Science.gov

Sample records for mhc class i-like

  1. Structural and phylogenetic analysis of the MHC class I-like Fc receptor gene

    SciTech Connect

    Kandil, Eman; Ishibashi, Teruo; Kasahara, Masanori

    1995-06-01

    The intestinal epithelium of neonatal mice and rats expresses an Fc receptor that mediates selective uptake of IgG in mothers`milk. This receptor (FcRn), which helps newborn animals to acquire passive immunity, is an MHC class I-like heterodimer made up of a heavy chain and {beta}{sub 2}-microglobulin. In the present study, we determined the genomic structure of a mouse gene (FcRn) encoding the heavy of FcRn. The overall exon-intron organization of the Fcrn gene was similar to that of the Fcrn gene, thus providing structural evidence that Fcrn os a bona fide class I gene. The 5{prime}-flanking region of the Fcrn gene contained the binding motifs for two cytokine-inducible transcription factors, NF-IL6 and NF1. However, regulatory elements found in MHC class I genes (enhancer A, enhancer B, and the IFN response element) were absent. Phylogenetic tree analysis suggested that, like the MICA, AZGP1, and CD1 genes, the Fcrn gene diverged form MHC class I genes after the emergence of amphibians but before the split of placental and marsupial mammals. Consistent with this result, Southern blot analysis with a mouse Fcrn cDNA probe detected cross-hybridizing bands in various mammalian species and chickens. Sequence analysis of the Fcrn gene isolated from eight mouse strains showed that the membrane-distal domain of FcRn has at least three amino acid variants. The fact that Fcrn is a single copy gene indicates that it is expressed in both the neonatal intestine and the fetal yolk sac. 74 refs., 7 figs., 2 tabs.

  2. Evolution of innate-like T cells and their selection by MHC class I-like molecules.

    PubMed

    Edholm, Eva-Stina; Banach, Maureen; Robert, Jacques

    2016-08-01

    Until recently, major histocompatibility complex (MHC) class I-like-restricted innate-like αβT (iT) cells expressing an invariant or semi-invariant T cell receptor (TCR) repertoire were thought to be a recent evolutionary acquisition restricted to mammals. However, molecular and functional studies in Xenopus laevis have demonstrated that iT cells, defined as MHC class I-like-restricted innate-like αβT cells with a semi-invariant TCR, are evolutionarily conserved and prominent from early development in amphibians. As these iT cells lack the specificity conferred by conventional αβ TCRs, it is generally considered that they are specialized to recognize conserved antigens equivalent to pathogen-associated molecular patterns. Thus, one advantage offered by the MHC class I-like iT cell-based recognition system is that it can be adapted to a common pathogen and function on the basis of a relatively small number of T cells. Although iT cells have only been functionally described in mammals and amphibians, the identification of non-classical MHC/MHC class I-like genes in other groups of endothermic and ectothermic vertebrates suggests that iT cells have a broader phylogenetic distribution than previously envisioned. In this review, we discuss the possible role of iT cells during the emergence of the jawed vertebrate adaptive immune system.

  3. A family of MHC class I-like genes located in the vicinity of the mouse leukocyte receptor complex

    PubMed Central

    Kasahara, Masanori; Watanabe, Yutaka; Sumasu, Motoko; Nagata, Taeko

    2002-01-01

    Some members of the major histocompatibility complex (MHC) class I gene family are encoded outside the MHC. Here we describe a family of mouse class I-like genes mapping to the vicinity of the leukocyte receptor complex (LRC) on chromosome 7. This family, which we call Mill (MHC class I-like located near the LRC), has two members designated Mill1 and Mill2. Both genes are predicted to encode membrane glycoproteins with domain organization essentially similar to that of MHC class I heavy chains. The following features of Mill are noteworthy. (i) The deduced MILL proteins lack most of the residues known to be involved in the docking of peptides in classical MHC class I molecules. (ii) Among the known members of the class I gene family, MILL1 and MILL2 are related most closely to MICA/MICB encoded in the human MHC. (iii) Unlike all other known members of the class I gene family, Mill1 and Mill2 have an exon between those coding for the signal peptide and the α1 domain. (iv) Mill1 has a more restricted expression profile than Mill2. (v) The gene orthologous to Mill1 or Mill2 apparently is absent in the human. (vi) Mill1 and Mill2 show a limited degree of polymorphism in laboratory mice. The observation that the Mill family is related most closely to the MIC family, together with its apparent absence in the human, suggests its involvement in innate immunity. PMID:12370446

  4. MHC class I-like genes in cattle, MHCLA, with similarity to genes encoding NK cell stimulatory ligands.

    PubMed

    Larson, Joshua H; Rebeiz, Mark J; Stiening, Chad M; Windish, Ryan L; Beever, Jonathan E; Lewin, Harris A

    2003-04-01

    A comparative genomics approach for mining databases of expressed sequence tags (ESTs) was used to identify two members of a novel MHC class I gene family in cattle. These paralogous genes, named MHC class I-like gene family A1 ( MHCLA1) and MHCLA2, were shown by phylogenetic analysis to be related to human and mouse genes encoding NK cell stimulatory ligands, ULBP, RAET, H60 and Raet-1. Radiation hybrid mapping placed cattle MHCLA1 on BTA9, which, on the basis of existing comparative mapping data, identified the ULBP, RAET1, H60 and Raet1 genes as homologues of the cattle MHCLA genes. However, the human and mouse orthologues of MHCLA1 and MHCLA2 could not be defined due to extensive sequence divergence from all known members of the ULBP1/ RAET1/H60/Raet1 gene family. The cattle MHCLA1 molecule is predicted to be missing an alpha(3) domain, similar to the human and mouse homologues. Like the human ULBP genes, MHCLA1 was found to be transcribed constitutively in a variety of fetal and adult tissues by RT-PCR. The patterns of hybridization obtained by Southern blotting using MHCLA1 as a probe and DNA from 14 species representing five mammalian orders suggests that the MHCLA genes evolved rapidly in the Cetartiodactyla. Previous findings demonstrating that ULBPs serve as ligands for the NK cell NKG2D stimulatory receptor, and that this interaction can be blocked by a human cytomegalovirus glycoprotein that binds to ULBPs, suggests that the extensive divergence found among the cattle, human and mouse MHCLA homologues is due to selection exerted by viral pathogens.

  5. MHC class I and class I-like gene product expression by malignant T cells: relationships between CD1a, HLA-ABC and beta 2-microglobulin.

    PubMed Central

    Jones, R A; Scott, C S; Katz, F E; Child, J A

    1988-01-01

    Beta 2-microglobulin (beta 2m) forms the invariant light chain of the MHC-encoded HLA-ABC and the non-MHC-encoded CD1 molecules. While HLA-ABC (MHC Class I) molecules are virtually ubiquitous in tissue distribution, CD1 determinants by contrast are more restricted. We have assessed, by indirect immunoenzymeassay, the relative membrane densities of these molecules on malignant thymic and post-thymic T cells. It was found that the T cells of mature post-thymic proliferations expressed significantly more beta 2m-associated protein, predominantly HLA-ABC in nature, than thymic-ALL blasts. This parallels the situation found in normal peripheral T cells and thymocytes. In contrast to post-thymic T cells, thymic-ALL blasts showed considerable case to case variation with respect to non-HLA-associated beta 2m and, of particular interest, not all of this excess beta 2m could be accounted for by CD1a. We therefore conclude that other beta 2m-containing molecules may be expressed on thymic-ALL blasts and possibly also on post-thymic leukaemic T cells. In addition, it was found that T cells from CD4+ cases of post-thymic proliferations expressed more beta 2m-associated determinants than other T cells, whether of either normal or malignant origin, and that certain post-thymic malignancies express significantly increased levels of beta 2m-associated protein relative to normal peripheral T-cells. This is in direct contrast to the situation seen in many solid malignancies. PMID:2466592

  6. Analysis of MHC class I genes across horse MHC haplotypes

    PubMed Central

    Tallmadge, Rebecca L.; Campbell, Julie A.; Miller, Donald C.; Antczak, Douglas F.

    2010-01-01

    The genomic sequences of 15 horse Major Histocompatibility Complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and non-classical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal, and two to three non-classical sequences. Phylogenetic analysis was applied to these sequences and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The non-classical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine Major Histocompatibility Complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci. PMID:20099063

  7. NLRC5: a newly discovered MHC class I transactivator (CITA).

    PubMed

    Meissner, Torsten B; Li, Amy; Kobayashi, Koichi S

    2012-06-01

    Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator), is a master regulator of MHC class II gene expression as well as of some of the genes involved in MHC class II antigen presentation. It has recently been discovered that another member of the NLR protein family, NLRC5, transcriptionally activates MHC class I genes, and thus acts as "CITA" (MHC class I transactivator), a counterpart to CIITA. In addition to MHC class I genes, NLRC5 can induce the expression of β2M, TAP1 and LMP2, essential components of MHC class I antigen presentation. These findings indicate that NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and MHC class II pathways, respectively.

  8. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

    PubMed Central

    Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149

  9. Rational design of class I MHC ligands

    NASA Astrophysics Data System (ADS)

    Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika

    1995-04-01

    From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.

  10. NLRC5 controls basal MHC class I gene expression in an MHC enhanceosome-dependent manner.

    PubMed

    Neerincx, Andreas; Rodriguez, Galaxia M; Steimle, Viktor; Kufer, Thomas A

    2012-05-15

    Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play important roles in innate immune responses as pattern-recognition receptors. Although most NLR proteins act in cell autonomous immune pathways, some do not function as classical pattern-recognition receptors. One such NLR protein is the MHC class II transactivator, the master regulator of MHC class II gene transcription. In this article, we report that human NLRC5, which we recently showed to be involved in viral-mediated type I IFN responses, shuttles to the nucleus and activates MHC class I gene expression. Knockdown of NLRC5 in different human cell lines and primary dermal fibroblasts leads to reduced MHC class I expression, whereas introduction of NLRC5 into cell types with very low expression of MHC class I augments MHC class I expression to levels comparable to those found in lymphocytes. Expression of NLRC5 positively correlates with MHC class I expression in human tissues. Functionally, we show that both the N-terminal effector domain of NLRC5 and its C-terminal leucine-rich repeat domain are needed for activation of MHC class I expression. Moreover, nuclear shuttling and function depend on a functional Walker A motif. Finally, we identified a promoter sequence in the MHC class I promoter, the X1 box, to be involved in NLRC5-mediated MHC class I gene activation. Taken together, this suggested that NLRC5 acts in a manner similar to class II transactivator to drive MHC expression and revealed NLRC5 as an important regulator of basal MHC class I expression.

  11. Generation of MHC class II:peptide ligands for CD4 T cell allorecognition of MHC Class II molecules

    PubMed Central

    Leddon, Scott A.; Sant, Andrea J.

    2011-01-01

    Purpose of review The molecular and cellular mechanisms that underlie allorecognition of MHC class II molecules has been the subject much debate and experimentation in recent decades. In this review, we discuss several aspects of MHC class II structure, peptide acquisition and TcR-MHC:peptide interactions that have particular relevance to recognition of cells bearing allogeneic class II molecules. Recent findings First, MHC polymorphism is heavily biased toward those amino acids that influence stable peptide binding by MHC class II. Second, the peptide repertoire presented by class II molecules is highly diverse and can be edited substantially by the molecular catalyst HLA-DM and by tissue-specific expression of HLA-DO, stress and cytokines. Third, T cell receptor docking onto MHC peptide typically involves substantial contacts with the bound peptide in the MHC class II molecule. Finally, there is increasing evidence that T cell recognition of MHC is in part germline-encoded through T cell receptor V region contacts with MHC class II alpha helices. Summary Together, these conclusions support the view that allorecognition of MHC class II molecules is likely to parallel key aspects of conventional CD4 T cell recognition, with allele-dependent variation in peptide representation accounting in large part for the high precursor frequency of alloreactive CD4 T cells PMID:20616724

  12. Cellular expression and crystal structure of the murine cytomegalovirus major histocompatibility complex class I-like glycoprotein, m153.

    PubMed

    Mans, Janet; Natarajan, Kannan; Balbo, Andrea; Schuck, Peter; Eikel, Daniel; Hess, Sonja; Robinson, Howard; Simic, Hrvoje; Jonjic, Stipan; Tiemessen, Caroline T; Margulies, David H

    2007-11-30

    Mouse cytomegalovirus (MCMV), a beta-herpesvirus that establishes latent and persistent infections in mice, is a valuable model for studying complex virus-host interactions. MCMV encodes the m145 family of putative immunoevasins with predicted major histocompatibility complex, class I (MHC-I) structure. Functions attributed to some family members include down-regulation of host MHC-I (m152) and NKG2D ligands (m145, m152, and m155) and interaction with inhibitory or activating NK receptors (m157). We present the cellular, biochemical, and structural characterization of m153, which is a heavily glycosylated homodimer, that does not require beta2m or peptide and is expressed at the surface of MCMV-infected cells. Its 2.4-A crystal structure confirms that this compact molecule preserves an MHC-I-like fold and reveals a novel mode of dimerization, confirmed by site-directed mutagenesis, and a distinctive disulfide-stabilized extended N terminus. The structure provides a useful framework for comparative analysis of the divergent members of the m145 family.

  13. MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris).

    PubMed

    Pokorny, Ina; Sharma, Reeta; Goyal, Surendra Prakash; Mishra, Sudanshu; Tiedemann, Ralph

    2010-10-01

    Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal.

  14. Blocking MHC class II on human endothelium mitigates acute rejection

    PubMed Central

    Abrahimi, Parwiz; Qin, Lingfeng; Chang, William G.; Bothwell, Alfred L.M.; Tellides, George; Saltzman, W. Mark; Pober, Jordan S.

    2016-01-01

    Acute allograft rejection is mediated by host CD8+ cytotoxic T lymphocytes (CTL) targeting graft class I major histocompatibility complex (MHC) molecules. In experimental rodent models, rejection requires differentiation of naive CD8+ T cells into alloreactive CTL within secondary lymphoid organs, whereas in humans, CTL may alternatively develop within the graft from circulating CD8+ effector memory T cells (TEM) that recognize class I MHC molecules on graft endothelial cells (EC). This latter pathway is poorly understood. Here, we show that host CD4+ TEM, activated by EC class II MHC molecules, provide critical help for this process. First, blocking HLA-DR on EC lining human artery grafts in immunodeficient mice reduces CD8+ CTL development within and acute rejection of the artery by adoptively transferred allogeneic human lymphocytes. Second, siRNA knockdown or CRISPR/Cas9 ablation of class II MHC molecules on EC prevents CD4+ TEM from helping CD8+ TEM to develop into CTL in vitro. Finally, implanted synthetic microvessels, formed from CRISPR/Cas9-modified EC lacking class II MHC molecules, are significantly protected from CD8+ T cell–mediated destruction in vivo. We conclude that human CD8+ TEM–mediated rejection targeting graft EC class I MHC molecules requires help from CD4+ TEM cells activated by recognition of class II MHC molecules. PMID:26900601

  15. Viral immune evasion: Lessons in MHC class I antigen presentation.

    PubMed

    van de Weijer, Michael L; Luteijn, Rutger D; Wiertz, Emmanuel J H J

    2015-03-01

    The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.

  16. A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization

    PubMed Central

    Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.

    2011-01-01

    Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human

  17. MHC class I diversity in chimpanzees and bonobos.

    PubMed

    Maibach, Vincent; Hans, Jörg B; Hvilsom, Christina; Marques-Bonet, Tomas; Vigilant, Linda

    2017-06-16

    Major histocompatibility complex (MHC) class I genes are critically involved in the defense against intracellular pathogens. MHC diversity comparisons among samples of closely related taxa may reveal traces of past or ongoing selective processes. The bonobo and chimpanzee are the closest living evolutionary relatives of humans and last shared a common ancestor some 1 mya. However, little is known concerning MHC class I diversity in bonobos or in central chimpanzees, the most numerous and genetically diverse chimpanzee subspecies. Here, we used a long-read sequencing technology (PacBio) to sequence the classical MHC class I genes A, B, C, and A-like in 20 and 30 wild-born bonobos and chimpanzees, respectively, with a main focus on central chimpanzees to assess and compare diversity in those two species. We describe in total 21 and 42 novel coding region sequences for the two species, respectively. In addition, we found evidence for a reduced MHC class I diversity in bonobos as compared to central chimpanzees as well as to western chimpanzees and humans. The reduced bonobo MHC class I diversity may be the result of a selective process in their evolutionary past since their split from chimpanzees.

  18. A new polymorphic and multicopy MHC gene family related to nonmammalian class I

    SciTech Connect

    Leelayuwat, C.; Degli-Esposti, M.A.; Abraham, L.J.; Townend, D.C.; Dawkins, R.L. ||

    1994-12-31

    The authors have used genomic analysis to characterize a region of the central major histocompatibility complex (MHC) spanning {approximately} 300 kilobases (kb) between TNF and HLA-B. This region has been suggested to carry genetic factors relevant to the development of autoimmune diseases such as myasthenia gravis (MG) and insulin dependent diabetes mellitus (IDDM). Genomic sequence was analyzed for coding potential, using two neural network programs, GRAIL and GeneParser. A genomic probe, JAB, containing putative coding sequences (PERB11) located 60 kb centromeric of HLA-B, was used for northern analysis of human tissues. Multiple transcripts were detected. Southern analysis of genomic DNA and overlapping YAC clones, covering the region from BAT1 to HLA-F, indicated that there are at least five copies of PERB11, four of which are located within this region of the MHC. The partial cDNA sequence of PERB11 was obtained from poly-A RNA derived from skeletal muscle. The putative amino acid sequence of PERB11 shares {approximately} 30% identity to MHC class I molecules from various species, including reptiles, chickens, and frogs, as well as to other MHC class I-like molecules, such as the IgG FcR of the mouse and rat and the human Zn-{alpha}2-glycoprotein. From direct comparison of amino acid sequences, it is concluded that PERB11 is a distinct molecule more closely related to nonmammalian than known mammalian MHC class I molecules. Genomic sequence analysis of PERB11 from five MHC ancestral haplotypes (AH) indicated that the gene is polymorphic at both DNA and protein level. The results suggest that the authors have identified a novel polymorphic gene family with multiple copies within the MHC. 48 refs., 10 figs., 2 tabs.

  19. DNA sequence of the Peromyscus leucopus MHC class II gene Aa (MhcPeleAa)

    SciTech Connect

    Crew, M.D.; Bates, L.M.

    1996-09-01

    The genus Peromyscus has been extensively studied by populations biologists and ecologists for over eighty years, with P. leucopus (the white-footed mouse) being one of the most intensively investigated species. Polymorphic major histocompatibility complex (MHC) genes have proven useful in population genetic studies and might be helpful in understanding the population dynamics of Peromyscus species which are ubiquitously distributed over North and Central America. Polymorphism of P. leucopus MHC (MhcPele) class II genes was evident by restriction fragment length polymorphism (RFLP) analyses using human and mouse probes and Pele class II loci exhibited degrees of polymorphism similar to H2 class II genes (A-like>E-like). 8 refs., 2 figs.

  20. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression.

    PubMed

    Downs, Isaac; Vijayan, Saptha; Sidiq, Tabasum; Kobayashi, Koichi S

    2016-07-08

    Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016.

  1. Evolution of MHC class I in the order Crocodylia.

    PubMed

    Jaratlerdsiri, Weerachai; Isberg, Sally R; Higgins, Damien P; Ho, Simon Y W; Salomonsen, Jan; Skjodt, Karsten; Miles, Lee G; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genomic region with an essential role in the adaptive immunity of jawed vertebrates. The evolution of the MHC has been dominated by gene duplication and gene loss, commonly known as the birth-and-death process. Evolutionary studies of the MHC have mostly focused on model species. However, the investigation of this region in non-avian reptiles is still in its infancy. To provide insights into the evolutionary mechanisms that have shaped the diversity of this region in the Order Crocodylia, we investigated MHC class I exon 3, intron 3, and exon 4 across 20 species of the families Alligatoridae and Crocodilidae. We generated 124 DNA sequences and identified 31 putative functional variants as well as 14 null variants. Phylogenetic analyses revealed three gene groups, all of which were present in Crocodilidae but only one in Alligatoridae. Within these groups, variants generally appear to cluster at the genus or family level rather than in species-specific groups. In addition, we found variation in gene copy number and some indication of interlocus recombination. These results suggest that MHC class I in Crocodylia underwent independent events of gene duplication, particularly in Crocodilidae. These findings enhance our understanding of MHC class I evolution and provide a preliminary framework for comparative studies of other non-avian reptiles as well as diversity assessment within Crocodylia.

  2. Quantitative analysis of peptide-MHC class II interaction.

    PubMed

    Fleckenstein, B; Jung, G; Wiesmüller, K H

    1999-12-01

    The tremendous progress in the field of basic immunology and immunochemistry made in the last decade has significantly advanced our understanding of antigen processing and presentation by MHC class I and II proteins. In this review different techniques to study peptide interaction with MHC class II molecules are summarized and their impact on the elucidation of quantitative parameters, like affinities or kinetic data, is discussed. A recently introduced method based on synthetic combinatorial peptide libraries allows to quantify the binding contribution of each amino acid residue in a class II ligand and is presented in more detail. As this knowledge is fundamental for current investigations in modern medicine, e.g. for novel immune system based therapy concepts, further aspects like the design of new high affinity MHC class II ligands and the prediction of peptide antigens are discussed.

  3. Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells

    PubMed Central

    Cho, Kyung-Jin; Walseng, Even; Ishido, Satoshi; Roche, Paul A.

    2015-01-01

    MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide–MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells. PMID:26240324

  4. Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells.

    PubMed

    Cho, Kyung-Jin; Walseng, Even; Ishido, Satoshi; Roche, Paul A

    2015-08-18

    MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.

  5. MHC class I characterization of Indonesian cynomolgus macaques

    PubMed Central

    Pendley, Chad J.; Becker, Ericka A.; Karl, Julie A.; Blasky, Alex J.; Wiseman, Roger W.; Hughes, Austin L.; O’Connor, Shelby L.; O’Connor, David H.

    2008-01-01

    Cynomolgus macaques (Macaca fascicularis) are quickly becoming a useful model for infectious disease and transplantation research. Even though cynomolgus macaques from different geographic regions are used for these studies, there has been limited characterization of full-length Major Histocompatibility Complex (MHC) Class I immunogenetics of distinct geographic populations. Here, we identified 48 MHC class I cDNA nucleotide sequences in eleven Indonesian cynomolgus macaques, including 41 novel Mafa-A and Mafa-B sequences. We found seven MHC class I sequences in Indonesian macaques that were identical to MHC class I sequences identified in Malaysian or Mauritian macaques. Sharing of nucleotide sequences between these geographically distinct populations is also consistent with the hypothesis that Indonesia was a source of the Mauritian macaque population. In addition, we found that the Indonesian cDNA sequence Mafa-B*7601 is identical throughout its peptide binding domain to Mamu-B*03, an allele that has been associated with control of SIV viremia in Indian rhesus macaques. Overall, a better understanding of the MHC class I alleles present in Indonesian cynomolgus macaques improves their value as a model for disease research and it better defines the biogeography of cynomolgus macaques throughout Southeast Asia. PMID:18504574

  6. NLRC5: a key regulator of MHC class I-dependent immune responses.

    PubMed

    Kobayashi, Koichi S; van den Elsen, Peter J

    2012-12-01

    The expression of MHC class I molecules is crucial for the initiation and regulation of adaptive immune responses against pathogens. NOD-, LRR- and CARD-containing 5 (NLRC5) was recently identified as a specific transactivator of MHC class I genes (CITA). NLRC5 and the master regulator for MHC class II genes, class II transactivator (CIITA), interact with similar MHC promoter-bound factors. Here, we provide a broad overview of the molecular mechanisms behind MHC class I transcription and the role of the class I transactivator NLRC5 in MHC class I-dependent immune responses.

  7. Molecular characterization of MHC class II region in guinea fowl.

    PubMed

    Singh, S K; Mathew, J; Gupta, J; Mehra, S; Goyal, G; Sharma, D

    2010-12-01

    1. The MHC class II gene was amplified, cloned and sequenced in guinea fowl. 2. The NumeMHC II sequence of 754 nucleotides included complete exon 1 (91 nt), exon 2 (270 nt), exon 3 (282 nt) and exon 4 (110 nt). 3. The size of β(1) and β(2), domains were 89 and 93 amino acids, respectively in guinea fowl. 4. High amino acid variability (38·2%) was observed within guinea fowl in β(1) domain, while in β(2) domain, amino acid variability (6·3%) was low. 5. Among poultry species, the percent amino acid identity between guinea fowl and chicken, quail, pheasant and duck was 38·8, 42·2, 44·4 and 58·8 in β(1) domain; and 13·8, 17·0, 13·8 and 27·6 in β(2) domain, respectively. 6. Sequence alignment with mammalian and avian MHC showed that many of the conserved features of MHC class II glycoprotein was conserved in guinea fowl. 7. Within-species genetic distances (Poisson correction) based on cumulative amino acid variability in β(1) domain and β(2) domains was 0·141 in guinea fowl. 8. Guinea fowl showed low and similar genetic distances with all the poultry species (0·255-0·268) except duck (0·456). 9. Guinea fowl made separate branch within the major cluster having chicken, quail and pheasant, showing equal distance from these poultry species, whereas duck MHC II clustered separately.

  8. Assembly of MHC class I molecules within the endoplasmic reticulum.

    PubMed

    Zhang, Yinan; Williams, David B

    2006-01-01

    MHC class I molecules bind cytosolically derived peptides within the endoplasmic reticulum (ER) and present them at the cell surface to cytotoxic T cells. A major focus of our laboratory has been to understand the functions of the diverse proteins involved in the intracellular assembly of MHC class I molecules. These include the molecular chaperones calnexin and calreticulin, which enhance the proper folding and subunit assembly of class I molecules and also retain assembly intermediates within the ER; ERp57, a thiol oxidoreductase that promotes heavy chain disulfide formation and proper assembly of the peptide loading complex; tapasin, which recruits class I molecules to the TAP peptide transporter and enhances the loading of high affinity peptide ligands; and Bap31, which is involved in clustering assembled class I molecules at ER exit sites for export along the secretory pathway. This review describes our contributions to elucidating the functions of these proteins; the combined effort of many dedicated students and postdoctoral fellows.

  9. MHC2SKpan: a novel kernel based approach for pan-specific MHC class II peptide binding prediction

    PubMed Central

    2013-01-01

    Background Computational methods for the prediction of Major Histocompatibility Complex (MHC) class II binding peptides play an important role in facilitating the understanding of immune recognition and the process of epitope discovery. To develop an effective computational method, we need to consider two important characteristics of the problem: (1) the length of binding peptides is highly flexible; and (2) MHC molecules are extremely polymorphic and for the vast majority of them there are no sufficient training data. Methods We develop a novel string kernel MHC2SK (MHC-II String Kernel) method to measure the similarities among peptides with variable lengths. By considering the distinct features of MHC-II peptide binding prediction problem, MHC2SK differs significantly from the recently developed kernel based method, GS (Generic String) kernel, in the way of computing similarities. Furthermore, we extend MHC2SK to MHC2SKpan for pan-specific MHC-II peptide binding prediction by leveraging the binding data of various MHC molecules. Results MHC2SK outperformed GS in allele specific prediction using a benchmark dataset, which demonstrates the effectiveness of MHC2SK. Furthermore, we evaluated the performance of MHC2SKpan using various benckmark data sets from several different perspectives: Leave-one-allele-out (LOO), 5-fold cross validation as well as independent data testing. MHC2SKpan has achieved comparable performance with NetMHCIIpan-2.0 and outperformed NetMHCIIpan-1.0, TEPITOPEpan and MultiRTA, being statistically significant. MHC2SKpan can be freely accessed at http://datamining-iip.fudan.edu.cn/service/MHC2SKpan/index.html. PMID:24564280

  10. Defective MHC class II expression in an MHC class II deficiency patient is caused by a novel deletion of a splice donor site in the MHC class II transactivator gene.

    PubMed

    Peijnenburg, A; Van den Berg, R; Van Eggermond, M J; Sanal, O; Vossen, J M; Lennon, A M; Alcaïde-Loridan, C; Van den Elsen, P J

    2000-01-01

    MHC class II deficiency patients are mutated for transcription factors that regulate the expression of major histocompatibility complex (MHC) class II genes. Four complementation groups (A-D) are defined and the gene defective in group A has been shown to encode the MHC class II transactivator (CIITA). Here, we report the molecular characterization of a new MHC class II deficiency patient, ATU. Cell fusion experiments indicated that ATU belongs to complementation group A. Subsequent mutation analysis revealed that the CIITA mRNA lacked 84 nucleotides. This deletion was the result of the absence of a splice donor site in the CIITA gene of ATU. As a result of this novel homozygous genomic deletion, ATU CIITA failed to transactivate MHC class II genes. Furthermore, this truncated CIITA of ATU did not display a dominant negative effect on CIITA-mediated transactivation of various isotypic MHC class II promoters.

  11. MHC class II DR allelic diversity in bighorn sheep

    USDA-ARS?s Scientific Manuscript database

    We hypothesized that decreased diversity and/or unique polymorphisms in MHC class II alleles of bighorn sheep (BHS, Ovis canadensis) are responsible for lower titer of antibodies against Mannheimia haemolytica leukotoxin, in comparison to domestic sheep (DS, Ovis aries). To test this hypothesis, DRA...

  12. Dipeptides catalyze rapid peptide exchange on MHC class I molecules

    PubMed Central

    Saini, Sunil Kumar; Schuster, Heiko; Ramnarayan, Venkat Raman; Rammensee, Hans-Georg; Stevanović, Stefan; Springer, Sebastian

    2015-01-01

    Peptide ligand selection by MHC class I molecules, which occurs by iterative optimization, is the centerpiece of immunodominance in antiviral and antitumor immune responses. For its understanding, the molecular mechanisms of peptide binding and dissociation by class I molecules must be elucidated. To this end, we have investigated dipeptides that bind to the F pocket of class I molecules. We find that they accelerate the dissociation of prebound peptides of both low and high affinity, suggesting a mechanism of action for the peptide-exchange chaperone tapasin. Peptide exchange on class I molecules also has practical uses in epitope discovery and T-cell monitoring. PMID:25535340

  13. Complex MHC class I gene transcription profiles and their functional impact in orangutans

    PubMed Central

    de Groot, Natasja G.; Heijmans, Corrine M.C.; van der Wiel, Marit K.H.; Blokhuis, Jeroen H.; Mulder, Arend; Guethlein, Lisbeth A.; Doxiadis, Gaby G.M.; Claas, Frans H.J.; Parham, Peter; Bontrop, Ronald E.

    2015-01-01

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented here. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by KIR. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I antibodies, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209

  14. Neurons Preferentially Respond to Self-MHC Class I Allele Products Regardless of Peptide Presented

    PubMed Central

    Escande-Beillard, Nathalie; Washburn, Lorraine; Zekzer, Dan; Wu, Zhongqi-Phyllis; Eitan, Shoshy; Ivkovic, Sonja; Lu, Yuxin; Dang, Hoa; Middleton, Blake; Bilousova, Tina V.; Yoshimura, Yoshitaka; Evans, Christopher J.; Joyce, Sebastian; Tian, Jide; Kaufman, Daniel L.

    2010-01-01

    Studies of mice lacking MHC class I (MHC I)-associated proteins have demonstrated a role for MHC I in neurodevelopment. A central question arising from these observations is whether neuronal recognition of MHC I has specificity for the MHC I allele product and the peptide presented. Using a well-established embryonic retina explant system, we observed that picomolar levels of a recombinant self-MHC I molecule inhibited neurite outgrowth. We then assessed the neurobiological activity of a panel of recombinant soluble MHC Is, consisting of different MHC I heavy chains with a defined self- or nonself-peptide presented, on cultured embryonic retinas from mice with different MHC I haplotypes. We observed that self-MHC I allele products had greater inhibitory neuroactivity than nonself-MHC I molecules, regardless of the nature of the peptide presented, a pattern akin to MHC I recognition by some innate immune system receptors. However, self-MHC I molecules had no effect on retinas from MHC I-deficient mice. These observations suggest that neuronal recognition of MHC I may be coordinated with the inherited MHC I alleles, as occurs in the innate immune system. Consistent with this notion, we show that MHC I and MHC I receptors are coexpressed by precursor cells at the earliest stages of retina development, which could enable such coordination. PMID:20018625

  15. MHC in a monogamous lizard--Characterization of class I MHC genes in the Australian skink Tiliqua rugosa.

    PubMed

    Ansari, Talat Hojat; Bertozzi, Terry; Miller, Robert D; Gardner, Michael G

    2015-12-01

    The major histocompatibility complex (MHC) is a highly variable region of vertebrate genomes that encodes cellular proteins involved in the immune response. In addition to the benefits of MHC research in understanding the genetic basis of host resistance to disease, the MHC is an ideal candidate for studying genetic diversity under strong natural selection. However, the MHC of many non-model vertebrate taxa are poorly characterized, hindering an understanding of disease resistance and its application to conservation genetics in these groups. Squamates (lizards and snakes) remain particularly underrepresented despite their being the most diverse order of non-avian sauropsids. We characterized MHC class I sequence diversity from an Australian skink, the sleepy lizard (Tiliqua rugosa), using both cDNA and genomic sequence data and also present genomic class I sequences from the related skinks Tiliqua adelaidensis and Egernia stokesii. Phylogenetic analysis of Tiliqua and other published sqamate MHC class I sequences suggest that MHC diverged very early in Tiliqua compared with the other studied squamates. We identified at least 4 classical MHC class I loci in T. rugosa and also shared polymorphism among T. rugosa, T. adelaidensis and E. stokesii in the sequences encoding peptide-binding α1 and α2 domains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Role of MHC class Ib molecule, H2-M3 in host immunity against tuberculosis.

    PubMed

    Mir, Shabir Ahmad; Sharma, Sadhna

    2013-08-20

    The MHC class I family comprises both classical (class Ia) and non-classical (class Ib) members. While the prime function of classical MHC class I molecules (MHC class Ia) is to present peptide antigens to pathogen-specific cytotoxic T cells, non-classical MHC-I (MHC class Ib) antigens perform diverse array of functions in both innate and adaptive immunity. Vaccines against intracellular pathogens such as Mycobacterium tuberculosis need to induce strong cellular immune responses. Recent studies have shown that MHC class I molecules play an important role in the protective immune response to M. tuberculosis infection. Both MHC Ia-restricted and MHC class Ib-restricted M. tuberculosis -reactive CD8(+) T cells have been identified in humans and mice, but their relative contributions to immunity is still uncertain. Unlike MHC class Ia-restricted CD8(+) T cells, MHC class Ib-restricted CD8(+) T cells are constitutively activated in naive animals and respond rapidly to infection challenge, hence filling the temporal gap between innate and adaptive immunity. The present review article summarizes the general host immunity against M. tuberculosis infection highlighting the possible role of MHC class Ib molecule, H2-M3 and their ligands (N-formylated peptides) in protection against tuberculosis.

  17. MHC Class II haplotypes of Colombian Amerindian tribes

    PubMed Central

    Yunis, Juan J.; Yunis, Edmond J.; Yunis, Emilio

    2013-01-01

    We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family), Embera, Waunana (Choco linguistic family), Puinave and Nukak (Maku-Puinave linguistic families), Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family), Guahibo and Guayabero (Guayabero Linguistic Family), Curripaco and Piapoco (Arawak linguistic family) and Yucpa (Karib linguistic family). for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1). Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America. PMID:23885196

  18. MHC Class II haplotypes of Colombian Amerindian tribes.

    PubMed

    Yunis, Juan J; Yunis, Edmond J; Yunis, Emilio

    2013-07-01

    We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family), Embera, Waunana (Choco linguistic family), Puinave and Nukak (Maku-Puinave linguistic families), Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family), Guahibo and Guayabero (Guayabero Linguistic Family), Curripaco and Piapoco (Arawak linguistic family) and Yucpa (Karib linguistic family). for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1). Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America.

  19. Evolution by selection, recombination, and gene duplication in MHC class I genes of two Rhacophoridae species

    PubMed Central

    2013-01-01

    Background Comparison of major histocompatibility complex (MHC) genes across vertebrate species can reveal molecular mechanisms underlying the evolution of adaptive immunity-related proteins. As the first terrestrial tetrapods, amphibians deserve special attention because of their exposure to probably increased spectrum of microorganisms compared with ancestral aquatic fishes. Knowledge regarding the evolutionary patterns and mechanisms associated with amphibian MHC genes remains limited. The goal of the present study was to isolate MHC class I genes from two Rhacophoridae species (Rhacophorus omeimontis and Polypedates megacephalus) and examine their evolution. Results We identified 27 MHC class I alleles spanning the region from exon 2 to 4 in 38 tree frogs. The available evidence suggests that these 27 sequences all belong to classical MHC class I (MHC Ia) genes. Although several anuran species only display one MHC class Ia locus, at least two or three loci were observed in P. megacephalus and R. omeimontis, indicating that the number of MHC class Ia loci varies among anuran species. Recombination events, which mainly involve the entire exons, played an important role in shaping the genetic diversity of the 27 MHC class Ia alleles. In addition, signals of positive selection were found in Rhacophoridae MHC class Ia genes. Amino acid sites strongly suggested by program to be under positive selection basically accorded with the putative antigen binding sites deduced from crystal structure of human HLA. Phylogenetic relationships among MHC class I alleles revealed the presence of trans-species polymorphisms. Conclusions In the two Rhacophoridae species (1) there are two or three MHC class Ia loci; (2) recombination mainly occurs between the entire exons of MHC class Ia genes; (3) balancing selection, gene duplication and recombination all contribute to the diversity of MHC class Ia genes. These findings broaden our knowledge on the evolution of amphibian MHC systems

  20. MHC class Jb-restricted cell responses to Listeria monocytogenes infection.

    PubMed

    Kerksiek, K M; Pamer, E G

    1999-12-01

    Murine infection with Listeria monocytogenes induces CD8+ T cell responses specific for bacterial peptides that are presented on the infected cell surface by MHC class Ia and MHC class Ib molecules. We have used MHC tetramers to demonstrate that CD8+ T cells restricted by the H2-M3 MHC class Ib molecules constitute a substantial portion of the T cell response to L. monocytogenes infection. The in vivo size and kinetics of MHC class Ib-restricted T cell populations suggests that they play a prominent role in bacterial clearance following primary L. monocytogenes infection.

  1. A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant

    PubMed Central

    Dirscherl, Hayley; Yoder, Jeffrey A.

    2015-01-01

    Three sequence lineages of MHC class I genes have been described in zebrafish (Danio rerio): U, Z, and L. The U lineage genes encoded on zebrafish chromosome 19 are predicted to provide the classical function of antigen presentation. This MHC class I locus displays significant haplotypic variation and is the only MHC class I locus in zebrafish that shares conserved synteny with the core mammalian MHC. Here we describe two MHC class I U lineage genes, mhc1ula and mhc1uma, that map to chromosome 22. Unlike the U lineage proteins encoded on chromosome 19, Ula and Uma likely play a nonclassical role as they lack conservation of key peptide binding residues, display limited polymorphic variation, and exhibit tissue-specific expression. We also describe a null haplotype at this chromosome 22 locus in which the mhc1ula and mhc1uma genes are absent due to a ∼30 kb deletion with no other MHC class I sequences present. Functional and non-functional transcripts of mhc1ula and mhc1uma were identified; however, mhc1uma transcripts were often not amplified or amplified at low levels from individuals possessing an apparently bona fide gene. These distinct U lineage genes may be restricted to the superorder Ostariophysi as similar sequences only could be identified from the blind cavefish (Astyanyx mexicanus), fathead minnow (Pimephales promelas), goldfish (Carassius auratus), and grass carp (Ctenopharyngodon idellus). PMID:26254596

  2. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control

    PubMed Central

    van Hateren, Andy; Bailey, Alistair; Elliott, Tim

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation. PMID:28299193

  3. Automated benchmarking of peptide-MHC class I binding predictions.

    PubMed

    Trolle, Thomas; Metushi, Imir G; Greenbaum, Jason A; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2015-07-01

    Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. mniel@cbs.dtu.dk or bpeters@liai.org Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Automated benchmarking of peptide-MHC class I binding predictions

    PubMed Central

    Trolle, Thomas; Metushi, Imir G.; Greenbaum, Jason A.; Kim, Yohan; Sidney, John; Lund, Ole; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2015-01-01

    Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto_bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto_bench/mhci/join. Contact: mniel@cbs.dtu.dk or bpeters@liai.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25717196

  5. TAPBPR and tapasin binding to MHC class I is mutually exclusive

    PubMed Central

    Hermann, Clemens; Strittmatter, Lisa M; Deane, Janet E; Boyle, Louise H

    2013-01-01

    The loading of peptide antigens onto MHC class I molecules is a highly controlled process in which the MHC class I dedicated chaperone tapasin is a key player. We recently identified a tapasin related molecule, TAPBPR, as an additional component in the MHC class I antigen presentation pathway. Here we show that the amino acid residues important for tapasin to interact with MHC class I are highly conserved on TAPBPR. We identify specific residues in the N-terminal and C-terminal domains of TAPBPR involved in associating with MHC class I. Furthermore, we demonstrate that residues on MHC class I crucial for its association with tapasin, such as T134, are also essential for its interaction with TAPBPR. Taken together, the data indicate that TAPBPR and tapasin bind in a similar orientation to the same face of MHC class I. In the absence of tapasin, the association of MHC class I with TAPBPR is increased. However, in the absence of TAPBPR, the interaction between MHC class I and tapasin does not increase. In light of our findings, previous data determining the function of tapasin in the MHC class I antigen processing and presentation pathway must be re-evaluated. PMID:24163410

  6. Antigen-specific tumor vaccine efficacy in vivo against prostate cancer with low class I MHC requires competent class II MHC.

    PubMed

    Neeley, Yilin C; McDonagh, Kevin T; Overwijk, Willem W; Restifo, Nicholas P; Sanda, Martin G

    2002-11-01

    Cancers can escape immune recognition by means of evading class I major histocompatibility complex (MHC) -mediated recognition by cytotoxic T lymphocytes. However, immunization strategies targeting defined tumor-associated antigens have not been extensively characterized in murine prostate cancer models. Therefore, we evaluated antigen-specific, antitumor immunity after antigen-encoding vaccinia immunization against mouse prostate cancer cells expressing a model tumor-associated antigen (beta-galactosidase) and exhibiting partially deficient class I MHC. Low class I MHC expression in beta-galactosidase-expressing D7RM-1 prostate cancer cells was shown by fluorescence activated cell sorting, and deficient class I MHC-mediated antigen presentation was shown in resistance of D7RM-1 to cytolysis by beta-galactosidase-specific cytotoxic T lymphocytes (CTL). Despite partially deficient class I MHC presenting function, immunization with vaccinia encoding beta-galactosidase conferred antigen-specific protection against D7RM-1 cancer. Antigen-specific immunity was recapitulated in beta(2)m knockout mice (with deficient class I MHC and CTL function), confirming that class I MHC antigen presentation was not required for immunity against tumor partially deficient in class I MHC. Conversely, antigen-specific antitumor immunity was abrogated in A(b)beta knockout mice (with deficient class II MHC and helper T cell function), demonstrating a requirement for functional class II MHC. Resistant tumors from the otherwise effectively immunized beta(2)m knockout mice (among which tumor progression had been reduced or delayed) showed reduced target antigen expression, corroborating antigen-specificity (and showing an alternative immune escape mechanism), whereas antigen expression (like tumor growth) was unaffected among A(b)beta knockout mice. Our results demonstrate that class I MHC-restricted antigen presentation and CTL activity is neither necessary nor sufficient for antigen

  7. Conservation of MHC class II DOA sequences among carnivores.

    PubMed

    Soll, S J; Stewart, B S; Lehman, N

    2005-03-01

    We obtained the nucleotide sequence for most of the major histocompatibility complex (MHC) class II DOA locus for Weddell, leopard, northern elephant, and southern elephant seals and from the coyote and compared them to all known DOA data available to date. We found generally low levels of interspecific polymorphisms, providing further support for stabilizing selection acting on the DOA locus. This suggests that DO gene products play a substantial functional role in the regulation of antigen presentation. A seven-amino-acid motif of VWRLPEF was found to be conserved across all DOA sequences and may be a DO-specific recognition element.

  8. A CD74-DEPENDENT MHC CLASS I ENDOLYSOSOMAL CROSS-PRESENTATION PATHWAY

    PubMed Central

    Basha, Genc; Omilusik, Kyla; Chavez-Steenbock, Ana; Reinicke, Anna T.; Lack, Nathan; Choi, Kyung Bok; Jefferies, Wilfred A.

    2016-01-01

    Immune responses are initiated and primed by dendritic cells (DCs) that cross-present exogenous antigen. The CD74 (invariant chain) chaperone protein is thought to exclusively promote DC priming in the context of MHC class II. However, we demonstrate herein a CD74-dependent MHC class I cross-presentation pathway in DCs that plays a major role in the generation of MHC class I restricted, cytolytic T lymphocyte (CTL) responses against viral protein- and cell-associated antigens. CD74 associates with MHC class I molecules in the endoplasmic reticulum of DCs and mediates trafficking of MHC class I to endolysosomal compartments for loading with exogenous peptides. We conclude that CD74 plays a hitherto, undiscovered physiological function in endolysosomal DC cross-presentation for priming MHC class I-mediated CTL responses. PMID:22306692

  9. An MHC class I immune evasion gene of Marek׳s disease virus.

    PubMed

    Hearn, Cari; Preeyanon, Likit; Hunt, Henry D; York, Ian A

    2015-01-15

    Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years.

  10. MHC class II-assortative mate choice in European badgers (Meles meles).

    PubMed

    Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L

    2015-06-01

    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.

  11. The spatio-temporal expression of MHC class I molecules during human hippocampal formation development.

    PubMed

    Zhang, Aifeng; Yu, Hong; He, Youji; Shen, Yuqing; Pan, Ning; Liu, Jiane; Fu, Bo; Miao, Fengqin; Zhang, Jianqiong

    2013-09-05

    In the immune system, the major histocompatibility complex (MHC) class I molecules mediate both the innate and adaptive immune responses in vertebrates. There has been a dogma that the central nervous system (CNS) is immune privileged and healthy neurons do not express MHC class I molecules. However, recent studies have indicated that the expression and non-immunobiologic roles of MHC class I in mammalian CNS. But data referring to humans are scarce. In this study we report the expression and cellular localization of MHC class I in the human fetal, early postnatal and adult hippocampal formation. The expression of MHC class I was very low in the hippocampus at 20 (gestational weeks) GW and slowly increased at 27-33 GW. The gradually increased expression in the somata of some granular cells in dentate gyrus (DG) was observed at 30-33 GW. Whereas, a rapid increase in MHC class I molecules expression was found in the subiculum and it reached high levels at 31-33 GW and maintained at postnatal 55 days. No expression of MHC class I was found in hippocampal formation in adult. MHC class I heavy chain and β2 microglobulin (β2M) showed similar expression in some cells of the hippocampal formation at 30-33 GW. Moreover, MHC class I molecules were mainly expressed in neurons and most MHC class I-expressing neurons were glutamatergic. The temporal and spatial patterns of MHC class I expression appeared to follow gradients of pyramidal neurons maturation in the subiculum at prenatal stages and suggested that MHC class I molecules are likely to regulate neuron maturation. This article is part of a Special Issue entitled Priority to Publish.

  12. Sibling rivalry: competition between MHC class II family members inhibits immunity.

    PubMed

    Denzin, Lisa K; Cresswell, Peter

    2013-01-01

    Peptide loading of major histocompatibility complex (MHC) class II molecules in the endosomes and lysosomes of antigen-presenting cells is catalyzed by human leukocyte antigen-DM (HLA-DM) and modulated by HLA-DO. In a structural study in this issue, Guce et al. show that HLA-DO is an MHC class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM activity, thereby inhibiting MHC class II antigen presentation.

  13. Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

    PubMed

    Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo G; Parham, Peter

    2015-09-01

    Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.

  14. Co-evolution of MHC class I and variable NK cell receptors in placental mammals

    PubMed Central

    Guethlein, Lisbeth A.; Norman, Paul J.; Hilton, Hugo G.; Parham, Peter

    2015-01-01

    Summary Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer-cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines a stepwise co-evolution of MHC class I and KIRs is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C, drove further elaboration of MHC-C-specific KIRs, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes. PMID:26284483

  15. Characterisation of MHC class I genes in the koala.

    PubMed

    Cheng, Yuanyuan; Polkinghorne, Adam; Gillett, Amber; Jones, Elizabeth A; O'Meally, Denis; Timms, Peter; Belov, Katherine

    2017-07-01

    Koala (Phascolarctos cinereus) populations are on the decline across the majority of Australia's mainland. Two major diseases threatening the long-term survival of affected koala populations are caused by obligate intracellular pathogens: Chlamydia and koala retrovirus (KoRV). To improve our understanding of the koala immune system, we characterised their major histocompatibility complex (MHC) class I genes, which are centrally involved in presenting foreign peptides derived from intracellular pathogens to cytotoxic T cells. A total of 11 class I genes were identified in the koala genome. Three genes, Phci-UA, UB and UC, showed relatively high genetic variability and were expressed in all 12 examined tissues, whereas the other eight genes had tissue-specific expression and limited polymorphism. Evidence of diversifying selection was detected in Phci-UA and UC, while gene conversion may have played a role in creating new alleles at Phci-UB. We propose that Phci-UA, UB and UC are likely classical MHC genes of koalas, and further research is needed to understand their role in koala chlamydial and KoRV infections.

  16. The tumour suppressor Fhit positively regulates MHC class I expression on cancer cells.

    PubMed

    Romero, Irene; Martinez, Marisol; Garrido, Cristina; Collado, Antonia; Algarra, Ignacio; Garrido, Federico; Garcia-Lora, Angel M

    2012-07-01

    MHC class I (MHC-I) molecules are ubiquitously expressed on the cells of an organism. Study of the regulation of these molecules in normal and disease conditions is important. In tumour cells, the expression of MHC-I molecules is very frequently lost, allowing these cells to evade the immune response. Cancers of different histology have shown total loss of MHC-I molecule expression, due to a coordinated transcriptional down-regulation of various antigen-processing machinery (APM) components and/or MHC-I heavy chains. The mechanisms responsible for these alterations remain unclear. We determined the possible genes involved by comparing MHC-I-positive with MHC-I-negative murine metastases derived from the same fibrosarcoma tumour clone. MHC-I-negative metastases showed transcriptional down-regulation of APM and MHC-I heavy chains. The use of microarrays and subtraction cDNA libraries revealed four candidate genes responsible for this alteration, but two of them were ruled out by real-time RT-PCR analyses. The other two genes, AP-2α and Fhit tumour suppressors, were studied by using siRNA to silence their expression in a MHC-I-positive metastatic cell line. AP-2α inhibition did not modify transcriptional expression of APM components or MHC-I heavy chains or surface expression of MHC-I. In contrast, silencing of the Fhit gene produced the transcriptional down-regulation of APM components and MHC-I heavy chains and decreased MHC-I surface expression. Moreover, transfection of Fhit in MHC-I-negative tumour cell lines restored MHC-I cell surface expression. These data indicate that defects in Fhit expression may promote MHC-I down-regulation in cancer cells and allow escape from immunosurveillance(#). Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  17. Contrasting patterns of selection acting on MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota).

    PubMed

    Kuduk, K; Johanet, A; Allainé, D; Cohas, A; Radwan, J

    2012-08-01

    The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.

  18. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications.

    PubMed

    Afridi, Saifullah; Hoessli, Daniel C; Hameed, Muhammad Waqar

    2016-07-01

    Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.

  19. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution.

    PubMed

    Parham, Peter; Moffett, Ashley

    2013-02-01

    Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.

  20. NLRC5/MHC class I transactivator is a target for immune evasion in cancer.

    PubMed

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A; Lizee, Gregory A; Kobayashi, Koichi S

    2016-05-24

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers.

  1. NLRC5/MHC class I transactivator is a target for immune evasion in cancer

    PubMed Central

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B.; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A.; Lizee, Gregory A.; Kobayashi, Koichi S.

    2016-01-01

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as “NLRC5” [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8+ cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers. PMID:27162338

  2. Contrasting evolutionary histories of MHC class I and class II loci in grouse--effects of selection and gene conversion.

    PubMed

    Minias, P; Bateson, Z W; Whittingham, L A; Johnson, J A; Oyler-McCance, S; Dunn, P O

    2016-05-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  3. Contrasting evolutionary histories of MHC class I and class II loci in grouse—effects of selection and gene conversion

    PubMed Central

    Minias, P; Bateson, Z W; Whittingham, L A; Johnson, J A; Oyler-McCance, S; Dunn, P O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens. PMID:26860199

  4. Contrasting evolutionary histories of MHC class I and class II loci in grouse—Effects of selection and gene conversion

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  5. Gorilla MHC class I gene and sequence variation in a comparative context.

    PubMed

    Hans, Jörg B; Bergl, Richard A; Vigilant, Linda

    2017-05-01

    Comparisons of MHC gene content and diversity among closely related species can provide insights into the evolutionary mechanisms shaping immune system variation. After chimpanzees and bonobos, gorillas are humans' closest living relatives; but in contrast, relatively little is known about the structure and variation of gorilla MHC class I genes (Gogo). Here, we combined long-range amplifications and long-read sequencing technology to analyze full-length MHC class I genes in 35 gorillas. We obtained 50 full-length genomic sequences corresponding to 15 Gogo-A alleles, 4 Gogo-Oko alleles, 21 Gogo-B alleles, and 10 Gogo-C alleles including 19 novel coding region sequences. We identified two previously undetected MHC class I genes related to Gogo-A and Gogo-B, respectively, thereby illustrating the potential of this approach for efficient and highly accurate MHC genotyping. Consistent with their phylogenetic position within the hominid family, individual gorilla MHC haplotypes share characteristics with humans and chimpanzees as well as orangutans suggesting a complex history of the MHC class I genes in humans and the great apes. However, the overall MHC class I diversity appears to be low further supporting the hypothesis that gorillas might have experienced a reduction of their MHC repertoire.

  6. Astrocyte cytolysis by MHC class II-specific mouse T cell clones.

    PubMed

    Reder, A T; Lascola, C D; Flanders, S A; Maimone, D; Jensen, M A; Skias, D D; Lancki, D W

    1993-08-01

    The brain is "immunologically privileged," in part because class I and II MHC antigens are not normally present on glia or neurons. However, under certain conditions such as transplantation, glial cells express MHC proteins at levels sufficient for glia to become targets of immune responses. Cultured astrocytes expressing very low levels of MHC class I protein are killed efficiently by MHC class I antigen-specific CTL. Mouse brain allografts, however, are rejected by CD4+ T cells that are likely to be class II MHC-specific. The level of expression of MHC class II antigen needed to trigger specific killing of astrocytes by CD4+ T cells, independent of exogenous antigen, has not been studied. We examined the role of glial class II MHC in the lysis of cultured neonatal mouse astrocytes by an alloreactive murine CD4+ CTL alone. IFN-gamma induced functionally relevant increases in MHC class II antigen on target cells. Astrocytes were lysed by the CD4+ clone only when class II MHC antigens reached levels readily detectable by flow cytometry. MHC class II expression and lysis increased when astrocytes were coincubated with IFN-gamma and TNF-alpha. Conversely, lysis decreased when class II expression was downregulated by IFN-alpha/beta or dbcAMP. Cytolysis by CD4+ clones was blocked by antibodies to CD4 and LFA-1 on T cells, and to ICAM-1 and class II molecules on astrocytes. The role of LFA-1 in CD4+ cell-mediated lysis was greater than that of LFA-1/ICAM-1 in CD8+ T cell-mediated lysis. CD4+ cells may lyse activated astrocytes when the immune privilege of the brain is compromised as in transplantation, tumors, and inflammatory diseases.

  7. Selective export of MHC class I molecules from the ER after their dissociation from TAP.

    PubMed

    Spiliotis, E T; Manley, H; Osorio, M; Zúñiga, M C; Edidin, M

    2000-12-01

    It has been assumed that upon dissociation from TAP, MHC class I molecules exit the ER by nonselective bulk flow. We now show that exit must occur by association with cargo receptors. Inconsistent with exit by bulk flow, loading of MHC class I molecules with high-affinity peptides triggers dissociation from TAP but has no effect on rates of ER-to-Golgi transport. Moreover, peptide-loaded MHC class I molecules accumulate at ER exit sites from which TAP molecules are excluded. Consistent with receptor-mediated exit, ER-to-Golgi transport of MHC class I molecules is independent of their cytoplasmic tails, which themselves lack ER export motifs. In addition, we show that MHC class I molecules associate with the putative cargo receptor BAP31.

  8. A Case of Probable MHC Class II Deficiency with Disseminated BCGitis.

    PubMed

    Alyasin, Soheyla; Abolnezhadian, Farhad; Khoshkhui, Maryam

    2015-09-01

    Major histocompatibility complex (MHC) class II deficiency is a primary immunodeficiency disease characterized by abnormality of MHC class II molecules surface expression on peripheral blood lymphocytes and monocytes. Clinical manifestations include extreme susceptibility to viral, bacterial, and fungal infections but the immunodeficiency is not as severe as SCID (severe combined immunodeficiency), as evidenced by failure to develop disseminated infection after BCG vaccination. Therefore, MHC II deficiency with BCGosis, that is disseminated BCGitis, is not reported commonly. We report an interesting case of BCGosis after vaccination that was diagnosed to have probable MHC II deficiency.

  9. Rheumatoid Rescue of Misfolded Cellular Proteins by MHC Class II Molecules: A New Hypothesis for Autoimmune Diseases.

    PubMed

    Arase, Hisashi

    2016-01-01

    Misfolded proteins localized in the endoplasmic reticulum are degraded promptly and thus are not transported outside cells. However, misfolded proteins in the endoplasmic reticulum are rescued from protein degradation upon association with major histocompatibility complex (MHC) class II molecules and are transported to the cell surface by MHC class II molecules without being processed to peptides. Studies on the misfolded proteins rescued by MHC class II molecules have revealed that misfolded proteins associated with MHC class II molecules are specific targets for autoantibodies produced in autoimmune diseases. Furthermore, a strong correlation has been observed between autoantibody binding to misfolded proteins associated with MHC class II molecules and the autoimmune disease susceptibility conferred by each MHC class II allele. These new insights into MHC class II molecules suggest that misfolded proteins rescued from protein degradation by MHC class II molecules are recognized as "neo-self" antigens by immune system and are involved in autoimmune diseases as autoantibody targets.

  10. Impact of MHC Class II Incompatibility on Localization of Mononuclear Cell Infiltrates to the Bronchiolar Compartment of Orthotopic Lung Allografts

    PubMed Central

    Nakashima, Shinji; Soong, T. Rinda; Fox-Talbot, Karen; Qian, Zhiping; Rahimi, Salma; Wasowska, Barbara A.; Rohde, Charles A.; Chen, Sabrina; Garcia, Joe G.N.; Baldwin, William M.

    2005-01-01

    Chronic pathological changes in transplanted lungs are unique because they center on the airways. We examined the relative role of MHC class I and II antigens in causing bronchial pathology in orthotopic lung transplants to rats maintained on cyclosporin A (CsA). Transplants mismatched for MHC class II antigens had significantly more peri-bronchiolar infiltrates than MHC class I incompatible transplants. No significant increase in infiltrates was found in lung transplants incompatible for MHC class I plus II antigens compared to MHC class II antigens alone. Immunohistochemistry demonstrated that MHC class II antigen expression was confined to macrophages in MHC class I incompatible transplants, but was upregulated on bronchial epithelium in transplants with MHC class II incompatibilities. Vascular endothelium was notably devoid of MHC class II antigen expression in all transplants. However, both peri-bronchial and peri-vascular infiltrates were frequently cuffed by alveolar macrophages and type II pneumocytes that expressed MHC class II antigens. PCR analysis demonstrated that IFN-γ and regulated on activation, normal T cells expressed and secreted (RANTES) were upregulated in MHC class II incompatible transplants. Thus, MHC class II incompatible orthotopic lung transplants in rats maintained on CsA immunosuppression undergo a bronchiolcentric upregulation of alloantigens. PMID:15760392

  11. Transport of misfolded endoplasmic reticulum proteins to the cell surface by MHC class II molecules

    PubMed Central

    Jiang, Yan; Arase, Noriko

    2013-01-01

    Nascent MHC class II molecules are associated with the invariant chain and are transported to the endolysosomal pathway, where MHC class II molecules acquire peptide antigens. On the other hand, misfolded endoplasmic reticulum (ER) proteins are generally degraded in the cells and are neither expressed on the cell surface nor secreted. Here, we found that MHC class II molecules associate with some misfolded ER proteins via the peptide-binding groove in competition with invariant chain. The misfolded proteins associated with MHC class II molecules are transported intact to the cell surface without processing to peptides. Furthermore, these complexes efficiently stimulate antigen-specific B cells. These findings reveal that MHC class II molecules function as a chaperone for the cell surface expression of misfolded ER proteins. In addition, we suggest that MHC class II molecules present not only peptides but also intact host-cell-derived proteins on the cell surface. These findings provide new insights into the function of MHC class II molecules. PMID:23334921

  12. Cytosolic aminopeptidases influence MHC class I-mediated antigen presentation in an allele-dependent manner.

    PubMed

    Kim, Eunkyung; Kwak, Heechun; Ahn, Kwangseog

    2009-12-01

    Antigenic peptides presented by MHC class I molecules are generated mainly by the proteasome in the cytosol. Several cytosolic aminopeptidases further trim proteasomal products to form mature epitopes or individual amino acids. However, the distinct function of cytosolic aminopeptidases in MHC class I Ag processing remains to be elucidated. In this study, we show that cytosolic aminopeptidases differentially affect the cell surface expression of MHC class I molecules in an allele-dependent manner in human cells. In HeLa cells, knockdown of puromycin-sensitive aminopeptidase (PSA) by RNA interference inhibited optimal peptide loading of MHC class I molecules, and their cell surface expression was correspondingly reduced. In contrast, depletion of bleomycin hydrolase (BH) enhanced optimal peptide loading and cell surface expression of MHC class I molecules. We did not find evidence on the effect of leucine aminopeptidase knockdown on the MHC class I Ag presentation. Moreover, we demonstrated that PSA and BH influence the peptide loading and surface expression of MHC class I in an allele-specific manner. In the absence of either PSA or BH, the surface expression and peptide-dependent stability of HLA-A68 were reduced, whereas those of HLA-B15 were enhanced. The surface expression and peptide-dependent stability of HLA-A3 were enhanced by BH knockdown, although those of HLA-B8 were increased in PSA-depleted conditions.

  13. Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP

    PubMed Central

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini

    2015-01-01

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867

  14. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  15. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  16. Secretory granules of mast cells accumulate mature and immature MHC class II molecules.

    PubMed

    Vincent-Schneider, H; Théry, C; Mazzeo, D; Tenza, D; Raposo, G; Bonnerot, C

    2001-01-01

    Bone marrow-derived mast cells as well as dendritic cells, macrophages and B lymphocytes express major histocompatibility complex (MHC) class II molecules. In mast cells, the majority of MHC class II molecules reside in intracellular cell type-specific compartments, secretory granules. To understand the molecular basis for the localisation of MHC class II molecules in secretory granules, MHC class II molecules were expressed, together with the invariant chain, in the mast cell line, RBL-2H3. Using electron and confocal microscopy, we observed that in RBL-2H3 cells, mature and immature class II molecules accumulate in secretory granules. Two particular features of class II transport accounted for this intracellular localization: first, a large fraction of newly synthesized MHC class II molecules remained associated with invariant chain fragments. This defect, resulting in a slower rate of MHC class II maturation, was ascribed to a low cathepsin S activity. Second, although a small fraction of class II dimers matured (i.e. became free of invariant chain), allowing their association with antigenic peptides, they were retained in secretory granules. As a consequence of this intracellular localization, cell surface expression of class II molecules was strongly increased by cell activation stimuli which induced the release of the contents of secretory granules. Our results suggest that antigen presentation, and thereby antigen specific T cell stimulation, are regulated in mast cells by stimuli which induce mast cell activation.

  17. Balancing selection on MHC class I in wild brown trout Salmo trutta.

    PubMed

    O'Farrell, B; Dennis, C; Benzie, J A; McGinnity, P; Carlsson, J; de Eyto, E; Coughlan, J P; Igoe, F; Meehan, R; Cross, T F

    2012-09-01

    Evidence is reported for balancing selection acting on variation at major histocompatibility complex (MHC) in wild populations of brown trout Salmo trutta. First, variation at an MHC class I (satr-uba)-linked microsatellite locus (mhc1) is retained in small S. trutta populations isolated above waterfalls although variation is lost at neutral microsatellite markers. Second, populations across several catchments are less differentiated at mhc1 than at neutral markers, as predicted by theory. The population structure of these fish was also elucidated. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  18. But I Like PE: Factors Associated With Enjoyment of Physical Education Class in Middle School Girls

    PubMed Central

    Barr-Anderson, Daheia J.; Neumark-Sztainer, Dianne; Schmitz, Kathryn H.; Ward, Dianne S.; Conway, Terry L.; Pratt, Charlotte; Baggett, Chris D.; Lytle, Leslie; Pate, Russell R.

    2008-01-01

    The current study examined associations between physical education (PE) class enjoyment and sociodemographic, personal, and perceived school environment factors among early adolescent girls. Participants included 1,511 sixth-grade girls who completed baseline assessments for the Trial of Activity in Adolescent Girls, with 50% indicating they enjoyed PE class a lot. Variables positively associated with PE class enjoyment included physical activity level, perceived benefits of physical activity, self-efficacy for leisure time physical activity, and perceived school climate for girls' physical activity as influenced by teachers, while body mass index was inversely associated with PE class enjoyment. After adjusting for all variables in the model, PE class enjoyment was significantly greater in Blacks than in Whites. In model testing, with mutual adjustment for all variables, self-efficacy was the strongest correlate of PE class enjoyment, followed by perceived benefits, race/ethnicity, and teacher's support for girls' physical activity, as compared to boys, at school. The overall model explained 11% of the variance in PE class enjoyment. Findings suggest that efforts to enhance girls' self-efficacy and perceived benefits and to provide a supportive PE class environment that promotes gender equality can potentially increase PE class enjoyment among young girls. PMID:18431947

  19. But I like PE: factors associated with enjoyment of physical education class in middle school girls.

    PubMed

    Barr-Anderson, Daheia J; Neumark-Sztainer, Dianne; Schmitz, Kathryn H; Ward, Dianne S; Conway, Terry L; Pratt, Charlotte; Baggett, Chris D; Lytle, Leslie; Pate, Russell R

    2008-03-01

    The current study examined associations between physical education (PE) class enjoyment and sociodemographic, personal, and perceived school environment factors among early adolescent girls. Participants included 1,511 sixth-grade girls who completed baseline assessments for the Trial of Activity in Adolescent Girls, with 50% indicating they enjoyed PE class a lot. Variables positively associated with PE class enjoyment included physical activity level, perceived benefits of physical activity, self-efficacy for leisure time physical activity, and perceived school climate for girls' physical activity as influenced by teachers, while body mass index was inversely associated with PE class enjoyment. After adjusting for all variables in the model, PE class enjoyment was significantly greater in Blacks than in Whites. In model testing, with mutual adjustment for all variables, self-efficacy was the strongest correlate of PE class enjoyment, followed by perceived benefits, race/ethnicity, and teachers' support for girls' physical activity, as compared to boys, at school. The overall model explained 11% of the variance in PE class enjoyment. Findings suggest that efforts to enhance girls' self-efficacy and perceived benefits and to provide a supportive PE class environment that promotes gender equality can potentially increase PE class enjoyment among young girls.

  20. Evolution of an MHC class Ia gene fragment in four North American Morone species.

    PubMed

    Liu, J-X; Ely, B

    2010-05-01

    A nucleotide sequence analysis of a fragment of a Morone MHC class Ia gene detected high levels of polymorphism in striped bass Morone saxatilis, white perch Morone americana and yellow bass Morone mississippiensis. Extremely low levels of MHC diversity, however, were detected in white bass Morone chrysops, suggesting the possibility of a severe population bottleneck for this species.

  1. Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling

    PubMed Central

    Peng, Yaqin; Liu, Jiane; Miao, Fengqin; Zhang, Jianqiong

    2015-01-01

    MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade. PMID:26263390

  2. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression.

    PubMed

    Busch, Robert; Rinderknecht, Cornelia H; Roh, Sujin; Lee, Andrew W; Harding, James J; Burster, Timo; Hornell, Tara M C; Mellins, Elizabeth D

    2005-10-01

    In antigen-presenting cells (APCs), loading of major histocompatibility complex class II (MHC II) molecules with peptides is regulated by invariant chain (Ii), which blocks MHC II antigen-binding sites in pre-endosomal compartments. Several molecules then act upon MHC II molecules in endosomes to facilitate peptide loading: Ii-degrading proteases, the peptide exchange factor, human leukocyte antigen-DM (HLA-DM), and its modulator, HLA-DO (DO). Here, we review our findings arguing that DM stabilizes a globally altered conformation of the antigen-binding groove by binding to a lateral surface of the MHC II molecule. Our data imply changes in the interactions between specificity pockets and peptide side chains, complementing data from others that suggest DM affects hydrogen bonds. Selective weakening of peptide/MHC interactions allows DM to alter the peptide repertoire. We also review our studies in cells that highlight the ability of several factors to modulate surface expression of MHC II molecules via post-Golgi mechanisms; these factors include MHC class II-associated Ii peptides (CLIP), DM, and microbial products that modulate MHC II traffic from endosomes to the plasma membrane. In this context, we discuss possible mechanisms by which the association of some MHC II alleles with autoimmune diseases may be linked to their low CLIP affinity.

  3. Regulation of MHC class I expression by Foxp3 and its effect on Treg cell function

    PubMed Central

    Mu, Jie; Tai, Xuguang; Iyer, Shankar S.; Weissman, Jocelyn D.; Singer, Alfred; Singer, Dinah S.

    2014-01-01

    Expression of MHC class I molecules, which provide immune surveillance against intracellular pathogens, is higher on lymphoid cells than on any other cell types. In T cells, this is a result of activation of class I transcription by the T cell enhanceosome consisting of Runx1, CBFβ and LEF1. We now report that MHC class I transcription in T cells also is enhanced by Foxp3, resulting in higher levels of class I in CD4+CD25+ T regulatory cells than in conventional CD4+CD25− T cells. Interestingly, the effect of Foxp3 regulation of MHC class I transcription is cell-type specific: Foxp3 increases MHC class I expression in T cells but represses it in epithelial tumor cells. In both cell types, Foxp3 targets the upstream IRE and downstream core promoter of the class I gene. Importantly, expression of MHC class I contributes to the function of CD4+CD25+ T regulatory cells by enhancing immune suppression, both in in vitro and in vivo. These findings identify MHC class I genes as direct targets of Foxp3 whose expression augments regulatory T cell function. PMID:24523508

  4. Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides.

    PubMed

    Wang, Mingjun; Tang, Sheila T; Stryhn, Anette; Justesen, Sune; Larsen, Mette V; Dziegiel, Morten H; Lewinsohn, David M; Buus, Søren; Lund, Ole; Claesson, Mogens H

    2011-04-01

    Major histocompatibility complex (MHC) class I restricted cytotoxic T lymphocytes (CTL) are known to play an important role in the control of Mycobacterium tuberculosis infection so identification of CTL epitopes from M. tuberculosis is of importance for the development of effective peptide-based vaccines. In the present work, bioinformatics technology was employed to predict binding motifs of 9mer peptides derived from M. tuberculosis for the 12 HLA-I supertypes. Subsequently, the predicted peptides were synthesized and assayed for binding to HLA-I molecules in a biochemically based system. The antigenicity of a total of 157 peptides with measured affinity for HLA-I molecules of K(D) ≤ 500 nM were evaluated using peripheral blood T cells from strongly purified protein derivative reactive healthy donors. Of the 157 peptides, eight peptides (5%) were found to induce T-cell responses. As judged from blocking with HLA class I and II subtype antibodies in the ELISPOT assay culture, none of the eight antigenic peptides induced HLA class I restricted CD8(+) T-cell responses. Instead all responses were blocked by pan-HLA class II and anti-HLA-DR antibodies. In addition, CD4(+) T-cell depletion before the 10 days of expansion, resulted in total loss of reactivity in the ELISPOT culture for most peptide specificities. FACS analyses with intracellular interferon-γ staining of T cells expanded in the presence of M. tuberculosis peptides confirmed that the responsive cells were indeed CD4(+). In conclusion, T-cell immunity against HLA-I binding 9mer M. tuberculosis-derived peptides might in many cases turn out to be mediated by CD4(+) T cells and restricted by HLA-II molecules. The use of 9mer peptides recognized by both CD8(+) and CD4(+) T cells might be of importance for the development of future M. tuberculosis peptide-based vaccines.

  5. Interspecific hybridization increases MHC class II diversity in two sister species of newts.

    PubMed

    Nadachowska-Brzyska, Krystyna; Zieliński, Piotr; Radwan, Jacek; Babik, Wiesław

    2012-02-01

    Our understanding of the evolutionary mechanisms generating variation within the highly polymorphic major histocompatibility complex (MHC) genes remains incomplete. Assessing MHC variation across multiple populations, of recent and ancient divergence, may facilitate understanding of geographical and temporal aspects of variation. Here, we applied 454 sequencing to perform a large-scale, comprehensive analysis of MHC class II in the closely related, hybridizing newts, Lissotriton vulgaris (Lv) and Lissotriton montandoni (Lm). Our study revealed an extensive (299 alleles) geographically structured polymorphism. Populations at the southern margin of the Lv distribution, inhabited by old and distinct lineages (southern Lv), exhibited moderate MHC variation and strong population structure, indicating little gene flow or extensive local adaptation. Lissotriton vulgaris in central Europe and the northern Balkans (northern Lv) and almost all Lm populations had a high MHC variation. A much higher proportion of MHC alleles was shared between Lm and northern Lv than between Lm and southern Lv. Strikingly, the average pairwise F(ST) between northern Lv and Lm was significantly lower than between northern and southern Lv for MHC, but not for microsatellites. Thus, high MHC variation in Lm and northern Lv may result from gene flow between species. We hypothesize that the interspecific exchange of MHC genes may be facilitated by frequency-dependent selection. A marginally significant correlation between the MHC and microsatellite allelic richness indicates that demographic factors may have contributed to the present-day pattern of MHC variation, but unequivocal signatures of adaptive evolution in MHC class II sequences emphasize the role of selection on a longer timescale.

  6. Molecular characterization of MHC class II in the Australian invasive cane toad reveals multiple splice variants.

    PubMed

    Lillie, Mette; Cui, Jian; Shine, Richard; Belov, Katherine

    2016-07-01

    The cane toad has gained notoriety for its invasion across the Australian landscape, with significant impacts on the native Australian fauna. The invasion has accelerated over time, with invading cane toads adapted for highly dispersive traits. This, however, has come at the cost of the immune system, with lower investment in some immune functions. To investigate the cane toad's immunogenetics, we characterized four major histocompatibility complex (MHC) class IIA and three MHC class IIB loci. Preliminary observations suggest very low allelic diversity at all loci. We also observed various splice isoforms. One isoform seen at one class IIA and two class IIB loci was missing exon 2, which is essential to peptide binding and presentation. The other isoform, observed at a class IIA locus, is likely to be a soluble MHC product. These results may suggest a significant role of alternative splicing of MHC loci in the Australian cane toad.

  7. A central role for HSC70 in regulating antigen trafficking and MHC class II presentation.

    PubMed

    Deffit, Sarah N; Blum, Janice S

    2015-12-01

    Cells rely on multiple intracellular trafficking pathways to capture antigens for proteolysis. The resulting peptides bind to MHC class II molecules to promote CD4(+) T cell recognition. Endocytosis enhances the capture of extracellular and cell surface bound antigens for processing and presentation, while autophagy pathways shunt cytoplasmic and nuclear antigens for presentation in the context of MHC class II molecules. Understanding how physiological changes and cellular stress alter antigen trafficking and the repertoire of peptides presented by class II molecules remains challenging, yet important in devising novel approaches to boost immune responses to pathogens and tumors. An abundant, constitutively expressed cytoplasmic chaperone, HSC70 plays a central role in modulating antigen transport within cells to control MHC class II presentation during nutrient stress. HSC70 may serve as a molecular switch to modulate endocytic and autophagy pathways, impacting the source of antigens delivered for MHC class II presentation during cellular stress.

  8. Molecular characterization of major histocompatibility complex class 1 (MHC-I) from squirrel monkeys (Saimiri sciureus).

    PubMed

    Pascalis, Hervé; Heraud, Jean-Michel; Fendel, Rolf; Lavergne, Anne; Kazanji, Mirdad

    2003-12-01

    Little is known about the major histocompatibility complex (MHC) class 1 in squirrel monkeys ( Saimiri sciureus). We cloned, sequenced and characterized two alleles and the cDNA of the coding region of MHC class 1 in these New World monkeys. Phylogenetic analyses showed that these sequences are related to HLA class 1 genes ( HLA-A and HLA-G). The structure and organization of one of the two identified clones was similar to that of a class 1 MHC gene ( HLA-A2). All the exon/intron splice acceptor/donor sites are conserved and their locations correspond to the HLA-A2 gene. The sequences of the newly described cDNAs reveal that they code for the characteristic class 1 MHC proteins, with all the features thought necessary for cell surface expression. Typical sequences for the leader peptide, alpha(1), alpha(2), alpha(3), transmembrane and cytoplasmic domains were found.

  9. MHC evolution in three salmonid species: a comparison between class II alpha and beta genes.

    PubMed

    Gómez, Daniela; Conejeros, Pablo; Marshall, Sergio H; Consuegra, Sofia

    2010-08-01

    The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II alpha and class II beta loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II alpha and beta genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIalpha gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites.

  10. Cellular misfolded proteins rescued from degradation by MHC class II molecules are possible targets for autoimmune diseases.

    PubMed

    Arase, Noriko; Arase, Hisashi

    2015-11-01

    The major function of major histocompatibility complex (MHC) class II molecules is the presentation of peptide antigens to helper T cells. However, when misfolded proteins are associated with MHC class II molecules in the endoplasmic reticulum, they are transported to the cell surface by MHC class II molecules without processing to peptides. Of note, misfolded proteins complexed with MHC class II molecules are specifically recognized by autoantibodies produced in patients with autoimmune diseases such as rheumatoid arthritis and antiphospholipid syndrome. Furthermore, autoantibody binding to misfolded proteins complexed with MHC class II molecules is associated with the susceptibility to autoimmune diseases conferred by each MHC class II allele. Therefore, misfolded proteins rescued from degradation by MHC class II molecules may be recognized as 'neo-self' antigens by the immune system and be involved in the pathogenicity of autoimmune diseases.

  11. The Effect of Photodynamic Therapy on Tumor Cell Expression of Major Histocompatibility Complex (MHC) Class I and MHC Class I-Related Molecules

    PubMed Central

    Belicha-Villanueva, Alan; Riddell, Jonah; Bangia, Naveen; Gollnick, Sandra O.

    2013-01-01

    Background and Objective Photodynamic therapy (PDT) is FDA-approved anti-cancer modality for elimination of early disease and palliation in advanced disease. PDT efficacy depends in part on elicitation of a tumor-specific immune response that is dependent on cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. The cytolytic potential of CTLs and NK cells is mediated by the ability of these cells to recognize major histocompatibility complex (MHC) class I and MHC class I-related molecules. The MHC class I-related molecules MICA and MICB are induced by oxidative stress and have been reported to activate NK cells and co-stimulate CD8+ T cells. The purpose of this study was to examine the effect of PDT on tumor cell expression of MHC classes I and II-related molecules in vivo and in vitro. Study Design/Materials and Methods Human colon carcinoma Colo205 cells and murine CT26 tumors were treated with 2-[1-hexyloxyethyl]-2-devinyl pyropheophor-bide-a (HPPH)-PDT at various doses. MHC classes I and I-related molecule expression following treatment of Colo205 cells was temporally examined by flow cytometry using antibodies specific for components of MHC class I molecules and by quantitative PCR using specific primers. Expression of MHC class I-related molecules following HPPH-based PDT (HPPH-PDT) of murine tumors was monitored using a chimeric NKG2D receptor. Results In vitro HPPH-PDT significantly induces MICA in Colo205 cells, but had no effect on MHC class I molecule expression. PDT also induced expression of NKG2D ligands (NKG2DL) following in vivo HPPH-PDT of a murine tumor. Induction of MICA corresponded to increased NK killing of PDT-treated tumor cells. Conclusions PDT induction of MICA on human tumor cells and increased expression of NKG2DL by murine tumors following PDT may play a role in PDT induction of anti-tumor immunity. This conclusion is supported by our results demonstrating that tumor cells have increased sensitivity to NK cell lysis following

  12. Protein sorting within the MHC class II antigen-processing pathway.

    PubMed

    Marks, M S

    1998-01-01

    Major histocompatibility complex (MHC) class II molecules are required for the presentation of antigenic peptides that are derived predominantly from internalized proteins. The assembly of MHC class II/peptide complexes occurs within endosomal compartments of antigen-presenting cells (APCs). Therefore, for assembly to occur, MHC class II molecules, foreign proteins, and accessory molecules must be sorted to appropriate intracellular sites. My laboratory is trying to understand how proteins are sorted to various antigen-processing compartments as well as to conventional endosomal organelles. Using chimeric marker proteins and a variety of biochemical and genetic approaches, we are addressing the specificity of protein sorting and the mechanisms by which sorting signals are deciphered. By using a similar chimeric protein approach to target endogenous proteins to distinct compartments, we hope to address the role of processing events in each compartment in the generation of MHC class II ligands.

  13. But I like PE: Factors Associated with Enjoyment of Physical Education Class in Middle School Girls

    ERIC Educational Resources Information Center

    Barr-Anderson, Daheia J.; Neumark-Sztainer, Dianne; Schmitz, Kathryn H.; Ward, Dianne S.; Conway, Terry L.; Pratt, Charlotte; Baggett, Chris D.; Lytle, Leslie; Pate, Russell R.

    2008-01-01

    The current study examined associations between physical education (PE) class enjoyment and sociodemographic, personal, and perceived school environment factors among early adolescent girls. Participants included 1,511 sixth-grade girls who completed baseline assessments for the Trial of Activity in Adolescent Girls, with 50% indicating they…

  14. An MHC class Ib-restricted CD8+ T cell response to lymphocytic choriomeningitis virus.

    PubMed

    Chen, Lili; Jay, David C; Fairbanks, Jared D; He, Xiao; Jensen, Peter E

    2011-12-15

    Conventional MHC class Ia-restricted CD8(+) T cells play a dominant role in the host response to virus infections, but recent studies indicate that T cells with specificity for nonclassical MHC class Ib molecules may also participate in host defense. To investigate the potential role of class Ib molecules in anti-viral immune responses, K(b-/-)D(b-/-)CIITA(-/-) mice lacking expression of MHC class Ia and class II molecules were infected with lymphocytic choriomeningitis virus (LCMV). These animals have a large class Ib-selected CD8(+) T cell population and they were observed to mediate partial (but incomplete) virus clearance during acute LCMV infection as compared with K(b-/-)D(b-/-)β(2)-microglobulin(-/-) mice that lack expression of both MHC class Ia and class Ib molecules. Infection was associated with expansion of splenic CD8(+) T cells and induction of granzyme B and IFN-γ effector molecules in CD8(+) T cells. Partial virus clearance was dependent on CD8(+) cells. In vitro T cell restimulation assays demonstrated induction of a population of β(2)-microglobulin-dependent, MHC class Ib-restricted CD8(+) T cells with specificity for viral Ags and yet to be defined nonclassical MHC molecules. MHC class Ib-restricted CD8(+) T cell responses were also observed after infection of K(b-/-)D(b-/-)mice despite the low number of CD8(+) T cells in these animals. Long-term infection studies demonstrated chronic infection and gradual depletion of CD8(+) T cells in K(b-/-)D(b-/-)CIITA(-/-) mice, demonstrating that class Ia molecules are required for viral clearance. These findings demonstrate that class Ib-restricted CD8(+) T cells have the potential to participate in the host immune response to LCMV.

  15. Immunotherapy of a murine tumor with interleukin 2. Increased sensitivity after MHC class I gene transfection.

    PubMed

    Weber, J S; Jay, G; Tanaka, K; Rosenberg, S A

    1987-12-01

    We have shown that two weakly immunogenic MCA sarcomas developed in our laboratory that are sensitive to high-dose IL-2 immunotherapy express class I MHC in vivo and in vitro. Two nonimmunogenic MCA sarcomas are relatively insensitive to IL-2 therapy and express minimal or no class I MHC molecules in vivo and in vitro. To study the role of MHC in the therapy of tumors with IL-2, a class I-deficient murine melanoma, B16BL6, was transfected with the Kb class I gene. Expression of class I MHC rendered B16BL6 advanced pulmonary macrometastases sensitive to IL-2 immunotherapy. 3-d micrometastases of CL8-2, a class I transfected clone of B16BL6, were significantly more sensitive to IL-2 therapy than a control nontransfected line. Expression of Iak, a class II MHC molecule, had no effect on IL-2 therapy of transfectant pulmonary micrometastases in F1 mice. By using lymphocyte subset depletion with mAbs directed against Lyt-2, therapy of class I transfectant macrometastases with high-dose IL-2 was shown to involve an Lyt-2 cell. In contrast, regression of micrometastases treated with low-dose IL-2 involved Lyt-2+ cells, but regression mediated by high doses of IL-2 did not. We hypothesize that both LAK and Lyt-2+ T cells effect IL-2-mediated elimination of micrometastases, but only Lyt-2+ T cells are involved in macrometastatic regression. Low doses of IL-2 stimulate Lyt-2+ cells to eliminate class I-expressing micrometastases, but high doses of IL-2 can recruit LAK cells to mediate regression of micrometastases independent of class I expression. Only high-dose IL-2, mediating its effect predominantly via Lyt-2+ cells, is capable of impacting on MHC class I-expressing macrometastases. Macrometastases devoid of class I MHC antigens appear to be resistant to IL-2 therapy.

  16. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.

    PubMed

    Carrasco Pro, S; Zimic, M; Nielsen, M

    2014-02-01

    Major histocompatibility complex (MHC) molecules play a key role in cell-mediated immune responses presenting bounded peptides for recognition by the immune system cells. Several in silico methods have been developed to predict the binding affinity of a given peptide to a specific MHC molecule. One of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available, and also new structures of MHC class I molecules with a bound peptide have been published. In order to test if the NetMHCpan method can be improved by integrating this novel information, we created new pseudo-sequence definitions for the MHC-binding cleft environment from sequence and structural analyses of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train the method, the NetMHCpan method achieved a significant increase in the predictive performance, in particular, of non-human MHCs. This study hence showed that an improved performance of MHC-binding methods can be achieved not only by the accumulation of more MHC-peptide-binding data but also by a refined definition of the MHC-binding environment including information from non-human species.

  17. Evidence for multiple MHC class II β loci in New Zealand's critically endangered kakapo, Strigops habroptilus.

    PubMed

    Knafler, Gabrielle J; Fidler, Andrew; Jamieson, Ian G; Robertson, Bruce C

    2014-02-01

    Immunologically important genes of the major histocompatibility complex (MHC) have been characterized in a number of avian species with the general finding of considerable variation in size and structural organization among organisms. A range of nonpasserines which represent early-diverging Neoave lineages have been described as having only one MHC class II β locus potentially leading to the conclusion that this is the ancestral condition. Here, we examine the monotypic, early-diverging, critically endangered kakapo, Strigops habroptilus, for allelic variation at MHC class II β exon 2, as part of species' recovery efforts. We found two to four confirmed sequence variants per individual indicating the presence of more than one MHC class II β locus. Given the kakapo's basal evolutionary status, evidence for multiple MHC class II β loci seems to counter the proposed mono-locus history of modern birds. However, MHC gene duplication, maintenance, and loss among and within bird species may confound avian relationships making it difficult to elucidate the ancestral state. This study adds essential data for disentangling the course of MHC structural evolution in birds.

  18. Maintenance of MHC Class IIB diversity in a recently established songbird population

    PubMed Central

    Whittaker, Danielle J.; Dapper, Amy L.; Peterson, Mark P.; Atwell, Jonathan W.; Ketterson, Ellen D.

    2012-01-01

    We examined variation at MHC Class IIB genes in a recently established population of dark-eyed juncos (Junco hyemalis) in a coastal urban environment in southern California, USA relative to an ancestral-range population from a nearby species-typical montane environment. The founding population is estimated to have been quite small, but we predicted that variation at the major histocompatibility complex (MHC) among the founders would nevertheless be preserved owing to the high functional significance of MHC. Previous studies of MHC in songbirds have had varying degrees of success in isolating loci, as passerines show extensive MHC gene duplication. In order to compare diversity in the two populations, we employed two published approaches to sequencing MHC Class II exon 2: direct sequencing with exon-based primers, and traditional cloning and sequencing with intron-based primers. Results from both methods show that the colonist population has maintained high levels of variation. Our results also indicate varying numbers of alleles across individuals, corroborating evidence for gene duplication in songbird MHC. While future studies in songbirds may need to take a genomic approach to fully understand the structure of MHC in this lineage, our results show that it is possible to use traditional methods to reveal functional variation across populations. PMID:22685370

  19. HLA-DM is localized to conventional and unconventional MHC class II-containing endocytic compartments.

    PubMed

    Pierre, P; Denzin, L K; Hammond, C; Drake, J R; Amigorena, S; Cresswell, P; Mellman, I

    1996-03-01

    HLA-DM molecules remove invariant (Ii) chain peptides from newly synthesized MHC class II complexes. Their localization may thus delineate compartments, e.g., MIIC, specialized for loading peptides onto class II molecules. In murine A20 B cells, however, DM is not restricted to specialized endosomal class II-containing vesicles (CIIV). Although DM was found in CIIV, it was also found throughout the endocytic pathway, principally in lysosomes devoid of class II molecules. In human lymphoblasts, HLA-DM was found in structures indistinguishable from late endosomes or lysosomes, although in these cells the lysosomes contained MHC class II molecules. Thus, the distribution of HLA-DM does not necessarily identify specialized class II compartments. Many "MIIC" may represent conventional lysosomes that accumulate MHC class II and HLA-DM in a number of cell types.

  20. Angiotensin-converting enzyme affects the presentation of MHC class II antigens.

    PubMed

    Zhao, Tuantuan; Bernstein, Kenneth E; Fang, Jianmin; Shen, Xiao Z

    2017-07-01

    Antigen processing and presentation through the MHC class II pathway is critical for activating T helper cells. Angiotensin-converting enzyme (ACE) is a carboxyl peptidase expressed by antigen-presenting cells. By analysis of ACE null (knockout), wild-type, and ACE-overexpressing (ACE10) mice and the antigen-presenting cells derived from these mice, we found that ACE has a physiological role in the processing of peptides for MHC class II presentation. The efficiency of presenting MHC class II epitopes from ovalbumin (OVA) and hen egg lysosome is markedly affected by cellular ACE levels. Mice overexpressing ACE in myeloid cells have a much more vigorous CD4(+) T-cell and antibody response when immunized with OVA. ACE is present in the endosomal pathway where MHC class II peptide processing and loading occur. The efficiency of MHC class II antigen presentation can be altered by ACE overexpression or ACE pharmacological inhibition. Thus, ACE is a dynamic participant in processing MHC class II peptides. Manipulation of ACE expression by antigen-presenting cells may prove to be a novel strategy to alter the immune response.

  1. Redirecting soluble antigen for MHC class I cross-presentation during phagocytosis.

    PubMed

    Hari, Aswin; Ganguly, Anutosh; Mu, Libing; Davis, Shevaun P; Stenner, Melanie D; Lam, Raymond; Munro, Fay; Namet, Inana; Alghamdi, Enaam; Fürstenhaupt, Tobias; Dong, Wei; Detampel, Pascal; Shen, Lian Jun; Amrein, Matthias W; Yates, Robin M; Shi, Yan

    2015-02-01

    Peptides presented by MHC class I molecules are mostly derived from proteins synthesized by the antigen-presenting cell itself, while peptides presented by MHC class II molecules are predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross-presentation. Here, we report that mouse dendritic cell (DC) engagement to a phagocytic target alters endocytic processing and inhibits the proteolytic activities. During phagocytosis, endosome maturation is delayed, shows less progression toward the lysosome, and the endocytosed soluble antigen is targeted for MHC class I cross-presentation. The antigen processing in these arrested endosomes is under the control of NAPDH oxidase associated ROS. We also show that cathepsin S is responsible for the generation of the MHC class I epitope. Taken together, our results suggest that in addition to solid structure uptake, DC phagocytosis simultaneously modifies the kinetics of endosomal trafficking and maturation. As a consequence, external soluble antigens are targeted into the MHC class I cross-presentation pathway.

  2. Redirecting soluble antigen for MHC class I cross-presentation during phagocytosis

    PubMed Central

    Hari, Aswin; Ganguly, Anutosh; Mu, Libing; Davis, Shevaun P.; Stenner, Melanie D.; Lam, Raymond; Munro, Fay; Namet, Inana; Alghamdi, Enaam; Fürstenhaupt, Tobias; Dong, Wei; Detampel, Pascal; Shen, Lian Jun; Amrein, Matthias W.; Yates, Robin M.; Shi, Yan

    2014-01-01

    Peptides presented by MHC class I molecules are derived mostly from proteins synthesized by the antigen-presenting cell itself, while peptides presented by MHC class II molecules are derived predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross-presentation. We report that mouse dendritic cell engagement of a phagocytic target alters endocytic processing and inhibits their proteolytic activities. During phagocytosis, endosome maturation is delayed, shows less progression towards the lysosome, and the endocytosed soluble antigen is targeted for MHC class I cross-presentation. The antigen processing in these arrested endosomes is under the control of NAPDH oxidase associated ROS. We also show that cathepsin S is responsible for the generation of the MHC class I epitope. Our results suggest that in addition to solid structure uptake, DC phagocytosis simultaneously modifies the kinetics of endosomal trafficking and maturation. As a consequence, external soluble antigens are targeted into the MHC class I cross-presentation pathway. PMID:25378230

  3. Analysis of MHC class I folding: novel insights into intermediate forms

    PubMed Central

    Simone, Laura C.; Tuli, Amit; Simone, Peter D.; Wang, Xiaojian; Solheim, Joyce C.

    2012-01-01

    Folding around a peptide ligand is integral to the antigen presentation function of major histocompatibility complex (MHC) class I molecules. Several lines of evidence indicate that the broadly cross-reactive 34-1-2 antibody is sensitive to folding of the MHC class I peptide-binding groove. Here, we show that peptide-loading complex proteins associated with the murine MHC class I molecule Kd are found primarily in association with the 34-1-2+ form. This led us to hypothesize that the 34-1-2 antibody may recognize intermediately, as well as fully, folded MHC class I molecules. In order to further characterize the form(s) of MHC class I molecules recognized by 34-1-2, we took advantage of its cross-reactivity with Ld. Recognition of the open and folded forms of Ld by the 64-3-7 and 30-5-7 antibodies, respectively, has been extensively characterized, providing us with parameters against which to compare 34-1-2 reactivity. We found that the 34-1-2+ Ld molecules displayed characteristics indicative of incomplete folding, including increased tapasin association, endoplasmic reticulum retention, and instability at the cell surface. Moreover, we demonstrate that an Ld-specific peptide induced folding of the 34-1-2+ Ld intermediate. Altogether, these results yield novel insights into the nature of MHC class I molecules recognized by the 34-1-2 antibody. PMID:22329842

  4. The urgent need to recover MHC class I in cancers for effective immunotherapy.

    PubMed

    Garrido, Federico; Aptsiauri, Natalia; Doorduijn, Elien M; Garcia Lora, Angel M; van Hall, Thorbald

    2016-04-01

    Immune escape strategies aimed to avoid T-cell recognition, including the loss of tumor MHC class I expression, are commonly found in malignant cells. Tumor immune escape has proven to have a negative effect on the clinical outcome of cancer immunotherapy, including treatment with antibodies blocking immune checkpoint molecules. Hence, there is an urgent need to develop novel approaches to overcome tumor immune evasion. MHC class I antigen presentation is often affected in human cancers and the capacity to induce upregulation of MHC class I cell surface expression is a critical step in the induction of tumor rejection. This review focuses on characterization of rejection, escape, and dormant profiles of tumors and its microenvironment with a special emphasis on the tumor MHC class I expression. We also discuss possible approaches to recover MHC class I expression on tumor cells harboring reversible/'soft' or irreversible/'hard' genetic lesions. Such MHC class I recovery approaches might well synergize with complementary forms of immunotherapy.

  5. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  6. The multigenic structure of the MHC locus contributes to positive selection efficiency: a role for MHC class II gene-specific restriction.

    PubMed

    Monteiro, Miguel Caetano; Couceiro, Sofia; Penha-Gonçalves, Carlos

    2005-12-01

    The study of T cell positive selection in the thymus has long been focused on the specificity of the MHC-TCR interactions, making use of genetically manipulated mice that display TCR specificities or selecting peptides of limited diversity. However, little is known on the role of the MHC molecules irrespective of the peptide specificity and the implications of MHC multigenic structure in thymic positive selection have not been addressed. Here, we investigated the effect of MHC class II genetic configuration on the positive selection efficiency of naturally generated pre-selection repertoires in the mouse thymus. Analysis of positively selected thymocyte populations in MHC-congenic and -transgenic mice revealed that expression of I-E molecule in the thymic cortex increases positive selection efficiency of CD4 cells by approximately 50%. We show that increments in positive selection attributable to either the I-A and I-E genes are not due to increased MHC class II expression in the thymic cortex and are not affected by the number of MHC alleles. Collectively, our findings imply that MHC class II gene-restricted TCR specificities significantly contribute to positive selection efficiency, introducing the notion that multigenic structure of the MHC locus serves to increase selection of non-overlapping TCR repertoires.

  7. A new self: MHC-class-I-independent natural-killer-cell self-tolerance.

    PubMed

    Kumar, Vinay; McNerney, Megan E

    2005-05-01

    A fundamental tenet of the immune system is the requirement for lymphocytes to respond to transformed or infected cells while remaining tolerant of normal cells. Natural killer (NK) cells discriminate between self and non-self by monitoring the expression of MHC class I molecules. According to the 'missing-self' hypothesis, cells that express self-MHC class I molecules are protected from NK cells, but those that lack this self-marker are eliminated by NK cells. Recent work has revealed that there is another system of NK-cell inhibition, which is independent of MHC class I molecules. Newly discovered NK-cell inhibitory receptors that have non-MHC-molecule ligands broaden the definition of self as seen by NK cells.

  8. Comparative modeling of marsupial MHC class I molecules identifies structural polymorphisms affecting functional motifs.

    PubMed

    Daly, Kerry; Church, W Bret; Nicholas, Kevin; Williamson, Peter

    2007-11-01

    Major histocompatibility complex (MHC) class I molecules are transmembrane glycoproteins that present antigenic peptides to CD8+ T cells and are subsequently important for the initiation of an immune response. In this study novel MHC class I sequences from the tammar wallaby (Macropus eugenii) have been characterized. Analysis and comparative modeling of these and existing marsupial molecules reveals potential functional polymorphisms within peptide-binding grooves, MHC assembly motifs and the T cell receptor recognition interface. In addition, we show that a previously identified marsupial-specific insertion is within a region, which is known as a putative NK cell receptor (Ly49A) binding site in the mouse, suggesting that this site may be functionally active in marsupials. Further, the analysis highlighted differences in structural and sequence based grouping of marsupial MHC class I molecules. (c) 2007 Wiley-Liss, Inc.

  9. Shark Class II Invariant Chain Reveals Ancient Conserved Relationships with Cathepsins and MHC Class II

    PubMed Central

    Criscitiello, Michael F.; Ohta, Yuko; Eubanks, Jeannine O.; Chen, Patricia L.; Flajnik, Martin F.

    2011-01-01

    The invariant chain (Ii) is the critical third chain required for the MHC class II heterodimer to be properly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells. Here, we report the isolation of the nurse shark Ii gene, and the comparative analysis of Ii splice variants, expression, genomic organization, predicted structure, and function throughout vertebrate evolution. Alternative splicing to yield Ii with and without the putative protease-protective, thyroglobulin-like domain is as ancient as the MHC-based adaptive immune system, as our analyses in shark and lizard further show conservation of this mechanism in all vertebrate classes except bony fish. Remarkable coordinate expression of Ii and class II was found in shark tissues. Conserved Ii residues and cathepsin L orthologs suggest their long co-evolution in the antigen presentation pathway, and genomic analyses suggest 450 million years of conserved Ii exon/intron structure. Other than an extended linker preceding the thyroglobulin-like domain in cartilaginous fish, the Ii gene and protein are predicted to have largely similar physiology from shark to man. Duplicated Ii genes found only in teleosts appear to have become sub-functionalized, as one form is predicted to play the same role as that mediated by Ii mRNA alternative splicing in all other vertebrate classes. No Ii homologs or potential ancestors of any of the functional Ii domains were found in the jawless fish or lower chordates. PMID:21996610

  10. Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II.

    PubMed

    Criscitiello, Michael F; Ohta, Yuko; Graham, Matthew D; Eubanks, Jeannine O; Chen, Patricia L; Flajnik, Martin F

    2012-03-01

    The invariant chain (Ii) is the critical third chain required for the MHC class II heterodimer to be properly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells. Here, we report the isolation of the nurse shark Ii gene, and the comparative analysis of Ii splice variants, expression, genomic organization, predicted structure, and function throughout vertebrate evolution. Alternative splicing to yield Ii with and without the putative protease-protective, thyroglobulin-like domain is as ancient as the MHC-based adaptive immune system, as our analyses in shark and lizard further show conservation of this mechanism in all vertebrate classes except bony fish. Remarkable coordinate expression of Ii and class II was found in shark tissues. Conserved Ii residues and cathepsin L orthologs suggest their long co-evolution in the antigen presentation pathway, and genomic analyses suggest 450 million years of conserved Ii exon/intron structure. Other than an extended linker preceding the thyroglobulin-like domain in cartilaginous fish, the Ii gene and protein are predicted to have largely similar physiology from shark to man. Duplicated Ii genes found only in teleosts appear to have become sub-functionalized, as one form is predicted to play the same role as that mediated by Ii mRNA alternative splicing in all other vertebrate classes. No Ii homologs or potential ancestors of any of the functional Ii domains were found in the jawless fish or lower chordates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype.

    PubMed

    Garrido, Federico; Romero, Irene; Aptsiauri, Natalia; Garcia-Lora, Angel M

    2016-01-15

    Intratumor heterogeneity among cancer cells is promoted by reversible or irreversible genetic alterations and by different microenvironmental factors. There is considerable experimental evidence of the presence of a variety of malignant cell clones with a wide diversity of major histocompatibility class I (MHC-I) expression during early stages of tumor development. This variety of MHC-I phenotypes may define the evolution of a particular tumor. Loss of MHC-I molecules frequently results in immune escape of MHC-negative or -deficient tumor cells from the host T cell-mediated immune response. We review here the results obtained by our group and other researchers in animal models and humans, showing how MHC-I intratumor heterogeneity may affect local oncogenicity and metastatic progression. In particular, we summarize the data obtained in an experimental mouse cancer model of a methylcholanthrene-induced fibrosarcoma (GR9), in which isolated clones with different MHC-I expression patterns demonstrated distinct local tumor growth rates and metastatic capacities. The observed "explosion of diversity" of MHC-I phenotypes in primary tumor clones and the molecular mechanism ("hard"/irreversible or "soft"/reversible) responsible for a given MHC-I alteration might determine not only the metastatic capacity of the cells but also their response to immunotherapy. We also illustrate the generation of further MHC heterogeneity during metastatic colonization and discuss different strategies to favor tumor rejection by counteracting MHC-I loss. Finally, we highlight the role of MHC-I genes in tumor dormancy and cell cycle control. © 2014 UICC.

  12. Selection at the MHC class IIB locus across guppy (Poecilia reticulata) populations.

    PubMed

    Fraser, B A; Ramnarine, I W; Neff, B D

    2010-02-01

    The highly diverse genes of the major histocompatibility complex (MHC) are important in the adaptive immune system and are expected to be under selection from pathogens. Thus, the MHC genes provide an exceptional opportunity to investigate patterns of selection within and across populations. In this study, we analyzed genetic variation at the MHC class IIB gene and six microsatellite loci across 10 populations of guppies (Poecilia reticulata) in the northern range of Trinidad. We found a high level of diversity at the MHC, with a total of 43 alleles in 142 individuals. At the population level, we found that neutral evolution could not fully account for the variability found at the MHC. Instead, we found that MHC F(ST) statistics were lower than F(ST) derived from the microsatellite loci; 33 of 45 population pairwise estimates for the MHC were significantly lower than those for the microsatellite loci, and MHC F(ST) estimates were consistently lower than those predicted by a coalescent model of neutral evolution. These results suggest a similar selection acting across populations, and we discuss the potential roles of directional and balancing selection. At the sequence level, we found evidence for both positive and purifying selection. Furthermore, positive selection was detected within and adjacent to the putative peptide-binding region (PBR) of the MHC. Surprisingly, we also found a purifying selection at two sites within the putative PBR. Overall, our data provide evidence for selection for functional diversity at the MHC class IIB gene at both the population and nucleotide levels of guppy populations.

  13. No evidence for MHC class I-based disassortative mating in a wild population of great tits.

    PubMed

    Sepil, I; Radersma, R; Santure, A W; De Cauwer, I; Slate, J; Sheldon, B C

    2015-03-01

    Genes of the major histocompatibility complex (MHC) are regarded as a potentially important target of mate choice due to the fitness benefits that may be conferred to the offspring. According to the complementary genes hypothesis, females mate with MHC dissimilar males to enhance the immunocompetence of their offspring or to avoid inbreeding depression. Here, we investigate whether selection favours a preference for maximally dissimilar or optimally dissimilar MHC class I types, based on MHC genotypes, average amino acid distances and the functional properties of the antigen-binding sites (MHC supertypes); and whether MHC type dissimilarity predicts relatedness between mates in a wild great tit population. In particular, we explore the role that MHC class I plays in female mate choice decisions while controlling for relatedness and spatial population structure, and examine the reproductive fitness consequences of MHC compatibility between mates. We find no evidence for the hypotheses that females select mates on the basis of either maximal or optimal MHC class I dissimilarity. A weak correlation between MHC supertype sharing and relatedness suggests that MHC dissimilarity at functional variants may not provide an effective index of relatedness. Moreover, the reproductive success of pairs did not vary with MHC dissimilarity. Our results provide no support for the suggestion that selection favours, or that mate choice realizes, a preference for complimentary MHC types.

  14. MHC class I expression dependent on bacterial infection and parental factors in whitefish embryos (Salmonidae).

    PubMed

    Clark, Emily S; Wilkins, Laetitia G E; Wedekind, Claus

    2013-10-01

    Ecological conditions can influence not only the expression of a phenotype, but also the heritability of a trait. As such, heritable variation for a trait needs to be studied across environments. We have investigated how pathogen challenge affects the expression of MHC genes in embryos of the lake whitefish Coregonus palaea. In order to experimentally separate paternal (i.e. genetic) from maternal and environmental effects, and determine whether and how stress affects the heritable variation for MHC expression, embryos were produced in full-factorial in vitro fertilizations, reared singly, and exposed at 208 degree days (late-eyed stage) to either one of two strains of Pseudomonas fluorescens that differ in their virulence characteristics (one increased mortality, while both delayed hatching time). Gene expression was assessed 48 h postinoculation, and virulence effects of the bacterial infection were monitored until hatching. We found no evidence of MHC class II expression at this stage of development. MHC class I expression was markedly down-regulated in reaction to both pseudomonads. While MHC expression could not be linked to embryo survival, the less the gene was expressed, the earlier the embryos hatched within each treatment group, possibly due to trade-offs between immune function and developmental rate or further factors that affect both hatching timing and MHC expression. We found significant additive genetic variance for MHC class I expression in some treatments. That is, changes in pathogen pressures could induce rapid evolution in MHC class I expression. However, we found no additive genetic variance in reaction norms in our study population.

  15. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I.

    PubMed

    van den Boomen, D J H; Lehner, P J

    2015-12-01

    The human cytomegalovirus (HCMV) US2 and US11 gene products hijack mammalian ER-associated degradation (ERAD) to induce rapid degradation of major histocompatibility class I (MHC-I) molecules. The rate-limiting step in this pathway is thought to be the polyubiquitination of MHC-I by distinct host ERAD E3 ubiquitin ligases. TRC8 was identified as the ligase responsible for US2-mediated MHC-I degradation and shown to be required for the cleavage-dependent degradation of some tail-anchored proteins. In addition to MHC-I, plasma membrane profiling identified further immune receptors, which are also substrates for the US2/TRC8 complex. These include at least six α integrins, the coagulation factor thrombomodulin and the NK cell ligand CD112. US2's use of specific HCMV-encoded adaptors makes it an adaptable viral degradation hub. US11-mediated degradation is MHC-I-specific and genetic screens have identified TMEM129, an uncharacterised RING-C2 E3 ligase, as responsible for US11-mediated degradation. In a unique auto-regulatory loop, US11 readily responds to changes in cellular expression of MHC-I. Free US11 either rebinds more MHC-I or is itself degraded by the HRD1/SEL1L E3 ligase complex. While virally encoded US2 and US11 appropriate mammalian ERAD, the MHC-I complex also undergoes stringent cellular quality control and misfolded MHC-I is degraded by the HRD1/SEL1L complex. We discuss the identification and central role of E3 ubiquitin ligases in ER quality control and viral degradation of the MHC-I chain. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Retention of empty MHC class I molecules by tapasin is essential to reconstitute antigen presentation in invertebrate cells.

    PubMed Central

    Schoenhals, G J; Krishna, R M; Grandea, A G; Spies, T; Peterson, P A; Yang, Y; Früh, K

    1999-01-01

    Presentation of antigen-derived peptides by major histocompatibility complex (MHC) class I molecules is dependent on an endoplasmic reticulum (ER) resident glycoprotein, tapasin, which mediates their interaction with the transporter associated with antigen processing (TAP). Independently of TAP, tapasin was required for the presentation of peptides targeted to the ER by signal sequences in MHC class I-transfected insect cells. Tapasin increased MHC class I peptide loading by retaining empty but not peptide-containing MHC class I molecules in the ER. Upon co-expression of TAP, this retention/release function of tapasin was sufficient to reconstitute MHC class I antigen presentation in insect cells, thus defining the minimal non-housekeeping functions required for MHC class I antigen presentation. PMID:9927434

  17. The overlooked "nonclassical" functions of major histocompatibility complex (MHC) class II antigens in immune and nonimmune cells.

    PubMed

    Altomonte, M; Pucillo, C; Maio, M

    1999-06-01

    Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.

  18. Molecular characterization of classical and nonclassical MHC class I genes from the golden pheasant (Chrysolophus pictus).

    PubMed

    Zeng, Q-Q; Zhong, G-H; He, K; Sun, D-D; Wan, Q-H

    2016-02-01

    Classical major histocompatibility complex (MHC) class I allelic polymorphism is essential for competent antigen presentation. To improve the genotyping efforts in the golden pheasant, it is necessary to differentiate more accurately between classical and nonclassical class I molecules. In our study, all MHC class I genes were isolated from one golden pheasant based on two overlapping PCR amplifications. In total, six full-length class I nucleotide sequences (A-F) were identified, and four were novel. Two (A and C) belonged to the IA1 gene, two (B and D) were alleles derived from the IA2 gene through transgene amplification, and two (E and F) comprised a third novel locus, IA3 that was excluded from the core region of the golden pheasant MHC-B. IA1 and IA2 exhibited the broad expression profiles characteristic of classical loci, while IA3 showed no expression in multiple tissues and was therefore defined as a nonclassical gene. Phylogenetic analysis indicated that the three IA genes in the golden pheasant share a much closer evolutionary relationship than the corresponding sequences in other galliform species. This observation was consistent with high sequence similarity among them, which likely arises from the homogenizing effect of recombination. Our careful distinction between the classical and nonclassical MHC class I genes in the golden pheasant lays the foundation for developing locus-specific genotyping and establishing a good molecular marker system of classical MHC I loci.

  19. The biogenesis of the MHC class II compartment in human I-cell disease B lymphoblasts

    PubMed Central

    1996-01-01

    The localization and intracellular transport of major histocompatibility complex (MHC) class II molecules nd lysosomal hydrolases were studied in I-Cell Disease (ICD) B lymphoblasts, which possess a mannose 6-phosphate (Man-6-P)-independent targeting pathway for lysosomal enzymes. In the trans-Golgi network (TGN), MHC class II- invariant chain complexes colocalized with the lysosomal hydrolase cathepsin D in buds and vesicles that lacked markers of clathrin-coated vesicle-mediated transport. These vesicles fused with the endocytic pathway leading to the formation of "early" MHC class II-rich compartments (MIICs). Similar structures were observed in the TGN of normal beta lymphoblasts although they were less abundant. Metabolic labeling and subcellular fractionation experiments indicated that newly synthesized cathepsin D and MHC class II-invariant chain complexes enter a non-clathrin-coated vesicular structure after their passage through the TGN and segregation from the secretory pathway. These vesicles were also devoid of the cation-dependent mannose 6-phosphate (Man-6-P) receptor, a marker of early and late endosomes. These findings suggest that in ICD B lymphoblasts the majority of MHC class II molecules are transported directly from the TGN to "early" MIICs and that acid hydrolases cam be incorporated into MIICs simultaneously by a Man-6-P-independant process. PMID:8603911

  20. New Design of MHC Class II Tetramers to Accommodate Fundamental Principles of Antigen Presentation

    PubMed Central

    Landais, Elise; Romagnoli, Pablo A.; Corper, Adam L.; Shires, John; Altman, John D.; Wilson, Ian A.; Garcia, K. Christopher; Teyton, Luc

    2009-01-01

    Direct identification and isolation of antigen-specific T cells became possible with the development of “MHC tetramers”, based on fluorescent avidins displaying biotinylated peptide-MHC (pMHC) complexes. This approach, extensively used for MHC class I–restricted T cells, has met very limited success with MHC class II tetramers (pMHCT-2) for the detection of CD4+ specific T cells. In addition, a very large number of these reagents while capable of specifically activating T cells after being coated on solid support, are still unable to stain. In order to try to understand this puzzle and design usable tetramers, we examined each parameter critical for the production of pMHCT-2 using the I-Ad-OVA system as a model. Through this process the geometry of pMHC display by avidin tetramers was examined, as well as the stability of recombinant MHC molecules. However, we discovered that the most important factor limiting the reactivity of pMHCT-2 was the display of peptides. Indeed, long peptides, as presented by MHC class II molecules, can be bound to I-A/HLA-DQ molecules in more than one register as suggested by structural studies. This mode of anchorless peptide binding allows the selection of a broader repertoire on single peptides and should favor anti-infectious immune responses. Thus, beyond the technical improvements that we propose, the redesign of pMHCT-2 will give us the tools to evaluate the real size of the CD4 repertoire and help us in the production and testing of new vaccines. PMID:19923463

  1. Exogenous cathepsin G upregulates cell surface MHC class I molecules on immune and glioblastoma cells

    PubMed Central

    Giese, Madleen; Turiello, Nadine; Molenda, Nicole; Palesch, David; Meid, Annika; Schroeder, Roman; Basilico, Paola; Benarafa, Charaf; Halatsch, Marc-Eric; Zimecki, Michal; Westhoff, Mike-Andrew; Wirtz, Christian Rainer; Burster, Timo

    2016-01-01

    Major histocompatibility complex (MHC) class I molecules present antigenic peptides to cytotoxic T cells. During an adaptive immune response, MHC molecules are regulated by several mechanisms including lipopolysaccharide (LPS) and interferon gamma (IFN-g). However, it is unclear whether the serine protease cathepsin G (CatG), which is generally secreted by neutrophils at the site of inflammation, might regulate MHC I molecules. We identified CatG, and to a higher extend CatG and lactoferrin (LF), as an exogenous regulator of cell surface MHC I expression of immune cells and glioblastoma stem cells. In addition, levels of MHC I molecules are reduced on dendritic cells from CatG deficient mice compared to their wild type counterparts. Furthermore, cell surface CatG on immune cells, including T cells, B cells, and NK cells triggers MHC I on THP-1 monocytes suggesting a novel mechanism for CatG to facilitate intercellular communication between infiltrating cells and the respective target cell. Subsequently, our findings highlight the pivotal role of CatG as a checkpoint protease which might force target cells to display their intracellular MHC I:antigen repertoire. PMID:27806341

  2. The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER

    PubMed Central

    Stagg, Helen R.; Thomas, Mair; van den Boomen, Dick; Wiertz, Emmanuel J.H.J.; Drabkin, Harry A.; Gemmill, Robert M.

    2009-01-01

    The US2 and US11 gene products of human cytomegalovirus promote viral evasion by hijacking the endoplasmic reticulum (ER)–associated degradation (ERAD) pathway. US2 and US11 initiate dislocation of newly translocated major histocompatibility complex class I (MHC I) from the ER to the cytosol for proteasome-mediated degradation, thereby decreasing cell surface MHC I. Despite being instrumental in elucidating the mammalian ERAD pathway, the responsible E3 ligase or ligases remain unknown. Using a functional small interfering RNA library screen, we now identify TRC8 (translocation in renal carcinoma, chromosome 8 gene), an ER-resident E3 ligase previously implicated as a hereditary kidney cancer gene, as required for US2-mediated MHC I ubiquitination. Depletion of TRC8 prevents MHC I ubiquitination and dislocation by US2 and restores cell surface MHC I. TRC8 forms an integral part of a novel multiprotein ER complex that contains MHC I, US2, and signal peptide peptidase. Our data show that the TRC8 E3 ligase is required for MHC I dislocation from the ER and identify a new complex associated with mammalian ERAD. PMID:19720873

  3. Temporal variation at the MHC class IIb in wild populations of the guppy (Poecilia reticulata).

    PubMed

    Fraser, Bonnie A; Ramnarine, Indar W; Neff, Bryan D

    2010-07-01

    Understanding genetic diversity in natural populations is a fundamental objective of evolutionary biology. The immune genes of the major histocompatibility complex (MHC) are excellent candidates to study such diversity because they are highly polymorphic in populations. Although balancing selection may be responsible for maintaining diversity at these functionally important loci, temporal variation in selection pressure has rarely been examined. We examine temporal variation in MHC class IIB diversity in nine guppy (Poecilia reticulata) populations over two years. We found that five of the populations changed significantly more at the MHC than at neutral (microsatellite) loci as measured by F(ST), which suggests that the change at the MHC was due to selection and not neutral processes. Additionally, pairwise population differentiation measures at the MHC were higher in 2007 than in 2006, with the signature of selection changing from homogenizing to diversifying selection or neutral evolution. Interestingly, within the populations the magnitude of the change at the MHC between years was related to the change in the proportion of individuals infected by a common parasite, indicating a link between genetic structure and the parasite. Our data thereby implicate temporal variation in selective pressure as an important mechanism maintaining diversity at the MHC in wild populations.

  4. Peptide-independent stabilization of MHC class I molecules breaches cellular quality control.

    PubMed

    Hein, Zeynep; Uchtenhagen, Hannes; Abualrous, Esam Tolba; Saini, Sunil Kumar; Janßen, Linda; Van Hateren, Andy; Wiek, Constanze; Hanenberg, Helmut; Momburg, Frank; Achour, Adnane; Elliott, Tim; Springer, Sebastian; Boulanger, Denise

    2014-07-01

    The intracellular trafficking of major histocompatibility complex class I (MHC-I) proteins is directed by three quality control mechanisms that test for their structural integrity, which is correlated to the binding of high-affinity antigenic peptide ligands. To investigate which molecular features of MHC-I these quality control mechanisms detect, we have followed the hypothesis that suboptimally loaded MHC-I molecules are characterized by their conformational mobility in the F-pocket region of the peptide-binding site. We have created a novel variant of an MHC-I protein, K(b)-Y84C, in which two α-helices in this region are linked by a disulfide bond that mimics the conformational and dynamic effects of bound high-affinity peptide. K(b)-Y84C shows a remarkable increase in the binding affinity to its light chain, beta-2 microglobulin (β2m), and bypasses all three cellular quality control steps. Our data demonstrate (1) that coupling between peptide and β2m binding to the MHC-I heavy chain is mediated by conformational dynamics; (2) that the folded conformation of MHC-I, supported by β2m, plays a decisive role in passing the ER-to-cell-surface transport quality controls; and (3) that β2m association is also tested by the cell surface quality control that leads to MHC-I endocytosis.

  5. Immunotherapy eradicates metastases with reversible defects in MHC class I expression.

    PubMed

    Garrido, Cristina; Romero, Irene; Berruguilla, Enrique; Cancela, Bárbara; Algarra, Ignacio; Collado, Antonia; García-Lora, Angel; Garrido, Federico

    2011-09-01

    Tumor or metastatic cells lose MHC class I (MHC-I) expression during cancer progression as an escape mechanism from immune surveillance. These defects in MHC-I may be reversible by cytokines or different agents (soft lesions) or irreversible due to structural defects (hard lesions). The nature of these MHC-I alterations might determine the success or failure of immunotherapy treatments. In this study, we have used an MHC-I-positive murine fibrosarcoma tumor clone, GR9-A7, which generates multiple lung and lymph node metastases with reversible MHC-I alterations after treatment with IFN-γ. Four different antitumor treatments were carried out after primary tumor excision to determine their capacity to inhibit spontaneous metastatic colonization of the GR9-A7 tumor clone. We found that 2 different immunotherapy protocols (CpG plus autologous irradiated-GR9-A7 cells and protein-bound polysaccharide K (PSK) and 1 chemoimmunotherapy (docetaxel plus PSK) induced eradication of metastases. In contrast, chemotherapy with docetaxel alone produced only partial reduction in the number of metastases. Flow cytometric analysis of lymphocyte populations showed an immunosuppression in GR9-A7 tumor-bearing host, which could be reverted by immunotherapy treatments. Our results suggest that irreversible or reversible MHC-I alterations in tumor target cells may determine its progression or regression independently of the type of immunotherapy used.

  6. Evolution of MHC class I genes in the European badger (Meles meles).

    PubMed

    Sin, Yung Wa; Dugdale, Hannah L; Newman, Chris; Macdonald, David W; Burke, Terry

    2012-07-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian MHC class I genes tend to cluster by species. Concerted evolution has the potential to homogenize different loci, whereas birth-and-death evolution can lead to the loss of orthologs; both processes result in monophyletic groups within species. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. We present the first study of MHC class I genes in a species from the superfamily Musteloidea. The European badger (Meles meles) exhibits moderate variation in MHC class I sequences when compared to other carnivores. We identified seven putatively functional sequences and nine pseudogenes from genomic (gDNA) and complementary (cDNA) DNA, signifying at least two functional class I loci. We found evidence for separate evolutionary histories of the α1 and α2/α3 domains. In the α1 domain, several sequences from different species were more closely related to each other than to sequences from the same species, resembling orthology or trans-species polymorphism. Balancing selection and probable recombination maintain genetic diversity in the α1 domain, evidenced by the detection of positive selection and a recombination event. By comparison, two recombination breakpoints indicate that the α2/α3 domains have most likely undergone concerted evolution, where recombination has homogenized the α2/α3 domains between genes, leading to species-specific clusters of sequences. Our findings highlight the importance of analyzing MHC domains separately.

  7. Analysis of cDNA coding MHC class II beta chain of the chimpanzee (Pan troglodytes).

    PubMed

    Hatta, Yuki; Kanai, Tomoko; Matsumoto, Yoshitsugu; Kyuwa, Shigeru; Hayasaka, Ikuo; Yoshikawa, Yasuhiro

    2002-04-01

    The chimpanzee (Pan troglodytes, Patr) is the closest zoological living relative of humans and shares approximately 98.6% genetic homology to human beings. Although major histocompatibility complex (MHC) plays a critical role in T cell-mediated immune responses in vertebrates, the information on Patr MHC remains at a relatively poor level. Therefore, we attempted to isolate Patr MHC class II genes and determine their nucleotide sequences. The cDNAs encoding Patr MHC class II DP, DQ and DR beta chains were isolated from the cDNA library of a chimpanzee B lymphocyte cell line Bch261. As a result of screening, the clone 6-3-1 as a representative of Patr DP clone, clone 30-1 as a Patr DQ clone, and clones 4-7-1 and 55-1 having different sequences as Patr DR clones were detected. The clone 6-3-1 consisted of 1,062 nucleotides including an open reading frame (ORF) of 777 bp. In the same way, clone 30-1 consisted of 1,172 nucleotides including ORF of 786 bp, clones 4-7-1 and 55-1 consisted of 1,163 nucleotides including ORF of 801 bp. Except for five nucleotide changes, clones 4-7-1 and 55-1 were the same sequence. By comparison with the nucleotide sequences already reported on chimpanzee MHC class II beta 1 genes, clones 6-3-1, 30-1, 4-7-1 and 55-1 were classified as PatrDPB1*16, PatrDQB1*0302, PatrDRB1*0201 and PatrDRB1*0204, respectively. This is the first report to describe complete cDNA sequences of Patr DP and DQ molecules. The nucleotide sequence data of Patr MHC class II genes obtained in this study will be useful for the genotyping of Patr MHC class II genes in individual chimpanzees.

  8. Evolution of MHC class I genes in the European badger (Meles meles)

    PubMed Central

    Sin, Yung Wa; Dugdale, Hannah L; Newman, Chris; Macdonald, David W; Burke, Terry

    2012-01-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian MHC class I genes tend to cluster by species. Concerted evolution has the potential to homogenize different loci, whereas birth-and-death evolution can lead to the loss of orthologs; both processes result in monophyletic groups within species. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. We present the first study of MHC class I genes in a species from the superfamily Musteloidea. The European badger (Meles meles) exhibits moderate variation in MHC class I sequences when compared to other carnivores. We identified seven putatively functional sequences and nine pseudogenes from genomic (gDNA) and complementary (cDNA) DNA, signifying at least two functional class I loci. We found evidence for separate evolutionary histories of the α1 and α2/α3 domains. In the α1 domain, several sequences from different species were more closely related to each other than to sequences from the same species, resembling orthology or trans-species polymorphism. Balancing selection and probable recombination maintain genetic diversity in the α1 domain, evidenced by the detection of positive selection and a recombination event. By comparison, two recombination breakpoints indicate that the α2/α3 domains have most likely undergone concerted evolution, where recombination has homogenized the α2/α3 domains between genes, leading to species-specific clusters of sequences. Our findings highlight the importance of analyzing MHC domains separately. PMID:22957169

  9. Differential Transmembrane Domain GXXXG Motif Pairing Impacts Major Histocompatibility Complex (MHC) Class II Structure*

    PubMed Central

    Dixon, Ann M.; Drake, Lisa; Hughes, Kelly T.; Sargent, Elizabeth; Hunt, Danielle; Harton, Jonathan A.; Drake, James R.

    2014-01-01

    Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2− I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response. PMID:24619409

  10. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer.

    PubMed Central

    Korkolopoulou, P.; Kaklamanis, L.; Pezzella, F.; Harris, A. L.; Gatter, K. C.

    1996-01-01

    Presentation of endogenous antigenic peptides to cytotoxic T lymphocytes is mediated by the major histocompatibility complex (MHC) class I molecules. For the stable assembly of MHC class I complex it is necessary that the antigenic peptide is transported by the MHC-encoded transporters TAP-1 and TAP-2 into a pre-Golgi region. T-cell-mediated host-vs-tumour response might therefore depend on the presence of these molecules on tumour cells. The presence of MHC class I antigens and TAP-1 was studied in a series of 93 resection specimens of non-small-cell lung carcinomas (NSCLCs) by immunohistochemical methods using antibodies against the assembled class I molecule, beta 2-microglobulin (beta 2-m), heavy-chain A locus, A2 allele and TAP-1 protein. Eighty-six patients were included in the survival analysis. Total loss of class I molecule was observed in 38% of the cases and was usually accompanied by loss of beta 2-m and of heavy chain A locus. Selective loss of A locus was seen in 8.3% and of A2 allele in 27% of the cases. TAP-1 loss was always combined with beta 2-m and/or heavy chain A locus loss. No correlation was found between the expressional status of any of the above molecules, including the selective A2 allelic loss and histological type, degree of differentiation, tumoral stage, nodal stage and survival. Our findings suggest that loss of antigen-presenting molecules (including both MHC class I alleles and TAP-1) is a frequent event in lung cancer. However, the immunophenotypic profile of MHC class I and TAP-1 seems to be unrelated in vivo to the phenotype, growth or survival of NSCLC. Images Figure 1 PMID:8546899

  11. Studying MHC class II presentation of immobilized antigen by B lymphocytes.

    PubMed

    Yuseff, M I; Lennon-Dumenil, A M

    2013-01-01

    The ability of B lymphocytes to capture external antigens (Ag) and present them as peptide fragments, loaded on Major Histocompatibility complex (MHC) class II molecules, to CD4(+) T cells is a crucial part of the adaptive immune response. This allows T-B cooperation, a cellular communication that is required for B cells to develop into germinal centers (GC) and form mature high-affinity antibody producing cells and to further develop B cell memory. MHC class II antigen presentation by B lymphocytes is a multistep process involving (1) Recognition and capture of external Ag by B lymphocytes through their B cell receptor (BCR); (2) Ag processing, which comprises the degradation of Ag in internal compartments within the B cell and loading of the corresponding peptide fragments on MHC class II molecules and (3) Presentation of MHC II-peptide complexes to CD4(+) T cells. Here, we describe how to study MHC class II antigen presentation by B lymphocytes at these three major levels.

  12. Fluorogenic Probes for Monitoring Peptide Binding to Class II MHC Proteins in Living Cells

    SciTech Connect

    Venkatraman,P.; Nguyen, T.; Sainlos, M.; Bilsel, o.; Chitta, S.; Imperiali, B.; Stern, L.

    2007-01-01

    A crucial step in the immune response is the binding of antigenic peptides to major histocompatibility complex (MHC) proteins. Class II MHC proteins present their bound peptides to CD4+ T cells, thereby helping to activate both the humoral and the cellular arms of the adaptive immune response. Peptide loading onto class II MHC proteins is regulated temporally, spatially and developmentally in antigen-presenting cells1. To help visualize these processes, we have developed a series of novel fluorogenic probes that incorporate the environment-sensitive amino acid analogs 6-N,N-dimethylamino-2-3-naphthalimidoalanine and 4-N,N-dimethylaminophthalimidoalanine. Upon binding to class II MHC proteins these fluorophores show large changes in emission spectra, quantum yield and fluorescence lifetime. Peptides incorporating these fluorophores bind specifically to class II MHC proteins on antigen-presenting cells and can be used to follow peptide binding in vivo. Using these probes we have tracked a developmentally regulated cell-surface peptide-binding activity in primary human monocyte-derived dendritic cells.

  13. Hepatitis B virus down-regulates expressions of MHC class I molecules on hepatoplastoma cell line.

    PubMed

    Chen, Yongyan; Cheng, Min; Tian, Zhigang

    2006-10-01

    Chronic HBV infection is associated with a 100-fold high risk of developing hepatocellular carcinoma. Tumor recognition is of the most importance during the immune surveillance process that prevents cancer development in humans. In the present study, the expressions of MHC class I molecules on hepatoplastoma cell line HepG2.2.15 were investigated to indicate the possible effects of HBV on the immune recognition during HBV-associated hepatocellular carcinoma. It was found that the expressions of MHC class I molecules HLA-ABC, HLA-E and MICA were much lower in HepG2.2.15 cells compared with HepG2 cells. The expressing HBV in human hepatoplastoma cell line significantly down-regulated the expressions of MHC class I molecules. Additionally, it was observed that in murine chronic HBsAg carriers the expression of classical MHC-I molecule on hepatocytes was down-regulated. These results demonstrated that HBV might affect the immune recognition during HBV-associated hepatocellular carcinoma such as the recognition of CD8+ T, NK-CTL and NK cells and prevent the immune surveillance against tumors. However, the effects of HBV down-regulation of MHC class I molecules on the target cells in vivo should be further studied.

  14. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy.

    PubMed

    Reits, Eric A; Hodge, James W; Herberts, Carla A; Groothuis, Tom A; Chakraborty, Mala; Wansley, Elizabeth K; Camphausen, Kevin; Luiten, Rosalie M; de Ru, Arnold H; Neijssen, Joost; Griekspoor, Alexander; Mesman, Elly; Verreck, Frank A; Spits, Hergen; Schlom, Jeffrey; van Veelen, Peter; Neefjes, Jacques J

    2006-05-15

    Radiotherapy is one of the most successful cancer therapies. Here the effect of irradiation on antigen presentation by MHC class I molecules was studied. Cell surface expression of MHC class I molecules was increased for many days in a radiation dose-dependent manner as a consequence of three responses. Initially, enhanced degradation of existing proteins occurred which resulted in an increased intracellular peptide pool. Subsequently, enhanced translation due to activation of the mammalian target of rapamycin pathway resulted in increased peptide production, antigen presentation, as well as cytotoxic T lymphocyte recognition of irradiated cells. In addition, novel proteins were made in response to gamma-irradiation, resulting in new peptides presented by MHC class I molecules, which were recognized by cytotoxic T cells. We show that immunotherapy is successful in eradicating a murine colon adenocarcinoma only when preceded by radiotherapy of the tumor tissue. Our findings indicate that directed radiotherapy can improve the efficacy of tumor immunotherapy.

  15. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy

    PubMed Central

    Reits, Eric A.; Hodge, James W.; Herberts, Carla A.; Groothuis, Tom A.; Chakraborty, Mala; K.Wansley, Elizabeth; Camphausen, Kevin; Luiten, Rosalie M.; de Ru, Arnold H.; Neijssen, Joost; Griekspoor, Alexander; Mesman, Elly; Verreck, Frank A.; Spits, Hergen; Schlom, Jeffrey; van Veelen, Peter; Neefjes, Jacques J.

    2006-01-01

    Radiotherapy is one of the most successful cancer therapies. Here the effect of irradiation on antigen presentation by MHC class I molecules was studied. Cell surface expression of MHC class I molecules was increased for many days in a radiation dose-dependent manner as a consequence of three responses. Initially, enhanced degradation of existing proteins occurred which resulted in an increased intracellular peptide pool. Subsequently, enhanced translation due to activation of the mammalian target of rapamycin pathway resulted in increased peptide production, antigen presentation, as well as cytotoxic T lymphocyte recognition of irradiated cells. In addition, novel proteins were made in response to γ-irradiation, resulting in new peptides presented by MHC class I molecules, which were recognized by cytotoxic T cells. We show that immunotherapy is successful in eradicating a murine colon adenocarcinoma only when preceded by radiotherapy of the tumor tissue. Our findings indicate that directed radiotherapy can improve the efficacy of tumor immunotherapy. PMID:16636135

  16. Expression of Functional MHC Class II Molecules By a Mouse Pro-B Cell Clone

    PubMed Central

    Fisher, Amanda G.; Meyer, Valérie; Ceredig, Rhodri

    1995-01-01

    We describe here the G12 pro-B cell clone that has been isolated from an IL-7 transgenic mouse. This clone has the phenotype B220+, BP-1+ , HSA +, CD43+ λ5+ , and CD25-, and has its Ig locus in a germline configuration. G12 cells spontaneously express cell-surface MHC class II molecules, although to a much lesser extent than the mature M12.4.1 B-cell lymphoma. G12 cells can process and present the native Hen Egg Lysozyme (HEL) to an MHC class II-restricted T-cell hybridoma. The efficiency of presentation is inferior to that obtained with M12.4.1 cells. This is the first report where a pro-B cell can serve as APC in an MHC class II-restricted presentation. PMID:9700358

  17. The role of MHC class Ib-restricted T cells during infection

    PubMed Central

    Anderson, Courtney K.; Brossay, Laurent

    2016-01-01

    Even though MHC class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection, but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system. PMID:27368413

  18. Evolution of MHC class I loci in marsupials: characterization of sequences from koala (Phascolarctos cinereus)

    PubMed

    Houlden, B A; Greville, W D; Sherwin, W B

    1996-10-01

    We demonstrate that koala (Phascolarctos cinereus) MHC class I constitutes a variable multigene family. A total of nine partial exon 2 and 3 major histocompatibility complex (MHC) class I sequences are presented, including six sequences from at least three loci from one koala. Variation was detected by examination of sequences from a number of individuals and family groups. The koala is the second marsupial species characterized to date, and comparisons reveal approximately 80% similarity with sequences from the red necked wallaby (Macropus rufogriseus). The latter sequences represent at least two, and probably three, different loci. Phylogenetic analysis demonstrates that all koala sequences are more related to one another than they are to any of the wallaby loci. This indicates that the koala sequences are probably not orthologous to the wallaby genes, and thus represent a new class I gene family. In addition, marsupial gene families cluster away from human gene families, supporting a different origin of MHC genes for marsupials and eutherians.

  19. The role of MHC class Ib-restricted T cells during infection.

    PubMed

    Anderson, Courtney K; Brossay, Laurent

    2016-08-01

    Even though major histocompatibility complex (MHC) class Ia and many Ib molecules have similarities in structure, MHC class Ib molecules tend to have more specialized functions, which include the presentation of non-peptidic antigens to non-classical T cells. Likewise, non-classical T cells also have unique characteristics, including an innate-like phenotype in naïve animals and rapid effector functions. In this review, we discuss the role of MAIT and NKT cells during infection but also the contribution of less studied MHC class Ib-restricted T cells such as Qa-1-, Qa-2-, and M3-restricted T cells. We focus on describing the types of antigens presented to non-classical T cells, their response and cytokine profile following infection, as well as the overall impact of these T cells to the immune system.

  20. The nucleotide sequence of the sheep MHC class II DNA gene

    SciTech Connect

    Wright, H.; Redmond, J.; Ballingall, K.T.; Wright, F.

    1995-01-11

    The human MHC class II DNA gene was identified and sequenced by Trowsdale and Kelly. When a molecular map of the HLA-D region became available, it was shown that the HLA-DNA gene was unusual in not having a B gene partner situated within a few kilobases (kb), the nearest B gene being HLA-DPB1. The nearest unpaired B gene is HLA-DOB which is approximately 160 kb telomeric of HLA-DNA. More recently, the mouse MHC class II genes H-20A and H-20B were shown to be equivalent to the HLA-DNA and HLA-DOB genes. Moreover, the mouse genes expressed an MHC class II protein whose tissue distribution was restricted to B cells and epithelial cell of the thymic medulla. No corresponding HLA-DN protein has been reported. 21 refs., 3 figs.

  1. Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes).

    PubMed

    Strandh, Maria; Lannefors, Mimi; Bonadonna, Francesco; Westerdahl, Helena

    2011-10-01

    The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subantarctica. Blue petrels are long-lived, monogamous birds which suggest the necessity of an accurate mate choice process. The species is ancestral to songbirds (Passeriformes; many MHC loci), although not to gamefowls (Galliformes; few MHC loci). Considering the phylogenetic relationships and the low subantarctic pathogen burden, we expected few rather than many MHC loci in the blue petrel. However, when we analysed partial MHC class I and class II B cDNA and gDNA sequences we found evidence for as many as at least eight MHC class I loci and at least two class II B loci. These class I and II B sequences showed classical MHC characteristics, e.g. high nucleotide diversity, especially in putative peptide-binding regions where signatures of positive selection was detected. Trans-species polymorphism was found between MHC class II B sequences of the blue petrel and those of thin-billed prion, Pachyptila belcheri, two species that diverged ∼25 MYA. The observed MHC allele richness in the blue petrel may well serve as a basis for mate choice, especially since olfactory discrimination of MHC types may be possible in this species.

  2. Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks.

    PubMed

    Fleming-Canepa, Ximena; Jensen, Shawna M; Mesa, Christine M; Diaz-Satizabal, Laura; Roth, Alexa J; Parks-Dely, Julie A; Moon, Debra A; Wong, Janet P; Evseev, Danyel; Gossen, Desolie A; Tetrault, David G; Magor, Katharine E

    2016-08-01

    MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species. Copyright © 2016 by The American Association of Immunologists, Inc.

  3. Multiple expressed MHC class II loci in salmonids; details of one non-classical region in Atlantic salmon (Salmo salar)

    PubMed Central

    Harstad, Håvard; Lukacs, Morten F; Bakke, Hege G; Grimholt, Unni

    2008-01-01

    Background In teleosts, the Major Histocompatibility Complex (MHC) class I and class II molecules reside on different linkage groups as opposed to tetrapods and shark, where the class I and class II genes reside in one genomic region. Several teleost MHC class I regions have been sequenced and show varying number of class I genes. Salmonids have one major expressed MHC class I locus (UBA) in addition to varying numbers of non-classical genes. Two other more distant lineages are also identifyed denoted L and ZE. For class II, only one major expressed class II alpha (DAA) and beta (DAB) gene has been identified in salmonids so far. Results We sequenced a genomic region of 211 kb encompassing divergent MHC class II alpha (Sasa-DBA) and beta (Sasa-DBB) genes in addition to NRGN, TIPRL, TBCEL and TECTA. The region was not linked to the classical class II genes and had some synteny to genomic regions from other teleosts. Two additional divergent and expressed class II sequences denoted DCA and DDA were also identified in both salmon and trout. Expression patterns and lack of polymorphism make these genes non-classical class II analogues. Sasa-DBB, Sasa-DCA and Sasa-DDA had highest expression levels in liver, hindgut and spleen respectively, suggestive of distinctive functions in these tissues. Phylogenetic studies revealed more yet undescribed divergent expressed MHC class II molecules also in other teleosts. Conclusion We have characterised one genomic region containing expressed non-classical MHC class II genes in addition to four other genes not involved in immune function. Salmonids contain at least two expressed MHC class II beta genes and four expressed MHC class II alpha genes with properties suggestive of new functions for MHC class II in vertebrates. Collectively, our data suggest that the class II is worthy of more elaborate studies also in other teleost species. PMID:18439319

  4. Natural Killer Cell Tolerance Persists Despite Significant Reduction of Self MHC Class I on Normal Target Cells in Mice

    PubMed Central

    Mehr, Ramit; Johansson, Maria H.; Duru, Adil Doganay; Achour, Adnane; Salmon-Divon, Mali; Kärre, Klas; Höglund, Petter; Johansson, Sofia

    2010-01-01

    Background A major group of murine inhibitory receptors on Natural Killer (NK) cells belong to the Ly49 receptor family and recognize MHC class I molecules. Infected or transformed target cells frequently downmodulate MHC class I molecules and can thus avoid CD8+ T cell attack, but may at the same time develop NK cell sensitivity, due to failure to express inhibitory ligands for Ly49 receptors. The extent of MHC class I downregulation needed on normal cells to trigger NK cell effector functions is not known. Methodology/Principal Findings In this study, we show that cells expressing MHC class I to levels well below half of the host level are tolerated in an in vivo assay in mice. Hemizygous expression (expression from only one allele) of MHC class I was sufficient to induce Ly49 receptor downmodulation on NK cells to a similar degree as homozygous expression, despite a strongly reduced cell surface level of MHC class I. Co-expression of weaker MHC class I ligands in the host did not have any further effect on the degree of Ly49 downmodulation. Furthermore, a single MHC class I allele could downmodulate up to three Ly49 receptors on individual NK cells. Only when NK cells simultaneously expressed several Ly49 receptors and hemizygous MHC class I levels, a putative threshold for Ly49 downmodulation was reached. Conclusion Collectively, our findings suggest that in interactions between NK cells and normal untransformed cells, MHC class I molecules are in most cases expressed in excess compared to what is functionally needed to ensure self tolerance and to induce maximal Ly49 downmodulation. We speculate that the reason for this is to maintain a safety margin for otherwise normal, autologous cells over a range of MHC class I expression levels, in order to ensure robustness in NK cell tolerance. PMID:20957233

  5. Novel classical MHC class I alleles identified in horses by sequencing clones of reverse transcription-PCR products.

    PubMed

    Chung, C; Leib, S R; Fraser, D G; Ellis, S A; McGuire, T C

    2003-12-01

    Improved typing of horse classical MHC class I is required to more accurately define these molecules and to extend the number identified further than current serological assays. Defining classical MHC class I alleleic polymorphism is important in evaluating cytotoxic T lymphocyte (CTL) responses in horses. In this study, horse classical MHC class I genes were analyzed based on reverse transcription (RT)-PCR amplification of sequences encoding the polymorphic peptide binding region and the more conserved alpha 3, transmembrane and cytoplasmic regions followed by cloning and sequencing. Primer sets included a horse classical MHC class I-specific reverse primer and a forward primer conserved in all known horse MHC class I genes. Sequencing at least 25 clones containing MHC class I sequences from each of 13 horses identified 25 novel sequences and three others which had been described. Of these, nine alleles were identified from different horses or different RT-PCR and 19 putative alleles were identified in multiple clones from the same RT-PCR. The primer pairs did not amplify putative non-classical MHC class I genes as only classical MHC class I and related pseudogenes were found in 462 clones. This method also identified classical MHC class I alleles shared between horses by descent, and defined differences in alleles between horses varying in equine leukocyte antigen (ELA)-A haplotype as determined by serology. However, horses sharing ELA-A haplotypes defined by serotyping did not always share cDNA sequences, suggesting subhaplotypic variations within serologically defined ELA-A haplotypes. The 13 horses in this study had two to five classical MHC class I sequences, indicating that multiple loci code for these genes. Sequencing clones from RT-PCR with classical MHC class I-specific primers should be useful for selection of haplotype matched and mismatched horses for CTL studies, and provides sequence information needed to develop easier and more discriminating

  6. The β2-microglobulin-free heterodimerization of rhesus monkey MHC class I A with its normally spliced variant reduces the ubiquitin-dependent degradation of MHC class I A.

    PubMed

    Dai, Zheng-Xi; Zhang, Gao-Hong; Zhang, Xi-He; Xia, Hou-Jun; Li, Shao-You; Zheng, Yong-Tang

    2012-03-01

    The MHC class I (MHC I) molecules play a pivotal role in the regulation of immune responses by presenting antigenic peptides to CTLs and by regulating cytolytic activities of NK cells. In this article, we show that MHC I A in rhesus macaques can be alternatively spliced, generating a novel MHC I A isoform (termed "MHC I A-sv1") devoid of α(3) domain. Despite the absence of β2-microglobulin (β2m), the MHC I A-sv1 proteins reached the cell surface of K562-transfected cells as endoglycosidase H-sensitive glycoproteins that could form disulfide-bonded homodimers. Cycloheximide-based protein chase experiments showed that the MHC I A-sv1 proteins were more stable than the full-length MHC I A in transiently or stably transfected cell lines. Of particular interest, our studies demonstrated that MHC I A-sv1 could form β2m-free heterodimers with its full-length protein in mammalian cells. The formation of heterodimers was accompanied by a reduction in full-length MHC I A ubiquitination and consequent stabilization of the protein. Taken together, these results demonstrated that MHC I A-sv1 and MHC I A can form a novel heterodimeric complex as a result of the displacement of β2m and illustrated the relevance of regulated MHC I A protein degradation in the β2m-free heterodimerization-dependent control, which may have some implications for the MHC I A splice variant in the fine tuning of classical MHC I A/TCR and MHC I A/killer cell Ig-like receptor interactions.

  7. Isolation and characterization of three class II MHC genomic clones from the chicken.

    PubMed

    Xu, Y X; Pitcovski, J; Peterson, L; Auffray, C; Bourlet, Y; Gerndt, B M; Nordskog, A W; Lamont, S J; Warner, C M

    1989-03-15

    A genomic library was constructed from sperm DNA from an individual of the inbred chicken line G-B2, MHC haplotype B6. The library was screened with a chicken class II probe (beta 2 exon specific) and three MHC class II beta chain genomic clones were isolated. The restriction maps of the three clones showed that each of the three clones was unique. The position of the beta chain sequence was located in each of the three genomic clones by Southern blot hybridization. Subclones containing the beta chain gene were produced from each of the genomic clones and the orientation of the leader peptide, beta 1, beta 2, transmembrane, and cytoplasmic exons was determined by Southern blot hybridization and nucleotide sequencing. The complete nucleotide sequence of two of the three subclones was determined. Comparison of the nucleotide and predicted amino acid sequences of the two subclones with other class II beta chain sequences showed that the B6 chicken beta chain genes are evolutionarily related to the class II beta chain genes from chickens of other MHC haplotypes, and to class II beta chain genes from other species. Analysis of Southern blots of B6 chicken DNA, as well as the isolation of the three beta chain genes, suggests that chickens of the B6 haplotype possess at least three MHC class II beta chain genes.

  8. Allospecific rejection of MHC class I-deficient bone marrow by CD8 T cells

    PubMed Central

    Haspot, Fabienne; Li, Hao Wei; Lucas, Carrie L.; Fehr, Thomas; Beyaz, Semir; Sykes, Megan

    2014-01-01

    Avoidance of long-term immunosuppression is a desired goal in organ transplantation. Mixed chimerism offers a promising approach to tolerance induction, and we have aimed to develop low-toxicity, non-immunodepleting approaches to achieve this outcome. In a mouse model achieving fully MHC-mismatched allogeneic bone marrow engraftment with minimal conditioning (3 Gy total body irradiation followed by anti-CD154 and T cell-depleted allogeneic bone marrow cells), CD4 T cells in the recipient are required to promote tolerance of pre-existing alloreactive recipient CD8 T cells and thereby permit chimerism induction. We now demonstrate that mice devoid of CD4 T cells and NK cells reject MHC class-I deficient and class I/class II-deficient marrow in a CD8 T cell-dependent manner. This rejection is specific for donor alloantigens, since recipient hematopoiesis is not affected by donor marrow rejection and MHC class-I deficient bone marrow that is syngeneic to the recipient is not rejected. Recipient CD8 T cells are activated and develop cytotoxicity against MHC class I-deficient donor cells in association with rejection. These data implicate a novel CD8 T cell-dependent bone marrow rejection pathway, wherein recipient CD8 T cells indirectly activated by donor alloantigens promote direct killing, in a TCR-independent manner, of class I-deficient donor cells. PMID:24304495

  9. MHC class II β genes in the endangered Hainan Eld's deer (Cervus eldi hainanus).

    PubMed

    Liu, Hong-Yi; Xue, Fei; Wan, Qiu-Hong; Ge, Yun-Fa

    2013-01-01

    Contrary to neutral markers, the major histocompatibility complex (MHC) can reflect the fitness and adaptive potential of a given species due to its association with the immune system. For this reason, the use of MHC in endangered wildlife management has increased greatly in recent years. Here, we isolated complementary DNA (cDNA) and genomic DNA (gDNA) sequences to characterize the MHC class II β genes in Hainan Eld's deer (Cervus eldi hainanus), a highly endangered cervid, which recovered from a severe population bottleneck consisting of 26 animals. Analysis of 7 individuals revealed the presence of 3 DRB and 3 DQB putatively functional gDNA sequences. The Ceel-DRB and DQB sequences displayed high variability in exon 2, and most nonsynonymous substitutions were detected in this region. Phylogenetic analysis indicated that trans-species evolution of MHC class II β might occur in the Cervinae subfamily. Comparison of the number of sequences between gDNA and cDNA revealed that all sequences isolated from the genome were detectable in the cDNA libraries derived from different tissues (including the liver, kidney, and spleen), suggesting none of these sequences were derived from silent genes or pseudogenes. Characterization of the MHC class II β genes may lay the foundation for future studies on genetic structure, mate choice, and viability analysis in Hainan Eld's deer.

  10. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines.

    PubMed

    Comber, Joseph D; Philip, Ramila

    2014-05-01

    Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a 'window' into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8(+) T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8(+) T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines.

  11. MHC class I antigen presentation and implications for developing a new generation of therapeutic vaccines

    PubMed Central

    Comber, Joseph D.

    2014-01-01

    Major histocompatibility complex class I (MHC-I) presented peptide epitopes provide a ‘window’ into the changes occurring in a cell. Conventionally, these peptides are generated by proteolysis of endogenously synthesized proteins in the cytosol, loaded onto MHC-I molecules, and presented on the cell surface for surveillance by CD8+ T cells. MHC-I restricted processing and presentation alerts the immune system to any infectious or tumorigenic processes unfolding intracellularly and provides potential targets for a cytotoxic T cell response. Therefore, therapeutic vaccines based on MHC-I presented peptide epitopes could, theoretically, induce CD8+ T cell responses that have tangible clinical impacts on tumor eradication and patient survival. Three major methods have been used to identify MHC-I restricted epitopes for inclusion in peptide-based vaccines for cancer: genetic, motif prediction and, more recently, immunoproteomic analysis. Although the first two methods are capable of identifying T cell stimulatory epitopes, these have significant disadvantages and may not accurately represent epitopes presented by a tumor cell. In contrast, immunoproteomic methods can overcome these disadvantages and identify naturally processed and presented tumor associated epitopes that induce more clinically relevant tumor specific cytotoxic T cell responses. In this review, we discuss the importance of using the naturally presented MHC-I peptide repertoire in formulating peptide vaccines, the recent application of peptide-based vaccines in a variety of cancers, and highlight the pros and cons of the current state of peptide vaccines. PMID:24790732

  12. Characterization, polymorphism, and evolution of MHC class II B genes in birds of prey.

    PubMed

    Alcaide, Miguel; Edwards, Scott V; Negro, Juan J

    2007-11-01

    During the last decade, the major histocompatibility complex (MHC) has received much attention in the fields of evolutionary and conservation biology because of its potential implications in many biological processes. New insights into the gene structure and evolution of MHC genes can be gained through study of additional lineages of birds not yet investigated at the genomic level. In this study, we characterized MHC class II B genes in five families of birds of prey (Accipitridae, Pandionidae, Strigidae, Tytonidae, and Falconidae). Using PCR approaches, we isolated genomic MHC sequences up to 1300 bp spanning exons 1 to 3 in 26 representatives of each raptor lineage, finding no stop codons or frameshift mutations in any coding region. A survey of diversity across the entirety of exon 2 in the lesser kestrel Falco naumanni reported 26 alleles in 21 individuals. Bayesian analysis revealed 21 positively selected amino acid sites, which suggests that the MHC genes described here are functional and probably expressed. Finally, through interlocus comparisons and phylogenetic analysis, we also discuss genetic evidence for concerted and transspecies evolution in the raptor MHC.

  13. Single-Molecule Motions of MHC Class II Rely on Bound Peptides

    PubMed Central

    Kozono, Haruo; Matsushita, Yufuku; Ogawa, Naoki; Kozono, Yuko; Miyabe, Toshihiro; Sekiguchi, Hiroshi; Ichiyanagi, Kouhei; Okimoto, Noriaki; Taiji, Makoto; Kanagawa, Osami; Sasaki, Yuji C.

    2015-01-01

    The major histocompatibility complex (MHC) class II protein can bind peptides of different lengths in the region outside the peptide-binding groove. Peptide-flanking residues (PFRs) contribute to the binding affinity of the peptide for MHC and change the immunogenicity of the peptide/MHC complex with regard to T cell receptor (TCR). The mechanisms underlying these phenomena are currently unknown. The molecular flexibility of the peptide/MHC complex may be an important determinant of the structures recognized by certain T cells. We used single-molecule x-ray analysis (diffracted x-ray tracking (DXT)) and fluorescence anisotropy to investigate these mechanisms. DXT enabled us to monitor the real-time Brownian motion of the peptide/MHC complex and revealed that peptides without PFRs undergo larger rotational motions than peptides with PFRs. Fluorescence anisotropy further revealed that peptides without PFRs exhibit slightly larger motions on the nanosecond timescale. These results demonstrate that peptides without PFRs undergo dynamic motions in the groove of MHC and consequently are able to assume diverse structures that can be recognized by T cells. PMID:25606683

  14. Structural and functional mosaic nature of MHC class I molecules in their peptide-free form.

    PubMed

    Kurimoto, Eiji; Kuroki, Kimiko; Yamaguchi, Yoshiki; Yagi-Utsumi, Maho; Igaki, Takahiro; Iguchi, Takeshi; Maenaka, Katsumi; Kato, Koichi

    2013-10-01

    Despite well-organized peptide-loading mechanisms within the endoplasmic reticulum, major histocompatibility complex class I (MHC-I) molecules can be displayed on cell surfaces in peptide-free forms. Although these empty MHC-I (eMHC-I) molecules are presumably involved in physiological and pathological processes, little is known about their structures and functions due to their instability. Using bacterially expressed HLA-Cw*07:02 heavy chain and β2 microglobulin molecules, we successfully established an in vitro refolding method to prepare eMHC-I molecules in sufficient quantities for detailed structural analyses. NMR spectroscopy in conjunction with subunit-specific ¹⁵N-labeling techniques revealed that the peptide-binding domains and the adjacent regions were unstructured in the peptide-free form, while the remaining regions maintained their structural integrity. Consistent with our spectroscopic data, the eMHC-I complex could interact with leukocyte Ig-like receptor B1, but not with killer cell Ig-like receptor 2DL3. Thus, eMHC-I molecules have a mosaic nature in terms of their three-dimensional structure and binding to immunologically relevant molecules. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Influenza Virus Targets Class I MHC-Educated NK Cells for Immunoevasion.

    PubMed

    Mahmoud, Ahmad Bakur; Tu, Megan M; Wight, Andrew; Zein, Haggag S; Rahim, Mir Munir A; Lee, Seung-Hwan; Sekhon, Harman S; Brown, Earl G; Makrigiannis, Andrew P

    2016-02-01

    The immune response to influenza virus infection comprises both innate and adaptive defenses. NK cells play an early role in the destruction of tumors and virally-infected cells. NK cells express a variety of inhibitory receptors, including those of the Ly49 family, which are functional homologs of human killer-cell immunoglobulin-like receptors (KIR). Like human KIR, Ly49 receptors inhibit NK cell-mediated lysis by binding to major histocompatibility complex class I (MHC-I) molecules that are expressed on normal cells. During NK cell maturation, the interaction of NK cell inhibitory Ly49 receptors with their MHC-I ligands results in two types of NK cells: licensed ("functional"), or unlicensed ("hypofunctional"). Despite being completely dysfunctional with regard to rejecting MHC-I-deficient cells, unlicensed NK cells represent up to half of the mature NK cell pool in rodents and humans, suggesting an alternative role for these cells in host defense. Here, we demonstrate that after influenza infection, MHC-I expression on lung epithelial cells is upregulated, and mice bearing unlicensed NK cells (Ly49-deficient NKCKD and MHC-I-deficient B2m-/- mice) survive the infection better than WT mice. Importantly, transgenic expression of an inhibitory self-MHC-I-specific Ly49 receptor in NKCKD mice restores WT influenza susceptibility, confirming a direct role for Ly49. Conversely, F(ab')2-mediated blockade of self-MHC-I-specific Ly49 inhibitory receptors protects WT mice from influenza virus infection. Mechanistically, perforin-deficient NKCKD mice succumb to influenza infection rapidly, indicating that direct cytotoxicity is necessary for unlicensed NK cell-mediated protection. Our findings demonstrate that Ly49:MHC-I interactions play a critical role in influenza virus pathogenesis. We suggest a similar role may be conserved in human KIR, and their blockade may be protective in humans.

  16. Association of CD99 short and long forms with MHC class I, MHC class II and tetraspanin CD81 and recruitment into immunological synapses

    PubMed Central

    2011-01-01

    Background CD99, a leukocyte surface glycoprotein, is broadly expressed in many cell types. On the cell surface, CD99 is expressed as two distinct isoforms, a long form and a short form. CD99 has been demonstrated to play a key role in several biological processes, including the regulation of T cell activation. However, the molecular mechanisms by which CD99 participates in such processes are unclear. As CD99 contains a short cytoplasmic tail, it is unlikely that CD99 itself takes part in its multi-functions. Association of CD99 with other membrane proteins has been suggested to be necessary for exerting its functions. Results In this study, we analyzed the association of CD99 with other cell surface molecules involved in T cell activation. We demonstrate the association of MHC class I, MHC class II and tetraspanin CD81 with CD99 molecules on the cell surface. Association of CD99 with its partners was observed for both isoforms. In addition, we determined that CD99 is a lipid raft-associated membrane protein and is recruited into the immunologic synapse during T cell activation. The implication of CD99 on T cell activation was investigated. Inhibition of anti-CD3 induced T cell proliferation by an anti-CD99 monoclonal antibody was observed. Conclusions We provide evidence that CD99 directly interact and form the complex with the MHC class I and II, and tetraspanin CD81, and is functionally linked to the formation of the immunologic synapse. Upon T cell activation, CD99 engagement can inhibit T cell proliferation. We speculate that the CD99-MHC-CD81 complex is a tetraspanin web that plays an important role in T cell activation. PMID:21838920

  17. Development of MHC class I and II B primers in common carp and its molecular characterization.

    PubMed

    Jia, Zhiying; Chi, Xifeng; Li, Chitao; Shi, Lianyu

    2010-08-01

    The major histocompatibility complex (MHC) has an important role in immune response and is known as the most polymorphic locus in vertebrates. We developed three pairs of polymerase chain reaction primers of the alpha-2 domain (exon 3) of MHC class I and the beta-2 (exon 3) and beta-3 domains (exon 4) of MHC class II B gene in the German mirror common carp (Cyprinus carpio L.). We analyzed the three loci in a population of 65 individuals that had suffered the serious disease of gill rot. Five to six variable nucleotide sites and two to six variable amino acid sites (71.43%) were detected in the exon sequence of the sampled populations, indicating that many of them corresponded to amino acids involved in antigen recognition. Deviation from Hardy-Weinberg equilibrium and linkage disequilibrium were differentially found in some loci, which will be important for further study of disease resistance/susceptibility and population evolution.

  18. Sequence, expression, and polymorphism of the Peromyscus leucopus Mhc class Ib gene, M4.

    PubMed

    Crew, Mark D; Bates, Linda M

    2003-05-01

    The H2 M region harbors about 20 class I genes or gene fragments the function of which are largely obscure. The rat Mhc ( RT1) appears to contain several orthologs of H2 M region genes although orthologs in more distantly related species have yet to be clearly identified. In this report, the sequence of a genomic clone containing a Peromyscus leucopus Mhc ( Pele) class I gene is presented and based on sequence similarity was found to be the Pele ortholog of H2-M4. Unlike H2-M4, which is a pseudogene, PeleM4 appeared to be an intact Mhc class Ib gene. Appropriately splice PeleM4 mRNA transcripts were detected in the liver, lung, and thymus. Polymorphism of PeleM4 was examined by sequencing exon 2 and 3 of the PeleM4 gene from seven different Pele haplotypes and six PeleM4 alleles were identified. These results suggest that the existence of some H2 M region class Ib genes predates the divergence of Peromyscus and Mus genera which occurred 40-60 million years ago and provide an example of unique pathways in the evolution of Mhc class Ib genes.

  19. Extensive sharing of MHC class II alleles between rhesus and cynomolgus macaques.

    PubMed

    Doxiadis, Gaby G M; Rouweler, Annemiek J M; de Groot, Natasja G; Louwerse, Annet; Otting, Nel; Verschoor, Ernst J; Bontrop, Ronald E

    2006-05-01

    In contrast to rhesus monkeys, substantial knowledge on cynomolgus monkey major histocompatibility complex (MHC) class II haplotypes is lacking. Therefore, 17 animals, including one pedigreed family, were thoroughly characterized for polymorphic Mhc class II region genes as well as their mitochondrial DNA (mtDNA) sequences. Different cynomolgus macaque populations appear to exhibit unique mtDNA profiles reflecting their geographic origin. Within the present panel, 10 Mafa-DPB1, 14 Mafa-DQA1, 12 Mafa-DQB1, and 35 Mafa-DRB exon 2 sequences were identified. All of these alleles cluster into lineages that were previously described for rhesus macaques. Moreover, about half of the Mafa-DPB1, Mafa-DQA1, and Mafa-DQB1 alleles and one third of the Mafa-DRB exon 2 sequences are identical to rhesus macaque orthologues. Such a high level of Mhc class II allele sharing has not been reported for primate species. Pedigree analysis allowed the characterization of nine distinct Mafa class II haplotypes, and seven additional ones could be deduced. Two of these haplotypes harbor a duplication of the Mafa-DQB1 locus. Despite extensive allele sharing, rhesus and cynomolgus monkeys do not appear to possess identical Mhc class II haplotypes, thus illustrating that new haplotypes were generated after speciation by recombination-like processes.

  20. Comparison of the transcriptional regulation of classical and non-classical MHC class II genes.

    PubMed

    Hake, Sandra B; Tobin, Helen M; Steimle, Viktor; Denzin, Lisa K

    2003-09-01

    The class II transactivator (CIITA) regulates expression of the classical and non-classical MHC class II genes, HLA-DR, -DP, -DQ and -DM, but not the B cell-specific HLA-DO (DO). Here we show that only HLA-DR expression is completely dependent on CIITA, since residual expression of HLA-DM, -DP and the beta chain of DQ was observed in CIITA-deficient RJ2.2.5 cells. Although DO shows a unique expression pattern compared to other MHC class II genes, prolonged IFN-gamma treatment of HeLa cells induced DOB expression. Similar to all MHC class II promoters, the DOB promoter contains the highly conserved W, X1, and Y boxes in addition to a putative OCT box. Mutational analysis of the DOB promoter demonstrated that the X1, Y and OCT boxes are necessary for maximum promoter activity.Furthermore, our results demonstrate that CREB-1, RFXANK and Oct-2 occupy the DOB promoter in vivo, However, CIITA and Bob-1 were only minimally recruited. Finally, fusion of Bjab, a DOB-negative B cell line, with.174 B cells that lack the complete MHC class II region (including the DO genes), lead to DO expression. These data indicate that the expression of DO is regulated by an unidentified factor in B cells.

  1. MHC Class I-Related Antigen-Processing Machinery Component Defects in Feline Mammary Carcinoma1

    PubMed Central

    Favole, Alessandra; Cascio, Paolo; Cerruti, Fulvia; Sereno, Alessandra; Tursi, Massimiliano; Tomatis, Alessandro; Beffa, Cristina Della; Ferrone, Soldano; Bollo, Enrico

    2012-01-01

    Defects in HLA class I antigen-processing machinery (APM) component expression and/or function are frequent in human tumors. These defects may provide tumor cells with a mechanism to escape from recognition and destruction by HLA class I antigen-restricted, tumor antigen-specific cytotoxic T cells. However, expression and functional properties of MHC class I antigens and APM components in malignant cells in other animal species have been investigated to a limited extent. However, this information can contribute to our understanding of the mechanisms underlying the association of MHC class I antigen and APM component defects with malignant transformation of cells and to identify animal models to validate targeted therapies to correct these defects. To overcome this limitation in the present study, we have investigated the expression of the catalytic subunits of proteasome (Y, X, and Z) and of immunoproteasome (LMP2, LMP7, and LMP10) as well as of MHC class I heavy chain (HC) in 25 primary feline mammary carcinomas (FMCs) and in 23 matched healthy mammary tissues. We found a reduced expression of MHC class I HC and of LMP2 and LMP7 in tumors compared with normal tissues. Concordantly, proteasomal cleavage specificities in extracts from FMCs were different from those in healthy tissues. In addition, correlation analysis showed that LMP2 and LMP7 were concordantly expressed in FMCs, and their expression was significantly correlated with that of MHC class I HC. The abnormalities we have found in the APM in FMCs may cause a defective processing of some tumor antigens. PMID:22348176

  2. Spectrum of MHC Class II Variability in Darwin’s Finches and Their Close Relatives

    PubMed Central

    Sato, Akie; Tichy, Herbert; Grant, Peter R.; Grant, B. Rosemary; Sato, Tetsuji; O’hUigin, Colm

    2011-01-01

    The study describes >400 major histocompatibility complex (MHC) class II B exon 2 and 114 intron 2 sequences of 36 passerine bird species, 13 of which belong to the group of Darwin’s finches (DFs) and the remaining 23 to close or more distant relatives of DFs in Central and South America. The data set is analyzed by a combination of judiciously selected statistical methods. The analysis reveals that reliable information concerning MHC organization, including the assignment of sequences to loci, and evolution, as well as the process of species divergence, can be obtained in the absence of genomic sequence data, if the analysis is taken several steps beyond the standard phylogenetic tree construction approach. The main findings of the present study are these: The MHC class II B region of the passerine birds is as elaborate in its organization, divergence, and genetic diversity as the MHC of the eutherian mammals, specifically the primates. Hence, the reported simplicity of the fowl MHC is an oddity. With the help of appropriate markers, the divergence of the MHC genes can be traced deep in the phylogeny of the bird taxa. Transspecies polymorphism is rampant at many of the bird MHC loci. In this respect, the DFs behave as if they were a single, genetically undifferentiated population. There is thus far no indication of alleles that could be considered species, genus, or even DF group specific. The implication of these findings is that DFs are in the midst of adaptive radiations, in which morphological differentiation into species is running ahead of genetic differentiation in genetic systems such as the MHC or the mitochondrial DNA. The radiations are so young that there has not been enough time to sort out polymorphisms at most of the loci among the morphologically differentiating species. These findings parallel those on Lake Victoria haplochromine fishes. Several of the DF MHC allelic lineages can be traced back to the MHC genes of the species Tiaris obscura

  3. Tolerance to solid organ transplants through transfer of MHC class II genes

    PubMed Central

    Sonntag, Kai-C.; Emery, David W.; Yasumoto, Akihiko; Haller, Gary; Germana, Sharon; Sablinski, Tomasz; Shimizu, Akira; Yamada, Kazuhiko; Shimada, Hideaki; Arn, Scott; Sachs, David H.; LeGuern, Christian

    2001-01-01

    Donor/recipient MHC class II matching permits survival of experimental allografts without permanent immunosuppression, but is not clinically applicable due to the extensive polymorphism of this locus. As an alternative, we have tested a gene therapy approach in a preclinical animal model to determine whether expression of allogeneic class II transgenes (Tg’s) in recipient bone marrow cells would allow survival of subsequent Tg-matched renal allografts. Somatic matching between donor kidney class II and the recipient Tg’s, in combination with a short treatment of cyclosporine A, prolonged graft survival with DR and promoted tolerance with DQ. Class II Tg expression in the lymphoid lineage and the graft itself were sequentially implicated in this tolerance induction. These results demonstrate the potential of MHC class II gene transfer to permit tolerance to solid organ allografts. PMID:11134181

  4. An MHC Class I Immune Evasion Gene of Marek's Disease Virus

    USDA-ARS?s Scientific Manuscript database

    Marek’s Disease Virus (MDV) is a widespread pathogen of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to MHC class I down-regulation (Virology 282:198–205 (2001)), but the gene(s)involved have not been identified. Here we demonstrate tha...

  5. AN MHC class I immune evasion gene of Marek's disease virus

    USDA-ARS?s Scientific Manuscript database

    Marek's disease virus (MDV) is a widespread a-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here...

  6. Variation in MHC class II B genes in marbled murrelets: implications for delineating conservation units

    Treesearch

    C. Vásquez-Carrillo; V. Friesen; L. Hall; M.Z. Peery

    2013-01-01

    Conserving genetic variation is critical for maintaining the evolutionary potential and viability of a species. Genetic studies seeking to delineate conservation units, however, typically focus on characterizing neutral genetic variation and may not identify populations harboring local adaptations. Here, variation at two major histocompatibility complex (MHC) class II...

  7. Tolerance to MHC class II disparate allografts through genetic modification of bone marrow

    PubMed Central

    Jindra, Peter T.; Tripathi, Sudipta; Tian, Chaorui; Iacomini, John; Bagley, Jessamyn

    2012-01-01

    Induction of molecular chimerism through genetic modification of bone marrow is a powerful tool for the induction of tolerance. Here we demonstrate for the first time that expression of an allogeneic MHC class II gene in autologous bone marrow cells, resulting in a state of molecular chimerism, induces tolerance to MHC class II mismatched skin grafts, a stringent test of transplant tolerance. Reconstitution of recipients with syngeneic bone marrow transduced with retrovirus encoding H-2I-Ab (I-Ab) resulted the long-term expression of the retroviral gene product on the surface of MHC class II-expressing bone marrow derived cell types. Mechanistically, tolerance was maintained by the presence of regulatory T cells, which prevented proliferation and cytokine production by alloreactive host T cells. Thus, the introduction of MHC class II genes into bone marrow derived cells through genetic engineering results in tolerance. These results have the potential to extend the clinical applicability of molecular chimerism for tolerance induction. PMID:22833118

  8. Spatial-Temporal Expression of Non-classical MHC Class I Molecules in the C57 Mouse Brain.

    PubMed

    Liu, Jiane; Shen, Yuqing; Li, Mingli; Lv, Dan; Zhang, Aifeng; Peng, Yaqin; Miao, Fengqin; Zhang, Jianqiong

    2015-07-01

    Recent studies clearly demonstrate major histocompatibility complex (MHC) class I expression in the brain plays an important functional role in neural development and plasticity. A previous study from our laboratory demonstrated the temporal and spatial expression patterns of classical MHC class I molecules in the brain of C57 mice. Studies regarding non-classical MHC class I molecules remain limited. Here we examine the expression of non-classical MHC class I molecules in mouse central nervous system (CNS) during embryonic and postnatal developmental stages using in situ hybridization and immunofluorescence. We find non-classical MHC class I molecules, M3/T22/Q1, are expressed in the cerebral cortex, neuroepithelium of the lateral ventricle, neuroepithelium of aquaeductus and developing cerebellum during embryonic developmental stages. During the postnatal period from P0 to adult, non-classical MHC class I mRNAs are detected in olfactory bulb, hippocampus, cerebellum and some nerve nuclei. Overall, the expression patterns of non-classical MHC class I molecules are similar to those of classical MHC class I molecules in the developing mouse brain. In addition, non-classical MHC class I molecules are present in the H2-K(b) and H2-D(b) double knock-out mice where their expression levels are greatly increased within the same locations as compared to wild type mice. The elucidation and discovery of the expression profile of MHC class I molecules during development is important for supporting an enhanced understanding of their physiological and potential pathological roles within the CNS.

  9. Characterization and expression of MHC class II alpha and II beta genes in mangrove red snapper (Lutjanus argentimaculatus).

    PubMed

    Wang, Tianyan; Tan, Shangjin; Cai, Zhonghua

    2015-12-01

    The major histocompatibility complex (MHC) class II plays a key role in adaptive immunity by presenting foreign peptides to CD4(+) T cells and by triggering the adaptive immune response. While the structure and function of MHC class II have been well characterized in mammalian, limited research has been done on fishes. In this study, we characterized the gene structure and expression of MHC class II α (Lunar-DAA) and II β (Lunar-DAB) of mangrove red snapper (Lutjanus argentimaculatus). Both genes shared, respectively, a high similarity and typical features with other vertebrate MHC class II α and II β. The phylogenetic analysis of the deduced peptides revealed that both Lunar-DAA and Lunar-DAB were located in the teleost subclass. Western blotting analyses indicated that both MHC class II α and II β were expressed ubiquitously in immune-related cells, tissues and organs, and that MHC class II α and II β chains existed mainly as heterodimers. While it was highly expressed in gills, thymus, head kidney (HK), spleen, head kidney macrophage and spleen leucocytes, MHC class II β chain was expressed with a low abundance in skin, intestine, stomach and heart. The highest expression of MHC class II β in thymus confirmed the conclusion that thymus is one of the primary lymphoid organs in fishes. The detection of MHC class II αβ dimers in HK macrophages and spleen leucocytes indicated that HK macrophages and spleen leucocytes play a critical role in the adaptive immunity in fishes. All these results provide valuable information for understanding the structure of MHC class II α and II β and their function in immune responses.

  10. Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7.

    PubMed

    Bakker, Arnold H; Hoppes, Rieuwert; Linnemann, Carsten; Toebes, Mireille; Rodenko, Boris; Berkers, Celia R; Hadrup, Sine Reker; van Esch, Wim J E; Heemskerk, Mirjam H M; Ovaa, Huib; Schumacher, Ton N M

    2008-03-11

    Major histocompatibility complex (MHC) class I multimer technology has become an indispensable immunological assay system to dissect antigen-specific cytotoxic CD8(+) T cell responses by flow cytometry. However, the development of high-throughput assay systems, in which T cell responses against a multitude of epitopes are analyzed, has been precluded by the fact that for each T cell epitope, a separate in vitro MHC refolding reaction is required. We have recently demonstrated that conditional ligands that disintegrate upon exposure to long-wavelength UV light can be designed for the human MHC molecule HLA-A2. To determine whether this peptide-exchange technology can be developed into a generally applicable approach for high throughput MHC based applications we set out to design conditional ligands for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Here, we describe the development and characterization of conditional ligands for this set of human MHC molecules and apply the peptide-exchange technology to identify melanoma-associated peptides that bind to HLA-A3 with high affinity. The conditional ligand technology developed here will allow high-throughput MHC-based analysis of cytotoxic T cell immunity in the vast majority of Western European individuals.

  11. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.

    PubMed

    Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten

    2008-07-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.

  12. Horse cDNA clones encoding two MHC class I genes

    SciTech Connect

    Barbis, D.P.; Maher, J.K.; Stanek, J.; Klaunberg, B.A.; Antczak, D.F.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  13. Three Novel Downstream Promoter Elements Regulate MHC Class I Promoter Activity in Mammalian Cells

    PubMed Central

    Lee, Namhoon; Iyer, Shankar S.; Mu, Jie; Weissman, Jocelyn D.; Ohali, Anat; Howcroft, T. Kevin; Lewis, Brian A.; Singer, Dinah S.

    2010-01-01

    Background MHC class I transcription is regulated by two distinct types of regulatory pathways: 1) tissue-specific pathways that establish constitutive levels of expression within a given tissue and 2) dynamically modulated pathways that increase or decrease expression within that tissue in response to hormonal or cytokine mediated stimuli. These sets of pathways target distinct upstream regulatory elements, have distinct basal transcription factor requirements, and utilize discrete sets of transcription start sites within an extended core promoter. Methodology/Principal Findings We studied regulatory elements within the MHC class I promoter by cellular transfection and in vitro transcription assays in HeLa, HeLa/CIITA, and tsBN462 of various promoter constructs. We have identified three novel MHC class I regulatory elements (GLE, DPE-L1 and DPE-L2), located downstream of the major transcription start sites, that contribute to the regulation of both constitutive and activated MHC class I expression. These elements located at the 3′ end of the core promoter preferentially regulate the multiple transcription start sites clustered at the 5′ end of the core promoter. Conclusions/Significance Three novel downstream elements (GLE, DPE-L1, DPE-L2), located between +1 and +32 bp, regulate both constitutive and activated MHC class I gene expression by selectively increasing usage of transcription start sites clustered at the 5′ end of the core promoter upstream of +1 bp. Results indicate that the downstream elements preferentially regulate TAF1-dependent, relative to TAF1-independent, transcription. PMID:21179443

  14. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism.

    PubMed

    Eimes, John A; Townsend, Andrea K; Sepil, Irem; Nishiumi, Isao; Satta, Yoko

    2015-01-01

    A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of

  15. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism

    PubMed Central

    Townsend, Andrea K.; Sepil, Irem; Nishiumi, Isao; Satta, Yoko

    2015-01-01

    A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of

  16. Very high MHC Class IIB diversity without spatial differentiation in the mediterranean population of greater Flamingos.

    PubMed

    Gillingham, Mark A F; Béchet, Arnaud; Courtiol, Alexandre; Rendón-Martos, Manuel; Amat, Juan A; Samraoui, Boudjéma; Onmuş, Ortaç; Sommer, Simone; Cézilly, Frank

    2017-02-20

    Selective pressure from pathogens is thought to shape the allelic diversity of major histocompatibility complex (MHC) genes in vertebrates. In particular, both local adaptation to pathogens and gene flow are thought to explain a large part of the intraspecific variation observed in MHC allelic diversity. To date, however, evidence that adaptation to locally prevalent pathogens maintains MHC variation is limited to species with limited dispersal and, hence, reduced gene flow. On the one hand high gene flow can disrupt local adaptation in species with high dispersal rates, on the other hand such species are much more likely to experience spatial variation in pathogen pressure, suggesting that there may be intense pathogen mediated selection pressure operating across breeding sites in panmictic species. Such pathogen mediated selection pressure operating across breeding sites should therefore be sufficient to maintain high MHC diversity in high dispersing species in the absence of local adaptation mechanisms. We used the Greater Flamingo, Phoenicopterus roseus, a long-lived colonial bird showing a homogeneous genetic structure of neutral markers at the scale of the Mediterranean region, to test the prediction that higher MHC allelic diversity with no population structure should occur in large panmictic populations of long-distance dispersing birds than in other resident species. We assessed the level of allelic diversity at the MHC Class IIB exon 2 from 116 individuals born in four different breeding colonies of Greater Flamingo in the Mediterranean region. We found one of the highest allelic diversity (109 alleles, 2 loci) of any non-passerine avian species investigated so far relative to the number of individuals and loci genotyped. There was no evidence of population structure between the four major Mediterranean breeding colonies. Our results suggest that local adaptation at MHC Class IIB in Greater Flamingos is constrained by high gene flow and high MHC diversity

  17. Characterisation of class II B MHC genes from a ratite bird, the little spotted kiwi (Apteryx owenii).

    PubMed

    Miller, Hilary C; Bowker-Wright, Gemma; Kharkrang, Marie; Ramstad, Kristina

    2011-04-01

    Major histocompatibility complex (MHC) genes are important for vertebrate immune response and typically display high levels of diversity due to balancing selection from exposure to diverse pathogens. An understanding of the structure of the MHC region and diversity among functional MHC genes is critical to understanding the evolution of the MHC and species resilience to disease exposure. In this study, we characterise the structure and diversity of class II MHC genes in little spotted kiwi Apteryx owenii, a ratite bird representing the basal avian lineage (paleognaths). Results indicate that little spotted kiwi have a more complex MHC structure than that of other non-passerine birds, with at least five class II MHC genes, three of which are expressed and likely to be functional. Levels of MHC variation among little spotted kiwi are extremely low, with 13 birds assayed having nearly identical MHC genotypes (only two genotypes containing four alleles, three of which are fixed). These results suggest that recent genetic drift due to a species-wide bottleneck of at most seven birds has overwhelmed past selection for high MHC diversity in little spotted kiwi, potentially leaving the species highly susceptible to disease.

  18. Expressed MHC class II genes in sea otters (Enhydra lutris) from geographically disparate populations.

    PubMed

    Bowen, L; Aldridge, B M; Miles, A K; Stott, J L

    2006-05-01

    The major histocompatibility complex (MHC) is central to maintaining the immunologic vigor of individuals and populations. Classical MHC class II genes were targeted for partial sequencing in sea otters (Enhydra lutris) from populations in California, Washington, and Alaska. Sequences derived from sea otter peripheral blood leukocyte mRNAs were similar to those classified as DQA, DQB, DRA, and DRB in other species. Comparisons of the derived amino acid compositions supported the classification of these as functional molecules from at least one DQA, DQB, and DRA locus and at least two DRB loci. While limited in scope, phylogenetic analysis of the DRB peptide-binding region suggested the possible existence of distinct clades demarcated by geographic region. These preliminary findings support the need for additional MHC gene sequencing and expansion to a comprehensive study targeting additional otters.

  19. Expressed MHC class II genes in sea otters (Enhydra lutris) from geographically disparate populations

    USGS Publications Warehouse

    Bowen, L.; Aldridge, B.M.; Miles, A.K.; Stott, J.L.

    2006-01-01

    The major histocompatibility complex (MHC) is central to maintaining the immunologic vigor of individuals and populations. Classical MHC class II genes were targeted for partial sequencing in sea otters (Enhydra lutris) from populations in California, Washington, and Alaska. Sequences derived from sea otter peripheral blood leukocyte mRNAs were similar to those classified as DQA, DQB, DRA, and DRB in other species. Comparisons of the derived amino acid compositions supported the classification of these as functional molecules from at least one DQA, DQB, and DRA locus and at least two DRB loci. While limited in scope, phylogenetic analysis of the DRB peptide-binding region suggested the possible existence of distinct clades demarcated by geographic region. These preliminary findings support the need for additional MHC gene sequencing and expansion to a comprehensive study targeting additional otters. ?? 2006 Blackwell Munksgaard.

  20. Influence of kinship and MHC class II genotype on visual traits in zebrafish larvae (Danio rerio).

    PubMed

    Hinz, Cornelia; Gebhardt, Katharina; Hartmann, Alexander K; Sigman, Lauren; Gerlach, Gabriele

    2012-01-01

    Kin recognition can drive kin selection and the evolution of social behaviour. In zebrafish (Danio rerio, Hamilton 1822), kin recognition is based on olfactory and visual imprinting processes. If larvae are exposed to visual and chemical cues of kin at day 5 and 6 post fertilization they will recognize kin throughout life, while exposure to non-kin fails to trigger any recognition. Chemical imprinting signals are transcribed by polymorphic genes of the major histocompatibility complex (MHC) code; however, the underlying mechanism for visual imprinting remains unclear. Here we provide evidence for the existence of family-specific differences in morphometry and pigmentation pattern of six day old zebrafish larvae. While rump, tail and body pigmentation were dependent on relatedness, iris pigmentation and morphometry were also influenced by MHC class II genotype. Our study revealed that the MHC not only influences the chemical signature of individuals, but also their visual appearance.

  1. Constitutive MHC class I molecules negatively regulate TLR-triggered inflammatory responses via the Fps-SHP-2 pathway.

    PubMed

    Xu, Sheng; Liu, Xingguang; Bao, Yan; Zhu, Xuhui; Han, Chaofeng; Zhang, Peng; Zhang, Xuemin; Li, Weihua; Cao, Xuetao

    2012-04-22

    The molecular mechanisms that fine-tune Toll-like receptor (TLR)-triggered innate inflammatory responses remain to be fully elucidated. Major histocompatibility complex (MHC) molecules can mediate reverse signaling and have nonclassical functions. Here we found that constitutively expressed membrane MHC class I molecules attenuated TLR-triggered innate inflammatory responses via reverse signaling, which protected mice from sepsis. The intracellular domain of MHC class I molecules was phosphorylated by the kinase Src after TLR activation, then the tyrosine kinase Fps was recruited via its Src homology 2 domain to phosphorylated MHC class I molecules. This led to enhanced Fps activity and recruitment of the phosphatase SHP-2, which interfered with TLR signaling mediated by the signaling molecule TRAF6. Thus, constitutive MHC class I molecules engage in crosstalk with TLR signaling via the Fps-SHP-2 pathway and control TLR-triggered innate inflammatory responses.

  2. Species-specific evolution of class I MHC genes in iguanas (order: Squamata; subfamily: Iguaninae).

    PubMed

    Glaberman, Scott; Caccone, Adalgisa

    2008-07-01

    Over the last few decades, the major histocompatibility complex (MHC) has emerged as a model for understanding the influence of natural selection on genetic diversity in populations as well as for investigating the genetic basis of host resistance to pathogens. However, many vertebrate taxa remain underrepresented in the field of MHC research, preventing its application to studies of disease, evolution, and conservation genetics in these groups. This is particularly true for squamates, which are by far the most diversified order of non-avian reptiles but have not been the subject of any recent MHC studies. In this paper, we present MHC class I complementary DNA data from three squamate species in the subfamily Iguaninae (iguanas): the Galápagos marine iguana (Amblyrhynchus cristatus), the Galápagos land iguana (Conolophus subcristatus), and the green iguana (Iguana iguana). All sequences obtained are related to the few published class I genes from other squamates. There is evidence for multiple loci in each species, and the conserved alpha-3 domain appears to be evolving in a species-specific manner. Conversely, there is some indication of shared polymorphism between species in the peptide-binding alpha-1 and alpha-2 domains, suggesting that these two regions have different phylogenetic histories. The great similarity between alpha-3 sequences in marine iguanas in particular suggests that concerted evolution is acting to homogenize class I loci within species. However, while less likely, the data are also compatible with a birth and death model of evolution.

  3. Overexpression of MHC Class I Heavy Chain Protein in Young Skeletal Muscle Leads to Severe Myositis

    PubMed Central

    Li, Charles Kwok-chong; Knopp, Paul; Moncrieffe, Halima; Singh, Bhanu; Shah, Sonia; Nagaraju, Kanneboyina; Varsani, Hemlata; Gao, Bin; Wedderburn, Lucy R.

    2009-01-01

    Folding and transport of proteins, such as major histocompatibility complex (MHC) class I, through the endoplasmic reticulum (ER) is tightly regulated in all cells, including muscle tissue, where the specialized ER sarcoplasmic reticulum is also critical to muscle fiber function. Overexpression of MHC class I protein is a common feature of many muscle pathologies including idiopathic myositis and can induce ER stress. However, there has been no comparison of the consequences of MHC overexpression in muscle at different ages. We have adapted a transgenic model of myositis induced by overexpression of MHC class I protein in skeletal muscle to investigate the effects of this protein overload on young muscle fibers, as compared with adult tissue. We find a markedly more severe disease phenotype in young mice, with rapid onset of muscle weakness and pathology. Gene expression profiling to compare the two models indicates rapid onset of ER stress in young muscle tissue but also that gene expression of key muscle structural proteins is affected more rapidly in young mice than adults after this insult. This novel model has important implications for our understanding of muscle pathology in dermatomyositis of both adults and children. PMID:19700752

  4. Young Alu insertions within the MHC class I region in native American populations: insights into the origin of the MHC-Alu repeats.

    PubMed

    Gómez-Pérez, Luis; Alfonso-Sánchez, Miguel A; Dipierri, José E; Sánchez, Dora; Espinosa, Ibone; De Pancorbo, Marian M; Peña, José A

    2013-01-01

    Genetic heterogeneity of two Amerindian populations (Jujuy province, Argentina, and Waorani tribe, Ecuador) was characterized by analyzing data on polymorphic Alu insertions within the human major histocompatibility complex (MHC) class I region (6p21.31), which are completely nonexistent in Native Americans. We further evaluated the haplotype distribution and genetic diversity among continental ancestry groups and their potential implications for the dating of the origin of MHC-Alus. Five MHC-Alu elements (AluMicB, AluTF, AluHJ, AluHG, and AluHF) were typed in samples from Jujuy (N = 108) and Waorani (N = 36). Allele and haplotype frequency data on worldwide populations were compiled to explore spatial structuring of the MHC-Alu diversity through AMOVA tests. We utilized the median-joining network approach to illustrate the continental distribution of the MHC-Alu haplotypes and their phylogenetic relationships. Allele and haplotype distributions differed significantly between Jujuy and Waorani. The Waorani featured a low average heterozygosity attributable to strong population isolation. Overall, Alu markers showed great genetic heterogeneity both within and among populations. The haplotype distribution was distinctive of each continental ancestry group. Contrary to expectations, Africans showed the lowest MHC-Alu diversity. Genetic drift mainly associated to population bottlenecks seems to be reflected in the low MHC-Alu diversity of the Amerindians, mainly in Waorani. Geographical structuring of the haplotype distribution supports the efficiency of the MHC-Alu loci as lineage (ancestry) markers. The markedly low Alu diversity of African populations relative to other continental clusters suggests that these MHC-Alus might have arisen after the anatomically modern humans expanded out of Africa. Copyright © 2013 Wiley Periodicals, Inc.

  5. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes

    USGS Publications Warehouse

    Jarvi, S.I.; Goto, R.M.; Gee, G.F.; Briles, W.E.; Miller, M.M.

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbgl and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of '-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  6. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation

    PubMed Central

    Bataille, Arnaud; Cashins, Scott D.; Grogan, Laura; Skerratt, Lee F.; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A.; Macris, Amy; Harlow, Peter S.; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-01-01

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal. PMID:25808889

  7. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation.

    PubMed

    Bataille, Arnaud; Cashins, Scott D; Grogan, Laura; Skerratt, Lee F; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A; Macris, Amy; Harlow, Peter S; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-04-22

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.

  8. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes.

    PubMed

    Jarvi, S I; Goto, R M; Gee, G F; Briles, W E; Miller, M M

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbg1 and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of alpha-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  9. High-throughput engineering and analysis of peptide binding to class II MHC

    PubMed Central

    Jiang, Wei; Boder, Eric T.

    2010-01-01

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity. PMID:20622157

  10. Large-scale MHC class II genotyping of a wild lemur population by next generation sequencing.

    PubMed

    Huchard, Elise; Albrecht, Christina; Schliehe-Diecks, Susanne; Baniel, Alice; Roos, Christian; Kappeler, Peter M; Peter, Peter M Kappeler; Brameier, Markus

    2012-12-01

    The critical role of major histocompatibility complex (MHC) genes in disease resistance, along with their putative function in sexual selection, reproduction and chemical ecology, make them an important genetic system in evolutionary ecology. Studying selective pressures acting on MHC genes in the wild nevertheless requires population-wide genotyping, which has long been challenging because of their extensive polymorphism. Here, we report on large-scale genotyping of the MHC class II loci of the grey mouse lemur (Microcebus murinus) from a wild population in western Madagascar. The second exons from MHC-DRB and -DQB of 772 and 672 individuals were sequenced, respectively, using a 454 sequencing platform, generating more than 800,000 reads. Sequence analysis, through a stepwise variant validation procedure, allowed reliable typing of more than 600 individuals. The quality of our genotyping was evaluated through three independent methods, namely genotyping the same individuals by both cloning and 454 sequencing, running duplicates, and comparing parent-offspring dyads; each displaying very high accuracy. A total of 61 (including 20 new) and 60 (including 53 new) alleles were detected at DRB and DQB genes, respectively. Both loci were non-duplicated, in tight linkage disequilibrium and in Hardy-Weinberg equilibrium, despite the fact that sequence analysis revealed clear evidence of historical selection. Our results highlight the potential of 454 sequencing technology in attempts to investigate patterns of selection shaping MHC variation in contemporary populations. The power of this approach will nevertheless be conditional upon strict quality control of the genotyping data.

  11. Human cytomegalovirus US3 modulates destruction of MHC class I molecules.

    PubMed

    Noriega, Vanessa M; Hesse, Julia; Gardner, Thomas J; Besold, Katrin; Plachter, Bodo; Tortorella, Domenico

    2012-06-01

    Human cytomegalovirus (HCMV), a member of the Herpesviridae family, is proficient at establishing lifelong persistence within the host in part due to immune modulating genes that limit immune recognition. HCMV encodes at least five glycoproteins within its unique short (US) genomic region that interfere with MHC class I antigen presentation, thus hindering viral clearance by cytotoxic T lymphocytes (CTL). Specifically, US3 retains class I within the endoplasmic reticulum (ER), while US2 and US11 induce class I heavy chain destruction. A cooperative effect on class I down-regulation during stable expression of HCMV US2 and US3 has been established. To address the impact of US3 on US11-mediated MHC class I down-regulation, the fate of class I molecules was examined in US3/US11-expressing cells and virus infection studies. Co-expression of US3 and US11 resulted in a decrease of surface expression of class I molecules. However, the class I molecules in US3/US11 cells were mostly retained in the ER with an attenuated rate of proteasome destruction. Analysis of class I levels from virus-infected cells using HCMV variants either expressing US3 or US11 revealed efficient surface class I down-regulation upon expression of both viral proteins. Cells infected with both US3 and US11 expressing viruses demonstrate enhanced retention of MHC class I complexes within the ER. Collectively, the data suggests a paradigm where HCMV-induced surface class I down-regulation occurs by diverse mechanisms dependent on the expression of specific US genes. These results validate the commitment of HCMV to limiting the surface expression of class I levels during infection.

  12. Intracellular Assembly and Trafficking of MHC Class I Molecules

    PubMed Central

    Donaldson, Julie G.; Williams, David B.

    2009-01-01

    The presentation of antigenic peptides by class I molecules of the major histocompatibility complex begins in the endoplasmic reticulum where the coordinated action of molecular chaperones, folding enzymes and class I-specific factors ensure that class I molecules are loaded with high affinity peptide ligands that will survive prolonged display at the cell surface. Once assembled, class I molecules are released from the quality control machinery of the ER for export to the plasma membrane where they undergo dynamic endocytic cycling and turnover. We review recent progress in our understanding of class I assembly, anterograde transport and endocytosis and highlight some of the events targeted by viruses as a means to evade detection by cytotoxic T cells and natural killer cells. PMID:19761542

  13. MHC class I of saltwater crocodiles (Crocodylus porosus): polymorphism and balancing selection.

    PubMed

    Jaratlerdsiri, Weerachai; Isberg, Sally R; Higgins, Damien P; Gongora, Jaime

    2012-11-01

    Saltwater crocodiles are in high demand for the production of luxury fashion items. However, their susceptibility to disease incurs substantial losses and it is hoped to be able to genetically select these animals for disease resistance. So far, this has only been enabled by phenotypic selection. Investigating the major histocompatibility complex (MHC) could provide insight into the ability of an individual to respond to pathogens acting as a selective pressure on the host. Here, we assessed genetic diversity and a role of selection in shaping the diversity of MHC class I exon 3 among 42 saltwater crocodiles from nine river basins in the Northern Territory, Australia. We generated 640 sequences using cloning and sequencing methods and identified 43 MHC variants among them. Phylogenetic analyses clustered these variants into two major clades, which may suggest two gene lineages. We found the number of variants within an individual varying between one and seven, indicating that there are at least four gene loci in this species. Selection detection analyses revealed an elevated ratio of nonsynonymous to synonymous substitutions (mean = 1.152 per codon), suggesting balancing selection. Population differentiation analyses revealed that the MHC did not show structuring among the river basins, and there were some shared variants among them. This may be a result of possible gene flow and/or similar selection pressures among populations. These findings provide background knowledge to identify potential MHC markers, which could be used for selecting genetically variable individuals for future disease associations. All MHC class I exon 3 sequences reported in this paper were submitted to the GenBank database with following accession numbers: HQ008785-HQ008789, HQ008791-HQ008798, HQ008808-HQ008815, HQ008824, HQ008826-HQ008830, HQ008835, HQ008839, HQ008842-HQ008850, and JX023536-JX023540.

  14. Independent evolution of functional MHC class II DRB genes in New World bat species.

    PubMed

    Schad, Julia; Voigt, Christian C; Greiner, Sabine; Dechmann, Dina K N; Sommer, Simone

    2012-07-01

    Genes of the major histocompatibility complex (MHC) play a pivotal role in the vertebrate immune system and are attractive markers for functional, fitness-related, genetic variation. Although bats (Chiroptera) represent the second largest mammalian order and are prone to various emerging infectious diseases, little is known about MHC evolution in bats. In the present study, we examined expressed MHC class II DRB sequences (exons 1 to 4) of New World bat species, Saccopteryx bilineata, Carollia perspicillata, Noctilio albiventris and Noctilio leporinus (only exon 2). We found a wide range of copy number variation of DRB loci with one locus detected in the genus Noctilio and up to ten functional loci observed in S. bilineata. Sequence variation between alleles of the same taxa was high with evidence for positive selection. We found statistical support for recombination or gene conversion events among sequences within the same but not between bat species. Phylogenetic relationships among DRB alleles provided strong evidence for independent evolution of the functional MHC class II DRB genes in the three investigated species, either by recent gene duplication, or homogenization of duplicated loci by frequent gene conversion events. Phylogenetic analysis of all available chiropteran DRB exon 2 sequences confirmed their monophyletic origin within families, but revealed a possible trans-species mode of evolution pattern in congeneric bat species, e.g. within the genera Noctilio and Myotis. This is the first study investigating phylogenetic relationships of MHC genes within bats and therefore contributes to a better understanding of MHC evolution in one of the most dominant mammalian order.

  15. Transport and quality control of MHC class I molecules in the early secretory pathway.

    PubMed

    Springer, Sebastian

    2015-06-01

    Folding and peptide binding of major histocompatibility complex (MHC) class I molecules have been thoroughly researched, but the mechanistic connection between these biochemical events and the progress of class I through the early secretory pathway is much less well understood. This review focuses on the question how the partially assembled forms of class I (which lack high-affinity peptide and/or the light chain beta-2 microglobulin) are retained inside the cell. Such investigations offer researchers exciting chances to understand the connections between class I structure, conformational dynamics, peptide binding kinetics and thermodynamics, intracellular transport, and antigen presentation.

  16. A Triad of Molecular Regions Contribute to the Formation of Two Distinct MHC Class II Conformers

    PubMed Central

    Drake, Lisa A.; Drake, James R.

    2016-01-01

    MHC class II molecules present antigen-derived peptides to CD4 T cells to drive the adaptive immune response. Previous work has established that class II αβ dimers can adopt two distinct conformations, driven by the differential pairing of transmembrane domain GxxxG dimerization motifs. These class II conformers differ in their ability to be loaded with antigen-derived peptide and to effectively engage CD4 T cells. Motif 1 (M1) paired I-Ak class II molecules are efficiently loaded with peptides derived from the processing of B cell receptor-bound antigen, have unique B cell signaling properties and high T cell stimulation activity. The 11-5.2 mAb selectively binds M1 paired I-Ak class II molecules. However, the molecular determinants of 11-5.2 binding are currently unclear. Here, we report the ability of a human class II transmembrane domain to drive both M1 and M2 class II conformer formation. Protease sensitivity analysis further strengthens the idea that there are conformational differences between the extracellular domains of M1 and M2 paired class II. Finally, MHC class II chain alignments and site directed mutagenesis reveals a triad of molecular regions that contributes to 11-5.2 mAb binding. In addition to transmembrane GxxxG motif domain pairing, 11-5.2 binding is influenced directly by α chain residue Glu-71 and indirectly by the region around the inter-chain salt bridge formed by α chain Arg-52 and β chain Glu-86. These findings provide insight into the complexity of 11-5.2 mAb recognition of the M1 paired I-Ak class II conformer and further highlight the molecular heterogeneity of peptide-MHC class II complexes that drive T cell antigen recognition. PMID:27148821

  17. Peptide-binding motifs of two common equine class I MHC molecules in Thoroughbred horses.

    PubMed

    Bergmann, Tobias; Lindvall, Mikaela; Moore, Erin; Moore, Eugene; Sidney, John; Miller, Donald; Tallmadge, Rebecca L; Myers, Paisley T; Malaker, Stacy A; Shabanowitz, Jeffrey; Osterrieder, Nikolaus; Peters, Bjoern; Hunt, Donald F; Antczak, Douglas F; Sette, Alessandro

    2017-05-01

    Quantitative peptide-binding motifs of MHC class I alleles provide a valuable tool to efficiently identify putative T cell epitopes. Detailed information on equine MHC class I alleles is still very limited, and to date, only a single equine MHC class I allele, Eqca-1*00101 (ELA-A3 haplotype), has been characterized. The present study extends the number of characterized ELA class I specificities in two additional haplotypes found commonly in the Thoroughbred breed. Accordingly, we here report quantitative binding motifs for the ELA-A2 allele Eqca-16*00101 and the ELA-A9 allele Eqca-1*00201. Utilizing analyses of endogenously bound and eluted ligands and the screening of positional scanning combinatorial libraries, detailed and quantitative peptide-binding motifs were derived for both alleles. Eqca-16*00101 preferentially binds peptides with aliphatic/hydrophobic residues in position 2 and at the C-terminus, and Eqca-1*00201 has a preference for peptides with arginine in position 2 and hydrophobic/aliphatic residues at the C-terminus. Interestingly, the Eqca-16*00101 motif resembles that of the human HLA A02-supertype, while the Eqca-1*00201 motif resembles that of the HLA B27-supertype and two macaque class I alleles. It is expected that the identified motifs will facilitate the selection of candidate epitopes for the study of immune responses in horses.

  18. The first step of peptide selection in antigen presentation by MHC class I molecules

    PubMed Central

    Garstka, Malgorzata A.; Fish, Alexander; Celie, Patrick H. N.; Joosten, Robbie P.; Janssen, George M. C.; Berlin, Ilana; Hoppes, Rieuwert; Stadnik, Magda; Janssen, Lennert; Ovaa, Huib; van Veelen, Peter A.; Perrakis, Anastassis; Neefjes, Jacques

    2015-01-01

    MHC class I molecules present a variable but limited repertoire of antigenic peptides for T-cell recognition. Understanding how peptide selection is achieved requires mechanistic insights into the interactions between the MHC I and candidate peptides. We find that, at first encounter, MHC I H-2Kb considers a wide range of peptides, including those with expanded N termini and unfitting anchor residues. Discrimination occurs in the second step, when noncanonical peptides dissociate with faster exchange rates. This second step exhibits remarkable temperature sensitivity, as illustrated by numerous noncanonical peptides presented by H-2Kb in cells cultured at 26 °C relative to 37 °C. Crystallographic analyses of H-2Kb–peptide complexes suggest that a conformational adaptation of H-2Kb drives the decisive step in peptide selection. We propose that MHC class I molecules consider initially a large peptide pool, subsequently refined by a temperature-sensitive induced-fit mechanism to retain the canonical peptide repertoire. PMID:25605945

  19. Characterization and evolution of MHC class II B genes in Ardeid birds.

    PubMed

    Li, Li; Zhou, Xiaopin; Chen, Xiaolin

    2011-06-01

    Major histocompatibility complex (MHC) is a multi-gene family that is very suitable to investigate a wide range of open questions in evolutionary ecology. In this study, we characterized two expressed MHC class II B genes (DAB1 and DAB2) in the Grey Heron (Aves: Ardea cinerea). We further developed the primer pairs to amplify and sequence two MHC class II B loci in ten ardeid birds. Phylogenetic analysis revealed that different parts of the genes showed different evolutionary patterns. The exon 2 sequences tended to cluster two gene-specific lineages. In each lineage, exon 2 sequences from several species showed closer relationships than sequences within species, and two shared identical alleles were found between species (Egretta sacra and Nycticorax nycticorax; Egretta garzetta and Bubulcus ibis), supporting the hypothesis of trans-species polymorphism. In contrast, the species-specific intron 2 plus partial exon 3 tree suggested that DAB1 and DAB2 were subject to concerted evolution. GENECONV analyses showed the gene exchange played an important role in the ardeid MHC evolution.

  20. The first step of peptide selection in antigen presentation by MHC class I molecules.

    PubMed

    Garstka, Malgorzata A; Fish, Alexander; Celie, Patrick H N; Joosten, Robbie P; Janssen, George M C; Berlin, Ilana; Hoppes, Rieuwert; Stadnik, Magda; Janssen, Lennert; Ovaa, Huib; van Veelen, Peter A; Perrakis, Anastassis; Neefjes, Jacques

    2015-02-03

    MHC class I molecules present a variable but limited repertoire of antigenic peptides for T-cell recognition. Understanding how peptide selection is achieved requires mechanistic insights into the interactions between the MHC I and candidate peptides. We find that, at first encounter, MHC I H-2K(b) considers a wide range of peptides, including those with expanded N termini and unfitting anchor residues. Discrimination occurs in the second step, when noncanonical peptides dissociate with faster exchange rates. This second step exhibits remarkable temperature sensitivity, as illustrated by numerous noncanonical peptides presented by H-2K(b) in cells cultured at 26 °C relative to 37 °C. Crystallographic analyses of H-2K(b)-peptide complexes suggest that a conformational adaptation of H-2K(b) drives the decisive step in peptide selection. We propose that MHC class I molecules consider initially a large peptide pool, subsequently refined by a temperature-sensitive induced-fit mechanism to retain the canonical peptide repertoire.

  1. Bap29/31 influences the intracellular traffic of MHC class I molecules.

    PubMed

    Paquet, Marie-Eve; Cohen-Doyle, Myrna; Shore, Gordon C; Williams, David B

    2004-06-15

    In this study, we examine the role of the putative cargo receptor B cell-associated protein (Bap)29/31 in the export of MHC class I molecules out of the endoplasmic reticulum (ER). We show that Bap31 binds to two allotypes of mouse class I molecules, with the interaction initiated at the time of H chain association with beta(2)-microglobulin and maintained until the class I molecule has left the ER. We also show that Bap31 is part of the peptide-loading complex, although is not required for its formation. Bap31 binds not only to class I molecules, but can bind to tapasin in the absence of class I. Consistent with an important role in recruiting class I molecules to transport vesicles, we show that in the absence of Bap29/31, there is a loss of class I colocalization with mSec31 (p137), a component of mammalian coat protein complex II coats. This observation is also associated with a delay in class I traffic from ER to Golgi. Our results are consistent with the view that class I molecules are largely recruited to ER exit sites by Bap29/31, and that Bap29/31 is a cargo receptor for MHC class I molecules.

  2. Insight into the Mechanism of Human Herpesvirus 7 U21-mediated Diversion of Class I MHC Molecules to Lysosomes*

    PubMed Central

    Glosson, Nicole L.; Gonyo, Patrick; May, Nathan A.; Schneider, Christine L.; Ristow, Laura C.; Wang, Qiuhong; Hudson, Amy W.

    2010-01-01

    The U21 open reading frame from human herpesvirus-7 encodes a membrane protein that associates with and redirects class I MHC molecules to the lysosomal compartment. The mechanism by which U21 accomplishes this trafficking excursion is unknown. Here we have examined the contribution of localization, glycosylation, domain structure, and the absence of substrate class I MHC molecules on the ability of U21 to traffic to lysosomes. Our results suggest the existence of a cellular protein necessary for U21-mediated rerouting of class I MHC molecules. PMID:20833720

  3. MHC class II expression and potential antigen-presenting cells in the retina during experimental autoimmune uveitis.

    PubMed

    Lipski, Deborah A; Dewispelaere, Rémi; Foucart, Vincent; Caspers, Laure E; Defrance, Matthieu; Bruyns, Catherine; Willermain, François

    2017-07-18

    Controversy exists regarding which cell types are responsible for autoantigen presentation in the retina during experimental autoimmune uveitis (EAU) development. In this study, we aimed to identify and characterize the retinal resident and infiltrating cells susceptible to express major histocompatibility complex (MHC) class II during EAU. EAU was induced in C57BL/6 mice by adoptive transfer of autoreactive lymphocytes from IRBP1-20-immunized animals. MHC class II expression was studied by immunostainings on eye cryosections. For flow cytometry (FC) analysis, retinas were dissected and enzymatically digested into single-cell suspensions. Three MHC class II(+) retinal cell populations were sorted by FC, and their RNA processed for RNA-Seq. Immunostainings demonstrate strong induction of MHC class II expression in EAU, especially in the inner retina at the level of inflamed vessels, extending to the outer retinal layers and the subretinal space in severely inflamed eyes. Most MHC class II(+) cells express the hematopoietic marker IBA1. FC quantitative analyses demonstrate that MHC class II induction significantly correlates with disease severity and is associated with upregulation of co-stimulatory molecule expression. In particular, most MHC class II(hi) cells express co-stimulatory molecules during EAU. Further phenotyping identified three MHC class II(+) retinal cell populations: CD45(-)CD11b(-) non-hematopoietic cells with low MHC class II expression and CD45(+)CD11b(+) hematopoietic cells with higher MHC class II expression, which can be further separated into Ly6C(+) and Ly6C(-) cells, possibly corresponding to infiltrating macrophages and resident microglia. Transcriptome analysis of the three sorted populations leads to a clear sample clustering with some enrichment in macrophage markers and microglial cell markers in Ly6C(+) and Ly6C(-) cells, respectively. Functional annotation analysis reveals that both hematopoietic cell populations are more competent in

  4. NOVEL NONCLASSSICAL MHC CLASS IB GENES ASSOCIATED WITH CD8 T CELL DEVELOPMENT AND THYMIC TUMORS

    PubMed Central

    Goyos, Ana; Ohta, Yuko; Guselnikov, Sergey; Robert, Jacques

    2009-01-01

    In jawed vertebrates, the heterogeneous nonclassical MHC class Ib (class Ib) gene family encodes molecules structurally similar to classical MHC class Ia (class Ia) but with more limited tissue distribution and lower polymorphism. In mammals, class Ib gene products are involved in stress responses, malignancy and differentiation of intrathymic CD8 T cells. The frog Xenopus laevis possesses at least 20 class Ib genes (XNCs), and 9 subfamilies have been defined so far. We have characterized two novel subfamilies, XNC10 and XNC11. XNC10 is phylogenetically and structurally distinct from both class Ia and other XNC genes. Besides thymic lymphoid tumors, XNC10 is preferentially expressed by circulating T cells and thymocytes of the CD8 lineage both in adult and in larvae from the onset of thymus organogenesis. XNC11 is expressed only by thymocytes and upregulated by several thymic lymphoid tumors. These data provide the first evidence of the expression of any class Ib genes in Xenopus larvae, and suggests evolutionary relationships between certain class Ib genes, malignancy and CD8 T cell ontogeny. PMID:19237199

  5. Zika virus escapes NK cell detection by upregulating MHC class I molecules.

    PubMed

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer

    2017-09-06

    NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity and even pregnancy and are specialize in anti-viral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower the inhibitory ones. The NK cell inhibitory receptors compose of a uniquely diverse array of proteins named Killer-cell immunoglobulin-like receptors (KIRs) the CD94 family and the leukocyte immunoglobulin like receptor family (LIR). The NK inhibitory receptors recognize mostly MHC class I proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, especially with NK cells is unclear. Here we show that Zika virus infection is barely sensed by NK cells, as little or no increase in the expression of activating NK cell ligands was observed. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to inhibition of NK cell killing. Mechanistically, we show that the upregulation of MHC class I occurs via the RIGI-IRF3 pathway, and is mediated via IFNβ. Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus.IMPORTANCE NK cells are innate lymphocytes, which recognize and eliminate various pathogens, and are mostly known for their role in controlling viral infections. NK cells express inhibitory and activating receptors and kill or spare their targets based on integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and association with birth defects. The role of NK cells in Zika virus infection is largely unknown. Here, we demonstrate that Zika virus infection is almost undetected by NK cells, as expression of activating

  6. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules*

    PubMed Central

    Barroso, Margarida; Tucker, Heidi; Drake, Lisa; Nichol, Kathleen; Drake, James R.

    2015-01-01

    Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen. PMID:26400081

  7. The common marmoset: a new world primate species with limited Mhc class II variability.

    PubMed

    Antunes, S G; de Groot, N G; Brok, H; Doxiadis, G; Menezes, A A; Otting, N; Bontrop, R E

    1998-09-29

    The common marmoset (Callithrix jacchus) is a New World primate species that is highly susceptible to fatal infections caused by various strains of bacteria. We present here a first step in the molecular characterization of the common marmoset's Mhc class II genes by nucleotide sequence analysis of the polymorphic exon 2 segments. For this study, genetic material was obtained from animals bred in captivity as well as in the wild. The results demonstrate that the common marmoset has, like other primates, apparently functional Mhc-DR and -DQ regions, but the Mhc-DP region has been inactivated. At the -DR and -DQ loci, only a limited number of lineages were detected. On the basis of the number of alleles found, the -DQA and -B loci appear to be oligomorphic, whereas only a moderate degree of polymorphism was observed for two of three Mhc-DRB loci. The contact residues in the peptide-binding site of the Caja-DRB1*03 lineage members are highly conserved, whereas the -DRB*W16 lineage members show more divergence in that respect. The latter locus encodes five oligomorphic lineages whose members are not observed in any other primate species studied, suggesting rapid evolution, as illustrated by frequent exchange of polymorphic motifs. All common marmosets tested were found to share one monomorphic type of Caja-DRB*W12 allele probably encoded by a separate locus. Common marmosets apparently lack haplotype polymorphism because the number of Caja-DRB loci present per haplotype appears to be constant. Despite this, however, an unexpectedly high number of allelic combinations are observed at the haplotypic level, suggesting that Caja-DRB alleles are exchanged frequently between chromosomes by recombination, promoting an optimal distribution of limited Mhc polymorphisms among individuals of a given population. This peculiar genetic make up, in combination with the limited variability of the major histocompatability complex class II repertoire, may contribute to the common

  8. Characterizing the impact of CD8 antibodies on class I MHC multimer binding.

    PubMed

    Holman, Philmore O; Walsh, Elizabeth R; Jameson, Stephen C

    2005-04-01

    Many studies have suggested that CD8 Abs affect the binding of class I MHC tetramers/multimers to CD8(+) T cells, which has led to the interpretation that CD8 participates directly in multimer binding. In contrast, a recent publication has argued that CD8 Abs instead cause reorganization of TCR distribution and hence have an indirect effect on multimer binding to the TCR alone. We address these issues by testing the role of CD8 and the impact of CD8 Abs on the binding of normal and mutant multimers to Ag-specific mouse T cells. Our data suggest that, in this system, CD8 Abs act directly on CD8 and only mediate their effects on multimer binding when CD8 is capable of binding to the multimer. These data reinforce the paradigm that CD8 plays an active and direct role in binding of class I MHC multimers.

  9. Decreased monocyte class II MHC expression following major abdominal surgery in children is related to operative stress.

    PubMed

    McHoney, M; Klein, N J; Eaton, S; Pierro, A

    2006-04-01

    Monocyte class II major histocompatibility complex (MHC) expression is necessary for antigen presentation and stimulation of T-cells. The aim of this study was to correlate monocyte class II MHC response to operative stress in children and the possible influence of cytokines in the postoperative period. We studied 21 children undergoing elective abdominal surgery. Operative stress score (OSS) was calculated. Monocyte class II MHC expression was measured preoperatively, immediately after surgery, 24 and 48 h postoperatively, using flow cytometry. Class II MHC is expressed as mean fluorescence intensity (MFI) of monocytes expressing MHC (mean +/- SD). Cytokine levels (interleukins 1ra, 6, and 10, and tumor necrosis factor-alpha) were also measured. Data between time points were compared using repeated measures ANOVA. There was an immediate postoperative decrease in class II MHC expression, with lowest levels 24 h postoperatively (preoperative 50 +/- 23.6, 24 h 18.2 +/- 9.4, P < 0.0001 vs. preoperative). At 48 h there was partial recovery in class II MHC, but levels were still significantly lower than preoperative (23.9 +/- 11.1, P < 0.001). The degree of monocyte depression was related to the magnitude of operative stress. Patients who had OSS <10 displayed some recovery in expression at 48 h 25.5 +/- 11.1), whereas in patients with OSS > or = 10 (severe surgical stress), expression further decreased at 48 h (MFI 14.0 +/- 0.1). There was an elevation of interleukin-1ra in the immediate postoperative period in both groups. There was no elevation in the other cytokines. Abdominal surgery in children decreases monocyte MHC expression. Class II MHC depression was related to magnitude of surgical trauma, implying that more severe immuneparesis follows surgery of greater magnitude. This may predispose to postoperative infection.

  10. Tumor-specific CD4+ T cells eradicate myeloma cells genetically deficient in MHC class II display

    PubMed Central

    Tveita, Anders; Fauskanger, Marte; Bogen, Bjarne; Haabeth, Ole Audun Werner

    2016-01-01

    CD4+ T cells have been shown to reject tumor cells with no detectable expression of major histocompatibility complex class II (MHC II). However, under certain circumstances, induction of ectopic MHC II expression on tumor cells has been reported. To confirm that CD4+ T cell-mediated anti-tumor immunity can be successful in the complete absence of antigen display on the tumor cells themselves, we eliminated MHC II on tumor cells using CRISPR/Cas9. Our results demonstrate that ablation of the relevant MHC II (I-Ed) in multiple myeloma cells (MOPC315) does not hinder rejection by tumor-specific CD4+ T cells. These findings provide conclusive evidence that CD4+ T cells specific for tumor antigens can eliminate malignant cells in the absence of endogenous MHC class II expression on the tumor cells. This occurs through antigen uptake and indirect presentation on tumor-infiltrating macrophages. PMID:27626487

  11. Induction of the rainbow trout MHC class I pathway during acute IHNV infection.

    PubMed

    Hansen, John D; La Patra, Scott

    2002-12-01

    Interferons are essential for establishing cytotoxic T-lymphocyte immunity against viral pathogens through different mechanisms including the modulation of antigen presentation to T-cell subsets. At the present time, interferons have yet to be isolated from teleost fish. We have developed a salmonid model to examine whether MHC gene regulation is modulated during acute viral infection in trout, an event attributable to interferons in mammals. During peak infection with infectious hematopoietic necrosis virus, induction of STAT-1, PSMB9A and ABCB2 mRNA was evident in all tissues within infected fish, as compared with controls. In addition, MHC class Ia and beta(2) microglobulin (beta(2)m) transcript levels were enhanced within the experimental group but surprisingly, splenic and pronephric class IIB mRNA expression was virtually absent. A time-course study looking at 24, 72 and 192 h post-infection was then performed to determine the overall kinetics of this response. STAT-1 and PSMB9A message levels increased early during the immune response and remain at relatively high levels until the final time point. MHC class Ia expression is not consistently upregulated until midway in the response. MHC class IIB transcripts are downregulated by 72 h in the spleen and pronephros and then partially restored by 192 h. Finally, analysis of the putative promoter regions for PSMB9A and ABCB2 identified interferon (IFN) regulatory factory (IRF-1) and INF-gamma (GAS) activation sites that may be involved in the regulation of these genes during viral infection.

  12. MHC class II B diversity in blue tits: a preliminary study

    PubMed Central

    Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena

    2013-01-01

    In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4–7 fragments, indicating a minimum number of 2–4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date. PMID:23919136

  13. Minimal conformational plasticity enables TCR cross-reactivity to different MHC class II heterodimers

    PubMed Central

    Holland, Christopher J.; Rizkallah, Pierre J.; Vollers, Sabrina; Calvo-Calle, J. Mauricio; Madura, Florian; Fuller, Anna; Sewell, Andrew K.; Stern, Lawrence J.; Godkin, Andrew; Cole, David K.

    2012-01-01

    Successful immunity requires that a limited pool of αβ T-cell receptors (TCRs) provide cover for a vast number of potential foreign peptide antigens presented by ‘self’ major histocompatibility complex (pMHC) molecules. Structures of unligated and ligated MHC class-I-restricted TCRs with different ligands, supplemented with biophysical analyses, have revealed a number of important mechanisms that govern TCR mediated antigen recognition. HA1.7 TCR binding to the influenza hemagglutinin antigen (HA306–318) presented by HLA-DR1 or HLA-DR4 represents an ideal system for interrogating pMHC-II antigen recognition. Accordingly, we solved the structure of the unligated HA1.7 TCR and compared it to both complex structures. Despite a relatively rigid binding mode, HA1.7 T-cells could tolerate mutations in key contact residues within the peptide epitope. Thermodynamic analysis revealed that limited plasticity and extreme favorable entropy underpinned the ability of the HA1.7 T-cell clone to cross-react with HA306–318 presented by multiple MHC-II alleles. PMID:22953050

  14. [MHC class I antigens, CD4 and CD8 expressions in polymyositis and dermatomyositis].

    PubMed

    Graça, Carla Renata; Kouyoumdjian, João Aris

    2015-01-01

    To analyze the frequencies of the expression of major histocompatibility complex class I (MHC-I) antigens, and CD4 and CD8 cells in skeletal muscle in polymyositis (PM) and dermatomyositis (DM). This was a retrospective study of 34 PM cases, 8 DM cases, and 29 control patients with non-inflammatory myopathies. MHC-I antigens were expressed in the sarcolemma and/or sarcoplasm in 79.4% of PM cases, 62.5% of DM cases, and 27.6% of controls (CD4 expression was observed in 76.5%, 75%, and 13.8%, respectively). There was a high suspicion of PM/DM (mainly PM) in patients in whom MHC-I antigens and CD4 were co-expressed. In 14.3% of PM/DM cases, we observed MHC-I antigens expression alone, without inflammatory cells. MCH-I antigens expression and CD4 positivity might add to strong diagnostic suspicion of PM/DM. No cellular infiltration was observed in 14.3% of such cases. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  15. Expression of rat class I major histocompatibility complex (MHC) alloantigens and hepatocytes and hepatoma cells

    SciTech Connect

    Hunt, J.M.; Desai, P.A.; Chakraborty, S.

    1986-03-05

    Altered expression of Class I MHC alloantigens has been reported for murine tumors, and may be associated with the tumorigenic phenotype of tumor cells. To characterize MHC Class I alloantigen expression on a chemically-induced transplantable rat hepatoma cell line, 17X, derived from a (WF x F344) F/sub 1/ rat, polyvalent anti-F344 and anti-WF rat alloantisera were first used to immunoprecipitate the rat RT1.A Class I MHC alloantigens expressed on primary (WF x F344) F/sub 1/ hepatocyptes in short-term monolayer cultures. Two-dimensional isoelectric focusing and SDS-PAGE of immunoprecipitates from /sup 35/S-methionine-labeled (WF x F344) F/sub 1/ hepatocytes clearly resolved the RT1.A/sup u/ (WF) and RT1.A/sup LvI/ (F344) parental alloantigens. Identical radiolabeling and immunoprecipitation failed to detect either parental alloantigen on the 17X hepatoma cells. However, indirect immunofluorescence and immunoblot analyses demonstrated the presence of parental alloantigens on the 17X cells. Immunization of F344 rats but not of WF rats with 17X cells resulted in antibodies cytotoxic for normal (WF X F344) F/sub 1/ spleen cells in the presence of complement. These findings indicate that a combination of detection techniques will be necessary to characterize altered alloantigen expression on rat hepatoma cells.

  16. Cutting edge: adenovirus E19 has two mechanisms for affecting class I MHC expression.

    PubMed

    Bennett, E M; Bennink, J R; Yewdell, J W; Brodsky, F M

    1999-05-01

    Viral strategies for immune evasion include inhibition of various steps in the class I MHC assembly pathway. Here, we demonstrate that adenovirus produces one gene product with a dual function in this regard. It is well established that adenovirus E19 binds class I molecules and retains them in the endoplasmic reticulum (ER). However, E19 also delays the expression of class I alleles to which it cannot tightly bind. Here, we show that E19 binds TAP and acts as a tapasin inhibitor, preventing class I/TAP association. DeltaE19, an E19 mutant lacking the ER-retention signal, delays maturation of class I molecules, indicating that E19's inhibition of class I/TAP interaction is sufficient to delay class I expression. These data identify tapasin inhibition as a novel mechanism of viral immune evasion and suggest that, through this secondary mechanism, adenovirus can affect Ag presentation by MHC alleles that it can only weakly affect by direct retention.

  17. Intracellular recycling and cross-presentation by MHC class I molecules.

    PubMed

    van Endert, Peter

    2016-07-01

    Cross-presentation of internalized antigens by dendritic cells requires efficient delivery of Major Histocompatibility Complex (MHC) class I molecules to peptide-loading compartments. Strong evidence suggests that such loading can occur outside of the endoplasmic reticulum; however, the trafficking pathways and sources of class I molecules involved are poorly understood. Examination of non-professional, non-phagocytic cells has revealed a clathrin-independent, Arf6-dependent recycling pathway likely traveled by internalized optimally loaded (closed) class I molecules. Some closed and all open MHC class I molecules travel to late endosomes to be degraded but might also partly be re-loaded with peptides and recycled. Studies of viral interference revealed pathways in which class I molecules are directed to degradation in lysosomes upon ubiquitination at the surface, or upon AP-1 and HIV-nef-dependent misrouting from the Golgi network to lysosomes. While many observations made in non-professional cells remain to be re-examined in dendritic cells, available evidence suggests that both recycling and neo-synthesized class I molecules can be loaded with cross-presented peptides. Recycling molecules can be recruited to phagosomes triggered by innate signals such as TLR4 ligands, and may therefore specialize in loading with phagocytosed antigens. In contrast, AP-1-dependent accumulation at, or trafficking through, a Golgi compartment of newly synthesized molecules appears to be important for cross-presentation of soluble proteins and possibly of long peptides that are processed in the so-called vacuolar pathway. However, significant cell biological work will be required to confirm this or any other model and to integrate knowledge on MHC class I biochemistry and trafficking in models of CD8(+) T-cell priming by dendritic cells.

  18. The oxidoreductase ERp57 efficiently reduces partially folded in preference to fully folded MHC class I molecules

    PubMed Central

    Antoniou, Antony N.; Ford, Stuart; Alphey, Magnus; Osborne, Andrew; Elliott, Tim; Powis, Simon J.

    2002-01-01

    The oxidoreductase ERp57 is an integral component of the peptide loading complex of major histocompatibility complex (MHC) class I molecules, formed during their chaperone-assisted assembly in the endoplasmic reticulum. Misfolded MHC class I molecules or those denied suitable peptides are retrotranslocated and degraded in the cytosol. The presence of ERp57 during class I assembly suggests it may be involved in the reduction of intrachain disulfides prior to retrotranslocation. We have studied the ability of ERp57 to reduce MHC class I molecules in vitro. Recombinant ERp57 specifically reduced partially folded MHC class I molecules, whereas it had little or no effect on folded and peptide-loaded MHC class I molecules. Reductase activity was associated with cysteines at positions 56 and 405 of ERp57, the N-terminal residues of the active CXXC motifs. Our data suggest that the reductase activity of ERp57 may be involved during the unfolding of MHC class I molecules, leading to targeting for degradation. PMID:12032078

  19. Negative regulation by HLA-DO of MHC class II-restricted antigen processing.

    PubMed

    Denzin, L K; Sant'Angelo, D B; Hammond, C; Surman, M J; Cresswell, P

    1997-10-03

    HLA-DM is a major histocompatibility complex (MHC) class II-like molecule that facilitates antigen processing by catalyzing the exchange of invariant chain-derived peptides (CLIP) from class II molecules for antigenic peptides. HLA-DO is a second class II-like molecule that physically associates with HLA-DM in B cells. HLA-DO was shown to block HLA-DM function. Purified HLA-DM-DO complexes could not promote peptide exchange in vitro. Expression of HLA-DO in a class II+ and DM+, DO- human T cell line caused the accumulation of class II-CLIP complexes, indicating that HLA-DO blocked DM function in vivo and suggesting that HLA-DO is an important modulator of class II-restricted antigen processing.

  20. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor.

    PubMed

    Kaye, J; Hsu, M L; Sauron, M E; Jameson, S C; Gascoigne, N R; Hedrick, S M

    1989-10-26

    T lymphocytes are predisposed to recognition of foreign protein fragments bound to cell-surface molecules encoded by the major histocompatibility complex (MHC). There is now compelling evidence that this specificity is a consequence of a selection process operating on developing T lymphocytes in the thymus. As a result of this positive selection, thymocytes that express antigen receptors with a threshold affinity for self MHC-encoded glycoproteins preferentially emigrate from the thymus and seed peripheral lymphoid organs. The specificity for both foreign antigen and MHC molecules is imparted by the alpha and beta chains of the T-cell antigen receptor (TCR). Two other T-cell surface proteins, CD4 and CD8, which bind non-polymorphic regions of class II and class I MHC molecules respectively, are also involved in these recognition events and play an integral role in thymic selection. In order to elucidate the developmental pathways of class II MHC-restricted T cells in relation to these essential accessory molecules, we have produced TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c and the Ek (class II MHC) molecule. The transgenic TCR is expressed on virtually all T cells in mice expressing Ek. The thymuses of these mice contain an abnormally high percentage of mature CD4+CD8- cells. In addition, the peripheral T-cell population is almost exclusively CD4+, demonstrating that the MHC specificity of the TCR determines the phenotype of T cells during selection in the thymus.

  1. DPA1*02012: A DPA1*0201-related Mhc class II allele in West Africa

    SciTech Connect

    Meyer, C.G.; May, J.; Spauke, D.; Schnittger, L.

    1994-12-31

    DNA techniques such as sequence-specific oligonucleotide probe (SSOP) hybridizations, restriction-fragment length polymorphism (RFLP) analyses, and DNA sequencing have greatly supported the characterization of Mhc class II allelic polymorphism. Here the authors describe a DPA 1 allele which has been identified in two male individuals from Liberia and Benin, West Africa, during a survey study on Mhc class II associations with the different manifestations after infection with Onchocerca volvulus. 4 refs., 1 fig.

  2. Equine bone marrow-derived mesenchymal stromal cells are heterogeneous in MHC class II expression and capable of inciting an immune response in vitro

    PubMed Central

    2014-01-01

    Introduction The horse is a valuable species to assess the effect of allogeneic mesenchymal stromal cells (MSCs) in regenerative treatments. No studies to date have examined recipient response to major histocompatibility complex (MHC)-mismatched equine MSCs. The purposes of this study were to immunophenotype MSCs from horses of known MHC haplotype and to compare the immunogenicity of MSCs with differing MHC class II expression. Methods MSCs and peripheral blood leukocytes (PBLs) were obtained from Thoroughbred horses (n = 10) of known MHC haplotype (ELA-A2, -A3, and -A9 homozygotes). MSCs were cultured through P8; cells from each passage (P2 to P8) were cryopreserved until used. Immunophenotyping of MHC class I and II, CD44, CD29, CD90, LFA-1, and CD45RB was performed by using flow cytometry. Tri-lineage differentiation assays were performed to confirm MSC multipotency. Recombinant equine IFN-γ was used to stimulate MHC class II negative MSCs in culture, after which expression of MHC class II was re-examined. To assess the ability of MHC class II negative or positive MSCs to stimulate an immune response, modified one-way mixed leukocyte reactions (MLRs) were performed by using MHC-matched and mismatched responder PBLs and stimulator PBLs or MSCs. Proliferation of gated CFSE-labeled CD3+ responder T cells was evaluated via CFSE attenuation by using flow cytometry and reported as the number of cells in the proliferating T-cell gate. Results MSCs varied widely in MHC class II expression despite being homogenous in terms of “stemness” marker expression and ability to undergo trilineage differentiation. Stimulation of MHC class II negative MSCs with IFN-γ resulted in markedly increased expression of MHC class II. MLR results revealed that MHC-mismatched MHC class II-positive MSCs caused significantly increased responder T-cell proliferation compared with MHC-mismatched MHC class II-negative and MHC-matched MSCs, and equivalent to that of the positive control of

  3. IL-33 promotes MHC class II expression in murine mast cells.

    PubMed

    Ito, Tomonobu; Egusa, Chizu; Maeda, Tatsuo; Numata, Takafumi; Nakano, Nobuhiro; Nishiyama, Chiharu; Tsuboi, Ryoji

    2015-09-01

    Mast cells (MCs), recognized as tissue-resident cells of hematopoietic origin, are involved in cellular and pathological manifestations of allergic disorders including atopic dermatitis. IL-33, a member of the IL-1 cytokine family, activates Th2-type immune responses, and promotes the degranulation and maturation of MCs. However, it is uncertain whether IL-33 treatment induces mature mast cells to acquire the characteristics of the monocyte-dendritic cell lineage.We investigated the effect of IL-33 on the MHC class II expression and function of murine mast cells. IL-33-treated mature murine bone marrow-derived mast cells (BMMCs) were analyzed by FACS, real-time PCR, chromatin immunoprecipitation (ChIP) assay, and Western blotting. The morphology and degranulation activity of BMMCs and T-cell activation by BMMCs were also examined. BMMCs treated with IL-33 for 10 days induced cell surface expression of the MHC class II protein, whereas the expression of FcεRI and c-kit was not affected by IL-33. The expression of CIITA, driven from pIII and pIV, was up-regulated in IL-33-treated BMMCs. The amount of PU.1 mRNA and protein significantly increased in IL-33-treated BMMCs. The ChIP assay showed PU.1 binding to CIITA pIII, and enhanced histone acetylation due to IL-33 treatment. Syngeneic T cells were activated by co-culture with IL-33-treated BMMCs, although the expression of the co-stimulatory molecules, CD40, CD80, CD86, and PDL-1, was not detected. Mast cells express MHC class II after prolonged exposure to IL-33, probably due to enhanced recruitment of PU.1 to CIITA pIII, resulting in transactivation of CIITA and MHC class II. IL-33 is an important cytokine in allergic disorders. Mast cells have the ability to express MHC class II after prolonged exposure to IL-33 in a murine model. IL-33 holds a key to understanding the etiology of atopic dermatitis.

  4. Low genetic variation in the MHC class II DRB gene and MHC-linked microsatellites in endangered island populations of the leopard cat (Prionailurus bengalensis) in Japan.

    PubMed

    Saka, Toshinori; Nishita, Yoshinori; Masuda, Ryuichi

    2017-07-09

    Isolated populations of the leopard cat (Prionailurus bengalensis) on Tsushima and Iriomote islands in Japan are classified as subspecies P. b. euptilurus and P. b. iriomotensis, respectively. Because both populations have decreased to roughly 100, an understanding of their genetic diversity is essential for conservation. We genotyped MHC class II DRB exon 2 and MHC-linked microsatellite loci to evaluate the diversity of MHC genes in the Tsushima and Iriomote cat populations. We detected ten and four DRB alleles in these populations, respectively. A phylogenetic analysis showed DRB alleles from both populations to be closely related to those in other felid DRB lineages, indicating trans-species polymorphism. The MHC-linked microsatellites were more polymorphic in the Tsushima than in the Iriomote population. The MHC diversity of both leopard cat populations is much lower than in the domestic cat populations on these islands, probably due to inbreeding associated with founder effects, geographical isolation, or genetic drift. Our results predict low resistance of the two endangered populations to new pathogens introduced to the islands.

  5. Distinct functions for the glycans of tapasin and heavy chains in the assembly of MHC class I molecules.

    PubMed

    Rizvi, Syed Monem; Del Cid, Natasha; Lybarger, Lonnie; Raghavan, Malini

    2011-02-15

    Complexes of specific assembly factors and generic endoplasmic reticulum (ER) chaperones, collectively called the MHC class I peptide-loading complex (PLC), function in the folding and assembly of MHC class I molecules. The glycan-binding chaperone calreticulin (CRT) and partner oxidoreductase ERp57 are important in MHC class I assembly, but the sequence of assembly events and specific interactions involved remain incompletely understood. We show that the recruitments of CRT and ERp57 to the PLC are codependent and also dependent upon the ERp57 binding site and the glycan of the assembly factor tapasin. Furthermore, the ERp57 binding site and the glycan of tapasin enhance β(2)m and MHC class I heavy (H) chain recruitment to the PLC, with the ERp57 binding site having the dominant effect. In contrast, the conserved MHC class I H chain glycan played a minor role in CRT recruitment into the PLC, but impacted the recruitment of H chains into the PLC, and glycan-deficient H chains were impaired for tapasin-independent and tapasin-assisted assembly. The conserved MHC class I glycan and tapasin facilitated an early step in the assembly of H chain-β(2)m heterodimers, for which tapasin-ERp57 or tapasin-CRT complexes were not required. Together, these studies provide insights into how PLCs are constructed, demonstrate two distinct mechanisms by which PLCs can be stabilized, and suggest the presence of intermediate H chain-deficient PLCs.

  6. Serologic cross-reactivity between Class I MHC molecules and an H-2- linked differentiation antigen as detected by monoclonal antibodies

    PubMed Central

    1984-01-01

    Analysis of anti-Class I major histocompatibility complex (MHC) monoclonal antibodies by immunofluorescence and flow microfluorometry demonstrated an unexpected cross-reactivity. Two of fifteen antibodies examined (20-8-4, anti-Kb,Kd,r,s and 34-1-2, antiKd,Dd,Kb,r,s,q,p) were observed to detect an antigen determined by gene(s) mapping to the right of H-2D. Two-color immunofluorescence analysis demonstrated that this antigen, unlike classical H-2K and D antigens, was expressed in high amounts on peripheral T cells, but only weakly on Ia-positive cells and on small subpopulations of thymus and bone marrow cells. Mapping, absorption, blocking, and tissue distribution studies suggested that the cross-reactive antigen is Qa-like, but distinct from previously described Qa antigens. Thus, these data demonstrate serological cross-reactivity between a Class I MHC antigen and a differentiation antigen determined by genes linked to H-2. It seems likely that the gene responsible for this new antigen is one of the numerous Class I-like sequences detected by DNA hybridization analyses, but previously undefined in terms of tissue expression. These data suggest that many of these DNA sequences may be expressed in specific tissues and that cross-reactions of anti-Class I MAbs may provide useful probes for studying the products of such homologous genes. PMID:6363595

  7. MHC class II genes in European wolves: a comparison with dogs.

    PubMed

    Seddon, Jennifer M; Ellegren, Hans

    2002-10-01

    The genome of the grey wolf, one of the most widely distributed land mammal species, has been subjected to both stochastic factors, including biogeographical subdivision and population fragmentation, and strong selection during the domestication of the dog. To explore the effects of drift and selection on the partitioning of MHC variation in the diversification of species, we present nine DQA, 10 DQB, and 17 DRB1 sequences of the second exon for European wolves and compare them with sequences of North American wolves and dogs. The relatively large number of class II alleles present in both European and North American wolves attests to their large historical population sizes, yet there are few alleles shared between these regions at DQB and DRB1. Similarly, the dog has an extensive array of class II MHC alleles, a consequence of a genetically diverse origin, but allelic overlap with wolves only at DQA. Although we might expect a progression from shared alleles to shared allelic lineages during differentiation, the partitioning of diversity between wolves and dogs at DQB and DRB1 differs from that at DQA. Furthermore, an extensive region of nucleotide sequence shared between DRB1 and DQB alleles and a shared motif suggests intergenic recombination may have contributed to MHC diversity in the Canidae.

  8. Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding

    PubMed Central

    Chappell, Paul E; Meziane, El Kahina; Harrison, Michael; Magiera, Łukasz; Hermann, Clemens; Mears, Laura; Wrobel, Antoni G; Durant, Charlotte; Nielsen, Lise Lotte; Buus, Søren; Ternette, Nicola; Mwangi, William; Butter, Colin; Nair, Venugopal; Ahyee, Trudy; Duggleby, Richard; Madrigal, Alejandro; Roversi, Pietro; Lea, Susan M; Kaufman, Jim

    2015-01-01

    Highly polymorphic major histocompatibility complex (MHC) molecules are at the heart of adaptive immune responses, playing crucial roles in many kinds of disease and in vaccination. We report that breadth of peptide presentation and level of cell surface expression of class I molecules are inversely correlated in both chickens and humans. This relationship correlates with protective responses against infectious pathogens including Marek's disease virus leading to lethal tumours in chickens and human immunodeficiency virus infection progressing to AIDS in humans. We propose that differences in peptide binding repertoire define two groups of MHC class I molecules strategically evolved as generalists and specialists for different modes of pathogen resistance. We suggest that differences in cell surface expression level ensure the development of optimal peripheral T cell responses. The inverse relationship of peptide repertoire and expression is evidently a fundamental property of MHC molecules, with ramifications extending beyond immunology and medicine to evolutionary biology and conservation. DOI: http://dx.doi.org/10.7554/eLife.05345.001 PMID:25860507

  9. Full-length novel MHC class I allele discovery by next-generation sequencing: two platforms are better than one

    PubMed Central

    Dudley, Dawn M.; Karl, Julie A.; Creager, Hannah M.; Bohn, Patrick S.; Wiseman, Roger W.; O'Connor, David H.

    2013-01-01

    Deep sequencing has revolutionized major histocompatibility complex (MHC) class I analysis of nonhuman primates by enabling high-throughput, economical, and comprehensive genotyping. Full-length MHC class I cDNA sequences, which are required to generate reagents such as MHC:peptide tetramers, cannot be directly obtained by short read deep sequencing. We combined data from two next-generation sequencing platforms to discover novel full-length MHC class I mRNA/cDNA transcripts in Chinese rhesus macaques. We first genotyped macaques by Roche/454 pyrosequencing using a 530 bp amplicon spanning the densely polymorphic exons 2 through 4 of the MHC class I loci that encode the peptide-binding region. We then mapped short paired-end 250 bp Illumina sequence reads spanning the full-length transcript to each 530 bp amplicon at high stringency and used paired-end information to reconstruct full-length allele sequences. We characterized 65 full-length sequences from 6 Chinese rhesus macaques. Overall, approximately 70% of the alleles distinguished in these 6 animals contained new sequence information, including 29 novel transcripts. The flexibility of this approach should make full-length MHC class I allele genotyping accessible for any nonhuman primate population of interest. We are currently optimizing this method for full-length characterization of other highly polymorphic, duplicated loci such as the MHC class II DRB and killer immunoglobulin-like receptors. We anticipate that this method will facilitate rapid expansion and near completion of sequence libraries of polymorphic loci, such as MHC class I, within a few years. PMID:24241691

  10. Full-length novel MHC class I allele discovery by next-generation sequencing: two platforms are better than one.

    PubMed

    Dudley, Dawn M; Karl, Julie A; Creager, Hannah M; Bohn, Patrick S; Wiseman, Roger W; O'Connor, David H

    2014-01-01

    Deep sequencing has revolutionized major histocompatibility complex (MHC) class I analysis of nonhuman primates by enabling high-throughput, economical, and comprehensive genotyping. Full-length MHC class I cDNA sequences, which are required to generate reagents such as MHC-peptide tetramers, cannot be directly obtained by short read deep sequencing. We combined data from two next-generation sequencing platforms to discover novel full-length MHC class I mRNA/cDNA transcripts in Chinese rhesus macaques. We first genotyped macaques by Roche/454 pyrosequencing using a 530-bp amplicon spanning the densely polymorphic exons 2 through 4 of the MHC class I loci that encode the peptide-binding region. We then mapped short paired-end 250 bp Illumina sequence reads spanning the full-length transcript to each 530-bp amplicon at high stringency and used paired-end information to reconstruct full-length allele sequences. We characterized 65 full-length sequences from six Chinese rhesus macaques. Overall, approximately 70 % of the alleles distinguished in these six animals contained new sequence information, including 29 novel transcripts. The flexibility of this approach should make full-length MHC class I allele genotyping accessible for any nonhuman primate population of interest. We are currently optimizing this method for full-length characterization of other highly polymorphic, duplicated loci such as the MHC class II DRB and killer immunoglobulin-like receptors. We anticipate that this method will facilitate rapid expansion and near completion of sequence libraries of polymorphic loci, such as MHC class I, within a few years.

  11. MHC Class II tetramers and the pursuit of antigen-specific T cells: define, deviate, delete.

    PubMed

    Mallone, Roberto; Nepom, Gerald T

    2004-03-01

    Selective expansion and activation of a very small number of antigen-specific CD4(+) T cells is a remarkable and essential property of the adaptive immune response. Antigen-specific T cells were until recently identified only indirectly by functional assays, such as antigen-induced cytokine secretion and proliferation. The advent of MHC Class II tetramers has added a pivotal tool to our research armamentarium, allowing the definition of allo- and autoimmune responses in deeper detail. Rare antigen-specific CD4(+) cells can now be selectively identified, isolated and characterized. The same tetramer reagents also provide a new mean of stimulating T cells, more closely reproducing the MHC-peptide/TCR interaction. This property allows the use of tetramers to direct T cells toward the more desirable outcome, that is, activation (in malignancies and infectious diseases) or Th2/T regulatory cell deviation, anergy and deletion (in autoimmune diseases). These experimental approaches hold promise for diagnostic, prognostic and therapeutic applications.

  12. Processing of recombinant Listeria monocytogenes proteins for MHC class I presentation follows a dedicated, high-efficiency pathway

    PubMed Central

    Wolf, Benjamin J.; Princiotta, Michael F.

    2013-01-01

    CD8+ T lymphocytes recognize short peptides of ~8–10 amino acids bound to MHC class I molecules (pMHC) on the surface of antigen presenting cells. These peptides can be generated from either endogenous proteins synthesized by the biosynthetic machinery of the presenting cell or from exogenously sourced proteins. Because much of the research characterizing the MHC class I processing pathway has focused on endogenously synthesized proteins, it is not known whether differences exist in the processing pathway followed by endogenously synthesized versus exogenously sourced proteins. To highlight potential differences in the processing of endogenous versus exogenous proteins, we developed a model system to measure the efficiency of pMHC generation from nearly identical recombinant proteins expressed from vaccinia virus and Listeria monocytogenes. In these experiments, we uncovered a striking difference in the way recombinant Listeria antigens are processed and presented when compared to endogenously synthesized viral proteins. Specifically, we find that pMHC production from secreted Listeria proteins occurs at the same rate, independent of the cellular half-life of the protein from which it is derived, whereas the rate of pMHC production from endogenously synthesized viral proteins is absolutely dependent on its protein half-life. Accordingly, our data demonstrate the existence of a distinct and highly efficient MHC class I presentation pathway used for the processing of at least some exogenously synthesized proteins. PMID:23396941

  13. Genetic Contribution of MHC Class II Genes in Susceptibility to West Nile Virus Infection.

    PubMed

    Sarri, Constantina A; Markantoni, Maria; Stamatis, Costas; Papa, Anna; Tsakris, Athanasios; Pervanidou, Danai; Baka, Agoritsa; Politis, Constantina; Billinis, Charalambos; Hadjichristodoulou, Christos; Mamuris, Zissis

    2016-01-01

    WNV is a zoonotic neurotropic flavivirus that has recently emerged globally as a significant cause of viral encephalitis. The last five years, 624 incidents of WNV infection have been reported in Greece. The risk for severe WNV disease increases among immunosuppressed individuals implying thus the contribution of the MHC locus to the control of WNV infection. In order to investigate a possible association of MHC class II genes, especially HLA-DPA1, HLA-DQA1, HLA-DRB1, we examined 105 WNV patients, including 68 cases with neuroinvasive disease and 37 cases with mild clinical phenotype, collected during the period from 2010 to2013, and 100 control individuals selected form the Greek population. Typing was performed for exon 2 for all three genes. DQA1*01:01 was considered to be "protective" against WNV infection (25.4% vs 40.1%, P = 0.004) while DQA1*01:02 was associated with increased susceptibility (48.0% vs 32.1%, P = 0.003). Protection against neuroinvasion was associated with the presence of DRB1*11:02 (4.99% vs 0.0%, P = 0.018). DRB1*16:02 was also absent from the control cohort (P = 0.016). Three additional population control groups were used in order to validate our results. No statistically significant association with the disease was found for HLA-DPA alleles. The results of the present study provide some evidence that MHC class II is involved in the response to WNV infection, outlining infection "susceptibility" and "CNS-high-risk" candidates. Furthermore, three new alleles were identified while the frequency of all alleles in the study was compared with worldwide data. The characterization of the MHC locus could help to estimate the risk for severe WNV cases in a country.

  14. Genetic Contribution of MHC Class II Genes in Susceptibility to West Nile Virus Infection

    PubMed Central

    Sarri, Constantina A.; Markantoni, Maria; Stamatis, Costas; Papa, Anna; Tsakris, Athanasios; Pervanidou, Danai; Baka, Agoritsa; Politis, Constantina; Billinis, Charalambos; Hadjichristodoulou, Christos; Mamuris, Zissis

    2016-01-01

    WNV is a zoonotic neurotropic flavivirus that has recently emerged globally as a significant cause of viral encephalitis. The last five years, 624 incidents of WNV infection have been reported in Greece. The risk for severe WNV disease increases among immunosuppressed individuals implying thus the contribution of the MHC locus to the control of WNV infection. In order to investigate a possible association of MHC class II genes, especially HLA-DPA1, HLA-DQA1, HLA-DRB1, we examined 105 WNV patients, including 68 cases with neuroinvasive disease and 37 cases with mild clinical phenotype, collected during the period from 2010 to2013, and 100 control individuals selected form the Greek population. Typing was performed for exon 2 for all three genes. DQA1*01:01 was considered to be "protective" against WNV infection (25.4% vs 40.1%, P = 0.004) while DQA1*01:02 was associated with increased susceptibility (48.0% vs 32.1%, P = 0.003). Protection against neuroinvasion was associated with the presence of DRB1*11:02 (4.99% vs 0.0%, P = 0.018). DRB1*16:02 was also absent from the control cohort (P = 0.016). Three additional population control groups were used in order to validate our results. No statistically significant association with the disease was found for HLA-DPA alleles. The results of the present study provide some evidence that MHC class II is involved in the response to WNV infection, outlining infection "susceptibility" and "CNS-high-risk" candidates. Furthermore, three new alleles were identified while the frequency of all alleles in the study was compared with worldwide data. The characterization of the MHC locus could help to estimate the risk for severe WNV cases in a country. PMID:27812212

  15. Hyperexpression of interferon-gamma-induced MHC class II genes associated with reorganization of the cytoskeleton.

    PubMed Central

    Ulevitch, R. J.; Kline, L.; Schreiber, R. D.; Pingel, J.; Amaldi, I.; Reith, W.; Mach, B.

    1991-01-01

    Class I and class II major histocompatibility complex (MHC) gene products are key recognition units in the induction and regulation of the immune response. Expression of class I and class II may be constitutive or inducible by cytokines such as interferon-gamma (IFN-gamma). A key step in the induction of MHC genes is recognition of IFN-gamma by its membrane receptor. The work described here examines the regulation of the occupied IFN-gamma receptor by the cytoskeleton. To do this the authors have used the fungal metabolites dihydrocytochalasin B (DHCB) and cytochalasin D (CD), substances that bind to actin filaments and thereby disrupt the cytoskeleton. The authors have studied the effect of DHCB and CD on IFN-gamma-induced MHC gene expression in 143 B cells, a human osteosarcoma-derived cell line. Herein the authors demonstrate that alterations in the cytoskeleton induced by DHCB and CD can lead to increases in IFN-gamma-induced MHC gene expression. Dihydrocytochalasin B added up to 3 hours after IFN-gamma results in a threefold to sixfold increase in levels of class II mRNA while producing minimal enhancement of class I gene expression. In contrast, glyceraldehyde-3-phosphate dehydrogenase mRNA expression was unaltered by IFN-gamma or by the cytochalasins. The increased amount of class II mRNA can be accounted for by a concomitant increase in transcription rate of this gene. Studies using 125I-IFN-gamma demonstrate that the occupied IFN-gamma receptor associates with a Triton X-100 insoluble fraction of 143 B cells and that DHCB and CD markedly inhibit this association. The results described here provide evidence that is consistent with the hypothesis that the activity of the occupied IFN-gamma receptor may be modulated by interactions with the cytoskeleton of the cell. This receptor may be one of a group of plasma membrane receptors that are sensitive to the action of cytochalasins after ligand binding. Images Figure 1 Figure 2 PMID:1907805

  16. MHC class I molecules are enriched in caveolae but do not enter with simian virus 40.

    PubMed

    Anderson, H A; Chen, Y; Norkin, L C

    1998-06-01

    Simian virus 40 (SV40) binds to MHC class I molecules anywhere on the cell surface and then enters through caveolae. The fate of class I molecules after SV40 binding is not known. Sensitivity of 125I-surface-labelled class I molecules to papain cleavage was used to distinguish internalized class I molecules from class I molecules remaining at the cell surface. Whereas the caveolae-enriched membrane microdomain was found to also be enriched for class I molecules, no internalized papain-resistant 125I-surface-labelled class I molecules could be detected at any time in either control cells or in cells preadsorbed with saturating amounts of SV40. Instead, 125I-surface-labelled class I molecules, as well as preadsorbed 125I-labelled anti-class I antibodies, accumulated in the medium, coincident with the turnover of class I molecules at the cell surface. The class I heavy chains that accumulated in the medium were truncated and their release was specifically prevented by the metalloprotease inhibitor 1,10-phenanthroline. Thus, whereas class I molecules mediate SV40 binding, they do not appear to mediate SV40 entry.

  17. Anti-coreceptor antibodies profoundly affect staining with peptide-MHC class I and class II tetramers.

    PubMed

    Wooldridge, Linda; Scriba, Thomas J; Milicic, Anita; Laugel, Bruno; Gostick, Emma; Price, David A; Phillips, Rodney E; Sewell, Andrew K

    2006-07-01

    The T cell coreceptors CD8 and CD4 bind to invariable regions of peptide-MHC class I (pMHCI) and class II (pMHCII) molecules, respectively, and facilitate antigen recognition by a number of mechanisms. It is established that some antibodies (Ab) specific for the CD8 molecule, which stabilizes TCR/pMHCI interactions, can alter the binding of pMHCI tetramers to cell surface TCR. In contrast, the extremely weak pMHCII/CD4 interaction does not stabilize TCR/pMHCII interactions or contribute to cognate tetramer binding; consequently, it is assumed that anti-CD4 Ab do not affect pMHCII binding. Here, we used a panel of point-mutated HLA A2 molecules with a range of affinities for CD8 spanning over three orders of magnitude to demonstrate that anti-CD8 Ab-mediated inhibition of pMHCI tetramer binding and cognate T cell activation correlates directly with the strength of the pMHCI/CD8 interaction. Further, some anti-CD4 Ab were found to block pMHCII tetramer binding; these effects were also paralleled in T cell activation assays. In sum, these data challenge the assertion that anti-coreceptor Ab exert their effects on T cell activation and pMHC binding solely by blocking pMHC/coreceptor interactions.

  18. HLA-DM induces CLIP dissociation from MHC class II alpha beta dimers and facilitates peptide loading.

    PubMed

    Denzin, L K; Cresswell, P

    1995-07-14

    Human leukocyte antigen DM (HLA-DM) molecules are structurally related to classical MHC class II molecules and reside in the lysosome-like compartment where class II-restricted antigen processing is thought to occur. Mutant cell lines lacking HLA-DM are defective in antigen processing and accumulate class II molecules associated with a nested set of invariant chain-derived peptides (class II-associated invariant chain peptides, CLIP). Here we show that HLA-DM catalyzes the dissociation of CLIP from MHC class II-CLIP complexes in vitro and facilitates the binding of antigenic peptides. The reaction has an acidic pH optimum, consistent with its occurrence in a lysosome-like compartment in vivo. Antibody blocking experiments suggest that a transient interaction between HLA-DM and the MHC class II-CLIP complex is required.

  19. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation.

    PubMed

    Blander, J Magarian

    2016-07-01

    MHC class I (MHC-I) molecules are the centerpieces of cross-presentation. They are loaded with peptides derived from exogenous sources and displayed on the plasma membrane to communicate with CD8 T cells, relaying a message of tolerance or attack. The study of cross-presentation has been focused on the relative contributions of the vacuolar versus cytosolic pathways of antigen processing and the location where MHC-I molecules are loaded. While vacuolar processing generates peptides loaded onto vacuolar MHC-I molecules, how and where exogenous peptides generated by the proteasome and transported by TAP meet MHC-I molecules for loading has been a matter of debate. The source and trafficking of MHC-I molecules in dendritic cells have largely been ignored under the expectation that these molecules came from the Endoplasmic reticulum (ER) or the plasma membrane. New studies reveal a concentrated pool of MHC-I molecules in the endocytic recycling compartment (ERC). These pools are rapidly mobilized to phagosomes carrying microbial antigens, and in a signal-dependent manner under the control of Toll-like receptors. The phagosome becomes a dynamic hub receiving traffic from multiple sources, the ER-Golgi intermediate compartment for delivering the peptide-loading machinery and the ERC for deploying MHC-I molecules that alert CD8 T cells of infection.

  20. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation

    PubMed Central

    Blander, J. Magarian

    2016-01-01

    Summary MHC class I (MHC-I) molecules are the centerpieces of cross-presentation. They are loaded with peptides derived from exogenous sources and displayed on the plasma membrane to communicate with CD8 T cells, relaying a message of tolerance or attack. The study of cross-presentation has been focused on the relative contributions of the vacuolar versus cytosolic pathways of antigen processing and the location where MHC-I molecules are loaded. While vacuolar processing generates peptides loaded onto vacuolar MHC-I molecules, how and where exogenous peptides generated by the proteasome and transported by TAP meet MHC-I molecules for loading has been a matter of debate. The source and trafficking of MHC-I molecules in dendritic cells have largely been ignored under the expectation that these molecules came from the Endoplasmic reticulum (ER) or the plasma membrane. New studies reveal a concentrated pool of MHC-I molecules in the endocytic recycling compartment (ERC). These pools are rapidly mobilized to phagosomes carrying microbial antigens, and in a signal-dependent manner under the control of Toll-like receptors. The phagosome becomes a dynamic hub receiving traffic from multiple sources, the ER-Golgi intermediate compartment for delivering the peptide-loading machinery and the ERC for deploying MHC-I molecules that alert CD8 T cells of infection. PMID:27319343

  1. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis.

    PubMed

    Buschow, Sonja I; van Balkom, Bas W M; Aalberts, Marian; Heck, Albert J R; Wauben, Marca; Stoorvogel, Willem

    2010-01-01

    Professional antigen-presenting cells secrete major histocompatibility complex class II (MHC II) carrying exosomes with unclear physiological function(s). Exosomes are first generated as the intraluminal vesicles (ILVs) of a specific type of multivesicular body, and are then secreted by fusion of this compartment with the plasma membrane. We have previously shown that in contrast to the sorting of MHC II at lysosomally targeted multivesicular bodies, sorting of MHC II into exosomes does not rely on MHC II ubiquitination. In search for proteins that drive the incorporation of MHC II into exosomes or functionally discriminate exosomal from plasma membrane MHC II, we first analyzed the total proteome of highly purified B cell-derived exosomes using sensitive and accurate mass spectrometry (MS), and identified 539 proteins, including known and not previously identified constituents. Using quantitative MS, we then identified a small subset of proteins that were specifically co-immunoprecipitated with MHC II from detergent-solubilized exosomes. These include HSC71, HSP90, 14-3-3ɛ, CD20 and pyruvate kinase type M2 (PKM2), and we speculate on the functionality of their interaction with exosomal MHC II.

  2. MHC class I-deficient metastatic tumor variants immunoselected by T lymphocytes originate from the coordinated downregulation of APM components.

    PubMed

    Garcia-Lora, Angel; Martinez, Marisol; Algarra, Ignacio; Gaforio, Jose Juan; Garrido, Federico

    2003-09-10

    Previous reports from our group indicated that the MHC class I phenotype of metastatic lung colonies produced by a mouse fibrosarcoma tumor clone (B9) were, depending on the immune status of the host, MHC class I negative in immunocompetent mice and MHC class I positive in immunodeficient athymic nude/nude mice. Now we report the identification of the molecular alterations responsible for the changes of MHC class I molecules in both situations. Metastatic nodes were analyzed for the mRNA level of H-2 class I and beta2-microglobulin genes, and several gene components of the major histocompatibility complex (MHC) class I antigen-processing machinery (APM). These included the genes coding for the low-molecular-weight proteins LMP2, LMP7, LMP10, the transporter associated with antigen processing (TAP-1, TAP-2), and calnexin, calreticulin, tapasin, PA-28-alpha, PA-28-beta, ERP-59 and ER-60. Analyses with RT-PCR showed that TAP-1, TAP2, LMP-2, LMP7, LMP10, tapasin and calnexin mRNA specific for these genes was absent in metastases produced in immunocompetent mice. In contrast, similar techniques with mRNA preparations obtained from metastatic nodes from immunodeficient mice showed that the mRNA expression level of these genes was highly positive. Interestingly, the MHC class I-positive or negative phenotypes of the metastatic colonies correlated with in vivo immunogenicity. H-2 positive metastasis grew more slowly than the H-2 negative ones when injected intrafootpat in syngeneic immunocompetent animals and were finally rejected. These results provide evidence of the role of T cells in immune surveillance against tumors and identify a mechanism targeted by antitumor T lymphocytes to generate MHC class I-negative tumor escape variants.

  3. Low MHC class II diversity in the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Cheng, Yuanyuan; Sanderson, Claire; Jones, Menna; Belov, Katherine

    2012-07-01

    The largest remaining carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is currently under threat of extinction due to a fatal contagious cancer-devil facial tumour disease. Low major histocompatibility complex (MHC) class I diversity is believed to have contributed to the transmission of the tumour allograft through devil populations. Here, we report low MHC class II variability in this species, with DA β chain genes (Saha-DAB1, 2 and 3) exhibiting very limited diversity and the sole α chain gene (Saha-DAA) monomorphic. Three, six and three alleles were found at Saha-DAB1, 2 and 3, respectively, with a predominant allele found at each locus. Heterozygosity at these three loci is low in the eastern population and modestly higher in northwestern individuals. The results are indicative of a selective sweep likely due to an infectious disease resulting in the fixation of selectively favoured alleles and depletion of genetic diversity at devil class II loci. Several attempts were made to isolate the other marsupial classical class II gene family, namely, DB, resulting in only one DBB pseudogene being found. These findings further support the view that this species has a compromised capacity to respond to pathogen evolution, emerging infectious diseases and environmental changes.

  4. MHC class II up-regulation and co-localization with Fas in experimental models of immune-mediated bone marrow failure

    PubMed Central

    Erie, Andrew J.; Samsel, Leigh; Takaku, Tomoiku; Desierto, Marie J.; Keyvanfar, Keyvan; McCoy, J. Philip; Young, Neal S.; Chen, Jichun

    2011-01-01

    Objective To test the hypothesis that gamma interferon (IFN-γ) promotes MHC class II expression on bone marrow (BM) cell targets that facilitates T cell-mediated BM destruction in immune-mediated BM failure. Materials and Methods Allogeneic lymph node (LN) cells were infused into MHC or minor histocompatibility antigen (minor-H) mismatched hosts to induce BM failure. MHC class II and Fas expression and cell apoptosis were analyzed by flow cytometry. MHC class II-Fas co-localization was detected by ImageStream Imaging Flow Cytometry and other cell-cell associations were visualized by confocal microscopy. T cell-mediated BM cell apoptosis and effects of IFN-γ on MHC class II-Fas co-localization on normal BM cells were studied using cell culture in vitro followed by conventional and imaging flow cytometry. Results BM failure animals had significantly up-regulated MHC class II expression on CD4−CD8−CD11b−CD45R− residual BM cells and significantly increased MHC class II-Fas co-localization on BM CD150+ and CD34+ hematopoietic cells. MHC class II+Fas+ BM cells were closely associated with CD4+ T cells in the BM of affected animals, and they were significantly more responsive to T-cell mediated cell apoptosis relative to MHC class II−Fas− BM cells. Infusion of IFN-γ-deficient LN cells into minor-H mismatched recipients resulted in no MHC class II-Fas up-regulation and no clinically overt BM failure. Treatment with recombinant IFN-γ significantly increased both MHC class II-Fas co-expression and co-localization on normal BM cells. Conclusion Elevation of the inflammatory cytokine IFN-γ stimulated MHC class II expression and MHC class II-Fas co-localization, which may facilitate T-cell mediated cell destruction. PMID:21635935

  5. Recognition of core and flanking amino acids of MHC class II-bound peptides by the T cell receptor.

    PubMed

    Sant'Angelo, Derek B; Robinson, Eve; Janeway, Charles A; Denzin, Lisa K

    2002-09-01

    CD4 T cells recognize peptides bound to major histocompatibility complex (MHC) class II molecules. Most MHC class II molecules have four binding pockets occupied by amino acids 1, 4, 6, and 9 of the minimal peptide epitope, while the residues at positions 2, 3, 5, 7, and 8 are available to interact with the T cell receptor (TCR). In addition MHC class II bound peptides have flanking residues situated outside of this peptide core. Here we demonstrate that the flanking residues of the conalbumin peptide bound to I-A(k) have no effect on recognition by the D10 TCR. To study the role of peptide flanks for recognition by a second TCR, we determined the MHC and TCR contacting amino acids of the I-A(b) bound Ealpha peptide. The Ealpha peptide is shown to bind I-A(b) using four alanines as anchor residues. TCR recognition of Ealpha peptides with altered flanking residues again suggested that, in general, no specific interactions occurred with the peptide flanks. However, using an HLA-DM-mediated technique to measure peptide binding to MHC class II molecules, we found that the peptide flanking residues contribute substantially to MHC binding.

  6. Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens

    PubMed Central

    Young, Louise J.; Wilson, Nicholas S.; Schnorrer, Petra; Mount, Adele; Lundie, Rachel J.; La Gruta, Nicole L.; Crabb, Brendan S.; Belz, Gabrielle T.; Heath, William R.; Villadangos, Jose A.

    2007-01-01

    When dendritic cells (DCs) encounter signals associated with infection or inflammation, they become activated and undergo maturation. Mature DCs are very efficient at presenting antigens captured in association with their activating signal but fail to present subsequently encountered antigens, at least in vitro. Such impairment of MHC class II (MHC II) antigen presentation has generally been thought to be a consequence of down-regulation of endocytosis, so it might be expected that antigens synthesized by the DCs themselves (for instance, viral antigens) would still be presented by mature DCs. Here, we show that DCs matured in vivo could still capture and process soluble antigens, but were unable to present peptides derived from these antigens. Furthermore, presentation of viral antigens synthesized by the DCs themselves was also severely impaired. Indeed, i.v. injection of pathogen mimics, which caused systemic DC activation in vivo, impaired the induction of CD4 T cell responses against subsequently encountered protein antigens. This immunosuppressed state could be reversed by adoptive transfer of DCs loaded exogenously with antigens, demonstrating that impairment of CD4 T cell responses was due to lack of antigen presentation rather than to overt suppression of T cell activation. The biochemical mechanism underlying this phenomenon was the down-regulation of MHC II–peptide complex formation that accompanied DC maturation. These observations have important implications for the design of prophylactic and therapeutic DC vaccines and contribute to the understanding of the mechanisms causing immunosuppression during systemic blood infections. PMID:17978177

  7. Bap31 enhances the endoplasmic reticulum export and quality control of human class I MHC molecules.

    PubMed

    Ladasky, John J; Boyle, Sarah; Seth, Malini; Li, Hewang; Pentcheva, Tsvetelina; Abe, Fumiyoshi; Steinberg, Steven J; Edidin, Michael

    2006-11-01

    The assembly of class I MHC molecules and their export from the endoplasmic reticulum (ER) is governed by chaperones and accessory proteins. We present evidence that the putative cargo receptor protein Bap31 participates in the transport and the quality control of human class I molecules. Transfection of the human adenocarcinoma cell line HeLa with yellow fluorescent protein-Bap31 chimeras increased surface levels of class I in a dose-dependent manner, by as much as 3.7-fold. The increase in surface class I resulted from an increase in the rate of export of newly synthesized class I molecules to the cell surface and from an increase in the stability of the exported molecules. We propose that Bap31 performs quality control on class I molecules in two distinct phases: first, by exporting peptide-loaded class I molecules to the ER/Golgi intermediate compartment, and second, by retrieving class I molecules that have lost peptides in the acidic post-ER environment. This function of Bap31 is conditional or redundant, because we find that Bap31 deficiency does not reduce surface class I levels. Overexpression of the Bap31 homolog, Bap29, decreases surface class levels in HeLa, indicating that it does not substitute for Bap31.

  8. How did variable NK-cell receptors and MHC class I ligands influence immunity, reproduction and human evolution?

    PubMed Central

    Parham, Peter; Moffett, Ashley

    2014-01-01

    Preface Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, where they have progressively co-evolved with MHC class I molecules. The emergence of MHC-C in hominids drove the evolution of a system of MHC-C receptors that is most elaborate in chimpanzees. In contrast, the human system appears to have been subject to different and competing selection pressures that have acted on its immunological and reproductive functions. We suggest that this compromise facilitated development of the bigger brains that enabled archaic and modern humans to migrate out-of-Africa and populate other continents. PMID:23334245

  9. The common marmoset: A new world primate species with limited Mhc class II variability

    PubMed Central

    Antunes, Susana G.; de Groot, Natasja G.; Brok, Herbert; Doxiadis, Gaby; Menezes, Alexandre A. L.; Otting, Nel; Bontrop, Ronald E.

    1998-01-01

    The common marmoset (Callithrix jacchus) is a New World primate species that is highly susceptible to fatal infections caused by various strains of bacteria. We present here a first step in the molecular characterization of the common marmoset’s Mhc class II genes by nucleotide sequence analysis of the polymorphic exon 2 segments. For this study, genetic material was obtained from animals bred in captivity as well as in the wild. The results demonstrate that the common marmoset has, like other primates, apparently functional Mhc-DR and -DQ regions, but the Mhc-DP region has been inactivated. At the -DR and -DQ loci, only a limited number of lineages were detected. On the basis of the number of alleles found, the -DQA and -B loci appear to be oligomorphic, whereas only a moderate degree of polymorphism was observed for two of three Mhc-DRB loci. The contact residues in the peptide-binding site of the Caja-DRB1*03 lineage members are highly conserved, whereas the -DRB*W16 lineage members show more divergence in that respect. The latter locus encodes five oligomorphic lineages whose members are not observed in any other primate species studied, suggesting rapid evolution, as illustrated by frequent exchange of polymorphic motifs. All common marmosets tested were found to share one monomorphic type of Caja-DRB*W12 allele probably encoded by a separate locus. Common marmosets apparently lack haplotype polymorphism because the number of Caja-DRB loci present per haplotype appears to be constant. Despite this, however, an unexpectedly high number of allelic combinations are observed at the haplotypic level, suggesting that Caja-DRB alleles are exchanged frequently between chromosomes by recombination, promoting an optimal distribution of limited Mhc polymorphisms among individuals of a given population. This peculiar genetic make up, in combination with the limited variability of the major histocompatability complex class II repertoire, may contribute to the common

  10. Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors

    PubMed Central

    Antón, Luis C.; Yewdell, Jonathan W.

    2014-01-01

    MHC class I molecules display oligopeptides on the cell surface to enable T cell immunosurveillance of intracellular pathogens and tumors. Speed is of the essence in detecting viruses, which can complete a full replication cycle in just hours, whereas tumor detection is typically a finding-the-needle-in-the-haystack exercise. We review current evidence supporting a nonrandom, compartmentalized selection of peptidogenic substrates that focuses on rapidly degraded translation products as a main source of peptide precursors to optimize immunosurveillance of pathogens and tumors. PMID:24532645

  11. Mapping and characterization of non-HLA multigene assemblages in the human MHC class I region

    SciTech Connect

    Venditti, C.P.; Harris, J.M.; Geraghty, D.E.

    1994-07-15

    The major histocompatibility complex (MHC) class I region has been shown to be associated with a variety of immune and nonimmune disorders. In an effort to initiate steps designed to identify the idiopathic hemochromatosis disease gene (HFE), the authors have cloned and mapped two expressed messages using probes from the HLA-H subregion that lie immediately distal to the HLA-A9 breakpoint. Although the cDNA clones identify distinct multifragment families that are dispersed throughout the MHC, the gene sequences from which the two cDNA clones derive map centromeric to the HLA-B locus and are absent from the genomes of higher nonhuman primates. This suggests that a syntenic coding segment arose within a highly polymorphic region (TNF to HLA-B interval) as the result of an insertion event following the emergence of Homo sapiens. An additional syntenic cluster exists within a peak of linkage disequilibrium with the HFE gene and may define coding sequences that underlie the defect in genetic iron overload. These data generally support the concept that the class I region is potentially gene-rich and further highlight the possibility that these new coding sequences may play a role in the development of a variety of HLA-linked diseases. The observations presented suggest that interlocus exchanges have played a structural role in the genesis of the human class I region. 46 refs., 6 refs.

  12. Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials

    PubMed Central

    Meyer-Lucht, Yvonne; Otten, Celine; Püttker, Thomas; Sommer, Simone

    2008-01-01

    Background Research on the genetic architecture and diversity of the MHC has focused mainly on eutherian mammals, birds and fish. So far, studies on model marsupials used in laboratory investigations indicated very little or even no variation in MHC class II genes. However, natural levels of diversity and selection are unknown in marsupials as studies on wild populations are virtually absent. We used two endemic South American mouse opossums, Gracilinanus microtarsus and Marmosops incanus, to investigate characteristic features of MHC selection. This study is the first investigation of MHC selection in free-ranging Neotropical marsupials. In addition, the evolutionary history of MHC lineages within the group of marsupials was examined. Results G. microtarsus showed extensive levels of MHC diversity within and among individuals as 47 MHC-DAB alleles and high levels of sequence divergence were detected at a minimum of four loci. Positively selected codon sites were identified, of which most were congruent with human antigen binding sites. The diversity in M. incanus was rather low with only eight observed alleles at presumably two loci. However, these alleles also revealed high sequence divergence. Again, positive selection was identified on specific codon sites, all congruent with human ABS and with positively selected sites observed in G. microtarsus. In a phylogenetic comparison alleles of M. incanus interspersed widely within alleles of G. microtarsus with four alleles being present in both species. Conclusion Our investigations revealed extensive MHC class II polymorphism in a natural marsupial population, contrary to previous assumptions. Furthermore, our study confirms for the first time in marsupials the presence of three characteristic features common at MHC loci of eutherian mammals, birds and fish: large allelic sequence divergence, positive selection on specific sites and trans-specific polymorphism. PMID:18534008

  13. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

    PubMed Central

    Nejentsev, Sergey; Howson, Joanna M. M.; Walker, Neil M.; Szeszko, Jeffrey; Field, Sarah F.; Stevens, Helen E.; Reynolds, Pamela; Hardy, Matthew; King, Erna; Masters, Jennifer; Hulme, John; Maier, Lisa M.; Smyth, Deborah; Bailey, Rebecca; Cooper, Jason D.; Ribas, Gloria; Campbell, R. Duncan; Clayton, David G.; Todd, John A.

    2009-01-01

    The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region4-11. Owing to the region’s extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods—recursive partitioning and regression—to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios>1.5; Pcombined=2.01×10-19 and 2.35×10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies4-8,10-16, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes. PMID:18004301

  14. MHC class II tetramers made from isolated recombinant α and β chains refolded with affinity-tagged peptides.

    PubMed

    Braendstrup, Peter; Justesen, Sune; Osterbye, Thomas; Nielsen, Lise Lotte Bruun; Mallone, Roberto; Vindeløv, Lars; Stryhn, Anette; Buus, Søren

    2013-01-01

    Targeting CD4+ T cells through their unique antigen-specific, MHC class II-restricted T cell receptor makes MHC class II tetramers an attractive strategy to identify, validate and manipulate these cells at the single cell level. Currently, generating class II tetramers is a specialized undertaking effectively limiting their use and emphasizing the need for improved methods of production. Using class II chains expressed individually in E. coli as versatile recombinant reagents, we have previously generated peptide-MHC class II monomers, but failed to generate functional class II tetramers. Adding a monomer purification principle based upon affinity-tagged peptides, we here provide a robust method to produce class II tetramers and demonstrate staining of antigen-specific CD4+ T cells. We also provide evidence that both MHC class II and T cell receptor molecules largely accept affinity-tagged peptides. As a general approach to class II tetramer generation, this method should support rational CD4+ T cell epitope discovery as well as enable specific monitoring and manipulation of CD4+ T cell responses.

  15. TCR-Like Biomolecules Target Peptide/MHC Class I Complexes on the Surface of Infected and Cancerous Cells

    PubMed Central

    Weidanz, Jon A.; Hawkins, Oriana; Verma, Bhavna; Hildebrand, William H.

    2012-01-01

    Summary The human leukocyte antigen (HLA; also called major histocompatibility, or MHC) class I system presents peptides that distinguish healthy from diseased cells. Therefore, the discovery of peptide/MHC class I markers can provide highly specific targets for immunotherapy. Over the course of almost two decades, various strategies have been used, with mixed success, to produce antibodies that have recognition specificity for unique peptide/MHC class I complexes that mark infected and cancerous cells. Using these antibody reagents, novel peptide/MHC class I targets have been directly validated on diseased cells and new insight has been gained into the mechanisms of antigen presentation. More recently, these antibodies have shown promise for clinical applications such as therapeutic targeting of cancerous and infected cells and diagnosis and imaging of diseased cells. In this review, we comprehensively describe the methods used to identify disease-specific peptide/MHC class I epitopes and generate antibodies to these markers. Finally, we offer several examples that illustrate the promise of using these antibodies as anti-cancer agents. PMID:22053972

  16. A comparison of the antigen-presenting capabilities of class II MHC-expressing human lung epithelial and endothelial cells.

    PubMed Central

    Cunningham, A C; Zhang, J G; Moy, J V; Ali, S; Kirby, J A

    1997-01-01

    Human lung alveolar epithelial cells constitutively express class II major histocompatibility complex (MHC). Human lung microvascular endothelial and small airway epithelial cells can be induced to express class II MHC by stimulation with the pro-inflammatory cytokine interferon-gamma. The levels of class II MHC on lung epithelial and endothelial cells were comparable to those seen on an Epstein-Barr virus (EBV)-transformed B-cell line. However, the costimulatory molecules B7-1 and B7-2 were not expressed. The ability of the class II MHC expressing human lung parenchymal cells to present alloantigen to CD4+ T lymphocytes was investigated. Freshly isolated human alveolar epithelial cells (type II pneumocytes) and monolayers of interferon-gamma-stimulated small airway epithelial and lung microvascular endothelial cells were co-cultured with allogeneic CD4+ T lymphocytes and proliferation determined by [3H]thymidine incorporation. A clear difference was observed between effects of the epithelial and endothelial cells on CD4+ T-lymphocyte activation. Alveolar and small airway epithelial cells failed to stimulate the proliferation of allogeneic CD4+ T lymphocytes whereas lung microvascular endothelial cells did stimulate proliferation. This difference could not be explained by the levels of class II MHC or the lack of B7-1 and B7-2 solely. Microvascular endothelial cells, and not alveolar or small airway epithelial cells, possess B7-independent costimulatory pathways. PMID:9301537

  17. pRB is required for interferon-gamma-induction of the MHC class II abeta gene.

    PubMed

    Zhu, X; Pattenden, S; Bremner, R

    1999-09-02

    pRB is required for IFN-gamma-induction of MHC class II in human tumor cell lines, providing a potential link between tumor suppressors and the immune system. However, other genes, such as cyclin D1, show pRB-dependency only in tumor cells, so by analogy, pRB may not be necessary for cII-regulation in normal cells. Here, we demonstrate that induction of the mouse MHC class II I-A heterodimer is normal in RB+/+ mouse embryonic fibroblasts (MEFs), but deficient in RB-/- MEFs. Inducibility is restored in RB-/- MEFs stably transfected with wild type RB cDNA or infected with an adenovirus expressing pRB. Thus, involvement of pRB in MHC class II expression is conserved in the mouse and is not an aberrant feature of tumorigenic, aneuploid, human tumor cells. Although cII genes are generally induced in a coordinate fashion, suggesting a common mechanism, we found that pRB was specifically required for induction of the Abeta, but not Aalpha or other MHC cII genes including Ebeta, Ii and H2-Malpha. Finally, IFN-gamma-induction of class II transactivator (CIITA), was pRB-independent, suggesting that pRB works downstream of this master-regulator of MHC class II expression.

  18. Diverse repertoire of the MHC class II-peptide complexes is required for presentation of viral superantigens.

    PubMed

    Golovkina, T; Agafonova, Y; Kazansky, D; Chervonsky, A

    2001-02-15

    Among other features, peptides affect MHC class II molecules, causing changes in the binding of bacterial superantigens (b-Sag). Whether peptides can alter binding of viral superantigens (v-Sag) to MHC class II was not known. Here we addressed the question of whether mutations limiting the diversity of peptides bound by the MHC class II molecules influenced the presentation of v-Sag and, subsequently, the life cycle of the mouse mammary tumor virus (MMTV). T cells reactive to v-Sag were found in mice lacking DM molecules as well as in A(b)Ep-transgenic mice in which MHC class II binding grooves were predominantly occupied by an invariant chain fragment or Ealpha(52-68) peptide, respectively. APCs from the mutant mice failed to present v-Sag, as determined by the lack of Sag-specific T cell activation, Sag-induced T cell deletion, and by the aborted MMTV infection. In contrast, mice that express I-A(b) with a variety of bound peptides presented v-Sag and were susceptible to MMTV infection. Comparison of v-Sag and b-Sag presentation by the same mutant cells suggested that presentation of v-Sag had requirements similar to that for presentation of toxic shock syndrome toxin-1. Thus, MHC class II peptide repertoire is critical for recognition of v-Sag by the T cells and affects the outcome of infection with a retrovirus.

  19. Interaction of Bap31 and MHC class I molecules and their traffic out of the endoplasmic reticulum.

    PubMed

    Abe, Fumiyoshi; Van Prooyen, Nancy; Ladasky, John J; Edidin, Michael

    2009-04-15

    The endoplasmic reticulum (ER) protein Bap31 associates with nascent class I MHC molecules. It appears to mediate the export of class I MHC molecules from the ER and may also be involved in their quality control. In this study, we use Förster resonance energy transfer and quantitative fluorescence imaging to show that in human, HeLa cells, Bap31 clusters with MHC class I (HLA-A2) molecules in the ER, and traffics via export vesicles to the ER/Golgi intermediate compartment. Förster resonance energy transfer between Bap31 and HLA-A2 and forward traffic increases when MHC class I molecules are loaded with a pulse of peptide. The increased forward traffic is blocked by overexpression of Bap29, a partner protein for Bap31, which localizes to the ER. Thus, in HeLa cells, Bap31 is involved in the exit of peptide-loaded MHC class I from the ER, and its function is regulated by its interaction with its homologue, Bap29.

  20. Cloning, sequencing, and polymorphism analysis of novel classical MHC class I alleles in northern pig-tailed macaques (Macaca leonina).

    PubMed

    Lian, Xiao-Dong; Zhang, Xi-He; Dai, Zheng-Xi; Zheng, Yong-Tang

    2016-04-01

    The northern pig-tailed macaque (Macaca leonina) has been confirmed to be an independent species from the pig-tailed macaque group of Old World monkey. We have previously reported that the northern pig-tailed macaques were also susceptible to HIV-1. Here, to make this animal a potential HIV/AIDS model and to discover the mechanism of virus control, we attempted to assess the role of major histocompatibility complex (MHC) class I-restricted immune responses to HIV-1 infection, which was associated with viral replication and disease progression. As an initial step, we first cloned and characterized the classical MHC class I gene of northern pig-tailed macaques. In this study, we identified 39 MHC class I alleles including 17 MHC-A and 22 MHC-B alleles. Out of these identified alleles, 30 were novel and 9 were identical to alleles previously reported from other macaque species. The MHC-A and MHC-B loci were both duplicates as rhesus macaques and southern pig-tailed macaques. In addition, we also detected the patterns of positive selection in northern pig-tailed macaques and revealed the existence of balance selection with 20 positive selection sites in the peptide binding region. The analysis of B and F peptide binding pockets in northern and southern pig-tailed macaques and rhesus macaques suggested that they were likely to share a few common peptides to present. Thus, this study provides important MHC immunogenetics information and adds values to northern pig-tailed macaques as a promising HIV/AIDS model.

  1. MHC class IIB additive and non-additive effects on fitness measures in the guppy Poecilia reticulata.

    PubMed

    Fraser, B A; Neff, B D

    2009-12-01

    The genetic architecture of fitness at the class IIB gene of the major histocompatibility complex (MHC) in the guppy Poecilia reticulata was analysed. Diversity at the MHC is thought to be maintained by some form of balancing selection; heterozygote advantage, frequency-dependent selection or spatially and temporally fluctuating selection. Here these hypotheses are evaluated by using an algorithm that partitions the effect of specific MHC allele and genotypes on fitness measures. The effect of MHC genotype on surrogate measures of fitness was tested, including growth rate (at high and low bulk food diets), parasite load following a parasite challenge and survival. The number of copies of the Pore_a132 MHC allele was inversely related to infection by Gyrodactylus flukes and it appeared to be positively related to faster growth. Also, genotypes combining the Pore_a132 or other relatively common alleles paired with rare MHC alleles produced both advantageous and detrimental non-additive effects. Thus, the genetic architecture underlying fitness at the MHC is complex in the P. reticulata.

  2. [Planar molecular arrangements aid the design of MHC class II binding peptides].

    PubMed

    Cortés, A; Coral, J; McLachlan, C; Benítez, R; Pinilla, L

    2017-01-01

    The coupling between peptides and MHC-II proteins in the human immune system is not well understood. This work presents an evidence-based hypothesis of a guiding intermolecular force present in every human MHC-II protein (HLA-II). Previously, we examined the spatial positions of the fully conserved residues in all HLA-II protein types. In each one, constant planar patterns were revealed. These molecular planes comprise of amino acid groups of the same chemical species (for example, Gly) distributed across the protein structure. Each amino acid plane has a unique direction and this directional element offers spatial selectivity. Constant within all planes, too, is the presence of an aromatic residue possessing electrons in movement, leading the authors to consider that the planes generate electromagnetic fields that could serve as an attractive force in a single direction. Selection and attraction between HLA-II molecules and antigen peptides would, therefore, be non-random, resulting in a coupling mechanism as effective and rapid as is clearly required in the immune response. On the basis of planar projections onto the HLA-II groove, modifications were made by substituting the key residues in the class II-associated invariant chain peptide-a peptide with a universal binding affinity-resulting in eight different modified peptides with affinities greater than that of the unmodified peptide. Accurate and reliable prediction of MHC class II-binding peptides may facilitate the design of universal vaccine-peptides with greatly enhanced binding affinities. The proposed mechanisms of selection, attraction and coupling between HLA-II and antigen peptides are explained further in the paper.

  3. Characterization of a nonclassical class I MHC gene in a reptile, the Galápagos marine iguana (Amblyrhynchus cristatus).

    PubMed

    Glaberman, Scott; Du Pasquier, Louis; Caccone, Adalgisa

    2008-08-06

    Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification.

  4. Mechanical Stress Downregulates MHC Class I Expression on Human Cancer Cell Membrane

    PubMed Central

    Talib Hassan, Almosawy; Das, Gobind; Tadepally, Lakshmikanth; Matteucci, Marco; Liberale, Carlo; Mesuraca, Maria; Scumaci, Domenica; Gentile, Francesco; Cojoc, Gheorghe; Perozziello, Gerardo; Ammendolia, Antonio; Gallo, Adriana; Kärre, Klas; Cuda, Giovanni; Candeloro, Patrizio; Di Fabrizio, Enzo; Carbone, Ennio

    2014-01-01

    In our body, cells are continuously exposed to physical forces that can regulate different cell functions such as cell proliferation, differentiation and death. In this work, we employed two different strategies to mechanically stress cancer cells. The cancer and healthy cell populations were treated either with mechanical stress delivered by a micropump (fabricated by deep X-ray nanolithography) or by ultrasound wave stimuli. A specific down-regulation of Major Histocompatibility Complex (MHC) class I molecules expression on cancer cell membrane compared to different kinds of healthy cells (fibroblasts, macrophages, dendritic and lymphocyte cells) was observed, stimulating the cells with forces in the range of nano-newton, and pressures between 1 and 10 bar (1 bar = 100.000 Pascal), depending on the devices used. Moreover, Raman spectroscopy analysis, after mechanical treatment, in the range between 700–1800 cm−1, indicated a relative concentration variation of MHC class I. PCA analysis was also performed to distinguish control and stressed cells within different cell lines. These mechanical induced phenotypic changes increase the tumor immunogenicity, as revealed by the related increased susceptibility to Natural Killer (NK) cells cytotoxic recognition. PMID:25541692

  5. MHC class I–associated peptides derive from selective regions of the human genome

    PubMed Central

    Pearson, Hillary; Granados, Diana Paola; Durette, Chantal; Bonneil, Eric; Courcelles, Mathieu; Rodenbrock, Anja; Laverdure, Jean-Philippe; Côté, Caroline; Thibault, Pierre

    2016-01-01

    MHC class I–associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology. PMID:27841757

  6. The genetic architecture of the MHC class II region in British Texel sheep.

    PubMed

    Ali, Alsagher O A; Stear, Abigail; Fairlie-Clarke, Karen; Brujeni, Gholamreza Nikbakht; Isa, N Mahiza Md; Salisi, M Shahrom Bin; Donskow-Łysoniewska, Katarzyna; Groth, David; Buitkamp, Johannes; Stear, Michael J

    2017-03-01

    Understanding the structure of the major histocompatibility complex, especially the number and frequency of alleles, loci and haplotypes, is crucial for efficient investigation of the way in which the MHC influences susceptibility to disease. Nematode infection is one of the most important diseases suffered by sheep, and the class II region has been repeatedly associated with differences in susceptibility and resistance to infection. Texel sheep are widely used in many different countries and are relatively resistant to infection. This study determined the number and frequency of MHC class II genes in a small flock of Texel sheep. There were 18 alleles at DRB1, 9 alleles at DQA1, 13 alleles at DQB1, 8 alleles at DQA2 and 16 alleles at DQB2. Several haplotypes had no detectable gene products at DQA1, DQB1 or DQB2, and these were defined as null alleles. Despite the large numbers of alleles, there were only 21 distinct haplotypes in the population. The relatively small number of observed haplotypes will simplify finding disease associations because common haplotypes provide more statistical power but complicate the discrimination of causative mutations from linked marker loci.

  7. Transcription variants of SLA-7, a swine non classical MHC class I gene.

    PubMed

    Hu, Rui; Lemonnier, Gaëtan; Bourneuf, Emmanuelle; Vincent-Naulleau, Silvia; Rogel-Gaillard, Claire

    2011-06-03

    In pig, very little information is available on the non classical class I (Ib) genes of the Major Histocompatibility Complex (MHC) i.e. SLA-6, -7 and -8. Our aim was to focus on the transcription pattern of the SLA-7 gene. RT-PCR experiments were carried out with SLA-7 specific primers targeting either the full coding sequence (CDS) from exon 1 to the 3 prime untranslated region (3UTR) or a partial CDS from exon 4 to the 3UTR. We show that the SLA-7 gene expresses a full length transcript not yet identified that refines annotation of the gene with eight exons instead of seven as initially described from the existing RefSeq RNA. These two RNAs encode molecules that differ in cytoplasmic tail length. In this study, another SLA-7 transcript variant was characterized, which encodes a protein with a shorter alpha 3 domain, as a consequence of a splicing site within exon 4. Surprisingly, a cryptic non canonical GA-AG splicing site is used to generate this transcript variant. An additional SLA-7 variant was also identified in the 3UTR with a splicing site occurring 31 nucleotides downstream to the stop codon. In conclusion, the pig SLA-7 MHC class Ib gene presents a complex transcription pattern with two transcripts encoding various molecules and transcripts that do not alter the CDS and may be subject to post-transcriptional regulation.

  8. Transcription variants of SLA-7, a swine non classical MHC class I gene

    PubMed Central

    2011-01-01

    In pig, very little information is available on the non classical class I (Ib) genes of the Major Histocompatibility Complex (MHC) i.e. SLA-6, -7 and -8. Our aim was to focus on the transcription pattern of the SLA-7 gene. RT-PCR experiments were carried out with SLA-7 specific primers targeting either the full coding sequence (CDS) from exon 1 to the 3 prime untranslated region (3UTR) or a partial CDS from exon 4 to the 3UTR. We show that the SLA-7 gene expresses a full length transcript not yet identified that refines annotation of the gene with eight exons instead of seven as initially described from the existing RefSeq RNA. These two RNAs encode molecules that differ in cytoplasmic tail length. In this study, another SLA-7 transcript variant was characterized, which encodes a protein with a shorter alpha 3 domain, as a consequence of a splicing site within exon 4. Surprisingly, a cryptic non canonical GA-AG splicing site is used to generate this transcript variant. An additional SLA-7 variant was also identified in the 3UTR with a splicing site occurring 31 nucleotides downstream to the stop codon. In conclusion, the pig SLA-7 MHC class Ib gene presents a complex transcription pattern with two transcripts encoding various molecules and transcripts that do not alter the CDS and may be subject to post-transcriptional regulation. PMID:21645289

  9. Selection of unrelated bone marrow donors: does the current procedure warrant complete MHC class II identity?

    PubMed

    Eiermann, T H; Ballas, M; Fakler, J; Müller, C; Wölpl, A; Goldmann, S F

    1992-01-01

    Bone marrow transplantation from unrelated donors is being used increasingly for the treatment of patients with leukemia and several other hematologic disorders. Selection of unrelated bone marrow donors currently relies on serological HLA identity and negative mixed lymphocyte reactions between donor/recipient pairs. As serological HLA-DP typing is not feasible, we used the HLA-DPB1 oligonucleotide typing method to investigate whether the current selection procedure can guarantee complete MHC class II identity. In 40 consecutive patients, one third (62/193) serologically HLA-A, -B, -C, -DR and -DQ identical donors were found to be MLC-negative with a relative response below 5%. HLA-DPB1 oligonucleotide typing of these MLC-negative donors revealed that again only one third (20/62) was also identical for DP with their presumptive recipients. In the majority of pairs a disparity in graft-versus-host direction or in host-versus-graft direction of at least one allele was seen. These data indicate that, in spite of the strict MLC criteria used, the current procedure did not warrant complete MHC class II identity. This implies that oligotyping for DPB1 can improve matching and should be introduced for typing of volunteers.

  10. Oxidation matters: the ubiquitin proteasome system connects innate immune mechanisms with MHC class I antigen presentation.

    PubMed

    Warnatsch, Annika; Bergann, Theresa; Krüger, Elke

    2013-09-01

    During innate immune responses the delicate balance of protein synthesis, quality control and degradation is severely challenged by production of radicals and/or the massive synthesis of pathogen proteins. The regulated degradation of ubiquitin-tagged proteins by the ubiquitin proteasome system (UPS) represents one major pathway for the maintenance of cellular proteostasis and regulatory processes under these conditions. In addition, MHC class I antigen presentation is strictly dependent on an appropriate peptide supply by the UPS to efficiently prime CD8(+) T cells and to initiate an adaptive immune response. We here discuss recent efforts in defining the link between innate immune mechanisms like cytokine and ROS production, the induction of an efficient adaptive immune response and the specific involvement of the UPS therein. Cytokines and/or infections induce translation and the production of free radicals, which in turn confer oxidative damage to nascent as well as folded proteins. In parallel, the same signaling cascades are able to accelerate the protein turnover by the concomitantly induced ubiquitin conjugation and degradation of such damaged polypeptides by immunoproteasomes. The ability of immunoproteasomes to efficiently degrade such oxidant-damaged ubiquitylated proteins protects cells from accumulating toxic ubiquitin-rich aggregates. At the same time, this innate immune mechanism facilitates a sufficient peptide supply for MHC class I antigen presentation and connects it to initiation of adaptive immunity.

  11. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    PubMed Central

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    Background Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion The SMM-align method was

  12. Internalization of MHC class I molecules is a prerequisite for endocytosis of endorphin by lymphocytes.

    PubMed Central

    Mommaas, A M; Wijsman, M C; Verduijn, W; Vermeer, B J; Claas, F M

    1991-01-01

    The nature of the interaction between gamma-type endorphins and the HLA class I molecules was studied by immunoelectronmicroscopy. The HLA molecules were not involved in the actual binding of endorphin to the cell. In contrast, for the endocytosis of gamma-endorphin, co-internalization of the HLA class I molecules is essential. The internalization process starts with clustering of gamma-endorphin and HLA class I molecules in coated pits. Cells that do not carry HLA class I molecules (Daudi) or do not internalize HLA class I molecules (EBV-transformed B cells) bind but do not internalize gamma-endorphin. On the basis of these observations, we suggest that the MHC class I molecules may function as transport molecules. Whether it is a general phenomenon that non-immunological ligands use the HLA class I molecules to get into the cell and immunological ligands (viral proteins) to reach the cell surface, remains to be established. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:2015708

  13. Distinct Conformations of Ly49 Natural Killer Cell Receptors Mediate MHC Class I Recognition in Trans and Cis

    SciTech Connect

    Back, J.; Malchiodi, E; Cho, S; Scarpellino, L; Schneider, P; Kerzic, M; Mariuzza, R; Held, W

    2009-01-01

    Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors and explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.

  14. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep.

    PubMed

    Ballingall, Keith T; Rocchi, Mara S; McKeever, Declan J; Wright, Frank

    2010-06-30

    Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC) in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries). We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201) differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901), which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T-cells and the

  15. Trans-Species Polymorphism and Selection in the MHC Class II DRA Genes of Domestic Sheep

    PubMed Central

    Ballingall, Keith T.; Rocchi, Mara S.; McKeever, Declan J.; Wright, Frank

    2010-01-01

    Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC) in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries). We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201) differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901), which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T-cells and the

  16. Genomic sequence analysis of the MHC class I G/F segment in common marmoset (Callithrix jacchus).

    PubMed

    Kono, Azumi; Brameier, Markus; Roos, Christian; Suzuki, Shingo; Shigenari, Atsuko; Kametani, Yoshie; Kitaura, Kazutaka; Matsutani, Takaji; Suzuki, Ryuji; Inoko, Hidetoshi; Walter, Lutz; Shiina, Takashi

    2014-04-01

    The common marmoset (Callithrix jacchus) is a New World monkey that is used frequently as a model for various human diseases. However, detailed knowledge about the MHC is still lacking. In this study, we sequenced and annotated a total of 854 kb of the common marmoset MHC region that corresponds to the HLA-A/G/F segment (Caja-G/F) between the Caja-G1 and RNF39 genes. The sequenced region contains 19 MHC class I genes, of which 14 are of the MHC-G (Caja-G) type, and 5 are of the MHC-F (Caja-F) type. Six putatively functional Caja-G and Caja-F genes (Caja-G1, Caja-G3, Caja-G7, Caja-G12, Caja-G13, and Caja-F4), 13 pseudogenes related either to Caja-G or Caja-F, three non-MHC genes (ZNRD1, PPPIR11, and RNF39), two miscRNA genes (ZNRD1-AS1 and HCG8), and one non-MHC pseudogene (ETF1P1) were identified. Phylogenetic analysis suggests segmental duplications of units consisting of basically five (four Caja-G and one Caja-F) MHC class I genes, with subsequent expansion/deletion of genes. A similar genomic organization of the Caja-G/F segment has not been observed in catarrhine primates, indicating that this genomic segment was formed in New World monkeys after the split of New World and Old World monkeys.

  17. Characterization of MHC class I alleles in sooty mangabeys as a tool for evaluating cellular immunity in natural hosts of SIV infection.

    PubMed

    Wang, Zichun; Metcalf, Benjamin; Kasheta, Melissa; Kasala-Hallinan, Caitlin; Tran, Dollnovan; Johnson, R Paul; Else, James G; Karl, Julie; O'Connor, David; Apetrei, Cristian; Kaur, Amitinder

    2015-08-01

    Although immune pressure exerted by MHC class I-restricted cytotoxic T lymphocytes (CTL) are an important determinant of outcome in pathogenic HIV and SIV infection, lack of data on MHC class I genes has hampered study of its role in natural hosts with nonpathogenic SIV infection. In this study, we cloned and characterized full-length MHC class I genes derived from the cDNA library of two unrelated naturally infected sooty mangabeys (Cercocebus atys) in whom SIV-specific CTL epitopes were previously mapped. Twenty one full-length MHC class I alleles consisting of five MHC-A (Ceat-A), 13 MHC-B (Ceat-B), and three MHC-E (Ceat-E) alleles were identified. Sequence-specific primers (SSP) for high-throughput screening of genomic DNA by PCR were developed for 16 of the 18 Ceat-A and Ceat-B alleles. Screening of 62 SIV-negative and 123 SIV-infected sooty mangabeys at the Yerkes National Primate Research Center (YNPRC) revealed the presence of up to four MHC-A and eight MHC-B alleles in individual mangabeys, indicating that similar to macaque species, mangabeys have at least two duplications of the MHC-A locus and four duplications of the MHC-B locus in the absence of an MHC-C locus. Using stable transfectants of Ceat MHC Class I alleles in the MHC-null 721.221 cell line, we identified Ceat-B*12:01 as the restricting allele of a previously reported Nef20-28 CTL epitope. Ceat-B*1201/Nef20-28 tetramers identified tetramer-positive CD8+ T lymphocytes in Ceat-B*1201-positive SIV-infected mangabeys. This study has laid the groundwork for comprehensive analysis of CTL and SIV evolution in a natural host of SIV infection.

  18. Simian virus 40 infection via MHC class I molecules and caveolae.

    PubMed

    Norkin, L C

    1999-04-01

    MHC class I molecules are a necessary component of the cell surface receptor for simian virus 40 (SV40). After binding to class I molecules, SV40 enters cells via a unique endocytic pathway that involves caveolae, rather than clathrin-coated pits. This pathway is dependent on a transmembrane signal that SV40 transmits from the cell surface. Furthermore, it delivers SV40 to the endoplasmic reticulum, rather than to the endosomal/lysosomal compartment, which is the usual target for endocytic traffic. The glycosphingolipid and cholesterol-enriched plasma membrane domains that contain caveolae are also enriched for class I molecules, relative to whole plasma membrane. Nevertheless, although class I molecules bind SV40, they do not enter with SV40, nor do they enter spontaneously into uninfected SV40 host cells. Instead, they are shed from the cell surface by the activity of a metalloprotease. These results imply the existence of a putative secondary receptor for SV40 that might mediate SV40 entry. It is not yet clear whether class I molecules are active in transmitting the SV40 signal. Monoclonal antibodies against class I molecules also induce a signal in the SV40 host cells. However, the antibody-induced signal is mediated by mitogen-activated protein kinase (MAP kinase), whereas the SV40 signal is independent of MAP kinase.

  19. Modulation of MHC class I surface expression in B16F10 melanoma cells by methylseleninic acid.

    PubMed

    Lennicke, Claudia; Rahn, Jette; Bukur, Jürgen; Hochgräfe, Falko; Wessjohann, Ludger A; Lichtenfels, Rudolf; Seliger, Barbara

    2017-01-01

    The essential trace element selenium (Se) might play a role in cancer prevention as well as for cancer therapy. Its metabolite methylselenol is able to kill cells through distinct mechanisms including induction of reactive oxygen species, DNA damage and apoptosis. Since methylselenol affects innate immune responses by modulating the expression of NKG2D ligands, the aim of this study was to determine whether the methylselenol generating compound methylseleninic acid (MSA) influences the expression of the MHC class I surface antigens and growth properties thereby reverting immune escape. Treatment of B16F10 melanoma cells expressing low basal MHC class I surface antigens with dimethyldiselenide (DMDSe) and MSA, but not with selenomethionine and selenite resulted in a dose-dependent upregulation of MHC class I cell surface antigens. This was due to a transcriptional upregulation of some major components of the antigen processing machinery (APM) and the interferon (IFN) signaling pathway and accompanied by a reduced migration of B16F10 melanoma cells in the presence of MSA. Comparative "ome"-based profilings of untreated and MSA-treated melanoma cells linked the anti-oxidative response system with MHC class I antigen processing. Since MSA treatment enhanced MHC class I surface expression also on different human tumors cell lines, MSA might affect the malignant phenotype of various tumor cells by restoring MHC class I APM component expression due to an altered redox status and by partially mimicking IFN-gamma signaling thereby providing a novel mechanism for the chemotherapeutic potential of methylselenol generating Se compounds.

  20. Computational prediction of MHC class I epitopes for most common viral diseases in cattle (Bos taurus).

    PubMed

    Sahu, Tanmaya Kumar; Rao, A R; Meher, Prabina Kumar; Sahoo, Bishnu Charan; Gupta, Satakshi; Rai, Anil

    2015-02-01

    Viral diseases like foot-and-mouth disease (FMD), calf scour (CS), bovine viral diarrhea (BVD), infectious bovine rhinotracheitis (IBR) etc. affect the growth and milk production of cattle (Bos taurus) causing severe economic loss. Epitope-based vaccine designing have been evolved to provide a new strategy for therapeutic application of pathogen-specific immunity in animals. Therefore, identification of major histocompatibility complex (MHC) binding peptides as potential T-cell epitopes is widely applied in peptide vaccine designing and immunotherapy. In this study, MetaMHCI tool was used with seven different algorithms to predict the potential T-cell epitopes for FMD, BVD, IBR and CS in cattle. A total of 54 protein sequences were filtered out from a total set of 6351 sequences of the pathogens causing the said diseases using bioinformatics approaches. These selected protein sequences were used as the key inputs for MetaMHCI tool to predict the epitopes for the BoLA-All MHC class I allele of B. taurus. Further, the epitopes were ranked based on a proposed principal component analysis based epitope score (PbES). The best epitope for each disease based on its predictability through maximum number of predictors and low PbES was modeled in PEP-FOLD server and docked with the BoLA-A11 protein for understanding the MHC-epitope interaction. Finally, a total of 78 epitopes were predicted, out of which 27 were for FMD, 25 for BVD, 12 for CS and 14 for IBR. These epitopes could be artificially synthesized and recommended to vaccinate the cattle for the considered diseases. Besides, the methodology adapted here could also be used to predict and analyze the epitopes for other microbial diseases of important animal species.

  1. Natural selection on marine carnivores elaborated a diverse family of classical MHC class I genes exhibiting haplotypic gene content variation and allelic polymorphism

    PubMed Central

    Norman, Paul J.; Parham, Peter

    2012-01-01

    Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals’ classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores. PMID:23001684

  2. Extraordinary MHC class II B diversity in a non-passerine, wild bird: the Eurasian Coot Fulica atra (Aves: Rallidae).

    PubMed

    Alcaide, Miguel; Muñoz, Joaquin; Martínez-de la Puente, Josué; Soriguer, Ramón; Figuerola, Jordi

    2014-03-01

    The major histocompatibility complex (MHC) hosts the most polymorphic genes ever described in vertebrates. The MHC triggers the adaptive branch of the immune response, and its extraordinary variability is considered an evolutionary consequence of pathogen pressure. The last few years have witnessed the characterization of the MHC multigene family in a large diversity of bird species, unraveling important differences in its polymorphism, complexity, and evolution. Here, we characterize the first MHC class II B sequences isolated from a Rallidae species, the Eurasian Coot Fulica atra. A next-generation sequencing approach revealed up to 265 alleles that translated into 251 different amino acid sequences (β chain, exon 2) in 902 individuals. Bayesian inference identified up to 19 codons within the presumptive peptide-binding region showing pervasive evidence of positive, diversifying selection. Our analyses also detected a significant excess of high-frequency segregating sites (average Tajima's D = 2.36, P < 0.05), indicative of balancing selection. We found one to six different alleles per individual, consistent with the occurrence of at least three MHC class II B gene duplicates. However, the genotypes comprised of three alleles were by far the most abundant in the population investigated (49.4%), followed by those with two (29.6%) and four (17.5%) alleles. We suggest that these proportions are in agreement with the segregation of MHC haplotypes differing in gene copy number. The most widespread segregating haplotypes, according to our findings, would contain one single gene or two genes. The MHC class II of the Eurasian Coot is a valuable system to investigate the evolutionary implications of gene copy variation and extensive variability, the greatest ever found, to the best of our knowledge, in a wild population of a non-passerine bird.

  3. Extraordinary MHC class II B diversity in a non-passerine, wild bird: the Eurasian Coot Fulica atra (Aves: Rallidae)

    PubMed Central

    Alcaide, Miguel; Muñoz, Joaquin; Martínez-de la Puente, Josué; Soriguer, Ramón; Figuerola, Jordi

    2014-01-01

    The major histocompatibility complex (MHC) hosts the most polymorphic genes ever described in vertebrates. The MHC triggers the adaptive branch of the immune response, and its extraordinary variability is considered an evolutionary consequence of pathogen pressure. The last few years have witnessed the characterization of the MHC multigene family in a large diversity of bird species, unraveling important differences in its polymorphism, complexity, and evolution. Here, we characterize the first MHC class II B sequences isolated from a Rallidae species, the Eurasian Coot Fulica atra. A next-generation sequencing approach revealed up to 265 alleles that translated into 251 different amino acid sequences (β chain, exon 2) in 902 individuals. Bayesian inference identified up to 19 codons within the presumptive peptide-binding region showing pervasive evidence of positive, diversifying selection. Our analyses also detected a significant excess of high-frequency segregating sites (average Tajima's D = 2.36, P < 0.05), indicative of balancing selection. We found one to six different alleles per individual, consistent with the occurrence of at least three MHC class II B gene duplicates. However, the genotypes comprised of three alleles were by far the most abundant in the population investigated (49.4%), followed by those with two (29.6%) and four (17.5%) alleles. We suggest that these proportions are in agreement with the segregation of MHC haplotypes differing in gene copy number. The most widespread segregating haplotypes, according to our findings, would contain one single gene or two genes. The MHC class II of the Eurasian Coot is a valuable system to investigate the evolutionary implications of gene copy variation and extensive variability, the greatest ever found, to the best of our knowledge, in a wild population of a non-passerine bird. PMID:24683452

  4. Evolution of MHC class I genes in the endangered loggerhead sea turtle (Caretta caretta) revealed by 454 amplicon sequencing.

    PubMed

    Stiebens, Victor A; Merino, Sonia E; Chain, Frédéric J J; Eizaguirre, Christophe

    2013-04-30

    In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species.

  5. High levels of MHC class II allelic diversity in lake trout from Lake Superior

    USGS Publications Warehouse

    Dorschner, M.O.; Duris, T.; Bronte, C.R.; Burnham-Curtis, M. K.; Phillips, R.B.

    2000-01-01

    Sequence variation in a 216 bp portion of the major histocompatibility complex (MHC) II B1 domain was examined in 74 individual lake trout (Salvelinus namaycush) from different locations in Lake Superior. Forty-three alleles were obtained which encoded 71-72 amino acids of the mature protein. These sequences were compared with previous data obtained from five Pacific salmon species and Atlantic salmon using the same primers. Although all of the lake trout alleles clustered together in the neighbor-joining analysis of amino acid sequences, one amino acid allelic lineage was shared with Atlantic salmon (Salmo salar), a species in another genus which probably diverged from Salvelinus more than 10-20 million years ago. As shown previously in other salmonids, the level of nonsynonymous nucleotide substitution (d(N)) exceeded the level of synonymous substitution (d(S)). The level of nucleotide diversity at the MHC class II B1 locus was considerably higher in lake trout than in the Pacific salmon (genus Oncorhynchus). These results are consistent with the hypothesis that lake trout colonized Lake Superior from more than one refuge following the Wisconsin glaciation. Recent population bottlenecks may have reduced nucleotide diversity in Pacific salmon populations.

  6. Sequence analysis of the MHC class II DPB1 gene in chimpanzees (Pan troglodytes).

    PubMed

    Bak, E-J; Ishii, Y; Omatsu, T; Kyuwa, S; Hayasaka, I; Yoshikawa, Y

    2005-06-01

    The diversity of the MHC class II region in non-human primates is a focus of biomedical research because this region plays a crucial role in the recognition of antigens in the immune system. In particular, the chimpanzee [Pan troglodytes (Patr)], which belongs to the superfamily Hominoidea, has been used as a human model for the study of diseases such as human hepatitis C virus (HCV), human hepatitis B virus (HBV) and human immunodeficiency virus (HIV) infections, to which only humans and chimpanzees are susceptible. In the present study, polymorphisms of the MHC-DPB1 gene (Patr-DPB1) in a chimpanzee colony in Japan were examined using a stepwise polymerase chain reaction (PCR) technique. In order to design a suitable primer pair which would amplify exon 2 of the Patr-DPB1 gene, a fragment of approximately 8 kb from exon 1 to exon 3 was amplified from chimpanzee genomic DNA. After designing a 500-bp primer pair at the 3' region of intron 1 and the 5' region of intron 2, analysis of DPB1 exon 2 alleles of each chimpanzee was carried out. Twenty-two chimpanzees were used in our study, and we identified seven alleles by sequence analysis on the Patr-DPB1 gene, including one new allele. The obtained nucleotide sequence patterns suggest that Patr-DPB1 alleles emerge by genetic variations such as the exchange of sequence motifs and the accumulation of point mutations.

  7. Recombination hotspots rather than population history dominate linkage disequilibrium in the MHC class II region.

    PubMed

    Kauppi, Liisa; Sajantila, Antti; Jeffreys, Alec J

    2003-01-01

    Recombination, demographic history, drift and selection influence the extent of linkage disequilibrium (LD) in the human genome, but their relative contributions remain unclear. To investigate the effect of meiotic recombination versus population history on LD, three populations with different demographic histories (UK north Europeans, Saami and Zimbabweans) were genotyped for high-frequency single-nucleotide polymorphisms (SNPs) across a 75 kb DNA segment of the MHC class II region. This region spans three well-characterized recombination hotspots and a 60 kb long LD block. Despite a high level of underlying haplotype diversity and considerable divergence in haplotype composition between populations, all three populations showed very similar patterns of LD. Surprisingly, the entire 60 kb LD block was present even in Africans, although it was relatively difficult to detect owing to a systematic deficiency of high frequency SNPs. In contrast, DNA within recombination hotspots did not show this low nucleotide diversity in Africans. Thus, while population history has some influence on LD, our findings suggest that recombination hotspots play a major global role in shaping LD patterns as well as helping to maintain localized SNP diversity in this region of the MHC.

  8. Association of an MHC Class II Haplotype with Increased Risk of Polymyositis in Hungarian Vizsla Dogs

    PubMed Central

    Massey, Jonathan; Rothwell, Simon; Rusbridge, Clare; Tauro, Anna; Addicott, Diane; Chinoy, Hector; Cooper, Robert G.; Ollier, William E. R.; Kennedy, Lorna J.

    2013-01-01

    A breed-specific polymyositis is frequently observed in the Hungarian Vizsla. Beneficial clinical response to immunosuppressive therapies has been demonstrated which points to an immune-mediated aetiology. Canine inflammatory myopathies share clinical and histological similarities with the human immune-mediated myopathies. As MHC class II associations have been reported in the human conditions we investigated whether an MHC class II association was present in the canine myopathy seen in this breed. 212 Hungarian Vizsla pedigree dogs were stratified both on disease status and degree of relatedness to an affected dog. This generated a group of 29 cases and 183 “graded” controls: 93 unaffected dogs with a first degree affected relative, 44 unaffected dogs with a second degree affected relative, and 46 unaffected dogs with no known affected relatives. Eleven DLA class II haplotypes were identified, of which, DLA-DRB1*02001/DQA1*00401/DQB1*01303, was at significantly raised frequency in cases compared to controls (OR = 1.92, p = 0.032). When only control dogs with no family history of the disease were compared to cases, the association was further strengthened (OR = 4.08, p = 0.00011). Additionally, a single copy of the risk haplotype was sufficient to increase disease risk, with the risk substantially increasing for homozygotes. There was a trend of increasing frequency of this haplotype with degree of relatedness, indicating low disease penetrance. These findings support the hypothesis of an immune-mediated aetiology for this canine myopathy and give credibility to potentially using the Hungarian Vizsla as a genetic model for comparative studies with human myositis. PMID:23457575

  9. Alloreactive and syngeneic CTL are comparably dependent on interaction with MHC class I alpha-helical residues.

    PubMed

    Hornell, T M; Solheim, J C; Myers, N B; Gillanders, W E; Balendiran, G K; Hansen, T H; Connolly, J M

    1999-09-15

    The molecular basis for the difference in the strength of T cell responses to self vs alloantigens is unknown, but may reflect how T cells are selected in the thymus. Because T cells with a high affinity for foreign as opposed to self MHC molecules are able to mature, it has been proposed that alloreactive T cells may be more strongly dependent upon interaction with MHC residues than are self-restricted T cells. This study was undertaken to rigorously address this hypothesis. Whereas other studies have compared self vs alloantigen recognition of different MHC alleles by a single T cell clone, we have compared self vs alloantigen recognition of a single MHC allele, H-2Ld, by a large panel of self-restricted and alloreactive T cell clones. Target cells expressing Ld molecules mutated at several different potential TCR contact residues were analyzed to determine which residues are important for recognition by self-restricted vs alloreactive T cells. We unequivocally demonstrate that self-restricted and alloreactive T cells do not differ, but rather are comparably dependent on interaction with MHC residues. Importantly, both self-restricted and alloreactive T cells are dependent upon the same MHC residues as primary contacts and, in addition, share a common recognition pattern of Ld. Furthermore, our analysis enables us to provide a model for allotype-specific T cell recognition of Ld vs Kb class I molecules.

  10. Viral infection transiently reverses activation receptor-mediated NK cell hyporesponsiveness in an MHC class I-independent mechanism.

    PubMed

    Mazumdar, Budhaditya; Bolanos, Fred D; Tripathy, Sandeep K

    2013-05-01

    Continuous engagement of the Ly49H activating receptor with its ligand (m157) in a transgenic mouse expressing m157 (m157-Tg) results in hyporesponsiveness of Ly49H(+) NK cells. The same interaction, during murine cytomegalovirus (MCMV) infection, leads to activation of Ly49H(+) NK cells. MCMV infection results in decreased MHC class I (MHC-I) expression on the infected cell as well as inflammatory responses, both of which do not take place in the uninfected m157-Tg mouse, potentially allowing for activation of NK cells in the context of MCMV infection. In this study, we demonstrated that viral infection transiently reverses activation receptor-mediated NK cell hyporesponsiveness in an MHC-I-independent mechanism. Furthermore, Ly49H(+) NK cells in an MHC-I-deficient environment remained hyporesponsive in the context of m157 expression, even when mature WT splenocytes were transferred into m157-Tg mice in an MHC-I-deficient environment. However, the administration of cytokines TNF-α, IL-12, and IFN-β resulted in a partial recovery from activation receptor-induced hyporesponsiveness. Thus, the release of the aforementioned cytokines during MCMV infection and not the downregulation of MHC-I expression appears to be responsible for partial resolution of Ly49H receptor-induced NK cell hyporesponsiveness.

  11. Human Herpesvirus 7 U21 Tetramerizes To Associate with Class I Major Histocompatibility Complex Molecules

    PubMed Central

    May, Nathan A.; Wang, Qiuhong; Balbo, Andrea; Konrad, Sheryl L.; Buchli, Rico; Hildebrand, William H.; Schuck, Peter

    2014-01-01

    ABSTRACT The U21 gene product from human herpesvirus 7 binds to and redirects class I major histocompatibility complex (MHC) molecules to a lysosomal compartment. The molecular mechanism by which U21 reroutes class I MHC molecules to lysosomes is not known. Here, we have reconstituted the interaction between purified soluble U21 and class I MHC molecules, suggesting that U21 does not require additional cellular proteins to interact with class I MHC molecules. Our results demonstrate that U21, itself predicted to contain an MHC class I-like protein fold, interacts tightly with class I MHC molecules as a tetramer, in a 4:2 stoichiometry. These observations have helped to elucidate a refined model describing the mechanism by which U21 escorts class I MHC molecules to the lysosomal compartment. IMPORTANCE In this report, we show that the human herpesvirus 7 (HHV-7) immunoevasin U21, itself a class I MHC-like protein, binds with high affinity to class I MHC molecules as a tetramer and escorts them to lysosomes, where they are degraded. While many class I MHC-like molecules have been described in detail, this unusual viral class I-like protein functions as a tetramer, associating with class I MHC molecules in a 4:2 ratio, illuminating a functional significance of homooligomerization of a class I MHC-like protein. PMID:24390327

  12. Ectopic expression of HLA-DO in mouse dendritic cells diminishes MHC class II antigen presentation.

    PubMed

    Fallas, Jennifer L; Tobin, Helen M; Lou, Olivia; Guo, Donglin; Sant'Angelo, Derek B; Denzin, Lisa K

    2004-08-01

    The MHC class II-like molecule HLA-DM (DM) (H-2M in mice) catalyzes the exchange of CLIP for antigenic peptides in the endosomes of APCs. HLA-DO (DO) (H-2O in mice) is another class II-like molecule that is expressed in B cells, but not in other APCs. Studies have shown that DO impairs or modifies the peptide exchange activity of DM. To further evaluate the role of DO in Ag processing and presentation, we generated transgenic mice that expressed the human HLA-DOA and HLA-DOB genes under the control of a dendritic cell (DC)-specific promoter. Our analyses of DCs from these mice showed that as DO levels increased, cell surface levels of A(b)-CLIP also increased while class II-peptide levels decreased. The presentation of some, but not all, exogenous Ags to T cells or T hybridomas was significantly inhibited by DO. Surprisingly, H-2M accumulated in DO-expressing DCs and B cells, suggesting that H-2O/DO prolongs the half-life of H-2M. Overall, our studies showed that DO expression impaired H-2M function, resulting in Ag-specific down-modulation of class II Ag processing and presentation.

  13. Tracking antigen-specific CD8⁺ T cells using MHC class I multimers.

    PubMed

    Alanio, Cécile; Bouvier, Isabelle; Jusforgues-Saklani, Hélène; Albert, Matthew L

    2013-01-01

    The tracking of epitope-specific T cells is a useful approach for the study of adaptive immune responses. This protocol describes how Major Histocompatibility Complex Class I (MHC-I) multimers can be used to stain, enrich, and enumerate (rare) populations of CD8(+) T cells specific for a given antigen. It provides the detailed steps for multimer labeling, magnetic enrichment, and cytometric analysis. Additionally, it provides informations for multiplexing experiments in order to achieve simultaneous detection of multiple antigenic specificities, and strategies for coupling the protocol with functional assays (e.g., intracellular cytokine staining). Future developments in cytometric systems (e.g., mass spectroscopy-based cytometry) and gene expression studies (e.g., single cell PCR) will extend these approaches and provide an unprecedented assessment of the immune repertoire.

  14. Genetic characterization of MHC class II DQB exon 2 variants in gayal (Bos frontalis)

    PubMed Central

    Sun, Yongke; Xi, Dongmei; Li, Guozhi; Hao, Tiantian; Chen, Yuhan; Yang, Yuai

    2014-01-01

    In the present study, exon 2 of major histocompatibility complex (MHC) class II DQB gene from 39 gayals (Bos frontalis) was isolated, characterized and compared with previously reported patterns for other bovidae. It was revealed by sequence analyses that there are 36 DQB exon 2 variants among 39 gayals. These variants exhibited a high degree of nucleotide and amino acid substitutions with most amino acid variations occurring at positions forming the peptide-binding sites (PBS). The DQB loci were analysed for patterns of synonymous (d S) and non-synonymous (d N) substitution. The gayals were observed to be under strong balancing selection in the DQB exon 2 PBS (d N = 0.094, P = 0.001). It appears that this variability among gayals could confer the ability to mount immune responses to a wide variety of peptides or pathogens. PMID:26019566

  15. Genetic characterization of MHC class II DQB exon 2 variants in gayal (Bos frontalis).

    PubMed

    Sun, Yongke; Xi, Dongmei; Li, Guozhi; Hao, Tiantian; Chen, Yuhan; Yang, Yuai

    2014-09-03

    In the present study, exon 2 of major histocompatibility complex (MHC) class II DQB gene from 39 gayals (Bos frontalis) was isolated, characterized and compared with previously reported patterns for other bovidae. It was revealed by sequence analyses that there are 36 DQB exon 2 variants among 39 gayals. These variants exhibited a high degree of nucleotide and amino acid substitutions with most amino acid variations occurring at positions forming the peptide-binding sites (PBS). The DQB loci were analysed for patterns of synonymous (dS) and non-synonymous (dN) substitution. The gayals were observed to be under strong balancing selection in the DQB exon 2 PBS (dN = 0.094, P = 0.001). It appears that this variability among gayals could confer the ability to mount immune responses to a wide variety of peptides or pathogens.

  16. Efficient vaccine against pandemic influenza: combining DNA vaccination and targeted delivery to MHC class II molecules.

    PubMed

    Grødeland, Gunnveig; Bogen, Bjarne

    2015-06-01

    There are two major limitations to vaccine preparedness in the event of devastating influenza pandemics: the time needed to generate a vaccine and rapid generation of sufficient amounts. DNA vaccination could represent a solution to these problems, but efficacy needs to be enhanced. In a separate line of research, it has been established that targeting of vaccine molecules to antigen-presenting cells enhances immune responses. We have combined the two principles by constructing DNA vaccines that encode bivalent fusion proteins; these target hemagglutinin to MHC class II molecules on antigen-presenting cells. Such DNA vaccines rapidly induce hemagglutinin-specific antibodies and T cell responses in immunized mice. Responses are long-lasting and protect mice against challenge with influenza virus. In a pandemic situation, targeted DNA vaccines could be produced and tested within a month. The novel DNA vaccines could represent a solution to pandemic preparedness in the advent of novel influenza pandemics.

  17. Persistent infection with lymphocytic choriomeningitis virus enhances expression of MHC class I glycoprotein on cultured mouse brain endothelial cells.

    PubMed

    Gairin, J E; Joly, E; Oldstone, M B

    1991-06-01

    Brain endothelial cells (EC) represent a major component of the blood/brain barrier, which activated CTL cross to enter the central nervous system. Several viruses also penetrate the central nervous system through the blood stream via the brain EC. The studies reported here focus on understanding the principles and consequences of interactions among viruses, lymphocytes, and EC in the brain. As shown persistent but not acute infection by lymphocytic choriomeningitis virus enhances the expression of MHC class I glycoproteins on the brain EC of mice. This increase in MHC expression during viral infection does not seem to result from the release of cytokines. However, replicative virus is required, because UV inactivated virus fails to enhance MHC expression. Viral determinants appear on EC surfaces after infection and serve as targets for CTL directed lysis. In contrast, neurons (OBL 21 neuronal cell line), which express negligible amounts of MHC class I glycoproteins, show no gain in MHC markers during persistent viral infection and are not targets for virus-specific CTL killing.

  18. Characterization of a non-classical MHC class II gene in the vulnerable Chinese egret (Egretta eulophotes).

    PubMed

    Lei, Wei; Fang, Wenzhen; Lin, Qingxian; Zhou, Xiaoping; Chen, Xiaolin

    2015-08-01

    Genes of the major histocompatibility complex (MHC) are valuable makers of adaptive genetic variation in evolutionary ecology research, yet the non-classical MHC genes remain largely unstudied in wild vertebrates. In this study, we have characterized the non-classical MHC class II gene, Egeu-DAB4, in the vulnerable Chinese egret (Ciconiiformes, Ardeidae, Egretta eulophotes). Gene expression analyses showed that Egeu-DAB4 gene had a restricted tissue expression pattern, being expressed in seven examined tissues including the liver, heart, kidney, esophagus, stomach, gallbladder, and intestine, but not in muscle. With respect to polymorphism, only one allele of exon 2 was obtained from Egeu-DAB4 using asymmetric PCR, indicating that Egeu-DAB4 is genetically monomorphic in exon 2. Comparative analyses showed that Egeu-DAB4 had an unusual sequence, with amino acid differences suggesting that its function may differ from those of classical MHC genes. Egeu-DAB4 gene was only found in 30.56-36.56 % of examined Chinese egret individuals. Phylogenetic analysis showed a closer relationship between Egeu-DAB4 and the DAB2 genes in nine other ardeid species. These new findings provide a foundation for further studies to clarify the immunogenetics of non-classical MHC class II gene in the vulnerable Chinese egret and other ciconiiform birds.

  19. Class II transactivator-induced MHC class II expression in pancreatic cancer cells leads to tumor rejection and a specific antitumor memory response.

    PubMed

    Ekkirala, Chaitanya Ramesh; Cappello, Paola; Accolla, Roberto S; Giovarelli, Mirella; Romero, Irene; Garrido, Cristina; Garcia-Lora, Angel Miguel; Novelli, Francesco

    2014-10-01

    The loss of major histocompatibility complex (MHC) classes I and II is a well-known mechanism by which cancer cells are able to escape from immune recognition. In this study, we analyzed the expression of antigen processing and presenting molecules in 2 cell lines derived from mouse models of pancreatic ductal adenocarcinoma (PDA) and the effects of the re-expression of MHC class II on PDA rejection. The PDA cell lines were analyzed for the expression of MHC class I, II, and antigen-processing molecules by flow cytometry or polymerase chain reaction. We generated stable PDA-MHC class II transactivator (CIITA) cells and injected them into syngeneic mice. The CD4 and CD8 T-cell role was analyzed in vitro and in vivo. Murine PDA cell lines were negative for MHC and antigen-processing molecules, but their expression was restored by exogenous interferon-γ. CIITA-tumor cells were rejected in 80% to 100% of injected mice, which also developed long-lasting immune memory. In vitro assays and immunohistochemical analyses revealed the recruitment of T effector cells and CD8 T cells into the tumor area. Overall, these data confirm that immunotherapy is a feasible therapeutic approach to recognize and target an aggressive cancer such as PDA.

  20. MHC class I chain-related gene B (MICB) is associated with rheumatoid arthritis susceptibility.

    PubMed

    López-Arbesu, R; Ballina-García, F J; Alperi-López, M; López-Soto, A; Rodríguez-Rodero, S; Martínez-Borra, J; López-Vázquez, A; Fernández-Morera, J L; Riestra-Noriega, J L; Queiro-Silva, R; Quiñones-Lombraña, A; López-Larrea, C; González, S

    2007-03-01

    Several recent studies have shown that the MHC class III region, located telomeric to HLA-DRB1, contains an additional genetic factor that predisposes to rheumatoid arthritis (RA). In this study, we investigate whether inhibitor of kappaB-like (IkappaBL), MICB or MICA located in the MHC class III region are the second susceptibility gene associated with RA. A total of 154 healthy controls and 140 RA patients were genotyped for HLA-DRB1, MICA, MICB and the polymorphism -62 of the IkappaBL gene. A significant increase of HLA-DRB1 shared epitope (SE) alleles was detected in RA patients (61.4 vs 43.5%, P(c) = 0.01, OR = 2.1, 95% CI = 1.3-3.3). Among SE alleles, the HLA-DRB1*0401 (13.5 vs 5.1%, P(c) = 0.04, OR = 3.2, 95% CI = 1.3-8.1) and HLA-DRB1*0404 (6.4 vs 1.2%, P = 0.02, P(c) = NS) showed the most significantly association with RA. No increase of risk was associated with HLA-DRB1*01. Remarkably, the allele MICB*004 was also significantly associated with RA susceptibility (40.7 vs 23.3%, P(c) = 0.01, OR = 2.2, 95% CI = 1.3-3.7). MICB*004 was in linkage disequilibrium with HLA-DRB1*0404 (lambda(s) = 0.33) and HLA-DRB1*0405 (lambda(s) = 0.34). However, MICB*004 was also increased in HLA-DRB1 SE negative patients (37 vs 21.5%, P = 0.04). No significant association between IkappaBL and MICA with RA was found. MICB*004 allele was associated with RA susceptibility. This allele was in linkage disequilibrium with HLA-DRB1*0404 and DRB1*0405. The association of MICB with RA susceptibility and the functional role of MIC genes in the pathogenesis of RA converts MICB into a candidate to be an additional MHC gene associated with RA susceptibility.

  1. Mutant MHC class II epitopes drive therapeutic immune responses to cancer

    PubMed Central

    Kreiter, Sebastian; Vormehr, Mathias; van de Roemer, Niels; Diken, Mustafa; Löwer, Martin; Diekmann, Jan; Boegel, Sebastian; Schrörs, Barbara; Vascotto, Fulvia; Castle, John C.; Tadmor, Arbel D.; Schoenberger, Stephen P.; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2016-01-01

    Tumour-specific mutations are ideal targets for cancer immunotherapy as they lack expression in healthy tissues and can potentially be recognized as neo-antigens by the mature T-cell repertoire. Their systematic targeting by vaccine approaches, however, has been hampered by the fact that every patient’s tumour possesses a unique set of mutations (‘the mutanome’) that must first be identified. Recently, we proposed a personalized immunotherapy approach to target the full spectrum of a patient’s individual tumour-specific mutations1. Here we show in three independent murine tumour models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that, unexpectedly, the majority of the immunogenic mutanome is recognized by CD4+ T cells. Vaccination with such CD4+ immunogenic mutations confers strong antitumour activity. Encouraged by these findings, we established a process by which mutations identified by exome sequencing could be selected as vaccine targets solely through bioinformatic prioritization on the basis of their expression levels and major histocompatibility complex (MHC) class II-binding capacity for rapid production as synthetic poly-neo-epitope messenger RNA vaccines. We show that vaccination with such polytope mRNA vaccines induces potent tumour control and complete rejection of established aggressively growing tumours in mice. Moreover, we demonstrate that CD4+ T cell neo-epitope vaccination reshapes the tumour microenvironment and induces cytotoxic T lymphocyte responses against an independent immunodominant antigen in mice, indicating orchestration of antigen spread. Finally, we demonstrate an abundance of mutations predicted to bind to MHC class II in human cancers as well by employing the same predictive algorithm on corresponding human cancer types. Thus, the tailored immunotherapy approach introduced here may be regarded as a universally applicable blueprint for comprehensive exploitation of the substantial neo

  2. Linkage relationships in the bovine MHC region. High recombination frequency between class II subregions.

    PubMed

    Andersson, L; Lundén, A; Sigurdardottir, S; Davies, C J; Rask, L

    1988-01-01

    Class II genes of the bovine major histocompatibility complex (MHC) have been investigated by Southern blot analysis using human DNA probes. Previous studies revealed the presence of bovine DO beta, DQ alpha, DQ beta, DR alpha, and DR beta genes, and restriction fragment length polymorphisms for each of these genes were documented. In the present study, the presence of three additional class II genes, designated DZ alpha, DY alpha, and DY beta, are reported. DZ alpha was assumed to correspond to the human DZ alpha gene while the other two were designated DY because their relationship to human class II genes could not be firmly established. The linkage relationships among bovine class II genes and two additional loci, TCP1B and C4, were investigated by family segregation analysis and analysis of linkage disequilibrium. The results clearly indicated that all these loci belong to the same linkage group. This linkage group is divided into two subregions separated by a fairly high recombination frequency. One region includes the C4, DQ alpha, DQ beta, DR alpha, and DR beta loci and the other one is composed of the DO beta, DY alpha, DY beta, and TCP1B loci. No recombinant was observed within any of these subregions and there was a strong or fairly strong linkage disequilibrium between loci within groups. In contrast, as many as five recombinants among three different families were detected in the interval between these subregions giving a recombination frequency estimate of 0.17 +/- 0.07. The fairly high recombination frequency observed between class II genes in cattle is strikingly different from the corresponding recombination estimates in man and mouse. The finding implies either a much larger molecular distance between some of the bovine class II genes or alternatively the presence of a recombinational "hot spot" in the bovine class II region.

  3. Chemotherapy, IL-12 gene therapy and combined adjuvant therapy of HPV 16-associated MHC class I-proficient and -deficient tumours.

    PubMed

    Indrová, Marie; Bieblová, Jana; Jandlová, Tána; Vonka, Vladimír; Pajtasz-Piasecka, Elzbieta; Reinis, Milan

    2006-01-01

    Moderately immunogenic HPV 16-associated murine tumour cell line mimicking human HPV 16-associated neoplasms TC-1 (MHC class I(+)) and its variants, TC-1/P3C10 and TC-1/A9, with a marked down-regulation of MHC I molecules, were used to examine the effect of local interleukin 12 (IL-12) gene therapy for the treatment of early tumour transplants and minimal residual tumour disease obtained after cytoreductive chemotherapy (CMRTD). Experiments were designed to examine whether down-regulation of MHC class I molecules plays a role during chemotherapy and gene therapy of early tumour transplants. It was found that peritumoral administration of IL-12-producing tumour cell vaccines (single dose, day 8 after tumour cell administration) inhibited the growth of both TC-1 (MHC class I positive) tumours and their MHC class I-deficient variants. To investigate the antitumour effects in a clinically relevant setting, IL-12 gene therapy was utilised for the treatment of minimal residual tumour disease after cytoreductive chemotherapy. Intra-peritoneal treatment of tumour-bearing mice with ifosfamide derivative, CBM-4A, produced a significant tumour-inhibitory effect. This treatment was followed by peritumoral s.c. administration of genetically modified TC-1 (MHC class I positive) or MK16/I/IIIABC (MHC class I negative) vaccines producing IL-12 (single dose, day 7 after chemotherapy) or with recombinant interleukin 12 (rIL-12) in two cycles of 5 daily doses (days 8-19) after chemotherapy. This combined therapy significantly inhibited the growth of TC-1 and TC-1/A9 (MHC class I-) tumours. When the combined therapy of TC-1 (MHC class I positive) tumours was followed by peritumoral administration of bone marrow dendritic cell (BMDC) vaccines, the IL-12-mediated inhibitory effect was significantly boosted. In the next set of experiments, the impacts of chemotherapy and IL-12 adjuvant therapy on MHC class I surface expression were assessed. Chemotherapy and gene therapy of tumours led

  4. Presence of specific MHC Class II expressed alleles associates with clinical disease in ovine progressive pneumonia virus (OPPV) infected sheep

    USDA-ARS?s Scientific Manuscript database

    A genetic tool hypothesized to predict which OPPV infected sheep will progress to debilitating clinical disease is MHC Class II Ovis aries (Ovar)-DRB1. Previously, fifteen Ovar-DRB1 beta 1 expressed alleles were identified in a ewe-lamb flock of 32 originating from an Idaho flock using RT-PCR, clon...

  5. Upregulation of MHC class I in transgenic mice results in reduced force-generating capacity in slow-twitch muscle.

    PubMed

    Salomonsson, Stina; Grundtman, Cecilia; Zhang, Shi-Jin; Lanner, Johanna T; Li, Charles; Katz, Abram; Wedderburn, Lucy R; Nagaraju, Kanneboyina; Lundberg, Ingrid E; Westerblad, Håkan

    2009-05-01

    Expression of major histocompatibility complex (MHC) class I in skeletal muscle fibers is an early and consistent finding in inflammatory myopathies. To test if MHC class I has a primary role in muscle impairment, we used transgenic mice with inducible overexpression of MHC class I in their skeletal muscle cells. Contractile function was studied in isolated extensor digitorum longus (EDL, fast-twitch) and soleus (slow-twitch) muscles. We found that EDL was smaller, whereas soleus muscle was slightly larger. Both muscles generated less absolute force in myopathic compared with control mice; however, when force was expressed per cross-sectional area, only soleus muscle generated less force. Inflammation was markedly increased, but no changes were found in the activities of key mitochondrial and glycogenolytic enzymes in myopathic mice. The induction of MHC class I results in muscle atrophy and an intrinsic decrease in force-generation capacity. These observations may have important implications for our understanding of the pathophysiological processes of muscle weakness seen in inflammatory myopathies. Muscle Nerve, 2008.

  6. Supernatants of human leukocytes contain mediator, different from interferon gamma, which induces expression of MHC class II antigens

    PubMed Central

    1986-01-01

    In this report, data are presented on the regulation of MHC class II antigen expression by a mediator present in supernatants of human mixed leukocyte cultures (MLC-SN), and which is different from IFN-gamma. The capacity of supernatants to induce antigen expression did not correspond to titers of IFN-gamma. Removal of IFN-gamma using either dialysis against pH 2 or neutralizing mAb against human IFN-gamma did not abrogate the MHC class II antigen expression-inducing capacity of MLC-SN when tested on adenocarcinoma cell lines, kidney epithelial cells, and fibroblasts in vitro in an indirect immunofluorescence assay. Therefore, supernatants of human leukocytes contain a mediator, different from IFN-gamma, which induces expression of MHC class II antigens. Dose-response studies revealed that the mediator is produced after allogeneic and lectin stimulation of human leukocytes, and by unstimulated leukocytes. Activation of leukocytes resulted in increased titers of the mediator. The mediator markedly enhances expression of both HLA-DR and HLA-DQ antigens, whereas IFN-gamma had a similar effect on HLA-DR antigens, and only a minor effect on HLA-DQ antigens. Interaction of the mediator and IFN-gamma resulted in a potentiating effect of these two factors on MHC class II antigen expression. Biochemical analysis revealed a mediator, distinguishable by FPLC from IL-1, IL-2, and human IFN-gamma, and which has a molecular mass of 32 kD. PMID:2941512

  7. A novel RNAseq-assisted method for MHC class I genotyping in a non-model species applied to a lethal vaccination-induced alloimmune disease.

    PubMed

    Demasius, Wiebke; Weikard, Rosemarie; Hadlich, Frieder; Buitkamp, Johannes; Kühn, Christa

    2016-05-17

    MHC class I genotyping is essential for a wide range of biomedical, immunological and biodiversity applications. Whereas in human a comprehensive MHC class I allele catalogue is available, respective data in non-model species is scarce in spite of decades of research. Taking advantage of the new high-throughput RNA sequencing technology (RNAseq), we developed a novel RNAseq-assisted method (RAMHCIT) for MHC class I typing at nucleotide level. RAMHCIT is performed on white blood cells, which highly express MHC class I molecules enabling reliable discovery of new alleles and discrimination of closely related alleles due to the high coverage of alleles with reads. RAMHCIT is more comprehensive than previous methods, because no targeted PCR pre-amplification of MHC loci is necessary, which avoids preselection of alleles as usually encountered, when amplification with MHC class I primers is performed prior to sequencing. In addition to allele identification, RAMHCIT also enables quantification of MHC class I expression at allele level, which was remarkably consistent across individuals. Successful application of RAMHCIT is demonstrated on a data set from cattle with different phenotype regarding a lethal, vaccination-induced alloimmune disease (bovine neonatal pancytopenia), for which MHC class I alleles had been postulated as causal agents.

  8. Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda.

    PubMed

    Zhu, Ying; Wan, Qiu-Hong; Yu, Bin; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-10-22

    Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend

  9. MHC class II genes in the European badger (Meles meles): characterization, patterns of variation, and transcription analysis.

    PubMed

    Sin, Yung Wa; Dugdale, Hannah L; Newman, Chris; Macdonald, David W; Burke, Terry

    2012-04-01

    The major histocompatibility complex (MHC) comprises many genes, some of which are polymorphic with numerous alleles. Sequence variation among alleles is most pronounced in exon 2 of the class II genes, which encodes the α1 and β1 domains that form the antigen-binding site (ABS) for the presentation of peptides. The MHC thus plays an important role in pathogen defense. European badgers (Meles meles) are a good species in which to study the MHC, as they harbor a variety of pathogens. We present the first characterization of MHC class II genes, isolated from genomic DNA (gDNA) and complementary DNA (cDNA), in the European badger. Examination of seven individuals revealed four DRB, two DQB, two DQA, and two DRA putatively functional gDNA sequences. All of these sequences, except DRA, exhibited high variability in exon 2; DRB had the highest variability. The ABS codons demonstrated high variability, due potentially to balancing selection, while non-ABS codons had lower variability. Positively selected sites were detected in DRB and DQA. Phylogenetic analysis demonstrated trans-species polymorphism of class II genes. Comparison with cDNA from whole blood revealed that only DRB had a transcription pattern reflecting the alleles that were present in the gDNA, while the other three genes had disparities between gDNA and cDNA. Only one sequence was transcribed, even though two gDNA sequences were present, from each of both DQB and DRA. Our characterization of badger MHC sequences forms a basis for further studies of MHC variability, mate choice, and pathogen resistance in this, and other, species.

  10. MHC class I genes in a New World primate, the cotton-top tamarin (Saguinus oedipus), have evolved by an active process of loci turnover.

    PubMed

    Cadavid, L F; Mejía, B E; Watkins, D I

    1999-03-01

    Lymphocytes of a New World primate, the cotton-top tamarin (Saguinus oedipus), express classical G-related major histocompatibility complex (MHC) class I molecules with unusually limited polymorphism and variability. Three G-related loci, an F locus, an E locus, and two pseudogenes (So-N1 and So-N3) have been identified by cDNA library screening and extensive PCR analysis of both cDNA and genomic DNA from the cotton-top tamarin. Furthermore, each genus of the subfamily Callitrichinae (tamarins and marmosets) appears to express its own unique set of MHC class I genes, likely due to a rapid turnover of loci. The rapid emergence of unique MHC class I genes in the Callitrichinae genera, resulting from an active process of duplication and inactivation of loci, may account for the limited diversity of the MHC class I genes in the cotton-top tamarin. To determine the nature of the entire complement of MHC class I genes in the cotton-top tamarin, we synthesized a genomic DNA library and screened it with MHC class I-specific probes. We isolated nine new MHC class I pseudogenes from this library. These newly isolated tamarin G-related MHC class I pseudogenes are not closely related to any of their functional counterparts in the tamarin, suggesting that they do not share a recent common ancestral gene with the tamarin's currently expressed MHC class I loci. In addition, these tamarin sequences display a high rate of nonsynonymous substitutions in their putative peptide binding region. This indicates that the genes from which they have derived were likely subject to positive selection and, therefore, were once functional. Our data support the notion that an extremely high rate of loci turnover is largely responsible for the limited diversity of the MHC class I genes in the cotton-top tamarin.

  11. Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma.

    PubMed

    Jäger, E; Ringhoffer, M; Altmannsberger, M; Arand, M; Karbach, J; Jäger, D; Oesch, F; Knuth, A

    1997-04-10

    Peptides derived from melanocyte differentiation antigens have been identified as targets for MHC class I-restricted cytolytic T lymphocytes (CTLs) in human melanoma Regression of antigen-expressing tumors as well as selection of antigen-loss variants in the presence of antigen-specific CTLs have previously been reported. In the present study, we determined the expression of the melanocyte differentiation antigens Melan A/MART-1 and tyrosinase by mRNA analysis and by immunohistochemical staining with the monoclonal antibodies (MAbs) A103 and T311. Co-expression of Melan A/MART-1 and tyrosinase was detected by both methods in 18/20 melanomas tested. However, immunohistochemistry provided additional information on intensity and microheterogeneity of antigen expression that cannot be detected by mRNA analysis as a molecular basis for the escape from CTL recognition of antigen-negative tumor cells. Comparative analysis of repeated biopsies of metastatic lesions in 5 HLA-A2+ patients showed a gradual loss of Melan A/MART-1 expression in 4/5 and of tyrosinase in 2/5 samples in association with tumor progression. However, 3 of these patients had growing antigen-positive tumors in the presence of antigen-specific CTLs. This led us to assess the expression of MHC class I, the essential restriction element for CTL recognition, and of HLA-A2. We found an unexpectedly high frequency of MHC class I-negative tumors (9/20). Loss of MHC class I expression was detected in 3/5 progressive tumors and isolated loss of HLA-A2 in 1/5 tumors. Our results suggest that strategies enhancing the expression of MHC class I and tumor-associated antigens need to be considered in attempts at making vaccination more effective.

  12. In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules

    PubMed Central

    Yan, Jingbo; Parekh, Vrajesh V.; Mendez-Fernandez, Yanice; Olivares-Villagómez, Danyvid; Dragovic, Srdjan; Hill, Timothy; Roopenian, Derry C.; Joyce, Sebastian; Van Kaer, Luc

    2006-01-01

    Endoplasmic reticulum (ER)-associated aminopeptidase (ERAP)1 has been implicated in the final proteolytic processing of peptides presented by major histocompatibility complex (MHC) class I molecules. To evaluate the in vivo role of ERAP1, we have generated ERAP1-deficient mice. Cell surface expression of the class Ia molecules H-2Kb and H-2Db and of the class Ib molecule Qa-2 was significantly reduced in these animals. Although cells from mutant animals exhibited reduced capacity to present several self- and foreign antigens to Kb-, Db-, or Qa-1b–restricted CD8+ cytotoxic T cells, presentation of some antigens was unaffected or significantly enhanced. Consistent with these findings, mice generated defective CD8+ T cell responses against class I–presented antigens. These findings reveal an important in vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. PMID:16505142

  13. MHC class I molecules are an essential cell surface component involved in Theileria parva sporozoite binding to bovine lymphocytes.

    PubMed

    Shaw, M K; Tilney, L G; Musoke, A J; Teale, A J

    1995-04-01

    The major histocompatibility complex (MHC) class I molecules are ubiquitous cell surface molecules involved in the cell-mediated immune response. We show here, using a number of different, independent approaches, that these proteins are an essential component of the host cell surface receptor involved in Theileria parva sporozoite invasion. Monoclonal antibodies (mAbs) reactive with common determinants on MHC class I molecules and with beta-2 microglobulin inhibited sporozoite entry by specifically preventing the initial binding event. However, in experiments using lymphocytes from heterozygous cattle in which at least four MHC class I gene products are expressed, mAbs which reacted with only one of these products did not inhibit entry. Using a series of bovine deletion mutant cell lines from which one or both MHC class I haplotypes had been lost, sporozoite binding and entry clearly correlated with the level of class I surface expression. While the level of sporozoite entry into cells in which one of the MHC class I haplotypes was lost was only slightly lower than into the parent cells, in a double deletion cell line having less than 5% of the class I expression of the parent cells the level of infection was only 4.3% of that into the parent cells. Furthermore, sporozoite entry into cells from a spontaneously arising mutant cell line exhibiting low levels of class I expression was correspondingly low. Treatment of lymphocytes with IL-2 produced a significant increase in host cell susceptibility and sporozoite entry and this increase correlated with either an increase in the number of target molecules per host cell, or in the binding of bovine MHC class I molecules to the mAbs. In particular, a significant increase in the level of reactivity with mAb W6/32 was observed. Lastly, we show that parasite entry can be competitively inhibited with an isolated sporozoite surface protein, p67. However, p67 binds weakly to lymphocyte surface molecules and initial attempts to

  14. pH dependence and exchange of high and low responder peptides binding to a class II MHC molecule.

    PubMed Central

    Reay, P A; Wettstein, D A; Davis, M M

    1992-01-01

    We have compared the binding kinetics of two antigenic peptides to a soluble class II MHC molecule. One of the peptides provokes a strong T cell response and the other a much weaker one. Both show greatly increased (approximately 40-fold) association rates at pH 5 in comparison to neutral pH, consistent with the low pH environment of late endosomes being most conducive to class II MHC--peptide binding. Interestingly, the weak peptide has a much faster off-rate that is significantly increased at pH 5 and it can be entirely replaced in an exchange reaction by the stronger one. This suggests that one characteristic of immunodominant peptides is that of nearly irreversible binding, such that they will be strongly selected for in the course of class II MHC transit and recycling through endosomal compartments. Modelling the parameters of this peptide exchange also suggests that a large fraction of the GPI-chimeric MHC molecules used in this study are 'empty' with respect to endogenous peptides, or else occupied with extremely weak ones, consistent with their inability to load processed peptides intracellularly. PMID:1379172

  15. In silico designing breast cancer peptide vaccine for binding to MHC class I and II: A molecular docking study.

    PubMed

    Mahdavi, Manijeh; Moreau, Violaine

    2016-12-01

    Antigenic peptides or cancer peptide vaccines can be directly delivered to cancer patients to produce immunologic responses against cancer cells. Specifically, designed peptides can associate with Major Histocompatibility Complex (MHC) class I or II molecules on the cell surface of antigen presenting cells activating anti-tumor effector mechanisms by triggering helper T cell (Th) or cytotoxic T cells (CTL). In general, high binding to MHCs approximately correlates with in vivo immunogenicity. Consequently, a molecular docking technique was run on a library of novel discontinuous peptides predicted by PEPOP from Human epidermal growth factor receptor 2 (HER2 ECD) subdomain III. This technique is expected to improve the prediction accuracy in order to identify the best MHC class I and II binder peptides. Molecular docking analysis through GOLD identified the peptide 1412 as the best MHC binder peptide to both MHC class I and II molecules used in the study. The GOLD results predicted HLA-DR4, HLA-DP2 and TCR as the most often targeted receptors by the peptide 1412. These findings, based on bioinformatics analyses, can be exploited in further experimental analyses in vaccine design and cancer therapy to find possible proper approaches providing beneficial effects.

  16. GPS-MBA: Computational Analysis of MHC Class II Epitopes in Type 1 Diabetes

    PubMed Central

    Ren, Jian; Ma, Chuang; Gao, Tianshun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    As a severe chronic metabolic disease and autoimmune disorder, type 1 diabetes (T1D) affects millions of people world-wide. Recent advances in antigen-based immunotherapy have provided a great opportunity for further treating T1D with a high degree of selectivity. It is reported that MHC class II I-Ag7 in the non-obese diabetic (NOD) mouse and human HLA-DQ8 are strongly linked to susceptibility to T1D. Thus, the identification of new I-Ag7 and HLA-DQ8 epitopes would be of great help to further experimental and biomedical manipulation efforts. In this study, a novel GPS-MBA (MHC Binding Analyzer) software package was developed for the prediction of I-Ag7 and HLA-DQ8 epitopes. Using experimentally identified epitopes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted and improved. By extensive evaluation and comparison, the GPS-MBA performance was found to be much better than other tools of this type. With this powerful tool, we predicted a number of potentially new I-Ag7 and HLA-DQ8 epitopes. Furthermore, we designed a T1D epitope database (TEDB) for all of the experimentally identified and predicted T1D-associated epitopes. Taken together, this computational prediction result and analysis provides a starting point for further experimental considerations, and GPS-MBA is demonstrated to be a useful tool for generating starting information for experimentalists. The GPS-MBA is freely accessible for academic researchers at: http://mba.biocuckoo.org. PMID:22479466

  17. GPS-MBA: computational analysis of MHC class II epitopes in type 1 diabetes.

    PubMed

    Cai, Ruikun; Liu, Zexian; Ren, Jian; Ma, Chuang; Gao, Tianshun; Zhou, Yanhong; Yang, Qing; Xue, Yu

    2012-01-01

    As a severe chronic metabolic disease and autoimmune disorder, type 1 diabetes (T1D) affects millions of people world-wide. Recent advances in antigen-based immunotherapy have provided a great opportunity for further treating T1D with a high degree of selectivity. It is reported that MHC class II I-A(g7) in the non-obese diabetic (NOD) mouse and human HLA-DQ8 are strongly linked to susceptibility to T1D. Thus, the identification of new I-A(g7) and HLA-DQ8 epitopes would be of great help to further experimental and biomedical manipulation efforts. In this study, a novel GPS-MBA (MHC Binding Analyzer) software package was developed for the prediction of I-A(g7) and HLA-DQ8 epitopes. Using experimentally identified epitopes as the training data sets, a previously developed GPS (Group-based Prediction System) algorithm was adopted and improved. By extensive evaluation and comparison, the GPS-MBA performance was found to be much better than other tools of this type. With this powerful tool, we predicted a number of potentially new I-A(g7) and HLA-DQ8 epitopes. Furthermore, we designed a T1D epitope database (TEDB) for all of the experimentally identified and predicted T1D-associated epitopes. Taken together, this computational prediction result and analysis provides a starting point for further experimental considerations, and GPS-MBA is demonstrated to be a useful tool for generating starting information for experimentalists. The GPS-MBA is freely accessible for academic researchers at: http://mba.biocuckoo.org.

  18. Characterisation of non-classical MHC class I genes in the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Cheng, Yuanyuan; Belov, Katherine

    2014-12-01

    The Tasmanian devil (Sarcophilus harrisii) is a carnivorous marsupial that is under threat of extinction due to an unusual transmissible disease called Devil Facial Tumour Disease (DFTD). Previous studies on the classical MHC genes have provided important insights into immune responses in this endangered species; however, so far, very little is known about the non-classical MHC genes of this species, which can also play significant roles in the immune system. Here, we report characterisation of five non-classical class I genes in the Tasmanian devil, including Saha-UD, -UK, -UM, -MR1 and -CD1. Saha-UD has been isolated previously and is known to have low genetic polymorphism, though its categorisation as classical or non-classical gene has remained undetermined. In this study, we observed tissue-specific expression of Saha-UD, suggesting that it is more characteristic of a non-classical gene. Restricted tissue expression patterns were also observed for other genes, with an exception of Saha-MR1 being ubiquitously expressed in all examined tissues. Saha-UK, -UM and -MR1 were found to be genetically monomorphic, while four alleles were found at Saha-CD1 with signs of positive selection detected within the α1 domain. Among the four Saha-CD1 alleles, one predominant allele (Saha-CD1*01) showed a high allele frequency of 0.906 in the Tasmanian devil population, resulting in a low heterozygosity (0.188) at this locus. Alternative splicing takes place in Saha-CD1, giving rise to a full-length transcript and a splice variant lacking intact antigen-binding, β2m-binding, transmembrane and cytoplasmic domains.

  19. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?

    PubMed

    Seifertová, Mária; Jarkovský, Jiří; Šimková, Andrea

    2016-04-01

    The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.

  20. Distribution of CD163-positive cell and MHC class II-positive cell in the normal equine uveal tract.

    PubMed

    Sano, Yuto; Matsuda, Kazuya; Okamoto, Minoru; Takehana, Kazushige; Hirayama, Kazuko; Taniyama, Hiroyuki

    2016-02-01

    Antigen-presenting cells (APCs) in the uveal tract participate in ocular immunity including immune homeostasis and the pathogenesis of uveitis. In horses, although uveitis is the most common ocular disorder, little is known about ocular immunity, such as the distribution of APCs. In this study, we investigated the distribution of CD163-positive and MHC II-positive cells in the normal equine uveal tract using an immunofluorescence technique. Eleven eyes from 10 Thoroughbred horses aged 1 to 24 years old were used. Indirect immunofluorescence was performed using the primary antibodies CD163, MHC class II (MHC II) and CD20. To demonstrate the site of their greatest distribution, positive cells were manually counted in 3 different parts of the uveal tract (ciliary body, iris and choroid), and their average number was assessed by statistical analysis. The distribution of pleomorphic CD163- and MHC II-expressed cells was detected throughout the equine uveal tract, but no CD20-expressed cells were detected. The statistical analysis demonstrated the distribution of CD163- and MHC II-positive cells focusing on the ciliary body. These results demonstrated that the ciliary body is the largest site of their distribution in the normal equine uveal tract, and the ciliary body is considered to play important roles in uveal and/or ocular immune homeostasis. The data provided in this study will help further understanding of equine ocular immunity in the normal state and might be beneficial for understanding of mechanisms of ocular disorders, such as equine uveitis.

  1. Regulation of the class II MHC pathway in primary human monocytes by granulocyte-macrophage colony-stimulating factor.

    PubMed

    Hornell, Tara M C; Beresford, Guy W; Bushey, Alyssa; Boss, Jeremy M; Mellins, Elizabeth D

    2003-09-01

    GM-CSF stimulates the growth and differentiation of hematopoietic progenitors and also affects mature cell function. These effects have led to the use of GM-CSF as a vaccine adjuvant with promising results; however, the mechanisms underlying GM-CSF-mediated immune potentiation are incompletely understood. In this study, we investigated the hypothesis that the immune stimulatory role of GM-CSF is in part due to effects on class II MHC Ag presentation. We find that, in primary human monocytes treated for 24-48 h, GM-CSF increases surface class II MHC expression and decreases the relative level of the invariant chain-derived peptide, CLIP, bound to surface class II molecules. GM-CSF also increases expression of the costimulatory molecules CD86 and CD40, but not the differentiation marker CD1a or CD16. Furthermore, GM-CSF-treated monocytes are better stimulators in a mixed leukocyte reaction. Additional analyses of the class II pathway revealed that GM-CSF increases total protein and RNA levels of HLA-DR, DM, and DOalpha. Expression of class II transactivator (CIITA) types I and III, but not IV, transcripts increases in response to GM-CSF. Furthermore, GM-CSF increases the amount of CIITA associated with the DR promoter. Thus, our data argue that the proinflammatory role of GM-CSF is mediated in part through increased expression of key molecules involved in the class II MHC pathway via induction of CIITA.

  2. The class I myosin Myo1e regulates TLR4-triggered macrophage spreading, chemokine release and antigen presentation via MHC class II

    PubMed Central

    Wenzel, Jens; Ouderkirk, Jessica L.; Krendel, Mira; Lang, Roland

    2014-01-01

    TLR-mediated recognition of microbial danger induces substantial changes in macrophage migration, adherence and phagocytosis. Recently, we described the LPS-regulated phosphorylation of many cytoskeleton-associated proteins by phosphoproteomics. The functional role of these cytoskeletal and motor proteins in innate immune cell responses is largely unexplored. Here, we first identified both long-tailed class I myosins Myo1e and Myo1f as important contributors to LPS-triggered macrophage spreading. Mouse bone marrow-derived macrophages and dendritic cells (DCs) deficient in Myo1e selectively secreted increased amounts of the chemokine CCL2. In addition, the cell surface expression of MHC class II (MHC-II) on both cell types was reduced in the absence of Myo1e. However, transcriptional changes in CCL2 and MHC-II were not observed in the absence of Myo1e, indicating that Myo1e regulates specific intracellular transport processes. The capacity of macrophages and DCs lacking Myo1e to stimulate antigen-specific CD4+ T-cell proliferation was impaired, consistent with the reduced MHC-II surface protein levels. Surprisingly, in Myo1e-deficient DCs, the proteolytic cleavage of endocytosed antigen was also increased. Together, our results provide evidence for a non-redundant function of the motor protein Myo1e in the regulation of TLR4-controlled, cytoskeleton-associated functional properties of macrophages and DCs, and in induction of a full MHC-II-restricted adaptive immune response. PMID:25263281

  3. MHC Class I Expression by Donor Hematopoietic Stem Cells Is Required to Prevent NK Cell Attack in Allogeneic, but Not Syngeneic Recipient Mice.

    PubMed

    Hirata, Yuichi; Li, Hao-Wei; Takahashi, Kazuko; Ishii, Hiroshi; Sykes, Megan; Fujisaki, Joji

    2015-01-01

    NK cells resist engraftment of syngeneic and allogeneic bone marrow (BM) cells lacking major histocompatibility (MHC) class I molecules, suggesting a critical role for donor MHC class I molecules in preventing NK cell attack against donor hematopoietic stem and progenitor cells (HSPCs), and their derivatives. However, using high-resolution in vivo imaging, we demonstrated here that syngeneic MHC class I knockout (KO) donor HSPCs persist with the same survival frequencies as wild-type donor HSPCs. In contrast, syngeneic MHC class I KO differentiated hematopoietic cells and allogeneic MHC class I KO HSPCs were rejected in a manner that was significantly inhibited by NK cell depletion. In vivo time-lapse imaging demonstrated that mice receiving allogeneic MHC class I KO HSPCs showed a significant increase in NK cell motility and proliferation as well as frequencies of NK cell contact with and killing of HSPCs as compared to mice receiving wild-type HSPCs. The data indicate that donor MHC class I molecules are required to prevent NK cell-mediated rejection of syngeneic differentiated cells and allogeneic HSPCs, but not of syngeneic HSPCs.

  4. MHC Class I Expression by Donor Hematopoietic Stem Cells Is Required to Prevent NK Cell Attack in Allogeneic, but Not Syngeneic Recipient Mice

    PubMed Central

    Hirata, Yuichi; Li, Hao-Wei; Takahashi, Kazuko; Ishii, Hiroshi; Sykes, Megan; Fujisaki, Joji

    2015-01-01

    NK cells resist engraftment of syngeneic and allogeneic bone marrow (BM) cells lacking major histocompatibility (MHC) class I molecules, suggesting a critical role for donor MHC class I molecules in preventing NK cell attack against donor hematopoietic stem and progenitor cells (HSPCs), and their derivatives. However, using high-resolution in vivo imaging, we demonstrated here that syngeneic MHC class I knockout (KO) donor HSPCs persist with the same survival frequencies as wild-type donor HSPCs. In contrast, syngeneic MHC class I KO differentiated hematopoietic cells and allogeneic MHC class I KO HSPCs were rejected in a manner that was significantly inhibited by NK cell depletion. In vivo time-lapse imaging demonstrated that mice receiving allogeneic MHC class I KO HSPCs showed a significant increase in NK cell motility and proliferation as well as frequencies of NK cell contact with and killing of HSPCs as compared to mice receiving wild-type HSPCs. The data indicate that donor MHC class I molecules are required to prevent NK cell-mediated rejection of syngeneic differentiated cells and allogeneic HSPCs, but not of syngeneic HSPCs. PMID:26544200

  5. MHC class-I-restricted CD8 T cells play a protective role during primary Salmonella infection.

    PubMed

    Lee, Seung-Joo; Dunmire, Samantha; McSorley, Stephen J

    2012-12-17

    Protective immunity against Salmonella infection is known to require CD4 Th1 cells and B cells, but the role of MHC class-I-restricted CD8 T cells is less clear. Previous studies have suggested that CD8 T cells participate in secondary, but not primary, bacterial clearance. However, these studies have used experimental models that are difficult to interpret and do not clearly isolate the role of MHC class-I-restricted CD8 T cells from other cell populations. Here, we examined the role of class-I-restricted T cells in protection against Salmonella infection using mice lacking all classical MHC class-Ia molecules, perforin, or granzyme B. Immunized K(b)D(b)-, perforin-, granzyme B-, or perforin/granzyme B-deficient mice were able to resolve secondary infection with virulent Salmonella, demonstrating that class-I-restricted CTLs are not required for acquired immunity. However, during primary infection with attenuated bacteria, bacterial clearance was delayed in each of these mouse strains when compared to wild-type mice. Taken together, these data demonstrate that CD8 T cells are not required for acquired immunity to Salmonella, but can play a protective role in resolving primary infection with attenuated bacteria.

  6. A single nomenclature and associated database for alleles at the MHC class II DRB1 locus of sheep: IPD-MHC-OLA

    USDA-ARS?s Scientific Manuscript database

    The development of standardised nomenclatures with associated databases containing reference sequences for alleles at polymorphic loci within the Major Histocompatibility Complex (MHC) has been facilitated by the development of the Immuno Polymorphism Database (IPD-MHC). Recently, included within I...

  7. MHC class I and class II genes in Tunisian patients with reactive and undifferentiated arthritis.

    PubMed

    Siala, M; Mahfoudh, N; Fourati, H; Gdoura, R; Younes, M; Kammoun, A; Chour, I; Meddeb, N; Gaddour, L; Hakim, F; Baklouti, S; Bargaoui, N; Sellami, S; Hammami, A; Makni, H

    2009-01-01

    To study HLA class I and class II association in Tunisian patients with reactive (ReA) and undifferentiated arthritis (UA). The study included 17 patients with ReA defined according to the European Spondylarthropathy Study Group criteria for spondylarthropathy (SpA), 11 patients classified as having undifferentiated arthritis and 100 unrelated healthy controls. HLA class I antigens were typed serologically and HLA class II alleles were genotyped molecularly by the polymerase chain reaction with sequence-specific primers technique. There was a major difference between HLA alleles in ReA and UA patients when compared separately with controls. Increased frequencies of HLA-B27 (p=7.76 10-12, OR=59.30), HLA-B51 (p=0.015, OR=4.91) and HLA-DRB1*04 (p=0.033, OR=2.90) alleles were found in patients with ReA but not in patients with UA. HLA-B27 was not expressed totally in our cohort of UA patients. A significant increase of HLA-B15 (p=0.002, OR=18.40) and a moderate increase of HLA-B7 (p=0.043, OR=5.15) was found in patients with UA, but not in patients with ReA. In the B27 negative patients, HLA-DRB1*04 association with ReA was found independently of B27. Our data confirmed a significant association of HLA-B27 with ReA in the Tunisian population. Our results also suggested that some of the additional HLA antigens were associated with ReA including HLA-B51 and HLA-DRB1*04 alleles. UA seemed to have a genetic background different from ReA in Tunisian patients.

  8. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) MHC class I heavy chain and β2-microglobulin.

    PubMed

    Pinto, Rute D; Randelli, Elisa; Buonocore, Francesco; Pereira, Pedro J B; dos Santos, Nuno M S

    2013-03-01

    In this work, the gene and cDNA of sea bass (Dicentrarchus labrax) β2-microglobulin (Dila-β2m) and several cDNAs of MHC class I heavy chain (Dila-UA) were characterized. While Dila-β2m is single-copy, numerous Dila-UA transcripts were identified per individual with variability at the peptide-binding domain (PBD), but also with unexpected diversity from the connective peptide (CP) through the 3' untranslated region (UTR). Phylogenetic analysis segregates Dila-β2m and Dila-UA into each subfamily cluster, placing them in the fish class and branching Dila-MHC-I with lineage U. The α1 domains resemble those of the recently proposed L1 trans-species lineage. Although no Dila-specific α1, α2 or α3 sub-lineages could be observed, two highly distinct sub-lineages were identified at the CP/TM/CYT regions. The three-dimensional homology model of sea bass MHC-I complex is consistent with other characterized vertebrate structures. Furthermore, basal tissue-specific expression profiles were determined for both molecules, and expression of β2m was evaluated after poly I:C stimulus. Results suggest these molecules are orthologues of other β2m and teleost classical MHC-I and their basic structure is evolutionarily conserved, providing relevant information for further studies on antigen presentation in this fish species.

  9. Intrasequence GFP in class I MHC molecules, a rigid probe for fluorescence anisotropy measurements of the membrane environment.

    PubMed

    Rocheleau, Jonathan V; Edidin, Michael; Piston, David W

    2003-06-01

    Fluorescence anisotropy measurements can elucidate the microenvironment of a membrane protein in terms of its rotational diffusion, interactions, and proximity to other proteins. However, use of this approach requires a fluorescent probe that is rigidly attached to the protein of interest. Here we describe the use of one such probe, a green fluorescent protein (GFP) expressed and rigidly held within the amino acid sequence of a major histocompatibility complex (MHC) class I molecule, H2L(d). We contrast the anisotropy of this GFP-tagged MHC molecule, H2L(d)GFPout, with that of an H2L(d) that was GFP-tagged at its C-terminus, H2L(d)GFPin. Both molecules fold properly, reach the cell surface, and are recognized by specific antibodies and T-cell receptors. We found that polarized fluorescence images of H2L(d)GFPout in plasma membrane blebs show intensity variations that depend on the relative orientation of the polarizers and the membrane normal, thus demonstrating that the GFP is oriented with respect to the membrane. These variations were not seen for H2L(d)GFPin. Before transport to the membrane surface, MHC class I associates with the transporter associated with antigen processing complex in the endoplasmic reticulum. The intensity-dependent steady-state anisotropy in the ER of H2L(d)GFPout was consistent with FRET homotransfer, which indicates that a significant fraction of these molecules were clustered. After MCMV-peptide loading, which supplies antigenic peptide to the MHC class I releasing it from the antigen processing complex, the anisotropy of H2L(d)GFPout was independent of intensity, suggesting that the MHC proteins were no longer clustered. These results demonstrate the feasibility and usefulness of a GFP moiety rigidly attached to the protein of interest as a probe for molecular motion and proximity in cell membranes.

  10. Comparative molecular dynamics analysis of tapasin-dependent and -independent MHC class I alleles.

    SciTech Connect

    Sieker, Florian; Springer, Sebastian; Zacharias, Martin W.

    2007-02-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. MHC class I molecules load antigenic peptides in the endoplasmic reticulum and present them at the cell surface. Efficiency of peptide loading depends on the class I allele and can involve interaction with tapasin and other proteins of the loading complex. Allele HLA-B*4402 (Asp at position 116) depends on tapasin for efficient peptide loading, whereas HLA-B*4405 (identical to B*4402 except for Tyr116) can efficiently load peptides in the absence of tapasin. Both alleles adopt very similar structures in the presence of the same peptide. Comparative unrestrained molecular dynamics simulations on the 1/2 peptide binding domains performed in the presence of bound peptides resulted in structures in close agreement with experiments for both alleles. In the absence of peptides, allele-specific conformational changes occurred in the first segment of the 2-helix that flanks the peptide C-terminal binding region (F-pocket) and contacts residue 116. This segment is also close to the proposed tapasin contact region. For B*4402, a shift toward an altered F-pocket structure deviating significantly from the bound form was observed. Subsequent free energy simulations on induced F-pocket opening in B*4402 confirmed a conformation that deviated significantly from the bound structure. For B*4405, a free energy minimum close to the bound structure was found. The simulations suggest that B*4405 has a greater tendency to adopt a peptide receptive conformation in the absence of peptide, allowing tapasin-independent peptide loading. A possible role of tapasin could be the stabilization of a peptide-receptive class I conformation for HLA-B*4402 and other tapasin-dependent alleles.

  11. MHC class II polymorphism is associated with a canine SLE-related disease complex.

    PubMed

    Wilbe, Maria; Jokinen, Päivi; Hermanrud, Christina; Kennedy, Lorna J; Strandberg, Erling; Hansson-Hamlin, Helene; Lohi, Hannes; Andersson, Göran

    2009-08-01

    Nova Scotia duck tolling retrievers are predisposed to a SLE-related disease complex including immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis-arteritis (SRMA). IMRD involves symptoms that resemble those seen in systemic autoimmune rheumatic diseases, such as systemic lupus erythematosus, SLE, or SLE-related diseases, in humans. This disease complex involves persistent lameness, stiffness, mainly after resting, and palpable pain from several joints of extremities. The majority of affected dogs display antinuclear autoantibody (ANA)-reactivity. SRMA is manifested in young dogs with high fever and neck stiffness and can be treated with corticosteroids. We have investigated the possible role of MHC class II as a genetic risk factor in IMRD and SRMA etiology. We performed sequence-based typing of the DLA-DRB1, -DQA1, and -DQB1 class II loci in a total of 176 dogs including 51 IMRD (33 ANA-positive), 49 SRMA cases, and 78 healthy controls (two dogs were both IMRD- and SRMA-affected). Homozygosity for the risk haplotype DRB1*00601/DQA1*005011/DQB1*02001 increased the risk for IMRD (OR = 4.9; ANA-positive IMRD: OR = 7.2) compared with all other genotypes. There was a general heterozygote advantage, homozygotes had OR = 4.4 (ANA-positive IMRD: OR = 8.9) compared with all heterozygotes. The risk haplotype contains the five amino acid epitope RARAA, known as the shared epitope for rheumatoid arthritis. No association was observed for SRMA. We conclude that DLA class II is a highly significant genetic risk factor for ANA-positive IMRD. The results indicate narrow diversity of DLA II haplotypes and identify an IMRD-related risk haplotype, which becomes highly significant in homozygous dogs.

  12. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers

    PubMed Central

    Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072

  13. Aberrant MHC class II expression in mouse joints leads to arthritis with extraarticular manifestations similar to rheumatoid arthritis

    PubMed Central

    Kanazawa, Satoshi; Ota, Shusuke; Sekine, Chiyoko; Tada, Toyohiro; Otsuka, Takanobu; Okamoto, Takashi; Sønderstrup, Grete; Peterlin, B. Matija

    2006-01-01

    Genetic susceptibility to rheumatoid arthritis (RA) is associated with certain MHC class II molecules. To clarify the role of these determinants in RA, we generated the D1CC transgenic mouse that expressed genes involved in antigen processing and presentation by the MHC class II pathway in joints. The class II transactivator, which was transcribed from the rat collagen type II promoter and enhancer, directed the expression of these genes. In D1CC mice congenic for the H-2q (DBA/1) background, small amounts of bovine collagen type II in adjuvant induced reproducibly an inflammatory arthritis resembling RA. Importantly, these stimuli had no effect in DBA/1 mice. Eighty-nine percent of D1CC mice developed chronic disease with joint swelling, redness, and heat in association with synovial proliferation as well as pannus formation and mononuclear infiltration of synovial membranes. Granulomatous lesions resembling rheumatoid nodules and interstitial pneumonitis also were observed. As in patients with RA, anticyclic citrullinated peptide antibodies were detected during the inflammatory stage. Finally, joints in D1CC mice displayed juxtaarticular demineralization, severe joint space narrowing, and erosions, which led to ankylosis, but without the appearance of osteophytes. Thus, aberrant expression of MHC class II in joints facilitates the development of severe erosive inflammatory polyarthritis, which is very similar to RA. PMID:16980409

  14. CDw78 defines MHC class II-peptide complexes that require Ii chain-dependent lysosomal trafficking, not localization to a specific tetraspanin membrane microdomain.

    PubMed

    Poloso, Neil J; Denzin, Lisa K; Roche, Paul A

    2006-10-15

    MHC class II molecules (MHC-II) associate with detergent-resistant membrane microdomains, termed lipid rafts, which affects the function of these molecules during Ag presentation to CD4+ T cells. Recently, it has been proposed that MHC-II also associates with another type of membrane microdomain, termed tetraspan microdomains. These microdomains are defined by association of molecules to a family of proteins that contain four-transmembrane regions, called tetraspanins. It has been suggested that MHC-II associated with tetraspanins are selectively identified by a mAb to a MHC-II determinant, CDw78. In this report, we have re-examined this issue of CDw78 expression and MHC-II-association with tetraspanins in human dendritic cells, a variety of human B cell lines, and MHC-II-expressing HeLa cells. We find no correlation between the expression of CDw78 and the expression of tetraspanins CD81, CD82, CD53, CD9, and CD37. Furthermore, we find that the relative amount of tetraspanins bound to CDw78-reactive MHC-II is indistinguishable from the amount bound to peptide-loaded MHC-II. We found that expression of CDw78 required coexpression of MHC-II together with its chaperone Ii chain. In addition, analysis of a panel of MHC-II-expressing B cell lines revealed that different alleles of HLA-DR express different amounts of CDw78 reactivity. We conclude that CDw78 defines a conformation of MHC-II bound to peptides that are acquired through trafficking to lysosomal Ag-processing compartments and not MHC-II-associated with tetraspanins.

  15. Comparative genome analysis of the major histocompatibility complex (MHC) class I B/C segments in primates elucidated by genomic sequencing in common marmoset (Callithrix jacchus).

    PubMed

    Shiina, Takashi; Kono, Azumi; Westphal, Nico; Suzuki, Shingo; Hosomichi, Kazuyoshi; Kita, Yuki F; Roos, Christian; Inoko, Hidetoshi; Walter, Lutz

    2011-08-01

    Common marmoset monkeys (Callithrix jacchus) have emerged as important animal models for biomedical research, necessitating a more extensive characterization of their major histocompatibility complex (MHC) region. However, the genomic information of the marmoset MHC (Caja) is still lacking. The MHC-B/C segment represents the most diverse MHC region among primates. Therefore, in this paper, to elucidate the detailed gene organization and evolutionary processes of the Caja class I B (Caja-B) segment, we determined two parts of the Caja-B sequences with 1,079 kb in total, ranging from H6orf15 to BAT1 and compared the structure and phylogeny with that of other primates. This segment contains 54 genes in total, nine Caja-B genes (Caja-B1 to Caja-B9), two MIC genes (MIC1 and MIC2), eight non-MHC genes, two non-coding genes, and 33 non-MHC pseudogenes that have not been observed in other primate MHC-B/C segments. Caja-B3, Caja-B4, and Caja-B7 encode proper MHC class I proteins according to amino acid structural characteristics. Phylogenetic relationships based on 48 MHC-I nucleotide sequences in primates suggested (1) species-specific divergence for Caja, Mamu, and HLA/Patr/Gogo lineages, (2) independent generation of the "seven coding exon" type MHC-B genes in Mamu and HLA/Patr/Gogo lineages from an ancestral "eight coding exon" type MHC-I gene, (3) parallel correlation with the long and short segmental duplication unit length in Caja and Mamu lineages. These findings indicate that the MHC-B/C segment has been under permanent selective pressure in the evolution of primates.

  16. Class I MHC polymorphism and evolution in endangered California Chinook and other Pacific salmon.

    PubMed

    Garrigan, D; Hedrick, P W

    2001-08-01

    Twelve MHC class I exon 2 sequences were uncovered in a sample from the endangered Sacramento River winter-run Chinook salmon in the central valley of California. Phylogenetic analysis of the 12 sequences indicates that the alleles descend from two of six major allelic lineages found among four Pacific salmon species. Nine of the 12 alleles belong to an allelic lineage that began diversifying 8 million years ago, just prior to the estimated time of Chinook speciation. The most recent common ancestor of all 12 winter-run alleles is estimated to be 15 million years ago, approximately 5 million years before the radiation of the Pacific salmon species. The average nonsynonymous distance among the peptide binding-region codons of exon 2 for the 12 alleles is significantly higher than the average synonymous distance in these codons. We estimate the symmetrical overdominant selection coefficient against homozygotes for this exon to be 0.038. Thus, strong positive and balancing selection has maintained functional diversity in the peptide-binding region of the exon over millions of years and this variation has not yet been substantially eliminated by increased genetic drift due to the recent dramatic decline in abundance of this Chinook salmon population.

  17. Ubiquitin-mediated fluctuations in MHC class II facilitate efficient germinal center B cell responses

    PubMed Central

    McGowan, Simon J.; Ersching, Jonatan; Ishido, Satoshi; Victora, Gabriel D.; Shin, Jeoung-Sook

    2016-01-01

    Antibody affinity maturation occurs in germinal centers (GCs) through iterative rounds of somatic hypermutation and selection. Selection involves B cells competing for T cell help based on the amount of antigen they capture and present on their MHC class II (MHCII) proteins. How GC B cells are able to rapidly and repeatedly transition between mutating their B cell receptor genes and then being selected shortly after is not known. We report that MHCII surface levels and degradation are dynamically regulated in GC B cells. Through ectopic expression of a photoconvertible MHCII-mKikGR chimeric gene, we found that individual GC B cells differed in the rates of MHCII protein turnover. Fluctuations in surface MHCII levels were dependent on ubiquitination and the E3 ligase March1. Increases in March1 expression in centroblasts correlated with decreases in surface MHCII levels, whereas CD83 expression in centrocytes helped to stabilize MHCII at that stage. Defects in MHCII ubiquitination caused GC B cells to accumulate greater amounts of a specific peptide–MHCII (pMHCII), suggesting that MHCII turnover facilitates the replacement of old complexes. We propose that pMHCII complexes are periodically targeted for degradation in centroblasts to favor the presentation of recently acquired antigens, thereby promoting the fidelity and efficiency of selection. PMID:27162138

  18. Nucleosome eviction from MHC class II promoters controls positioning of the transcription start site

    PubMed Central

    Leimgruber, Elisa; Seguín-Estévez, Queralt; Dunand-Sauthier, Isabelle; Rybtsova, Natalia; Schmid, Christoph D.; Ambrosini, Giovanna; Bucher, Philipp; Reith, Walter

    2009-01-01

    Nucleosome depletion at transcription start sites (TSS) has been documented genome-wide in multiple eukaryotic organisms. However, the mechanisms that mediate this nucleosome depletion and its functional impact on transcription remain largely unknown. We have studied these issues at human MHC class II (MHCII) genes. Activation-induced nucleosome free regions (NFR) encompassing the TSS were observed at all MHCII genes. Nucleosome depletion was exceptionally strong, attaining over 250-fold, at the promoter of the prototypical HLA-DRA gene. The NFR was induced primarily by the transcription factor complex that assembles on the conserved promoter-proximal enhancer situated upstream of the TSS. Functional analyses performed in the context of native chromatin demonstrated that displacing the NFR without altering the sequence of the core promoter induced a shift in the position of the TSS. The NFR thus appears to play a critical role in transcription initiation because it directs correct TSS positioning in vivo. Our results provide support for a novel mechanism in transcription initiation whereby the position of the TSS is controlled by nucleosome eviction rather than by promoter sequence. PMID:19264803

  19. Translational diffusion of individual class II MHC membrane proteins in cells.

    PubMed Central

    Vrljic, Marija; Nishimura, Stefanie Y; Brasselet, Sophie; Moerner, W E; McConnell, Harden M

    2002-01-01

    Single-molecule epifluorescence microscopy was used to observe the translational motion of GPI-linked and native I-E(k) class II MHC membrane proteins in the plasma membrane of CHO cells. The purpose of the study was to look for deviations from Brownian diffusion that might arise from barriers to this motion. Detergent extraction had suggested that these proteins may be confined to lipid microdomains in the plasma membrane. The individual I-E(k) proteins were visualized with a Cy5-labeled peptide that binds to a specific extracytoplasmic site common to both proteins. Single-molecule trajectories were used to compute a radial distribution of displacements, yielding average diffusion coefficients equal to 0.22 (GPI-linked I-E(k)) and 0.18 microm(2)/s (native I-E(k)). The relative diffusion of pairs of proteins was also studied for intermolecular separations in the range 0.3-1.0 microm, to distinguish between free diffusion of a protein molecule and diffusion of proteins restricted to a rapidly diffusing small domain. Both analyses show that motion is predominantly Brownian. This study finds no strong evidence for significant confinement of either GPI-linked or native I-E(k) in the plasma membrane of CHO cells. PMID:12414700

  20. Cell surface display of functional human MHC class II proteins: yeast display versus insect cell display

    PubMed Central

    Wen, Fei; Sethi, Dhruv K.; Wucherpfennig, Kai W.; Zhao, Huimin

    2011-01-01

    Reliable and robust systems for engineering functional major histocompatibility complex class II (MHCII) proteins have proved elusive. Availability of such systems would enable the engineering of peptide-MHCII (pMHCII) complexes for therapeutic and diagnostic applications. In this paper, we have developed a system based on insect cell surface display that allows functional expression of heterodimeric DR2 molecules with or without a covalently bound human myelin basic protein (MBP) peptide, which is amenable to directed evolution of DR2–MBP variants with improved T cell receptor (TCR)-binding affinity. This study represents the first example of functional display of human pMHCII complexes on insect cell surface. In the process of developing this pMHCII engineering system, we have also explored the potential of using yeast surface display for the same application. Our data suggest that yeast display is a useful system for analysis and engineering of peptide binding of MHCII proteins, but not suitable for directed evolution of pMHC complexes that bind with low affinity to self-reactive TCRs. PMID:21752831

  1. [Cloning and expression of MHC class I chain-related gene A in E. coli].

    PubMed

    He, Yan-Ming; Tao, Su-Dan; Ying, Yan-Ling; Zhu, Fa-Ming; Lü, Hang-Jun; Yan, Li-Xing

    2010-10-01

    In order to construct prokaryotic expression system of MHC classI chain-related gene A (mica) and purify MICA protein, RNAs were extracted from the peripheral blood samples and mica cDNA fragments were obtained by RT-PCR method. The cDNA for mica was ligated with cloning vector by TOPO method. The recombinant cloning vector and prokaryotic expression vector pET-28a were digested by two restriction enzymes and ligated to construct pET-28a-MICA recombinant expression vector, then the pET-28a-MICA vector was transformed and expressed in E. coli BL21 DE3. The recombinant protein was purified by Ni-NTA Spin method. The results showed that the recombinant MICA protein expressed with soluble form in host with pET-28a-MICA vector after IPTG induction. The recombinant target protein was obtained by Ni-NTA spin purification. In conclusion, this study has constructed prokaryotic expression system of mica gene and has purified MICA protein which would help to explore the interaction between MICA and transplantation immunology.

  2. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells.

    PubMed

    Franciszkiewicz, Katarzyna; Salou, Marion; Legoux, Francois; Zhou, Qian; Cui, Yue; Bessoles, Stéphanie; Lantz, Olivier

    2016-07-01

    The MHC-related 1, MR1, molecule presents a new class of microbial antigens (derivatives of the riboflavin [Vitamin B2] biosynthesis pathway) to mucosal-associated invariant T (MAIT) cells. This raises many questions regarding antigens loading and intracellular trafficking of the MR1/ligand complexes. The MR1/MAIT field is also important because MAIT cells are very abundant in humans and their frequency is modified in many infectious and non-infectious diseases. Both MR1 and the invariant TCRα chain expressed by MAIT cells are strikingly conserved among species, indicating important functions. Riboflavin is synthesized by plants and most bacteria and yeasts but not animals, and its precursor derivatives activating MAIT cells are short-lived unless bound to MR1. The recognition of MR1 loaded with these compounds is therefore an exquisite manner to detect invasive bacteria. Herein, we provide an historical perspective of the field before describing the main characteristics of MR1, its ligands, and the few available data regarding its cellular biology. We then summarize the current knowledge of MAIT cell differentiation and discuss the definition of MAIT cells in comparison to related subsets. Finally, we describe the phenotype and effector activities of MAIT cells. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Allelic diversity at MHC class II DQ loci in buffalo (Bubalus bubalis): evidence for duplication.

    PubMed

    Niranjan, Saket K; Deb, Sitangsu M; Kumar, Subodh; Mitra, Abhijit; Sharma, Arjava; Sakaram, Durgam; Naskar, Soumen; Sharma, Deepak; Sharma, Sita R

    2010-12-01

    The genetic diversity of MHC class II DQ genes was investigated in riverine buffalo (Bubalus bubalis) by PCR-RFLP and sequencing. Highly variable regions (exons 2-3) of DQ genes were amplified from 152 buffaloes and genotyped by PCR-RFLP. Alleles identified by differential restriction patterns were sequenced for the characterization. PCR-RFLP was a rapid method to discriminate between DQA1 and duplicated DQA2 genes in buffalo, however, the method appeared to be inadequate for determining the more complicated DQB genotypes. A total of 7 and 10 alleles were identified for DQA and DQB loci, respectively. Nucleotide as well as amino acid variations among DQ alleles particularly at peptide binding regions were high. Such variations were as expected higher in DQB than DQA alleles. The phylogenetic analysis for both genes revealed the grouping of alleles into two major sub-groups with higher genetic divergence. High divergence among DQ allelic families and the isolation of two diverse DQA and DQB sequences from individual samples indicated duplication of DQ loci was similar in buffalo to other ruminants.

  4. HLA-DO as the Optimizer of Epitope Selection for MHC Class II Antigen Presentation

    PubMed Central

    Poluektov, Yuri O.; Kim, AeRyon; Hartman, Isamu Z.; Sadegh-Nasseri, Scheherazade

    2013-01-01

    Processing of antigens for presentation to helper T cells by MHC class II involves HLA-DM (DM) and HLA-DO (DO) accessory molecules. A mechanistic understanding of DO in this process has been missing. The leading model on its function proposes that DO inhibits the effects of DM. To directly study DO functions, we designed a recombinant soluble DO and expressed it in insect cells. The kinetics of binding and dissociation of several peptides to HLA-DR1 (DR1) molecules in the presence of DM and DO were measured. We found that DO reduced binding of DR1 to some peptides, and enhanced the binding of some other peptides to DR1. Interestingly, these enhancing and reducing effects were observed in the presence, or absence, of DM. We found that peptides that were negatively affected by DO were DM-sensitive, whereas peptides that were enhanced by DO were DM-resistant. The positive and negative effects of DO could only be measured on binding kinetics as peptide dissociation kinetics were not affected by DO. Using Surface Plasmon Resonance, we demonstrate direct binding of DO to a peptide-receptive, but not a closed conformation of DR1. We propose that DO imposes another layer of control on epitope selection during antigen processing. PMID:23951115

  5. The Specificity of Trimming of MHC Class I-Presented Peptides in the Endoplasmic Reticulum1

    PubMed Central

    Hearn, Arron; York, Ian A.; Rock, Kenneth L.

    2010-01-01

    Aminopeptidases in the endoplasmic reticulum (ER) can cleave antigenic peptides and in so doing either create or destroy MHC class I-presented epitopes. However the specificity of this trimming process overall and of the major ER aminopeptidase ERAP1 in particular is not well understood. This issue is important because peptide trimming influences the magnitude and specificity of CD8 T cell responses. By systematically varying the N-terminal flanking sequences of peptides in a cell free biochemical system and in intact cells, we elucidated the specificity of ERAP1 and of ER trimming overall. ERAP1 can cleave after many amino acids on the N-terminus of epitope precursors but does so at markedly different rates. The specificity seen with purified ERAP1 is similar to that observed for trimming and presentation of epitopes in the ER of intact cells. We define N-terminal sequences that are favorable or unfavorable for antigen presentation in ways that are independent from the epitopes core sequence. When databases of known presented peptides were analyzed, the residues that were preferred for the trimming of model peptide precursors were found to be overrepresented in N-terminal flanking sequences of epitopes generally. These data define key determinants in the specificity of antigen processing. PMID:19828632

  6. Experimental hemochromatosis due to MHC class I HFE deficiency: Immune status and iron metabolism

    PubMed Central

    Bahram, Seiamak; Gilfillan, Susan; Kühn, Lukas C.; Moret, Rémy; Schulze, Johannes B.; Lebeau, Annette; Schümann, Klaus

    1999-01-01

    The puzzling linkage between genetic hemochromatosis and histocompatibility loci became even more so when the gene involved, HFE, was identified. Indeed, within the well defined, mainly peptide-binding, MHC class I family of molecules, HFE seems to perform an unusual yet essential function. As yet, our understanding of HFE function in iron homeostasis is only partial; an even more open question is its possible role in the immune system. To advance on both of these avenues, we report the deletion of HFE α1 and α2 putative ligand binding domains in vivo. HFE-deficient animals were analyzed for a comprehensive set of metabolic and immune parameters. Faithfully mimicking human hemochromatosis, mice homozygous for this deletion develop iron overload, characterized by a higher plasma iron content and a raised transferrin saturation as well as an elevated hepatic iron load. The primary defect could, indeed, be traced to an augmented duodenal iron absorption. In parallel, measurement of the gut mucosal iron content as well as iron regulatory proteins allows a more informed evaluation of various hypotheses regarding the precise role of HFE in iron homeostasis. Finally, an extensive phenotyping of primary and secondary lymphoid organs including the gut provides no compelling evidence for an obvious immune-linked function for HFE. PMID:10557317

  7. Expression, Purification and Characterization of Ricin vectors used for exogenous antigen delivery into the MHC Class I presentation pathway

    PubMed Central

    Marsden, Catherine J.; Lord, J. Michael; Roberts, Lynne M.

    2003-01-01

    Disarmed versions of the cytotoxin ricin can deliver fused peptides into target cells leading to MHC class I-restricted antigen presentation [Smith et al. J Immunol 2002; 169:99-107]. The ricin delivery vector must contain an attenuated catalytic domain to prevent target cell death, and the fused peptide epitope must remain intact for delivery and functional loading to MHC class I molecules. Expression in E. coli and purification by cation exchange chromatography of the fusion protein is described. Before used for delivery, the activity of the vector must be characterized in vitro, via an N-glycosidase assay, and in vivo, by a cytotoxicity assay. The presence of an intact epitope must be confirmed using mass spectrometry by comparing the actual mass with the predicted mass. PMID:12734560

  8. A novel HURRAH protocol reveals high numbers of monomorphic MHC class II loci and two asymmetric multi-locus haplotypes in the Père David's deer.

    PubMed

    Wan, Qiu-Hong; Zhang, Pei; Ni, Xiao-Wei; Wu, Hai-Long; Chen, Yi-Yan; Kuang, Ye-Ye; Ge, Yun-Fa; Fang, Sheng-Guo

    2011-01-18

    The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated "HURRAH" based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1) and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens.

  9. Metastatic MHC class I-negative mouse cells derived by transformation with human papillomavirus type 16

    PubMed Central

    Šmahel, M; Sobotková, E; Bubeník, J; Šímová, J; Žák, R; Ludvíková, V; Hájková, R; Kovařík, J; Jelínek, F; Povýšil, C; Marinov, J; Vonka, V

    2001-01-01

    In the endeavour to develop a model for studying gene therapy of cancers associated with human papillomaviruses (HPVs), mouse cells were transformed with the HPV type 16 (HPV16) and activated H-ras oncogenes. This was done by contransfection of plasmid p16HHMo, carrying the HPV16 E6/E7 oncogenes, and plasmid pEJ6.6, carrying the gene coding for human H-ras oncoprotein activated by G12V mutation, into secondary C57BL/6 mouse kidney cells. An oncogenic cell line, designated MK16/1/IIIABC, was derived. The epithelial origin of the cells was confirmed by their expression of cytokeratins. No MHC class I and class II molecules were detected on the surface of MK16/1/IIIABC cells. Spontaneous metastases were observed in lymphatic nodes and lungs after prolonged growth of MK16/1/IIIABC-induced subcutaneous tumours. Lethally irradiated MK16/1/IIIABC cells induced protection against challenge with 105homologous cells, but not against a higher cell dose (5 × 105). Plasmids p16HHMo and pEJ6.6 were also used for preventive immunization of mice. In comparison with a control group injected with pBR322, they exhibited moderate protection, in terms of prolonged survival, against MK16/1/IIIABC challenge (P< 0.03). These data suggest that MK16/1/IIIABC cells may serve as a model for studying immune reactions against HPV16-associated human tumours. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11225590

  10. CD4+ T-cell activation for immunotherapy of malignancies using Ii-Key/MHC class II epitope hybrid vaccines.

    PubMed

    Xu, Minzhen; Kallinteris, Nikoletta L; von Hofe, Eric

    2012-04-16

    Active immunotherapy is becoming a reality in the treatment of malignancies. Peptide-based vaccines represent a simple, safe, and economic basis for cancer immunotherapeutics development. However, therapeutic efficacy has been disappointing. Some of the reasons for this, such as selection of patients with advanced disease and ignorance of the delayed activity of many immunotherapeutic vaccines, have hampered the entire field of cancer immunotherapy over the last decade. Another reason for this may be that most peptide regimens historically have focused on activation of CD8+ cytotoxic T lymphocytes, having little or only indirect CD4+ T helper (Th) cell activation. We review here evidence for the importance of specific CD4+ Th activation in cancer immunotherapy and the use of Ii-Key technology to accomplish this. Ii-Key (LRMK), a portion of the MHC class II-associated invariant chain (Ii protein), facilitates the direct charging of peptide epitopes onto MHC class II molecules. Directly linking Ii-Key to MHC class II peptide epitopes greatly enhances their potency in activating CD4+ T-cells. The Ii-Key hybrid AE37, generated by linking LRMK to the known HER2 MHC class II epitope HER2 (aa 776-790), has been shown to generate robust, long lasting HER2-specific immune responses both in patients with breast and prostate cancer. Interim data from a phase II study of AE37 in breast cancer patients suggest a possible improvement in clinical outcome. The Ii-Key hybrid technology is compared to other methods for enhancing the potency of peptide immunotherapy for cancer. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries

    PubMed Central

    Sidney, John; Assarsson, Erika; Moore, Carrie; Ngo, Sandy; Pinilla, Clemencia; Sette, Alessandro; Peters, Bjoern

    2008-01-01

    Background It has been previously shown that combinatorial peptide libraries are a useful tool to characterize the binding specificity of class I MHC molecules. Compared to other methodologies, such as pool sequencing or measuring the affinities of individual peptides, utilizing positional scanning combinatorial libraries provides a baseline characterization of MHC molecular specificity that is cost effective, quantitative and unbiased. Results Here, we present a large-scale application of this technology to 19 different human and mouse class I alleles. These include very well characterized alleles (e.g. HLA A*0201), alleles with little previous data available (e.g. HLA A*3201), and alleles with conflicting previous reports on specificity (e.g. HLA A*3001). For all alleles, the positional scanning combinatorial libraries were able to elucidate distinct binding patterns defined with a uniform approach, which we make available here. We introduce a heuristic method to translate this data into classical definitions of main and secondary anchor positions and their preferred residues. Finally, we validate that these matrices can be used to identify candidate MHC binding peptides and T cell epitopes in the vaccinia virus and influenza virus systems, respectively. Conclusion These data confirm, on a large scale, including 15 human and 4 mouse class I alleles, the efficacy of the positional scanning combinatorial library approach for describing MHC class I binding specificity and identifying high affinity binding peptides. These libraries were shown to be useful for identifying specific primary and secondary anchor positions, and thereby simpler motifs, analogous to those described by other approaches. The present study also provides matrices useful for predicting high affinity binders for several alleles for which detailed quantitative descriptions of binding specificity were previously unavailable, including A*3001, A*3201, B*0801, B*1501 and B*1503. PMID:18221540

  12. Translating DRiPs: progress in understanding viral and cellular sources of MHC class I peptide ligands

    PubMed Central

    Dolan, Brian P.; Bennink, Jack R.

    2012-01-01

    It has been 15 years since we proposed the defective ribosomal product (DRiP) hypothesis to explain the rapid presentation of viral peptides by MHC class I molecules on the surface of infected cells. Here, we review the evidence for the contribution of DRiPs to antigen processing, pointing to the uncertainties regarding the physical nature of DRiPs, and emphasizing recent findings suggesting that peptide generation is a specialized process involving compartmentalized translation. PMID:21416150

  13. P2X7 Receptor Activation Impairs Exogenous MHC Class I Oligopeptides Presentation in Antigen Presenting Cells

    PubMed Central

    Baroja-Mazo, Alberto; Barberà-Cremades, Maria; Pelegrín, Pablo

    2013-01-01

    Major histocompatibility complex class I (MHC I) on antigen presenting cells (APCs) is a potent molecule to activate CD8+ T cells and initiate immunity. P2X7 receptors (P2X7Rs) are present on the plasma membrane of APCs to sense the extracellular danger signal adenosine-5′-triphosphate (ATP). P2X7R activates the inflammasome and the release of IL-1β in macrophages and other immune cells to initiate the inflammatory response. Here we show that P2X7R stimulation by ATP in APCs decreased the amount of MHC I at the plasma membrane. Specific antagonism or genetic ablation of P2X7R inhibited the effects of ATP on levels of cellular MHC I. Furthermore, P2X7R stimulation was able to inhibit activation of CD8+ T cells via specific MHC I-oligopeptide complexes. Our study suggests that P2X7R activation on APCs is a novel inhibitor of adaptive CD8+ T cell immunity. PMID:23940597

  14. Genetic diversity of the MHC class-II DQA gene in brown bears (Ursus arctos) on Hokkaido, Northern Japan.

    PubMed

    Goda, Naoki; Mano, Tsutomu; Masuda, Ryuichi

    2009-08-01

    To investigate genetic diversity of a major histocompatibility complex (MHC) gene in the brown bear (Ursus arctos) population on Hokkaido Island, northern Japan, we cloned and sequenced parts of exon 2 and intron 2 of the MHC class-II DQA gene from 32 brown bears. According to strict criteria for allele identification established by mammalian MHC nomenclature committees, four DQA types (Urar-DQA*01 to Urar-DQA*04) were identified. Of the four, however, Urar-DQA*04 had a 12-bp deletion not detected in a cDNA analysis, indicating that this is a pseudogene at a distinct locus generated by gene duplication. The nucleotide sequences of the other three DQA alleles, which were expressed (because detected from cDNA), were very similar, indicating lower DQA variation In the Hokkaido brown bear population than in other mammals. We attribute this low genetic diversity to (1) some limited effect of possible balancing selection; (2) bottlenecks and inbreeding after migration and isolation of the Hokkaido brown bear population from the Eurasian Continent; (3) a much slower evolutionary rate in DQA than in other MHC genes in the Hokkaido brown bear population.

  15. Characterization of MHC class II B polymorphism in bottlenecked New Zealand saddlebacks reveals low levels of genetic diversity.

    PubMed

    Sutton, Jolene T; Robertson, Bruce C; Grueber, Catherine E; Stanton, Jo-Ann L; Jamieson, Ian G

    2013-08-01

    The major histocompatibility complex (MHC) is integral to the vertebrate adaptive immune system. Characterizing diversity at functional MHC genes is invaluable for elucidating patterns of adaptive variation in wild populations, and is particularly interesting in species of conservation concern, which may suffer from reduced genetic diversity and compromised disease resilience. Here, we use next generation sequencing to investigate MHC class II B (MHCIIB) diversity in two sister taxa of New Zealand birds: South Island saddleback (SIS), Philesturnus carunculatus, and North Island saddleback (NIS), Philesturnus rufusater. These two species represent a passerine family outside the more extensively studied Passerida infraorder, and both have experienced historic bottlenecks. We examined exon 2 sequence data from populations that represent the majority of genetic diversity remaining in each species. A high level of locus co-amplification was detected, with from 1 to 4 and 3 to 12 putative alleles per individual for South and North Island birds, respectively. We found strong evidence for historic balancing selection in peptide-binding regions of putative alleles, and we identified a cluster combining non-classical loci and pseudogene sequences from both species, although no sequences were shared between the species. Fewer total alleles and fewer alleles per bird in SIS may be a consequence of their more severe bottleneck history; however, overall nucleotide diversity was similar between the species. Our characterization of MHCIIB diversity in two closely related species of New Zealand saddlebacks provides an important step in understanding the mechanisms shaping MHC diversity in wild, bottlenecked populations.

  16. Self-adjuvanted nanovaccine for cancer immunotherapy: Role of lysosomal rupture-induced ROS in MHC class I antigen presentation.

    PubMed

    Wang, Ce; Li, Ping; Liu, Lanlan; Pan, Hong; Li, Hongchang; Cai, Lintao; Ma, Yifan

    2016-02-01

    MHC class I (MHC I) antigen presentation of exogenous antigens (so called "cross presentation") is a central mechanism of CD8(+) cytotoxic T lymphocyte (CTL) responses essential for successful vaccine-based cancer immunotherapy. The present study constructed amphiphilic pH-sensitive galactosyl dextran-retinal (GDR) nanogels for cancer vaccine delivery, in which dextran was conjugated with all-trans retinal (a metabolite of vitamin A) through a pH-sensitive hydrazone bond, followed by galactosylation to acquire dendritic cell (DC)-targeting ability. Our results showed that pH-sensitive GDR nanogel was a self-adjuvanted vaccine carrier that not only promoted DC maturation through activating retinoic acid receptor (RAR) signaling, but also facilitated antigen uptake and cytosolic antigen release in DCs. Furthermore, pH-sensitive GDR nanogel effectively augmented MHC I antigen presentation and evoked potent anti-cancer immune responses in vivo. More importantly, we first reported that nanoparticle-triggered lysosome rupture could directly induce ROS production in DCs, which was found to be essential for augmenting proteasome activity and downstream MHC I antigen presentation. Hence, DC-targeted pH-sensitive GDR nanogels could be a potent delivery system for cancer vaccine development. Triggering lyososomal rupture in DCs with pH-sensitive nanoparticles might be a plausible strategy to elevate intracellular ROS production for promoting antigen cross presentation, thereby improving cancer vaccine efficacy.

  17. Insights into MHC class I peptide loading from the structure of the tapasin/ERp57 heterodimer

    PubMed Central

    Dong, Gang; Wearsch, Pamela A.; Peaper, David R.; Cresswell, Peter; Reinisch, Karin M.

    2009-01-01

    SUMMARY Tapasin is a glycoprotein critical for loading Major Histocompatibility Complex (MHC) class I molecules with high affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here we present the 2.6 Å resolution structure of the tapasin/ERp57 core of the PLC. The structure reveals the basis for the stable dimerization of tapasin and ERp57 and provides the first example of a protein disulfide isomerase family member interacting with a substrate. Mutational analysis identified a conserved surface on tapasin that interacts with MHC class I molecules and is critical for the peptide loading and editing function of the tapasin-ERp57 heterodimer. By combining the tapasin/ERp57 structure with those of other defined PLC components we present a molecular model that illuminates the processes involved in MHC class I peptide loading. PMID:19119025

  18. Autophagy and proteasome interconnect to coordinate cross-presentation through MHC class I pathway in B cells.

    PubMed

    Dasari, Vijayendra; Rehan, Sweera; Tey, Siok-Keen; Smyth, Mark J; Smith, Corey; Khanna, Rajiv

    2016-11-01

    Cross-presentation of exogenous protein antigens by B cells through the major histocompatibility complex (MHC) class I pathway in lymphoid malignancies, and transplant setting has been recognised as an important mediator of immune pathogenesis and T cell-mediated immune regulation. However, the precise mechanism of cross-presentation of exogenous antigens in B cells has remained unresolved. Here we have delineated a novel pathway for cross-presentation in B cells, which involves synergistic cooperation of the proteasome and autophagy. After endocytosis, protein antigen is processed through an autophagy- and proteasome-dependent pathway and CD8(+) T-cell epitopes are loaded onto MHC class I molecules within the autophagolysomal compartment rather than the conventional secretory pathway, which requires transporters associated with antigen processing-dependent transport. Interestingly, this cross-presentation was critically dependent on valosin-containing protein (VCP)/p97 ATPase through its participation in autophagy. Loss of VCP/p97 ATPase was coincident with accumulation of LC3-II and marked reduction in antigen presentation. These observations provide unique insight on how the autophagy and proteasomal degradation systems interconnect to coordinate MHC class I-restricted cross-presentation in B cells.

  19. PPE38 Protein of Mycobacterium tuberculosis Inhibits Macrophage MHC Class I Expression and Dampens CD8+ T Cell Responses

    PubMed Central

    Meng, Lu; Tong, Jingfeng; Wang, Hui; Tao, Chengwu; Wang, Qinglan; Niu, Chen; Zhang, Xiaoming; Gao, Qian

    2017-01-01

    Suppression of CD8+ T cell activation is a critical mechanism used by Mycobacterium tuberculosis (MTB) to escape protective host immune responses. PPE38 belongs to the unique PPE family of MTB and in our previous study, PPE38 protein was speculated to participate in manipulating macrophage MHC class I pathway. To test this hypothesis, the function of mycobacterial PPE38 protein was assessed here using macrophage and mouse infection models. Decreased amount of MHC class I was observed on the surface of macrophages infected with PPE38-expressing mycobacteria. The transcript of genes encoding MHC class I was also inhibited by PPE38. After infection of C57BL/6 mice with Mycobacterium smegmatis expressing PPE38 (Msmeg-PPE38), decreased number of CD8+ T cells was found in spleen, liver, and lungs through immunohistochemical analysis, comparing to the control strain harboring empty vector (Msmeg-V). Consistently, flow cytometry assay showed that fewer effector/memory CD8+ T cells (CD44highCD62Llow) were activated in spleen from Msmeg-PPE38 infected mice. Moreover, Msmeg-PPE38 confers a growth advantage over Msmeg-V in C57BL/6 mice, indicating an effect of PPE38 to favor mycobacterial persistence in vivo. Overall, this study shows a unique biological function of PPE38 protein to facilitate mycobacteria to escape host immunity, and provides hints for TB vaccine development. PMID:28348981

  20. Tubulation of Class II MHC Compartments Is Microtubule Dependent and Involves Multiple Endolysosomal Membrane Proteins in Primary Dendritic Cells1

    PubMed Central

    Vyas, Jatin M.; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J. Christopher; Van der Veen, Annemarthe G.; Ploegh, Hidde L.

    2009-01-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP. PMID:17513769

  1. Tubulation of class II MHC compartments is microtubule dependent and involves multiple endolysosomal membrane proteins in primary dendritic cells.

    PubMed

    Vyas, Jatin M; Kim, You-Me; Artavanis-Tsakonas, Katerina; Love, J Christopher; Van der Veen, Annemarthe G; Ploegh, Hidde L

    2007-06-01

    Immature dendritic cells (DCs) capture exogenous Ags in the periphery for eventual processing in endolysosomes. Upon maturation by TLR agonists, DCs deliver peptide-loaded class II MHC molecules from these compartments to the cell surface via long tubular structures (endolysosomal tubules). The nature and rules that govern the movement of these DC compartments are unknown. In this study, we demonstrate that the tubules contain multiple proteins including the class II MHC molecules and LAMP1, a lysosomal resident protein, as well as CD63 and CD82, members of the tetraspanin family. Endolysosomal tubules can be stained with acidotropic dyes, indicating that they are extensions of lysosomes. However, the proper trafficking of class II MHC molecules themselves is not necessary for endolysosomal tubule formation. DCs lacking MyD88 can also form endolysosomal tubules, demonstrating that MyD88-dependent TLR activation is not necessary for the formation of this compartment. Endolysosomal tubules in DCs exhibit dynamic and saltatory movement, including bidirectional travel. Measured velocities are consistent with motor-based movement along microtubules. Indeed, nocodazole causes the collapse of endolysosomal tubules. In addition to its association with microtubules, endolysosomal tubules follow the plus ends of microtubules as visualized in primary DCs expressing end binding protein 1 (EB1)-enhanced GFP.

  2. Insights into MHC class I peptide loading from the structure of the Tapasin-ERp57 thiol oxidoreductase heterodimer

    SciTech Connect

    Dong, G.; Wearsch, P.A.; Peaper, D.R.; Cresswell, P.; Reinisch, K.M.

    2009-03-02

    Tapasin is a glycoprotein critical for loading major histocompatibility complex (MHC) class I molecules with high-affinity peptides. It functions within the multimeric peptide-loading complex (PLC) as a disulfide-linked, stable heterodimer with the thiol oxidoreductase ERp57, and this covalent interaction is required to support optimal PLC activity. Here, we present the 2.6 {angstrom} resolution structure of the tapasin-ERp57 core of the PLC. The structure revealed that tapasin interacts with both ERp57 catalytic domains, accounting for the stability of the heterodimer, and provided an example of a protein disulfide isomerase family member interacting with substrate. Mutational analysis identified a conserved surface on tapasin that interacted with MHC class I molecules and was critical for peptide loading and editing functions of the tapasin-ERp57 heterodimer. By combining the tapasin-ERp57 structure with those of other defined PLC components, we present a molecular model that illuminates the processes involved in MHC class I peptide loading.

  3. Participation of the interstitium in acute immune-complex nephritis: interstitial antigen accumulation, cellular infiltrate, and MHC class II expression

    PubMed Central

    PARRA, G; HERNÁNDEZ, S; MORENO, P; RODRÍGUEZ-ITURBE, B

    2003-01-01

    Bovine serum albumin (BSA) injected into the rabbits induces acute immune complex glomerulonephritis. Since albumin is filtered and reabsorbed in the tubules, we investigated whether tubulointerstitial cells participate in the pathogenesis of this experimental condition. For this purpose, we induced immune-complex nephritis in 45 rabbits with the injection of 125I-BSA and urinary BSA excretion, glomerular and tubulointerstitial BSA accumulation, lymphocyte infiltration, proliferative activity and MHC class II antigens were examined 2, 4–5 and 6–8 days after immunization. Proteinuria developed day 6–8. BSA was found in urine from day 2 (mean ± SE; 1089 ± 339 µg/24 h) and peaked on day 4 after immunization (2249 ± 1106). BSA content (cpm/g tissue) in tubulointerstitium (TI) and glomeruli were similar at day 2 (457 ± 45 and 407 ± 75, respectively), but afterward increased significantly in TI, reaching a peak level on day 5 (1026 ± 406) while remained unchanged in glomeruli (388 ± 95). At the same time, preceding the onset of proteinuria, maximal intensity of the lymphocyte infiltration, proliferative activity and MHC class II antigen expression in tubular cells, monocytes/macrophages and interstitial cells were observed. Our study shows that antigen is excreted in the urine and concentrated in TI in association with overexpression of MHC class II molecules and lymphocyte infiltration. These findings occur prior to the development of proteinuria and suggest that the tubulointerstitial cells play a critical role in the pathogenesis of this model. PMID:12823277

  4. Re-Directing CD4(+) T Cell Responses with the Flanking Residues of MHC Class II-Bound Peptides: The Core is Not Enough.

    PubMed

    Holland, Christopher J; Cole, David K; Godkin, Andrew

    2013-01-01

    Recombinant αβ T cell receptors, expressed on T cell membranes, recognize short peptides presented at the cell surface in complex with MHC molecules. There are two main subsets of αβ T cells: CD8(+) T cells that recognize mainly cytosol-derived peptides in the context of MHC class I (pMHC-I), and CD4(+) T cells that recognize peptides usually derived from exogenous proteins presented by MHC class II (pMHC-II). Unlike the more uniform peptide lengths (usually 8-13mers) bound in the MHC-I closed groove, MHC-II presented peptides are of a highly variable length. The bound peptides consist of a core bound 9mer (reflecting the binding motif for the particular MHC-II type) but with variable peptide flanking residues (PFRs) that can extend from both the N- and C-terminus of the MHC-II binding groove. Although pMHC-I and pMHC-II play a virtually identical role during T cell responses (T cell antigen presentation) and are very similar in overall conformation, there exist a number of subtle but important differences that may govern the functional dichotomy observed between CD8(+) and CD4(+) T cells. Here, we provide an overview of the impact of structural differences between pMHC-I and pMHC-II and the molecular interactions with the T cell receptor including the functional importance of MHC-II PFRs. We consider how factors such as anatomical location, inflammatory milieu, and particular types of antigen presenting cell might, in theory, contribute to the quantitative (i.e., pMHC ligand frequency) as well as qualitative (i.e., variable PFR) nature of peptide epitopes, and hence offer a means of control and influence of a CD4(+) T cell response. Lastly, we review our recent findings showing how modifications to MHC-II PFRs can modify CD4(+) T cell antigen recognition. These findings may have novel applications for the development of CD4(+) T cell peptide vaccines and diagnostics.

  5. Semi-empirical quantum evaluation of peptide - MHC class II binding

    NASA Astrophysics Data System (ADS)

    González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2017-01-01

    Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.

  6. Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians.

    PubMed

    Edholm, Eva-Stina; Albertorio Saez, Liz-Marie; Gill, Ann L; Gill, Steven R; Grayfer, Leon; Haynes, Nikesha; Myers, Jason R; Robert, Jacques

    2013-08-27

    Human and murine MHC nonclassical class Ib-restricted invariant T (iT) cell subsets, such as invariant natural killer T cells (iNKT) and mucosal-associated invariant T cells, have specialized functions early in immune responses, especially in modulating subsequent adaptive immune responses. Here, we characterize a prominent iT population in the amphibian Xenopus laevis and show the requirement of the class Ib molecule, Xenopus nonclassical gene 10, in its differentiation and function. Using Xenopus nonclassical gene 10 tetramers and RNAi loss of function by transgenesis, we identified a large class Ib-dependent CD8(-)/CD4(-) iT subset in unmanipulated frogs and tadpoles. This population is critical for antiviral immunity during early larval stages when classical MHC class Ia function is suboptimal. Furthermore, in young tadpoles with low class Ia expression, deep sequencing revealed additional preponderant invariant T cell receptor (TCR)α rearrangements, implying other iT cell subsets and a predominant selection process mediated by other class Ib molecules. The restriction and requirement of class Ib molecules for development and antiviral immunity of a mammalian iNKT or mucosal-associated invariant T cell counterpart in the amphibian Xenopus show the importance of iT cells in the emergence and evolution of the adaptive immune system.

  7. Modulation of MHC class II transport and lysosome distribution by macrophage-colony stimulating factor in human dendritic cells derived from monocytes.

    PubMed

    Baron, C; Raposo, G; Scholl, S M; Bausinger, H; Tenza, D; Bohbot, A; Pouillart, P; Goud, B; Hanau, D; Salamero, J

    2001-03-01

    The macrophage-colony stimulating factor (M-CSF) has been already shown to affect the function of dendritic cells (DC). Therefore, the differentiation of dendritic cells into macrophages (M(PHI)) might represent a pathway which could inhibit the immune response initiated by DC. Because Major Histocompatibility Complex class II molecules (MHC-II) are crucial for DC function, we asked whether M-CSF may influence the intracellular transport of MHC-II in monocyte derived DC. We found that, at early stages, M-CSF induced first a rapid redistribution of MHC-II from the MHC-II containing compartments (MIIC) to the plasma membrane and second an increase in MHC-II synthesis as observed with LPS or TNF-(alpha). These processes were associated with the sorting of MHC-II from lysosomal membranes which underwent a drastic structural reorganization. However, in contrast to tumor necrosis factor (TNF)-(alpha) or lipopolysaccharide (LPS), M-CSF neither potentiated the allostimulatory function of DC nor allowed the stabilization of MHC-II at the cell surface, but rather increased MHC-II turnover. We conclude that the rapid modulation of MHC-II transport and distribution may participate in the inhibitory effect of M-CSF on DC function and differentiation.

  8. Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus.

    PubMed

    Powers, Colin J; Früh, Klaus

    2008-10-03

    The US2-11 region of human and rhesus cytomegalovirus encodes a conserved family of glycoproteins that inhibit MHC-I assembly with viral peptides, thus preventing cytotoxic T cell recognition. Since HCMV lacking US2-11 is no longer able to block assembly and transport of MHC-I, we examined whether this is also observed for RhCMV lacking the corresponding region. Unexpectedly, recombinant RhCMV lacking US2-11 was still able to inhibit MHC-I expression in infected fibroblasts, suggesting the presence of an additional MHC-I evasion mechanism. Progressive deletion analysis of RhCMV-specific genomic regions revealed that MHC-I expression is fully restored upon additional deletion of rh178. The protein encoded by this RhCMV-specific open reading frame is anchored in the endoplasmic reticulum membrane. In the presence of rh178, RhCMV prevented MHC-I heavy chain (HC) expression, but did not inhibit mRNA transcription or association of HC mRNA with translating ribosomes. Proteasome inhibitors stabilized a HC degradation intermediate in the absence of rh178, but not in its presence, suggesting that rh178 prevents completion of HC translation. This interference was signal sequence-dependent since replacing the signal peptide with that of CD4 or murine HC rendered human HCs resistant to rh178. We have identified an inhibitor of antigen presentation encoded by rhesus cytomegalovirus unique in both its lack of homology to any other known protein and in its mechanism of action. By preventing signal sequence-dependent HC translocation, rh178 acts prior to US2, US3 and US11 which attack MHC-I proteins after protein synthesis is completed. Rh178 is the first viral protein known to interfere at this step of the MHC-I pathway, thus taking advantage of the conserved nature of HC leader peptides, and represents a new mechanism of translational interference.

  9. Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda

    PubMed Central

    2013-01-01

    Background Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Results Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. Conclusions The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling

  10. Characterization of the Antigen Processing Machinery and Endogenous Peptide Presentation of a Bat MHC Class I Molecule.

    PubMed

    Wynne, James W; Woon, Amanda P; Dudek, Nadine L; Croft, Nathan P; Ng, Justin H J; Baker, Michelle L; Wang, Lin-Fa; Purcell, Anthony W

    2016-06-01

    Bats are a major reservoir of emerging and re-emerging infectious diseases, including severe acute respiratory syndrome-like coronaviruses, henipaviruses, and Ebola virus. Although highly pathogenic to their spillover hosts, bats harbor these viruses, and a large number of other viruses, with little or no clinical signs of disease. How bats asymptomatically coexist with these viruses is unknown. In particular, little is known about bat adaptive immunity, and the presence of functional MHC molecules is mostly inferred from recently described genomes. In this study, we used an affinity purification/mass spectrometry approach to demonstrate that a bat MHC class I molecule, Ptal-N*01:01, binds antigenic peptides and associates with peptide-loading complex components. We identified several bat MHC class I-binding partners, including calnexin, calreticulin, protein disulfide isomerase A3, tapasin, TAP1, and TAP2. Additionally, endogenous peptide ligands isolated from Ptal-N*01:01 displayed a relatively broad length distribution and an unusual preference for a C-terminal proline residue. Finally, we demonstrate that this preference for C-terminal proline residues was observed in Hendra virus-derived peptides presented by Ptal-N*01:01 on the surface of infected cells. To our knowledge, this is the first study to identify endogenous and viral MHC class I ligands for any bat species and, as such, provides an important avenue for monitoring and development of vaccines against major bat-borne viruses both in the reservoir and spillover hosts. Additionally, it will provide a foundation to understand the role of adaptive immunity in bat antiviral responses. Copyright © 2016 by The American Association of Immunologists, Inc.

  11. Distribution of CD163-positive cell and MHC class II-positive cell in the normal equine uveal tract

    PubMed Central

    SANO, Yuto; MATSUDA, Kazuya; OKAMOTO, Minoru; TAKEHANA, Kazushige; HIRAYAMA, Kazuko; TANIYAMA, Hiroyuki

    2015-01-01

    Antigen-presenting cells (APCs) in the uveal tract participate in ocular immunity including immune homeostasis and the pathogenesis of uveitis. In horses, although uveitis is the most common ocular disorder, little is known about ocular immunity, such as the distribution of APCs. In this study, we investigated the distribution of CD163-positive and MHC II-positive cells in the normal equine uveal tract using an immunofluorescence technique. Eleven eyes from 10 Thoroughbred horses aged 1 to 24 years old were used. Indirect immunofluorescence was performed using the primary antibodies CD163, MHC class II (MHC II) and CD20. To demonstrate the site of their greatest distribution, positive cells were manually counted in 3 different parts of the uveal tract (ciliary body, iris and choroid), and their average number was assessed by statistical analysis. The distribution of pleomorphic CD163- and MHC II-expressed cells was detected throughout the equine uveal tract, but no CD20-expressed cells were detected. The statistical analysis demonstrated the distribution of CD163- and MHC II-positive cells focusing on the ciliary body. These results demonstrated that the ciliary body is the largest site of their distribution in the normal equine uveal tract, and the ciliary body is considered to play important roles in uveal and/or ocular immune homeostasis. The data provided in this study will help further understanding of equine ocular immunity in the normal state and might be beneficial for understanding of mechanisms of ocular disorders, such as equine uveitis. PMID:26537548

  12. Bacterial Superantigens Promote Acute Nasopharyngeal Infection by Streptococcus pyogenes in a Human MHC Class II-Dependent Manner

    PubMed Central

    Kasper, Katherine J.; Zeppa, Joseph J.; Wakabayashi, Adrienne T.; Xu, Stacey X.; Mazzuca, Delfina M.; Welch, Ian; Baroja, Miren L.; Kotb, Malak; Cairns, Ewa; Cleary, P. Patrick; Haeryfar, S. M. Mansour; McCormick, John K.

    2014-01-01

    Establishing the genetic determinants of niche adaptation by microbial pathogens to specific hosts is important for the management and control of infectious disease. Streptococcus pyogenes is a globally prominent human-specific bacterial pathogen that secretes superantigens (SAgs) as ‘trademark’ virulence factors. SAgs function to force the activation of T lymphocytes through direct binding to lateral surfaces of T cell receptors and class II major histocompatibility complex (MHC-II) molecules. S. pyogenes invariably encodes multiple SAgs, often within putative mobile genetic elements, and although SAgs are documented virulence factors for diseases such as scarlet fever and the streptococcal toxic shock syndrome (STSS), how these exotoxins contribute to the fitness and evolution of S. pyogenes is unknown. Here we show that acute infection in the nasopharynx is dependent upon both bacterial SAgs and host MHC-II molecules. S. pyogenes was rapidly cleared from the nasal cavity of wild-type C57BL/6 (B6) mice, whereas infection was enhanced up to ∼10,000-fold in B6 mice that express human MHC-II. This phenotype required the SpeA superantigen, and vaccination with an MHC –II binding mutant toxoid of SpeA dramatically inhibited infection. Our findings indicate that streptococcal SAgs are critical for the establishment of nasopharyngeal infection, thus providing an explanation as to why S. pyogenes produces these potent toxins. This work also highlights that SAg redundancy exists to avoid host anti-SAg humoral immune responses and to potentially overcome host MHC-II polymorphisms. PMID:24875883

  13. Mouse γδ T cells are capable of expressing MHC class II molecules, and of functioning as antigen-presenting cells⋆

    PubMed Central

    Cheng, Lan; Cui, Yan; Shao, Hui; Han, Gencheng; Zhu, Ling; Huang, Yafei; O'Brien, Rebecca L.; Born, Willi K.; Kaplan, Henry J.; Sun, Deming

    2008-01-01

    Although human and bovine γδ T cells were shown to express MHC class II antigen and function as APCs, attempts to determine if mouse γδ T cells have similar functions remained unsuccessful. We now show that γδ T cells derived from immunized mice also can be induced to express MHC class II and co-stimulatory molecules after activation in vitro, and are capable of antigen presentation. Using highly purified γδ T cells, we found that, unlike human γδ T cells, the expression of MHC class II molecules by mouse γδ T cells is limited to newly activated cells. Highest levels of MHC class II expression were seen on activated γδ T cells that had lost most surface-expressed γδ TCR while exhibiting increased levels of intracellular γδ TCR. In the absence of further stimulation, MHC class II expression gradually declined with the γδ T cells regaining their surface TCR. We also show that cytokine-activated γδ T cells can also express MHC class II antigen and exercise antigen-presenting activity. PMID:18774183

  14. Distinct functions for the glycans of tapasin and heavy chains in the assembly of major histocompatibility complex (MHC) class I molecules

    PubMed Central

    Rizvi, Syed Monem; Cid, Natasha Del; Lybarger, Lonnie; Raghavan, Malini

    2011-01-01

    Complexes of specific assembly factors and generic endoplasmic reticulum (ER) chaperones collectively called the major histocompatibility complex (MHC) class I peptide loading complex (PLC) function in the folding and assembly of MHC class I molecules. The glycan binding chaperone calreticulin and partner oxidoreductase ERp57 are important in MHC class I assembly, but the sequence of assembly events and specific interactions involved remain incompletely understood. We show that the recruitments of calreticulin and ERp57 to the PLC are co-dependent and also dependent upon the ERp57 binding site and the glycan of the assembly factor tapasin. Furthermore, the ERp57 binding site and the glycan of tapasin enhance β2m and MHC class I heavy chain recruitment to the PLC, with the ERp57 binding site having the dominant effect. On the other hand, the conserved MHC class I heavy chain glycan played a minor role in calreticulin recruitment into the PLC, but impacted the recruitment of heavy chains into the PLC, and glycan-deficient heavy chains were impaired for tapasin-independent and tapasin-assisted assembly. The conserved MHC class I glycan and tapasin facilitated an early step in the assembly of heavy chain-β2m heterodimers, for which tapasin-ERp57 or tapasin-calreticulin complexes were not required. Together, these studies provide insights into how PLCs are constructed, demonstrate two distinct mechanisms by which PLCs can be stabilized, and suggest the presence of intermediate heavy chain-deficient PLCs. PMID:21263072

  15. Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cells.

    PubMed

    Lee, Andrew W; Hertel, Laura; Louie, Ryan K; Burster, Timo; Lacaille, Vashti; Pashine, Achal; Abate, Davide A; Mocarski, Edward S; Mellins, Elizabeth D

    2006-09-15

    Hemopoietic stem cell-derived mature Langerhans-type dendritic cells (LC) are susceptible to productive infection by human CMV (HCMV). To investigate the impact of infection on this cell type, we examined HLA-DR biosynthesis and trafficking in mature LC cultures exposed to HCMV. We found decreased surface HLA-DR levels in viral Ag-positive as well as in Ag-negative mature LC. Inhibition of HLA-DR was independent of expression of unique short US2-US11 region gene products by HCMV. Indeed, exposure to UV-inactivated virus, but not to conditioned medium from infected cells, was sufficient to reduce HLA-DR on mature LC, implicating particle binding/penetration in this effect. Reduced surface levels reflected an altered distribution of HLA-DR because total cellular HLA-DR was not diminished. Accumulation of HLA-DR was not explained by altered cathepsin S activity. Mature, peptide-loaded HLA-DR molecules were retained within cells, as assessed by the proportion of SDS-stable HLA-DR dimers. A block in egress was implicated, as endocytosis of surface HLA-DR was not increased. Immunofluorescence microscopy corroborated the intracellular retention of HLA-DR and revealed markedly fewer HLA-DR-positive dendritic projections in infected mature LC. Unexpectedly, light microscopic analyses showed a dramatic loss of the dendrites themselves and immunofluorescence revealed that cytoskeletal elements crucial for the formation and maintenance of dendrites are disrupted in viral Ag-positive cells. Consistent with these dendrite effects, HCMV-infected mature LC exhibit markedly reduced chemotaxis in response to lymphoid chemokines. Thus, HCMV impedes MHC class II molecule trafficking, dendritic projections, and migration of mature LC. These changes likely contribute to the reduced activation of CD4+ T cells by HCMV-infected mature LC.

  16. Evolutionary origins of retroposon lineages of Mhc class II Ab alleles.

    PubMed

    Lu, C C; Ye, Y; She, J X; Bonhomme, F; Wakeland, E K

    1996-01-01

    Major histocompatibility complex (Mhc) class II Ab genes have evolved into three distinct lineages. While lineage 2 alleles differ from lineage 1 alleles by the insertion of a retroposon in intron 2, the basis for the extremely large intron 2 in lineage 3 alleles has heretofore been undetermined. In this report, we demonstrate by nucleotide sequencing that the genomic sequences of prototypic alleles from all three lineages diverge significantly and that lineage 3 is derived from lineage 2 by two insertional events in intron 2. One insert, composed of a member of B1 short interspersed repetitive elements (SINEs), occurs 508 base pairs (bp) 3' of exon 2, and the other, 1141 bp 3' of exon 2 within the retroposon that distinguishes lineage 2 from lineage 1. To assess the evolutionary stability of these lineages and the extent of ancestral polymorphisms of Ab within Mus species, we extended our restriction site polymorphism analysis to include 86 alleles from 120 independently derived H2 haplotypes from 12 separate species and subspecies of Mus. A phylogenetic tree revealing the relationships of these Ab alleles with respect to restriction site polymorphisms, but excluding the retroposon insertions, demonstrated that these lineages have distinctive genomic structures beyond the retroposon polymorphisms. In summary, these mouse Ab genes were produced from successive retroposon insertion events. Lineage 1 and 2 were detected in a variety of Mus species, including Mus caroli, indicating that these lineages diverged more than 2 million years ago. Lineage 3 alleles were found only in the Mus musculus subspecies, suggesting that it diverged from lineage 2 more recently. These results indicate that all three lineages of Ab have persisted through several speciation events in the genus Mus.

  17. Characterization of bovine MHC class II DRB3 diversity in South American Holstein cattle populations.

    PubMed

    Takeshima, S-N; Giovambattista, G; Okimoto, N; Matsumoto, Y; Rogberg-Muñoz, A; Acosta, T J; Onuma, M; Aida, Y

    2015-12-01

    Holstein cattle dominate the global milk production industry because of their outstanding milk production, however, this breed is susceptible to tropical endemic pathogens and suffers from heat stress and thus fewer Holstein populations are raised in tropical areas. The bovine major histocompatibility complex (BoLA)-DRB3 class II gene is used as a marker for disease and immunological traits, and its polymorphism has been studied extensively in Holstein cattle from temperate and cold regions. We studied the genetic diversity of the BoLA-DRB3 gene in South American Holstein populations to determine whether tropical populations have diverged from those bred in temperate and cold regions by selection and/or crossbreeding with local native breeds. We specifically studied Exon 2 of this gene from 855 South American Holstein individuals by a polymerase chain reaction (PCR) sequence-based typing method. We found a high degree of gene diversity at the allelic (Na > 20 and He > 0.87) and molecular (π > 0.080) levels, but a low degree of population structure (FST = 0.009215). A principal components analysis and tree showed that the Bolivian subtropical population had the largest genetic divergence compared with Holsteins bred in temperate or cold regions, and that this population was closely related to Bolivian Creole cattle. Our results suggest that Holstein genetic divergence can be explained by selection and/or gene introgression from local germplasms. This is the first examination of BoLA-DRB3 in Holsteins adapted to tropical environments, and contributes to an ongoing effort to catalog bovine MHC allele frequencies by breed and location.

  18. MHC class II variation in the endangered European mink Mustela lutreola (L. 1761)--consequences for species conservation.

    PubMed

    Becker, L; Nieberg, C; Jahreis, K; Peters, E

    2009-04-01

    The polymorphic major histocompatibility complex (MHC) has gained a specific relevance in pathogen resistance and mate choice. Particularly the antigen-binding site (ABS), encoded by exon 2 of the DRB class II gene, exhibits numerous alleles and extensive sequence variations between alleles. A lack of MHC variability has attributed to instances such as bottleneck effects or relaxed selection pressure and has a certain impact on the long-term viability of the species concerned. As a result of seriously decreased population density during the last century, the current population of the endangered European mink (Mustela lutreola, L. 1761) has suffered from geographic isolation. In this study, we amplified a partial sequence of the MHC class II DRB exon 2 (229 bp), assessed the degree of genetic variation and compared the variability with those of other Mustelidae. As a result, nine alleles were detected in 20 investigated individuals, which differ from each other by four to 25 nucleotide substitutions (two to 11 amino acid substitutions). Whilst an equal ratio for synonymous and non-synonymous substitutions was found inside the ABS, synonymous substitutions were significantly higher than non-synonymous substitutions in the non-ABS region. Results might indicate that no positive selection exists within the ex situ population of M. lutreola, at least in the analysed fragment. In addition, phylogenetic analyses support the trans-species model of evolution.

  19. Molecular characterization of MHC class II in a nonmodel anuran species, the fire-bellied toad Bombina bombina.

    PubMed

    Hauswaldt, J Susanne; Stuckas, H; Pfautsch, S; Tiedemann, R

    2007-06-01

    While the anuran Xenopus comprises one of the best characterized nonmammalian taxa regarding the major histocompatibility complex (MHC), the organization of this gene complex has never been studied in other anurans, and information on amphibian MHC (other than Xenopus) is generally very scarce. Here, we describe the characterization of the first MHC class II B cDNA sequences from a nonmodel anuran species, the European fire-bellied toad (Bombina bombina). We isolated two transcript sequences differing substantially in amino acid composition and length within the beta2 domain. To investigate the variability of the peptide binding region in this species, we sequenced a 158-bp large fragment from wild B. bombina (n = 20) and identified eight distinct alleles. All substitutions but one were nonsynonymous, and many of the highly polymorphic sites corresponded with amino acid positions known to be involved in antigen binding. The level of variation we found in B. bombina was similar compared to that previously found in a comparable sample of a wild urodelan species, Ambystoma tigrinum, and to that found in Xenopus laevis. Based on the cDNA data and the individual's allelic diversity, we conclude that Bombina possesses at least two class II B loci. With our new beta1 primers, we were able to generate sequences in other species of anurans. We provide here a first phylogenetic analysis of this gene in amphibians.

  20. Diversified Anchoring Features the Peptide Presentation of DLA-88*50801: First Structural Insight into Domestic Dog MHC Class I.

    PubMed

    Xiao, Jin; Xiang, Wangzhen; Chai, Yan; Haywood, Joel; Qi, Jianxun; Ba, Limin; Qi, Peng; Wang, Ming; Liu, Jun; Gao, George F

    2016-09-15

    Canines represent a crucial animal model for studying human diseases and organ transplantation, as well as the evolution of domestic animals. MHCs, with a central role in cellular immunity, are commonly used in the study of dog population genetics and genome evolution. However, the molecular basis for the peptide presentation of dog MHC remains largely unknown. In this study, peptide presentation by canine MHC class I DLA-88*50801 was structurally determined, revealing diversified anchoring modes of the binding peptides. Flexible and large pockets composed of both hydrophobic and hydrophilic residues can accommodate pathogen-derived peptides with diverse anchor residues, as confirmed by thermostability measurements. Furthermore, DLA-88*50801 contains an unusual α2 helix with a large coil in the TCR contact region. These results further our understanding of canine T cell immunity through peptide presentation of MHC class I and shed light on the molecular basis for vaccine development for canine infectious diseases, for example, canine distemper virus. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Evolution of Mhc Class i Complex Region with Special Reference to Fragmentary Line Sequences

    NASA Astrophysics Data System (ADS)

    Tateno, Yoshio; Fukami-Kobayashi, Kaoru; Inoko, Hidetoshi

    2008-03-01

    We reviewed the origin and evolution of the two pairs of immune genes, (MHC-B and MHC-C) and (MICA and MICB) in man, chimpanzee and rhesus monkey based mainly on our previous work. Since those genes were well known to have been subject to strong natural selection in evolution, they themselves were not suitable for our study. We thus took another approach to use fragmented and nonfunctional LINEs that had coevolved with the two pairs in the same genomic fragments. Our results showed that MHC-B and MHC-C duplicated about 22 Mry (million years) ago, and MICA and MICB duplicated about 14 Myr ago. Interestingly, rhesus monkey was found not to have either pair but many repeats similar to MHC-B. Therefore, we estimated the divergence time of the monkey, and found that it diverged out from a common ancestor of man and chimpanzee about 30 Myr ago. The divergence time was consistent with the duplication times of the two pairs of immune genes. Based on our results we would predict that orangutan and gorilla also have the two pairs, because the both primate species are considered to have diverged less than 14 Myr ago.

  2. ERAAP shapes the peptidome associated with classical and non-classical MHC class I molecules1

    PubMed Central

    Nagarajan, Niranjana A.; de Verteuil, Danielle A.; Sriranganadane, Dev; Yahyaoui, Wafaa; Thibault, Pierre; Perreault, Claude; Shastri, Nilabh

    2016-01-01

    The peptide repertoire presented by classical as well as non-classical MHC I molecules is altered in the absence of the ER aminopeptidase associated with antigen processing (ERAAP). To characterize the extent of these changes, peptides from cells lacking ERAAP were eluted from the cell surface and analyzed by high-throughput mass spectrometry. We found that the majority of peptides found in WT cells were retained in the absence of ERAAP. In contrast, a subset of “ERAAP-edited” peptides was lost in WT cells, and ERAAP-deficient cells presented an unique “unedited” repertoire. A substantial fraction of MHC-associated peptides from ERAAP-deficient cells contained N-terminal extensions and had a different molecular composition than those from WT cells. We found that the number and immunogenicity of peptides associated with non-classical MHC I was increased in the absence of ERAAP. Conversely, only peptides presented by classical MHC I were immunogenic in ERAAP-sufficient cells. Finally, MHC I peptides were also derived from different intracellular sources in ERAAP-deficient cells. PMID:27371725

  3. Human cytomegalovirus decreases constitutive transcription of MHC class II genes in mature Langerhans cells by reducing CIITA transcript levels.

    PubMed

    Lee, Andrew W; Wang, Nan; Hornell, Tara M C; Harding, James J; Deshpande, Chetan; Hertel, Laura; Lacaille, Vashti; Pashine, Achal; Macaubas, Claudia; Mocarski, Edward S; Mellins, Elizabeth D

    2011-05-01

    Human cytomegalovirus (HCMV) productively infects CD34(+) progenitor-derived, mature Langerhans-type dendritic cells (matLC) and reduces surface expression of MHC class II complexes (MHC II) by increasing intracellular retention of these molecules. To determine whether HCMV also inhibits MHC II expression by other mechanisms, we assessed mRNA levels of the class II transcriptional regulator, CIITA, and several of its target genes in infected matLC. Levels of CIITA, HLA-DRA (DRA) and DRB transcripts, and new DR protein synthesis were compared in mock-infected and HCMV-infected cells by quantitative PCR and pulse-chase immunoprecipitation analyses, respectively. CIITA mRNA levels were significantly lower in HCMV-infected matLC as compared to mock-infected cells. When assessed in the presence of Actinomycin D, the stability of CIITA transcripts was not diminished by HCMV. Analysis of promoter-specific CIITA isoforms revealed that types I, III and IV all were decreased by HCMV, a result that differs from changes after incubation of these cells with lipopolysaccharide (LPS). Exposure to UV-inactivated virus failed to reduce CIITA mRNA levels, implicating de novo viral gene expression in this effect. HCMV-infected matLC also expressed lower levels of DR transcripts and reduced DR protein synthesis rates compared to mock-infected matLC. In summary, we demonstrate that HCMV infection of a human dendritic cell subset inhibits constitutive CIITA expression, most likely at the transcriptional level, resulting in reduced MHC II biosynthesis. We suggest this represents a new mechanism of modulation of mature LC by HCMV.

  4. Human cytomegalovirus decreases constitutive transcription of MHC class II genes in mature Langerhans cells by reducing CIITA transcript levels

    PubMed Central

    Lee, Andrew W.; Wang, Nan; Hornell, Tara M.C.; Harding, James J.; Deshpande, Chetan; Hertel, Laura; Lacaille, Vashti; Pashine, Achal; Macaubas, Claudia; Mocarski, Edward S.; Mellins, Elizabeth D.

    2011-01-01

    Human cytomegalovirus (HCMV) productively infects CD34+ progenitor-derived, mature Langerhans-type dendritic cells (matLC) and reduces surface expression of MHC class II complexes (MHC II) by increasing intracellular retention of these molecules. To determine whether HCMV also inhibits MHC II expression by other mechanisms, we assessed mRNA levels of the class II transcriptional regulator, CIITA, and several of its target genes in infected matLC. Levels of CIITA, HLA-DRA (DRA) and DRB transcripts, and new DR protein synthesis were compared in mock-infected and HCMV-infected cells by quantitative PCR and pulse-chase immunoprecipitation analyses, respectively. CIITA mRNA levels were significantly lower in HCMV-infected matLC as compared to mock-infected cells. When assessed in the presence of Actinomycin D, the stability of CIITA transcripts was not diminished by HCMV. Analysis of promoter-specific CIITA isoforms revealed that types I, III and IV all were decreased by HCMV, a result that differs from changes after incubation of these cells with lipopolysaccharide (LPS). Exposure to UV-inactivated virus failed to reduce CIITA mRNA levels, implicating de novo viral gene expression in this effect. HCMV-infected matLC also expressed lower levels of DR transcripts and reduced DR protein synthesis rates compared to mock-infected matLC. In summary, we demonstrate that HCMV infection of a human dendritic cell subset inhibits constitutive CIITA expression, most likely at the transcriptional level, resulting in reduced MHC II biosynthesis. We suggest this represents a new mechanism of modulation of mature LC by HCMV. PMID:21458073

  5. Repression of MHC class I transcription by HPV16E7 through interaction with a putative RXR{beta} motif and NF-{kappa}B cytoplasmic sequestration

    SciTech Connect

    Li, Hui; Zhan, TaiLan; Li, Chang; Liu, Mugen; Wang, Qing K.

    2009-10-16

    Down-regulation of transcription of the MHC class I genes in HPV16 tumorigenic cells is partly due to HPV16E7 associated with the MHC class I promoter and repressed chromatin activation. In this study, we further demonstrated that HPV16E7 is physically associated with a putative RXR{beta} binding motif (GGTCA) of the proximal promoter of the MHC class I genes by using reporter transcriptional assays and chromatin immunoprecipitation assays. Our data also provide evidence that HPV16E7 inhibits TNF-{alpha}-induced up-regulation of MHC class I transcription by impaired nuclear translocation of NF-{kappa}B. More importantly, CaSki tumor cells treated with TSA and transfected with the constitutively active mutant form of IKK-{alpha} (which can activate NF-{kappa}B directly) showed a maximal level of up-regulation of MHC-I expression. Taken together, our results suggest that HPV16E7 may employ two independent mechanisms to ensure that either the constitutive or inducible transcription of MHC class I genes is down-regulated.

  6. Major histocompatibility complex class II (MHC II) expression during the development of human fetal cerebral occipital lobe, cerebellum, and hematopoietic organs.

    PubMed

    Wierzba-Bobrowicz, T; Kosno-Kruszewska, E; Gwiazda, E; Lechowicz, W

    2000-01-01

    In adults, under physiological conditions proteins of the major histocompatibility complex, class II (MHC II) molecules are synthesized and then presented on the surface of the cells known under a common name as antigen presenting cells (APCs). Dendritic cells (DCs), microglia, macrophages, ameboid microglia and lymphocytes B are qualified as APCs. The aim of present study was to evaluate the expression of MHC II molecules in the central nervous system (CNS) and hematopoietic organs during the fetal development. Observations were made on the cerebral occipital lobe, cerebellum, thymus, spleen and liver of 30 normal human fetuses, between 11 and 22 week of gestation (GW). Histological, histochemical and immunohistochemical techniques were used to identify cells with expression of MHC II molecules. In the brain, MHC II molecules were detected on macrophages/ameboid microglia in meninges, choroid plexus and single cells of ramified microglia in deeper layers of the cortex and white matter. In the other organs besides macrophages and dendritic cells, MHC II molecules were also immunopositive in thymic epithelial cells, and in the spleen and liver also in other cells of stroma and lobule. The expression of MHC II molecules on so extensive population of cells, at an early stage of the fetal development, may evidence their significant involvement in histogenesis and morphogenesis. It seems that in adults the complex of MHC II with protein is originated from the foreign antigen. On the contrary, during normal fetal development the complex of MHC II with protein origins most probably from the fetus own structures.

  7. No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing.

    PubMed

    Westbrook, Catherine J; Karl, Julie A; Wiseman, Roger W; Mate, Suzanne; Koroleva, Galina; Garcia, Karla; Sanchez-Lockhart, Mariano; O'Connor, David H; Palacios, Gustavo

    2015-12-01

    Single-molecule real-time (SMRT) sequencing technology with the Pacific Biosciences (PacBio) RS II platform offers the potential to obtain full-length coding regions (∼1100-bp) from MHC class I cDNAs. Despite the relatively high error rate associated with SMRT technology, high quality sequences can be obtained by circular consensus sequencing (CCS) due to the random nature of the error profile. In the present study we first validated the ability of SMRT-CCS to accurately identify class I transcripts in Mauritian-origin cynomolgus macaques (Macaca fascicularis) that have been characterized previously by cloning and Sanger-based sequencing as well as pyrosequencing approaches. We then applied this SMRT-CCS method to characterize 60 novel full-length class I transcript sequences expressed by a cohort of cynomolgus macaques from China. The SMRT-CCS method described here provides a straightforward protocol for characterization of unfragmented single-molecule cDNA transcripts that will potentially revolutionize MHC class I allele discovery in nonhuman primates and other species. Published by Elsevier Inc.

  8. Substrate-induced protein stabilization reveals a predominant contribution from mature protein to peptides presented on MHC class I

    PubMed Central

    Colbert, Jeff D.; Farfán-Arribas, Diego J.; Rock, Kenneth L.

    2013-01-01

    The origin of the MHC class I-presented peptides are thought to be primarily from newly synthesized but defective proteins, termed DRiPs. Most of the data supporting this concept come from studies where inhibitors of protein synthesis were found to rapidly block antigen presentation even when cells contained a pool of mature protein. However, these data only indirectly address the origin of presented peptides and in most studies the contribution of mature functional protein to the class I peptide pool has not been directly quantified. In this report we address the efficiency and contribution of mature protein by using a tetracycline-inducible system to express antigen that is conditionally stabilized upon ligand binding. This system circumvents the use of general inhibitors of protein synthesis to control antigen expression. Moreover, by controlling antigen stabilization, we could investigate whether the degradation of mature antigen contributed to antigen presentation at early and/or late time points. We show that mature protein is the major contributor of peptides presented on class I for two distinct antigenic constructs. Furthermore our data show that the protein synthesis inhibitors used previously to test the contribution of defective proteins actually block antigen presentation in ways that are independent from blocking antigen synthesis. These data suggest that for the constructs we have analyzed, mature functional protein rather than DRiPs are the predominant source of MHC class I presented-peptides PMID:24174619

  9. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours

    PubMed Central

    Seo, Hyungseok; Jeon, Insu; Kim, Byung-Seok; Park, Myunghwan; Bae, Eun-Ah; Song, Boyeong; Koh, Choong-Hyun; Shin, Kwang-Soo; Kim, Il-Kyu; Choi, Kiyoung; Oh, Taegwon; Min, Jiyoun; Min, Byung Soh; Han, Yoon Dae; Kang, Suk-Jo; Shin, Sang Joon; Chung, Yeonseok; Kang, Chang-Yuil

    2017-01-01

    During cancer immunoediting, loss of major histocompatibility complex class I (MHC-I) in neoplasm contributes to the evasion of tumours from host immune system. Recent studies have demonstrated that most natural killer (NK) cells that are found in advanced cancers are defective, releasing the malignant MHC-I-deficient tumours from NK-cell-dependent immune control. Here, we show that a natural killer T (NKT)-cell-ligand-loaded tumour-antigen expressing antigen-presenting cell (APC)-based vaccine effectively eradicates these advanced tumours. During this process, we find that the co-expression of Tim-3 and PD-1 marks functionally exhausted NK cells in advanced tumours and that MHC-I downregulation in tumours is closely associated with the induction of NK-cell exhaustion in both tumour-bearing mice and cancer patients. Furthermore, the recovery of NK-cell function by IL-21 is critical for the anti-tumour effects of the vaccine against advanced tumours. These results reveal the process involved in the induction of NK-cell dysfunction in advanced cancers and provide a guidance for the development of strategies for cancer immunotherapy. PMID:28585539

  10. Quantum chemical analysis explains hemagglutinin peptide-MHC Class II molecule HLA-DRbeta1*0101 interactions.

    PubMed

    Cárdenas, Constanza; Villaveces, José Luis; Bohórquez, Hugo; Llanos, Eugenio; Suárez, Carlos; Obregón, Mateo; Patarroyo, Manuel Elkin

    2004-10-29

    We present a new method to explore interactions between peptides and major histocompatibility complex (MHC) molecules using the resultant vector of the three principal multipole terms of the electrostatic field expansion. Being that molecular interactions are driven by electrostatic interactions, we applied quantum chemistry methods to better understand variations in the electrostatic field of the MHC Class II HLA-DRbeta1*0101-HA complex. Multipole terms were studied, finding strong alterations of the field in Pocket 1 of this MHC molecule, and weak variations in other pockets, with Pocket 1>Pocket 4>Pocket 9 approximately Pocket 7>Pocket 6. Variations produced by "ideal" amino acids and by other occupying amino acids were compared. Two types of interactions were found in all pockets: a strong unspecific one (global interaction) and a weak specific interaction (differential interaction). Interactions in Pocket 1, the dominant pocket for this allele, are driven mainly by the quadrupole term, confirming the idea that aromatic rings are important in these interactions. Multipolar analysis is in agreement with experimental results, suggesting quantum chemistry methods as an adequate methodology to understand these interactions.

  11. Genetic variation of the major histocompatibility complex (MHC class II B gene) in the threatened Hume's pheasant, Syrmaticus humiae.

    PubMed

    Chen, Weicai; Bei, Yongjian; Li, Hanhua

    2015-01-01

    Major histocompatibility complex (MHC) genes are the most polymorphic genes in vertebrates and encode molecules that play a crucial role in pathogen resistance. As a result of their diversity, they have received much attention in the fields of evolutionary and conservation biology. Here, we described the genetic variation of MHC class II B (MHCIIB) exon 2 in a wild population of Hume's pheasant (Syrmaticus humiae), which has suffered a dramatic decline in population over the last three decades across its ranges in the face of heavy exploitation and habitat loss. Twenty-four distinct alleles were found in 73 S. humiae specimens. We found seven shared alleles among four geographical groups as well as six rare MHCIIB alleles. Most individuals displayed between one to five alleles, suggesting that there are at least three MHCIIB loci of the Hume's pheasant. The dN ⁄ dS ratio at putative antigen-binding sites (ABS) was significantly greater than one, indicating balancing selection is acting on MHCIIB exon 2. Additionally, recombination and gene conversion contributed to generating MHCIIB diversity in the Hume's pheasant. One to three recombination events and seventy-five significant gene conversion events were observed within the Hume's pheasant MHCIIB loci. The phylogenetic tree and network analysis revealed that the Hume's pheasant alleles do not cluster together, but are scattered through the tree or network indicating a trans-species evolutionary mode. These findings revealed the evolution of the Hume's pheasant MHC after suffering extreme habitat fragmentation.

  12. Exploring the unbinding of Leishmania (L.) amazonensis CPB derived-epitopes from H2 MHC class I proteins.

    PubMed

    Brandt, Artur M L; Batista, Paulo Ricardo; Souza-Silva, Franklin; Alves, Carlos Roberto; Caffarena, Ernesto Raul

    2016-04-01

    New strategies to control Leishmania disease demand an extensive knowledge about several aspects of infection including the understanding of its molecular events. In murine models, cysteine proteinase B from Leishmania amazonensis promotes regulation of immune response, and fragments from its C-terminus extension (cyspep) can play a decisive role in the host-parasite interaction. The interaction between cyspep-derived peptides and major histocompatibility complex (MHC) proteins is a crucial factor in Leishmania infections. Seven cyspep-derived peptides, previously identified as capable of interacting with H-2 (murine) MHC class I proteins, were studied in this work. We established a protocol to simulate the unbinding of these peptides from the cleft of H-2 receptors. From the simulations, we estimated the corresponding free energy of dissociation (ΔGd ) and described the molecular events that occur during the exit of peptides from the cleft. To test the reliability of this method, we first applied it to a calibration set of four crystallographic MHC/peptide complexes. Next, we explored the unbinding of the seven complexes mentioned above. Results were consistent with ΔGd values obtained from surface plasmon resonance (SPR) experiments. We also identified some of the primary interactions between peptides and H-2 receptors, and we detected three regions of influence for the interaction. This pattern was systematically observed for the peptides and helped determine a minimum distance for the real interaction between peptides and H-2 proteins occurring at ∼ 25 Å. © 2016 Wiley Periodicals, Inc.

  13. Structural Basis for the Presentation of Tumor-associated MHC Class II-restricted Phosphopeptides to CD4+ T Cells

    PubMed Central

    Li, Yili; Depontieu, Florence R.; Sidney, John; Salay, Theresa M.; Engelhard, Victor H.; Hunt, Donald F.; Sette, Alessandro; Topalian, Suzanne L.; Mariuzza, Roy A.

    2010-01-01

    Dysregulated protein phosphorylation is a hallmark of malignant transformation. Transformation can generate major histocompatibility complex (MHC)-bound phosphopeptides that are differentially displayed on tumor cells for specific recognition by T cells. To understand how phosphorylation alters the antigenic identity of self peptides and how MHC class II molecules present phosphopeptides for CD4+ T cell recognition, we determined the crystal structure of a phosphopeptide derived from melanoma antigen recognized by T cells-1 (pMART-1), selectively expressed by human melanomas, in complex with HLA-DR1. The structure revealed that the phosphate moiety attached to the serine residue at position P5 of pMART-1 is available for direct interactions with T cell receptor (TCR), and that the peptide N-terminus adopts an unusual conformation orienting it toward TCR. This structure, combined with measurements of peptide affinity for HLA-DR1 and of peptide–MHC recognition by pMART-1-specific T cells, suggests that TCR recognition is focused on the N-terminal portion of pMART-1. This recognition mode appears to be distinct from that of foreign antigen complexes but is remarkably reminiscent of the way autoreactive TCRs engage self or altered self peptides, consistent with the tolerogenic nature of tumor–host immune interactions. PMID:20417641

  14. Structural Basis for the Presentation of Tumor-Associated MHC Class II-Restricted Phosphopeptides to CD4+ T Cells

    SciTech Connect

    Li, Y.; Depontieu, F; Sidney, J; Salay, T; Engelhard, V; Hunt, D; Sette, A; Topalian, S; Mariuzza, R

    2010-01-01

    Dysregulated protein phosphorylation is a hallmark of malignant transformation. Transformation can generate major histocompatibility complex (MHC)-bound phosphopeptides that are differentially displayed on tumor cells for specific recognition by T cells. To understand how phosphorylation alters the antigenic identity of self-peptides and how MHC class II molecules present phosphopeptides for CD4{sup +} T-cell recognition, we determined the crystal structure of a phosphopeptide derived from melanoma antigen recognized by T cells-1 (pMART-1), selectively expressed by human melanomas, in complex with HLA-DR1. The structure revealed that the phosphate moiety attached to the serine residue at position P5 of pMART-1 is available for direct interactions with T-cell receptor (TCR) and that the peptide N-terminus adopts an unusual conformation orienting it toward TCR. This structure, combined with measurements of peptide affinity for HLA-DR1 and of peptide-MHC recognition by pMART-1-specific T cells, suggests that TCR recognition is focused on the N-terminal portion of pMART-1. This recognition mode appears to be distinct from that of foreign antigen complexes but is remarkably reminiscent of the way autoreactive TCRs engage self- or altered self-peptides, consistent with the tolerogenic nature of tumor-host immune interactions.

  15. Conformational lability in the class II MHC 310 helix and adjacent extended strand dictate HLA-DM susceptibility and peptide exchange

    PubMed Central

    Painter, Corrie A.; Negroni, Maria P.; Kellersberger, Katherine A.; Zavala-Ruiz, Zarixia; Evans, James E.; Stern, Lawrence J.

    2011-01-01

    HLA-DM is required for efficient peptide exchange on class II MHC molecules, but its mechanism of action is controversial. We trapped an intermediate state of class II MHC HLA-DR1 by substitution of αF54, resulting in a protein with increased HLA-DM binding affinity, weakened MHC-peptide hydrogen bonding as measured by hydrogen-deuterium exchange mass spectrometry, and increased susceptibility to DM-mediated peptide exchange. Structural analysis revealed a set of concerted conformational alterations at the N-terminal end of the peptide-binding site. These results suggest that interaction with HLA-DM is driven by a conformational change of the MHC II protein in the region of the α-subunit 310 helix and adjacent extended strand region, and provide a model for the mechanism of DM-mediated peptide exchange. PMID:22084083

  16. Conformational lability in the class II MHC 310 helix and adjacent extended strand dictate HLA-DM susceptibility and peptide exchange.

    PubMed

    Painter, Corrie A; Negroni, Maria P; Kellersberger, Katherine A; Zavala-Ruiz, Zarixia; Evans, James E; Stern, Lawrence J

    2011-11-29

    HLA-DM is required for efficient peptide exchange on class II MHC molecules, but its mechanism of action is controversial. We trapped an intermediate state of class II MHC HLA-DR1 by substitution of αF54, resulting in a protein with increased HLA-DM binding affinity, weakened MHC-peptide hydrogen bonding as measured by hydrogen-deuterium exchange mass spectrometry, and increased susceptibility to DM-mediated peptide exchange. Structural analysis revealed a set of concerted conformational alterations at the N-terminal end of the peptide-binding site. These results suggest that interaction with HLA-DM is driven by a conformational change of the MHC II protein in the region of the α-subunit 3(10) helix and adjacent extended strand region, and provide a model for the mechanism of DM-mediated peptide exchange.

  17. Non-neutral evolution and reciprocal monophyly of two expressed Mhc class II B genes in Leach's storm-petrel.

    PubMed

    Dearborn, Donald C; Gager, Andrea B; Gilmour, Morgan E; McArthur, Andrew G; Hinerfeld, Douglas A; Mauck, Robert A

    2015-02-01

    The major histocompatibility complex (Mhc) is subject to pathogen-mediated balancing selection and can link natural selection with mate choice. We characterized two Mhc class II B loci in Leach's storm-petrel, Oceanodroma leucorhoa, focusing on exon 2 which encodes the portion of the protein that binds pathogen peptides. We amplified and sequenced exon 2 with locus-specific nested PCR and Illumina MiSeq using individually barcoded primers. Repeat genotyping of 78 single-locus genotypes produced identical results in 77 cases (98.7%). Sequencing of messenger RNA (mRNA) from three birds confirmed expression of both loci, consistent with the observed absence of stop codons or frameshifts in all alleles. In 48 birds, we found 9 and 12 alleles at the two loci, respectively, and all 21 alleles translated to unique amino acid sequences. Unlike many studies of duplicated Mhc genes, alleles of the two loci clustered into monophyletic groups. Consistent with this phylogenetic result, interlocus gene conversion appears to have affected only two short fragments of the exon. As predicted under a paradigm of pathogen-mediated selection, comparison of synonymous and non-synonymous substitution rates found evidence of a history of positive selection at putative peptide binding sites. Overall, the results suggest that the gene duplication event leading to these two loci is not recent and that point mutations and positive selection on the peptide binding sites may be the predominant forces acting on these genes. Characterization of these loci sets the stage for population-level work on the evolutionary ecology of Mhc in this species.

  18. Isolation and characterization of a MHC class II DRB locus in the European water vole (Arvicola terrestris).

    PubMed

    Oliver, Matthew K; Piertney, Stuart B

    2006-06-01

    In so-called model species, such as human and mouse, genes of the major histocompatibility complex (MHC) are characterized by extremely high levels of polymorphism, and it is considered that such diversity is maintained by balancing selection. ;There is now a recognized need to expand studies into nonmodel species to examine whether high MHC diversity is mirrored in natural populations, and to determine the ecological, ethological, and evolutionary processes that underpin balancing selection. To address such issues, a necessary prerequisite is the ability to characterize diversity at a single, expressed, polymorphic MHC locus on which selection may be acting. Here, we provide the first description of allelic diversity at exon 2 of an MHC class II DRB locus in the European water vole (Arvicola terrestris), characterize variation across four natural populations, and test whether the patterns of variation are consistent with the effects of balancing selection. Using single-strand conformation polymorphism analysis and subsequent DNA sequencing of gel excisions, five DRB alleles were resolved, each with a unique amino acid sequence, among 100 individuals from four geographically distinct populations. Reverse transcription polymerase chain reaction confirmed that the alleles were products from an expressed locus. Intra-allelic amino acid differences were high (10.5-33.3%), and the nonsynonymous substitution rate exceeded the synonymous substitution rate for the functional peptide-binding region (d (N):d (S)=3.91 and P<0.005). Phylogenetic comparison of resolved alleles with closely related homologues indicated that each allele represented a unique lineage preserved across speciation events. These results indicate that balancing selection has maintained diversity of DRB allelic lineages and amino acid function over evolutionary time scales, but may be less effective at preserving alleles in contemporary populations where stochastic microevolutionary processes may

  19. The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    PubMed Central

    Zuo, Jianmin; Currin, Andrew; Griffin, Bryan D.; Shannon-Lowe, Claire; Thomas, Wendy A.; Ressing, Maaike E.; Wiertz, Emmanuel J. H. J.; Rowe, Martin

    2009-01-01

    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 γ1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV γ2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed. PMID:19119421

  20. Productive association between MHC class I and tapasin requires the tapasin transmembrane/cytosolic region and the tapasin C-terminal Ig-like domain

    PubMed Central

    Simone, Laura C.; Georgesen, Corey J.; Simone, Peter D.; Wang, Xiaojian; Solheim, Joyce C.

    2011-01-01

    The current model of antigen assembly with major histocompatibility complex (MHC) class I molecules posits that interactions between the tapasin N-terminal immunoglobulin (Ig)-like domain and the MHC class I peptide-binding groove permit tapasin to regulate antigen selection. Much less is known regarding interactions that might involve the tapasin C-terminal Ig-like domain. Additionally, the tapasin transmembrane/cytoplasmic region enables tapasin to bridge the MHC class I molecule to the transporter associated with antigen processing (TAP). In this investigation, we made use of two tapasin mutants to determine the relative contribution of the tapasin C-terminal Ig-like domain and the tapasin transmembrane/cytoplasmic region to the assembly of MHC class I molecules. Deletion of a loop within the tapasin C-terminal Ig-like domain (Δ334-342) prevented tapasin association with the MHC class I molecule Kd. Although tapasin Δ334-342 did not increase the efficiency of Kd folding, Kd surface expression was enhanced on cells expressing this mutant relative to tapasin-deficient cells. In contrast to tapasin Δ334-342, a soluble tapasin mutant lacking the transmembrane/cytoplasmic region retained the ability to bind to Kd molecules, but did not facilitate Kd surface expression. Furthermore, when soluble tapasin and tapasin Δ334-342 were co-expressed, soluble tapasin had a dominant negative effect on the folding and surface expression of not only Kd, but also Db and Kb. In addition, our molecular modeling of the MHC class I-tapasin interface revealed novel potential interactions involving tapasin residues 334-342. Together, these findings demonstrate that the tapasin C-terminal and transmembrane/cytoplasmic regions are critical to tapasin's capacity to associate effectively with the MHC class I molecule. PMID:22169163

  1. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I.

    PubMed

    Parkinson, Michael D J; Piper, Siân C; Bright, Nicholas A; Evans, Jennifer L; Boname, Jessica M; Bowers, Katherine; Lehner, Paul J; Luzio, J Paul

    2015-10-01

    The Kaposi's sarcoma-associated herpes virus (KSHV) K3 viral gene product effectively down-regulates cell surface MHC class I. K3 is an E3 ubiquitin ligase that promotes Lys(63)-linked polyubiquitination of MHC class I, providing the signal for clathrin-mediated endocytosis. Endocytosis is followed by sorting into the intralumenal vesicles (ILVs) of multivesicular bodies (MVBs) and eventual delivery to lysosomes. The sorting of MHC class I into MVBs requires many individual proteins of the four endosomal sorting complexes required for transport (ESCRTs). In HeLa cells expressing the KSHV K3 ubiquitin ligase, the effect of RNAi-mediated depletion of individual proteins of the ESCRT-0 and ESCRT-I complexes and three ESCRT-III proteins showed that these are required to down-regulate MHC class I. However, depletion of proteins of the ESCRT-II complex or of the ESCRT-III protein, VPS20 (vacuolar protein sorting 20)/CHMP6 (charged MVB protein 6), failed to prevent the loss of MHC class I from the cell surface. Depletion of histidine domain phosphotyrosine phosphatase (HD-PTP) resulted in an increase in the cell surface concentration of MHC class I in HeLa cells expressing the KSHV K3 ubiquitin ligase. Rescue experiments with wild-type (WT) and mutant HD-PTP supported the conclusion that HD-PTP acts as an alternative to ESCRT-II and VPS20/CHMP6 as a link between the ESCRT-I and those ESCRT-III protein(s) necessary for ILV formation. Thus, the down-regulation of cell surface MHC class I, polyubiquitinated by the KSHV K3 ubiquitin ligase, does not employ the canonical ESCRT pathway, but instead utilizes an alternative pathway in which HD-PTP replaces ESCRT-II and VPS20/CHMP6.

  2. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus.

    PubMed

    Yasukochi, Yoshiki; Kurosaki, Toshifumi; Yoneda, Masaaki; Koike, Hiroko; Satta, Yoko

    2012-11-29

    The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that

  3. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus

    PubMed Central

    2012-01-01

    Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian

  4. Characterization of MHC class IIB for four endangered Australian freshwater fishes obtained from ecologically divergent populations.

    PubMed

    Bracamonte, Seraina E; Smith, Steve; Hammer, Michael; Pavey, Scott A; Sunnucks, Paul; Beheregaray, Luciano B

    2015-10-01

    Genetic diversity is an essential aspect of species viability, and assessments of neutral genetic diversity are regularly implemented in captive breeding and conservation programs. Despite their importance, information from adaptive markers is rarely included in such programs. A promising marker of significance in fitness and adaptive potential is the major histocompatibility complex (MHC), a key component of the adaptive immune system. Populations of Australian freshwater fishes are generally declining in numbers due to human impacts and the introduction of exotic species, a scenario of particular concern for members of the family Percichthyidae, several of which are listed as nationally vulnerable or endangered, and hence subject to management plans, captive breeding, and restoration plans. We used a next-generation sequencing approach to characterize the MHC IIB locus and provide a conservative description of its levels of diversity in four endangered percichthyids: Gadopsis marmoratus, Macquaria australasica, Nannoperca australis, and Nannoperca obscura. Evidence is presented for a duplicated MHC IIB locus, positively selected sites and recombination of MHC alleles. Relatively moderate levels of diversity were detected in the four species, as well as in different ecotypes within each species. Phylogenetic analyses revealed genus specific clustering of alleles and no allele sharing among species. There were also no shared alleles observed between two ecotypes within G. marmoratus and within M. australasica, which might be indicative of ecologically-driven divergence and/or long divergence times. This represents the first characterization and assessment of MHC diversity for Percichthyidae, and also for Australian freshwater fishes in general, providing key genetic resources for a vertebrate group of increasing conservation concern.

  5. Conserved 33-kb haplotype in the MHC class III region regulates chronic arthritis

    PubMed Central

    Yau, Anthony C. Y.; Tuncel, Jonatan; Norin, Ulrika; Houtman, Miranda; Padyukov, Leonid; Holmdahl, Rikard

    2016-01-01

    Genome-wide association studies have revealed many genetic loci associated with complex autoimmune diseases. In rheumatoid arthritis (RA), the MHC gene HLA-DRB1 is the strongest candidate predicting disease development. It has been suggested that other immune-regulating genes in the MHC contribute to the disease risk, but this contribution has been difficult to show because of the strong linkage disequilibrium within the MHC. We isolated genomic regions in the form of congenic fragments in rats to test whether there are additional susceptibility loci in the MHC. By both congenic mapping in inbred strains and SNP typing in wild rats, we identified a conserved, 33-kb large haplotype Ltab-Ncr3 in the MHC-III region, which regulates the onset, severity, and chronicity of arthritis. The Ltab-Ncr3 haplotype consists of five polymorphic immunoregulatory genes: Lta (lymphotoxin-α), Tnf, Ltb (lymphotoxin-β), Lst1 (leukocyte-specific transcript 1), and Ncr3 (natural cytotoxicity-triggering receptor 3). Significant correlation in the expression of the Ltab-Ncr3 genes suggests that interaction of these genes may be important in keeping these genes clustered together as a conserved haplotype. We studied the arthritis association and the spliceo-transcriptome of four different Ltab-Ncr3 haplotypes and showed that higher Ltb and Ncr3 expression, lower Lst1 expression, and the expression of a shorter splice variant of Lst1 correlate with reduced arthritis severity in rats. Interestingly, patients with mild RA also showed higher NCR3 expression and lower LST1 expression than patients with severe RA. These data demonstrate the importance of a conserved haplotype in the regulation of complex diseases such as arthritis. PMID:27303036

  6. In vivo treatment with a MHC class I-restricted blocking peptide can prevent virus-induced autoimmune diabetes.

    PubMed

    von Herrath, M G; Coon, B; Lewicki, H; Mazarguil, H; Gairin, J E; Oldstone, M B

    1998-11-01

    We tested the in vivo potential of a MHC class I-restricted blocking peptide to sufficiently lower an anti-viral CTL response for preventing virus-induced CTL-mediated autoimmune diabetes (insulin-dependent diabetes mellitus (IDDM)) in vivo without affecting systemic viral clearance. By designing and screening several peptides with high binding affinities to MHC class I H-2Db for best efficiency in blocking killing of target cells by lymphocytic choriomeningitis virus (LCMV) and other viral CTL, we identified the peptide for this study. In vitro, it selectively lowered CTL killing restricted to the Db allele, which correlated directly with the affinity of the respective epitopes. Expression of the blocking peptide in the target cell lowered recognition of all Db-restricted LCMV epitopes. In addition, in vitro expansion of LCMV memory CTL was prevented, resulting in decreased IFN-gamma secretion. In vivo, a 2-wk treatment with this peptide lowered the LCMV Db-restricted CTL response by over threefold without affecting viral clearance. However, the CTL reduction by the peptide treatment was sufficient to prevent LCMV-induced IDDM in rat insulin promoter-LCMV-glycoprotein transgenic mice. Following LCMV infection, these mice develop IDDM, which depends on Db-restricted anti-self (viral) CTL. Precursor numbers of splenic LCMV-CTL in peptide-treated mice were reduced, but their cytokine profile was not altered, indicating that the peptide did not induce regulatory cells. Further, non-LCMV-CTL recognizing the blocking peptide secreted IFN-gamma and did not protect from IDDM. This study demonstrates that in vivo treatment with a MHC class I blocking peptide can prevent autoimmune disease by directly affecting expansion of autoreactive CTL.

  7. Codominance of TLR2-dependent and TLR2-independent modulation of MHC class II in Mycobacterium tuberculosis infection in vivo.

    PubMed

    Kincaid, Eleanor Z; Wolf, Andrea J; Desvignes, Ludovic; Mahapatra, Sebabrata; Crick, Dean C; Brennan, Patrick J; Pavelka, Martin S; Ernst, Joel D

    2007-09-01

    Mycobacterium tuberculosis is an exceptionally successful human pathogen. A major component of this success is the ability of the bacteria to infect immunocompetent individuals and to evade eradication by an adaptive immune response that includes production of the macrophage-activating cytokine, IFN-gamma. Although IFN-gamma is essential for arrest of progressive tuberculosis, it is insufficient for efficacious macrophage killing of the bacteria, which may be due to the ability of M. tuberculosis to inhibit selected macrophage responses to IFN-gamma. In vitro studies have determined that mycobacterial lipoproteins and other components of the M. tuberculosis cell envelope, acting as agonists for TLR2, inhibit IFN-gamma induction of MHC class II. In addition, M. tuberculosis peptidoglycan and IL-6 secreted by infected macrophages inhibit IFN-gamma induction of MHC class II in a TLR2-independent manner. To determine whether TLR2-dependent inhibition of macrophage responses to IFN-gamma is quantitatively dominant over the TLR2-independent mechanisms in vivo, we prepared mixed bone marrow chimeric mice in which the hemopoietic compartment was reconstituted with a mixture of TLR(+/+) and TLR2(-/-) cells. When the chimeric mice were infected with M. tuberculosis, the expression of MHC class II on TLR2(+/+) and TLR2(-/-) macrophages from the lungs of individual infected chimeric mice was indistinguishable. These results indicate that TLR2-dependent and -independent mechanisms of inhibition of responses to IFN-gamma are equivalent in vivo, and that M. tuberculosis uses multiple pathways to abrogate the action of an important effector of adaptive immunity. This work was supported by National Institutes of Health Grants AI 065357-AI 020010.

  8. The expression pattern of classical MHC class I molecules in the development of mouse central nervous system.

    PubMed

    Liu, Jiane; Shen, Yuqing; Li, Mingli; Shi, Qian; Zhang, Aifeng; Miao, Fengqin; Liu, Junhua; Wu, Xiaojing; He, Youji; Zhang, Jianqiong

    2013-02-01

    Classical major histocompatibility complex (MHC) class I, first identified in the immune system, is also expressed in the developing and adult central nervous system (CNS). Although the MHC class I molecules have been found to be expressed in the CNS of different species, a necessary step to elucidate the temporal and spatial expression patterns of MHC class I molecules in the brain development has never been taken. Frozen sections were made from the brains of embryonic and postnatal C57BL/6 J mice, and the expression of H-2D(b) mRNA was examined by in situ hybridization. Immunofluorescence was also performed to define the cell types that express H2-D(b) in P15 mice. At E10.5, the earliest stage we examined, H2-D(b) was expressed in neuroepithelium of the brain vesicles. From E12.5 to P0, H2-D(b) expression was mainly located at cerebral cortex, neuroepithelium of the lateral ventricle, neuroepithelium of aquaeductus and developing cerebellum. From P4 to adult, H2-D(b) mRNA was detected at olfactory bulb, hippocampus, cerebellum and some nerve nuclei. The major cell types expressing H-2D(b) in P15 hippocampus, cerebral cortex and olfactory bulb were neuron. H2-K(b) signal paralleled that of H2-D(b) and the expression levels of the two molecules were comparable throughout the brain. The investigation of the expression pattern of H-2D(b) at both embryonic and postnatal stages is important for further understanding the physiological and pathological roles of H2-D(b) in the developing CNS.

  9. Brucella abortus down-regulates MHC class II by the IL-6-dependent inhibition of CIITA through the downmodulation of IFN regulatory factor-1 (IRF-1).

    PubMed

    Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Fernández, Pablo; Pozner, Roberto G; Lang, Roland; Balboa, Luciana; Giambartolomei, Guillermo H; Barrionuevo, Paula

    2017-03-01

    Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4(+) T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection.

  10. The major histocompatibility complex in monotremes: an analysis of the evolution of Mhc class I genes across all three mammalian subclasses.

    PubMed

    Miska, Katarzyna B; Harrison, Gavan A; Hellman, Lars; Miller, Robert D

    2002-09-01

    We report the isolation and characterization of cDNA clones of expressed, functional major histocompatibility complex class-I ( Mhc-I) genes from two species of monotremes: the duck-billed platypus and the short-beaked echidna. The cDNA clones were isolated from libraries constructed from spleen RNA, clearly establishing their expression in at least this one peripheral lymphoid organ. From the presence of conserved amino acid residues, it appears the expressed sequences encode molecules that likely function as classical Mhc-I. These clones were isolated using monotreme Mhc-I processed pseudogenes as probes. These processed pseudogenes were isolated from genomic DNA and, based on their structure, are likely independently derived in the platypus and echidna. When all the monotreme sequences were included in phylogenetic analyses, we found no apparent orthologous relationships between the platypus and echidna Mhc-I. Analyses that included a large number of Mhc-I sequences from other taxa support a separate monotreme Mhc-I clade, basal to a therian Mhc-I clade that is comprised of sequences from marsupial and placental mammals. The phylogenies also support the hypothesis that Mhc-I genes of placental mammals, marsupials, and monotremes are derived from three separate lineages of Mhc-I genes, best explained by two rounds of duplications and deletions. The first round would have occurred prior to the divergence of monotremes and therians, and the second prior to the divergence of marsupials and placental mammals. The sequences described here represent the first reported functional monotreme Mhc-I, as well as the first processed pseudogenes of any type from monotremes.

  11. Characterization of the MHC class II region in cattle. The number of DQ genes varies between haplotypes.

    PubMed

    Andersson, L; Rask, L

    1988-01-01

    The organization of the major histocompatibility complex (MHC) class II region in cattle was investigated by Southern blot analysis using human probes corresponding to DO, DP, DQ, and DR genes. Exon-specific probes were also employed to facilitate the assessment of the number of different bovine class II genes. The results indicated the presence of single DO beta and DR alpha genes, at least three DR beta genes, while the number of DQ genes was found to vary between MHC haplotypes. Four DQ haplotypes, DQ alpha 1 beta 1 to DQ alpha 2 beta 4, possessed a single DQ alpha and a single DQ beta gene whereas both these genes were duplicated in eight other haplotypes, DQ alpha 3 beta 5 to DQ alpha 9 beta 12. No firm evidence for the presence of bovine DP genes was obtained. The same human probes were also used to investigate the genetic polymorphism of bovine class II genes. DQ alpha, DQ beta, DR alpha, DR beta, and DO beta restriction fragment length polymorphisms (RFLPs) were resolved and in particular the DQ restriction fragment patterns were highly polymorphic. Comparison of the present result with the current knowledge of the class II region in other mammalian species suggested that the DO, DP, DQ, DR, and DZ subdivision of the class II region was established already in the ancestor of mammals. The DP genes appear to be the least conserved class II genes among mammalian species and may have been lost in cattle. The degree of polymorphism of different class II genes, as revealed by RFLP analyses, shows striking similarities between species.

  12. MHC class I antigens and tumour-infiltrating leucocytes in laryngeal cancer: long-term follow-up.

    PubMed Central

    Esteban, F.; Redondo, M.; Delgado, M.; Garrido, F.; Ruiz-Cabello, F.

    1996-01-01

    Alteration in MHC class I expression may be used by cancer cells to avoid immune destruction. Much experimental evidence supports this idea, although survival studies are very scarce. To investigate whether the presence or absence of HLA-A, -B and -C antigens in laryngeal carcinoma influences survival, a series of 60 primary laryngeal tumours treated surgically and normal tissues were evaluated in frozen sections for the expression of MHC class I antigens and tumour-infiltrating leucocytes (CD3, CD4, CD8, CD11b, CD1, CD20 and CD16), using monoclonal antibodies and the APAAP, technique. Long-term follow-up from the patients is available, ranging from 6 to 10 years. Thirteen tumours presented total HLA-ABC loss, five selective losses of HLA-A antigens and one absence of HLA-B antigens. Total losses were statistically associated with several clinical and pathological parameters, but there were no differences regarding tumour-infiltrating leucocytes. After conducting a prospective study, only T and N staging and scoring according to Glanz's malignancy classification were found to be independently related to patients' outcome. From our data, we conclude that neither complete loss of HLA class I antigens nor tumour-infiltrating leucocytes appear to influence survival in squamous cell carcinoma of the larynx. PMID:8956796

  13. The murine cytomegalovirus immunoevasin gp40 binds MHC class I molecules to retain them in the early secretory pathway.

    PubMed

    Janßen, Linda; Ramnarayan, Venkat Raman; Aboelmagd, Mohamed; Iliopoulou, Maro; Hein, Zeynep; Majoul, Irina; Fritzsche, Susanne; Halenius, Anne; Springer, Sebastian

    2016-01-01

    In the presence of the murine cytomegalovirus (mCMV) gp40 (m152) protein, murine major histocompatibility complex (MHC) class I molecules do not reach the cell surface but are retained in an early compartment of the secretory pathway. We find that gp40 does not impair the folding or high-affinity peptide binding of the class I molecules but binds to them, leading to their retention in the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment (ERGIC) and the cis-Golgi, most likely by retrieval from the cis-Golgi to the ER. We identify a sequence in gp40 that is required for both its own retention in the early secretory pathway and for that of class I molecules.

  14. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II

    PubMed Central

    Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin

    2015-01-01

    ABSTRACT The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8+ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8+ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8+ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4+ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8+ and CD4+ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8+ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8+ T cells specific for

  15. CD4+CD25- T cells transduced to express MHC class I-restricted epitope-specific TCR synthesize Th1 cytokines and exhibit MHC class I-restricted cytolytic effector function in a human melanoma model.

    PubMed

    Chhabra, Arvind; Yang, Lili; Wang, Pin; Comin-Anduix, Begoña; Das, Raja; Chakraborty, Nitya G; Ray, Swagatam; Mehrotra, Shikhar; Yang, Haiguang; Hardee, Cinnamon L; Hollis, Roger; Dorsky, David I; Koya, Richard; Kohn, Donald B; Ribas, Antoni; Economou, James S; Baltimore, David; Mukherji, Bijay

    2008-07-15

    Cytolytic T cell-centric active specific and adoptive immunotherapeutic approaches might benefit from the simultaneous engagement of CD4(+) T cells. Considering the difficulties in simultaneously engaging CD4(+) and CD8(+) T cells in tumor immunotherapy, especially in an Ag-specific manner, redirecting CD4(+) T cells to MHC class I-restricted epitopes through engineered expression of MHC class I-restricted epitope-specific TCRs in CD4(+) T cells has emerged as a strategic consideration. Such TCR-engineered CD4(+) T cells have been shown to be capable of synthesizing cytokines as well as lysing target cells. We have conducted a critical examination of functional characteristics of CD4(+) T cells engineered to express the alpha- and beta-chains of a high functional avidity TCR specific for the melanoma epitope, MART-1(27-35), as a prototypic human tumor Ag system. We found that unpolarized CD4(+)CD25(-) T cells engineered to express the MART-1(27-35) TCR selectively synthesize Th1 cytokines and exhibit a potent Ag-specific lytic granule exocytosis-mediated cytolytic effector function of comparable efficacy to that of CD8(+) CTL. Such TCR engineered CD4(+) T cells, therefore, might be useful in clinical immunotherapy.

  16. CD4+CD25− T cells transduced to express MHC class I-restricted epitope specific TCR synthesize Th1 cytokines and exhibit MHC class I-restricted cytolytic effector function in a human melanoma model

    PubMed Central

    Chhabra, Arvind; Yang, Lili; Wang, Pin; Comin-Anduix, Begoña; Das, Raja; Chakraborty, Nitya G.; Ray, Swagatam; Mehrotra, Shikhar; Yang, Haiguang; Hardee, Cinnamon L.; Hollis, Roger; Dorsky, David I.; Koya, Richard; Kohn, Donald B.; Ribas, Antoni; Economou, James S.; Baltimore, David; Mukherji, Bijay

    2009-01-01

    Cytolytic T cell-centric active specific and adoptive immunotherapeutic approaches might benefit from the simultaneous engagement of CD4+ T cells. Considering the difficulties in simultaneously engaging CD4+ and CD8+ T cells in tumor immunotherapy -- especially in an antigen specific manner -- “redirecting” CD4+ T cells to MHC class I-restricted epitopes through engineered expression of MHC class I-restricted epitope specific T cell receptors (TCR) in CD4+ T cells has emerged as a strategic consideration. Such TCR engineered CD4+ T cells have been shown to be capable of synthesizing cytokines as well as lysing target cells. We have carried out a critical examination of functional characteristics of CD4+ T cells engineered to express the α and β chains of a high functional avidity TCR specific for the melanoma epitope, MART-127–35 (M1), as a prototypic human tumor antigen system. We found that unpolarized CD4+CD25− T cells engineered to express the M1 TCR selectively synthesize Th1 cytokines and exhibit a potent antigen-specific lytic granule exocytosis-mediated cytolytic effector function of comparable efficacy to that of CD8+ CTL. Such TCR engineered CD4+ T cells, therefore, might be useful in clinical immunotherapy. PMID:18606658

  17. Characterization and evolution of MHC class II B genes in Galápagos marine iguanas (Amblyrhynchus cristatus).

    PubMed

    Glaberman, Scott; Moreno, Maria A; Caccone, Adalgisa

    2009-08-01

    Major histocompatibility complex (MHC) class II molecules play a key role in the adaptive immune system of vertebrates. Class II B genes appear to evolve in a very different manner in mammals and birds. Orthology is commonly observed among mammal loci, while genes tend to cluster phylogenetically within bird species. Here we present class II B data from a representative of another major group of amniotes, the squamates (i.e. lizards, snakes, amphisbaenians), with the ultimate goal of placing mammalian and avian MHC evolution into a broader context. In this study, eight class II B cDNA sequences were obtained from the Galápagos marine iguana (Amblyrhynchus cristatus) which were divided into five locus groups, Amcr-DAB1 through -DAB5, based on similarities along most of the coding and noncoding portions of the transcribed gene. All marine iguana sequences were monophyletic with respect to class II genes from other vertebrates indicating that they originated from a common ancestral locus after squamates split from other reptiles. The beta-1 domain, which is involved in antigen binding, exhibited signatures of positive selection as well as interlocus gene conversion in both long and short tracts-a pattern also observed in birds and fish, but not in mammals. On the other hand, the beta-2 domain was divergent between gene groups, which is characteristic of mammals. Based on these results, we preliminarily show that squamate class II B genes have been shaped by a unique blend of evolutionary forces that have been observed in differing degrees in other vertebrates.

  18. Microglial TNF-α-dependent elevation of MHC class I expression on brain endothelium induced by amyloid-beta promotes T cell transendothelial migration.

    PubMed

    Yang, Yi-Ming; Shang, De-Shu; Zhao, Wei-Dong; Fang, Wen-Gang; Chen, Yu-Hua

    2013-11-01

    The blood-brain barrier (BBB) normally bars peripheral T lymphocytes from entering the cerebrum. Interestingly, activated T cells exist as infiltrates in the brains of Alzheimer's disease (AD) patients, but little is known about the mechanisms involved. In this study, we observed significantly higher MHC class I expression in rat brain endothelial cells compared with controls following the induction of experimental AD models. An in vitro BBB model, which was constructed with human brain microvascular endothelial cells, was established to study the mechanisms underlying the transendothelial migration of T cells. Using in vitro studies, we demonstrated that secretion of TNF-α from Aβ1-42-treated BV2 microglia contributes to the elevated expression of MHC class I on the brain microvessel endothelium. Transmigration assays and adhesion assays confirmed that the upregulation of MHC class I molecules was associated with T cell transendothelial migration. MHC class I knock-down in HBMECs significantly attenuated the migratory and adhesive capability of the T cells. Interestingly, a TNF-α neutralizing antibody effectively blocked the transendothelial migration of T cells triggered by treatment with the supernatant from Aβ1-42-treated BV2 microglia. We propose that microglia-derived TNF-α upregulates MHC class I molecule expression on brain endothelial cells, which represents a mechanism of T cell migration into the brain. This study may provide a new insight into the potential pathomechanism of Alzheimer's disease.

  19. Novel mutations within the RFX-B gene and partial rescue of MHC and related genes through exogenous class II transactivator in RFX-B-deficient cells.

    PubMed

    Nagarajan, U M; Peijnenburg, A; Gobin, S J; Boss, J M; van den elsen, P J

    2000-04-01

    MHC class II deficiency or bare lymphocyte syndrome is a severe combined immunodeficiency caused by defects in MHC-specific regulatory factors. Fibroblasts derived from two recently identified bare lymphocyte syndrome patients, EBA and FZA, were found to contain novel mutations in the RFX-B gene. RFX-B encodes a component of the RFX transcription factor that functions in the assembly of multiple transcription factors on MHC class II promoters. Unlike RFX5- and RFXAP-deficient cells, transfection of exogenous class II transactivator (CIITA) into these RFX-B-deficient fibroblasts resulted in the induction of HLA-DR and HLA-DP and, to a lesser extent, HLA-DQ. Similarly, CIITA-mediated induction of MHC class I, beta2-microglobulin, and invariant chain genes was also found in these RFX-B-deficient fibroblasts. Expression of wild-type RFX-B completely reverted the noted deficiencies in these cells. Transfection of CIITA into Ramia cells, a B cell line that does not produce a stable RFX-B mRNA, resulted in induction of an MHC class II reporter, suggesting that CIITA overexpression may partially override the RFX-B defect.

  20. Direct binding of a myasthenia gravis related epitope to MHC class II molecules on living murine antigen-presenting cells.

    PubMed Central

    Mozes, E; Dayan, M; Zisman, E; Brocke, S; Licht, A; Pecht, I

    1989-01-01

    MHC gene products present antigenic epitopes to the antigen receptor on T cells. Nevertheless, direct binding of such epitopes to MHC class II proteins on normal living antigen-presenting cells (APCs) has not yet been demonstrated. We have previously shown a significant difference in the ability of T cells of myasthenia gravis (MG) patients to proliferate in response to the synthetic peptide p195-212 of the human acetylcholine receptor (AChR) alpha-subunit in comparison to healthy controls. The observed proliferative responses correlated significantly with HLA-DR5. Moreover, lymph node cells of various mouse strains that were primed with the T cell epitope, p195-212, were found to proliferate to different extents. To investigate these observations further, we designed an assay for direct binding of p195-212 to MHC class II proteins on the surface of freshly prepared splenic adherent cells. Binding of a biotinylated p195-212 was monitored using phycoerythrin-avidin by flow cytometry. Fifteen to sixty per cent of the cells were labeled following incubation with the biotinylated peptide. Binding was observed only to splenic adherent cells derived from mouse strains of which T cells were capable of proliferating in response to p195-212. The binding specificity, in terms of epitope structure and its site of interaction on the cells, was shown by its inhibition with an excess of the unlabeled peptide or with the relevant monoclonal anti-I-A antibodies. These results constitute the first direct evidence for the specific binding of a T cell epitope to live APC. PMID:2480232

  1. Combining molecular evolution and environmental genomics to unravel adaptive processes of MHC class IIB diversity in European minnows (Phoxinus phoxinus)

    PubMed Central

    Collin, Helene; Burri, Reto; Comtesse, Fabien; Fumagalli, Luca

    2013-01-01

    Abstract Host–pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1′665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host–pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context. Using next-generation sequencing, the present manuscript identifies the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of a cyprinid fish: the European minnow (Phoxinus phoxinus). We highlight that the relative importance of neutral

  2. MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus).

    PubMed

    Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J

    2011-02-01

    In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.

  3. Coevolution of MHC genes (LMP/TAP/class Ia, NKT-class Ib, NKp30-B7H6): lessons from cold-blooded vertebrates.

    PubMed

    Ohta, Yuko; Flajnik, Martin F

    2015-09-01

    Comparative immunology provides the long view of what is conserved across all vertebrate taxa versus what is specific to particular organisms or group of organisms. Regarding the major histocompatibility complex (MHC) and coevolution, three striking cases have been revealed in cold-blooded vertebrates: lineages of class Ia antigen-processing and -presenting genes, evolutionary conservation of NKT-class Ib recognition, and the ancient emergence of the natural cytotoxicity receptor NKp30 and its ligand B7H6. While coevolution of transporter associated with antigen processing (TAP) and class Ia has been documented in endothermic birds and two mammals, lineages of LMP7 are restricted to ectotherms. The unambiguous discovery of natural killer T (NKT) cells in Xenopus demonstrated that NKT cells are not restricted to mammals and are likely to have emerged at the same time in evolution as classical α/β and γ/δ T cells. NK cell receptors evolve at a rapid rate, and orthologues are nearly impossible to identify in different vertebrate classes. By contrast, we have detected NKp30 in all gnathostomes, except in species where it was lost. The recently discovered ligand of NKp30, B7H6, shows strong signs of coevolution with NKp30 throughout evolution, i.e. coincident loss or expansion of both genes in some species. NKp30 also offers an attractive IgSF candidate for the invasion of the RAG transposon, which is believed to have initiated T-cell receptor/immunoglobulin adaptive immunity. Besides reviewing these intriguing features of MHC evolution and coevolution, we offer suggestions for future studies and propose a model for the primordial or proto MHC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Coevolution of MHC genes (LMP/TAP/class Ia; NKT-class Ib; NKp30-B7H6): Lessons from cold-blooded vertebrates

    PubMed Central

    Ohta, Yuko; Flajnik, Martin F.

    2015-01-01

    Summary Comparative immunology provides the long view of what is conserved across all vertebrate taxa versus what is specific to particular organisms or group of organisms. Regarding the major histocompatibility complex (MHC) and coevolution, three striking cases have been revealed in cold-blooded vertebrates: lineages of class Ia antigen-processing and -presenting genes, evolutionary conservation of NKT-class Ib recognition, and the ancient emergence of the natural cytotoxicity receptor NKp30 and its ligand B7H6. While coevolution of transporter associated with antigen processing (TAP) and class Ia has been documented in endothermic birds and two mammals, lineages of LMP7 are restricted to ectotherms. The unambiguous discovery of natural killer T (NKT) cells in Xenopus demonstrated that NKT cells are not restricted to mammals and are likely to have emerged at the same time in evolution as classical α/β and γ/δ T cells. NK cell receptors evolve at a rapid rate, and orthologues are nearly impossible to identify in different vertebrate classes. By contrast, we have detected NKp30 in all gnathostomes, except in species where it was lost. The recently discovered ligand of NKp30, B7H6, shows strong signs of coevolution with NKp30 throughout evolution, i.e. coincident loss or expansion of both genes in some species. NKp30 also offers an attractive IgSF candidate for the invasion of the RAG transposon, which is believed to have initiated T-cell receptor/immunoglobulin adaptive immunity. Besides reviewing these intriguing features of MHC evolution and coevolution, we offer suggestions for future studies and propose a model for the primordial or proto MHC. PMID:26284468

  5. Conserved mycobacterial lipoglycoproteins activate TLR2 but also require glycosylation for MHC