 h and 3 h in the solar furnace. The MgO/TiO2 ratio and the dwell time was varied in order to obtain phase pure MgTiO3 ceramic. We obtained a pure MgTiO3 geikielite phase by solar sintering of (MgO)0.63(TiO2)0.37 samples at 1100 °C (16 min-3 h). Samples of (MgO)0.63(TiO2)0.37, solar sintered at 1100 °C for 3 h, resulted in well-sintered, non-porous samples with good density (3.46 g/cm3). The sintered samples were analyzed by XRD for phase determination. The grain and surface morphology was observed using SEM. Electrical measurements were carried out on solar sintered samples. The effect of processing parameters on microstructure and dielectric properties were investigated and is presented.

  8. The phase diagram and transport properties of MgO from theory and experiment

    NASA Astrophysics Data System (ADS)

    Shulenburger, Luke

    2013-06-01

    Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Hydrogen sorption in Pd-decorated Mg-MgO core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Callini, E.; Pasquini, L.; Piscopiello, E.; Montone, A.; Antisari, M. Vittori; Bonetti, E.

    2009-06-01

    Mg nanoparticles with metal-oxide core-shell morphology were synthesized by inert-gas condensation and decorated by in situ Pd deposition. Transmission electron microscopy and x-ray diffraction underline the formation of a noncontinuous layer with Pd clusters on top of the MgO shell. Even in the presence of a thick MgO interlayer, a modest (2 at. %) Pd decoration deeply enhances the hydrogen sorption properties: previously inert nanoparticles exhibit metal-hydride transformation with fast kinetics and gravimetric capacity above 5 wt %.

  10. Method for the preparation of photochromic insulating crystals

    DOEpatents

    Abraham, Marvin M.; Boldu, Jose L.; Chen, Yok; Orera, Victor M.

    1986-01-01

    A method for preparing reversible-photochromic magnesium oxide (MgO) crystals. Single crystals of MgO doped with both lithium (Li) and nickel (Ni) are grown by a conventional arc fusion method. The as-grown crystals are characterized by an amber coloration. The crystals lose the amber coloration and become photochromic when they are thermochemically reduced by heating at temperatures greater than 1000.degree. K. in a hydrogen atmosphere. Alternate irradiation with UV and visible light result in rejuvenation and bleaching of the amber coloration, respectively.

  11. SHS synthesis of Si-SiC composite powders using Mg and reactants from industrial waste

    NASA Astrophysics Data System (ADS)

    Chanadee, Tawat

    2017-11-01

    Si-SiC composite powders were synthesized by self-propagating high-temperature synthesis (SHS) using reactants of fly ash-based silica, sawdust-based activated carbon, and magnesium. Fly ash-based silica and sawdust-based activated carbon were prepared from coal mining fly ash and Para rubber-wood sawdust, respectively. The work investigated the effects of the synthesis atmosphere (air and Ar) on the phase and morphology of the SHS products. The SHS product was leached by a two-step acid leaching processes, to obtain the Si-SiC composite powder. The SHS product and SHS product after leaching were characterized by X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The results indicated that the SHS product synthesized in air consisted of Si, SiC, MgO, and intermediate phases (SiO2, Mg, Mg2SiO4, Mg2Si), whereas the SHS product synthesized in Ar consisted of Si, SiC, MgO and a little Mg2SiO4. The SiC content in the leached-SHS product was higher when Ar was used as the synthesis atmosphere. As well as affecting the purity, the synthesis atmospheres also affected the average crystalline sizes of the products. The crystalline size of the product synthesized in Ar was smaller than that of the product synthesized in air. All of the results showed that fly ash and sawdust could be effective waste-material reactants for the synthesis of Si-SiC composite powders.

  12. Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Yan, Feng; Li, Kaimin; Chen, Xuejing

    2015-06-16

    Capturing anthropogenic CO2 in a cost-effective and highly efficient manner is one of the most challenging issues faced by scientists today. Herein, we report a novel structure-reforming approach to convert steel slag, a cheap, abundant, and nontoxic calcium-rich industrial waste, as the only feedstock into superior CaO-based, self-stabilizing CO2 sorbents. The CO2 capture capacity of all the steel slag-derived sorbents was improved more than 10-fold compared to the raw slag, with the maximum uptake of CO2 achieving at 0.50 gCO2 gsorbent(-1). Additionally, the initial steel slag-derived sorbent could retain 0.25 gCO2 gsorbent(-1), that is, a decay rate of only 12% over 30 carbonation-calcination cycles, the excellent self-stabilizing property allowed it to significantly outperform conventional CaO, and match with most of the existing synthetic CaO-based sorbents. A synergistic effect that facilitated CO2 capture by CaO-based sorbents was clearly recognized when Mg and Al, the most common elements in steel slag, coexisted with CaO in the forms of MgO and Al2O3, respectively. During the calcium looping process, MgO served as a well spacer to increase the porosity of sorbents together with Al2O3 serving as a durable stabilizer to coresist the sintering of CaCO3 grains at high temperatures.

  13. Formation of chemically bonded ceramics with magnesium dihydrogen phosphate binder

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2004-08-17

    A new method for combining magnesium oxide, MgO, and magnesium dihydrogen phosphate to form an inexpensive compactible ceramic to stabilize very low solubility metal oxides, ashes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast, and to reinforce and strengthen the ceramics formed by the addition of fibers to the initial ceramic mixture.

  14. Phase control of Mn-based spinel films via pulsed laser deposition

    DOE PAGES

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; ...

    2016-07-06

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less

  15. Phase control of Mn-based spinel films via pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less

  16. Structure Study of Magnetic Thin Films for Voltage Controlled Spintronics by Scanning Transmission Electron Microscopy Experiment and Density Functional Theory Calculations

    NASA Astrophysics Data System (ADS)

    Sun, Congli

    We have studied magnetic thin films for voltage controlled magnetic tunnel junctions (MTJs) by advanced scanning transmission electron microscopy (STEM) and density functional theory (DFT) simulations. MTJs are the prototypical spintronic device and manipulation of magnetism by electrical means is among the most promising approaches to novel voltage-controlled spin electronics. The voltage controlled magnetic effect can be achieved across many different materials systems, all of which depend on high-quality thin films with minimum crystallographic defects. Cr2O3 is antiferromagnetic in bulk but ferromagnetic on the (0001) surface. Bulk Cr2O3 has two degenerate antiferromagnetic states with opposite (0001) surface spin polarization. As Cr2O3 is also magnetoelectric, the degenerate antiferromagnetic states can be lifted by manipulating the free-energy gain DeltaF = aEH. Therefore, the surface ferromagnetism can be controlled by applied electric field. We have observed vertical grain boundaries in Cr2O 3/Al2O3 systems that are related with a 60° in-plane rotation by diffraction contrast TEM image. STEM as a function of scattering angle points out a simultaneous ⅓[101¯0] basal plane shift. Local boundary electron energy loss spectroscopy (EELS) shows a pre-peak on the O K-edge, indicating a reduced bandgap along the boundary that provides potential breakdown paths in Cr2O3 thin films. B doping of Cr2O3 is known to increase the Neel temperature. B was found to form either BCr4 tetrahedra or BO 3 triangles in the Cr2O3 lattice, with sigma * and pi* bonds exhibiting different energy loss features. Modeling the experimental spectra as a linear combination of simulated B K edges reproduces the experimental pi* / sigma * ratios for 12 to 43 % of the B in the sample occupying BCr 4 sites. Simulated BCr4 fraction / total B as a function of oxygen partial pressures supports the EELS results and indicates further increase of Neel temperature can be achieved by optimizing oxygen partial pressures.

  17. Dissociation of O(2-)2 defects into paramagnetic O(-) in wide band-gap insulators - A magnetic susceptibility study of magnesium oxide

    NASA Technical Reports Server (NTRS)

    Batllo, F.; Leroy, R. C.; Parvin, K.; Freund, F.

    1990-01-01

    The magnetic susceptibility of single-crystal MgO has been measured in the temperature range 300-1000 K, using a Faraday balance. The high-purity crystal (less than 100 ppm transition metals), grown from the melt in a H2O-containing atmosphere, was found to be paramagnetic due to the presence of defects on the O(2-) sublattice. The defects derive from OH(-) introduced into the MgO matrix by the dissolution of traces of H2O during crystal growth. The OH(-) converts into O(2-)2 and H2. Each O(2-)2 represents two coupled, spin-paired O(-) states. The observed strongly temperature-dependent paramagnetism can be described by three contributions that overlay the intrinsic diamagnetism of MgO and arise from the low level of transition-metal impurities, O(-) generated by 0(2-)2 dissociation, and O(-) states trapped by quenching from high temperatures from previous experiments.

  18. Modification of pH Conferring Virucidal Activity on Dental Alginates

    PubMed Central

    Nallamuthu, Navina; Braden, Michael; Oxford, John; Williams, David; Patel, Mangala

    2015-01-01

    To formulate an alginate dental impression material with virucidal properties, experimental alginate dental impression materials were developed and the formulations adjusted in order to study the effect on pH profiles during setting. Commercially available materials served as a comparison. Eight experimental materials were tested for antiviral activity against Herpes Simplex Virus type 1 (HSV-1). Changing the amount of magnesium oxide (MgO) used in the experimental formulations had a marked effect on pH. Increasing MgO concentration corresponded with increased pH values. All experimental materials brought about viral log reductions ranging between 0.5 and 4.0 over a period of 4 h. The material with the lowest pH was the most effective. The current work highlights the very important role of MgO in controlling pH profiles. This knowledge has been applied to the formulation of experimental alginates; where materials with pH values of approximately 4.2–4.4 are able to achieve a significant log reduction when assayed against HSV-1. PMID:28788042

  19. Understanding Atom Probe Tomography of Oxide-Supported Metal Nanoparticles by Correlation with Atomic-Resolution Electron Microscopy and Field Evaporation Simulation.

    PubMed

    Devaraj, Arun; Colby, Robert; Vurpillot, François; Thevuthasan, Suntharampillai

    2014-04-17

    Oxide-supported metal nanoparticles are widely used in heterogeneous catalysis. The increasingly detailed design of such catalysts necessitates three-dimensional characterization with high spatial resolution and elemental selectivity. Laser-assisted atom probe tomography (APT) is uniquely suited to the task but faces challenges with the evaporation of metal/insulator systems. Correlation of APT with aberration-corrected scanning transmission electron microscopy (STEM), for Au nanoparticles embedded in MgO, reveals preferential evaporation of the MgO and an inaccurate assessment of nanoparticle composition. Finite element field evaporation modeling is used to illustrate the evolution of the evaporation front. Nanoparticle composition is most accurately predicted when the MgO is treated as having a locally variable evaporation field, indicating the importance of considering laser-oxide interactions and the evaporation of various molecular oxide ions. These results demonstrate the viability of APT for analysis of oxide-supported metal nanoparticles, highlighting the need for developing a theoretical framework for the evaporation of heterogeneous materials.

  20. PRIMELT3 MEGA.XLSM software for primary magma calculation: Peridotite primary magma MgO contents from the liquidus to the solidus

    NASA Astrophysics Data System (ADS)

    Herzberg, C.; Asimow, P. D.

    2015-02-01

    An upgrade of the PRIMELT algorithm for calculating primary magma composition is given together with its implementation in PRIMELT3 MEGA.xlsm software. It supersedes PRIMELT2.xls in correcting minor mistakes in melt fraction and computed Ni content of olivine, it identifies residuum mineralogy, and it provides a thorough analysis of uncertainties in mantle potential temperature and olivine liquidus temperature. The uncertainty analysis was made tractable by the computation of olivine liquidus temperatures as functions of pressure and partial melt MgO content between the liquidus and solidus. We present a computed anhydrous peridotite solidus in T-P space using relations amongst MgO, T and P along the solidus; it compares well with experiments on the solidus. Results of the application of PRIMELT3 to a wide range of basalts shows that the mantle sources of ocean islands and large igneous provinces were hotter than oceanic spreading centers, consistent with earlier studies and expectations of the mantle plume model.

  1. The role of Pt underlayer on the magnetization dynamics of perpendicular magnetic anisotropy Pt/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besbas, Jean; Loong, Li Ming; Wu, Yang

    2016-06-06

    We investigate the role of Pt on the magnetization dynamics of Pt/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO with perpendicular magnetic anisotropy using the time resolved magneto-optic Kerr effect. Pt/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO shows ultrafast magnetization dynamics comparable to 3d ferromagnets and can be fully demagnetized. The demagnetization time τ{sub d} ∼ 0.27 ps and magnetic heat capacity are independent of the Pt underlayer, whereas the value of the electron-phonon coupling time τ{sub e} ∼ 0.77 ps depends on the presence of the Pt layer. We further measure the effective damping α{sub eff} ∼ 1 that does not scale as the inverse demagnetizationmore » time (1/τ{sub d}), but is strongly affected by the Pt layer.« less

  2. Investigation of organic solvents assisted nano magnesium oxide nanoparticles and their structural, morphological, optical and antimicrobial performance

    NASA Astrophysics Data System (ADS)

    Deepa, B.; Rajendran, V.

    2018-01-01

    Investigation on the structural, morphological, optical studies and antimicrobial performance of organic solvent assisted magnesium oxide (MgO) nanoparticles. Nanoparticles are in 16-18 nm of grain size prepared by sol-gel method. The XRD studies shows as synthesized products are in cubic phase with periclase structurer. The well disperesd spherical morphology were obtained in SEM and TEM. The organic solvent methanol had profound effects on the size of the nano particles. The optical absorption edge energy was present in UV region and the corresponding band gap energy values are 4.5 and 4.9 eV for water with ethanol and methanol mediated MgO sample respectively. The PL emission spectrum has a emission peak at 340 and 353 nm which is due to surface defects. The obtained MgO nanoparticles showed superior antimicrobial activities for the gram positive, gram negative and fungus strains using the ELISA reader at 450 nm.

  3. Optical second harmonic generation from Pt nanowires with boomerang-like cross-sectional shapes

    NASA Astrophysics Data System (ADS)

    Ogata, Yoichi; Anh Tuan, Nguyen; Miyauchi, Yoshihiro; Mizutani, Goro

    2011-08-01

    We have fabricated Pt nanowires with boomerang-like cross-sectional shapes on the MgO(110) faceted template and observed their optical second-harmonic generation (SHG) response. In the TEM images the Pt nanowires on the MgO substrate had macroscopic C2v symmetry, however, their structure had microscopic imperfections. In the SHG response, as a function of the sample rotation angle around the substrate normal, we found contributions from the nonlinear susceptibility elements χ113, χ223, χ311, χ322, and χ333 originating from the broken symmetry in the 3; [110] direction of the MgO substrate. The indices 1 and 2 denote the [001] and [11¯0] directions, respectively. Under C2v symmetry no SHG is expected in the s-in/s-out polarization configuration, however, a finite SHG was observed in this polarization configuration. We suggest that the SHG in the forbidden configuration might originate from the imperfections in the nanowire structure.

  4. Effect of magnesia on the degradability and bioactivity of sol-gel derived SiO2-CaO-MgO-P2O5 system glasses.

    PubMed

    Ma, J; Chen, C Z; Wang, D G; Jiao, Y; Shi, J Z

    2010-11-01

    Mesoporous 58SiO(2)-(38-x)CaO-xMgO-4P(2)O(5) glasses (where x=0, 5, 10 and 20 mol%) have been prepared by the sol-gel synthesis route. The effects of the substitution of MgO for CaO on glass degradation and bioactivity were studied in tris-(hydroxymethyl)-aminomethane and hydrochloric acid buffer solution (Tris-HCl) and simulated body fluid (SBF), respectively. It is observed that the synthesized glasses with various MgO contents possess the similar textural properties. The studies of in vitro degradability and bioactivity show that the rate of glass degradation gradually decreases with the increase of MgO and the formation of apatite layer on glass surface is retarded. The influences of the composition upon glass properties are explained in terms of their internal structures. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  5. Annealing Effects on the Surface Plasmon of MgO Implanted with Gold

    NASA Technical Reports Server (NTRS)

    Ueda, A.; Mu, R.; Tung, Y. -S.; Henderson, D. O.; White, C. W.; Zuhr, R. A.; Zhu, Jane G.; Wang, P. W.

    1997-01-01

    Gold ion implantation was carried out with the energy of 1.1 MeV into (100) oriented MgO single crystal. Implanted doses are 1, 3, 6, 10 x 10(exp 16) ions/sq cm. The gold irradiation results in the formation of gold ion implanted layer with a thickness of 0.2 microns and defect formation. In order to form gold colloids from the as-implanted samples, we annealed the gold implanted MgO samples in three kinds of atmospheres: (1)Ar only, (2)H2 and Ar, and (3)O2 and Ar. The annealing over 1200 C enhanced the gold colloid formation which shows surface plasmon resonance band of gold. The surface plasmon bands of samples annealed in three kinds of atmospheres were found to be at 535 nm (Ar only), 524 nm(H2+Ar), and 560 nm (02+Ar), The band positions of surface plasmon can be reversibly changed by an additional annealing.

  6. Interfaces between hexagonal and cubic oxides and their structure alternatives

    DOE PAGES

    Zhou, Hua; Wu, Lijun; Wang, Hui-Qiong; ...

    2017-11-14

    Multi-layer structure of functional materials often involves the integration of different crystalline phases. The film growth orientation thus frequently exhibits a transformation, owing to multiple possibilities caused by incompatible in-plane structural symmetry. Nevertheless, the detailed mechanism of the transformation has not yet been fully explored. Here we thoroughly probe the heteroepitaxially grown hexagonal zinc oxide (ZnO) films on cubic (001)-magnesium oxide (MgO) substrates using advanced scanning transition electron microscopy, X-ray diffraction and first principles calculations, revealing two distinct interface models of (001) ZnO/(001) MgO and (100) ZnO/(001) MgO. Here we have found that the structure alternatives are controlled thermodynamically bymore » the nucleation, while kinetically by the enhanced Zn adsorption and O diffusion upon the phase transformation. Finally, this work not only provides a guideline for the interface fabrication with distinct crystalline phases but also shows how polar and non-polar hexagonal ZnO films might be manipulated on the same cubic substrate.« less

  7. Interfacial oxygen migration and its effect on the magnetic anisotropy in Pt/Co/MgO/Pt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Feng, Chun, E-mail: fengchun@ustb.edu.cn, E-mail: ghyu@mater.ustb.edu.cn; Liu, Yang

    2014-02-03

    This paper reports the interfacial oxygen migration effect and its induced magnetic anisotropy evolution in Pt/Co/MgO/Pt films. During depositing the MgO layer, oxygen atoms from the MgO combine with the neighboring Co atoms, leading to the formation of CoO at the Co/MgO interface. Meanwhile, the films show in-plane magnetic anisotropy (IMA). After annealing, most of the oxygen atoms in CoO migrate back to the MgO layer, resulting in obvious improvement of Co/MgO interface and the enhancement of effective Co-O orbital hybridization. These favor the evolution of magnetic anisotropy from IMA to perpendicular magnetic anisotropy (PMA). The oxygen migration effect ismore » achieved by the redox reaction at the Co/MgO interface. On the contrary, the transfer from IMA to PMA cannot be observed in Pt/Co/Pt films due to the lack of interfacial oxygen migration.« less

  8. The role of magma mixing in the petrogenesis of mafic alkaline lavas, Rockeskyllerkopf Volcanic Complex, West Eifel, Germany

    NASA Astrophysics Data System (ADS)

    Shaw, Cliff S. J.; Woodland, Alan B.

    2012-03-01

    The quaternary Rockeskyllerkopf Volcanic Complex (RVC) comprises three spatially and temporally distinct volcanic centers that can also be distinguished on the basis of their geochemical signatures. All the volcanic products in the complex are olivine basanites whose major and trace element compositions span almost the entire range defined for the West Eifel field as a whole. The RVC lavas have lower Al2O3, Na2O and Y contents and higher TiO2, CaO, K2O, Sc, V, Co, Rb, and Ba than the Tertiary lavas in nearby Hocheifel volcanic field. Within the complex, the oldest South East Lammersdorf Center (SEL) comprises primitive lavas with an average MgO content of ˜11 wt.% and LaN/YbN of 29 ± 2. The second center, Mäuseberg, has similar MgO to SEL but is distinct in its much higher LaN/YbN of 42 ± 2. The Rockeskyllerkopf Center, which was erupted after a break in activity, comprises lavas similar in composition to the SEL Center but with distinctly higher Al2O3 and lower MgO contents. Given the lack of evidence for significant fractionation or assimilation in the RVC lavas, we attribute the compositional variations within and between the centers of the RVC to be due to variations in the composition of the source region in combination with magma mixing. Our preferred model involves 1-5% partial melting of LREE-enriched mantle in the garnet stability field, likely within the thermal boundary layer at the base of the lithospheric mantle. These melts mixed to variable degrees with 2-4% partial melts of phlogopite-spinel peridotite formed at higher levels in the modally metasomatised lithospheric mantle.

  9. Single d-metal atoms on F(s) and F(s+) defects of MgO(001): a theoretical study across the periodic table.

    PubMed

    Neyman, Konstantin M; Inntam, Chan; Matveev, Alexei V; Nasluzov, Vladimir A; Rösch, Notker

    2005-08-24

    Single d-metal atoms on oxygen defects F(s) and F(s+) of the MgO(001) surface were studied theoretically. We employed an accurate density functional method combined with cluster models, embedded in an elastic polarizable environment, and we applied two gradient-corrected exchange-correlation functionals. In this way, we quantified how 17 metal atoms from groups 6-11 of the periodic table (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; and Cr, Mo, W) interact with terrace sites of MgO. We found bonding with F(s) and F(s+) defects to be in general stronger than that with O2- sites, except for Mn-, Re-, and Fe/F(s) complexes. In M/F(s) systems, electron density is accumulated on the metal center in a notable fashion. The binding energy on both kinds of O defects increases from 3d- to 4d- to 5d-atoms of a given group, at variance with the binding energy trend established earlier for the M/O2- complexes, 4d < 3d < 5d. Regarding the evolution of the binding energy along a period, group 7 atoms are slightly destabilized compared to their group 6 congeners in both the F(s) and F(s+) complexes; for later transition elements, the binding energy increases gradually up to group 10 and finally decreases again in group 11, most strongly on the F(s) site. This trend is governed by the negative charge on the adsorbed atoms. We discuss implications for an experimental detection of metal atoms on oxide supports based on computed core-level energies.

  10. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Shu; Lu, Yu-Jen; Chen, Jyh-Ping

    2017-04-01

    A magnetic targeted functionalized graphene oxide (GO) complex is constituted as a nanocarrier for targeted delivery and pH-responsive controlled release of chemotherapy drugs to cancer cells. Magnetic graphene oxide (mGO) was prepared by chemical co-precipitation of Fe3O4 magnetic nanoparticles on GO nano-platelets. The mGO was successively modified by chitosan and mPEG-NHS through covalent bindings to synthesize mGOC-PEG. The polyethylene glycol (PEG) moiety is expected to prolong the circulation time of mGO by reducing the reticuloendothelial system clearance. Irinotecan (CPT-11) or doxorubicin (DOX) was loaded to mGOC-PEG through π-π stacking interactions for magnetic targeted delivery of the cancer chemotherapy drug. The best values of loading efficiency and loading content of CPT-11 were 54% and 2.7% respectively; whereas for DOX, they were 65% and 393% The pH-dependent drug release profile was further experimented at different pHs, in which 60% of DOX was released at pH 5.4 and 10% was released at pH 7.4. In contrast, 90% CPT-11 was released at pH 5.4 and 70% at pH 7.4. Based on the drug loading and release characteristics, mGOC-PEG/DOX was further chosen for in vitro cytotoxicity tests against U87 human glioblastoma cell line. The IC50 value of mGOC-PEG/DOX was found to be similar to that of free DOX but was reduced dramatically when subject to magnetic targeting. It is concluded that with the high drug loading and pH-dependent drug release properties, mGOC-PEG will be a promising drug carrier for targeted delivery of chemotherapy drugs in cancer therapy.

  11. Ab initio model potential calculations on the electronic spectrum of Ni2 + -doped MgO including correlation, spin-orbit and embedding effects

    NASA Astrophysics Data System (ADS)

    Llusar, Rosa; Casarrubios, Marcos; Barandiarán, Zoila; Seijo, Luis

    1996-10-01

    An ab initio theoretical study of the optical absorption spectrum of Ni2+-doped MgO has been conducted by means of calculations in a MgO-embedded (NiO6)10-cluster. The calculations include long- and short-range embedding effects of electrostatic and quantum nature brought about by the MgO crystalline lattice, as well as electron correlation and spin-orbit effects within the (NiO6)10- cluster. The spin-orbit calculations have been performed using the spin-orbit-CI WB-AIMP method [Chem. Phys. Lett. 147, 597 (1988); J. Chem. Phys. 102, 8078 (1995)] which has been recently proposed and is applied here for the first time to the field of impurities in crystals. The WB-AIMP method is extended in order to handle correlation effects which, being necessary to produce accurate energy differences between spin-free states, are not needed for the proper calculation of spin-orbit couplings. The extension of the WB-AIMP method, which is also aimed at keeping the size of the spin-orbit-CI within reasonable limits, is based on the use of spin-free-state shifting operators. It is shown that the unreasonable spin-orbit splittings obtained for MgO:Ni2+ in spin-orbit-CI calculations correlating only 8 electrons become correct when the proposed extension is applied, so that the same CI space is used but energy corrections due to correlating up to 26 electrons are included. The results of the ligand field spectrum of MgO:Ni2+ show good overall agreement with the experimental measurements and a reassignment of the observed Eg(b3T1g) excited state is proposed and discussed.

  12. Geochemistry of glass and olivine from Keanakako`i Tephra at Kilauea Volcano, Hawai`i

    NASA Astrophysics Data System (ADS)

    Garcia, M. O.; Mucek, A. E.; Swanson, D.

    2011-12-01

    Kilauea Volcano is well known for its frequent quiescent eruptions. However, it also has an underappreciated explosive past. Recent field work has documented many details of the Keanakako`i Tephra, which was generated during a period of explosive activity when few lava flows were erupted. The dominantly phreatomagmatic eruptions, which produced the Keanakako`i Tephra, began late in, or completely after, the formation of Kilauea Caldera (ca. 1500 CE) and continued sporadically until 1823. Thereafter, effusive eruptions outside the caldera resumed and have continued to the present.The Keanakako`i deposits provide an opportunity to examine the restoration of Kilauea's magmatic plumbing following caldera formation. Glassy products with variable amounts of olivine dominate from ca. 1500 A.D. to the late 1600 A.D., whereas lithic-rich deposits with sparse glass are common in the 1700 A.D. deposits, which include the deadly explosive activity of A.D. 1790. Glass compositions from tephra and basalt flows show remarkable MgO variations (4-11 wt percent), larger than those observed in glasses from subsequent eruptions. Some units have variable MgO indicating a zoned magma reservoir, whereas some others have variable incompatible element ratios suggesting magma mixing. The highest MgO values (>10 wt percent) are from 1500 A.D. and 1823 deposits. The range of parental magma compositions based on tephra glasses erupted over a 300 year period is comparable to those observed for the first 15 years of the Pu`u `O`o eruption and about half of the variation observed for summit eruptions from 1832 to 1982. The limited range in tephra parental magma compositions may be related to a lower magma production rate during the period the tephra was erupted.

  13. Lattice-Mismatch-Induced Oscillatory Feature Size and Its Impact on the Physical Limitation of Grain Size

    NASA Astrophysics Data System (ADS)

    Deng, Jinyu; Li, Huihui; Dong, Kaifeng; Li, Run-Wei; Peng, Yingguo; Ju, Ganping; Hu, Jiangfeng; Chow, Gan Moog; Chen, Jingsheng

    2018-03-01

    We find that the misfit strain may lead to the oscillatory size distributions of heteroepitaxial nanostructures. In heteroepitaxial FePt thin films grown on single-crystal MgO substrate, ⟨110 ⟩ -oriented mazelike and granular patterns with "quantized" feature sizes are realized in scanning-electron-microscope images. The physical mechanism responsible for the size oscillations is related to the oscillatory nature of the misfit strain energy in the domain-matching epitaxial FePt /MgO system, which is observed by transmission electron microscopy. Based on the experimental observations, a model is built and the results suggest that when the FePt island sizes are an integer times the misfit dislocation period, the misfit strain can be completely canceled by the misfit dislocations. With applying the mechanism, small and uniform grain is obtained on the TiN (200) polycrystalline underlayer, which is suitable for practical application. This finding may offer a way to synthesize nanostructured materials with well-controlled size and size distribution by tuning the lattice mismatch between the epitaxial-grown heterostructure.

  14. Bioactive Glasses with Low Ca/P Ratio and Enhanced Bioactivity

    PubMed Central

    Araújo, Marco; Miola, Marta; Baldi, Giovanni; Perez, Javier; Verné, Enrica

    2016-01-01

    Three new silica-based glass formulations with low molar Ca/P ratio (2–3) have been synthesized. The thermal properties, the crystalline phases induced by thermal treatments and the sintering ability of each glass formulation have been investigated by simultaneous differential scanning calorimetry-thermogravimetric analysis (DSC-TG), X-ray diffraction (XRD) and hot stage microscopy (HSM). The glasses exhibited a good sintering behavior, with two samples achieving shrinkage of 85%–95% prior to crystallization. The bioactivity of the glasses in simulated body fluid (SBF) has been investigated by performing XRD and Fourier transform infrared spectroscopy (FTIR) on the samples prior and after immersion. The glasses with lower MgO contents were able to form a fully crystallized apatite layer after three days of immersion in simulated body fluid (SBF), while for the glass exhibiting a higher MgO content in its composition, the crystallization of the Ca–P layer was achieved after seven days. The conjugation of these properties opens new insights on the synthesis of highly bioactive and mechanically strong prosthetic materials. PMID:28773350

  15. Integrating Water Flow, Locomotor Performance and Respiration of Chinese Sturgeon during Multiple Fatigue-Recovery Cycles

    PubMed Central

    Cai, Lu; Chen, Lei; Johnson, David; Gao, Yong; Mandal, Prashant; Fang, Min; Tu, Zhiying; Huang, Yingping

    2014-01-01

    The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish) subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1) critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2) active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption) decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in U crit; (3) excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4) with repeated step tests, white muscle (anaerobic metabolism) began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species. PMID:24714585

  16. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    PubMed Central

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  17. The double-edged effects of annealing MgO underlayers on the efficient synthesis of single-wall carbon nanotube forests.

    PubMed

    Tsuji, Takashi; Hata, Kenji; Futaba, Don N; Sakurai, Shunsuke

    2017-11-16

    Recently, the millimetre-scale, highly efficient synthesis of single-wall carbon nanotube (SWCNT) forests from Fe catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the double-edged effects of underlayer annealing on the efficiency and structure of the SWCNT forest synthesis through a temperature-dependent examination. Our results showed that the efficiency of the SWCNT forests sharply increased with increased underlayer annealing temperatures from 600 °C up to 900 °C due to a temperature-dependent structural modification, characterized by increased grain size and reduced defects, of the MgO underlayer. Beyond this temperature, the SWCNT fraction also decreased as a result of further structural modification of the MgO underlayer. This exemplifies the double-edged effects of annealing. Specifically, for underlayer annealing below 600 °C, the catalyst subsurface diffusion was found to limit the growth efficiency, and for excessively high underlayer annealing temperatures (>900 °C), catalyst coalescence/ripening led to the formation of double-wall carbon nanotubes. As a result, three distinct regions of synthesis were observed: (i) a "low yield" region below a threshold temperature (∼600 °C); (ii) an "increased yield" region from 600 to 900 °C, and (iii) a "saturation" region above 900 °C. The efficient SWCNT forest synthesis could only occur within a specific annealing temperature window as a result of this double-edged effects of underlayer annealing.

  18. Formation of solid Kr nanoclusters in MgO

    NASA Astrophysics Data System (ADS)

    van Huis, M. A.; van Veen, A.; Schut, H.; Kooi, B. J.; de Hosson, J. Th.

    2003-06-01

    The phenomenon of positron confinement enables us to investigate the electronic structure of nanoclusters embedded in host matrices. Solid Kr nanoclusters are a very interesting subject of investigation because of the very low predicted value of the positron affinity of bulk Kr. In this work, positron trapping in solid Kr nanoclusters embedded in MgO is investigated. The Kr nanoclusters were created by means of 280 keV Kr ion implantation in single crystals of MgO(100) and subsequent thermal annealing at a temperature of 1100 K. The nanoclusters were observed by cross-sectional transmission electron microscopy in high-resolution mode. The fcc Kr nanoclusters are rectangularly shaped with sizes of 2 to 5 nm and are in a cube-on-cube orientation relationship with the MgO host matrix. From the Moiré fringes in high-resolution recordings, the lattice parameter of the solid Kr was deduced and found to vary from 5.3 to 5.8 Å. The corresponding pressures are 0.6 2.5 GPa as found using the Ronchi equation of state. The relationship between lattice parameter and cluster size was investigated and it was found that the lattice parameter increases linearly with increasing nanocluster size. The defect evolution during annealing was monitored by means optical absorption spectroscopy and positron beam analysis. No evidence of positron trapping was found despite the very low positron affinity of solid Kr. Alternative definitions of the positron affinity are proposed for application to insulator materials.

  19. Sol-Gel synthesis of MgO-SiO2 glass compositions having stable liquid-liquid immiscibility

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1987-01-01

    MgO-SiO2 glasses containing up to 15 mol % MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol % MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol % MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol %) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  20. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

Top