Saka, Toshinori; Nishita, Yoshinori; Masuda, Ryuichi
2018-02-01
Isolated populations of the leopard cat (Prionailurus bengalensis) on Tsushima and Iriomote islands in Japan are classified as subspecies P. b. euptilurus and P. b. iriomotensis, respectively. Because both populations have decreased to roughly 100, an understanding of their genetic diversity is essential for conservation. We genotyped MHC class II DRB exon 2 and MHC-linked microsatellite loci to evaluate the diversity of MHC genes in the Tsushima and Iriomote cat populations. We detected ten and four DRB alleles in these populations, respectively. A phylogenetic analysis showed DRB alleles from both populations to be closely related to those in other felid DRB lineages, indicating trans-species polymorphism. The MHC-linked microsatellites were more polymorphic in the Tsushima than in the Iriomote population. The MHC diversity of both leopard cat populations is much lower than in the domestic cat populations on these islands, probably due to inbreeding associated with founder effects, geographical isolation, or genetic drift. Our results predict low resistance of the two endangered populations to new pathogens introduced to the islands.
Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus)
Loiseau, Claire; Zoorob, Rima; Robert, Alexandre; Chastel, Olivier; Julliard, Romain; Sorci, Gabriele
2011-01-01
Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level. PMID:20943698
An evolutionary approach to major histocompatibility diversity based on allele supertypes.
Naugler, Christopher; Liwski, Robert
2008-01-01
Human leukocyte antigens are traditionally classified by serologic or molecular techniques into a bewildering variety of alleles. It is generally believed that this allelic diversity is maintained by selection pressures for inbreeding avoidance and/or maximal immune system diversity. While the usual antigen-based classification of individual alleles may be most appropriate in the artificial situation of tissue transplantation, we hypothesize that a functional classification based on allele supertypes may represent a more biologically relevant way to view MHC diversity in the contexts of mate choice and disease pathogenesis. Furthermore, immune system diversity could be quantitatively estimated by calculating a Supertype Diversity Index (SDI) which is the number of different MHC supertypes possessed by an individual. This hypothesis generates a number of testable predictions. First, it predicts that a reduced inherited diversity of MHC allele supertypes may predispose to the development of malignancies because of a decreased native ability to present different tumor-associated antigens. Furthermore, specific autoimmune diseases may be associated with the presence or absence of a particular MHC supertype rather than a particular MHC haplotype. In transplant medicine, it is possible that unmatched alleles may trigger a weaker foreign antigen response if they are matched by allele supertype. Finally, there have been several studies documenting dissortative mating in humans for dissimilar MHC alleles. We predict that natural selection should favor maximization of the heterozygosity of allele supertypes instead of the heterozygosity of individual alleles and that the previously observed dissortative mating may actually be an adaptive strategy to maximize allele supertype diversity.
Reciprocal translocation of small numbers of inbred individuals rescues immunogenetic diversity.
Grueber, Catherine E; Sutton, Jolene T; Heber, Sol; Briskie, James V; Jamieson, Ian G; Robertson, Bruce C
2017-05-01
Genetic rescue can reduce inbreeding depression and increase fitness of small populations, even when the donor populations are highly inbred. In a recent experiment involving two inbred island populations of the New Zealand South Island robin, Petroica australis, reciprocal translocations improved microsatellite diversity and individual fitness. While microsatellite loci may reflect patterns of genome-wide diversity, they generally do not indicate the specific genetic regions responsible for increased fitness. We tested the effectiveness of this reciprocal translocation for rescuing diversity of two immunogenetic regions: Toll-like receptor (TLR) and major histocompatibility complex (MHC) genes. We found that the relatively small number of migrants (seven and ten per island) effectively brought the characteristic TLR gene diversity of each source population into the recipient population. However, when migrants transmitted TLR alleles that were already present at high frequency in the recipient population, it was possible for offspring of mixed heritage to have decreased gene diversity compared to recipient population diversity prior to translocation. In contrast to TLRs, we did not observe substantial changes in MHC allelic diversity following translocation, with limited evidence of a decrease in differentiation, perhaps because most MHC alleles were observed at both sites prior to the translocation. Overall, we conclude that small numbers of migrants may successfully restore the diversity of immunogenetic loci with few alleles, but that translocating larger numbers of animals would provide additional opportunity for the genetic rescue of highly polymorphic immunity regions, such as the MHC, even when the source population is inbred. © 2017 John Wiley & Sons Ltd.
Morris, Katrina M.; Kirby, Katherine; Beatty, Julia A.; Barrs, Vanessa R.; Cattley, Sonia; David, Victor; O’Brien, Stephen J.; Menotti-Raymond, Marilyn
2014-01-01
Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and an inexpensive method for studying MHC diversity in large-scale studies. We have developed 6 MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with 5 neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52), whereas the Burmese population has significantly lower MHC diversity (average allelic richness = 6.81; P < 0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species. PMID:24620003
Changes in variation at the MHC class II DQA locus during the final demise of the woolly mammoth
NASA Astrophysics Data System (ADS)
Pečnerová, Patrícia; Díez-Del-Molino, David; Vartanyan, Sergey; Dalén, Love
2016-05-01
According to the nearly-neutral theory of evolution, the relative strengths of selection and drift shift in favour of drift at small population sizes. Numerous studies have analysed the effect of bottlenecks and small population sizes on genetic diversity in the MHC, which plays a central role in pathogen recognition and immune defense and is thus considered a model example for the study of adaptive evolution. However, to understand changes in genetic diversity at loci under selection, it is necessary to compare the genetic diversity of a population before and after the bottleneck. In this study, we analyse three fragments of the MHC DQA gene in woolly mammoth samples radiocarbon dated to before and after a well-documented bottleneck that took place about ten thousand years ago. Our results indicate a decrease in observed heterozygosity and number of alleles, suggesting that genetic drift had an impact on the variation on MHC. Based on coalescent simulations, we found no evidence of balancing selection maintaining MHC diversity during the Holocene. However, strong trans-species polymorphism among mammoths and elephants points to historical effects of balancing selection on the woolly mammoth lineage.
Sallaberry-Pincheira, Nicole; González-Acuña, Daniel; Padilla, Pamela; Dantas, Gisele P M; Luna-Jorquera, Guillermo; Frere, Esteban; Valdés-Velásquez, Armando; Vianna, Juliana A
2016-10-01
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next-generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans-species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long-term survival of the species.
Schut, Elske; Aguilar, Juan Rivero-de; Merino, Santiago; Magrath, Michael J L; Komdeur, Jan; Westerdahl, Helena
2011-08-01
The major histcompatibility complex (MHC) is a vital component of the adaptive immune system in all vertebrates. This study is the first to characterize MHC class I (MHC-I) in blue tits (Cyanistes caeruleus), and we use MHC-I exon 3 sequence data from individuals originating from three locations across Europe: Spain, the Netherlands to Sweden. Our phylogeny of the 17 blue tit MHC-I alleles contains one allele cluster with low nucleotide diversity compared to the remaining more diverse alleles. We found a significant evidence for balancing selection in the peptide-binding region in the diverse allele group only. No separation according to geographic location was found in the phylogeny of alleles. Although the number of MHC-I loci of the blue tit is comparable to that of other passerine species, the nucleotide diversity of MHC-I appears to be much lower than that of other passerine species, including the closely related great tit (Parus major) and the severely inbred Seychelles warbler (Acrocephalus sechellensis). We believe that this initial MHC-I characterization in blue tits provides an important step towards understanding the mechanisms shaping MHC-I diversity in natural populations.
Grogan, Kathleen E; Sauther, Michelle L; Cuozzo, Frank P; Drea, Christine M
2017-10-01
Across species, diversity at the major histocompatibility complex (MHC) is critical to individual disease resistance and, hence, to population health; however, MHC diversity can be reduced in small, fragmented, or isolated populations. Given the need for comparative studies of functional genetic diversity, we investigated whether MHC diversity differs between populations which are open, that is experiencing gene flow, versus populations which are closed, that is isolated from other populations. Using the endangered ring-tailed lemur ( Lemur catta ) as a model, we compared two populations under long-term study: a relatively "open," wild population ( n = 180) derived from Bezà Mahafaly Special Reserve, Madagascar (2003-2013) and a "closed," captive population ( n = 121) derived from the Duke Lemur Center (DLC, 1980-2013) and from the Indianapolis and Cincinnati Zoos (2012). For all animals, we assessed MHC-DRB diversity and, across populations, we compared the number of unique MHC-DRB alleles and their distributions. Wild individuals possessed more MHC-DRB alleles than did captive individuals, and overall, the wild population had more unique MHC-DRB alleles that were more evenly distributed than did the captive population. Despite management efforts to maintain or increase genetic diversity in the DLC population, MHC diversity remained static from 1980 to 2010. Since 2010, however, captive-breeding efforts resulted in the MHC diversity of offspring increasing to a level commensurate with that found in wild individuals. Therefore, loss of genetic diversity in lemurs, owing to small founder populations or reduced gene flow, can be mitigated by managed breeding efforts. Quantifying MHC diversity within individuals and between populations is the necessary first step to identifying potential improvements to captive management and conservation plans.
The nature of selection on the major histocompatibility complex.
Apanius, V; Penn, D; Slev, P R; Ruff, L R; Potts, W K
1997-01-01
Only natural selection can account for the extreme genetic diversity of genes of the major histocompatibility complex (MHC). Although the structure and function of classic MHC genes is well understood at the molecular and cellular levels, there is controversy about how MHC diversity is selectively maintained. The diversifying selection can be driven by pathogen interactions and inbreeding avoidance mechanisms. Pathogen-driven selection can maintain MHC polymorphism based on heterozygote advantage or frequency-dependent selection due to pathogen evasion of MHC-dependent immune recognition. Empirical evidence demonstrates that specific MHC haplotypes are resistant to certain infectious agents, while susceptible to others. These data are consistent with both heterozygote advantage and frequency-dependent models. Additional research is needed to discriminate between these mechanisms. Infectious agents can precipitate autoimmunity and can potentially contribute to MHC diversity through molecular mimicry and by favoring immunodominance. MHC-dependent abortion and mate choice, based on olfaction, can also maintain MHC diversity and probably functions both to avoid genome-wide inbreeding and produce MHC-heterozygous offspring with increased immune responsiveness. Although this diverse set of hypotheses are often treated as competing alternatives, we believe that they all fit into a coherent, internally consistent thesis. It is likely that at least in some species, all of these mechanisms operate, leading to the extreme diversification found in MHC genes.
Norman, Paul J.; Parham, Peter
2012-01-01
Pinnipeds, marine carnivores, diverged from terrestrial carnivores ~45 million years ago, before their adaptation to marine environments. This lifestyle change exposed pinnipeds to different microbiota and pathogens, with probable impact on their MHC class I genes. Investigating this question, genomic sequences were determined for 71 MHC class I variants: 27 from harbor seal and 44 from gray seal. These variants form three MHC class I gene lineages, one comprising a pseudogene. The second, a candidate nonclassical MHC class I gene, comprises a nonpolymorphic transcribed gene related to dog DLA-79 and giant panda Aime-1906. The third is the diversity lineage, which includes 62 of the 71 seal MHC class I variants. All are transcribed, and they minimally represent six harbor and 12 gray seal MHC class I genes. Besides species-specific differences in gene number, seal MHC class I haplotypes exhibit gene content variation and allelic polymorphism. Patterns of sequence variation, and of positions for positively selected sites, indicate the diversity lineage genes are the seals’ classical MHC class I genes. Evidence that expansion of diversity lineage genes began before gray and harbor seals diverged is the presence in both species of two distinctive sublineages of diversity lineage genes. Pointing to further expansion following the divergence are the presence of species-specific genes and greater MHC class I diversity in gray seals than harbor seals. The elaboration of a complex variable family of classical MHC class I genes in pinnipeds contrasts with the single, highly polymorphic classical MHC class I gene of dog and giant panda, terrestrial carnivores. PMID:23001684
MHC class I diversity in chimpanzees and bonobos.
Maibach, Vincent; Hans, Jörg B; Hvilsom, Christina; Marques-Bonet, Tomas; Vigilant, Linda
2017-10-01
Major histocompatibility complex (MHC) class I genes are critically involved in the defense against intracellular pathogens. MHC diversity comparisons among samples of closely related taxa may reveal traces of past or ongoing selective processes. The bonobo and chimpanzee are the closest living evolutionary relatives of humans and last shared a common ancestor some 1 mya. However, little is known concerning MHC class I diversity in bonobos or in central chimpanzees, the most numerous and genetically diverse chimpanzee subspecies. Here, we used a long-read sequencing technology (PacBio) to sequence the classical MHC class I genes A, B, C, and A-like in 20 and 30 wild-born bonobos and chimpanzees, respectively, with a main focus on central chimpanzees to assess and compare diversity in those two species. We describe in total 21 and 42 novel coding region sequences for the two species, respectively. In addition, we found evidence for a reduced MHC class I diversity in bonobos as compared to central chimpanzees as well as to western chimpanzees and humans. The reduced bonobo MHC class I diversity may be the result of a selective process in their evolutionary past since their split from chimpanzees.
Pardal, Sara; Drews, Anna; Alves, José A; Ramos, Jaime A; Westerdahl, Helena
2017-07-01
The major histocompatibility complex (MHC) encodes proteins that are central for antigen presentation and pathogen elimination. MHC class I (MHC-I) genes have attracted a great deal of interest among researchers in ecology and evolution and have been partly characterized in a wide range of bird species. So far, the main focus has been on species within the bird orders Galliformes and Passeriformes, while Charadriiformes remain vastly underrepresented with only two species studied to date. These two Charadriiformes species exhibit striking differences in MHC-I characteristics and MHC-I diversity. We therefore set out to study a third species within Charadriiformes, the Icelandic subspecies of black-tailed godwits (Limosa limosa islandica). This subspecies is normally confined to parasite-poor environments, and we hence expected low MHC diversity. MHC-I was partially characterized first using Sanger sequencing and then using high-throughput sequencing (MiSeq) in 84 individuals. We verified 47 nucleotide alleles in open reading frame with classical MHC-I characteristics, and each individual godwit had two to seven putatively classical MHC alleles. However, in contrast to previous MHC-I data within Charadriiformes, we did not find any evidence of alleles with low sequence diversity, believed to represent non-classical MHC genes. The diversity and divergence of the godwits MHC-I genes to a large extent fell between the previous estimates within Charadriiformes. However, the MHC genes of the migratory godwits had few sites subject to positive selection, and one possible explanation could be a low exposure to pathogens.
Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population.
Castro-Prieto, Aines; Wachter, Bettina; Sommer, Simone
2011-04-01
For more than two decades, the cheetah (Acinonyx jubatus) has been considered a paradigm of disease vulnerability associated with low genetic diversity, particularly at the immune genes of the major histocompatibility complex (MHC). Cheetahs have been used as a classic example in numerous conservation genetics textbooks as well as in many related scientific publications. However, earlier studies used methods with low resolution to quantify MHC diversity and/or small sample sizes. Furthermore, high disease susceptibility was reported only for captive cheetahs, whereas free-ranging cheetahs show no signs of infectious diseases and a good general health status. We examined whether the diversity at MHC class I and class II-DRB loci in 149 Namibian cheetahs was higher than previously reported using single-strand conformation polymorphism analysis, cloning, and sequencing. MHC genes were examined at the genomic and transcriptomic levels. We detected ten MHC class I and four class II-DRB alleles, of which nine MHC class I and all class II-DRB alleles were expressed. Phylogenetic analyses and individual genotypes suggested that the alleles belong to four MHC class I and three class II-DRB putative loci. Evidence of positive selection was detected in both MHC loci. Our study indicated that the low number of MHC class I alleles previously observed in cheetahs was due to a smaller sample size examined. On the other hand, the low number of MHC class II-DRB alleles previously observed in cheetahs was further confirmed. Compared with other mammalian species including felids, cheetahs showed low levels of MHC diversity, but this does not seem to influence the immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease vulnerability.
High levels of diversity characterize mandrill (Mandrillus sphinx) Mhc-DRB sequences.
Abbott, Kristin M; Wickings, E Jean; Knapp, Leslie A
2006-08-01
The major histocompatibility complex (MHC) is highly polymorphic in most primate species studied thus far. The rhesus macaque (Macaca mulatta) has been studied extensively and the Mhc-DRB region demonstrates variability similar to humans. The extent of MHC diversity is relatively unknown for other Old World monkeys (OWM), especially among genera other than Macaca. A molecular survey of the Mhc-DRB region in mandrills (Mandrillus sphinx) revealed extensive variability, suggesting that other OWMs may also possess high levels of Mhc-DRB polymorphism. In the present study, 33 Mhc-DRB loci were identified from only 13 animals. Eleven were wild-born and presumed to be unrelated and two were captive-born twins. Two to seven different sequences were identified for each individual, suggesting that some mandrills may have as many as four Mhc-DRB loci on a single haplotype. From these sequences, representatives of at least six Mhc-DRB loci or lineages were identified. As observed in other primates, some new lineages may have arisen through the process of gene conversion. These findings indicate that mandrills have Mhc-DRB diversity not unlike rhesus macaques and humans.
Cai, Ruibo; Shafer, Aaron B A; Laguardia, Alice; Lin, Zhenzhen; Liu, Shuqiang; Hu, Defu
2015-11-25
The forest musk deer (Moschus berezovskii) is a high elevation species distributed across western China and northern Vietnam. Once abundant, habitat loss and poaching has led to a dramatic decrease in population numbers prompting the IUCN to list the species as endangered. Here, we characterized the genetic diversity of a Major Histocompatibility Complex (MHC) locus and teased apart driving factors shaping its variation. Seven DRB exon 2 alleles were identified among a group of randomly sampled forest musk deer from a captive population in the Sichuan province of China. Compared to other endangered or captive ungulates, forest musk deer have relatively low levels of MHC genetic diversity. Non-synonymous substitutions primarily occurred in the putative peptide-binding region (PBR), with analyses suggesting that recombination and selection has shaped the genetic diversity across the locus. Specifically, inter-allelic recombination generated novel allelic combinations, with evidence for both positive selection acting on the PBR and negative selection on the non-PBR. An improved understanding of functional genetic variability of the MHC will facilitate better design and management of captive breeding programs for this endangered species.
Gómez-Pérez, Luis; Alfonso-Sánchez, Miguel A; Dipierri, José E; Sánchez, Dora; Espinosa, Ibone; De Pancorbo, Marian M; Peña, José A
2013-01-01
Genetic heterogeneity of two Amerindian populations (Jujuy province, Argentina, and Waorani tribe, Ecuador) was characterized by analyzing data on polymorphic Alu insertions within the human major histocompatibility complex (MHC) class I region (6p21.31), which are completely nonexistent in Native Americans. We further evaluated the haplotype distribution and genetic diversity among continental ancestry groups and their potential implications for the dating of the origin of MHC-Alus. Five MHC-Alu elements (AluMicB, AluTF, AluHJ, AluHG, and AluHF) were typed in samples from Jujuy (N = 108) and Waorani (N = 36). Allele and haplotype frequency data on worldwide populations were compiled to explore spatial structuring of the MHC-Alu diversity through AMOVA tests. We utilized the median-joining network approach to illustrate the continental distribution of the MHC-Alu haplotypes and their phylogenetic relationships. Allele and haplotype distributions differed significantly between Jujuy and Waorani. The Waorani featured a low average heterozygosity attributable to strong population isolation. Overall, Alu markers showed great genetic heterogeneity both within and among populations. The haplotype distribution was distinctive of each continental ancestry group. Contrary to expectations, Africans showed the lowest MHC-Alu diversity. Genetic drift mainly associated to population bottlenecks seems to be reflected in the low MHC-Alu diversity of the Amerindians, mainly in Waorani. Geographical structuring of the haplotype distribution supports the efficiency of the MHC-Alu loci as lineage (ancestry) markers. The markedly low Alu diversity of African populations relative to other continental clusters suggests that these MHC-Alus might have arisen after the anatomically modern humans expanded out of Africa. Copyright © 2013 Wiley Periodicals, Inc.
Colonizing the world in spite of reduced MHC variation
Gangoso, L.; Alcaide, M.; Grande, J.M.; Muñoz, J.; Talbot, Sandra L.; Sonsthagen, Sarah A.; Sage, Kevin; Figuerola, J.
2012-01-01
Reduced immune gene diversity is thought to negatively affect the capacity of organisms to adapt to pathogen challenges, which represent a major force in natural selection. Genes of the Major Histocompatibility Complex (MHC) are the most widely invoked adaptive loci in conservation biology, and have become the most popular genetic markers to investigate pathogen-host interactions in vertebrates. Although MHC genes are the most polymorphic genes described in the vertebrate genome, the extent to which MHC diversity determines the long-term persistence of populations is, unclear and often debated, as recent studies have documented the occurrence of natural populations thriving even after a depletion of MHC diversity caused by genetic drift. Here, we show that some phylogenetically related species belonging to the Falco genus (Aves: Falconidae) present a dramatically low MHC variability that has not precluded, nevertheless, the successful colonization of almost all existing regions and habitats worldwide. We found evidence for two remarkably different patterns of MHC variation within the genus. While kestrels show a high MHC variation according to the general theory, falcons exhibit an ancestrally low intra- and inter-specific MHC allelic diversity. We provide compelling evidence that this pattern is not caused by the degeneration of functional genes into pseudogenes, the inadvertent analyses of paralogous MHC genes, or the devastating action of genetic drift. Instead, our results strongly support the idea of an evolutionary transition driven and maintained by natural selection from primarily highly variable towards low polymorphic, but functional and expressed, MHC genes with species-specific pathogen-recognition capabilities.
Blood parasites shape extreme major histocompatibility complex diversity in a migratory passerine.
Biedrzycka, Aleksandra; Bielański, Wojciech; Ćmiel, Adam; Solarz, Wojciech; Zając, Tadeusz; Migalska, Magdalena; Sebastian, Alvaro; Westerdahl, Helena; Radwan, Jacek
2018-06-01
Pathogens are one of the main forces driving the evolution and maintenance of the highly polymorphic genes of the vertebrate major histocompatibility complex (MHC). Although MHC proteins are crucial in pathogen recognition, it is still poorly understood how pathogen-mediated selection promotes and maintains MHC diversity, and especially so in host species with highly duplicated MHC genes. Sedge warblers (Acrocephalus schoenobaenus) have highly duplicated MHC genes, and using data from high-throughput MHC genotyping, we were able to investigate to what extent avian malaria parasites explain temporal MHC class I supertype fluctuations in a long-term study population. We investigated infection status and infection intensities of two different strains of Haemoproteus, that is avian malaria parasites that are known to have significant fitness consequences in sedge warblers. We found that prevalence of avian malaria in carriers of specific MHC class I supertypes was a significant predictor of their frequency changes between years. This finding suggests that avian malaria infections partly drive the temporal fluctuations of the MHC class I supertypes. Furthermore, we found that individuals with a large number of different supertypes had higher resistance to avian malaria, but there was no evidence for an optimal MHC class I diversity. Thus, the two studied malaria parasite strains appear to select for a high MHC class I supertype diversity. Such selection may explain the maintenance of the extremely high number of MHC class I gene copies in sedge warblers and possibly also in other passerines where avian malaria is a common disease. © 2018 John Wiley & Sons Ltd.
Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis.
Winternitz, J; Abbate, J L; Huchard, E; Havlíček, J; Garamszegi, L Z
2017-01-01
Genes of the major histocompatibility complex (MHC) in vertebrates are integral for effective adaptive immune response and are associated with sexual selection. Evidence from a range of vertebrates supports MHC-based preference for diverse and dissimilar mating partners, but evidence from human mate choice studies has been disparate and controversial. Methodologies and sampling peculiarities specific to human studies make it difficult to know whether wide discrepancies in results among human populations are real or artefact. To better understand what processes may affect MHC-mediated mate choice across humans and nonhuman primates, we performed phylogenetically controlled meta-analyses using 58 effect sizes from 30 studies across seven primate species. Primates showed a general trend favouring more MHC-diverse mates, which was statistically significant for humans. In contrast, there was no tendency for MHC-dissimilar mate choice, and for humans, we observed effect sizes indicating selection of both MHC-dissimilar and MHC-similar mates. Focusing on MHC-similar effect sizes only, we found evidence that preference for MHC similarity was an artefact of population ethnic heterogeneity in observational studies but not among experimental studies with more control over sociocultural biases. This suggests that human assortative mating biases may be responsible for some patterns of MHC-based mate choice. Additionally, the overall effect sizes of primate MHC-based mating preferences are relatively weak (Fisher's Z correlation coefficient for dissimilarity Zr = 0.044, diversity Zr = 0.153), calling for careful sampling design in future studies. Overall, our results indicate that preference for more MHC-diverse mates is significant for humans and likely conserved across primates. © 2016 John Wiley & Sons Ltd.
Co-evolution of MHC class I and variable NK cell receptors in placental mammals.
Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo G; Parham, Peter
2015-09-01
Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhang, Wei; Luo, Zhenhua; Zhao, Mian; Wu, Hua
2015-09-01
Threatened species typically have a small or declining population size, which make them highly susceptible to loss of genetic diversity through genetic drift and inbreeding. Genetic diversity determines the evolutionary potential of a species; therefore, maintaining the genetic diversity of threatened species is essential for their conservation. In this study, we assessed the genetic diversity of the adaptive major histocompatibility complex (MHC) genes in an endangered and narrowly distributed amphibian species, Leptobrachium leishanense in Southwest China. We compared the genetic variation of MHC class I genes with that observed in neutral markers (5 microsatellite loci and cytochrome b gene) to elucidate the relative roles of genetic drift and natural selection in shaping the current MHC polymorphism in this species. We found a high level of genetic diversity in this population at both MHC and neutral markers compared with other threatened amphibian species. Historical positive selection was evident in the MHC class I genes. The higher allelic richness in MHC markers compared with that of microsatellite loci suggests that selection rather than genetic drift plays a prominent role in shaping the MHC variation pattern, as drift can affect all the genome in a similar way but selection directly targets MHC genes. Although demographic analysis revealed no recent bottleneck events in L. leishanense, additional population decline will accelerate the dangerous status for this species. We suggest that the conservation management of L. leishanense should concentrate on maximizing the retention of genetic diversity through preventing their continuous population decline. Protecting their living habitats and forbidding illegal hunting are the most important measures for conservation of L. leishanense. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.
Cattle NK Cell Heterogeneity and the Influence of MHC Class I
Allan, Alasdair J.; Sanderson, Nicholas D.; Gubbins, Simon; Ellis, Shirley A.
2015-01-01
Primate and rodent NK cells form highly heterogeneous lymphocyte populations owing to the differential expression of germline-encoded receptors. Many of these receptors are polymorphic and recognize equally polymorphic determinants of MHC class I. This diversity can lead to individuals carrying NK cells with different specificities. Cattle have an unusually diverse repertoire of NK cell receptor genes predicted to encode receptors that recognize MHC class I. To begin to examine whether this genetic diversity leads to a diverse NK cell population, we isolated peripheral NK cells from cattle with different MHC homozygous genotypes. Cytokine stimulation differentially influenced the transcription of five receptors at the cell population level. Using dilution cultures, we found that a further seven receptors were differentially transcribed, including five predicted to recognize MHC class I. Moreover, there was a statistically significant reduction in killer cell lectin-like receptor mRNA expression between cultures with different CD2 phenotypes and from animals with different MHC class I haplotypes. This finding confirms that cattle NK cells are a heterogeneous population and reveals that the receptors creating this diversity are influenced by the MHC. The importance of this heterogeneity will become clear as we learn more about the role of NK cells in cattle disease resistance and vaccination. PMID:26216890
The evolution of highly variable immunity genes across a passerine bird radiation.
O'Connor, E A; Strandh, M; Hasselquist, D; Nilsson, J-Å; Westerdahl, H
2016-02-01
To survive, individuals must be able to recognize and eliminate pathogens. The genes of the major histocompatibility complex (MHC) play an essential role in this process in vertebrates as their diversity affects the repertoire of pathogens that can be recognized by the immune system. Emerging evidence suggests that birds within the parvorder Passerida possess an exceptionally high number of MHC genes. However, this has yet to be directly investigated using a consistent framework, and the question of how this MHC diversity has evolved has not been addressed. We used next-generation sequencing to investigate how MHC class I gene copy number and sequence diversity varies across the Passerida radiation using twelve species chosen to represent the phylogenetic range of this group. Additionally, we performed phylogenetic analyses on this data to identify, for the first time, the evolutionary model that best describes how MHC class I gene diversity has evolved within Passerida. We found evidence of multiple MHC class I genes in every family tested, with an extremely broad range in gene copy number across Passerida. There was a strong phylogenetic signal in MHC gene copy number and diversity, and these traits appear to have evolved through a process of Brownian motion in the species studied, that is following the pattern of genetic drift or fluctuating selection, as opposed to towards a single optimal value or through evolutionary 'bursts'. By characterizing MHC class I gene diversity across Passerida in a systematic framework, this study provides a first step towards understanding this huge variation. © 2016 John Wiley & Sons Ltd.
Kubinak, Jason L; Ruff, James S; Hyzer, Cornelius Whitney; Slev, Patricia R; Potts, Wayne K
2012-02-28
The unprecedented genetic diversity found at vertebrate MHC (major histocompatibility complex) loci influences susceptibility to most infectious and autoimmune diseases. The evolutionary explanation for how these polymorphisms are maintained has been controversial. One leading explanation, antagonistic coevolution (also known as the Red Queen), postulates a never-ending molecular arms race where pathogens evolve to evade immune recognition by common MHC alleles, which in turn provides a selective advantage to hosts carrying rare MHC alleles. This cyclical process leads to negative frequency-dependent selection and promotes MHC diversity if two conditions are met: (i) pathogen adaptation must produce trade-offs that result in pathogen fitness being higher in familiar (i.e., host MHC genotype adapted to) vs. unfamiliar host MHC genotypes; and (ii) this adaptation must produce correlated patterns of virulence (i.e., disease severity). Here we test these fundamental assumptions using an experimental evolutionary approach (serial passage). We demonstrate rapid adaptation and virulence evolution of a mouse-specific retrovirus to its mammalian host across multiple MHC genotypes. Critically, this adaptive response results in trade-offs (i.e., antagonistic pleiotropy) between host MHC genotypes; both viral fitness and virulence is substantially higher in familiar versus unfamiliar MHC genotypes. These data are unique in experimentally confirming the requisite conditions of the antagonistic coevolution model of MHC evolution and providing quantification of fitness effects for pathogen and host. These data help explain the unprecedented diversity of MHC genes, including how disease-causing alleles are maintained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuhki, Naoya; O'Brien, S.J.
1990-01-01
The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragmentmore » length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations.« less
Yuhki, N; O'Brien, S J
1990-01-01
The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. We present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations. Images PMID:1967831
McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Kaukinen, Karia H; Beacham, Terry D; Withler, Ruth E; Miller, Kristina M
2013-09-01
The major histocompatibility complex (MHC), an important component of the vertebrate immune system, provides an important suite of genes to examine the role of genetic diversity at non-neutral loci for population persistence. We contrasted patterns of diversity at the two classical MHC loci in sockeye salmon (Oncorhynchus nerka), MHC class I (UBA) and MHC class II (DAB), and neutral microsatellite loci across 70 populations spanning the species range from Washington State to Japan. There was no correlation in allelic richness or heterozygosity between MHC loci or between MHC loci and microsatellites. The two unlinked MHC loci may be responding to different selective pressures; the distribution of FST values for the two loci was uncorrelated, and evidence for both balancing and directional selection on alleles and lineages of DAB and UBA was observed in populations throughout the species range but rarely on both loci within a population. These results suggest that fluctuating selection has resulted in the divergence of MHC loci in contemporary populations. © 2013 John Wiley & Sons Ltd.
Jarvi, S.I.; Gee, G.F.; Miller, M.M.; Briles, W.E.
1995-01-01
The B blood group system constitutes the major histocompatibility complex (Mhc) in birds. The Mhc is a cluster of genes largely devoted to the processing and presentation of antigen. The Mhc is highly polymorphic in many species and, thus, useful in the evaluation of genetic diversity for fitness traits within populations of a variety of animals. Correlations found between particular Mhc haplotypes and resistance to certain diseases emphasize the importance of understanding the functional significance of diversity of the Mhc, particularly in species threatened with extinction. As part of studies focused on genetic diversity in wild birds, serological techniques were used to define a highly polymorphic alloantigen system in seven families of Florida sandhill cranes (Grus canadensis pratensis). The results of analyses with antisera produced within the crane families and with chicken Mhc antigen-specific reagents revealed a single major alloantigen system that is likely the Mhc of the Florida sandhill crane. Preliminary experiments indicate that these crane alloantisera will provide a means of defining .the Mhc in other species of cranes.
Hawley, Dana M; Fleischer, Robert C
2012-01-01
The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.
Parmar, Drashti R; Mitra, Siuli; Bhadouriya, Snehalata; Rao, Tirupathi; Kunteepuram, Vaishnavi; Gaur, Ajay
2017-12-01
The major histocompatibility complex (MHC), in vertebrate animals, is a multi-genic protein complex that encodes various receptors. During a disease, MHC interacts with the antigen and triggers a cascade of adaptive immune responses to overcome a disease outbreak. The MHC is very important region from immunological point of view, but it is poorly characterized among Indian leopards. During this investigation, we examined genetic diversity for MHC class I (MHC-I) and MHC class II-DRB (MHC-II) among wild and captive Indian leopards. This study estimated a pool of 9 and 17 alleles for MHC-I and MHC-II, respectively. The wild group of individuals showed higher nucleotide diversity and amino acid polymorphism compared to the captive group. A phylogenetic comparison with other felids revealed a clustering in MHC-I and interspersed presence in MHC-II sequences. A test for selection also revealed a deviation from neutrality at MHC-II DRB loci and higher non-synonymous substitution rate (dN) among the individuals from wild group. Further, the wild individuals showed higher dN for both MHC I and II genes compared to the group that was bred under captive conditions. These findings suggest the role of micro-evolutionary forces, such as pathogen-mediated selection, to cause MHC variations among the two groups of Indian leopards, because the two groups have been bred in two different environments for a substantial period of time. Since, MHC diversity is often linked with the quality of immunological health; the results obtained from this study fill the gap of knowledge on disease predisposition among wild and captive Indian leopards.
Choosy Wolves? Heterozygote Advantage But No Evidence of MHC-Based Disassortative Mating.
Galaverni, Marco; Caniglia, Romolo; Milanesi, Pietro; Lapalombella, Silvana; Fabbri, Elena; Randi, Ettore
2016-03-01
A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Norman, Paul J.; Norberg, Steven J.; Guethlein, Lisbeth A.; Nemat-Gorgani, Neda; Royce, Thomas; Wroblewski, Emily E.; Dunn, Tamsen; Mann, Tobias; Alicata, Claudia; Hollenbach, Jill A.; Chang, Weihua; Shults Won, Melissa; Gunderson, Kevin L.; Abi-Rached, Laurent; Ronaghi, Mostafa; Parham, Peter
2017-01-01
The most polymorphic part of the human genome, the MHC, encodes over 160 proteins of diverse function. Half of them, including the HLA class I and II genes, are directly involved in immune responses. Consequently, the MHC region strongly associates with numerous diseases and clinical therapies. Notoriously, the MHC region has been intractable to high-throughput analysis at complete sequence resolution, and current reference haplotypes are inadequate for large-scale studies. To address these challenges, we developed a method that specifically captures and sequences the 4.8-Mbp MHC region from genomic DNA. For 95 MHC homozygous cell lines we assembled, de novo, a set of high-fidelity contigs and a sequence scaffold, representing a mean 98% of the target region. Included are six alternative MHC reference sequences of the human genome that we completed and refined. Characterization of the sequence and structural diversity of the MHC region shows the approach accurately determines the sequences of the highly polymorphic HLA class I and HLA class II genes and the complex structural diversity of complement factor C4A/C4B. It has also uncovered extensive and unexpected diversity in other MHC genes; an example is MUC22, which encodes a lung mucin and exhibits more coding sequence alleles than any HLA class I or II gene studied here. More than 60% of the coding sequence alleles analyzed were previously uncharacterized. We have created a substantial database of robust reference MHC haplotype sequences that will enable future population scale studies of this complicated and clinically important region of the human genome. PMID:28360230
Setchell, Joanna M; Abbott, Kristin M; Gonzalez, Jean-Paul; Knapp, Leslie A
2013-10-01
A large body of evidence suggests that major histocompatibility complex (MHC) genotype influences mate choice. However, few studies have investigated MHC-mediated post-copulatory mate choice under natural, or even semi-natural, conditions. We set out to explore this question in a large semi-free-ranging population of mandrills (Mandrillus sphinx) using MHC-DRB genotypes for 127 parent-offspring triads. First, we showed that offspring MHC heterozygosity correlates positively with parental MHC dissimilarity suggesting that mating among MHC dissimilar mates is efficient in increasing offspring MHC diversity. Second, we compared the haplotypes of the parental dyad with those of the offspring to test whether post-copulatory sexual selection favored offspring with two different MHC haplotypes, more diverse gamete combinations, or greater within-haplotype diversity. Limited statistical power meant that we could only detect medium or large effect sizes. Nevertheless, we found no evidence for selection for heterozygous offspring when parents share a haplotype (large effect size), genetic dissimilarity between parental haplotypes (we could detect an odds ratio of ≥1.86), or within-haplotype diversity (medium-large effect). These findings suggest that comparing parental and offspring haplotypes may be a useful approach to test for post-copulatory selection when matings cannot be observed, as is the case in many study systems. However, it will be extremely difficult to determine conclusively whether post-copulatory selection mechanisms for MHC genotype exist, particularly if the effect sizes are small, due to the difficulty in obtaining a sufficiently large sample. © 2013 Wiley Periodicals, Inc.
Kohyama, Tetsuo I; Omote, Keita; Nishida, Chizuko; Takenaka, Takeshi; Saito, Keisuke; Fujimoto, Satoshi; Masuda, Ryuichi
2015-01-01
Quantifying intraspecific genetic variation in functionally important genes, such as those of the major histocompatibility complex (MHC), is important in the establishment of conservation plans for endangered species. The MHC genes play a crucial role in the vertebrate immune system and generally show high levels of diversity, which is likely due to pathogen-driven balancing selection. The endangered Blakiston's fish owl (Bubo blakistoni) has suffered marked population declines on Hokkaido Island, Japan, during the past several decades due to human-induced habitat loss and fragmentation. We investigated the spatial and temporal patterns of genetic diversity in MHC class IIβ genes in Blakiston's fish owl, using massively parallel pyrosequencing. We found that the Blakiston's fish owl genome contains at least eight MHC class IIβ loci, indicating recent gene duplications. An analysis of sequence polymorphism provided evidence that balancing selection acted in the past. The level of MHC variation, however, was low in the current fish owl populations in Hokkaido: only 19 alleles were identified from 174 individuals. We detected considerable spatial differences in MHC diversity among the geographically isolated populations. We also detected a decline of MHC diversity in some local populations during the past decades. Our study demonstrated that the current spatial patterns of MHC variation in Blakiston's fish owl populations have been shaped by loss of variation due to the decline and fragmentation of populations, and that the short-term effects of genetic drift have counteracted the long-term effects of balancing selection.
Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Sommer, Simone
2011-01-01
The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for fitness-related genetic variation in wildlife populations. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, we isolated and characterized genetic variation at the adaptively most important region of MHC class I and MHC class II-DRB genes in 25 free-ranging African leopards from Namibia and investigated the mechanisms that generate and maintain MHC polymorphism in the species. Using single-stranded conformation polymorphism analysis and direct sequencing, we detected 6 MHC class I and 6 MHC class II-DRB sequences, which likely correspond to at least 3 MHC class I and 3 MHC class II-DRB loci. Amino acid sequence variation in both MHC classes was higher or similar in comparison to other reported felids. We found signatures of positive selection shaping the diversity of MHC class I and MHC class II-DRB loci during the evolutionary history of the species. A comparison of MHC class I and MHC class II-DRB sequences of the leopard to those of other felids revealed a trans-species mode of evolution. In addition, the evolutionary relationships of MHC class II-DRB sequences between African and Asian leopard subspecies are discussed.
MHC, mate choice and heterozygote advantage in a wild social primate.
Huchard, Elise; Knapp, Leslie A; Wang, Jinliang; Raymond, Michel; Cowlishaw, Guy
2010-06-01
Preferences for mates carrying dissimilar genes at the major histocompatibility complex (MHC) may help animals increase offspring pathogen resistance or avoid inbreeding. Such preferences have been reported across a range of vertebrates, but have rarely been investigated in social species other than humans. We investigated mate choice and MHC dynamics in wild baboons (Papio ursinus). MHC Class II DRB genes and 16 microsatellite loci were genotyped across six groups (199 individuals). Based on the survey of a key segment of the gene-rich MHC, we found no evidence of mate choice for MHC dissimilarity, diversity or rare MHC genotypes. First, MHC dissimilarity did not differ from random expectation either between parents of the same offspring or between immigrant males and females from the same troop. Second, female reproductive success was not influenced by MHC diversity or genotype frequency. Third, population genetic structure analysis revealed equally high genotypic differentiation among troops, and comparable excess heterozygosity within troops for juveniles, at both Mhc-DRB and neutral loci. Nevertheless, the age structure of Mhc-DRB heterozygosity suggested higher longevity for heterozygotes, which should favour preferences for MHC dissimilarity. We propose that high levels of within-group outbreeding, resulting from group-living and sex-biased dispersal, might weaken selection for MHC-disassortative mate choice.
Garamszegi, László Zsolt; Zagalska-Neubauer, Magdalena; Canal, David; Blázi, György; Laczi, Miklós; Nagy, Gergely; Szöllősi, Eszter; Vaskuti, Éva; Török, János; Zsebők, Sándor
2018-06-01
Several hypotheses predict that the major histocompatibility complex (MHC) drives mating preference in females. Olfactory, colour or morphological traits are often found as reliable signals of the MHC profile, but the role of avian song mediating MHC-based female choice remains largely unexplored. We investigated the relationship between several MHC and acoustic features in the collared flycatcher (Ficedula albicollis), a European passerine with complex songs. We screened a fragment of the class IIB second exon of the MHC molecule, of which individuals harbour 4-15 alleles, while considerable sequence diversity is maintained at the population level. To make statistical inferences from a large number of comparisons, we adopted both null-hypothesis testing and effect size framework in combination with randomization procedures. After controlling for potential confounding factors, neither MHC allelic diversity nor the presence of particular alleles was associated remarkably with the investigated qualitative and quantitative song traits. Furthermore, genetic similarity among males based on MHC sequences was not reflected by the similarity in their song based on syllable content. Overall, these results suggest that the relationship between features of song and the allelic composition and diversity of MHC is not strong in the studied species. However, a biologically motivated analysis revealed that individuals that harbour an MHC allele that impairs survival perform songs with broader frequency range. This finding suggests that certain aspects of the song may bear reliable information concerning the MHC profile of the individuals, which can be used by females to optimize mate choice. © 2018 John Wiley & Sons Ltd.
Seifertová, Mária; Jarkovský, Jiří; Šimková, Andrea
2016-04-01
The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.
Jaratlerdsiri, Weerachai; Isberg, Sally R.; Higgins, Damien P.; Miles, Lee G.; Gongora, Jaime
2014-01-01
Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and β evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II β diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II β sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85–90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia. PMID:24503938
Chemical composition of preen wax reflects major histocompatibility complex similarity in songbirds.
Slade, J W G; Watson, M J; Kelly, T R; Gloor, G B; Bernards, M A; MacDougall-Shackleton, E A
2016-11-16
In jawed vertebrates, genes of the major histocompatibility complex (MHC) play a key role in immunity by encoding cell-surface proteins that recognize and bind non-self antigens. High variability at MHC suggests that these loci may also function in social signalling such as mate choice and kin recognition. This requires that MHC genotype covaries with some perceptible phenotypic trait. In mammals and fish, MHC is signalled chemically through volatile and non-volatile peptide odour cues, facilitating MHC-dependent mate choice and other behaviours. In birds, despite evidence for MHC-dependent mating, candidate mechanisms for MHC signalling remain largely unexplored. However, feather preen wax has recently been implicated as a potential source of odour cues. We examined whether the chemical composition of preen wax correlates with MHC class IIβ genotypes of wild song sparrows (Melospiza melodia). Pairwise chemical distance reflected amino acid distance at MHC for male-female dyads, although not for same-sex dyads. Chemical diversity did not reflect MHC diversity. We used gas chromatography-mass spectrometry (GC-MS) to characterize preen wax compounds, and identified four wax esters that best reflect MHC similarity. Provided songbirds can detect variation in preen wax composition, this cue may allow individuals to assess MHC compatibility of potential mates. © 2016 The Author(s).
Balasubramaniam, Shandiya; Bray, Rebecca D; Mulder, Raoul A; Sunnucks, Paul; Pavlova, Alexandra; Melville, Jane
2016-05-21
The major histocompatibility complex (MHC) plays a crucial role in the adaptive immune system and has been extensively studied across vertebrate taxa. Although the function of MHC genes appears to be conserved across taxa, there is great variation in the number and organisation of these genes. Among avian species, for instance, there are notable differences in MHC structure between passerine and non-passerine lineages: passerines typically have a high number of highly polymorphic MHC paralogs whereas non-passerines have fewer loci and lower levels of polymorphism. Although the occurrence of highly polymorphic MHC paralogs in passerines is well documented, their evolutionary origins are relatively unexplored. The majority of studies have focussed on the more derived passerine lineages and there is very little empirical information on the diversity of the MHC in basal passerine lineages. We undertook a study of MHC diversity and evolutionary relationships across seven species from four families (Climacteridae, Maluridae, Pardalotidae, Meliphagidae) that comprise a prominent component of the basal passerine lineages. We aimed to determine if highly polymorphic MHC paralogs have an early evolutionary origin within passerines or are a more derived feature of the infraorder Passerida. We identified 177 alleles of the MHC class II β exon 2 in seven basal passerine species, with variation in numbers of alleles across individuals and species. Overall, we found evidence of multiple gene loci, pseudoalleles, trans-species polymorphism and high allelic diversity in these basal lineages. Phylogenetic reconstruction of avian lineages based on MHC class II β exon 2 sequences strongly supported the monophyletic grouping of basal and derived passerine species. Our study provides evidence of a large number of highly polymorphic MHC paralogs in seven basal passerine species, with strong similarities to the MHC described in more derived passerine lineages rather than the simpler MHC in non-passerine lineages. These findings indicate an early evolutionary origin of highly polymorphic MHC paralogs in passerines and shed light on the evolutionary forces shaping the avian MHC.
MHC variability supports dog domestication from a large number of wolves: high diversity in Asia.
Niskanen, A K; Hagström, E; Lohi, H; Ruokonen, M; Esparza-Salas, R; Aspi, J; Savolainen, P
2013-01-01
The process of dog domestication is still somewhat unresolved. Earlier studies indicate that domestic dogs from all over the world have a common origin in Asia. So far, major histocompatibility complex (MHC) diversity has not been studied in detail in Asian dogs, although high levels of genetic diversity are expected at the domestication locality. We sequenced the second exon of the canine MHC gene DLA-DRB1 from 128 Asian dogs and compared our data with a previously published large data set of MHC alleles, mostly from European dogs. Our results show that Asian dogs have a higher MHC diversity than European dogs. We also estimated that there is only a small probability that new alleles have arisen by mutation since domestication. Based on the assumption that all of the currently known 102 DLA-DRB1 alleles come from the founding wolf population, we simulated the number of founding wolf individuals. Our simulations indicate an effective population size of at least 500 founding wolves, suggesting that the founding wolf population was large or that backcrossing has taken place.
MHC variability supports dog domestication from a large number of wolves: high diversity in Asia
Niskanen, A K; Hagström, E; Lohi, H; Ruokonen, M; Esparza-Salas, R; Aspi, J; Savolainen, P
2013-01-01
The process of dog domestication is still somewhat unresolved. Earlier studies indicate that domestic dogs from all over the world have a common origin in Asia. So far, major histocompatibility complex (MHC) diversity has not been studied in detail in Asian dogs, although high levels of genetic diversity are expected at the domestication locality. We sequenced the second exon of the canine MHC gene DLA–DRB1 from 128 Asian dogs and compared our data with a previously published large data set of MHC alleles, mostly from European dogs. Our results show that Asian dogs have a higher MHC diversity than European dogs. We also estimated that there is only a small probability that new alleles have arisen by mutation since domestication. Based on the assumption that all of the currently known 102 DLA–DRB1 alleles come from the founding wolf population, we simulated the number of founding wolf individuals. Our simulations indicate an effective population size of at least 500 founding wolves, suggesting that the founding wolf population was large or that backcrossing has taken place. PMID:23073392
Morris, Katrina; Austin, Jeremy J.; Belov, Katherine
2013-01-01
The Tasmanian devil (Sarcophilus harrisii) is at risk of extinction owing to the emergence of a contagious cancer known as devil facial tumour disease (DFTD). The emergence and spread of DFTD has been linked to low genetic diversity in the major histocompatibility complex (MHC). We examined MHC diversity in historical and ancient devils to determine whether loss of diversity is recent or predates European settlement in Australia. Our results reveal no additional diversity in historical Tasmanian samples. Mainland devils had common modern variants plus six new variants that are highly similar to existing alleles. We conclude that low MHC diversity has been a feature of devil populations since at least the Mid-Holocene and could explain their tumultuous history of population crashes. PMID:23221872
Complex Mhc-based mate choice in a wild passerine
Bonneaud, Camille; Chastel, Olivier; Federici, Pierre; Westerdahl, Helena; Sorci, Gabriele
2006-01-01
The extreme polymorphism of the vertebrate major histocompatibility complex (Mhc) is famous for protecting hosts against constantly evolving pathogens. Mate choice is often evoked as a means of maintaining Mhc variability through avoidance of partners with similar Mhc alleles or preference for heterozygotes. Evidence for these two hypotheses mostly comes from studies on humans and laboratory mice. Here, we tested these hypotheses in a wild outbred population of house sparrows (Passer domesticus). Females were not more or less closely related to the males they paired with when considering neutral genetic variation. However, males failed to form breeding pairs when they had too few Mhc alleles and when they were too dissimilar from females at Mhc loci (i.e. had no common alleles). Furthermore, pairs did not form at random as Mhc diversity positively correlated in mating pairs. These results suggest that mate choice evolves in response to (i) benefits in terms of parasite resistance acquired from allelic diversity, and (ii) costs associated with the disruption of co-adapted genes. PMID:16600889
Complex Mhc-based mate choice in a wild passerine.
Bonneaud, Camille; Chastel, Olivier; Federici, Pierre; Westerdahl, Helena; Sorci, Gabriele
2006-05-07
The extreme polymorphism of the vertebrate major histocompatibility complex (Mhc) is famous for protecting hosts against constantly evolving pathogens. Mate choice is often evoked as a means of maintaining Mhc variability through avoidance of partners with similar Mhc alleles or preference for heterozygotes. Evidence for these two hypotheses mostly comes from studies on humans and laboratory mice. Here, we tested these hypotheses in a wild outbred population of house sparrows (Passer domesticus). Females were not more or less closely related to the males they paired with when considering neutral genetic variation. However, males failed to form breeding pairs when they had too few Mhc alleles and when they were too dissimilar from females at Mhc loci (i.e. had no common alleles). Furthermore, pairs did not form at random as Mhc diversity positively correlated in mating pairs. These results suggest that mate choice evolves in response to (i) benefits in terms of parasite resistance acquired from allelic diversity, and (ii) costs associated with the disruption of co-adapted genes.
Evans, Melissa L; Dionne, Mélanie; Miller, Kristina M; Bernatchez, Louis
2012-01-22
Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.
Evans, Melissa L.; Dionne, Mélanie; Miller, Kristina M.; Bernatchez, Louis
2012-01-01
Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures. PMID:21697172
The importance of immune gene variability (MHC) in evolutionary ecology and conservation
Sommer, Simone
2005-01-01
Genetic studies have typically inferred the effects of human impact by documenting patterns of genetic differentiation and levels of genetic diversity among potentially isolated populations using selective neutral markers such as mitochondrial control region sequences, microsatellites or single nucleotide polymorphism (SNPs). However, evolutionary relevant and adaptive processes within and between populations can only be reflected by coding genes. In vertebrates, growing evidence suggests that genetic diversity is particularly important at the level of the major histocompatibility complex (MHC). MHC variants influence many important biological traits, including immune recognition, susceptibility to infectious and autoimmune diseases, individual odours, mating preferences, kin recognition, cooperation and pregnancy outcome. These diverse functions and characteristics place genes of the MHC among the best candidates for studies of mechanisms and significance of molecular adaptation in vertebrates. MHC variability is believed to be maintained by pathogen-driven selection, mediated either through heterozygote advantage or frequency-dependent selection. Up to now, most of our knowledge has derived from studies in humans or from model organisms under experimental, laboratory conditions. Empirical support for selective mechanisms in free-ranging animal populations in their natural environment is rare. In this review, I first introduce general information about the structure and function of MHC genes, as well as current hypotheses and concepts concerning the role of selection in the maintenance of MHC polymorphism. The evolutionary forces acting on the genetic diversity in coding and non-coding markers are compared. Then, I summarise empirical support for the functional importance of MHC variability in parasite resistance with emphasis on the evidence derived from free-ranging animal populations investigated in their natural habitat. Finally, I discuss the importance of adaptive genetic variability with respect to human impact and conservation, and implications for future studies. PMID:16242022
McConnell, Sean C.; Hernandez, Kyle M.; Wcisel, Dustin J.; Kettleborough, Ross N.; Stemple, Derek L.; Andrade, Jorge; de Jong, Jill L. O.
2016-01-01
Antigen processing and presentation genes found within the MHC are among the most highly polymorphic genes of vertebrate genomes, providing populations with diverse immune responses to a wide array of pathogens. Here, we describe transcriptome, exome, and whole-genome sequencing of clonal zebrafish, uncovering the most extensive diversity within the antigen processing and presentation genes of any species yet examined. Our CG2 clonal zebrafish assembly provides genomic context within a remarkably divergent haplotype of the core MHC region on chromosome 19 for six expressed genes not found in the zebrafish reference genome: mhc1uga, proteasome-β 9b (psmb9b), psmb8f, and previously unknown genes psmb13b, tap2d, and tap2e. We identify ancient lineages for Psmb13 within a proteasome branch previously thought to be monomorphic and provide evidence of substantial lineage diversity within each of three major trifurcations of catalytic-type proteasome subunits in vertebrates: Psmb5/Psmb8/Psmb11, Psmb6/Psmb9/Psmb12, and Psmb7/Psmb10/Psmb13. Strikingly, nearby tap2 and MHC class I genes also retain ancient sequence lineages, indicating that alternative lineages may have been preserved throughout the entire MHC pathway since early diversification of the adaptive immune system ∼500 Mya. Furthermore, polymorphisms within the three MHC pathway steps (antigen cleavage, transport, and presentation) are each predicted to alter peptide specificity. Lastly, comparative analysis shows that antigen processing gene diversity is far more extensive than previously realized (with ancient coelacanth psmb8 lineages, shark psmb13, and tap2t and psmb10 outside the teleost MHC), implying distinct immune functions and conserved roles in shaping MHC pathway evolution throughout vertebrates. PMID:27493218
HLA Diversity in the 1000 Genomes Dataset
Gourraud, Pierre-Antoine; Khankhanian, Pouya; Cereb, Nezih; Yang, Soo Young; Feolo, Michael; Maiers, Martin; D. Rioux, John; Hauser, Stephen; Oksenberg, Jorge
2014-01-01
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies. PMID:24988075
HLA diversity in the 1000 genomes dataset.
Gourraud, Pierre-Antoine; Khankhanian, Pouya; Cereb, Nezih; Yang, Soo Young; Feolo, Michael; Maiers, Martin; Rioux, John D; Hauser, Stephen; Oksenberg, Jorge
2014-01-01
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies.
MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus
2012-01-01
Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population. PMID:23190438
MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus.
Yasukochi, Yoshiki; Kurosaki, Toshifumi; Yoneda, Masaaki; Koike, Hiroko; Satta, Yoko
2012-11-29
The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian species. This result suggests that the Japanese black bears may also retain more potential resistance against pathogens than other endangered mammalian species. To prevent further decline of potential resistance against pathogens, a conservation policy for the Japanese black bear should be designed to maintain MHC rare variants in each local population.
Biedrzycka, Aleksandra; O'Connor, Emily; Sebastian, Alvaro; Migalska, Magdalena; Radwan, Jacek; Zając, Tadeusz; Bielański, Wojciech; Solarz, Wojciech; Ćmiel, Adam; Westerdahl, Helena
2017-07-05
Recent work suggests that gene duplications may play an important role in the evolution of immunity genes. Passerine birds, and in particular Sylvioidea warblers, have highly duplicated major histocompatibility complex (MHC) genes, which are key in immunity, compared to other vertebrates. However, reasons for this high MHC gene copy number are yet unclear. High-throughput sequencing (HTS) allows MHC genotyping even in individuals with extremely duplicated genes. This HTS data can reveal evidence of selection, which may help to unravel the putative functions of different gene copies, i.e. neofunctionalization. We performed exhaustive genotyping of MHC class I in a Sylvioidea warbler, the sedge warbler, Acrocephalus schoenobaenus, using the Illumina MiSeq technique on individuals from a wild study population. The MHC diversity in 863 genotyped individuals by far exceeds that of any other bird species described to date. A single individual could carry up to 65 different alleles, a large proportion of which are expressed (transcribed). The MHC alleles were of three different lengths differing in evidence of selection, diversity and divergence within our study population. Alleles without any deletions and alleles containing a 6 bp deletion showed characteristics of classical MHC genes, with evidence of multiple sites subject to positive selection and high sequence divergence. In contrast, alleles containing a 3 bp deletion had no sites subject to positive selection and had low divergence. Our results suggest that sedge warbler MHC alleles that either have no deletion, or contain a 6 bp deletion, encode classical antigen presenting MHC molecules. In contrast, MHC alleles containing a 3 bp deletion may encode molecules with a different function. This study demonstrates that highly duplicated MHC genes can be characterised with HTS and that selection patterns can be useful for revealing neofunctionalization. Importantly, our results highlight the need to consider the putative function of different MHC genes in future studies of MHC in relation to disease resistance and fitness.
Natsopoulou, M E; Pálsson, S; Ólafsdóttir, G Á
2012-10-01
Two pairs of sympatric three-spined stickleback Gasterosteus aculeatus morphs and two single morph populations inhabiting mud and lava or rocky benthic habitats in four Icelandic lakes were screened for parasites and genotyped for MHC class IIB diversity. Parasitic infection differed consistently between G. aculeatus from different benthic habitats. Gasterosteus aculeatus from the lava or rocky habitats were more heavily infected in all lakes. A parallel pattern was also found in individual MHC allelic variation with lava G. aculeatus morphs exhibiting lower levels of variation than the mud morphs. Evidence for selective divergence in MHC allele number is ambiguous but supported by two findings in addition to the parallel pattern observed. MHC allele diversity was not consistent with diversity reported at neutral markers (microsatellites) and in Þingvallavatn the most common number of alleles in each morph was associated with lower infection levels. In the Þingvallavatn lava morph, lower infection levels by the two most common parasites, Schistocephalus solidus and Diplostomum baeri, were associated with different MHC allele numbers. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S
2014-05-01
Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S
2014-01-01
Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. PMID:24689851
MHC variability in heritage breeds of chickens.
Fulton, J E; Lund, A R; McCarron, A M; Pinegar, K N; Korver, D R; Classen, H L; Aggrey, S; Utterbach, C; Anthony, N B; Berres, M E
2016-02-01
The chicken Major Histocompatibility Complex (MHC) is very strongly associated with disease resistance and thus is a very important region of the chicken genome. Historically, MHC (B locus) has been identified by the use of serology with haplotype specific alloantisera. These antisera can be difficult to produce and frequently cross-react with multiple haplotypes and hence their application is generally limited to inbred and MHC-defined lines. As a consequence, very little information about MHC variability in heritage chicken breeds is available. DNA-based methods are now available for examining MHC variability in these previously uncharacterized populations. A high density SNP panel consisting of 101 SNP that span a 230,000 bp region of the chicken MHC was used to examine MHC variability in 17 heritage populations of chickens from five universities from Canada and the United States. The breeds included 6 heritage broiler lines, 3 Barred Plymouth Rock, 2 New Hampshire and one each of Rhode Island Red, Light Sussex, White Leghorn, Dark Brown Leghorn, and 2 synthetic lines. These heritage breeds contained from one to 11 haplotypes per line. A total of 52 unique MHC haplotypes were found with only 10 of them identical to serologically defined haplotypes. Furthermore, nine MHC recombinants with their respective parental haplotypes were identified. This survey confirms the value of these non-commercially utilized lines in maintaining genetic diversity. The identification of multiple MHC haplotypes and novel MHC recombinants indicates that diversity is being generated and maintained within these heritage populations. © 2016 Poultry Science Association Inc.
Osborne, A J; Zavodna, M; Chilvers, B L; Robertson, B C; Negro, S S; Kennedy, M A; Gemmell, N J
2013-01-01
Marine mammals are often reported to possess reduced variation of major histocompatibility complex (MHC) genes compared with their terrestrial counterparts. We evaluated diversity at two MHC class II B genes, DQB and DRB, in the New Zealand sea lion (Phocarctos hookeri, NZSL) a species that has suffered high mortality owing to bacterial epizootics, using Sanger sequencing and haplotype reconstruction, together with next-generation sequencing. Despite this species' prolonged history of small population size and highly restricted distribution, we demonstrate extensive diversity at MHC DRB with 26 alleles, whereas MHC DQB is dimorphic. We identify four DRB codons, predicted to be involved in antigen binding, that are evolving under adaptive evolution. Our data suggest diversity at DRB may be maintained by balancing selection, consistent with the role of this locus as an antigen-binding region and the species' recent history of mass mortality during a series of bacterial epizootics. Phylogenetic analyses of DQB and DRB sequences from pinnipeds and other carnivores revealed significant allelic diversity, but little phylogenetic depth or structure among pinniped alleles; thus, we could neither confirm nor refute the possibility of trans-species polymorphism in this group. The phylogenetic pattern observed however, suggests some significant evolutionary constraint on these loci in the recent past, with the pattern consistent with that expected following an epizootic event. These data may help further elucidate some of the genetic factors underlying the unusually high susceptibility to bacterial infection of the threatened NZSL, and help us to better understand the extent and pattern of MHC diversity in pinnipeds. PMID:23572124
Tobler, M; Plath, M; Riesch, R; Schlupp, I; Grasse, A; Munimanda, G K; Setzer, C; Penn, D J; Moodley, Y
2014-05-01
The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans-species evolution). © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Hidden MHC genetic diversity in the Iberian ibex (Capra pyrenaica).
Angelone, Samer; Jowers, Michael J; Molinar Min, Anna Rita; Fandos, Paulino; Prieto, Paloma; Pasquetti, Mario; Cano-Manuel, Francisco Javier; Mentaberre, Gregorio; Olvera, Jorge Ramón López; Ráez-Bravo, Arián; Espinosa, José; Pérez, Jesús M; Soriguer, Ramón C; Rossi, Luca; Granados, José Enrique
2018-05-08
Defining hidden genetic diversity within species is of great significance when attempting to maintain the evolutionary potential of natural populations and conduct appropriate management. Our hypothesis is that isolated (and eventually small) wild animal populations hide unexpected genetic diversity due to their maintenance of ancient polymorphisms or introgressions. We tested this hypothesis using the Iberian ibex (Capra pyrenaica) as an example. Previous studies based on large sample sizes taken from its principal populations have revealed that the Iberian ibex has a remarkably small MHC DRB1 diversity (only six remnant alleles) as a result of recent population bottlenecks and a marked demographic decline that has led to the extinction of two recognized subspecies. Extending on the geographic range to include non-studied isolated Iberian ibex populations, we sequenced a new MHC DRB1 in what seemed three small isolated populations in Southern Spain (n = 132). The findings indicate a higher genetic diversity than previously reported in this important gene. The newly discovered allele, MHC DRB1*7, is identical to one reported in the domestic goat C. aegagrus hircus. Whether or not this is the result of ancient polymorphisms maintained by balancing selection or, alternatively, introgressions from domestic goats through hybridization needs to be clarified in future studies. However, hybridization between Iberian ibex and domestic goats has been reported in Spain and the fact that the newly discovered allele is only present in one of the small isolated populations and not in the others suggests introgression. The new discovered allele is not expected to increase fitness in C. pyrenaica since it generates the same protein as the existing MHC DRB1*6. Analysis of a microsatellite locus (OLADRB1) near the new MHC DRB1*7 gene reveals a linkage disequilibrium between these two loci. The allele OLADRB1, 187 bp in length, was unambiguously linked to the MHC DRB1*7 allele. This enabled us to perform a DRB-STR matching method for the recently discovered MHC allele. This finding is critical for the conservation of the Iberian ibex since it directly affects the identification of the units of this species that should be managed and conserved separately (Evolutionarily Significant Units).
2013-01-01
Background Comparison of major histocompatibility complex (MHC) genes across vertebrate species can reveal molecular mechanisms underlying the evolution of adaptive immunity-related proteins. As the first terrestrial tetrapods, amphibians deserve special attention because of their exposure to probably increased spectrum of microorganisms compared with ancestral aquatic fishes. Knowledge regarding the evolutionary patterns and mechanisms associated with amphibian MHC genes remains limited. The goal of the present study was to isolate MHC class I genes from two Rhacophoridae species (Rhacophorus omeimontis and Polypedates megacephalus) and examine their evolution. Results We identified 27 MHC class I alleles spanning the region from exon 2 to 4 in 38 tree frogs. The available evidence suggests that these 27 sequences all belong to classical MHC class I (MHC Ia) genes. Although several anuran species only display one MHC class Ia locus, at least two or three loci were observed in P. megacephalus and R. omeimontis, indicating that the number of MHC class Ia loci varies among anuran species. Recombination events, which mainly involve the entire exons, played an important role in shaping the genetic diversity of the 27 MHC class Ia alleles. In addition, signals of positive selection were found in Rhacophoridae MHC class Ia genes. Amino acid sites strongly suggested by program to be under positive selection basically accorded with the putative antigen binding sites deduced from crystal structure of human HLA. Phylogenetic relationships among MHC class I alleles revealed the presence of trans-species polymorphisms. Conclusions In the two Rhacophoridae species (1) there are two or three MHC class Ia loci; (2) recombination mainly occurs between the entire exons of MHC class Ia genes; (3) balancing selection, gene duplication and recombination all contribute to the diversity of MHC class Ia genes. These findings broaden our knowledge on the evolution of amphibian MHC systems. PMID:23734729
Ni, Peggy P; Wang, Yaming; Allen, Paul M
2014-11-01
It is perplexing why vertebrates express a limited number of major histocompatibility complex (MHC) molecules when theoretically, having a greater repertoire of MHC molecules would increase the number of epitopes presented, thereby enhancing thymic selection and T cell response to pathogens. It is possible that any positive effects would either be neutralized or outweighed by negative selection restricting the T cell repertoire. We hypothesize that the limit on MHC number is due to negative consequences arising from expressing additional MHC. We compared T cell responses between B6 mice (I-A(+)) and B6.E(+) mice (I-A(+), I-E(+)), the latter expressing a second class II MHC molecule, I-E(b), due to a monomorphic Eα(k) transgene that pairs with the endogenous I-Eβ(b) chain. First, the naive T cell Vβ repertoire was altered in B6.E(+) thymi and spleens, potentially mediating different outcomes in T cell reactivity. Although the B6 and B6.E(+) responses to hen egg-white lysozyme (HEL) protein immunization remained similar, other immune models yielded differences. For viral infection, the quality of the T cell response was subtly altered, with diminished production of certain cytokines by B6.E(+) CD4(+) T cells. In alloreactivity, the B6.E(+) T cell response was significantly dampened. Finally, we observed markedly enhanced susceptibility to experimental autoimmune encephalomyelitis (EAE) in B6.E(+) mice. This correlated with decreased percentages of nTreg cells, supporting the concept of Tregs exhibiting differential susceptibility to negative selection. Altogether, our data suggest that expressing an additional class II MHC can produce diverse effects, with more severe autoimmunity providing a compelling explanation for limiting the expression of MHC molecules. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bracamonte, Seraina E; Smith, Steve; Hammer, Michael; Pavey, Scott A; Sunnucks, Paul; Beheregaray, Luciano B
2015-10-01
Genetic diversity is an essential aspect of species viability, and assessments of neutral genetic diversity are regularly implemented in captive breeding and conservation programs. Despite their importance, information from adaptive markers is rarely included in such programs. A promising marker of significance in fitness and adaptive potential is the major histocompatibility complex (MHC), a key component of the adaptive immune system. Populations of Australian freshwater fishes are generally declining in numbers due to human impacts and the introduction of exotic species, a scenario of particular concern for members of the family Percichthyidae, several of which are listed as nationally vulnerable or endangered, and hence subject to management plans, captive breeding, and restoration plans. We used a next-generation sequencing approach to characterize the MHC IIB locus and provide a conservative description of its levels of diversity in four endangered percichthyids: Gadopsis marmoratus, Macquaria australasica, Nannoperca australis, and Nannoperca obscura. Evidence is presented for a duplicated MHC IIB locus, positively selected sites and recombination of MHC alleles. Relatively moderate levels of diversity were detected in the four species, as well as in different ecotypes within each species. Phylogenetic analyses revealed genus specific clustering of alleles and no allele sharing among species. There were also no shared alleles observed between two ecotypes within G. marmoratus and within M. australasica, which might be indicative of ecologically-driven divergence and/or long divergence times. This represents the first characterization and assessment of MHC diversity for Percichthyidae, and also for Australian freshwater fishes in general, providing key genetic resources for a vertebrate group of increasing conservation concern. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lee, Patricia; Ng, Hwee L.; Yang, Otto O.
2012-01-01
Human immunodeficiency virus type 1 (HIV-1) Nef downregulates major histocompatibility complex class I (MHC-I), impairing the clearance of infected cells by CD8+ cytotoxic T lymphocytes (CTLs). While sequence motifs mediating this function have been determined by in vitro mutagenesis studies of laboratory-adapted HIV-1 molecular clones, it is unclear whether the highly variable Nef sequences of primary isolates in vivo rely on the same sequence motifs. To address this issue, nef quasispecies from nine chronically HIV-1-infected persons were examined for sequence evolution and altered MHC-I downregulatory function under Gag-specific CTL immune pressure in vitro. This selection resulted in decreased nef diversity and strong purifying selection. Site-by-site analysis identified 13 codons undergoing purifying selection and 1 undergoing positive selection. Of the former, only 6 have been reported to have roles in Nef function, including 4 associated with MHC-I downregulation. Functional testing of naturally occurring in vivo polymorphisms at the 7 sites with no previously known functional role revealed 3 mutations (A84D, Y135F, and G140R) that ablated MHC-I downregulation and 3 (N52A, S169I, and V180E) that partially impaired MHC-I downregulation. Globally, the CTL pressure in vitro selected functional Nef from the in vivo quasispecies mixtures that predominately lacked MHC-I downregulatory function at the baseline. Overall, these data demonstrate that CTL pressure exerts a strong purifying selective pressure for MHC-I downregulation and identifies novel functional motifs present in Nef sequences in vivo. PMID:22553319
Coevolution of T-cell receptors with MHC and non-MHC ligands
Castro, Caitlin C.; Luoma, Adrienne M.; Adams, Erin J.
2015-01-01
Summary The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages. PMID:26284470
Stiebens, Victor A; Merino, Sonia E; Chain, Frédéric J J; Eizaguirre, Christophe
2013-04-30
In evolutionary and conservation biology, parasitism is often highlighted as a major selective pressure. To fight against parasites and pathogens, genetic diversity of the immune genes of the major histocompatibility complex (MHC) are particularly important. However, the extensive degree of polymorphism observed in these genes makes it difficult to conduct thorough population screenings. We utilized a genotyping protocol that uses 454 amplicon sequencing to characterize the MHC class I in the endangered loggerhead sea turtle (Caretta caretta) and to investigate their evolution at multiple relevant levels of organization. MHC class I genes revealed signatures of trans-species polymorphism across several reptile species. In the studied loggerhead turtle individuals, it results in the maintenance of two ancient allelic lineages. We also found that individuals carrying an intermediate number of MHC class I alleles are larger than those with either a low or high number of alleles. Multiple modes of evolution seem to maintain MHC diversity in the loggerhead turtles, with relatively high polymorphism for an endangered species.
Lillie, Mette; Woodward, Rachael E; Sanderson, Claire E; Eldridge, Mark D B; Belov, Katherine
2012-07-01
The platypus (Ornithorhynchus anatinus) is the sole survivor of a previously widely distributed and diverse lineage of ornithorhynchid monotremes. Its dependence on healthy water systems imposes an inherent sensitivity to habitat degradation and climate change. Here, we compare genetic diversity at the major histocompatibility complex (MHC) Class II-DZB gene and 3 MHC-associated microsatellite markers with diversity at 6 neutral microsatellite markers in 70 platypuses from across their range, including the mainland of Australia and the isolated populations of Tasmania, King Island, and Kangaroo Island. Overall, high DZB diversity was observed in the platypus, with 57 DZB β1 alleles characterized. Significant positive selection was detected within the DZB peptide-binding region, promoting variation in this domain. Low levels of genetic diversity were detected at all markers in the 2 island populations, King Island (endemic) and Kangaroo Island (introduced), with the King Island platypuses monomorphic at the DZB locus. Loss of MHC diversity on King Island is of concern, as the population may have compromised immunological fitness and reduced ability to resist changing environmental conditions.
CD8+ TCR repertoire formation is guided primarily by the peptide component of the antigenic complex.
Koning, Dan; Costa, Ana I; Hoof, Ilka; Miles, John J; Nanlohy, Nening M; Ladell, Kristin; Matthews, Katherine K; Venturi, Vanessa; Schellens, Ingrid M M; Borghans, Jose A M; Kesmir, Can; Price, David A; van Baarle, Debbie
2013-02-01
CD8(+) T cells recognize infected or dysregulated cells via the clonotypically expressed αβ TCR, which engages Ag in the form of peptide bound to MHC class I (MHC I) on the target cell surface. Previous studies have indicated that a diverse Ag-specific TCR repertoire can be beneficial to the host, yet the determinants of clonotypic diversity are poorly defined. To better understand the factors that govern TCR repertoire formation, we conducted a comprehensive clonotypic analysis of CD8(+) T cell populations directed against epitopes derived from EBV and CMV. Neither pathogen source nor the restricting MHC I molecule were linked with TCR diversity; indeed, both HLA-A and HLA-B molecules were observed to interact with an overlapping repertoire of expressed TRBV genes. Peptide specificity, however, markedly impacted TCR diversity. In addition, distinct peptides sharing HLA restriction and viral origin mobilized TCR repertoires with distinct patterns of TRBV gene usage. Notably, no relationship was observed between immunodominance and TCR diversity. These findings provide new insights into the forces that shape the Ag-specific TCR repertoire in vivo and highlight a determinative role for the peptide component of the peptide-MHC I complex on the molecular frontline of CD8(+) T cell-mediated immune surveillance.
Jarvi, S.I.; Miller, M.M.; Goto, R.M.; Gee, G.F.; Briles, W.E.
2001-01-01
Although there have been heated discussions concerning the relative importance of using Mhc diversity as a basis for selecting breeders in conservation projects, most parties agree that the genetic variability residual in an endangered species should be maintained through genetic management, if at all possible. Substantial evidence exists (particularly in birds) documenting the influences of specific Mhc haplotypes on disease outcome and also that those individuals which are heterozygous for Mhc alleles appear to have an advantage for survival over those that are homozygous. Thus, conservation of genetic variability of the Mhc is likely important for the preservation of fitness, especially in small breeding populations. More than half of the world's crane species are listed as endangered. Members of all 15 known species are represented among breeding animals for captive propagation at the International Crane Foundation (Wisconsin) and the USGS Patuxent Wildlife Research Center (Maryland). Collaborative multi-organization efforts and the availability of extensive pedigree records have allowed the study of Mhc variability in several species of cranes. We have found, for example, that Mhc diversity in the captive Florida sandhill crane (Grus canadensis pratensis) population appears high, whereas in the captive whooping crane (Grus americana), which has undergone a severe 'genetic bottleneck,? both the number of alleles and the levels of heterozygosity appear to be substantially reduced.
Zhang, Pei; Huang, Kang; Zhang, Bingyi; Dunn, Derek W; Chen, Dan; Li, Fan; Qi, Xiaoguang; Guo, Songtao; Li, Baoguo
2018-03-13
Maintaining variation in immune genes, such as those of the major histocompatibility complex (MHC), is important for individuals in small, isolated populations to resist pathogens and parasites. The golden snub-nosed monkey (Rhinopithecus roxellana), an endangered primate endemic to China, has experienced a rapid reduction in numbers and severe population fragmentation over recent years. For this study, we measured the DRB diversity among 122 monkeys from three populations in the Qinling Mountains, and estimated the relative importance of different agents of selection in maintaining variation of DRB genes. We identified a total of 19 DRB sequences, in which five alleles were novel. We found high DRB variation in R. roxellana and three branches of evidence suggesting that balancing selection has contributed to maintaining MHC polymorphism over the long term in this species: i) different patterns of both genetic diversity and population differentiation were detected at MHC and neutral markers; ii) an excess of non-synonymous substitutions compared to synonymous substitutions at antigen binding sites, and maximum-likelihood-based random-site models, showed significant positive selection; and iii) phylogenetic analyses revealed a pattern of trans-species evolution for DRB genes. High levels of DRB diversity in these R. roxellana populations may reflect strong selection pressure in this species. Patterns of genetic diversity and population differentiation, positive selection, as well as trans-species evolution, suggest that pathogen-mediated balancing selection has contributed to maintaining MHC polymorphism in R. roxellana over the long term. This study furthers our understanding of the role pathogen-mediated balancing selection has in maintaining variation in MHC genes in small and fragmented populations of free-ranging vertebrates.
Sarcomeric Myosin Expression in the Tongue Body of Humans, Macaques and Rats
Rahnert, Jill A.; Sokoloff, Alan J.; Burkholder, Thomas J.
2010-01-01
Expression of developmental and unconventional myosin heavy chain (MHC) isoforms in some adult head and neck muscles is thought to reflect specific contractile demands of muscle fibers active during kinematically complex movements. Mammalian tongue muscles are active during oromotor behaviors that encompass a wide range of tongue movement speeds and tongue shape changes (e.g. respiration, oral transport, swallowing, rejection), but the extent to which tongue muscles express developmental and unconventional MHC is not known. Quantitative PCR was used to determine the mRNA content of conventional MHC-beta, MHC-2a, MHC-2b and MHC-2x, the developmental isoforms embryonic MHC and neonatal MHC and the unconventional isoforms atrial/cardiac-α MHC (MHC-alpha), extraocular MHC, masseter MHC and slow tonic MHC in tongue body muscles of the rat, macaque and human. In all species, conventional MHC isoforms predominate. MHC-2b and MHC-2x account for 98% of total MHC mRNA in the rat. MHC-2a, MHC-2x and MHC-beta account for 94% of total MHC mRNA in humans and 96% of total MHC mRNA in macaque. With the exception of MHC-alpha in humans (5%), developmental and unconventional MHC mRNA represents less than 0.3% of total MHC mRNA. We conclude that in these species, there is limited expression of developmental and unconventional MHC and that diversity of tongue body muscle fiber contractile properties is achieved primarily by MHC-beta, MHC-2a, MHC-2x and MHC-2b. Whether expression of MHC-alpha mRNA in tongue is unique to humans or present in other hominoids awaits further investigation. PMID:19907142
Single locus typing of MHC class I and class II B loci in a population of red jungle fowl.
Worley, K; Gillingham, M; Jensen, P; Kennedy, L J; Pizzari, T; Kaufman, J; Richardson, D S
2008-05-01
In species with duplicated major histocompatibility complex (MHC) genes, estimates of genetic variation often rely on multilocus measures of diversity. It is possible that such measures might not always detect more detailed patterns of selection at individual loci. Here, we describe a method that allows us to investigate classical MHC diversity in red jungle fowl (Gallus gallus), the wild ancestor of the domestic chicken, using a single locus approach. This is possible due to the well-characterised gene organisation of the 'minimal essential' MHC (BF/BL region) of the domestic chicken, which comprises two differentially expressed duplicated class I (BF) and two class II B (BLB) genes. Using a combination of reference strand-mediated conformation analysis, cloning and sequencing, we identify nine BF and ten BLB alleles in a captive population of jungle fowl. We show that six BF and five BLB alleles are from the more highly expressed locus of each gene, BF2 and BLB2, respectively. An excess of non-synonymous substitutions across the jungle fowl BF/BL region suggests that diversifying selection has acted on this population. Importantly, single locus screening reveals that the strength of selection is greatest on the highly expressed BF2 locus. This is the first time that a population of red jungle fowl has been typed at the MHC region, laying the basis for further research into the underlying processes acting to maintain MHC diversity in this and other species.
Genetic variation and selection of MHC class I loci differ in two congeneric frogs.
Kiemnec-Tyburczy, Karen M; Tracy, Karen E; Lips, Karen R; Zamudio, Kelly R
2018-04-01
Major histocompatibility complex (MHC) genes encode proteins in the acquired immune response pathway that often show distinctive selection-driven patterns in wild vertebrate populations. We examined genetic variation and signatures of selection in the MHC class I alpha 1 (A1)- and alpha 2 (A2)-domain encoding exons of two frog congeners [Agalychnis callidryas (n = 20) and A. lemur (n = 20)] from a single locality in Panama. We also investigated how historical demographic processes may have impacted MHC genetic diversity by analyzing a neutral mitochondrial marker. We found that both MHC domains were highly variable in both species, with both species likely expressing three loci. Our analyses revealed different signatures of selection between the two species, most notably that the A. callidryas A2 domain had experienced positive selection while the A2 domain of A. lemur had not. Diversifying selection acted on the same number of A1 and A2 allelic lineages, but on a higher percentage of A1 sites compared to A2 sites. Neutrality tests of mitochondrial haplotypes predominately indicated that the two species were at genetic equilibrium when the samples were collected. In addition, two historical tests of demography indicated both species have had relatively stable population sizes over the past 100,000 years; thus large population size changes are unlikely to have greatly influenced MHC diversity in either species during this time period. In conclusion, our results suggest that the impact of selection on MHC diversity varied between these two closely related species, likely due to a combination of distinct ecological conditions and past pathogenic pressures.
MHC class I loci of the Bar-Headed goose (Anser indicus)
2010-01-01
MHC class I proteins mediate functions in anti-pathogen defense. MHC diversity has already been investigated by many studies in model avian species, but here we chose the bar-headed goose, a worldwide migrant bird, as a non-model avian species. Sequences from exons encoding the peptide-binding region (PBR) of MHC class I molecules were isolated from liver genomic DNA, to investigate variation in these genes. These are the first MHC class I partial sequences of the bar-headed goose to be reported. A preliminary analysis suggests the presence of at least four MHC class I genes, which share great similarity with those of the goose and duck. A phylogenetic analysis of bar-headed goose, goose and duck MHC class I sequences using the NJ method supports the idea that they all cluster within the anseriforms clade. PMID:21637434
Strand, Tanja; Westerdahl, Helena; Höglund, Jacob; V Alatalo, Rauno; Siitari, Heli
2007-09-01
We found that the Black grouse (Tetrao tetrix) possess low numbers of Mhc class II B (BLB) and Y (YLB) genes with variable diversity and expression. We have therefore shown, for the first time, that another bird species (in this case, a wild lek-breeding galliform) shares several features of the simple Mhc of the domestic chicken (Gallus gallus). The Black grouse BLB genes showed the same level of polymorphism that has been reported in chicken, and we also found indications of balancing selection in the peptide-binding regions. The YLB genes were less variable than the BLB genes, also in accordance with earlier studies in chicken, although their functional significance still remains obscure. We hypothesize that the YLB genes could have been under purifying selection, just as the mammal Mhc-E gene cluster.
An ontology for major histocompatibility restriction.
Vita, Randi; Overton, James A; Seymour, Emily; Sidney, John; Kaufman, Jim; Tallmadge, Rebecca L; Ellis, Shirley; Hammond, John; Butcher, Geoff W; Sette, Alessandro; Peters, Bjoern
2016-01-01
MHC molecules are a highly diverse family of proteins that play a key role in cellular immune recognition. Over time, different techniques and terminologies have been developed to identify the specific type(s) of MHC molecule involved in a specific immune recognition context. No consistent nomenclature exists across different vertebrate species. To correctly represent MHC related data in The Immune Epitope Database (IEDB), we built upon a previously established MHC ontology and created an ontology to represent MHC molecules as they relate to immunological experiments. This ontology models MHC protein chains from 16 species, deals with different approaches used to identify MHC, such as direct sequencing verses serotyping, relates engineered MHC molecules to naturally occurring ones, connects genetic loci, alleles, protein chains and multi-chain proteins, and establishes evidence codes for MHC restriction. Where available, this work is based on existing ontologies from the OBO foundry. Overall, representing MHC molecules provides a challenging and practically important test case for ontology building, and could serve as an example of how to integrate other ontology building efforts into web resources.
MHC class II B diversity in blue tits: a preliminary study.
Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena
2013-07-01
In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4-7 fragments, indicating a minimum number of 2-4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date.
MHC class II B diversity in blue tits: a preliminary study
Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena
2013-01-01
In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4–7 fragments, indicating a minimum number of 2–4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date. PMID:23919136
ɣδ T cell receptor ligands and modes of antigen recognition
Champagne, Eric
2011-01-01
T lymphocytes expressing the γδ-type of T cell receptors for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs. PMID:21298486
γδ T cell receptor ligands and modes of antigen recognition.
Champagne, Eric
2011-04-01
T lymphocytes expressing the γδ-type of T cell receptors (TCRs) for antigens contribute to all aspects of immune responses, including defenses against viruses, bacteria, parasites and tumors, allergy and autoimmunity. Multiple subsets have been individualized in humans as well as in mice and they appear to recognize in a TCR-dependent manner antigens as diverse as small non-peptidic molecules, soluble or membrane-anchored polypeptides and molecules related to MHC antigens on cell surfaces, implying diverse modes of antigen recognition. We review here the γδ TCR ligands which have been identified along the years and their characteristics, with emphasis on a few systems which have been extensively studied such as human γδ T cells responding to phosphoantigens or murine γδ T cells activated by allogeneic MHC antigens. We discuss a speculative model of antigen recognition involving simultaneous TCR recognition of MHC-like and non-MHC ligands which could fit with most available data and shares many similarities with the classical model of MHC-restricted antigen recognition for peptides or lipids by T cells subsets with αβ-type TCRs.
[Neuromuscular system and aging: involutions and implications].
Paillard, Thierry
2013-12-01
In aged human, the number of muscle fibers and motor units decreases. The remaining motor units lose their functionality (decrease of the discharge frequency, greater fluctuation of the discharge) particularly those which contain type II fibers. The renewal of intracellular proteins declines which creates a negative balance between the daily protein losses and the capacities to renew them. The activity of the protein kinase (Akt) that stimulates the synthesis of regulation proteins (mTOR, p70S6, IGFBP-5) declines whereas the factors of degradation of proteins (NF-kappa B) are activated. Besides, the process of activation and proliferation of satellite cells is affected and the production of anabolic hormones and local factors is decreased. After a strength training program, muscle hypertrophy is linked to the protein synthesis at the level of myosin heavy chain (MHC) isoforms in older subjects. However, the transcription of the genes that code the MHC-I (slow form) increases and the transcription of the genes that code the MHC-II (fast form) decreases. Thus, the transition of the phenotype towards a slower form cannot be inverted by strength training during the advanced in age. Moreover, strength training enables to decrease the proportion of fibers containing MHC of hybrid form in the process of evolution. Hence, strength training can engender a stabilization of the muscular phenotype i.e. different isoforms of MHC. In addition, strength training counteracts the noxious effects mentioned above by generating muscular hypertrophy thanks to a reactive increase in the production of anabolic hormones. A program of aerobic training can induce an increase in the synthesis of ARN messengers coding isoforms related to the oxidative metabolism (MHC-I and to a lesser extent MHC-IIa) while the transcribed for the type MHC-IIx decrease.
Functional implications of Major Histocompatibility (MH) variation using estuarine fish populations.
Cohen, Sarah; Tirindelli, Joëlle; Gomez-Chiarri, Marta; Nacci, Diane
2006-12-01
Recently, there has been a dramatic expansion of studies of major histocompatibility complex (MHC) variation aimed at discovering functional differences in immunity across wild populations of diverse vertebrate species. Some species with relatively low genetic diversity or under strong directional selection by pathogens have revealed fascinating cases of MHC allelic disease linkage. More generally in genetically diverse species, however, these linkages may be hard to find. In this paper, we review approaches for assessing functional variation in MHC and discuss their potential use for discovering smaller-scale intraspecific spatial and temporal patterns of MHC variation. Then, we describe and illustrate an approach using the structural model to produce a population composite of variation in antigen-binding regions by mapping population-specific substitutions onto functional regions of the molecule. We are producing models of variation in major histocompatibility (MH) loci for populations of non-migratory fish (killifish, Fundulus heteroclitus) resident at sites that vary dramatically in environmental quality. We discuss the goal of relating MH population variation to functional differences in disease susceptibility such as those inferred by observations of parasitic infection and direct measurement of bacterial challenges in the laboratory. Our study has focused on relatively well-studied killifish populations, including those resident in a highly disturbed, chemically contaminated estuary and nearby less contaminated sites. Population-specific genetic changes at MHC antigen-binding loci are described, and evidence relevant to functional implications of these changes is reviewed. Population-specific patterns of variation in antigen-binding regions in combination with a range of assessments of immune function will provide a powerful new approach to reveal functional changes in MHC.
Osborne, Megan J; Pilger, Tyler J; Lusk, Joel D; Turner, Thomas F
2017-01-01
Climate change will strongly impact aquatic ecosystems particularly in arid and semi-arid regions. Fish-parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species' adaptive capacity. Here, we combine genetic (MHC class IIβ and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio-temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIβ with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio-temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies. © 2016 John Wiley & Sons Ltd.
Complex MHC class I gene transcription profiles and their functional impact in orangutans
de Groot, Natasja G.; Heijmans, Corrine M.C.; van der Wiel, Marit K.H.; Blokhuis, Jeroen H.; Mulder, Arend; Guethlein, Lisbeth A.; Doxiadis, Gaby G.M.; Claas, Frans H.J.; Parham, Peter; Bontrop, Ronald E.
2015-01-01
MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented here. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by KIR. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I antibodies, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209
Tracy, Karen E; Kiemnec-Tyburczy, Karen M; DeWoody, J Andrew; Parra-Olea, Gabriela; Zamudio, Kelly R
2015-06-01
Immune gene evolution can be critical to species survival in the face of infectious disease. In particular, polymorphism in the genes of the major histocompatibility complex (MHC) helps vertebrates combat novel and diverse pathogens by increasing the number of pathogen-derived proteins that can initiate the host's acquired immune response. In this study, we used a combination of presumably adaptive and neutral markers to investigate MHC evolution in populations of five salamander species within the Ambystoma velasci complex, a group consisting of 15 recently diverged species, several of which are endangered. We isolated 31 unique MHC class II β alleles from 75 total individuals from five species in this complex. MHC heterozygosity was significantly lower than expected for all five species, and we found no clear relationship between number of MHC alleles and species range, life history, or level of heterozygosity. We inferred a phylogeny representing the evolutionary history of Ambystoma MHC, with which we found signatures of positive selection on the overall gene, putative peptide-binding residues, and allelic lineages. We identified several instances of trans-species polymorphism, a hallmark of balancing selection observed in other groups of closely related species. In contrast, we did not detect comparable allelic diversity or signatures of selection on neutral loci. Additionally, we identified 17 supertypes among the 44 unique Ambystoma alleles, indicating that these sequences may encode functionally distinct MHC variants. We therefore have strong evidence that positive selection is a major evolutionary force driving patterns of MHC polymorphism in this recently radiated species complex.
Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus).
Bollmer, Jennifer L; Vargas, F Hernán; Parker, Patricia G
2007-07-01
The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC.
Reduced MHC and neutral variation in the Galápagos hawk, an island endemic
2011-01-01
Background Genes at the major histocompatibility complex (MHC) are known for high levels of polymorphism maintained by balancing selection. In small or bottlenecked populations, however, genetic drift may be strong enough to overwhelm the effect of balancing selection, resulting in reduced MHC variability. In this study we investigated MHC evolution in two recently diverged bird species: the endemic Galápagos hawk (Buteo galapagoensis), which occurs in small, isolated island populations, and its widespread mainland relative, the Swainson's hawk (B. swainsoni). Results We amplified at least two MHC class II B gene copies in each species. We recovered only three different sequences from 32 Galápagos hawks, while we amplified 20 unique sequences in 20 Swainson's hawks. Most of the sequences clustered into two groups in a phylogenetic network, with one group likely representing pseudogenes or nonclassical loci. Neutral genetic diversity at 17 microsatellite loci was also reduced in the Galápagos hawk compared to the Swainson's hawk. Conclusions The corresponding loss in neutral diversity suggests that the reduced variability present at Galápagos hawk MHC class II B genes compared to the Swainson's hawk is primarily due to a founder event followed by ongoing genetic drift in small populations. However, purifying selection could also explain the low number of MHC alleles present. This lack of variation at genes involved in the adaptive immune response could be cause for concern should novel diseases reach the archipelago. PMID:21612651
Grossen, Christine; Keller, Lukas; Biebach, Iris; Croll, Daniel
2014-01-01
The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection. PMID:24945814
How nonuniform contact profiles of T cell receptors modulate thymic selection outcomes
NASA Astrophysics Data System (ADS)
Chen, Hanrong; Chakraborty, Arup K.; Kardar, Mehran
2018-03-01
T cell receptors (TCRs) bind foreign or self-peptides attached to major histocompatibility complex (MHC) molecules, and the strength of this interaction determines T cell activation. Optimizing the ability of T cells to recognize a diversity of foreign peptides yet be tolerant of self-peptides is crucial for the adaptive immune system to properly function. This is achieved by selection of T cells in the thymus, where immature T cells expressing unique, stochastically generated TCRs interact with a large number of self-peptide-MHC; if a TCR does not bind strongly enough to any self-peptide-MHC, or too strongly with at least one self-peptide-MHC, the T cell dies. Past theoretical work cast thymic selection as an extreme value problem and characterized the statistical enrichment or depletion of amino acids in the postselection TCR repertoire, showing how T cells are selected to be able to specifically recognize peptides derived from diverse pathogens yet have limited self-reactivity. Here, we investigate how the diversity of the postselection TCR repertoire is modified when TCRs make nonuniform contacts with peptide-MHC. Specifically, we were motivated by recent experiments showing that amino acids at certain positions of a TCR sequence have large effects on thymic selection outcomes, and crystal structure data that reveal a nonuniform contact profile between a TCR and its peptide-MHC ligand. Using a representative TCR contact profile as an illustration, we show via simulations that the statistical enrichment or depletion of amino acids now varies by position according to the contact profile, and, importantly, it depends on the implementation of nonuniform contacts during thymic selection. We explain these nontrivial results analytically. Our study has implications for understanding the selection forces that shape the functionality of the postselection TCR repertoire.
Razali, Haslina; O'Connor, Emily; Drews, Anna; Burke, Terry; Westerdahl, Helena
2017-07-28
High-throughput sequencing enables high-resolution genotyping of extremely duplicated genes. 454 amplicon sequencing (454) has become the standard technique for genotyping the major histocompatibility complex (MHC) genes in non-model organisms. However, illumina MiSeq amplicon sequencing (MiSeq), which offers a much higher read depth, is now superseding 454. The aim of this study was to quantitatively and qualitatively evaluate the performance of MiSeq in relation to 454 for genotyping MHC class I alleles using a house sparrow (Passer domesticus) dataset with pedigree information. House sparrows provide a good study system for this comparison as their MHC class I genes have been studied previously and, consequently, we had prior expectations concerning the number of alleles per individual. We found that 454 and MiSeq performed equally well in genotyping amplicons with low diversity, i.e. amplicons from individuals that had fewer than 6 alleles. Although there was a higher rate of failure in the 454 dataset in resolving amplicons with higher diversity (6-9 alleles), the same genotypes were identified by both 454 and MiSeq in 98% of cases. We conclude that low diversity amplicons are equally well genotyped using either 454 or MiSeq, but the higher coverage afforded by MiSeq can lead to this approach outperforming 454 in amplicons with higher diversity.
Sonsthagen, Sarah A.; Fales, Krystal R.; Jay, Chadwick V.; Sage, George K.; Talbot, Sandra L.
2014-01-01
Increased global temperature and associated changes to Arctic habitats will likely result in the northward advance of species, including an influx of pathogens novel to the Arctic. How species respond to these immunological challenges will depend in part on the adaptive potential of their immune response system. We compared levels of genetic diversity at a gene associated with adaptive immune response [Class II major histocompatibility complex (MHC), DQB exon 2] between populations of walrus (Odobenus rosmarus), a sea ice-dependent Arctic species. Walrus was represented by only five MHC DQB alleles, with frequency differences observed between Pacific and Atlantic populations. MHC DQB alleles appear to be under balancing selection, and most (80 %; n = 4/5) of the alleles were observed in walruses from both oceans, suggesting broad scale differences in the frequency of exposure and diversity of pathogens may be influencing levels of heterozygosity at DQB in walruses. Limited genetic diversity at MHC, however, suggests that walrus may have a reduced capacity to respond to novel immunological challenges associated with shifts in ecological communities and environmental stressors predicted for changing climates. This is particularly pertinent for walrus, since reductions in summer sea ice may facilitate both northward expansion of marine species and associated pathogens from more temperate regions, and exchange of marine mammals and associated pathogens through the recently opened Northwest Passage between the Atlantic and Pacific Oceans in the Canadian high Arctic.
Pan, Hongjie; O'Brien, Thomas F; Wright, Gabriela; Yang, Jialong; Shin, Jinwook; Wright, Kenneth L; Zhong, Xiao-Ping
2013-07-15
Dendritic cell (DC) maturation is characterized by upregulation of cell-surface MHC class II (MHC-II) and costimulatory molecules, and production of a variety of cytokines that can shape both innate and adaptive immunity. Paradoxically, transcription of the MHC-II genes, as well as its activator, CIITA, is rapidly silenced during DC maturation. The mechanisms that control CIITA/MHC-II expression and silencing have not been fully understood. We report in this article that the tumor suppressor tuberous sclerosis complex 1 (TSC1) is a critical regulator of DC function for both innate and adaptive immunity. Its deficiency in DCs results in increased mammalian target of rapamycin (mTOR) complex 1 but decreased mTORC2 signaling, altered cytokine production, impaired CIITA/MHC-II expression, and defective Ag presentation to CD4 T cells after TLR4 stimulation. We demonstrate further that IFN regulatory factor 4 can directly bind to CIITA promoters, and decreased IFN regulatory factor 4 expression is partially responsible for decreased CIITA/MHC-II expression in TSC1-deficient DCs. Moreover, we identify that CIITA/MHC-II silencing during DC maturation requires mTOR complex 1 activity. Together, our data reveal unexpected roles of TSC1/mTOR that control multifaceted functions of DCs.
Xu, Shixia; Ju, Jianfeng; Zhou, Xuming; Wang, Lian; Zhou, Kaiya; Yang, Guang
2012-01-01
To further extend our understanding of the mechanism causing the current nearly extinct status of the baiji (Lipotes vexillifer), one of the most critically endangered species in the world, genetic diversity at the major histocompatibility complex (MHC) class II DRB locus was investigated in the baiji. Nine highly divergent DRB alleles were identified in 17 samples, with an average of 28.4 (13.2%) nucleotide difference and 16.7 (23.5%) amino acid difference between alleles. The unexpectedly high levels of DRB allelic diversity in the baiji may partly be attributable to its evolutionary adaptations to the freshwater environment which is regarded to have a higher parasite diversity compared to the marine environment. In addition, balancing selection was found to be the main mechanisms in generating sequence diversity at baiji DRB gene. Considerable sequence variation at the adaptive MHC genes despite of significant loss of neutral genetic variation in baiji genome might suggest that intense selection has overpowered random genetic drift as the main evolutionary forces, which further suggested that the critically endangered or nearly extinct status of the baiji is not an outcome of genetic collapse. PMID:22272349
MHC class II-assortative mate choice in European badgers (Meles meles).
Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L
2015-06-01
The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population. © 2015 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Ploshnitsa, Anna I; Goltsman, Mikhail E; Macdonald, David W; Kennedy, Lorna J; Sommer, Simone
2012-01-01
Populations of Arctic foxes (Vulpes lagopus) have been isolated on two of the Commander Islands (Bering and Mednyi) from the circumpolar distributed mainland population since the Pleistocene. In 1970–1980, an epizootic outbreak of mange caused a severe population decline on Mednyi Island. Genes of the major histocompatibility complex (MHC) play a primary role in infectious disease resistance. The main objectives of our study were to compare contemporary variation of MHC class II in mainland and island Arctic foxes, and to document the effects of the isolation and the recent bottleneck on MHC polymorphism by analyzing samples from historical and contemporary Arctic foxes. In 184 individuals, we found 25 unique MHC class II DRB and DQB alleles, and identified evidence of balancing selection maintaining allelic lineages over time at both loci. Twenty different MHC alleles were observed in mainland foxes and eight in Bering Island foxes. The historical Mednyi population contained five alleles and all contemporary individuals were monomorphic at both DRB and DQB. Our data indicate that despite positive and diversifying selection leading to elevated rates of amino acid replacement in functionally important antigen-binding sites, below a certain population size, balancing selection may not be strong enough to maintain genetic diversity in functionally important genes. This may have important fitness consequences and might explain the high pathogen susceptibility in some island populations. This is the first study that compares MHC diversity before and after a bottleneck in a wild canid population using DNA from museum samples. PMID:22408734
Nielsen, Morten; Justesen, Sune; Lund, Ole; Lundegaard, Claus; Buus, Søren
2010-11-13
Binding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Predicting which peptides bind to an MHC-II molecule is therefore of pivotal importance for understanding the immune response and its effect on host-pathogen interactions. The experimental cost associated with characterizing the binding motif of an MHC-II molecule is significant and large efforts have therefore been placed in developing accurate computer methods capable of predicting this binding event. Prediction of peptide binding to MHC-II is complicated by the open binding cleft of the MHC-II molecule, allowing binding of peptides extending out of the binding groove. Moreover, the genes encoding the MHC molecules are immensely diverse leading to a large set of different MHC molecules each potentially binding a unique set of peptides. Characterizing each MHC-II molecule using peptide-screening binding assays is hence not a viable option. Here, we present an MHC-II binding prediction algorithm aiming at dealing with these challenges. The method is a pan-specific version of the earlier published allele-specific NN-align algorithm and does not require any pre-alignment of the input data. This allows the method to benefit also from information from alleles covered by limited binding data. The method is evaluated on a large and diverse set of benchmark data, and is shown to significantly out-perform state-of-the-art MHC-II prediction methods. In particular, the method is found to boost the performance for alleles characterized by limited binding data where conventional allele-specific methods tend to achieve poor prediction accuracy. The method thus shows great potential for efficient boosting the accuracy of MHC-II binding prediction, as accurate predictions can be obtained for novel alleles at highly reduced experimental costs. Pan-specific binding predictions can be obtained for all alleles with know protein sequence and the method can benefit by including data in the training from alleles even where only few binders are known. The method and benchmark data are available at http://www.cbs.dtu.dk/services/NetMHCIIpan-2.0.
MHC class II genes in European wolves: a comparison with dogs.
Seddon, Jennifer M; Ellegren, Hans
2002-10-01
The genome of the grey wolf, one of the most widely distributed land mammal species, has been subjected to both stochastic factors, including biogeographical subdivision and population fragmentation, and strong selection during the domestication of the dog. To explore the effects of drift and selection on the partitioning of MHC variation in the diversification of species, we present nine DQA, 10 DQB, and 17 DRB1 sequences of the second exon for European wolves and compare them with sequences of North American wolves and dogs. The relatively large number of class II alleles present in both European and North American wolves attests to their large historical population sizes, yet there are few alleles shared between these regions at DQB and DRB1. Similarly, the dog has an extensive array of class II MHC alleles, a consequence of a genetically diverse origin, but allelic overlap with wolves only at DQA. Although we might expect a progression from shared alleles to shared allelic lineages during differentiation, the partitioning of diversity between wolves and dogs at DQB and DRB1 differs from that at DQA. Furthermore, an extensive region of nucleotide sequence shared between DRB1 and DQB alleles and a shared motif suggests intergenic recombination may have contributed to MHC diversity in the Canidae.
Strandh, Maria; Lannefors, Mimi; Bonadonna, Francesco; Westerdahl, Helena
2011-10-01
The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subantarctica. Blue petrels are long-lived, monogamous birds which suggest the necessity of an accurate mate choice process. The species is ancestral to songbirds (Passeriformes; many MHC loci), although not to gamefowls (Galliformes; few MHC loci). Considering the phylogenetic relationships and the low subantarctic pathogen burden, we expected few rather than many MHC loci in the blue petrel. However, when we analysed partial MHC class I and class II B cDNA and gDNA sequences we found evidence for as many as at least eight MHC class I loci and at least two class II B loci. These class I and II B sequences showed classical MHC characteristics, e.g. high nucleotide diversity, especially in putative peptide-binding regions where signatures of positive selection was detected. Trans-species polymorphism was found between MHC class II B sequences of the blue petrel and those of thin-billed prion, Pachyptila belcheri, two species that diverged ∼25 MYA. The observed MHC allele richness in the blue petrel may well serve as a basis for mate choice, especially since olfactory discrimination of MHC types may be possible in this species.
Rehm, Kristina E; Connor, Ramsey F; Jones, Gwendolyn J B; Yimbu, Kenneth; Mannie, Mark D; Roper, Rachel L
2009-01-01
Vaccinia virus (VACV) is the current live virus vaccine used to protect humans against smallpox and monkeypox, but its use is contraindicated in several populations because of its virulence. It is therefore important to elucidate the immune evasion mechanisms of VACV. We found that VACV infection of antigen-presenting cells (APCs) significantly decreased major histocompatibility complex (MHC) II antigen presentation and decreased synthesis of 13 chemokines and cytokines, suggesting a potent viral mechanism for immune evasion. In these model systems, responding T cells were not directly affected by virus, indicating that VACV directly affects the APC. VACV significantly decreased nitric oxide production by peritoneal exudate cells and the RAW macrophage cell line in response to lipopolysaccharide (LPS) and interferon (IFN)-γ, decreased class II MHC expression on APCs, and induced apoptosis in macrophages and dendritic cells. However, VACV decreased antigen presentation by 1153 B cells without apparent apoptosis induction, indicating that VACV differentially affects B lymphocytes and other APCs. We show that the key mechanism of VACV inhibition of antigen presentation may be its reduction of antigenic peptide loaded into the cleft of MHC class II molecules. These data indicate that VACV evades the host immune response by impairing critical functions of the APC. PMID:20067538
Zhang, Xiyang; Lin, Wenzhi; Zhou, Ruilian; Gui, Duan; Yu, Xinjian; Wu, Yuping
2016-03-01
It has been widely reported that the major histocompatibility complex (MHC) is under balancing selection due to its immune function across terrestrial and aquatic mammals. The comprehensive studies at MHC and other neutral loci could give us a synthetic evaluation about the major force determining genetic diversity of species. Previously, a low level of genetic diversity has been reported among the Indo-Pacific humpback dolphin (Sousa chinensis) in the Pearl River Estuary (PRE) using both mitochondrial marker and microsatellite loci. Here, the expression and sequence polymorphism of 2 MHC class II genes (DQB and DRB) in 32 S. chinensis from PRE collected between 2003 and 2011 were investigated. High ratios of non-synonymous to synonymous substitution rates, codon-based selection analysis, and trans-species polymorphism (TSP) support the hypothesis that balancing selection acted on S. chinensis MHC sequences. However, only 2 haplotypes were detected at either DQB or DRB loci. Moreover, the lack of deviation from the Hardy-Weinberg expectation at DRB locus combined with the relatively low heterozygosity at both DQB locus and microsatellite loci suggested that balancing selection might not be sufficient, which further suggested that genetic drift associated with historical bottlenecks was not mitigated by balancing selection in terms of the loss of MHC and neutral variation in S. chinensis. The combined results highlighted the importance of maintaining the genetic diversity of the endangered S. chinensis. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Faulks, L K; Östman, Ö
2016-04-01
This study assessed the major histocompatibility complex (MHC) and neutral genetic variation and structure in two percid species, perch Perca fluviatilis and zander Sander lucioperca, in a unique brackish ecosystem, the Baltic Sea. In addition, to assess the importance of MHC diversity to disease susceptibility in these populations, comparisons were made to an introduced, disease susceptible, P. fluviatilis population in Australia. Eighty-three MHC class II B exon 2 variants were amplified: 71 variants from 92 P. fluviatilis samples, and 12 variants from 82 S. lucioperca samples. Microsatellite and MHC data revealed strong spatial genetic structure in S. lucioperca, but not P. fluviatilis, across the Baltic Sea. Both microsatellite and MHC data showed higher levels of genetic diversity in P. fluviatilis from the Baltic Sea compared to Australia, which may have facilitated the spread of an endemic virus, EHNV in the Australian population. The relatively high levels of genetic variation in the Baltic Sea populations, together with spatial genetic structure, however, suggest that there currently seems to be little risk of disease epidemics in this system. To ensure this remains the case in the face of ongoing environmental changes, fisheries and habitat disturbance, the conservation of local-scale genetic variation is recommended. © 2016 The Fisheries Society of the British Isles.
Santonastaso, Trent; Lighten, Jackie; van Oosterhout, Cock; Jones, Kenneth L; Foufopoulos, Johannes; Anthony, Nicola M
2017-07-01
The major histocompatibility complex (MHC) plays a key role in disease resistance and is the most polymorphic gene region in vertebrates. Although habitat fragmentation is predicted to lead to a loss in MHC variation through drift, the impact of other evolutionary forces may counter this effect. Here we assess the impact of selection, drift, migration, and recombination on MHC class II and microsatellite variability in 14 island populations of the Aegean wall lizard Podarcis erhardii . Lizards were sampled from islands within the Cyclades (Greece) formed by rising sea levels as the last glacial maximum approximately 20,000 before present. Bathymetric data were used to determine the area and age of each island, allowing us to infer the corresponding magnitude and timing of genetic bottlenecks associated with island formation. Both MHC and microsatellite variation were positively associated with island area, supporting the hypothesis that drift governs neutral and adaptive variation in this system. However, MHC but not microsatellite variability declined significantly with island age. This discrepancy is likely due to the fact that microsatellites attain mutation-drift equilibrium more rapidly than MHC. Although we detected signals of balancing selection, recombination and migration, the effects of these evolutionary processes appeared negligible relative to drift. This study demonstrates how land bridge islands can provide novel insights into the impact of historical fragmentation on genetic diversity as well as help disentangle the effects of different evolutionary forces on neutral and adaptive diversity.
The major histocompatibility system provides a unique genetic locus in vertebrates to assess genetic diversity and to look for the effects of selecti.on on the immune system. Fish population studies using MHC are fairly new, and thus far they have focused on endangered population...
The major histocompatibility system provides a unique complex of genetic loci in vertebrates to assess genetic diversity and to look for the effects of selection on the adaptive immune system. Studies using mammals and birds
have demonstrated relationships between MHC genotyp...
NASA Astrophysics Data System (ADS)
Xia, Zhen; Chen, Huabiao; Kang, Seung-Gu; Huynh, Tien; Fang, Justin W.; Lamothe, Pedro A.; Walker, Bruce D.; Zhou, Ruhong
2014-02-01
Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function.
van Hateren, Andy; Bailey, Alistair; Elliott, Tim
2017-01-01
We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation. PMID:28299193
Oliver, M.K.; Telfer, S.; Piertney, S.B.
2008-01-01
The fundamental role of the major histocompatibility complex (MHC) in immune recognition has led to a general consensus that the characteristically high levels of functional polymorphism at MHC genes is maintained by balancing selection operating through host–parasite coevolution. However, the actual mechanism by which selection operates is unclear. Two hypotheses have been proposed: overdominance (or heterozygote superiority) and negative frequency-dependent selection. Evidence for these hypotheses was evaluated by examining MHC–parasite relationships in an island population of water voles (Arvicola terrestris). Generalized linear mixed models were used to examine whether individual variation at an MHC class II DRB locus explained variation in the individual burdens of five different parasites. MHC genotype explained a significant amount of variation in the burden of gamasid mites, fleas (Megabothris walkeri) and nymphs of sheep ticks (Ixodes ricinus). Additionally, MHC heterozygotes were simultaneously co-infected by fewer parasite types than homozygotes. In each case where an MHC-dependent effect on parasite burden was resolved, the heterozygote genotype was associated with fewer parasites, and the heterozygote outperformed each homozygote in two of three cases, suggesting an overall superiority against parasitism for MHC heterozygote genotypes. This is the first demonstration of MHC heterozygote superiority against multiple parasites in a natural population, a mechanism that could help maintain high levels of functional MHC genetic diversity in natural populations. PMID:19129114
Gene duplication and fragmentation in the zebra finch major histocompatibility complex.
Balakrishnan, Christopher N; Ekblom, Robert; Völker, Martin; Westerdahl, Helena; Godinez, Ricardo; Kotkiewicz, Holly; Burt, David W; Graves, Tina; Griffin, Darren K; Warren, Wesley C; Edwards, Scott V
2010-04-01
Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages.
Glucocorticoid-induced skeletal muscle atrophy in vitro is attenuated by mechanical stimulation
NASA Technical Reports Server (NTRS)
Chromiak, J. A.; Vandenburgh, H. H.
1992-01-01
Glucocorticoids induce rapid atrophy of fast skeletal myofibers in vivo, and either weight lifting or endurance exercise reduces this atrophy by unknown mechanisms. We examined the effects of the synthetic glucocorticoid dexamethasone (Dex) on protein turnover in tissue-cultured avian fast skeletal myofibers and determined whether repetitive mechanical stretch altered the myofiber response to Dex. In static cultures after 3-5 days, 10(-8) M Dex decreased total protein content 42-74%, total protein synthesis rates 38-56%, mean myofiber diameter 35%, myosin heavy chain (MHC) content 86%, MHC synthesis rate 44%, and fibronectin synthesis rate 29%. Repetitive 10% stretch-relaxations of the cultured myofibers for 60 s every 5 min for 3-4 days prevented 52% of the Dex-induced decrease in protein content, 42% of the decrease in total protein synthesis rate, 77% of the decrease in MHC content, 42% of the decrease in MHC synthesis rate, and 67% of the decrease in fibronectin synthesis rate. This in vitro model system will complement in vivo studies in understanding the mechanism by which mechanical activity and glucocorticoids interact to regulate skeletal muscle growth.
Winternitz, Jamie C; Wares, John P
2013-01-01
Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high-amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model-averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC. PMID:23789067
Ludke, Ana; Wu, Jun; Nazari, Mansoreh; Hatta, Kota; Shao, Zhengbo; Li, Shu-Hong; Song, Huifang; Ni, Nathan C; Weisel, Richard D; Li, Ren-Ke
2015-07-01
Cell therapy to prevent cardiac dysfunction after myocardial infarction (MI) is less effective in aged patients because aged cells have decreased regenerative capacity. Allogeneic transplanted stem cells (SCs) from young donors are usually rejected. Maintaining transplanted SC immunoprivilege may dramatically improve regenerative outcomes. The uterus has distinct immune characteristics, and we showed that reparative uterine SCs home to the myocardium post-MI. Here, we identify immunoprivileged uterine SCs and assess their effects on cardiac regeneration after allogeneic transplantation. We found more than 20% of cells in the mouse uterus have undetectable MHC I expression by flow cytometry. Uterine MHC I((neg)) and MHC I((pos)) cells were separated by magnetic cell sorting. The MHC I((neg)) population expressed the SC markers CD34, Sca-1 and CD90, but did not express MHC II or c-kit. In vitro, MHC I((neg)) and ((pos)) SCs show colony formation and endothelial differentiation capacity. In mixed leukocyte co-culture, MHC I((neg)) cells showed reduced cell death and leukocyte proliferation compared to MHC I((pos)) cells. MHC I((neg)) and ((pos)) cells had significantly greater angiogenic capacity than mesenchymal stem cells. The benefits of intramyocardial injection of allogeneic MHC I((neg)) cells after MI were comparable to syngeneic bone marrow cell transplantation, with engraftment in cardiac tissue and limited recruitment of CD4 and CD8 cells up to 21 days post-MI. MHC I((neg)) cells preserved cardiac function, decreased infarct size and improved regeneration post-MI. This new source of immunoprivileged cells can induce neovascularization and could be used as allogeneic cell therapy for regenerative medicine. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cammen, Kristina M; Wilcox, Lynsey A; Rosel, Patricia E; Wells, Randall S; Read, Andrew J
2015-02-01
The role the major histocompatibility complex (MHC) plays in response to exposure to environmental toxins is relatively poorly understood, particularly in comparison to its well-described role in pathogen immunity. We investigated associations between MHC diversity and resistance to brevetoxins in common bottlenose dolphins (Tursiops truncatus). A previous genome-wide association study investigating an apparent difference in harmful algal bloom (HAB) resistance among dolphin populations in the Gulf of Mexico identified genetic variation associated with survival in close genomic proximity to multiple MHC class II loci. Here, we characterized genetic variation at DQA, DQB, DRA, and DRB loci in dolphins from central-west Florida and the Florida Panhandle, including dolphins that died during HABs and dolphins presumed to have survived HAB exposure. We found that DRB and DQB exhibited patterns of genetic differentiation among geographic regions that differed from neutral microsatellite loci. In addition, genetic differentiation at DRB across multiple pairwise comparisons of live and dead dolphins was greater than differentiation observed at neutral loci. Our findings at these MHC loci did not approach the strength of association with survival previously described for a nearby genetic variant. However, the results provide evidence that selective pressures at the MHC vary among dolphin populations that differ in the frequency of HAB exposure and that the overall composition of DRB variants differs between dolphin survivors and non-survivors of HABs. These results may suggest a potential role of MHC diversity in variable survival of bottlenose dolphins exposed to HABs.
Chakrabarti, Saikat; Roy, Syamal
2016-01-01
Background Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activation. Methodology/Principal Findings MΦ of CBA/j mice were infected with Leishmania donovani (I-MΦ). Two different anti-Aκ mAbs were used to monitor the status of MHC-II protein under parasitized condition. One of them (11.5–2) was conformation specific, whereas the other one (10.2.16) was not. Under parasitized condition, the binding of 11.5–2 decreased significantly with respect to the normal counterpart, whereas that of 10.2.16 remained unaltered. The binding of 11.5–2 was restored to normal upon liposomal delivery of cholesterol in I-MΦ. By molecular dynamics (MD) simulation studies we found that there was considerable conformational fluctuation in the transmembrane domain of the MHC-II protein in the presence of membrane cholesterol than in its absence, which possibly influenced the distal peptide binding groove. This was evident from the faster dissociation of the cognate peptide from peptide-MHC complex under parasitized condition, which could be corrected by liposomal delivery of cholesterol in I-MΦ. Conclusion The decrease in membrane cholesterol in I-MΦ may lead to altered conformation of MHC II, and this may contribute to a faster dissociation of the peptide. Furthermore, liposomal delivery of cholesterol in I-MΦ restored its normal antigen presenting function. This observation brings strength to our previous observation on host directed therapeutic application of liposomal cholesterol in experimental visceral leishmaniasis. PMID:27214205
Borg, Asa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena
2011-10-01
Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.
Borg, Åsa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena
2011-01-01
Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance. PMID:22393491
Xia, Zhen; Chen, Huabiao; Kang, Seung-gu; Huynh, Tien; Fang, Justin W.; Lamothe, Pedro A.; Walker, Bruce D.; Zhou, Ruhong
2014-01-01
Immune control of viral infections is modulated by diverse T cell receptor (TCR) clonotypes engaging peptide-MHC class I complexes on infected cells, but the relationship between TCR structure and antiviral function is unclear. Here we apply in silico molecular modeling with in vivo mutagenesis studies to investigate TCR-pMHC interactions from multiple CTL clonotypes specific for a well-defined HIV-1 epitope. Our molecular dynamics simulations of viral peptide-HLA-TCR complexes, based on two independent co-crystal structure templates, reveal that effective and ineffective clonotypes bind to the terminal portions of the peptide-MHC through similar salt bridges, but their hydrophobic side-chain packings can be very different, which accounts for the major part of the differences among these clonotypes. Non-specific hydrogen bonding to viral peptide also accommodates greater epitope variants. Furthermore, free energy perturbation calculations for point mutations on the viral peptide KK10 show excellent agreement with in vivo mutagenesis assays, with new predictions confirmed by additional experiments. These findings indicate a direct structural basis for heterogeneous CTL antiviral function. PMID:24522437
Gene duplication and fragmentation in the zebra finch major histocompatibility complex
2010-01-01
Background Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. Results The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. Conclusion The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages. PMID:20359332
Šimková, Andrea; Civáňová, Kristína; Gettová, Lenka; Gilles, André
2013-01-01
Two cyprinid species, Parachondrostoma toxostoma, an endemic threatened species, and Chondrostoma nasus, an invasive species, live in sympatry in southern France and form two sympatric zones where the presence of intergeneric hybrids is reported. To estimate the potential threat to endemic species linked to the introduction of invasive species, we focused on the DAB genes (functional MHC IIB genes) because of their adaptive significance and role in parasite resistance. More specifically, we investigated (1) the variability of MHC IIB genes, (2) the selection pattern shaping MHC polymorphism, and (3) the extent to which trans-species evolution and intergeneric hybridization affect MHC polymorphism. In sympatric areas, the native species has more diversified MHC IIB genes when compared to the invasive species, probably resulting from the different origins and dispersal of both species. A similar level of MHC polymorphism was found at population level in both species, suggesting similar mechanisms generating MHC diversity. In contrast, a higher number of DAB-like alleles per specimen were found in invasive species. Invasive species tended to express the alleles of two DAB lineages, whilst native species tended to express the alleles of only the DAB3 lineage. Hybrids have a pattern of MHC expression intermediate between both species. Whilst positive selection acting on peptide binding sites (PBS) was demonstrated in both species, a slightly higher number of positively selected sites were identified in C. nasus, which could result from parasite-mediated selection. Bayesian clustering analysis revealed a similar pattern of structuring for the genetic variation when using microsatellites or the MHC approach. We confirmed the importance of trans-species evolution for MHC polymorphism. In addition, we demonstrated bidirectional gene flow for MHC IIB genes in sympatric areas. The positive significant correlation between MHC and microsatellites suggests that demographic factors may contribute to MHC variation on a short time scale. PMID:23824831
High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal
Aguilar, Andres; Roemer, Gary; Debenham, Sally; Binns, Matthew; Garcelon, David; Wayne, Robert K.
2004-01-01
The San Nicolas Island fox (Urocyon littoralis dickeyi) is genetically the most monomorphic sexually reproducing animal population yet reported and has no variation in hypervariable genetic markers. Such low levels of variation imply lower resistance to pathogens, reduced fitness, and problems in distinguishing kin from non-kin. In vertebrates, the MHC contains genes that influence disease resistance and kin recognition and may be under intense balancing selection in some populations. Hence, genetic variation at the MHC might persist despite the extreme monomorphism shown by neutral markers. We examine variation of five loci within the MHC of San Nicolas Island foxes and find remarkably high levels of variation. Further, we show by simulation that genetic monomorphism at neutral loci and high MHC variation could arise only through an extreme population bottleneck of <10 individuals, ≈10–20 generations ago, accompanied by unprecedented selection coefficients of >0.5 on MHC loci. These results support the importance of balancing selection as a mechanism to maintain variation in natural populations and expose the difficulty of using neutral markers as surrogates for variation in fitness-related loci. PMID:14990802
Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.
Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less
Broadly targeted CD8 + T cell responses restricted by major histocompatibility complex E
Hansen, Scott G.; Wu, Helen L.; Burwits, Benjamin J.; ...
2016-02-12
Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, nonclassical, MHC-Ib molecule with limited polymorphism primarily involved in regulation of NK cell reactivity via interaction with NKG2/CD94 receptors. We found that vaccination of rhesus macaques with Rh157.5/.4 gene-deleted rhesus Cytomegalovirus (RhCMV) vectors uniquely diverts MHC-E function to presentation of highly diverse peptide epitopes to CD8α/β + T cells, approximately 4 distinct epitopes per 100 amino acids, in all tested protein antigens. Computational structural analysis revealed that a relatively stable, open binding groove in MHC-E attains broad peptide binding specificity by imposing a similar backbone configuration on bound peptides withmore » few restrictions based on amino acid side chains. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8 + T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.« less
Andersen, J L; Gruschy-Knudsen, T
2018-02-01
Long-term heavy load contractions decrease the relative amount of the myosin heavy chain (MHC) IIX isoform in human skeletal muscle, but the timing of the down-regulation in the short term is unknown. Untrained subjects performed two resistance bouts, in two consecutive days, with one leg, the other leg serving as a control (age 24±1, n=5). Muscle biopsies were obtained in both legs before, immediately after, and 24, 54, and 96 hours after exercise. Serial cryosection analysis combined immunohistochemistry and ATPase histochemistry with In Situ hybridization to identify the distribution of MHC isoforms and their corresponding transcripts, enabling identification of transitional fibers. Fibers positive solely for MHC IIX mRNA decreased in the exercised leg throughout the study period. At 96 hours post-exercise, no fibers solely expressed MHC IIX mRNA. In contrast, the number of fibers expressing MHC IIA mRNA increased throughout the study period. The percentage of fibers expressing mRNA for MHC I was unchanged in both legs at all time points. Pronounced depletion of glycogen in the MHC IIX fibers of the exercised leg verifies that the type IIX fibers were active during the heavy load contractions. Major mismatch between MHC at the mRNA and protein levels was only found in the fibers of the exercised leg. These data provide unequivocal in situ evidence of an immediate shutdown of the MHC IIX gene after resistance exercise. A further novel finding was that the silencing of the MHC IIX gene is sustained at least 4 days after removal of the stimulus. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Parasite-mediated selection drives an immunogenetic trade-off in plains zebras (Equus quagga)
Kamath, Pauline L.; Turner, Wendy C.; Küsters, Martina; Getz, Wayne M.
2014-01-01
Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite ‘susceptibility alleles’ were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation. PMID:24718761
Parasite-mediated selection drives an immunogenetic tradeoff in plains zebra (Equus quagga)
Kamath, Pauline L.; Turner, Wendy C.; Küsters, Martina; Getz, Wayne M.
2014-01-01
Pathogen evasion of the host immune system is a key force driving extreme polymorphism in genes of the major histocompatibility complex (MHC). Although this gene family is well characterized in structure and function, there is still much debate surrounding the mechanisms by which MHC diversity is selectively maintained. Many studies have investigated relationships between MHC variation and specific pathogens, and have found mixed support for and against the hypotheses of heterozygote advantage, frequency-dependent or fluctuating selection. Few, however, have focused on the selective effects of multiple parasite types on host immunogenetic patterns. Here, we examined relationships between variation in the equine MHC gene, ELA-DRA, and both gastrointestinal (GI) and ectoparasitism in plains zebras (Equus quagga). Specific alleles present at opposing population frequencies had antagonistic effects, with rare alleles associated with increased GI parasitism and common alleles with increased tick burdens. These results support a frequency-dependent mechanism, but are also consistent with fluctuating selection. Maladaptive GI parasite ‘susceptibility alleles’ were reduced in frequency, suggesting that these parasites may play a greater selective role at this locus. Heterozygote advantage, in terms of allele mutational divergence, also predicted decreased GI parasite burden in genotypes with a common allele. We conclude that an immunogenetic trade-off affects resistance/susceptibility to parasites in this system. Because GI and ectoparasites do not directly interact within hosts, our results uniquely show that antagonistic parasite interactions can be indirectly modulated through the host immune system. This study highlights the importance of investigating the role of multiple parasites in shaping patterns of host immunogenetic variation.
Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix
2017-01-01
Background A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. Methods To do this we used captive house sparrows (Passer domesticus) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Results Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. Discussion We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic. PMID:28875066
Lukasch, Barbara; Westerdahl, Helena; Strandh, Maria; Winkler, Hans; Moodley, Yoshan; Knauer, Felix; Hoi, Herbert
2017-01-01
A well-functioning immune defence is crucial for fitness, but our knowledge about the immune system and its complex interactions is still limited. Major histocompatibility complex (MHC) molecules are involved in T-cell mediated adaptive immune responses, but MHC is also highly upregulated during the initial innate immune response. The aim of our study was therefore to determine to what extent the highly polymorphic MHC is involved in interactions of the innate and adaptive immune defence and if specific functional MHC alleles (FA) or heterozygosity at the MHC are more important. To do this we used captive house sparrows ( Passer domesticus ) to survey MHC diversity and immune function controlling for several environmental factors. MHC class I alleles were identified using parallel amplicon sequencing and to mirror immune function, several immunological tests that correspond to the innate and adaptive immunity were conducted. Our results reveal that MHC was linked to all immune tests, highlighting its importance for the immune defence. While all innate responses were associated with one single FA, adaptive responses (cell-mediated and humoral) were associated with several different alleles. We found that repeated injections of an antibody in nestlings and adults were linked to different FA and hence might affect different areas of the immune system. Also, individuals with a higher number of different FA produced a smaller secondary response, indicating a disadvantage of having numerous MHC alleles. These results demonstrate the complexity of the immune system in relation to the MHC and lay the foundation for other studies to further investigate this topic.
Liu, Xiao; Xu, Yinyin; Liang, Dequan; Gao, Peng; Sun, Yepeng; Gifford, Benjamin; D’Ascenzo, Mark; Liu, Xiaomin; Tellier, Laurent C. A. M.; Yang, Fang; Tong, Xin; Chen, Dan; Zheng, Jing; Li, Weiyang; Richmond, Todd; Xu, Xun; Wang, Jun; Li, Yingrui
2013-01-01
The major histocompatibility complex (MHC) is one of the most variable and gene-dense regions of the human genome. Most studies of the MHC, and associated regions, focus on minor variants and HLA typing, many of which have been demonstrated to be associated with human disease susceptibility and metabolic pathways. However, the detection of variants in the MHC region, and diagnostic HLA typing, still lacks a coherent, standardized, cost effective and high coverage protocol of clinical quality and reliability. In this paper, we presented such a method for the accurate detection of minor variants and HLA types in the human MHC region, using high-throughput, high-coverage sequencing of target regions. A probe set was designed to template upon the 8 annotated human MHC haplotypes, and to encompass the 5 megabases (Mb) of the extended MHC region. We deployed our probes upon three, genetically diverse human samples for probe set evaluation, and sequencing data show that ∼97% of the MHC region, and over 99% of the genes in MHC region, are covered with sufficient depth and good evenness. 98% of genotypes called by this capture sequencing prove consistent with established HapMap genotypes. We have concurrently developed a one-step pipeline for calling any HLA type referenced in the IMGT/HLA database from this target capture sequencing data, which shows over 96% typing accuracy when deployed at 4 digital resolution. This cost-effective and highly accurate approach for variant detection and HLA typing in the MHC region may lend further insight into immune-mediated diseases studies, and may find clinical utility in transplantation medicine research. This one-step pipeline is released for general evaluation and use by the scientific community. PMID:23894464
Kulski, Jerzy K; Shiina, Takashi; Anzai, Tatsuya; Kohara, Sakae; Inoko, Hidetoshi
2002-12-01
The major histocompatibility complex (MHC) genomic region is composed of a group of linked genes involved functionally with the adaptive and innate immune systems. The class I and class II genes are intrinsic features of the MHC and have been found in all the jawed vertebrates studied so far. The MHC genomic regions of the human and the chicken (B locus) have been fully sequenced and mapped, and the mouse MHC sequence is almost finished. Information on the MHC genomic structures (size, complexity, genic and intergenic composition and organization, gene order and number) of other vertebrates is largely limited or nonexistent. Therefore, we are mapping, sequencing and analyzing the MHC genomic regions of different human haplotypes and at least eight nonhuman species. Here, we review our progress with these sequences and compare the human MHC structure with that of the nonhuman primates (chimpanzee and rhesus macaque), other mammals (pigs, mice and rats) and nonmammalian vertebrates such as birds (chicken and quail), bony fish (medaka, pufferfish and zebrafish) and cartilaginous fish (nurse shark). This comparison reveals a complex MHC structure for mammals and a relatively simpler design for nonmammalian animals with a hypothetical prototypic structure for the shark. In the mammalian MHC, there are two to five different class I duplication blocks embedded within a framework of conserved nonclass I and/or nonclass II genes. With a few exceptions, the class I framework genes are absent from the MHC of birds, bony fish and sharks. Comparative genomics of the MHC reveal a highly plastic region with major structural differences between the mammalian and nonmammalian vertebrates. Additional genomic data are needed on animals of the reptilia, crocodilia and marsupial classes to find the origins of the class I framework genes and examples of structures that may be intermediate between the simple and complex MHC organizations of birds and mammals, respectively.
Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.
2008-01-01
Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.
Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.
2008-01-01
Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.
MHC odours are not required or sufficient for recognition of individual scent owners
Hurst, Jane L; Thom, Michael D; Nevison, Charlotte M; Humphries, Richard E; Beynon, Robert J
2005-01-01
To provide information about specific depositors, scent marks need to encode a stable signal of individual ownership. The highly polymorphic major histocompatibility complex (MHC) influences scents and contributes to the recognition of close kin and avoidance of inbreeding when MHC haplotypes are shared. MHC diversity between individuals has also been proposed as a primary source of scents used in individual recognition. We tested this in the context of scent owner recognition among male mice, which scent mark their territories and countermark scents from other males. We examined responses towards urine scent according to the scent owner's genetic difference to the territory owner (MHC, genetic background, both and neither) or genetic match to a familiar neighbour. While urine of a different genetic background from the subject always stimulated greater scent marking than own, regardless of familiarity, MHC-associated odours were neither necessary nor sufficient for scent owner recognition and failed to stimulate countermarking. Urine of a different MHC type to the subject stimulated increased investigation only when this matched both the MHC and genetic background of a familiar neighbour. We propose an associative model of scent owner recognition in which volatile scent profiles, contributed by both fixed genetic and varying non-genetic factors, are learnt in association with a stable involatile ownership signal provided by other highly polymorphic urine components. PMID:15906464
Sandstrom, Andrew; Scharf, Louise; McRae, Gabrielle; Hawk, Andrew J; Meredith, Stephen C; Adams, Erin J
2012-02-17
The molecular mechanisms by which γδ T cells recognize ligand remain a mystery. The non-classical MHC molecule T22 represents the best characterized ligand for murine γδ T cells, with a motif (W … EGYEL) present in the γδ T cell receptor complementary-determining region 3δ (CDR3δ) loop mediating γδ T cell recognition of this molecule. Produced through V(D)J recombination, this loop is quite diverse, with different numbers and chemical types of amino acids between Trp and EGYEL, which have unknown functional consequences for T22 recognition. We have investigated the biophysical and structural effects of CDR3δ loop diversity, revealing a range of affinities for T22 but a common thermodynamic pattern. Mutagenesis of these CDR3δ loops defines the key anchor residues involved in T22 recognition as W … EGYEL, similar to those found for the G8 CDR3δ loop, and demonstrates that spacer residues modulate but are not required for T22 recognition. Comparison of the location of these residues in the T22 interface reveals a striking similarity to peptide anchor residues in classically presented MHC peptides, with the key Trp residue of the CDR3δ motif completing the deficient peptide-binding groove of T22. This suggests that γδ T cell recognition of T22 utilizes the conserved ligand-presenting nature of the MHC fold.
NASA Technical Reports Server (NTRS)
Linderman, J. K.; Talmadge, R. J.; Gosselink, K. L.; Tri, P. N.; Roy, R. R.; Grindeland, R. E.
1996-01-01
The purpose of this study was to investigate whether the soleus muscle undergoes atrophy and alterations in myosin heavy chain (MHC) composition during non-weight bearing in the absence of synergists. Thirty-two female rats were randomly assigned to four groups: control (C), synergistic ablation (ABL) of the gastrocnemius and plantaris muscles to overload the soleus muscle, hindlimb suspension (HLS), or a combination of synergistic ablation and hindlimb suspension (HLS-ABL). After 28 days of hindlimb suspension, soleus atrophy was more pronounced in HLS (58%) than in HLS-ABL (43%) rats. Compared to C rats, non-weight bearing decreased mixed and myofibrillar protein contents and Type I MHC 49%, 45%, and 7%, respectively, in HLS animals. In addition, de novo expression of fast Type IIx and Type IIb MHC (5% and 2%, respectively) was observed in HLS animals. Similarly, when compared to C rats, mixed and myofibrillar protein contents and Type I MHC decreased 43%, 46%, and 4%, respectively, in HLS-ABL animals. Also, de novo expression of Type IIx (4%) and IIb (1%) MHC was observed. Collectively, these data indicate that the loss of muscle protein and Type I MHC, and the de novo expression of Type IIx and Type IIb MHC in the rat soleus occur independently of the presence of synergists during non-weight bearing. Furthermore, these results confirm the contention that soleus mass and MHC expression are highly sensitive to alterations in mechanical load.
Olfactory cues associated with the major histocompatibility complex.
Eggert, F; Müller-Ruchholtz, W; Ferstl, R
Besides its immunological function of self/non-self discrimination the major histocompatibility complex (MHC) has been recognized as a possible source of individual specific body odors. Dating back to speculations on the role of the extraordinary polymorphism of the MHC as background of an individual chemosensory identity and to early observations of MHC-dependent mate choice in inbred strains of mice, systematic experimental studies revealed a first evidence for H-2 related body odors in this species. Meanwhile a large number of animal studies with rodents and a series of field studies and experiments with humans have extended our knowledge of MHC-related odor signals and substantiated the hypothesis of immunogenetic associated odor types. These results suggest that the most prominent feature of the MHC, its extraordinary genetic diversity, seems in part to be selectively maintained by behavioral mechanisms which operate in contemporary natural populations. The high degree of heterozygosity found in natural populations of most species seems to be promoted by non-disease-based selection such as mating preferences and selective block of pregnancy.
High levels of MHC class II allelic diversity in lake trout from Lake Superior
Dorschner, M.O.; Duris, T.; Bronte, C.R.; Burnham-Curtis, M. K.; Phillips, R.B.
2000-01-01
Sequence variation in a 216 bp portion of the major histocompatibility complex (MHC) II B1 domain was examined in 74 individual lake trout (Salvelinus namaycush) from different locations in Lake Superior. Forty-three alleles were obtained which encoded 71-72 amino acids of the mature protein. These sequences were compared with previous data obtained from five Pacific salmon species and Atlantic salmon using the same primers. Although all of the lake trout alleles clustered together in the neighbor-joining analysis of amino acid sequences, one amino acid allelic lineage was shared with Atlantic salmon (Salmo salar), a species in another genus which probably diverged from Salvelinus more than 10-20 million years ago. As shown previously in other salmonids, the level of nonsynonymous nucleotide substitution (d(N)) exceeded the level of synonymous substitution (d(S)). The level of nucleotide diversity at the MHC class II B1 locus was considerably higher in lake trout than in the Pacific salmon (genus Oncorhynchus). These results are consistent with the hypothesis that lake trout colonized Lake Superior from more than one refuge following the Wisconsin glaciation. Recent population bottlenecks may have reduced nucleotide diversity in Pacific salmon populations.
Examining the links between therapeutic jurisprudence and mental health court completion.
Redlich, Allison D; Han, Woojae
2014-04-01
Research demonstrates that mental health courts (MHCs) lead to improved outcomes compared to traditional criminal court processes. An underlying premise of MHCs is therapeutic jurisprudence (TJ). However, no research, to our knowledge, has examined whether MHC outcomes are predicted by TJ principles as theorized. In the present study, we examined whether principles measured at the onset of MHC enrollment (knowledge, perceived voluntariness, and procedural justice) predicted MHC completion (graduation). Using structural equation modeling with MHC participants from four courts, a significant, direct relationship between TJ and MHC completion was found, such that higher levels of TJ were associated with higher rates of success. Although this direct effect became nonsignificant when mediator variables were included, a significant indirect path remained, such that increased levels of initial perceived voluntariness and procedural justice, and MHC knowledge, led to decreased rates of new arrests, prison, MHC bench warrants, and increased court compliance, which, in turn, led to a higher likelihood of MHC graduation. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Perez-Martinez, Angy P; Ong, Edison; Zhang, Lixin; Marrs, Carl F; He, Yongqun; Yang, Zhenhua
2017-11-01
H56/AERAS-456+IC31 (H56), composed of two early secretion proteins, Ag85B and ESAT-6, and a latency associated protein, Rv2660, and the IC31 Intercell adjuvant, is a new fusion subunit vaccine candidate designed to induce immunity against both new infection and reactivation of latent tuberculosis infection. Efficacy of subunit vaccines may be affected by the diversity of vaccine antigens among clinical strains and the extent of recognition by the diverse HLA molecules in the recipient population. Although a previous study showed the conservative nature of Ag85B- and ESAT-6-encoding genes, genetic diversity of Rv2660c that encodes RV2660 is largely unknown. The population coverage of H56 as a whole yet remains to be assessed. The present study was conducted to address these important knowledge gaps. DNA sequence analysis of Rv2660c found no variation among 83 of the 84 investigated clinical strains belonging to four genetic lineages. H56 was predicted to have as high as 99.6% population coverage in the South Africa population using the Immune Epitope Database (IEDB) Population Coverage Tool. Further comparison of H56 population coverage between South African Blacks and Caucasians based on the phenotypic frequencies of binding MHC Class I and Class II supertype alleles found that all of the nine MHC-I and six of eight MHC-II human leukocyte antigen (HLA) supertype alleles analyzed were significantly differentially expressed between the two subpopulations. This finding suggests the presence of race-specific functional binding motifs of MHC-I and MHC-II HLA alleles, which, in turn, highlights the importance of including diverse populations in vaccine clinical evaluation. In conclusion, H56 vaccine is predicted to have a promising population coverage in South Africa; this study demonstrates the utility of integrating comparative genomics and bioinformatics in bridging animal and clinical studies of novel TB vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.
CARBONYLATION OF MYOSIN HEAVY CHAINS IN RAT HEARTS DURING DIABETES
Shao, Chun-Hong; Rozanski, George J.; Nagai, Ryoji; Stockdale, Frank E.; Patel, Kaushik P.; Wang, Mu; Singh, Jaipaul; Mayhan, William G.; Bidasee, Keshore R.
2010-01-01
Cardiac inotropy progressively declines during diabetes mellitus. To date, the molecular mechanisms underlying this defect remain incompletely characterized. This study tests the hypothesis that ventricular myosin heavy chains (MHC) undergo carbonylation by reactive carbonyl species (RCS) during diabetes and these modifications contribute to the inotropic decline. Male Sprague-Dawley rats were injected with streptozotocin (STZ). Fourteen days later animals were divided into two groups: one group was treated with the RCS blocker aminoguanidine for six weeks, while the other group received no treatment. After eight weeks of diabetes, cardiac ejection fraction, fractional shortening, left ventricular pressure development (+dP/dt) and myocyte shortening were decreased by 9%, 16%, 34% and 18%, respectively. Ca2+- and Mg2+-actomyosin ATPase activities and peak actomyosin syneresis were also reduced by 35%, 28%, and 72%. MHC-α to MHC-β ratio was 12:88. Mass spectrometry and Western blots revealed the presence of carbonyl adducts on MHC-α and MHC-β. Aminoguandine treatment did not alter MHC composition, but it blunted formation of carbonyl adducts and decreases in actomyosin Ca2+-sensitive ATPase activity, syneresis, myocyte shortening, cardiac ejection fraction, fractional shortening and +dP/dt induced by diabetes. From these new data it can be concluded that in addition to isozyme switching, modification of MHC by RCS also contributes to the inotropic decline seen during diabetes. PMID:20359464
Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Hofer, Heribert; Sommer, Simone
2012-01-01
Background Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. Methodology/Principal Findings Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. Conclusions/Significance Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species. PMID:23145096
Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Hofer, Heribert; Sommer, Simone
2012-01-01
Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species.
Drake, B.M.; Goto, R.M.; Miller, M.M.; Gee, G.F.; Briles, W.E.
1999-01-01
The major histocompatibility complex (MHC) is a group of genetic loci coding for haplotypes that have been associated with fitness traits in mammals and birds. Such associations suggest that MHC diversity may be an indicator of overall genetic fitness of endangered or threatened species. The MHC haplotypes of a captive population of 12 families of northern bobwhites (Colinus virginianus) were identified using a combination of immunogenetic and molecular techniques. Alloantisera were produced within families of northern bobwhites and were then tested for differential agglutination of erythrocytes of all members of each family. The pattern of reactions determined from testing these alloantisera identified a single genetic system of alloantigens in the northern bobwhites, resulting in the assignment of a tentative genotype to each individual within the quail families. Restriction fragment patterns of the DNA of each bird were determined using the chicken MHC B-G cDNA probe bg11. The concordance between the restriction fragment patterns and the alloantisera reactions showed that the alloantisera had identified the MHC of the northern bobwhite and supported the tentative genotype assignments, identifying at least 12 northern bobwhite MHC haplotypes.
Monohydrocalcite: a promising remediation material for hazardous anions
Fukushi, Keisuke; Munemoto, Takashi; Sakai, Minoru; Yagi, Shintaro
2011-01-01
The formation conditions, solubility and stability of monohydrocalcite (MHC, CaCO3·H2O), as well as sorption behaviors of toxic anions on MHC, are reviewed to evaluate MHC as a remediation material for hazardous oxyanions. MHC is a rare mineral in geological settings that occurs in recent sediments in saline lakes. Water temperature does not seem to be an important factor for MHC formation. The pH of lake water is usually higher than 8 and the Mg/Ca ratio exceeds 4. MHC synthesis experiments as a function of time indicate that MHC is formed from amorphous calcium carbonate and transforms to calcite and/or aragonite. Most studies show that MHC forms from solutions containing Mg, which inhibits the formation of stable calcium carbonates. The solubility of MHC is higher than those of calcite, aragonite and vaterite, but lower than those of ikaite and amorphous calcium carbonate at ambient temperature. The solubility of MHC decreases with temperature. MHC is unstable and readily transforms to calcite or aragonite. The transformation consists of the dissolution of MHC and the subsequent formation of stable phases from the solution. The rate-limiting steps of the transformation of MHC are the nucleation and growth of stable crystalline phases. Natural occurrences indicate that certain additives, particularly PO4 and Mg, stabilize MHC. Laboratory studies confirm that a small amount of PO4 in solution (>30 μM) can significantly inhibit the transformation of MHC. MHC has a higher sorption capacity for PO4 than calcite and aragonite. The modes of PO4 uptake are adsorption on the MHC surface at moderate phosphate concentrations and precipitation of secondary calcium phosphate minerals at higher concentrations. Arsenate is most likely removed from the solution during the transformation of MHC. The proposed sorption mechanism of arsenate is coprecipitation during crystallization of aragonite. The arsenic sorption capacity by MHC is significantly higher than simple adsorption on calcite. PMID:27877452
Monohydrocalcite: a promising remediation material for hazardous anions.
Fukushi, Keisuke; Munemoto, Takashi; Sakai, Minoru; Yagi, Shintaro
2011-12-01
The formation conditions, solubility and stability of monohydrocalcite (MHC, CaCO 3 ·H 2 O), as well as sorption behaviors of toxic anions on MHC, are reviewed to evaluate MHC as a remediation material for hazardous oxyanions. MHC is a rare mineral in geological settings that occurs in recent sediments in saline lakes. Water temperature does not seem to be an important factor for MHC formation. The pH of lake water is usually higher than 8 and the Mg/Ca ratio exceeds 4. MHC synthesis experiments as a function of time indicate that MHC is formed from amorphous calcium carbonate and transforms to calcite and/or aragonite. Most studies show that MHC forms from solutions containing Mg, which inhibits the formation of stable calcium carbonates. The solubility of MHC is higher than those of calcite, aragonite and vaterite, but lower than those of ikaite and amorphous calcium carbonate at ambient temperature. The solubility of MHC decreases with temperature. MHC is unstable and readily transforms to calcite or aragonite. The transformation consists of the dissolution of MHC and the subsequent formation of stable phases from the solution. The rate-limiting steps of the transformation of MHC are the nucleation and growth of stable crystalline phases. Natural occurrences indicate that certain additives, particularly PO 4 and Mg, stabilize MHC. Laboratory studies confirm that a small amount of PO 4 in solution (>30 μM) can significantly inhibit the transformation of MHC. MHC has a higher sorption capacity for PO 4 than calcite and aragonite. The modes of PO 4 uptake are adsorption on the MHC surface at moderate phosphate concentrations and precipitation of secondary calcium phosphate minerals at higher concentrations. Arsenate is most likely removed from the solution during the transformation of MHC. The proposed sorption mechanism of arsenate is coprecipitation during crystallization of aragonite. The arsenic sorption capacity by MHC is significantly higher than simple adsorption on calcite.
Monohydrocalcite: a promising remediation material for hazardous anions
NASA Astrophysics Data System (ADS)
Fukushi, Keisuke; Munemoto, Takashi; Sakai, Minoru; Yagi, Shintaro
2011-12-01
The formation conditions, solubility and stability of monohydrocalcite (MHC, CaCO3·H2O), as well as sorption behaviors of toxic anions on MHC, are reviewed to evaluate MHC as a remediation material for hazardous oxyanions. MHC is a rare mineral in geological settings that occurs in recent sediments in saline lakes. Water temperature does not seem to be an important factor for MHC formation. The pH of lake water is usually higher than 8 and the Mg/Ca ratio exceeds 4. MHC synthesis experiments as a function of time indicate that MHC is formed from amorphous calcium carbonate and transforms to calcite and/or aragonite. Most studies show that MHC forms from solutions containing Mg, which inhibits the formation of stable calcium carbonates. The solubility of MHC is higher than those of calcite, aragonite and vaterite, but lower than those of ikaite and amorphous calcium carbonate at ambient temperature. The solubility of MHC decreases with temperature. MHC is unstable and readily transforms to calcite or aragonite. The transformation consists of the dissolution of MHC and the subsequent formation of stable phases from the solution. The rate-limiting steps of the transformation of MHC are the nucleation and growth of stable crystalline phases. Natural occurrences indicate that certain additives, particularly PO4 and Mg, stabilize MHC. Laboratory studies confirm that a small amount of PO4 in solution (>30 μM) can significantly inhibit the transformation of MHC. MHC has a higher sorption capacity for PO4 than calcite and aragonite. The modes of PO4 uptake are adsorption on the MHC surface at moderate phosphate concentrations and precipitation of secondary calcium phosphate minerals at higher concentrations. Arsenate is most likely removed from the solution during the transformation of MHC. The proposed sorption mechanism of arsenate is coprecipitation during crystallization of aragonite. The arsenic sorption capacity by MHC is significantly higher than simple adsorption on calcite.
Gasparini, Clelia; Congiu, Leonardo; Pilastro, Andrea
2015-08-01
Females that mate multiply have the possibility to exert postcopulatory choice and select more compatible sperm to fertilize eggs. Prior work suggests that dissimilarity in major histocompatibility complex (MHC) plays an important role in determining genetic compatibility between partners. Favouring a partner with dissimilar MHC alleles would result in offspring with high MHC diversity and therefore with enhanced survival thanks to increased resistance to pathogens and parasites. The high variability of MHC genes may further allow discrimination against the sperm from related males, reducing offspring homozygosity and inbreeding risk. Despite the large body of work conducted at precopulatory level, the role of MHC similarity between partners at postcopulatory level has been rarely investigated. We used an internal fertilizing fish with high level of multiple matings (Poecilia reticulata) to study whether MHC similarity plays a role in determining the outcome of fertilization when sperm from two males compete for the same set of eggs. We also controlled for genomewide similarity by determining similarity at 10 microsatellite loci. Contrary to prediction, we found that the more MHC-similar male sired more offspring while similarity at the microsatellite loci did not predict the outcome of sperm competition. Our results suggest that MHC discrimination may be involved in avoidance of hybridization or outbreeding rather than inbreeding avoidance. This, coupled with similar findings in salmon, suggests that the preference for MHC-dissimilar mates is far from being unanimous and that pre- and postcopulatory episodes of sexual selection can indeed act in opposite directions. © 2015 John Wiley & Sons Ltd.
Marsden, Clare D; Woodroffe, Rosie; Mills, Michael G L; McNutt, J Weldon; Creel, Scott; Groom, Rosemary; Emmanuel, Masenga; Cleaveland, Sarah; Kat, Pieter; Rasmussen, Gregory S A; Ginsberg, Joshua; Lines, Robin; André, Jean-Marc; Begg, Colleen; Wayne, Robert K; Mable, Barbara K
2012-03-01
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA-DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (N(e) < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift. © 2012 Blackwell Publishing Ltd.
Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J
2011-02-01
In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.
Garamszegi, László Zsolt
2014-09-03
The major histocompatibility complex (MHC) is the most polymorphic genetic region in vertebrates, but the origin of such genetic diversity remains unresolved. Several studies have demonstrated at the within-population level that individuals harbouring particular alleles can be less or more susceptible to malaria, but these do not allow strong generalization. Here worldwide data on the frequencies of several hundred MHC alleles of the human leucocyte antigen (HLA) system in relation to malaria risk at the between-population level were analysed in a phylogenetic framework, and results for different alleles were quantitatively summarized in a meta-analysis. There was an overall positive relationship between malaria pressure and the frequency of several HLA alleles indicating that allele frequencies increase in countries with strong malaria pressure. Nevertheless, considerable heterogeneity was observed across alleles, and some alleles showed a remarkable negative relationship with malaria risk. When heterogeneities were partitioned into different organization groups of the MHC, the strongest positive relationships were detected for alleles of the HLA-A and HLA-B loci, but there were also differences between MHC supertypes that constitute functionally distinct nucleotide sequences. Finally, the number of MHC alleles that are maintained within countries was also related to malaria risk. Therefore, malaria represents a key selection pressure for the human MHC and has left clear evolutionary footprints on both the frequencies and the number of alleles observed in different countries.
Kahr, Walter H A; Savoia, Anna; Pluthero, Fred G; Li, Ling; Christensen, Hilary; De Rocco, Daniela; Traivaree, Chanchai; Butchart, Sheila E; Curtin, Julie; Stollar, Elliott J; Forman-Kay, Julie D; Blanchette, Victor S
2009-12-01
Heterozygous mutations in MYH9, which encodes non-muscle myosin heavy chain IIA (MHC-IIA), result in autosomal dominant inherited MYH9-related disorders characterised by macro-thrombocytopenia, granulocyte inclusions, variable sensorineural deafness, cataracts and nephritis. MHC-IIA is assembled into a complex consisting of two pairs of light chains and two heavy chains, where the latter contain a neck region, SH3-like, motor and rod domains. We describe a patient with a Trp33Cys missense mutation in the SH3-like domain of MHC-IIA. Abnormal platelet function was observed using platelet aggregometry with the agonists epinephrine and adenosine diphosphate (ADP). Patient granulocytes and megakaryocytes, but not platelets, contained abnormal MHC-IIA inclusions visualised by confocal immunofluorescence or electron microscopy. Megakaryocytes grown in culture were smaller and contained hypolobulated nuclei compared to controls. Bone marrow-derived megakaryocytes revealed a preponderance of immature forms, the presence of structurally diverse inclusion bodies, and frequent emperipolesis as assessed by electron microscopy. Platelets and leukocytes contained indistinguishable amounts of total MHC-IIA determined by immunoblotting. Molecular modelling studies indicated that mutation of Trp33 destabilises the interface between the SH3-like and motor domain of MHC-IIA, which is close to previously described motor domain mutations, implying an important structural and/or functional role for this region in MHC-IIA.
FUNCTIONAL IMPLICATION OF MAJOR HISTOCOMPATIBILITY (MH) VARIATION USING AN ESTUARINE FISH POPULATION
Recently, there has been a dramatic expansion of studies of major histocompatibility complex (MHC) variation aimed at discovering functional differences in immunity across wild populations of diverse vertebrate species. Some species with relatively low genetic diversity or under ...
2012-01-01
Background In previous studies we found that MHC2TA +1614 genotype frequency was very different when MS patients with and without human herpesvirus 6 (HHV-6) in serum samples were compared; a different clinical behavior was also described. The purpose of the study was: 1. To evaluate if MHC2TA expression in MS patients was influenced by interferon beta (IFN-beta) treatment. 2. To study MHC2TA expression in MS patients with and without minor allele C. 3. To analyze the relation between MHC2TA mRNA levels and HHV-6 active infection in MS patients. Methods Blood and serum samples of 154 MS patients were collected in five programmed visits: basal (prior to beginning IFN-beta treatment), six, twelve, eighteen and twenty-four months later. HHV-6 in serum and MHC2TA mRNA levels were evaluated by PCR and RT-PCR, respectively. Neutralizing antibodies (NAbs) against IFN-beta were analyzed by the cytopathic effect assay. Results We found that MHC2TA mRNA levels were significantly lower among MS patients with HHV-6 active infection at the basal visit (without treatment) than in those MS patients without HHV-6 active infection at the basal visit (p = 0.012); in all the positive samples we only found variant A. Furthermore, 58/99 (58.6%) MS patients without HHV-6 along the five programmed visits and an increase of MHC2TA expression after two-years of IFN-beta treatment were clinical responders vs. 5/21 (23.8%) among those MS patients with HHV-6 and a decrease of MHC2TA mRNA levels along the two-years with IFN-beta treatment (p = 0.004); no differences were found between patients with and without NAbs. Conclusions MHC2TA mRNA levels could be decreased by the active replication of HHV-6; the absence of HHV-6 in serum and the increase of MHC2TA expression could be further studied as markers of good clinical response to IFN-beta treatment. PMID:23009575
Borbulevych, Oleg Y.; Piepenbrink, Kurt H.; Gloor, Brian E.; Scott, Daniel R.; Sommese, Ruth F.; Cole, David K.; Sewell, Andrew K.; Baker, Brian M.
2011-01-01
Summary Tell mediated immunity requires T cell receptor (TCR) cross-reactivity, the mechanisms behind which remain incompletely elucidated. The αβ TCR A6 recognizes both the Tax (LLFGYPVYV) and Tel1p (MLWGYLQYV) peptides presented by the human class I MHC molecule HLA-A2. Here we found that although the two ligands are ideal structural mimics, they form substantially different interfaces with A6, with conformational differences in the peptide, the TCR, and unexpectedly, the MHC molecule. The differences between the Tax and Tel1p ternary complexes could not be predicted from the free peptide-MHC structures and are inconsistent with a traditional induced-fit mechanism. Instead, the differences were attributable to peptide and MHC molecular motion present in Tel1p-HLA-A2 but absent in Tax-HLA-A2. Differential “tuning” of the dynamic properties of HLA-A2 by the Tax and Tel1p peptides thus facilitates cross-recognition and impacts how structural diversity can be presented to and accommodated by receptors of the immune system. PMID:20064447
Ruiz-López, María José; Monello, Ryan J; Schuttler, Stephanie G; Lance, Stacey L; Gompper, Matthew E; Eggert, Lori S
2014-12-01
Major Histocompatibility Complex (MHC) variability plays a key role in pathogen resistance, but its relative importance compared to environmental and demographic factors that also influence resistance is unknown. We analyzed the MHC II DRB exon 2 for 165 raccoons (Procyon lotor) in Missouri (USA). For each animal we also determined the presence of immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies to two highly virulent pathogens, canine distemper virus (CDV) and parvovirus. We investigated the role of MHC polymorphism and other demographic and environmental factors previously associated with predicting seroconversion. In addition, using an experimental approach, we studied the relative importance of resource availability and contact rates. We found important associations between IgG antibody presence and several MHC alleles and supertypes but not between IgM antibody presence and MHC. No effect of individual MHC diversity was found. For CDV, supertype S8, one allele within S8 (Prlo-DRB(∗)222), and a second allele (Prlo-DRB(∗)204) were positively associated with being IgG+, while supertype S4 and one allele within the supertype (Prlo-DRB(∗)210) were negatively associated with being IgG+. Age, year, and increased food availability were also positively associated with being IgG+, but allele Prlo-DRB(∗)222 was a stronger predictor. For parvovirus, only one MHC allele was negatively associated with being IgG+ and age and site were stronger predictors of seroconversion. Our results show that negative-frequency dependent selection is likely acting on the raccoon MHC and that while the role of MHC in relation to other factors depends on the pathogen of interest, it may be one of the most important factors predicting successful immune response. Copyright © 2014 Elsevier B.V. All rights reserved.
2012-01-01
Background The critical role of Major Histocompatibility Complex (Mhc) genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major) from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help understanding how parasite-mediated and sexual selection shape and maintain host genetic variation in nature. We believe that study systems like ours can make important contributions to the field of evolutionary biology and emphasize the necessity of integrating long-term field-based studies with detailed genetic analysis to unravel complex evolutionary processes. PMID:22587557
Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes
Jarvi, S.I.; Goto, R.M.; Gee, G.F.; Briles, W.E.; Miller, M.M.
1999-01-01
We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbgl and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of '-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.
Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes.
Jarvi, S I; Goto, R M; Gee, G F; Briles, W E; Miller, M M
1999-01-01
We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbg1 and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of alpha-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.
Walter, Lutz; Petersen, Beatrix
2017-02-01
The killer immunoglobulin-like receptors (KIR) as well as their MHC class I ligands display enormous genetic diversity and polymorphism in macaque species. Signals resulting from interaction between KIR or CD94/NKG2 receptors and their cognate MHC class I proteins essentially regulate the activity of natural killer (NK) cells. Macaque and human KIR share many features, such as clonal expression patterns, gene copy number variations, specificity for particular MHC class I allotypes, or epistasis between KIR and MHC class I genes that influence susceptibility and resistance to immunodeficiency virus infection. In this review article we also annotated publicly available rhesus macaque BAC clone sequences and provide the first description of the CD94-NKG2 genomic region. Besides the presence of genes that are orthologous to human NKG2A and NKG2F, this region contains three NKG2C paralogues. Hence, the genome of rhesus macaques contains moderately expanded and diversified NKG2 genes in addition to highly diversified KIR genes. The presence of two diversified NK cell receptor families in one species has not been described before and is expected to require a complex MHC-dependent regulation of NK cells. © 2016 John Wiley & Sons Ltd.
2011-01-01
Background Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN
Recidivism following mental health court exit: Between and within-group comparisons.
Lowder, Evan M; Desmarais, Sarah L; Baucom, Daniel J
2016-04-01
Over the past decade, Mental Health Courts (MHCs) have spread rapidly across the U.S. These courts aim to reduce recidivism among adults with mental illnesses through diversion into community-based treatment. Extant research suggests that MHCs can be effective in reducing recidivism, but also demonstrates that effectiveness varies as a function of characteristics of the participants (e.g., criminal history) and the program (e.g., coercion). Less is known regarding the extent to which process-related factors (e.g., length of participation, time between referral and receipt of services) impact effectiveness. Prior research also is limited by a focus on recidivism during MHC as opposed to postexit. To address these knowledge gaps, we examined recidivism 1 year postexit for a group of MHC participants (n = 57) and offenders receiving treatment as usual (TAU; n = 40), total N = 97. We also investigated the influence of individual characteristics and process factors on changes in jail days 1 year preentry to 1 year postexit for MHC participants. Overall, results provide some evidence supporting the effectiveness of MHCs. MHC participants had significantly fewer jail days, but not charges or convictions, relative to TAU participants. Among MHC participants, graduation from the MHC, presence of co-occurring substance use, and longer length of MHC participation were associated with greater reductions in jail days. Other process factors were unrelated to reductions in recidivism. Findings suggest that MHCs may be particularly effective for high-risk participants and that time spent in a MHC has positive effects on recidivism, regardless of graduation status. (c) 2016 APA, all rights reserved).
Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal
2018-01-01
Abstract Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. PMID:28985418
Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.
2018-01-01
Gene polymorphisms shared between recently diverged species are thought to be widespread and most commonly reflect introgression from hybridization or retention of ancestral polymorphism through incomplete lineage sorting. Shared genetic diversity resulting from incomplete lineage sorting is usually maintained for a relatively short period of time, but under strong balancing selection it may persist for millions of years beyond species divergence (balanced trans-species polymorphism), as in the case of the major histocompatibility complex (MHC) genes. However, balancing selection is much less likely to act on non-MHC immune genes. The aim of this study was to investigate the patterns of shared polymorphism and selection at non-MHC immune genes in five grouse species from Centrocercus and Tympanuchus genera. For this purpose, we genotyped five non-MHC immune genes that do not interact directly with pathogens, but are involved in signaling and regulate immune cell growth. In contrast to previous studies with MHC, we found no evidence for balancing selection or balanced trans-species polymorphism among the non-MHC immune genes. No haplotypes were shared between genera and in most cases more similar allelic variants sorted by genus. Between species within genera, however, we found extensive shared polymorphism, which was most likely attributable to introgression or incomplete lineage sorting following recent divergence and large ancestral effective population size (i.e., weak genetic drift). Our study suggests that North American prairie grouse may have attained relatively low degree of reciprocal monophyly at nuclear loci and reinforces the rarity of balancing selection in non-MHC immune genes.
Impaired natural killer cell self-education and "missing-self" responses in Ly49-deficient mice.
Bélanger, Simon; Tu, Megan M; Rahim, Mir Munir Ahmed; Mahmoud, Ahmad B; Patel, Rajen; Tai, Lee-Hwa; Troke, Angela D; Wilhelm, Brian T; Landry, Josette-Renée; Zhu, Qinzhang; Tung, Kenneth S; Raulet, David H; Makrigiannis, Andrew P
2012-07-19
Ly49-mediated recognition of MHC-I molecules on host cells is considered vital for natural killer (NK)-cell regulation and education; however, gene-deficient animal models are lacking because of the difficulty in deleting this large multigene family. Here, we describe NK gene complex knockdown (NKC(KD)) mice that lack expression of Ly49 and related MHC-I receptors on most NK cells. NKC(KD) NK cells exhibit defective killing of MHC-I-deficient, but otherwise normal, target cells, resulting in defective rejection by NKC(KD) mice of transplants from various types of MHC-I-deficient mice. Self-MHC-I immunosurveillance by NK cells in NKC(KD) mice can be rescued by self-MHC-I-specific Ly49 transgenes. Although NKC(KD) mice display defective recognition of MHC-I-deficient tumor cells, resulting in decreased in vivo tumor cell clearance, NKG2D- or antibody-dependent cell-mediated cytotoxicity-induced tumor cell cytotoxicity and cytokine production induced by activation receptors was efficient in Ly49-deficient NK cells, suggesting MHC-I education of NK cells is a single facet regulating their total potential. These results provide direct genetic evidence that Ly49 expression is necessary for NK-cell education to self-MHC-I molecules and that the absence of these receptors leads to loss of MHC-I-dependent "missing-self" immunosurveillance by NK cells.
A novel system of polymorphic and diverse NK cell receptors in primates.
Averdam, Anne; Petersen, Beatrix; Rosner, Cornelia; Neff, Jennifer; Roos, Christian; Eberle, Manfred; Aujard, Fabienne; Münch, Claudia; Schempp, Werner; Carrington, Mary; Shiina, Takashi; Inoko, Hidetoshi; Knaust, Florian; Coggill, Penny; Sehra, Harminder; Beck, Stephan; Abi-Rached, Laurent; Reinhardt, Richard; Walter, Lutz
2009-10-01
There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in "higher" primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire.
A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates
Rosner, Cornelia; Neff, Jennifer; Roos, Christian; Eberle, Manfred; Aujard, Fabienne; Münch, Claudia; Schempp, Werner; Carrington, Mary; Shiina, Takashi; Inoko, Hidetoshi; Knaust, Florian; Coggill, Penny; Sehra, Harminder; Beck, Stephan; Abi-Rached, Laurent; Reinhardt, Richard; Walter, Lutz
2009-01-01
There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire. PMID:19834558
Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi
2013-01-01
To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.
Antigen processing and presentation: evolution from a bird's eye view.
Kaufman, Jim
2013-09-01
Most detailed knowledge of the MHC outside of mammals has come from studies of chickens, originally due to the economic importance of the poultry industry. We have used our discoveries about the chicken MHC to develop a framework for understanding the evolution of the MHC, based on the importance of genomic organisation for gene co-evolution. In humans, MHC class I molecules are polymorphic and determine the specificity of peptide presentation, while the molecules involved in antigen processing are functionally monomorphic. The genes for tapasin, transporters associated with antigen presentation (TAPs) and inducible proteasome components (LMPs) are located in and beyond the class II region, far away from the class I genes in the class I region. In contrast, chickens express only one class I locus at high levels, which can result in strong MHC associations with resistance to particular infectious pathogens. The chicken TAP and tapasin genes are located very close to the class I genes, and have high levels of allelic polymorphism and moderate sequence diversity, co-evolving their specificities to work optimally with the dominantly expressed class I molecule. The salient features of the chicken MHC are found in many if not most non-mammalian species examined, and are likely to represent the ancestral organisation of the MHC. Comparison with the MHC organisation of humans and typical mammals suggests that a large inversion brought the class III region into the middle of the MHC, separating the antigen processing genes from the class I gene, breaking the co-evolutionary relationships and allowing a multigene family of well-expressed class I genes. Such co-evolution in the primordial MHC was likely responsible for the appearance of the antigen presentation pathways and receptor-ligand interactions at the birth of the adaptive immune system. Of course, much further work is required to understand this evolutionary framework in more detail. Copyright © 2012 Elsevier Ltd. All rights reserved.
Matsuura, Tetsuya; Li, Yong; Giacobino, Jean-Paul; Fu, Freddie H; Huard, Johnny
2007-11-01
We used a mouse model of cardiotoxin injury to examine fiber type conversion during muscle repair. We evaluated the soleus muscles of 37 wild-type mice at 2, 4, 8, and 12 weeks after injury. We also used antibodies (fMHC and sMHC) against fast and slow myosin heavy chain to classify the myofibers into three categories: fast-, slow-, and mixed (hybrid)-type myofibers (myofibers expressing both fMHC and sMHC). Our results revealed an increase in the percentage of slow-type myofibers and a decrease in the percentage of fast-type myofibers during the repair process. The percentage of hybrid-type myofibers increased 2 weeks after injury, then gradually decreased over the following 6 weeks. Similarly, our analysis of centronucleated myofibers showed an increase in the percentage of slow-type myofibers and decreases in the percentages of fast- and hybrid-type myofibers. We also investigated the relationship between myofiber type conversion and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha). The expression of both PGC-1alpha protein, which is expressed in both the nucleus and the cytoplasm of regenerating myofibers, and sMHC protein increased with time after cardiotoxin injection, but we observed no significant differential expression of fMHC protein in regenerating muscle fibers during muscle repair. PGC-1alpha-positive myofibers underwent fast to slow myofiber type conversion during the repair process. These results suggest that PGC-1alpha contributes to myofiber type conversion after muscle injury and that this phenomenon could influence the recovery of the injured muscle. (c) 2007 Orthopaedic Research Society.
Interaction of Mycobacterium avium-containing phagosomes with the antigen presentation pathway.
Ullrich, H J; Beatty, W L; Russell, D G
2000-12-01
Pathogenic mycobacteria infect macrophages where they replicate in phagosomes that minimize contact with late endosomal/lysosomal compartments. Loading of Ags to MHC class II molecules occurs in specialized compartments with late endosomal characteristics. This points to a sequestration of mycobacteria-containing phagosomes from the sites where Ags meet MHC class II molecules. Indeed, in resting macrophages MHC class II levels decreased strongly in phagosomes containing M. avium during a 4-day infection. Phagosomal MHC class II of early (4 h) infections was partly surface-derived and associated with peptide. Activation of host macrophages led to the appearance of H2-M, a chaperon of Ag loading, and to a strong increase in MHC class II molecules in phagosomes of acute (1 day) infections. Comparison with the kinetics of MHC class II acquisition by IgG-coated bead-containing phagosomes suggests that the arrest in phagosome maturation by mycobacteria limits the intersection of mycobacteria-containing phagosomes with the intracellular trafficking pathways of Ag-presenting molecules.
Weakly self-reactive T-cell clones can homeostatically expand when present at low numbers.
Vrisekoop, Nienke; Artusa, Patricio; Monteiro, Joao P; Mandl, Judith N
2017-01-01
T-cell division is central to maintaining a stable T-cell pool in adults. It also enables T-cell expansion in neonates, and after depletion by chemotherapy, bone marrow transplantation, or infection. The same signals required for T-cell survival in lymphoreplete settings, IL-7 and T-cell receptor (TCR) interactions with self-peptide MHC (pMHC), induce division when T-cell numbers are low. The strength of reactivity for self-pMHC has been shown to correlate with the capacity of T cells to undergo lymphopenia-induced proliferation (LIP), in that weakly self-reactive T cells are unable to divide, implying that T-cell reconstitution would significantly skew the TCR repertoire toward TCRs with greater self-reactivity and thus compromise T-cell diversity. Here, we show that while CD4 + T cells with low self-pMHC reactivity experience more intense competition, they are able to divide when present at low enough cell numbers. Thus, at physiological precursor frequencies CD4 + T cells with low self-pMHC reactivity are able to contribute to the reconstitution of the T-cell pool. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dunn, Steven M.; Rizkallah, Pierre J.; Baston, Emma; Mahon, Tara; Cameron, Brian; Moysey, Ruth; Gao, Feng; Sami, Malkit; Boulter, Jonathan; Li, Yi; Jakobsen, Bent K.
2006-01-01
The mammalian α/β T cell receptor (TCR) repertoire plays a pivotal role in adaptive immunity by recognizing short, processed, peptide antigens bound in the context of a highly diverse family of cell-surface major histocompatibility complexes (pMHCs). Despite the extensive TCR–MHC interaction surface, peptide-independent cross-reactivity of native TCRs is generally avoided through cell-mediated selection of molecules with low inherent affinity for MHC. Here we show that, contrary to expectations, the germ line-encoded complementarity determining regions (CDRs) of human TCRs, namely the CDR2s, which appear to contact only the MHC surface and not the bound peptide, can be engineered to yield soluble low nanomolar affinity ligands that retain a surprisingly high degree of specificity for the cognate pMHC target. Structural investigation of one such CDR2 mutant implicates shape complementarity of the mutant CDR2 contact interfaces as being a key determinant of the increased affinity. Our results suggest that manipulation of germ line CDR2 loops may provide a useful route to the production of high-affinity TCRs with therapeutic and diagnostic potential. PMID:16600963
Karlsson, Maria; Westerdahl, Helena
2013-08-01
In birds the major histocompatibility complex (MHC) organization differs both among and within orders; chickens Gallus gallus of the order Galliformes have a simple arrangement, while many songbirds of the order Passeriformes have a more complex arrangement with larger numbers of MHC class I and II genes. Chicken MHC genes are found at two independent loci, classical MHC-B and non-classical MHC-Y, whereas non-classical MHC genes are yet to be verified in passerines. Here we characterize MHC class I transcripts (α1 to α3 domain) and perform amplicon sequencing using a next-generation sequencing technique on exon 3 from house sparrow Passer domesticus (a passerine) families. Then we use phylogenetic, selection, and segregation analyses to gain a better understanding of the MHC class I organization. Trees based on the α1 and α2 domain revealed a distinct cluster with short terminal branches for transcripts with a 6-bp deletion. Interestingly, this cluster was not seen in the tree based on the α3 domain. 21 exon 3 sequences were verified in a single individual and the average numbers within an individual were nine and five for sequences with and without a 6-bp deletion, respectively. All individuals had exon 3 sequences with and without a 6-bp deletion. The sequences with a 6-bp deletion have many characteristics in common with non-classical MHC, e.g., highly conserved amino acid positions were substituted compared with the other alleles, low nucleotide diversity and just a single site was subject to positive selection. However, these alleles also have characteristics that suggest they could be classical, e.g., complete linkage and absence of a distinct cluster in a tree based on the α3 domain. Thus, we cannot determine for certain whether or not the alleles with a 6-bp deletion are non-classical based on our present data. Further analyses on segregation patterns of these alleles in combination with dating the 6-bp deletion through MHC characterization across the genus Passer may solve this matter in the future.
BG1 has a major role in MHC-linked resistance to malignant lymphoma in the chicken.
Goto, Ronald M; Wang, Yujun; Taylor, Robert L; Wakenell, Patricia S; Hosomichi, Kazuyoshi; Shiina, Takashi; Blackmore, Craig S; Briles, W Elwood; Miller, Marcia M
2009-09-29
Pathogen selection is postulated to drive MHC allelic diversity at loci for antigen presentation. However, readily apparent MHC infectious disease associations are rare in most species. The strong link between MHC-B haplotype and the occurrence of virally induced tumors in the chicken provides a means for defining the relationship between pathogen selection and MHC polymorphism. Here, we verified a significant difference in resistance to gallid herpesvirus-2 (GaHV-2)-induced lymphomas (Marek's disease) conferred by two closely-related recombinant MHC-B haplotypes. We mapped the crossover breakpoints that distinguish these haplotypes to the highly polymorphic BG1 locus. BG1 encodes an Ig-superfamily type I transmembrane receptor-like protein that contains an immunoreceptor tyrosine-based inhibition motif (ITIM), which undergoes phosphorylation and is recognized by Src homology 2 domain-containing protein tyrosine phosphatase (SHP-2). The recombinant haplotypes are identical, except for differences within the BG1 3'-untranslated region (3'-UTR). The 3'-UTR of the BG1 allele associated with increased lymphoma contains a 225-bp insert of retroviral origin and showed greater inhibition of luciferase reporter gene translation compared to the other allele. These findings suggest that BG1 could affect the outcome of GaHV-2 infection through modulation of the lymphoid cell responsiveness to infection, a condition that is critical for GaHV-2 replication and in which the MHC-B haplotype has been previously implicated. This work provides a mechanism by which MHC-B region genetics contributes to the incidence of GaHV-2-induced malignant lymphoma in the chicken and invites consideration of the possibility that similar mechanisms might affect the incidence of lymphomas associated with other oncogenic viral infections.
Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Vizcaíno, Juan A; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; Heck, Albert J R; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal; Aebersold, Ruedi; Caron, Etienne
2018-01-04
Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
T-Cell Receptors Binding Orientation over Peptide/MHC Class I Is Driven by Long-Range Interactions
Ferber, Mathias; Zoete, Vincent; Michielin, Olivier
2012-01-01
Crystallographic data about T-Cell Receptor – peptide – major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes. PMID:23251658
T-cell receptors binding orientation over peptide/MHC class I is driven by long-range interactions.
Ferber, Mathias; Zoete, Vincent; Michielin, Olivier
2012-01-01
Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.
Lenz, Tobias L; Eizaguirre, Christophe; Becker, Sven; Reusch, Thorsten BH
2009-01-01
Background In all jawed vertebrates, highly polymorphic genes of the major histocompatibility complex (MHC) encode antigen presenting molecules that play a key role in the adaptive immune response. Their polymorphism is composed of multiple copies of recently duplicated genes, each possessing many alleles within populations, as well as high nucleotide divergence between alleles of the same species. Experimental evidence is accumulating that MHC polymorphism is a result of balancing selection by parasites and pathogens. In order to describe MHC diversity and analyse the underlying mechanisms that maintain it, a reliable genotyping technique is required that is suitable for such highly variable genes. Results We present a genotyping protocol that uses Reference Strand-mediated Conformation Analysis (RSCA), optimised for recently duplicated MHC class IIB genes that are typical for many fish and bird species, including the three-spined stickleback, Gasterosteus aculeatus. In addition we use a comprehensive plasmid library of MHC class IIB alleles to determine the nucleotide sequence of alleles represented by RSCA allele peaks. Verification of the RSCA typing by cloning and sequencing demonstrates high congruency between both methods and provides new insight into the polymorphism of classical stickleback MHC genes. Analysis of the plasmid library additionally reveals the high resolution and reproducibility of the RSCA technique. Conclusion This new RSCA genotyping protocol offers a fast, but sensitive and reliable way to determine the MHC allele repertoire of three-spined sticklebacks. It therefore provides a valuable tool to employ this highly polymorphic and adaptive marker in future high-throughput studies of host-parasite co-evolution and ecological speciation in this emerging model organism. PMID:19291291
Antigenicity of mesenchymal stem cells in an inflamed joint environment.
Hill, Jacqueline A; Cassano, Jennifer M; Goodale, Margaret B; Fortier, Lisa A
2017-07-01
OBJECTIVE To determine whether major histocompatability complex (MHC) class II expression in equine mesenchymal stem cells (MSCs) changes with exposure to a proinflammatory environment reflective of an inflamed joint. SAMPLE Cryopreserved bone marrow-derived MSCs from 12 horses and cartilage and synovium samples from 1 horse euthanized for reasons other than lameness. PROCEDURES In part 1 of a 3-part study, the suitability of a quantitative reverse transcriptase PCR (qRT-PCR) assay for measurement of MHC class II expression in MSCs following stimulation with interferon (IFN)-γ was assessed. In part 2, synoviocyte-cartilage cocultures were or were not stimulated with interleukin (IL)-1β (10 ng/mL) to generate conditioned media that did and did not (control) mimic an inflamed joint environment. In part 3, a qRT-PCR assay was used to measure MSC MHC class II expression after 96 hours of incubation with 1 of 6 treatments (control-conditioned medium, IL-1β-conditioned medium, and MSC medium alone [untreated control] or with IL-1β [10 ng/mL], tumor necrosis factor-α [10 ng/mL], or IFN-γ [100 ng/mL]). RESULTS The qRT-PCR assay accurately measured MHC class II expression. Compared with MHC class II expression for MSCs exposed to the untreated control medium, that for MSCs exposed to IL-1β was decreased, whereas that for MSCs exposed to IFN-γ was increased. Neither the control-conditioned nor tumor necrosis factor-α medium altered MHC class II expression. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MSC exposure to proinflammatory cytokine IL-1β decreased MHC class II expression and antigenicity. Treatment of inflamed joints with allogeneic MSCs might not be contraindicated, but further investigation is warranted.
NASA Technical Reports Server (NTRS)
Baldwin, K. M.; Haddad, F.
2001-01-01
The goal of this mini-review is to summarize findings concerning the role that different models of muscular activity and inactivity play in altering gene expression of the myosin heavy chain (MHC) family of motor proteins in mammalian cardiac and skeletal muscle. This was done in the context of examining parallel findings concerning the role that thyroid hormone (T(3), 3,5,3'-triiodothyronine) plays in MHC expression. Findings show that both cardiac and skeletal muscles of experimental animals are initially undifferentiated at birth and then undergo a marked level of growth and differentiation in attaining the adult MHC phenotype in a T(3)/activity level-dependent fashion. Cardiac MHC expression in small mammals is highly sensitive to thyroid deficiency, diabetes, energy deprivation, and hypertension; each of these interventions induces upregulation of the beta-MHC isoform, which functions to economize circulatory function in the face of altered energy demand. In skeletal muscle, hyperthyroidism, as well as interventions that unload or reduce the weight-bearing activity of the muscle, causes slow to fast MHC conversions. Fast to slow conversions, however, are seen under hypothyroidism or when the muscles either become chronically overloaded or subjected to intermittent loading as occurs during resistance training and endurance exercise. The regulation of MHC gene expression by T(3) or mechanical stimuli appears to be strongly regulated by transcriptional events, based on recent findings on transgenic models and animals transfected with promoter-reporter constructs. However, the mechanisms by which T(3) and mechanical stimuli exert their control on transcriptional processes appear to be different. Additional findings show that individual skeletal muscle fibers have the genetic machinery to express simultaneously all of the adult MHCs, e.g., slow type I and fast IIa, IIx, and IIb, in unique combinations under certain experimental conditions. This degree of heterogeneity among the individual fibers would ensure a large functional diversity in performing complex movement patterns. Future studies must now focus on 1) the signaling pathways and the underlying mechanisms governing the transcriptional/translational machinery that control this marked degree of plasticity and 2) the morphological organization and functional implications of the muscle fiber's capacity to express such a diversity of motor proteins.
NASA Technical Reports Server (NTRS)
Diffee, Gary M.; Caiozzo, Vince J.; Mccue, Samuel A.; Herrick, Robert E.; Baldwin, Kenneth M.
1993-01-01
This study examined the role of specific types of contractile activity in regulating myosin heavy chain (MHC) isoform expression in rodent soleus. A combination of hindlimb suspension (SN) and two programmed contractile training activity paradigms, either isometric contractile activity (ST-IM) or high-load slowly shortening isovelocity activity, were utilized. Both training paradigms increased muscle mass compared with SN alone. However, only ST-IM resulted in a partial prevention of the suspension-induced decrease in type I MHC. With the use of a fluorescently labeled antibody to type IIa MHC, the distribution of MHCs among fibers was examined immunohistochemically. In SN, the percentage of cells staining positive for type IIa MHC was increased but the staining intensity of the positively staining cells was unchanged compared with control cells. In the ST-IM soleus, the percentage of positively staining fibers was unchanged but the intensity of the positively staining cells was decreased compared with SN values. These results suggest that 1) isometric contractile activity is more effective than isovelocity activity in preventing suspension-induced shifts in soleus MHC distribution and 2) changes associated with both suspension and training occur in only a small number of fibers, with the majority of fibers apparently unresponsive to these interventions.
Human Cytomegalovirus UL18 Utilizes US6 for Evading the NK and T-Cell Responses
Kim, Youngkyun; Park, Boyoun; Cho, Sunglim; Shin, Jinwook; Cho, Kwangmin; Jun, Youngsoo; Ahn, Kwangseog
2008-01-01
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses. PMID:18688275
Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities
Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.
2013-01-01
αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839
MHC class II transcription is associated with inflammatory responses in a wild marine mammal.
Montano-Frías, Jorge E; Vera-Massieu, Camila; Álvarez-Martínez, Roberto; Flores-Morán, Adriana; Acevedo-Whitehouse, Karina
2016-08-01
Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population. Copyright © 2016 Elsevier B.V. All rights reserved.
Jarvi, S.I.; Tarr, C.L.; Mcintosh, C.E.; Atkinson, C.T.; Fleischer, R.C.
2004-01-01
The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II ?? chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > d S and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II ?? chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.
Minias, Piotr; Bateson, Zachary W.; Whittingham, Linda A.; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O.
2016-01-01
Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.
Minias, P; Bateson, Z W; Whittingham, L A; Johnson, J A; Oyler-McCance, S; Dunn, P O
2016-01-01
Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens. PMID:26860199
Nguyen, Thao; Hatfield, Stephen M.; Ohta, Akio; Sitkovsky, Michail V.
2017-01-01
Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME. PMID:29155844
Cobble, Kacy R; Califf, Katy J; Stone, Nathan E; Shuey, Megan M; Birdsell, Dawn N; Colman, Rebecca E; Schupp, James M; Aziz, Maliha; Van Andel, Roger; Rocke, Tonie E; Wagner, David M; Busch, Joseph D
2016-04-01
Yersinia pestis was introduced to North America around 1900 and leads to nearly 100% mortality in prairie dog (Cynomys spp.) colonies during epizootic events, which suggests this pathogen may exert a strong selective force. We characterized genetic diversity at an MHC class II locus (DRB1) in Gunnison's prairie dog (C. gunnisoni) and quantified population genetic structure at the DRB1 versus 12 microsatellite loci in three large Arizona colonies. Two colonies, Seligman (SE) and Espee Ranch (ES), have experienced multiple plague-related die-offs in recent years, whereas plague has never been documented at Aubrey Valley (AV). We found fairly low allelic diversity at the DRB1 locus, with one allele (DRB1*01) at high frequency (0.67-0.87) in all colonies. Two other DRB1 alleles appear to be trans-species polymorphisms shared with the black-tailed prairie dog (C. ludovicianus), indicating that these alleles have been maintained across evolutionary time frames. Estimates of genetic differentiation were generally lower at the MHC locus (F ST = 0.033) than at microsatellite markers (F ST = 0.098). The reduced differentiation at DRB1 may indicate that selection has been important for shaping variation at MHC loci, regardless of the presence or absence of plague in recent decades. However, genetic drift has probably also influenced the DRB1 locus because its level of differentiation was not different from that of microsatellites in an F ST outlier analysis. We then compared specific MHC alleles to plague survivorship in 60 C. gunnisoni that had been experimentally infected with Y. pestis. We found that survival was greater in individuals that carried at least one copy of the most common allele (DRB1*01) compared to those that did not (60% vs. 20%). Although the sample sizes of these two groups were unbalanced, this result suggests the possibility that this MHC class II locus, or a nearby linked gene, could play a role in plague survival.
Cobble, Kacy R.; Califf, Katy J.; Stone, Nathan E.; Shuey, Megan M.; Birdsell, Dawn; Colman, Rebecca E.; Schupp, James M.; Aziz, Maliha; Van Andel, Roger; Rocke, Tonie E.; Wagner, David M.; Busch, Joseph D.
2016-01-01
Yersinia pestis was introduced to North America around 1900 and leads to nearly 100% mortality in prairie dog (Cynomys spp.) colonies during epizootic events, which suggests this pathogen may exert a strong selective force. We characterized genetic diversity at an MHC class II locus (DRB1) in Gunnison's prairie dog (C. gunnisoni) and quantified population genetic structure at the DRB1versus 12 microsatellite loci in three large Arizona colonies. Two colonies, Seligman (SE) and Espee Ranch (ES), have experienced multiple plague-related die-offs in recent years, whereas plague has never been documented at Aubrey Valley (AV). We found fairly low allelic diversity at the DRB1 locus, with one allele (DRB1*01) at high frequency (0.67–0.87) in all colonies. Two otherDRB1 alleles appear to be trans-species polymorphisms shared with the black-tailed prairie dog (C. ludovicianus), indicating that these alleles have been maintained across evolutionary time frames. Estimates of genetic differentiation were generally lower at the MHC locus (FST = 0.033) than at microsatellite markers (FST = 0.098). The reduced differentiation at DRB1 may indicate that selection has been important for shaping variation at MHC loci, regardless of the presence or absence of plague in recent decades. However, genetic drift has probably also influenced theDRB1 locus because its level of differentiation was not different from that of microsatellites in anFST outlier analysis. We then compared specific MHC alleles to plague survivorship in 60C. gunnisoni that had been experimentally infected with Y. pestis. We found that survival was greater in individuals that carried at least one copy of the most common allele (DRB1*01) compared to those that did not (60% vs. 20%). Although the sample sizes of these two groups were unbalanced, this result suggests the possibility that this MHC class II locus, or a nearby linked gene, could play a role in plague survival.
Human skeletal muscle: transition between fast and slow fibre types.
Neunhäuserer, Daniel; Zebedin, Michaela; Obermoser, Magdalena; Moser, Gerhard; Tauber, Mark; Niebauer, Josef; Resch, Herbert; Galler, Stefan
2011-05-01
Human skeletal muscles consist of different fibre types: slow fibres (slow twitch or type I) containing the myosin heavy chain isoform (MHC)-I and fast fibres (fast twitch or type II) containing MHC-IIa (type IIA) or MHC-IId (type IID). The following order of decreasing kinetics is known: type IID > type IIA > type I. This order is especially based on the kinetics of stretch activation, which is the most discriminative property among fibre types. In this study we tested if hybrid fibres containing both MHC-IIa and MHC-I (type C fibres) provide a transition in kinetics between fast (type IIA) and slow fibres (type I). Our data of stretch activation kinetics suggest that type C fibres, with different ratios of MHC-IIa and MHC-I, do not provide a continuous transition. Instead, a specialized group of slow fibres, which we called "transition fibres", seems to provide a transition. Apart of their kinetics of stretch activation, which is most close to that of type IIA, the transition fibres are characterized by large cross-sectional areas and low maximal tensions. The molecular cause for the mechanical properties of the transition fibres is unknown. It is possible that the transition fibres contain an unknown slow MHC isoform, which cannot be separated by biochemical methods. Alternatively, or in addition, isoforms of myofibrillar proteins, other than MHC, and posttranslational modifications of myofibrillar proteins could play a role regarding the characteristics of the transition fibres.
Skeletal muscle adaptations to microgravity exposure in the mouse.
Harrison, B C; Allen, D L; Girten, B; Stodieck, L S; Kostenuik, P J; Bateman, T A; Morony, S; Lacey, D; Leinwand, L A
2003-12-01
To investigate the effects of microgravity on murine skeletal muscle fiber size, muscle contractile protein, and enzymatic activity, female C57BL/6J mice, aged 64 days, were divided into animal enclosure module (AEM) ground control and spaceflight (SF) treatment groups. SF animals were flown on the space shuttle Endeavour (STS-108/UF-1) and subjected to approximately 11 days and 19 h of microgravity. Immunohistochemical analysis of muscle fiber cross-sectional area revealed that, in each of the muscles analyzed, mean muscle fiber cross-sectional area was significantly reduced (P < 0.0001) for all fiber types for SF vs. AEM control. In the soleus, immunohistochemical analysis of myosin heavy chain (MHC) isoform expression revealed a significant increase in the percentage of muscle fibers expressing MHC IIx and MHC IIb (P < 0.05). For the gastrocnemius and plantaris, no significant changes in MHC isoform expression were observed. For the muscles analyzed, no alterations in MHC I or MHC IIa protein expression were observed. Enzymatic analysis of the gastrocnemius revealed a significant decrease in citrate synthase activity in SF vs. AEM control.
INF-gamma rearranges membrane topography of MHC-I and ICAM-1 in colon carcinoma cells.
Bacsó, Zsolt; Bene, László; Damjanovich, László; Damjanovich, Sándor
2002-01-18
Flow-cytometric fluorescence energy transfer (FCET) measurements between fluorescently labeled cell surface MHC-I and ICAM-1 molecules indicated similar receptor patterns in the plasma membrane of interferon-gamma (INF-gamma)-treated colon carcinoma cells as those observed earlier at the surface of lymphoid cells. INF-gamma activation significantly increased the density of MHC-I and ICAM-1 proteins in the membrane. This increase in receptor density was accompanied by decreased proximity level of the homo-associated MHC-I receptors. Hetero-association of MHC-I and ICAM-1 molecules was increased by INF-gamma treatment. INF-gamma changed neither hetero- nor homo-association of transferrin receptors. By staining the sphingomyelin/cholesterol-enriched lipid microdomains with fluorescently labeled cholera toxin B subunit, we found an increase in the amount of lipid-raft associated G(M1)-gangliosides due to INF-gamma treatment. Confocal microscopic results and FCET measurements show that MHC-I and ICAM-1 are components of G(M1)-ganglioside containing lipid-rafts and also support an increase in the size of these lipid-rafts upon INF-gamma treatment.
[Effects of Salvianolate on Myosin Heavy Chain in Cardiomyocytes of Congestive Heart Failure Rats].
Chen, Cheng; Zou, Xiang-gu; Qiu, Shan-dong; Chen, Hui; Chen, Yong-zhong; Lin, Xiu-ming
2015-07-01
To explore the effect of Salvianolate on myosin heavy chain (MHC) in cardiomyocytes of congestive heart failure (CHF) rats. Sixty male SD rats were divided into 6 groups according to random digit table, i.e., the normal control group (NCG), the model group, the Captopril group (CAG), the low dose Salvianolate group (LSG), the high dose Salvianolate group (HSG), the Captopril and high dose Salvianolate group (CSG), 10 in each group. CHF rat model was established with peritoneal injection of adriamycin in all rats except those in the NCG. Equal volume of normal saline was peritoneally injected to rats in the NCG, once per week for 6 successive weeks. Corresponding medication was started from the 5th week of injecting adriamycin. Rats in the CAG were administered with Captopril solution at the daily dose of 10 mg/kg by gastrogavage. Rats in the LSG and the HSG were administered with Salvianolate solution at the daily dose of 24.219 mg/kg and 48.438 mg/kg respectively by gastrogavage. Salvianolate was dissolved in 2 mL 5% glucose solution and administered by peritoneal injection. Rats in the CSG were peritoneally injected with high dose Salvianolate solution and administered with Captopril solution by gastrogavage. Two mL normal saline was peritoneally injected to rats in the model group, once per day for 8 successive weeks. Eight weeks later, the cardiac function and myocardial hypertrophy indices were detected by biological signal collecting and processing system. mRNA expression levels of alpha-MHC and beta-MHC in cardiac muscle were detected by fluorescence quantitative PCR. Expressions of protein kinase C (PKC) in cardiac muscle were detected by Western blot. Compared with the normal control group, heart mass index (HMI) and left ventricular mass index (LVMI) obviously increased in the model group (P < 0.01). Compared with the model group, HMI and LVMI decreased in HSG, CAG, and CSG groups (P < 0.05, P < 0.01). It was more obviously lowered in the CSG group than in the CAG group (P < 0.05). Compared with the NCG, the mRNA expression level of alpha-MHC in cardiac muscle decreased, the mRNA expression level of p-MHC and the expression of PKC in cardiac muscle increased in the model group (P < 0.01). Compared with the model group, the mRNA expression level of alpha-MHC in cardiac muscle was increased, and the mRNA expression level of beta-MHC and the expression of PKC in cardiac muscle were decreased in HSG, CAG, and CSG groups (P < 0.05, P < 0.01). There was statistical difference between the CSG group and the CAG group (P < 0.05). Salvianolate could up-regulate the mRNA expression level of alpha-MHC, and down-regulate the mRNA expression level of beta-MHC in cardiac muscle. Its mechanism might be related to decreasing the expression of PKC.
Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms
NASA Technical Reports Server (NTRS)
Caiozzo, V. J.; Herrick, R. E.; Baldwin, K. M.
1992-01-01
This study examined both the shortening velocity and myosin isoform distribution of slow- (soleus) and fast-twitch (plantaris) skeletal muscles under hypothyroid conditions. Adult female Sprague-Dawley rats were randomly assigned to one of two groups: control (n = 7) or hypothyroid (n = 7). In both muscles, the relative contents of native slow myosin (SM) and type I myosin heavy chain (MHC) increased in response to the hypothyroid treatment. The effects were such that the hypothyroid soleus muscle expressed only the native SM and type I MHC isoforms while repressing native intermediate myosin and type IIA MHC. In the plantaris, the relative content of native SM and type I MHC isoforms increased from 5 to 13% and from 4 to 10% of the total myosin pool, respectively. Maximal shortening velocity of the soleus and plantaris as measured by the slack test decreased by 32 and 19%, respectively, in response to hypothyroidism. In contrast, maximal shortening velocity as estimated by force-velocity data decreased only in the soleus (-19%). No significant change was observed for the plantaris.
Gollapudi, Sampath K; Tardiff, Jil C; Chandra, Murali
2015-04-15
Given the differential impact of α- and β-myosin heavy chain (MHC) isoforms on how troponin T (TnT) modulates contractile dynamics, we hypothesized that the effects of dilated cardiomyopathy (DCM) mutations in TnT would be altered differently by α- and β-MHC. We characterized dynamic contractile features of normal (α-MHC) and transgenic (β-MHC) mouse cardiac muscle fibers reconstituted with a mouse TnT analog (TnTR144W) of the human DCM R141W mutation. TnTR144W did not alter maximal tension but attenuated myofilament Ca(2+) sensitivity (pCa50) to a similar extent in α- and β-MHC fibers. TnTR144W attenuated the speed of cross-bridge (XB) distortion dynamics (c) by 24% and the speed of XB recruitment dynamics (b) by 17% in α-MHC fibers; however, both b and c remained unaltered in β-MHC fibers. Likewise, TnTR144W attenuated the rates of XB detachment (g) and tension redevelopment (ktr) only in α-MHC fibers. TnTR144W also decreased the impact of strained XBs on the recruitment of new XBs (γ) by 30% only in α-MHC fibers. Because c, b, g, ktr, and γ are strongly influenced by thin filament-based cooperative mechanisms, we conclude that the TnTR144W- and β-MHC-mediated changes in the thin filament interact to produce a less severe functional phenotype, compared with that brought about by TnTR144W and α-MHC. These observations provide a basis for lower mortality rates of humans (β-MHC) harboring the TnTR141W mutant compared with transgenic mouse studies. Our findings strongly suggest that some caution is necessary when extrapolating data from transgenic mouse studies to human hearts. Copyright © 2015 the American Physiological Society.
Allogeneic lymphocytes persist and traffic in feral MHC-matched mauritian cynomolgus macaques.
Greene, Justin M; Burwitz, Benjamin J; Blasky, Alex J; Mattila, Teresa L; Hong, Jung Joo; Rakasz, Eva G; Wiseman, Roger W; Hasenkrug, Kim J; Skinner, Pamela J; O'Connor, Shelby L; O'Connor, David H
2008-06-11
Thus far, live attenuated SIV has been the most successful method for vaccinating macaques against pathogenic SIV challenge; however, it is not clear what mechanisms are responsible for this protection. Adoptive transfer studies in mice have been integral to understanding live attenuated vaccine protection in models like Friend virus. Previous adoptive transfers in primates have failed as transferred cells are typically cleared within hours after transfer. Here we describe adoptive transfer studies in Mauritian origin cynomolgus macaques (MCM), a non-human primate model with limited MHC diversity. Cells transferred between unrelated MHC-matched macaques persist for at least fourteen days but are rejected within 36 hours in MHC-mismatched macaques. Cells trafficked from the blood to peripheral lymphoid tissues within 12 hours of transfer. MHC-matched MCM provide the first viable primate model for adoptive transfer studies. Because macaques infected with SIV are the best model for HIV/AIDS pathogenesis, we can now directly study the correlates of protective immune responses to AIDS viruses. For example, plasma viral loads following pathogenic SIV challenge are reduced by several orders of magnitude in macaques previously immunized with attenuated SIV. Adoptive transfer of lymphocyte subpopulations from vaccinated donors into SIV-naïve animals may define the immune mechanisms responsible for protection and guide future vaccine development.
IMGT, the International ImMunoGeneTics database.
Lefranc, M P; Giudicelli, V; Busin, C; Bodmer, J; Müller, W; Bontrop, R; Lemaitre, M; Malik, A; Chaume, D
1998-01-01
IMGT, the international ImMunoGeneTics database, is an integrated database specialising in Immunoglobulins (Ig), T cell Receptors (TcR) and Major Histocompatibility Complex (MHC) of all vertebrate species, created by Marie-Paule Lefranc, CNRS, Montpellier II University, Montpellier, France (lefranc@ligm.crbm.cnrs-mop.fr). IMGT includes three databases: LIGM-DB (for Ig and TcR), MHC/HLA-DB and PRIMER-DB (the last two in development). IMGT comprises expertly annotated sequences and alignment tables. LIGM-DB contains more than 23 000 Immunoglobulin and T cell Receptor sequences from 78 species. MHC/HLA-DB contains Class I and Class II Human Leucocyte Antigen alignment tables. An IMGT tool, DNAPLOT, developed for Ig, TcR and MHC sequence alignments, is also available. IMGT works in close collaboration with the EMBL database. IMGT goals are to establish a common data access to all immunogenetics data, including nucleotide and protein sequences, oligonucleotide primers, gene maps and other genetic data of Ig, TcR and MHC molecules, and to provide a graphical user friendly data access. IMGT has important implications in medical research (repertoire in autoimmune diseases, AIDS, leukemias, lymphomas), therapeutical approaches (antibody engineering), genome diversity and genome evolution studies. IMGT is freely available at http://imgt.cnusc.fr:8104 PMID:9399859
A new animal model for modulating myosin isoform expression by altered mechanical activity
NASA Technical Reports Server (NTRS)
Caiozzo, V. J.; Ma, E.; McCue, S. A.; Smith, E.; Herrick, R. E.; Baldwin, K. M.
1992-01-01
The purpose of this study was to develop a new rodent model that is capable of delineating the importance of mechanical loading on myosin heavy chain (MHC) isoform expression of the plantar and dorsi flexor muscles of the ankle. The essential components of this system include 1) stimulating electrodes that are chronically implanted into a muscle, allowing for the control of the activation pattern of the target muscle(s); 2) a training apparatus that translates the moment of the ankle into a linear force; and 3) a computer-controlled Cambridge 310 ergometer. The isovelocity profile of the ergometer ensured that the medial gastrocnemius (MG) produced forces that were > 90% of maximal isometric force (Po), and the eccentric contractions of the tibialis anterior (TA) were typically 120% of Po. Both the concentric and eccentric training programs produced statistically significant increases in the muscle mass of the MG (approximately 15%) and TA (approximately 7%) as well as a decrease in myofibrillar adenosinetriphosphatase activity. Both the white and red regions of the MG and TA exhibited significant increases in the relative content of the type IIa MHC and concomitant decreases in type IIb MHC expression. Although the red regions of the MG and red TA contained approximately 10% type I MHC, the training programs did not affect this isoform. It appears that when a fast-twitch muscle is stimulated at a high frequency (100 Hz) and required to contract either concentrically or eccentrically under high loading conditions, the expression of the type IIa MHC isoform will be upregulated, whereas that of the type IIb MHC will be concomitantly downregulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wynn, Katherine K.; Fulton, Zara; Cooper, Leanne
2008-04-29
CD8{sup +} T-cell responses to persistent viral infections are characterized by the accumulation of an oligoclonal T-cell repertoire and a reduction in the naive T-cell pool. However, the precise mechanism for this phenomenon remains elusive. Here we show that human cytomegalovirus (HCMV)-specific CD8{sup +} T cells recognizing distinct epitopes from the pp65 protein and restricted through an identical HLA class I allele (HLA B*3508) exhibited either a highly conserved public T-cell repertoire or a private, diverse T-cell response, which was uniquely altered in each donor following in vitro antigen exposure. Selection of a public T-cell receptor (TCR) was coincident withmore » an atypical major histocompatibility complex (MHC)-peptide structure, in that the epitope adopted a helical conformation that bulged from the peptide-binding groove, while a diverse TCR profile was observed in response to the epitope that formed a flatter, more 'featureless' landscape. Clonotypes with biased TCR usage demonstrated more efficient recognition of virus-infected cells, a greater CD8 dependency, and were more terminally differentiated in their phenotype when compared with the T cells expressing diverse TCR. These findings provide new insights into our understanding on how the biology of antigen presentation in addition to the structural features of the pMHC-I might shape the T-cell repertoire and its phenotype.« less
Wan, Qiu-Hong; Lou, Ji-Kang; Li, Wen-Jing; Ge, Yun-Fa; Fang, Sheng-Guo
2013-01-01
Genetic variation plays a significant role in maintaining the evolutionary potential of a species. Comparing the patterns of adaptive and neutral diversity in extant populations is useful for understanding the local adaptations of a species. In this study, we determined the fine-scale genetic structure of 6 extant populations of the giant panda (Ailuropoda melanoleuca) using mtDNA and DNA fingerprints, and then overlaid adaptive variations in 6 functional Aime-MHC class II genes (DRA, DRB3, DQA1, DQA2, DQB1, and DQB2) on this framework. We found that: (1) analysis of the mtDNA and DNA fingerprint-based networks of the 6 populations identified the independent evolutionary histories of the 2 panda subspecies; (2) the basal (ancestral) branches of the fingerprint-based Sichuan-derived network all originated from the smallest Xiaoxiangling (XXL) population, suggesting the status of a glacial refuge in XXL; (3) the MHC variations among the tested populations showed that the XXL population exhibited extraordinary high levels of MHC diversity in allelic richness, which is consistent with the diversity characteristics of a glacial refuge; (4) the phylogenetic tree showed that the basal clades of giant panda DQB sequences were all occupied by XXL-specific sequences, providing evidence for the ancestor-resembling traits of XXL. Finally, we found that the giant panda had many more DQ alleles than DR alleles (33∶13), contrary to other mammals, and that the XXL refuge showed special characteristics in the DQB loci, with 7 DQB members of 9 XXL-unique alleles. Thus, this study identified XXL as a glacial refuge, specifically harboring the most number of primitive DQB alleles. PMID:23894623
Chen, Yi-Yan; Zhu, Ying; Wan, Qiu-Hong; Lou, Ji-Kang; Li, Wen-Jing; Ge, Yun-Fa; Fang, Sheng-Guo
2013-01-01
Genetic variation plays a significant role in maintaining the evolutionary potential of a species. Comparing the patterns of adaptive and neutral diversity in extant populations is useful for understanding the local adaptations of a species. In this study, we determined the fine-scale genetic structure of 6 extant populations of the giant panda (Ailuropoda melanoleuca) using mtDNA and DNA fingerprints, and then overlaid adaptive variations in 6 functional Aime-MHC class II genes (DRA, DRB3, DQA1, DQA2, DQB1, and DQB2) on this framework. We found that: (1) analysis of the mtDNA and DNA fingerprint-based networks of the 6 populations identified the independent evolutionary histories of the 2 panda subspecies; (2) the basal (ancestral) branches of the fingerprint-based Sichuan-derived network all originated from the smallest Xiaoxiangling (XXL) population, suggesting the status of a glacial refuge in XXL; (3) the MHC variations among the tested populations showed that the XXL population exhibited extraordinary high levels of MHC diversity in allelic richness, which is consistent with the diversity characteristics of a glacial refuge; (4) the phylogenetic tree showed that the basal clades of giant panda DQB sequences were all occupied by XXL-specific sequences, providing evidence for the ancestor-resembling traits of XXL. Finally, we found that the giant panda had many more DQ alleles than DR alleles (33∶13), contrary to other mammals, and that the XXL refuge showed special characteristics in the DQB loci, with 7 DQB members of 9 XXL-unique alleles. Thus, this study identified XXL as a glacial refuge, specifically harboring the most number of primitive DQB alleles.
Stock, P G; Ascher, N L; Platt, J L; Kaufman, D B; Chen, S; Field, M J; Sutherland, D E
1989-01-01
In vitro manipulation of pancreatic islets to decrease islet immunogenicity before transplantation has largely been directed at eliminating the major histocompatibility complex (MHC) class II-positive passenger leukocytes from the islets. The mixed islet-lymphocyte coculture (MILC) system was used to quantitate the efficacy of immunodepletion of MHC class II-positive cells from pancreatic islets in terms of reducing immunogenicity. With these experiments we compared the in vitro immunogenicity of MHC class II-depleted islets with untreated islets. B10.BR (H-2k) islets were treated with anti-Iak alloserum followed by complement. This treatment successfully eliminated MHC class II-positive cells from the islets, as demonstrated by indirect immunofluorescence techniques. Depleted islets generated slightly lower amounts of allospecific cytotoxic T-lymphocyte (CTL) activity when exposed to C57BL/6 (H-2b) splenocytes in the MILC than untreated control islets. Although the amount of CTL generated by the depleted islets was slightly less than that generated by untreated islets, there was significant stimulation of CTL by the MHC class II-depleted islets. Therefore, the presence or absence of MHC class II cells within the islet is unlikely to be the decisive factor contributing to islet immunogenicity.
Wroblewski, Emily E; Norman, Paul J; Guethlein, Lisbeth A; Rudicell, Rebecca S; Ramirez, Miguel A; Li, Yingying; Hahn, Beatrice H; Pusey, Anne E; Parham, Peter
2015-05-01
Major histocompatibility complex (MHC) class I molecules determine immune responses to viral infections. These polymorphic cell-surface glycoproteins bind peptide antigens, forming ligands for cytotoxic T and natural killer cell receptors. Under pressure from rapidly evolving viruses, hominoid MHC class I molecules also evolve rapidly, becoming diverse and species-specific. Little is known of the impact of infectious disease epidemics on MHC class I variant distributions in human populations, a context in which the chimpanzee is the superior animal model. Population dynamics of the chimpanzees inhabiting Gombe National Park, Tanzania have been studied for over 50 years. This population is infected with SIVcpz, the precursor of human HIV-1. Because HLA-B is the most polymorphic human MHC class I molecule and correlates strongly with HIV-1 progression, we determined sequences for its ortholog, Patr-B, in 125 Gombe chimpanzees. Eleven Patr-B variants were defined, as were their frequencies in Gombe's three communities, changes in frequency with time, and effect of SIVcpz infection. The growing populations of the northern and central communities, where SIVcpz is less prevalent, have stable distributions comprising a majority of low-frequency Patr-B variants and a few high-frequency variants. Driving the latter to high frequency has been the fecundity of immigrants to the northern community, whereas in the central community, it has been the fecundity of socially dominant individuals. In the declining population of the southern community, where greater SIVcpz prevalence is associated with mortality and emigration, Patr-B variant distributions have been changing. Enriched in this community are Patr-B variants that engage with natural killer cell receptors. Elevated among SIVcpz-infected chimpanzees, the Patr-B*06:03 variant has striking structural and functional similarities to HLA-B*57, the human allotype most strongly associated with delayed HIV-1 progression. Like HLA-B*57, Patr-B*06:03 correlates with reduced viral load, as assessed by detection of SIVcpz RNA in feces.
Glaberman, Scott; Du Pasquier, Louis; Caccone, Adalgisa
2008-01-01
Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification. PMID:18682845
Fernando, Michelle M A; Freudenberg, Jan; Lee, Annette; Morris, David Lester; Boteva, Lora; Rhodes, Benjamin; Gonzalez-Escribano, María Francisca; Lopez-Nevot, Miguel Angel; Navarra, Sandra V; Gregersen, Peter K; Martin, Javier; Vyse, Timothy J
2012-01-01
Objectives Systemic lupus erythematosus (SLE) is a chronic multisystem genetically complex autoimmune disease characterised by the production of autoantibodies to nuclear and cellular antigens, tissue inflammation and organ damage. Genome-wide association studies have shown that variants within the major histocompatibility complex (MHC) region on chromosome 6 confer the greatest genetic risk for SLE in European and Chinese populations. However, the causal variants remain elusive due to tight linkage disequilibrium across disease-associated MHC haplotypes, the highly polymorphic nature of many MHC genes and the heterogeneity of the SLE phenotype. Methods A high-density case-control single nucleotide polymorphism (SNP) study of the MHC region was undertaken in SLE cohorts of Spanish and Filipino ancestry using a custom Illumina chip in order to fine-map association signals in these haplotypically diverse populations. In addition, comparative analyses were performed between these two datasets and a northern European UK SLE cohort. A total of 1433 cases and 1458 matched controls were examined. Results Using this transancestral SNP mapping approach, novel independent loci were identified within the MHC region in UK, Spanish and Filipino patients with SLE with some evidence of interaction. These loci include HLA-DPB1, HLA-G and MSH5 which are independent of each other and HLA-DRB1 alleles. Furthermore, the established SLE-associated HLA-DRB1*15 signal was refined to an interval encompassing HLA-DRB1 and HLA-DQA1. Increased frequencies of MHC region risk alleles and haplotypes were found in the Filipino population compared with Europeans, suggesting that the greater disease burden in non-European SLE may be due in part to this phenomenon. Conclusion These data highlight the usefulness of mapping disease susceptibility loci using a transancestral approach, particularly in a region as complex as the MHC, and offer a springboard for further fine-mapping, resequencing and transcriptomic analysis. PMID:22233601
Eren, U; Kum, S; Sandikçi, M; Eren, V; Ilhan, F
2009-08-01
The aim of this study was to determine and examine the distribution of major frequency MHC II+ cells in the oviduct and vagina of cows during the oestrous and dioestrus phases. Right oviduct (ampulla, isthmus) and vaginal samples taken from a total of twenty seven multiparous cows were used. Tissue samples were processed to obtain both cryostat and paraffin sections. Sections were stained immunocytochemically using StreptABC method using a specific monoclonal antibody to MHC II+ cell population. Intra-epithelial and subepithelial areas along with lamina propria, muscularis mucosae and serosa of both ampulla and isthmus and intra-epithelial/subepithelial areas and mucosae of vagina were examined for the presence of MHC II+ cells. The density of immune positive cells was determined using a subjective scoring system. MHC II+ cells were demonstrated in all areas examined in both oestrus and dioestrus. In oestrus, the density of MHC II+ cells decreased in subepithelial areas (in between the epithelial cells and the basal membrane) of isthmus, whereas the density of immune positive cells was increased in muscularis mucosae of isthmus (P < 0.05), lamina propria and muscularis mucosae of ampulla (P < 0.05) as well as in the mucosae of vagina (P
Diversity in the Toll-Like Receptor Genes of the African Penguin (Spheniscus demersus).
Dalton, Desiré Lee; Vermaak, Elaine; Roelofse, Marli; Kotze, Antoinette
2016-01-01
The African penguin, Spheniscus demersus, is listed as Endangered by the IUCN Red List of Threatened Species due to the drastic reduction in population numbers over the last 20 years. To date, the only studies on immunogenetic variation in penguins have been conducted on the major histocompatibility complex (MHC) genes. It was shown in humans that up to half of the genetic variability in immune responses to pathogens are located in non-MHC genes. Toll-like receptors (TLRs) are now increasingly being studied in a variety of taxa as a broader approach to determine functional genetic diversity. In this study, we confirm low genetic diversity in the innate immune region of African penguins similar to that observed in New Zealand robin that has undergone several severe population bottlenecks. Single nucleotide polymorphism (SNP) diversity across TLRs varied between ex situ and in situ penguins with the number of non-synonymous alterations in ex situ populations (n = 14) being reduced in comparison to in situ populations (n = 16). Maintaining adaptive diversity is of vital importance in the assurance populations as these animals may potentially be used in the future for re-introductions. Therefore, this study provides essential data on immune gene diversity in penguins and will assist in providing an additional monitoring tool for African penguin in the wild, as well as to monitor diversity in ex situ populations and to ensure that diversity found in the in situ populations are captured in the assurance populations.
αβ T cell receptors as predictors of health and disease
Attaf, Meriem; Huseby, Eric; Sewell, Andrew K
2015-01-01
The diversity of antigen receptors and the specificity it underlies are the hallmarks of the cellular arm of the adaptive immune system. T and B lymphocytes are indeed truly unique in their ability to generate receptors capable of recognizing virtually any pathogen. It has been known for several decades that T lymphocytes recognize short peptides derived from degraded proteins presented by major histocompatibility complex (MHC) molecules at the cell surface. Interaction between peptide-MHC (pMHC) and the T cell receptor (TCR) is central to both thymic selection and peripheral antigen recognition. It is widely assumed that TCR diversity is required, or at least highly desirable, to provide sufficient immune coverage. However, a number of immune responses are associated with the selection of predictable, narrow, or skewed repertoires and public TCR chains. Here, we summarize the current knowledge on the formation of the TCR repertoire and its maintenance in health and disease. We also outline the various molecular mechanisms that govern the composition of the pre-selection, naive and antigen-specific TCR repertoires. Finally, we suggest that with the development of high-throughput sequencing, common TCR ‘signatures' raised against specific antigens could provide important diagnostic biomarkers and surrogate predictors of disease onset, progression and outcome. PMID:25619506
Richardson, David S; Westerdahl, Helena
2003-12-01
The Great reed warbler (GRW) and the Seychelles warbler (SW) are congeners with markedly different demographic histories. The GRW is a normal outbred bird species while the SW population remains isolated and inbred after undergoing a severe population bottleneck. We examined variation at Major Histocompatibility Complex (MHC) class I exon 3 using restriction fragment length polymorphism, denaturing gradient gel electrophoresis and DNA sequencing. Although genetic variation was higher in the GRW, considerable variation has been maintained in the SW. The ten exon 3 sequences found in the SW were as diverged from each other as were a random sub-sample of the 67 sequences from the GRW. There was evidence for balancing selection in both species, and the phylogenetic analysis showing that the exon 3 sequences did not separate according to species, was consistent with transspecies evolution of the MHC.
Goda, N; Mano, T; Kosintsev, P; Vorobiev, A; Masuda, R
2010-11-01
The allelic diversity of the DRB locus in major histocompatibility complex (MHC) genes was analyzed in the brown bear (Ursus arctos) from the Hokkaido Island of Japan, Siberia, and Kodiak of Alaska. Nineteen alleles of the DRB exon 2 were identified from a total of 38 individuals of U. arctos and were highly polymorphic. Comparisons of non-synonymous and synonymous substitutions in the antigen-binding sites of deduced amino acid sequences indicated evidence for balancing selection on the bear DRB locus. The phylogenetic analysis of the DRB alleles among three genera (Ursus, Tremarctos, and Ailuropoda) in the family Ursidae revealed that DRB allelic lineages were not separated according to species. This strongly shows trans-species persistence of DRB alleles within the Ursidae. © 2010 John Wiley & Sons A/S.
Nishita, Y; Abramov, A V; Kosintsev, P A; Lin, L-K; Watanabe, S; Yamazaki, K; Kaneko, Y; Masuda, R
2015-12-01
Major histocompatibility complex (MHC) genes encode proteins that play a critical role in vertebrate immune system and are highly polymorphic. To further understand the molecular evolution of the MHC genes, we compared MHC class II DRB genes between the Japanese weasel (Mustela itatsi), a species endemic to Japan, and the Siberian weasel (Mustela sibirica), a closely related species on the continent. We sequenced a 242-bp region of DRB exon 2, which encodes antigen-binding sites (ABS), and found 24 alleles from 31 M. itatsi individuals and 17 alleles from 21 M. sibirica individuals, including broadly distributed, species-specific and/or geographically restricted alleles. Our results suggest that pathogen-driven balancing selection have acted to maintain the diversity in the DRB genes. For predicted ABS, nonsynonymous substitutions exceeded synonymous substitutions, also indicating positive selection, which was not seen at non-ABS. In a Bayesian phylogenetic tree, two M. sibirica DRB alleles were basal to the rest of the sequences from mustelid species and may represent ancestral alleles. Trans-species polymorphism was evident between many mustelid DRB alleles, especially between M. itatsi and M. sibirica. These two Mustela species divided about 1.7 million years ago, but still share many MHC alleles, indicative of their close phylogenetic relationship. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Early SIV and HIV infection promotes the LILRB2/MHC-I inhibitory axis in cDCs.
Alaoui, Lamine; Palomino, Gustavo; Zurawski, Sandy; Zurawski, Gerard; Coindre, Sixtine; Dereuddre-Bosquet, Nathalie; Lecuroux, Camille; Goujard, Cecile; Vaslin, Bruno; Bourgeois, Christine; Roques, Pierre; Le Grand, Roger; Lambotte, Olivier; Favier, Benoit
2018-05-01
Classical dendritic cells (cDCs) play a pivotal role in the early events that tip the immune response toward persistence or viral control. In vitro studies indicate that HIV infection induces the dysregulation of cDCs through binding of the LILRB2 inhibitory receptor to its MHC-I ligands and the strength of this interaction was proposed to drive disease progression. However, the dynamics of the LILRB2/MHC-I inhibitory axis in cDCs during early immune responses against HIV are yet unknown. Here, we show that early HIV-1 infection induces a strong and simultaneous increase of LILRB2 and MHC-I expression on the surface of blood cDCs. We further characterized the early dynamics of LILRB2 and MHC-I expression by showing that SIVmac251 infection of macaques promotes coordinated up-regulation of LILRB2 and MHC-I on cDCs and monocytes/macrophages, from blood and lymph nodes. Orientation towards the LILRB2/MHC-I inhibitory axis starts from the first days of infection and is transiently induced in the entire cDC population in acute phase. Analysis of the factors involved indicates that HIV-1 replication, TLR7/8 triggering, and treatment by IL-10 or type I IFNs increase LILRB2 expression. Finally, enhancement of the LILRB2/MHC-I inhibitory axis is specific to HIV-1 and SIVmac251 infections, as expression of LILRB2 on cDCs decreased in naturally controlled chikungunya virus infection of macaques. Altogether, our data reveal a unique up-regulation of LILRB2 and its MHC-I ligands on cDCs in the early phase of SIV/HIV infection, which may account for immune dysregulation at a critical stage of the anti-viral response.
Hormonal regulation of β-myosin heavy chain expression in the mouse left ventricle.
Patrizio, Mario; Musumeci, Marco; Piccone, Ambra; Raggi, Carla; Mattei, Elisabetta; Marano, Giuseppe
2013-03-01
We investigated the influence of sex hormones on the expression of α- and β-cardiac myosin heavy chain isoforms (α-MHC and β-MHC) in C57bl/6 mice of both sexes under physiological and pathological conditions. In the left ventricles (LVs) of fertile female mice, β-MHC expression was tenfold higher compared with the age-matched males, whereas no difference was found in α-MHC expression. These differences disappeared after ovariectomy or in immature mice. We also found a sex-related difference in expression of β-adrenoceptors (β1-AR), as mRNA levels of this gene were 40% lower in fertile females compared with males of the same age but did not differ in prepubertal or ovariectomized animals. Interestingly, the deletion of both β1- and β2-ARs abolished sex difference of β-MHC expression, as mRNA levels in the LVs of knockout males were increased and reached values comparable to those of knockout females. Moreover, the β1-AR antagonist metoprolol induced about a threefold increase in β-MHC expression in adult male mice. The capability of gender to regulate β-MHC expression was also evaluated in the presence of hemodynamic overload. Thoracic aortic coarctation (TAC) produced cardiac hypertrophy along with a 12-fold increase in β-MHC and a 50% decrease in β1-AR expression in males but not in females, thus abolishing the gender difference observed in sham animals for such genes. By contrast, TAC did not change β2-AR expression. In conclusion, our results show that the expression of β-MHC and β1-AR in the LVs undergo gender-related and correlated changes under both physiological and pathological conditions and suggest a role of β1-AR-mediated signaling.
Prospective study of violence risk reduction by a mental health court.
McNiel, Dale E; Sadeh, Naomi; Delucchi, Kevin L; Binder, Renée L
2015-06-01
Although many mental health courts (MHCs) have been established to reduce criminal justice involvement of persons with mental disorders, research has not kept pace with the widespread implementation of these courts. Whereas early MHCs were restricted to persons charged with nonviolent misdemeanors, many MHCs now accept persons with more serious charges for whom ameliorating risk of violence is a greater concern. This study evaluated the relationship between MHC participation and risk of violence by using a prospective design. It was hypothesized that MHC participation would decrease the risk of violence during a one year follow-up compared with a matched comparison group. The sample included 169 jail detainees with a mental disorder who either entered an MHC (N=88) or received treatment as usual (N=81). Seventy-two percent had been charged with felonies. Participants were interviewed at baseline and during a one-year follow up, and their arrest records were reviewed. Propensity-adjusted logistic regression evaluated the relationship between MHC participation and risk of violence, controlling for potential confounders such as history of violence, demographic characteristics, baseline treatment motivation, and time at risk in the community. MHC participation was associated with reduction in risk of violence (odds ratio=.39). During follow-up, 25% of the MHC group perpetrated violence, compared with 42% of the treatment-as-usual group. MHC participation can reduce the risk of violence among justice-involved persons with mental disorders. The findings support the conclusion that the MHC model can be extended beyond persons charged with nonviolent misdemeanors in a way that enhances public safety.
Salomonsson, Stina; Grundtman, Cecilia; Zhang, Shi-Jin; Lanner, Johanna T.; Li, Charles; Katz, Abram; Wedderburn, Lucy R.; Nagaraju, Kanneboyina; Lundberg, Ingrid E.; Westerblad, Håkan
2008-01-01
Expression of major histocompatibility complex (MHC) class I in skeletal muscle fibers is an early and consistent finding in inflammatory myopathies. To test if MHC class I has a primary role in muscle impairment; we used transgenic mice with inducible over-expression of MHC class I in their skeletal muscle cells. Contractile function was studied in isolated extensor digitorum longus (EDL, fast-twitch) and soleus (slow-twitch) muscles. We found that EDL was smaller, whereas soleus muscle was slightly larger. Both muscles generated less absolute force in myopathic compared to control mice, however when force was expressed per cross-sectional area, only soleus muscle generated less force. Inflammation was markedly increased, but no changes were found in the activities of key mitochondrial and glycogenolytic enzymes in myopathic mice. The induction of MHC class I results in muscle atrophy and an intrinsic decrease in force-generation capacity. These observations may have important implications for our understanding of the pathophysiological processes of muscle weakness seen in inflammatory myopathies. PMID:19229963
CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells.
Schofield, L; McConville, M J; Hansen, D; Campbell, A S; Fraser-Reid, B; Grusby, M J; Tachado, S D
1999-01-08
Immunoglobulin G (IgG) responses require major histocompatibility complex (MHC)-restricted recognition of peptide fragments by conventional CD4(+) helper T cells. Immunoglobulin G responses to glycosylphosphatidylinositol (GPI)- anchored protein antigens, however, were found to be regulated in part through CD1d-restricted recognition of the GPI moiety by thymus-dependent, interleukin-4-producing CD4(+), natural killer cell antigen 1.1 [(NK1.1)+] helper T cells. The CD1-NKT cell pathway regulated immunogobulin G responses to the GPI-anchored surface antigens of Plasmodium and Trypanosoma and may be a general mechanism for rapid, MHC-unrestricted antibody responses to diverse pathogens.
Zhu, Ying; Wan, Qiu-Hong; Yu, Bin; Ge, Yun-Fa; Fang, Sheng-Guo
2013-10-22
Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend that a captive breeding program be considered for the Qinling panda population.
Kim, Jong-Hee; Thompson, LaDora V
2014-07-15
We tested the hypothesis that non-weight bearing-induced muscle weakness (i.e., specific force) results from decreases in myosin protein quantity (i.e., myosin content per half-sarcomere and the ratio of myosin to actin) and quality (i.e., force per half-sarcomere and population of myosin heads in the strong-binding state during muscle contraction) in single myosin heavy chain (MHC) type II fibers. Fisher-344 rats were assigned to weight-bearing control (Con) or non-weight bearing (NWB). The NWB rats were hindlimb unloaded for 2 wk. Diameter, force, and MHC content were determined in permeabilized single fibers from the semimembranosus muscle. MHC isoform and the ratio of MHC to actin in each fiber were determined by gel electrophoresis and silver staining techniques. The structural distribution of myosin from spin-labeled fiber bundles during maximal isometric contraction was evaluated using electron paramagnetic resonance spectroscopy. Specific force (peak force per cross-sectional area) in MHC type IIB and IIXB fibers from NWB was significantly reduced by 38% and 18%, respectively. MHC content per half-sarcomere was significantly reduced by 21%. Two weeks of hindlimb unloading resulted in a reduced force per half-sarcomere of 52% and fraction of myosin strong-binding during contraction of 34%. The results suggest that reduced myosin and actin content (quantity) and myosin quality concomitantly contribute to non-weight bearing-related muscle weakness. Copyright © 2014 the American Physiological Society.
Qiu, Ying; Yun, Mark M; Han, Xia; Zhao, Ruidong; Zhou, Erxia; Yun, Sheng
2014-01-01
Background: Human umbilical cord mesenchymal stromal cells (UC-MSCs) have low immunogenicity and immune regulation. To investigate immunomodulatory effects of human UC-MSCs on MHC class II expression and allograft, we transplanted heart of transgenic rats with MHC class II expression on vascular endothelium. Methods: UC-MSCs were obtained from human umbilical cords and confirmed with flow cytometry analysis. Transgenic rat line was established using the construct of human MHC class II transactivator gene (CIITA) under mouse ICAM-2 promoter control. The induced MHC class II expression on transgenic rat vascular endothelial cells (VECs) was assessed with immunohistological staining. And the survival time of cardiac allograft was compared between the recipients with and without UC-MSC transfusion. Results: Flow cytometry confirmed that the human UC-MSCs were positive for CD29, CD44, CD73, CD90, CD105, CD271, and negative for CD34 and HLA-DR. Repeated infusion of human UC-MSCs reduced MHC class II expression on vascular endothelia of transplanted hearts, and increased survival time of allograft. The UC-MSCs increased regulatory cytokines IL10, transforming growth factor (TGF)-β1 and suppressed proinflammatory cytokines IL2 and IFN-γ in vivo. The UC-MSC culture supernatant had similar effects on cytokine expression, and decreased lymphocyte proliferation in vitro. Conclusions: Repeated transfusion of the human UC-MSCs reduced MHC class II expression on vascular endothelia and prolonged the survival time of rat cardiac allograft. PMID:25126177
Balreira, Andrea; Lacerda, Lúcia; Miranda, Clara Sá; Arosa, Fernando A
2005-06-01
Gaucher disease (GD) is an autosomal recessive inherited defect of the lysosomal enzyme glucocerebrosidase (GluCerase) that leads to glucosylceramide (GluCer) accumulation. We previously demonstrated the existence of imbalances in certain lymphocyte populations in GD patients. We now show that GluCerase-deficient monocytes from GD patients or monocytes from healthy subjects treated with conduritol-B-epoxide (CBE), an irreversible inhibitor of GluCerase activity, display high levels of surface expression of the lipid-binding molecule CD1d. GluCerase-deficient monocytes from GD patients also showed increased surface expression of major histocompatibility complex (MHC)-class II, but not of other lysosomal trafficking molecules, such as CD63 and MHC-class I. However, CD1d and MHC-class II mRNA levels were not increased. GluCerase-deficient monocytes from GD patients undergoing enzyme replacement therapy also exhibited increased levels of CD1d and MHC-class II and imbalances in the percentage of CD4+, CD8+, and Valpha24+ T cells. Interestingly, follow-up studies revealed that enzyme replacement therapy induced a decrease in MHC-class II expression and partial correction of the CD4+ T cell imbalances. These results reveal a new link between sphingolipid accumulation in monocytes and the expression of certain MHC molecules that may result in imbalances of regulatory T cell subsets. These immunological anomalies may contribute to the clinical heterogeneity in GD patients.
Goyos, Ana; Guethlein, Lisbeth A.; Horowitz, Amir; Hilton, Hugo G.; Gleimer, Michael; Brodsky, Frances M.; Parham, Peter
2015-01-01
Chimpanzees have orthologs of the six, fixed, functional human MHC class I genes. But in addition, the chimpanzee has a seventh functional gene, Patr-AL, which is not polymorphic but contributes substantially to population diversity by its presence on only 50% of MHC haplotypes. The ancestral AL gene emerged long before the separation of human and chimpanzee ancestors and then subsequently and specifically lost function during human evolution, but was maintained in chimpanzees. Patr-AL is an alloantigen that participates in negative and positive selection of the T-cell repertoire. The three-dimensional structure and the peptide-binding repertoire of Patr-AL and HLA-A*02 are surprisingly similar. In contrast, the expression of these two molecules is very different as shown using specific monoclonal and polyclonal antibodies made against Patr-AL. Peripheral blood cells and B cell lines express low levels of Patr-AL at the cell surface. Higher levels are seen for 221-cell transfectants expressing Patr-AL, but in these cells a large majority of Patr-AL molecules are retained in the early compartments of the secretory pathway: mainly the endoplasmic reticulum but also cis-Golgi. Replacing the cytoplasmic tail of Patr-AL with that of HLA-A*02 increased the cell-surface expression of Patr-AL substantially. Four substitutions distinguish the Patr-AL and HLA-A*02 cytoplasmic tails. Systematic mutagenesis showed that each substitution contributes changes in cell-surface expression. The combination of residues present in Patr-AL appears unique, but each individual residue is present in other primate MHC class I molecules, notably MHC-E, the most ancient of the functional human MHC class I molecules. PMID:26371256
T Cell Receptor Engineering and Analysis Using the Yeast Display Platform
Smith, Sheena N.; Harris, Daniel T.; Kranz, David M.
2017-01-01
The αβ heterodimeric T cell receptor (TCR) recognizes peptide antigens that are transported to the cell surface as a complex with a protein encoded by the major histocompatibility complex (MHC). T cells thus evolved a strategy to sense these intracellular antigens, and to respond either by eliminating the antigen-presenting cell (e.g. a virus-infected cell) or by secreting factors that recruit the immune system to the site of the antigen. The central role of the TCR in the binding of antigens as peptide-MHC (pepMHC) ligands has now been studied thoroughly. Interestingly, despite their exquisite sensitivity (e.g. T cell activation by as few as 1 to 3 pepMHC complexes on a single target cell), TCRs are known to have relatively low affinities for pepMHC, with KD values in the micromolar range. There has been interest in engineering the affinity of TCRs in order to use this class of molecules in ways similar to now done with antibodies. By doing so, it would be possible to harness the potential of TCRs as therapeutics against a much wider array of antigens that include essentially all intracellular targets. To engineer TCRs, and to analyze their binding features more rapidly, we have used a yeast display system as a platform. Expression and engineering of a single-chain form of the TCR, analogous to scFv fragments from antibodies, allow the TCR to be affinity matured with a variety of possible pepMHC ligands. In addition, the yeast display platform allows one to rapidly generate TCR variants with diverse binding affinities and to analyze specificity and affinity without the need for purification of soluble forms of the TCRs. The present chapter describes the methods for engineering and analyzing single-chain TCRs using yeast display. PMID:26060072
Acevedo-Whitehouse, Karina; Gulland, Frances; Bowen, Lizabeth
2018-01-01
We examined the associations between California sea lion MHC class II DRB (Zaca-DRB) configuration and diversity, and leptospirosis. As Zaca-DRB gene sequences are involved with antigen presentation of bacteria and other extracellular pathogens, we predicted that they would play a role in determining responses to these pathogenic spirochaetes. Specifically, we investigated whether Zaca-DRB diversity (number of genes) and configuration (presence of specific genes) explained differences in disease severity, and whether higher levels of Zaca-DRB diversity predicted the number of specific Leptospira interrogans serovars that a sea lion's serum would react against. We found that serum from diseased sea lions with more Zaca-DRB loci reacted against a wider array of serovars. Specific Zaca-DRB loci were linked to reactions with particular serovars. Interestingly, sea lions with clinical manifestation of leptospirosis that had higher numbers of Zaca-DRB loci were less likely to recover from disease than those with lower diversity, and those that harboured Zaca-DRB.C or –G were 4.5 to 5.3 times more likely to die from leptospirosis, regardless of the infective serovars. We propose that for leptospirosis, a disadvantage of having a wider range of antigen presentation might be increased disease severity due to immunopathology. Ours is the first study to examine the importance of Zaca-DRB diversity for antigen detection and disease severity following natural exposure to infective leptospires.
Pinto, Rute D; Randelli, Elisa; Buonocore, Francesco; Pereira, Pedro J B; dos Santos, Nuno M S
2013-03-01
In this work, the gene and cDNA of sea bass (Dicentrarchus labrax) β2-microglobulin (Dila-β2m) and several cDNAs of MHC class I heavy chain (Dila-UA) were characterized. While Dila-β2m is single-copy, numerous Dila-UA transcripts were identified per individual with variability at the peptide-binding domain (PBD), but also with unexpected diversity from the connective peptide (CP) through the 3' untranslated region (UTR). Phylogenetic analysis segregates Dila-β2m and Dila-UA into each subfamily cluster, placing them in the fish class and branching Dila-MHC-I with lineage U. The α1 domains resemble those of the recently proposed L1 trans-species lineage. Although no Dila-specific α1, α2 or α3 sub-lineages could be observed, two highly distinct sub-lineages were identified at the CP/TM/CYT regions. The three-dimensional homology model of sea bass MHC-I complex is consistent with other characterized vertebrate structures. Furthermore, basal tissue-specific expression profiles were determined for both molecules, and expression of β2m was evaluated after poly I:C stimulus. Results suggest these molecules are orthologues of other β2m and teleost classical MHC-I and their basic structure is evolutionarily conserved, providing relevant information for further studies on antigen presentation in this fish species. Copyright © 2012 Elsevier Ltd. All rights reserved.
Raafat, Nermin; Sadowski-Cron, Charlotte; Mengus, Chantal; Heberer, Michael; Spagnoli, Giulio C; Zajac, Paul
2012-09-01
Herpes simplex virus protein ICP47, encoded by US12 gene, strongly downregulates major histocompatibility complex (MHC) class-I antigen restricted presentation by blocking transporter associated with antigen processing (TAP) protein. To decrease viral vector antigenic immunodominance and MHC class-I driven clearance, we engineered recombinant vaccinia viruses (rVV) expressing ICP47 alone (rVV-US12) or together with endoplasmic reticulum (ER)-targeted Melan-A/MART-1(27-35) model tumor epitope (rVV-MUS12). In this study, we show that antigen presenting cells (APC), infected with rVV-US12, display a decreased ability to present TAP dependent MHC class-I restricted viral antigens to CD8+ T-cells. While HLA class-I cell surface expression is strongly downregulated, other important immune related molecules such as CD80, CD44 and, most importantly, MHC class-II are unaffected. Characterization of rVV-MUS12 infected cells demonstrates that over-expression of a TAP-independent peptide, partially compensates for ICP47 induced surface MHC class-I downregulation (30% vs. 70% respectively). Most importantly, in conditions where clearance of infected APC by virus-specific CTL represents a limiting factor, a significant enhancement of CTL responses to the tumor epitope can be detected in cultures stimulated with rVV-MUS12, as compared to those stimulated by rVV-MART alone. Such reagents could become of high relevance in multiple boost protocols required for cancer immunotherapy, to limit vector-specific responsiveness. Copyright © 2011 UICC.
Ding, Yuan-Yuan; Li, Jing-Mei; Guo, Feng-Jie; Liu, Ya; Tong, Yang-Fei; Pan, Xi-Chun; Lu, Xiao-Lan; Ye, Wen; Chen, Xiao-Hong; Zhang, Hai-Gang
2016-01-01
The forkhead/winged helix transcription factor (Fox) p3 can regulate the expression of various genes, and it has been reported that the transfer of Foxp3-positive T cells could ameliorate cardiac hypertrophy and fibrosis. Triptolide (TP) can elevate the expression of Foxp3, but its effects on cardiac hypertrophy remain unclear. In the present study, neonatal rat ventricular myocytes (NRVM) were isolated and stimulated with angiotensin II (1 μmol/L) to induce hypertrophic response. The expression of Foxp3 in NRVM was observed by using immunofluorescence assay. Fifty mice were randomly divided into five groups and received vehicle (control), isoproterenol (Iso, 5 mg/kg, s.c.), one of three doses of TP (10, 30, or 90 μg/kg, i.p.) for 14 days, respectively. The pathological morphology changes were observed after Hematoxylin and eosin, lectin and Masson’s trichrome staining. The levels of serum brain natriuretic peptide (BNP) and troponin I were determined by enzyme-linked immunosorbent assay and chemiluminescence, respectively. The mRNA and protein expressions of α- myosin heavy chain (MHC), β-MHC and Foxp3 were determined using real-time PCR and immunohistochemistry, respectively. It was shown that TP (1, 3, 10 μg/L) treatment significantly decreased cell size, mRNA and protein expression of β-MHC, and upregulated Foxp3 expression in NRVM. TP also decreased heart weight index, left ventricular weight index and, improved myocardial injury and fibrosis; and decreased the cross-scetional area of the myocardium, serum cardiac troponin and BNP. Additionally, TP markedly reduced the mRNA and protein expression of myocardial β-MHC and elevated the mRNA and protein expression of α-MHC and Foxp3 in a dose-dependent manner. In conclusion, TP can effectively ameliorate myocardial damage and inhibit cardiac hypertrophy, which is at least partly related to the elevation of Foxp3 expression in cardiomyocytes. PMID:27965581
Bonobos maintain immune-system diversity with three functional types of MHC-B1
Wroblewski, Emily E.; Guethlein, Lisbeth A.; Norman, Paul J.; Li, Yingying; Shaw, Christiana M.; Han, Alex S.; Ndjango, Jean-Bosco N.; Ahuka-Mundeke, Steve; Georgiev, Alexander V.; Peeters, Martine; Hahn, Beatrice H.; Parham, Peter
2017-01-01
Fast-evolving MHC class I polymorphism serves to diversify NK cell and CD8 T cell responses in individuals, families, and populations. As only chimpanzee and bonobo have strict orthologs of all HLA class I, their study gives unique perspective on the human condition. We defined polymorphism of Papa-B, the bonobo ortholog of HLA-B, for six wild bonobo populations. Sequences for Papa-B exon 2 and 3 were determined from the genomic DNA in 255 fecal samples, minimally representing 110 individuals. Twenty-two Papa-B alleles were defined, each encoding a different Papa-B protein. No Papa-B is identical to any chimpanzee Patr-B, human HLA-B, or gorilla Gogo-B. Phylogenetic analysis identified a clade of MHC-B, defined by residues 45–74 of the α1 domain, which is broadly conserved among bonobo, chimpanzee, and gorilla. Bonobo populations have 3–14 Papa-B allotypes. Three Papa-B are in all populations, and they are each of a different functional type: allotypes having the Bw4 epitope recognized by killer cell immunoglobulin-like receptors (KIR) of NK cells, allotypes having the C1 epitope also recognized by KIR, and allotypes having neither epitope. For population ML these three Papa-B are the only Papa-B allotypes. Although small in number, their sequence divergence is such that the nucleotide diversity (mean p-distance) of Papa-B in ML is greater than in the other populations, and also greater than expected for random combinations of three Papa-B. Overall, Papa-B has substantially less diversity than Patr-B in chimpanzee subspecies and HLA-B in indigenous human populations, consistent with bonobo having experienced narrower population bottlenecks. PMID:28348269
Pantos, Constantinos; Mourouzis, Iordanis; Malliopoulou, Vassiliki; Paizis, Ioannis; Tzeis, Stylianos; Moraitis, Panagiotis; Sfakianoudis, Konstantinos; Varonos, Dennis D; Cokkinos, Dennis V
2005-01-01
Hypothyroid heart displays a phenotype of cardioprotection against ischemia and this study investigated whether administration of dronedarone, an amiodarone-like compound that has been shown to preferentially antagonize thyroid hormone binding to thyroid hormone receptor alpha1 (TRalpha1), results in a similar effect. Dronedarone was given in Wistar rats (90 mg/kg, once daily (od) for 2 weeks) (DRON), while untreated animals served as controls (CONT). Hypothyroidism (HYPO) was induced by propylthiouracil administration. Isolated rat hearts were perfused in Langendorff mode and subjected to 20 minutes of zero-flow global ischemia (I) followed by 45 minutes of reperfusion (R). 3,5,3' Triiodothyronine remained unchanged while body weight and food intake were reduced. alpha-Myosin heavy chain (alpha-MHC) decreased in DRON while beta-myosin heavy chain (beta-MHC) and sarcoplasmic reticulum Ca2+ adenosine triphosphatase (ATPase) expression (SERCA) was similar to CONT. In HYPO, alpha-MHC and SERCA were decreased while beta-MHC was increased. Myocardial glycogen content was increased in both DRON and HYPO. In DRON, resting heart rate and contractility were reduced and ischemic contracture was significantly suppressed while postischemic left ventricular end-diastolic pressure and lactate dehydrogenase release (IU/L min) after I/R were significantly decreased. In conclusion, dronedarone treatment results in cardioprotection by selectively mimicking hypothyroidism. This is accompanied by a reduction in body weight because of the suppression of food intake. TRs might prove novel pharmacologic targets for the treatment of cardiovascular illnesses.
Comparison of soleus muscles from rats exposed to microgravity for 10 versus 14 days
NASA Technical Reports Server (NTRS)
Staron, R. S.; Kraemer, W. J.; Hikida, R. S.; Reed, D. W.; Murray, J. D.; Campos, G. E.; Gordon, S. E.
1998-01-01
The effects of two different duration space-flights on the extent of atrophy, fiber type composition, and myosin heavy chain (MHC) content of rat soleus muscles were compared. Adult male Fisher rats (n=12) were aboard flight STS-57 and exposed to 10 days of microgravity and adult ovariectomized female Spraque-Dawley rats (n=12) were aboard flight STS-62 for 14 days. Soleus muscles were bilaterally removed from the flight and control animals and frozen for subsequent analyses. Muscle wet weights, fiber types (I, IC, IIC, and IIA), cross-sectional area, and MHC content were determined. Although a significant difference was found between the soleus wet weights of the two ground-based control groups, they were similar with regard to MHC content (ca 90% MHCI and ca 10% MHCIIa) and fiber type composition. Unloading of the muscles caused slow-to-fast transformations which included a decrease in the percentage of type I fibers and MHCI, an increase in fibers classified as type IC, and the expression of two fast myosin heavy chains not found in the control rat soleus muscles (MHCIId and MHCIIb). Although the amount of atrophy (ca 26%) and the extent of slow-to-fast transformation (decrease in the percentage of MHCI from 90% to 82.5%) in the soleus muscles were similar between the two spaceflights, the percentages of the fast MHCs differed. After 14 days of spaceflight, the percentage of MHCIIa was significantly lower and the percentages of MHCIId and MHCIIb were significantly higher than the corresponding MHC content of the soleus muscles from the 10-day animals. Indeed, MHCIId became the predominant fast MHC after 14 days in space. These data suggest fast-to-faster transformations continued during the longer spaceflight.
Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.
2010-01-01
Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.
Morris, Katrina M; Wright, Belinda; Grueber, Catherine E; Hogg, Carolyn; Belov, Katherine
2015-08-01
The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll-like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome-level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole-genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29-220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long-term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad-scale immunogenetic diversity analysis in threatened species. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xinbo; Chen, Guobing; Weng, Nan-ping
Influenza A virus (IAV) causes an acute infection in humans that is normally eliminated by CD8+ cytotoxic T lymphocytes. Individuals expressing the MHC class I molecule HLA-A2 produce cytotoxic T lymphocytes bearing T-cell receptors (TCRs) that recognize the immunodominant IAV epitope GILGFVFTL (GIL). Most GIL-specific TCRs utilize α/β chain pairs encoded by the TRAV27/TRBV19 gene combination to recognize this relatively featureless peptide epitope (canonical TCRs). However, ~40% of GIL-specific TCRs express a wide variety of other TRAV/TRBV combinations (non-canonical TCRs). To investigate the structural underpinnings of this remarkable diversity, we determined the crystal structure of a non-canonical GIL-specific TCR (F50)more » expressing the TRAV13-1/TRBV27 gene combination bound to GIL–HLA-A2 to 1.7 Å resolution. Comparison of the F50–GIL–HLA-A2 complex with the previously published complex formed by a canonical TCR (JM22) revealed that F50 and JM22 engage GIL–HLA-A2 in markedly different orientations. These orientations are distinguished by crossing angles of TCR to peptide–MHC of 29° for F50 versus 69° for JM22 and by a focus by F50 on the C terminus rather than the center of the MHC α1 helix for JM22. In addition, F50, unlike JM22, uses a tryptophan instead of an arginine to fill a critical notch between GIL and the HLA-A2 α2 helix. The F50–GIL–HLA-A2 complex shows that there are multiple structurally distinct solutions to recognizing an identical peptide–MHC ligand with sufficient affinity to elicit a broad anti-IAV response that protects against viral escape and T-cell clonal loss.« less
Medler, Scott; Mykles, Donald L
2003-10-01
Skeletal muscles are diverse in their contractile properties, with many of these differences being directly related to the assemblages of myofibrillar isoforms characteristic of different fibers. Crustacean muscles are similar to other muscles in this respect, although the majority of information about differences in muscle organization comes from vertebrate species. In the present study, we examined the correlation between myofibrillar protein isoforms and the patterns of myofibrillar gene expression in fast, slow-phasic (S(1)) and slow-tonic (S(2)) fibers of the American lobster Homarus americanus. SDS-PAGE and western blotting were used to identify isoform assemblages of myosin heavy chain (MHC), P75, troponin T (TnT) and troponin I (TnI). RT-PCR was used to monitor expression of fast and slow (S(1)) MHC, P75 and actin in different fiber types, and the MHC and actin levels were quantified by real-time PCR. Fast and slow fibers from the claw closers predominantly expressed fast and S(1) MHC, respectively, but also lower levels of the alternate MHC. By contrast, fast fibers from the deep abdominal muscle expressed fast MHC exclusively. In addition, slow muscles expressed significantly higher levels of actin than fast fibers. A distal bundle of fibers in the cutter claw closer muscle was found to be composed of a mixture of S(1) and S(2) fibers, many of which possessed a mixture of S(1) and S(2) MHC isoforms. This pattern supports the idea that S(1) and S(2) fibers represent extremes in a continuum of slow muscle phenotype. Overall, these patterns demonstrate that crustacean skeletal muscles cannot be strictly categorized into discrete fiber types, but a muscle's properties probably represent a point on a continuum of fiber types. This trend may result from differences in innervation pattern, as each muscle is controlled by a unique combination of phasic, tonic or both phasic and tonic motor nerves. In this respect, future studies examining how muscle phenotype correlates with innervation pattern may help account for variation in crustacean fiber types.
NASA Technical Reports Server (NTRS)
Adams, Gregory R.; Haddad, Fadia; Baldwin, Kenneth M.
1994-01-01
In this study, creatine depletion was induced separately and in combination with non-weight-bearing activity to determine if the response to lowering this metabolite would counter the MHC transitions expected from non-weight-bearing. Creatine depletion was induced by feeding rats a diet supplemented with the creatine analogue beta-guanidinopropionic acid (beta-GPA). Animals were fed a diet containing the creatine analogue for 68 days. Hindlimb non-weight-bearing in BS and NS animals was accomplished by tail suspension for the final 30 days of this period. Beta-GPA feeding lowered the creatine content of muscles sampled by 65%. Creatine depletion resulted in a 16% increase in citrate synthase activity in the soleus (SOL) and a 24% increase in the plantaris (PLN). In two postural muscles, the SOL and vastus intermedius (VI), tail suspension resulted in large decreases in the type I MHC expression and increases in type IIx and IIb MHCs. In two locomotor muscles, the PLN and medial gastrocnemius, type I MHC declined and type IIb increased with suspension. Creatine depletion did not prevent the suspension-induced decline in type I MHC in any of these muscles. The increase in type IIb MHC was either prevented or reduced by creatine depletion before and during suspension in the SOL, VI, and PLN. Creatine depletion alone resulted in small increases in type I and IIa MHCs in the two locomotor muscles, but it had no effect on the MHC profile of the postural muscles studied. These results indicate that the mechanical signal generated by the hindlimb non-weight-bearing state dominated over the metabolic stimulus of creatine depletion with respect to the primary adaptation involving a reduction in type I MHC.
Single muscle fiber adaptations with marathon training.
Trappe, Scott; Harber, Matthew; Creer, Andrew; Gallagher, Philip; Slivka, Dustin; Minchev, Kiril; Whitsett, David
2006-09-01
The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P < 0.05) with the training program. Muscle fiber size declined (P < 0.05) by approximately 20% in both fiber types after training. P(o) was maintained in both fiber types with training and increased (P < 0.05) by 18% in the MHC IIa fibers after taper. This resulted in >60% increase (P < 0.05) in force per cross-sectional area in both fiber types. Fiber V(o) increased (P < 0.05) by 28% in MHC I fibers with training and was unchanged in MHC IIa fibers. Peak power increased (P < 0.05) in MHC I and IIa fibers after training with a further increase (P < 0.05) in MHC IIa fiber power after taper. These data show that marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.
Serrano, A L; Rivero, J L
2000-04-01
Fourteen 4-year old Andalusian mares were used to examine the plasticity of myosin heavy chain (MHC) composition in horse skeletal muscle with heavy draught-exercise training and detraining. Seven horses underwent a training programme based on carriage exercises for 8 months. Afterwards, they were kept in paddocks for 3 months. The remaining seven animals were used as control horses. Three gluteus medius muscle biopsies were removed at depths of 20, 40 and 60 mm from each horse before (month 0), during the training (months 3 and 8) and after detraining (month 11). Myosin heavy chain composition was analysed by electrophoresis and immunohistochemically with anti-MHC monoclonal antibodies. Fibre areas, oxidative capacity and capillaries were studied histochemically. After 8 months of training, MHC-IIX and IIX fibres decreased whereas MHC-I and type I and I + IIA fibres increased. Neither MHC-IIA nor the percentage of IIA fibres changed when the data were considered as a whole, but the proportion of MHC-IIA increased in the superficial region of the muscle after 8 months of training. Mean areas of type II fibres were not affected by training and detraining, but the cross-sectional of type I fibres increased after 3 month of training and not further increases were recorded afterward. The percentage of high-oxidative capacity fibres and the number of capillaries per mm2 increased with training. Most of these muscular adaptations reverted after detraining. These results indicate that long term draught-exercise training induces a reversible transition of MHC composition in equine muscle in the order IIX --> IIA --> I. The physiological implication of these changes is an impact on the velocity of shortening and fatigue resistance of muscle fibres.
Reprogramming of the MHC-I and its regulation by NFκB in human-induced pluripotent stem cells.
Pick, Marjorie; Ronen, Daniel; Yanuka, Ofra; Benvenisty, Nissim
2012-12-01
The immunogenicity of human pluripotent stem cells plays a major role in their potential use in the clinic. We show that, during their reprogramming, human-induced pluripotent stem (iPS) cells downregulate expression of human leukocyte antigen (HLA)-A/B/C and β2 microglobulin (β2M), the two components of major histocompatibility complex-I (MHC-I). MHC-I expression in iPS cells can be restored by differentiation or treatment with interferon-gamma (IFNγ). To analyze the molecular mechanisms that regulate the expression of the MHC-I molecules in human iPS cells, we searched for correlation between the expression of HLA-A/B/C and β2M and the expression of transcription factors that bind to the promoter of these genes. Our results show a significant positive correlation between MHC-I expression and expression of the nuclear factors, nuclear factor kappa B 1 (NFκB1) and RelA, at the levels of RNA, protein and was confirmed by chromatin binding. Concordantly, we detected robust levels of NFκB1 and RelA proteins in the nucleus of somatic cells but not in the iPS cell derived from them. Overexpression of NFκB1 and RelA in undifferentiated pluripotent stem cells led to induction in expression of MHC-I, whereas silencing NFκB1 and RelA by small hairpin RNA decreased the expression of β2M after IFNγ treatment. Our data point to the critical role of NFκB proteins in regulating the MHC-I expression in human pluripotent stem cells. Copyright © 2012 AlphaMed Press.
MHC standing genetic variation and pathogen resistance in wild Atlantic salmon
Dionne, Mélanie; Miller, Kristina M.; Dodson, Julian J.; Bernatchez, Louis
2009-01-01
Pathogens are increasingly emerging in human-altered environments as a serious threat to biodiversity. In this context of rapid environmental changes, improving our knowledge on the interaction between ecology and evolution is critical. The objective of this study was to evaluate the influence of an immunocompetence gene, the major histocompatibility complex (MHC) class IIβ, on the pathogen infection levels in wild Atlantic salmon populations, Salmo salar, and identify selective agents involved in contemporary coevolution. MHC variability and bacterial infection rate were determined throughout the summer in juvenile salmon from six rivers belonging to different genetic and ecological regions in Québec, Canada. A total of 13 different pathogens were identified in kidney by DNA sequence analysis, including a predominant myxozoa, most probably recently introduced in North America. Infection rates were the highest in southern rivers at the beginning of the summer (average 47.6±6.3% infected fish). One MHC allele conferred a 2.9 times greater chance of being resistant to myxozoa, while another allele increased susceptibility by 3.4 times. The decrease in frequency of the susceptibility allele but not other MHC or microsatellite alleles during summer was suggestive of a mortality event from myxozoa infection. These results supported the hypothesis of pathogen-driven selection in the wild by means of frequency-dependent selection or change in selection through time and space rather than heterozygous advantage, and underline the importance of MHC standing genetic variation for facing pathogens in a changing environment. PMID:19414470
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, Boryana N.; Jackson, Bryan L.; Petit, Rebecca S.
2011-05-31
T cells react to extremely small numbers of activating agonist peptides. Spatial organization of T-cell receptors (TCR) and their peptide-major histocompatibility complex (pMHC) ligands into microclusters is correlated with T-cell activation. In this study, we have designed an experimental strategy that enables control over the number of agonist peptides per TCR cluster, without altering the total number engaged by the cell. Supported membranes, partitioned with grids of barriers to lateral mobility, provide an effective way of limiting the total number of pMHC ligands that may be assembled within a single TCR cluster. Observations directly reveal that restriction of pMHC contentmore » within individual TCR clusters can decrease T-cell sensitivity for triggering initial calcium flux at fixed total pMHC density. Further analysis suggests that triggering thresholds are determined by the number of activating ligands available to individual TCR clusters, not by the total number encountered by the cell. Results from a series of experiments in which the overall agonist density and the maximum number of agonist per TCR cluster are independently varied in primary T cells indicate that the most probable minimal triggering unit for calcium signaling is at least four pMHC in a single cluster for this system. In conclusion, this threshold is unchanged by inclusion of coagonist pMHC, but costimulation of CD28 by CD80 can modulate the threshold lower.« less
Scorisa, Juliana M.; Freria, Camila M.; Victorio, Sheila C.; Barbizan, Roberta; Zanon, Renata G.; Oliveira, Alexandre L. R.
2011-01-01
The recent discovery that the major histocompatibility complex of class I (MHC I) expression has a role in the synaptic elimination process, represented an insight into understanding the cross talk between neurons. In the present study, the possibility that glatiramer acetate (GA) treatment influences the MHC class I expression and the synaptic plasticity process in the spinal cord during the course of EAE was investigated. C57BL/6J mice were induced to EAE and submitted to treatment either with a placebo solution or with GA (0.05mg/animal, subcutaneously, on a daily basis). All the animals were sacrificed at the peak disease (14 days after induction) or at the point of recovery of the clinical signs (21 days after induction). The spinal cords were removed and submitted to immunohistochemical examination, Western blotting and transmission electron microscopy analysis. The results showed that GA treatment was able to decrease synaptic loss during the course of EAE, which correlates with the downregulation of the MHC I complex. The present results reinforce the neuroprotective role of GA treatment, by reducing synaptic loss during the course of the disease. Such action may be associated with the recently described role of MHC I regulation during the synaptic plasticity process. PMID:22043176
Crucian, Brian; Sams, Clarence
2015-01-01
Alterations in immune function have been documented during or post-spaceflight and in ground based models of microgravity. Identification of immune parameters that are dysregulated during spaceflight is an important step in mitigating crew health risks during deep space missions. The in vitro analysis of leukocyte activity post-spaceflight in both human and animal species is primarily focused on lymphocytic function. This report completes a broader spectrum analysis of mouse lymphocyte and monocyte changes post 13 days orbital flight (mission STS-135). Analysis includes an examination in surface markers for cell activation, and antigen presentation and co-stimulatory molecules. Cytokine production was measured after stimulation with T-cell mitogen or TLR-2, TLR-4, or TLR-5 agonists. Splenocyte surface marker analysis immediate post-spaceflight and after in vitro culture demonstrated unique changes in phenotypic populations between the flight mice and matched treatment ground controls. Post-spaceflight splenocytes (flight splenocytes) had lower expression intensity of CD4+CD25+ and CD8+CD25+ cells, lower percentage of CD11c+MHC II+ cells, and higher percentage of CD11c+MHC I+ populations compared to ground controls. The flight splenocytes demonstrated an increase in phagocytic activity. Stimulation with ConA led to decrease in CD4+ population but increased CD4+CD25+ cells compared to ground controls. Culturing with TLR agonists led to a decrease in CD11c+ population in splenocytes isolated from flight mice compared to ground controls. Consequently, flight splenocytes with or without TLR-agonist stimulation showed a decrease in CD11c+MHC I+, CD11c+MHC II+, and CD11c+CD86+ cells compared to ground controls. Production of IFN-γ was decreased and IL-2 was increased from ConA stimulated flight splenocytes. This study demonstrated that expression of surface molecules can be affected by conditions of spaceflight and impaired responsiveness persists under culture conditions in vitro. PMID:25970640
Human skeletal muscle biochemical diversity.
Tirrell, Timothy F; Cook, Mark S; Carr, J Austin; Lin, Evie; Ward, Samuel R; Lieber, Richard L
2012-08-01
The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy - titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to 'tune' the protein's mechanotransduction capability.
Human skeletal muscle biochemical diversity
Tirrell, Timothy F.; Cook, Mark S.; Carr, J. Austin; Lin, Evie; Ward, Samuel R.; Lieber, Richard L.
2012-01-01
SUMMARY The molecular components largely responsible for muscle attributes such as passive tension development (titin and collagen), active tension development (myosin heavy chain, MHC) and mechanosensitive signaling (titin) have been well studied in animals but less is known about their roles in humans. The purpose of this study was to perform a comprehensive analysis of titin, collagen and MHC isoform distributions in a large number of human muscles, to search for common themes and trends in the muscular organization of the human body. In this study, 599 biopsies were obtained from six human cadaveric donors (mean age 83 years). Three assays were performed on each biopsy – titin molecular mass determination, hydroxyproline content (a surrogate for collagen content) and MHC isoform distribution. Titin molecular mass was increased in more distal muscles of the upper and lower limbs. This trend was also observed for collagen. Percentage MHC-1 data followed a pattern similar to collagen in muscles of the upper extremity but this trend was reversed in the lower extremity. Titin molecular mass was the best predictor of anatomical region and muscle functional group. On average, human muscles had more slow myosin than other mammals. Also, larger titins were generally associated with faster muscles. These trends suggest that distal muscles should have higher passive tension than proximal ones, and that titin size variability may potentially act to ‘tune’ the protein's mechanotransduction capability. PMID:22786631
The Relevance of HLA Sequencing in Population Genetics Studies
Sanchez-Mazas, Alicia
2014-01-01
Next generation sequencing (NGS) is currently being adapted by different biotechnological platforms to the standard typing method for HLA polymorphism, the huge diversity of which makes this initiative particularly challenging. Boosting the molecular characterization of the HLA genes through efficient, rapid, and low-cost technologies is expected to amplify the success of tissue transplantation by enabling us to find donor-recipient matching for rare phenotypes. But the application of NGS technologies to the molecular mapping of the MHC region also anticipates essential changes in population genetic studies. Huge amounts of HLA sequence data will be available in the next years for different populations, with the potential to change our understanding of HLA variation in humans. In this review, we first explain how HLA sequencing allows a better assessment of the HLA diversity in human populations, taking also into account the methodological difficulties it introduces at the statistical level; secondly, we show how analyzing HLA sequence variation may improve our comprehension of population genetic relationships by facilitating the identification of demographic events that marked human evolution; finally, we discuss the interest of both HLA and genome-wide sequencing and genotyping in detecting functionally significant SNPs in the MHC region, the latter having also contributed to the makeup of the HLA molecular diversity observed today. PMID:25126587
The relevance of HLA sequencing in population genetics studies.
Sanchez-Mazas, Alicia; Meyer, Diogo
2014-01-01
Next generation sequencing (NGS) is currently being adapted by different biotechnological platforms to the standard typing method for HLA polymorphism, the huge diversity of which makes this initiative particularly challenging. Boosting the molecular characterization of the HLA genes through efficient, rapid, and low-cost technologies is expected to amplify the success of tissue transplantation by enabling us to find donor-recipient matching for rare phenotypes. But the application of NGS technologies to the molecular mapping of the MHC region also anticipates essential changes in population genetic studies. Huge amounts of HLA sequence data will be available in the next years for different populations, with the potential to change our understanding of HLA variation in humans. In this review, we first explain how HLA sequencing allows a better assessment of the HLA diversity in human populations, taking also into account the methodological difficulties it introduces at the statistical level; secondly, we show how analyzing HLA sequence variation may improve our comprehension of population genetic relationships by facilitating the identification of demographic events that marked human evolution; finally, we discuss the interest of both HLA and genome-wide sequencing and genotyping in detecting functionally significant SNPs in the MHC region, the latter having also contributed to the makeup of the HLA molecular diversity observed today.
MHC Class II and CD9 in human eosinophils localize to detergent-resistant membrane microdomains.
Akuthota, Praveen; Melo, Rossana C N; Spencer, Lisa A; Weller, Peter F
2012-02-01
Eosinophils function in murine allergic airways inflammation as professional antigen-presenting cells (APCs). In murine professional APC cell types, optimal functioning of MHC Class II depends on its lateral association in plasma membranes and colocalization with the tetraspanin CD9 into detergent-resistant membrane microdomains (DRMs). With human eosinophils, we evaluated the localization of MHC Class II (HLA-DR) to DRMs and the functional significance of such localization. In granulocyte-macrophage colony-stimulating factor-stimulated human eosinophils, antibody cross-linked HLA-DR colocalized by immunofluorescence microscopy focally on plasma membranes with CD9 and the DRM marker ganglioside GM1. In addition, HLA-DR coimmunoprecipitates with CD9 after chemical cross-linking of CD9. HLA-DR and CD9 were localized by Western blotting in eosinophil DRM subcellular fractions. DRM disruption with the cholesterol-depleting agent methyl-β-cyclodextrin decreased eosinophil surface expression of HLA-DR and CD9. We show that CD9 is abundant on the surface of eosinophils, presenting the first electron microscopy data of the ultrastructural immunolocalization of CD9 in human eosinophils. Disruption of HLA-DR-containing DRMs decreased the ability of superantigen-loaded human eosinophils to stimulate CD4(+) T-cell activation (CD69 expression), proliferation, and cytokine production. Our results, which demonstrate that eosinophil MHC Class II localizes to DRMs in association with CD9 in a functionally significant manner, represent a novel insight into the organization of the antigen presentation complex of human eosinophils.
MHC Class II and CD9 in Human Eosinophils Localize to Detergent-Resistant Membrane Microdomains
Akuthota, Praveen; Melo, Rossana C. N.; Spencer, Lisa A.
2012-01-01
Eosinophils function in murine allergic airways inflammation as professional antigen-presenting cells (APCs). In murine professional APC cell types, optimal functioning of MHC Class II depends on its lateral association in plasma membranes and colocalization with the tetraspanin CD9 into detergent-resistant membrane microdomains (DRMs). With human eosinophils, we evaluated the localization of MHC Class II (HLA-DR) to DRMs and the functional significance of such localization. In granulocyte-macrophage colony-stimulating factor–stimulated human eosinophils, antibody cross-linked HLA-DR colocalized by immunofluorescence microscopy focally on plasma membranes with CD9 and the DRM marker ganglioside GM1. In addition, HLA-DR coimmunoprecipitates with CD9 after chemical cross-linking of CD9. HLA-DR and CD9 were localized by Western blotting in eosinophil DRM subcellular fractions. DRM disruption with the cholesterol-depleting agent methyl-β-cyclodextrin decreased eosinophil surface expression of HLA-DR and CD9. We show that CD9 is abundant on the surface of eosinophils, presenting the first electron microscopy data of the ultrastructural immunolocalization of CD9 in human eosinophils. Disruption of HLA-DR–containing DRMs decreased the ability of superantigen-loaded human eosinophils to stimulate CD4+ T-cell activation (CD69 expression), proliferation, and cytokine production. Our results, which demonstrate that eosinophil MHC Class II localizes to DRMs in association with CD9 in a functionally significant manner, represent a novel insight into the organization of the antigen presentation complex of human eosinophils. PMID:21885678
Tibbetts, Scott A; McClellan, Kelly B
2006-01-01
Control of virus infection is mediated in part by major histocompatibility complex (MHC) Class Ia presentation of viral peptides to conventional CD8 T cells. Although important, the absolute requirement for MHC Class Ia–dependent CD8 T cells for control of chronic virus infection has not been formally demonstrated. We show here that mice lacking MHC Class Ia molecules (Kb−/−xDb−/− mice) effectively control chronic γ-herpesvirus 68 (γHV68) infection via a robust expansion of β2-microglobulin (β2-m)-dependent, but CD1d-independent, unconventional CD8 T cells. These unconventional CD8 T cells expressed: (1) CD8αβ and CD3, (2) cell surface molecules associated with conventional effector/memory CD8 T cells, (3) TCRαβ with a significant Vβ4, Vβ3, and Vβ10 bias, and (4) the key effector cytokine interferon-γ (IFNγ). Unconventional CD8 T cells utilized a diverse TCR repertoire, and CDR3 analysis suggests that some of that repertoire may be utilized even in the presence of conventional CD8 T cells. This is the first demonstration to our knowledge that β2-m–dependent, but Class Ia–independent, unconventional CD8 T cells can efficiently control chronic virus infection, implicating a role for β2-n–dependent non-classical MHC molecules in control of chronic viral infection. We speculate that similar unconventional CD8 T cells may be able to control of other chronic viral infections, especially when viruses evade immunity by inhibiting generation of Class Ia–restricted T cells. PMID:16733540
Marshall, H Dawn; Langille, Barbara L; Hann, Crystal A; Whitney, Hugh G
2016-05-01
As the only native insular Newfoundland canid between the extinction of the wolf in the 1930s and the recent arrival of coyotes, the red fox (Vulpes vulpes deletrix Bangs 1898) poses interesting questions about genetic distinctiveness and the post-glacial colonization history of the island's depauperate mammalian fauna. Here, we characterized genetic variability at the major histocompatibility complex (MHC) class II DR β1 domain (DRB1) locus in 28 red foxes from six sampling localities island-wide and compared it with mitochondrial control region (CR) diversity and DRB1 diversity in other canids. Our goals were to describe novel DRB1 alleles in a new canid population and to make inferences about the role of selection in maintaining their diversity. As in numerous studies of vertebrates, we found an order-of-magnitude higher nucleotide diversity at the DRB1 locus compared with the CR and significantly positive nonsynonymous-to-synonymous substitution ratios, indicative of selection in the distant past. Although the evidence is weaker, the Ewens-Watterson test of neutrality and the geographical distribution of variation compared with the CR suggest a role for selection over the evolutionary timescale of populations. We report the first genetic data from the DRB1 locus in the red fox and establish baseline information regarding immunogenetic variation in this island canid population which should inform continued investigations of population demography, adaptive genetic diversity, and wildlife disease in red foxes and related species.
Altered in vivo left ventricular torsion and principal strains in hypothyroid rats
Chen, Yong; Somji, Aleefia; Yu, Xin
2010-01-01
The twisting and untwisting motions of the left ventricle (LV) lead to efficient ejection of blood during systole and filling of the ventricle during diastole. Global LV mechanical performance is dependent on the contractile properties of cardiac myocytes; however, it is not known how changes in contractile protein expression affect the pattern and timing of LV rotation. At the myofilament level, contractile performance is largely dependent on the isoforms of myosin heavy chain (MHC) that are expressed. Therefore, in this study, we used MRI to examine the in vivo mechanical consequences of altered MHC isoform expression by comparing the contractile properties of hypothyroid rats, which expressed only the slow β-MHC isoform, and euthyroid rats, which predominantly expressed the fast α-MHC isoform. Unloaded shortening velocity (Vo) and apparent rate constants of force development (ktr) were measured in the skinned ventricular myocardium isolated from euthyroid and hypothyroid hearts. Increased expression of β-MHC reduced LV torsion and fiber strain and delayed the development of peak torsion and strain during systole. Depressed in vivo mechanical performance in hypothyroid rats was related to slowed cross-bridge performance, as indicated by significantly slower Vo and ktr, compared with euthyroid rats. Dobutamine infusion in hypothyroid hearts produced smaller increases in torsion and strain and aberrant transmural torsion patterns, suggesting that the myocardial response to β-adrenergic stress is compromised. Thus, increased expression of β-MHC alters the pattern and decreases the magnitude of LV rotation, contributing to reduced mechanical performance during systole, especially in conditions of increased workload. PMID:20729398
Shirpoor, Alireza; Zerehpoosh, Mitra; Ansari, Mohammad Hasan Khadem; Kheradmand, Fatemeh; Rasmi, Yousef
2017-09-01
The association between ethanol consumption and heart abnormalities, such as chamber dilation, myocyte damage, ventricular hypertrophy, and hypertension is well known. However, underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. The aim of this study was to investigate the effect of chronic ethanol exposure on alpha and beta - myosin heavy chain (MHC) isoforms gene expression transition and oxidative stress in rats' heart. It was also planned to find out whether ginger extract mitigated the abnormalities induced by ethanol in rats' heart. Male wistar rats were divided into three groups of eight animals as follows: Control, ethanol, and ginger extract treated ethanolic (GETE) groups. After six weeks of treatment, the results revealed a significant increase in the β-MHC gene expression, 8- OHdG amount, and NADPH oxidase level. Furthermore, a significant decrease in the ratio of α-MHC/β-MHC gene expression to the amount of paraoxonase enzyme in the ethanol group compared to the control group was found. The consumption of Ginger extract along with ethanol ameliorated the changes in MHC isoforms gene expression and reduced the elevated amount of 8-OHdG and NADPH oxidase. Moreover, compared to the consumption of ethanol alone, it increased the paraoxonase level significantly. These findings indicate that ethanol-induced heart abnormalities may in part be associated with MHC isoforms changes mediated by oxidative stress, and that these effects can be alleviated by using ginger extract as an antioxidant molecule. Copyright © 2017 Elsevier B.V. All rights reserved.
MHC class I diversity of olive baboons (Papio anubis) unravelled by next-generation sequencing.
van der Wiel, Marit K H; Doxiadis, Gaby G M; de Groot, N; Otting, N; de Groot, N G; Poirier, N; Blancho, G; Bontrop, R E
2018-02-24
The olive baboon represents an important model system to study various aspects of human biology and health, including the origin and diversity of the major histocompatibility complex. After screening of a group of related animals for polymorphisms associated with a well-defined microsatellite marker, subsequent MHC class I typing of a selected population of 24 animals was performed on two distinct next-generation sequencing (NGS) platforms. A substantial number of 21 A and 80 B transcripts were discovered, about half of which had not been previously reported. Per animal, from one to four highly transcribed A alleles (majors) were observed, in addition to ones characterised by low transcripion levels (minors), such as members of the A*14 lineage. Furthermore, in one animal, up to 13 B alleles with differential transcription level profiles may be present. Based on segregation profiles, 16 Paan-AB haplotypes were defined. A haplotype encodes in general one or two major A and three to seven B transcripts, respectively. A further peculiarity is the presence of at least one copy of a B*02 lineage on nearly every haplotype, which indicates that B*02 represents a separate locus with probably a specialistic function. Haplotypes appear to be generated by recombination-like events, and the breakpoints map not only between the A and B regions but also within the B region itself. Therefore, the genetic makeup of the olive baboon MHC class I region appears to have been subject to a similar or even more complex expansion process than the one documented for macaque species.
Li, Dan; Zhao, Yunjiao; Lin, Aiqing; Li, Shi; Feng, Jiang
2017-01-01
Genetic diversity is one of the pillars of conservation biology research. High genetic diversity and abundant genetic variation in an organism may be suggestive of capacity to adapt to various environmental changes. The major histocompatibility complex (MHC) is known to be highly polymorphic and plays an important role in immune function. It is also considered an ideal model system to investigate genetic diversity in wildlife populations. The Rufous-backed Bunting (Emberiza jankowskii) is an endangered species that has experienced a sharp decline in both population and habitat size. Many historically significant populations are no longer present in previously populated regions, with only three breeding populations present in Inner Mongolia (i.e., the Aolunhua, Gahaitu and Lubei557 populations). Efforts focused on facilitating the conservation of the Rufous-backed Bunting (Emberiza jankowskii) are becoming increasingly important. However, the genetic diversity of E. jankowskii has not been investigated. In the present study, polymorphism in exon 2 of the MHCIIB of E. jankowskii was investigated. This polymorphism was subsequently compared with a related species, the Meadow Bunting (Emberiza cioides). A total of 1.59 alleles/individual were detected in E. jankowskii and 1.73 alleles/individual were identified in E. cioides. The maximum number of alleles per individual from the three E. jankowskii populations suggest the existence of at least three functional loci, while the maximum number of alleles per individual from the three E. cioides populations suggest the presence of at least four functional loci. Two of the alleles were shared between the E. jankowskii and E. cioides. Among the 12 unique alleles identified in E. jankowskii, 10.17 segregating sites per allele were detected, and the nucleotide diversity was 0.1865. Among the 17 unique alleles identified in E. cioides, eight segregating sites per allele were detected, and the nucleotide diversity was 0.1667. Overall, compared to other passerine birds, a relatively low level of MHC polymorphism was revealed in E. jankowskii, which was similar to that in E. cioides. Positive selection was detected by PAML/SLAC/FEL analyses in the region encoding the peptide-binding region in both species, and no recombination was detected. Phylogenetic analysis showed that the alleles from E. jankowskii and E. cioides belong to the same clade and the two species shared similar alleles, suggesting the occurrence of a trans-species polymorphism between the two Emberiza species. PMID:28149689
Williams, Chad M.; Schonnesen, Alexandra A.; Zhang, Shu-Qi; Ma, Ke-Yue; He, Chenfeng; Yamamoto, Tori; Eckhardt, S. Gail; Klebanoff, Christopher A.; Jiang, Ning
2017-01-01
The discovery of naturally occurring T cell receptors (TCRs) that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC) has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D) system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds) rather than synergy (total CD8 cooperation) alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D) analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our previously established TCR discovery platform using 2D TCR affinity and sequence test would allow for selection of TCRs specific to any given antigen with the desirable attributes of high TCR affinity, CD8 co-receptor independence and functional superiority. Utilizing TCRs with less CD8 contribution could be beneficial for adoptive cell transfer immunotherapies using naturally occurring or genetically engineered T cells against viral or cancer-associated antigens. PMID:28804489
Jarvi, Susan I; Bianchi, Kiara R; Farias, Margaret Em; Txakeeyang, Ann; McFarland, Thomas; Belcaid, Mahdi; Asano, Ashley
2016-07-01
Hawaiian honeycreepers (Drepanidinae) have evolved in the absence of mosquitoes for over five million years. Through human activity, mosquitoes were introduced to the Hawaiian archipelago less than 200 years ago. Mosquito-vectored diseases such as avian malaria caused by Plasmodium relictum and Avipoxviruses have greatly impacted these vulnerable species. Susceptibility to these diseases is variable among and within species. Due to their function in adaptive immunity, the role of major histocompatibility complex genes (Mhc) in disease susceptibility is under investigation. In this study, we evaluate gene organization and levels of diversity of Mhc class II β chain genes (exon 2) in a captive-reared family of Hawaii 'amakihi (Hemignathus virens). A total of 233 sequences (173 bp) were obtained by PCR+1 amplification and cloning, and 5720 sequences were generated by Roche 454 pyrosequencing. We report a total of 17 alleles originating from a minimum of 14 distinct loci. We detected three linkage groups that appear to represent three distinct haplotypes. Phylogenetic analysis revealed one variable cluster resembling classical Mhc sequences (DAB) and one highly conserved, low variability cluster resembling non-classical Mhc sequences (DBB). High net evolutionary divergence values between DAB and DBB resemble that seen between chicken BLB system and YLB system genes. High amino acid identity among non-classical alleles from 12 species of passerines (DBB) and four species of Galliformes (YLB) was found, suggesting that these non-classical passerine sequences may be related to the Galliforme YLB sequences.
Yanos, Philip T.; Kopelovich, Sarah L.; Koerner, Joshua; Alexander, Mary Jane
2013-01-01
Internationally, one effort to reduce the number of people with serious mental illness (SMI) in jails and prisons is the development of Mental Health Courts (MHC). Research on MHCs to date has been disproportionately focused on the study of recidivism and re-incarceration over the potential of these problem-solving courts to facilitate mental health recovery and affect the slope or gradient of opportunity for recovery. Despite the strong conceptual links between the MHC approach and the recovery-orientation in mental health, the capacity for MHCs to facilitate recovery has not been explored. This user-informed mental health and criminal justice (MH/CJ) community based participatory (CBPR) study assesses the extent to which MHC practices align with recovery-oriented principles and may subsequently affect criminal justice outcomes. We report on the experiences and perceptions of 51 MHC participants across four metropolitan Mental Health Courts. Specifically, the current study assesses: 1) how defendants’ perceptions of court practices, particularly with regard to procedural justice and coercion, relate to perceptions of mental health recovery and psychiatric symptoms, and, 2) how perceptions of procedural justice and mental health recovery relate to subsequent criminal justice outcomes. The authors hypothesized that perceived coercion and mental health recovery would be inversely related, that perceived coercion would be associated with worse criminal justice outcomes, and perceptions of mental health recovery would be associated with better criminal justice outcomes. Results suggest that perceived coercion in the MHC experience was negatively associated with perceptions of recovery among MHC participants. Perceptions of “negative pressures,” a component of coercion, were important predictors of criminal justice involvement in the 12 month period following MHC admission, even when controlling for other factors that were related to criminal justice outcomes, and that an increase in procedural justice was associated with a decrease in symptoms but curiously not to an increase in attitudes toward recovery. Implications and future directions are discussed. PMID:24039547
Tuli, Amit; Sharma, Mahak; McIlhaney, Mary M.; Talmadge, James E.; Naslavsky, Naava; Caplan, Steve; Solheim, Joyce C.
2008-01-01
The defense against the invasion of viruses and tumors relies on the presentation of viral and tumor-derived peptides to cytotoxic T lymphocytes by cell surface major histocompatibility complex (MHC) class I molecules. Previously, we showed that the ubiquitously expressed protein amyloid precursor-like protein 2 (APLP2) associates with the folded form of the MHC class I molecule Kd. In the current study, APLP2 was found to associate with folded Kd molecules following their endocytosis and to increase the amount of endocytosed Kd. In addition, increased expression of APLP2 was shown to decrease Kd surface expression and thermostability. Correspondingly, Kd thermostability and surface expression were increased by down-regulation of APLP2 expression. Overall, these data suggest that APLP2 modulates the stability and endocytosis of Kd molecules. PMID:18641335
Zhao, Cuiping
2017-01-01
Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production (FSA), whereas the jump muscle produces only minimal FSA. We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher FSA, we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in FSA, less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced FSA is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and FSA of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of FSA generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter FSA and hence cyclical power generation but that isoforms can only endow a muscle type with moderate FSA. Highly SA muscle types, such as IFM, likely use a different or additional mechanism. PMID:27881413
Herda, T J; Miller, J D; Trevino, M A; Mosier, E M; Gallagher, P M; Fry, A C; Vardiman, J P
2016-04-01
To investigate the change in motor unit (MU) firing rates (FR) at de-recruitment relative to recruitment and the relation to % type I myosin heavy chain isoform content (type I %MHC) of the vastus lateralis (VL) in vivo. Ten subjects performed a 22-s submaximal isometric trapezoid muscle action that included a linearly increasing, steady force at 50% maximal voluntary contraction, and linearly decreasing segments. Surface electromyographic signals were collected from the VL and were decomposed into constituent MU action potentials trains. A tissue sample from the VL was taken to calculate type I %MHC. The y-intercepts and slopes were calculated for the changes (Δ) in FR at de-recruitment (FRDEREC ) relative to FR at recruitment (FRREC ) vs. FRREC relationship for each subject. Correlations were performed between the y-intercepts and slopes with type I %MHC. The majority of MUs had greater FRDEREC than FRREC . The y-intercepts (r = -0.600, P = 0.067) were not significantly correlated, but the slopes (r = -0.793, P = 0.006) were significantly correlated with type I %MHC. The majority of the motoneuron pool had greater FRDEREC than FRREC , however, individuals with higher type I %MHC had a greater propensity to have MUs with FRREC > FRDEREC as indicated by the slope values. Overall, the contractile properties of the muscle (MHC) could partially explain the differences in MU firing rates at de-recruitment relative to recruitment. Thus, suggesting the fatigability of the muscle influences the alterations in MU firing rates from recruitment to de-recruitment. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Arosa, F A; da Silva, A J; Godinho, I M; ter Steege, J C; Porto, G; Rudd, C E; de Sousa, M
1994-05-01
Hereditary haemochromatosis (HH) is an autosomal recessive disease linked to certain MHC class-I specificities. The disease is characterized by increased iron absorption and, in some patients, abnormally low numbers of CD8+ T cells in the periphery. We were interested in whether CD4- and CD8-associated p56lck kinase activities were altered in patients with HH. In a study of 18 patients with HH (with and without low numbers of CD8+ cells), the level of autophosphorylation of the CD8-associated p56lck as well as its phosphotransferase activity, as determined by phosphorylation of an exogenous substrate, was significantly reduced by two- to three-fold relative to a control population of 23 healthy blood donors (P < 6 x 10(-7). CD8-p56lck activity was decreased in 16 out of 18 patients (ranging from 1.5- to 10-fold decrease). By contrast, the level of CD4-p56lck activity did not show an overall decrease relative to controls. In addition to an occasional decrease in the amount of CD8-associated lck, HH patient-derived T cells showed a consistent decrease in the relative CD8-p56lck specific activity. Immunofluorescence staining showed further that the difference could not be accounted by a discrepancy in the expression of CD8 alpha alpha or CD8 alpha beta complexes or MHC class I molecules. Decreased CD8-p56lck activity was seen both in patients undergoing intensive phlebotomy treatment and in patients in maintenance therapy (i.e. patients who had reached normal levels of iron stores), indicating that this abnormality does not appear to be corrected by iron depletion. To our knowledge, this is the first demonstration of an abnormality in a src-like receptor associated kinase in a human disease state linked to MHC class-I antigens.
Rovira, P; Buckle, M; Abastado, J P; Peumans, W J; Truffa-Bachi, P
1999-05-01
The Urtica dioica agglutinin (UDA) shares with the superantigens the property of activating T cell subsets bearing particular Vbeta segments of the TCR. However, UDA is a lectin capable of binding to many glycoproteins on cell membranes. The implication of MHC versus other glycoproteins in UDA presentation was presently studied. Using mutant mice lacking MHC class I (MHC-I), MHC class II (MHC-II) or both MHC antigens, we provided evidence that MHC-I and MHC-II molecules serve as UDA receptors. Presentation by either one of these molecules ensured similar T cell responses and co-stimulatory signals were mandatory for optimal T cell activation and proliferation both in MHC-I and MHC-II contexts. Remarkably, in the absence of MHC molecules, UDA could not be efficiently presented to T cells by other glycosylated proteins. Surface plasmon resonance studies were used to confirm the binding of UDA to MHC-I molecules using a fusion protein consisting of MHC-I domains and beta2-microglobulin. The results indicated that the interaction between UDA and MHC-I molecules implicated lectin-binding site(s) of UDA. Taken together, our data demonstrate that, in addition to MHC-II antigens, MHC-I molecules serve as an alternative ligand for UDA.
Vrăbiescu, A; Radu, D; Dolganiuc, A; Bordea, M; Olinescu, A
1998-01-01
The authors worked on 3 groups of 8 male rabbits, New Zealand race: 1) controls; 2) procain injected i.m., 15 mg/kg body weight, daily, for 30 days; 3) i.m. injected with diethylaminoethanol (DEAE), 15 mg/kg body weight, daily, for 35 days. The expression of the MHC I, MHC II, CD43, CD4 and IgM antigenic markers on the plasmatic membrane of the lymphocytes was studied using flow cytometry and monoclonal antibodies. Procain or DEAE treatment reduced the percentage of lymphocytes expressing I MHC, from 99.06 in the control group, to 94.51 in procain group and to 96.91 in the DEAE group. The intensity of expression of MHC complexes of class II decreases from 160.94 in the control group, to 107.21 in the procain group and to 104.05 in the DEAE group. No significant differences were noticed between the three groups of rabbits concerning the rate of lymphocytes that have on their surface expressed markers for CD43 (lymphocytes T), CD4 (Th), or IgM (lymphocytes B). Lymphocytosis induced in rabbits as a result of the DEAE treatment took place without a change in the proportions of lymphocyte subpopulations. The authors consider that owing to their capacity to reduce the expression of antigens MHC of class I and class II on the membrane of lymphocytes, procain and DEAE can have benefic effects in some autoimmune, autoaggression and inflammatory diseases.
Palmer, Bradley M; Wang, Yuan; Teekakirikul, Polakit; Hinson, J Travis; Fatkin, Diane; Strouse, Stacy; Vanburen, Peter; Seidman, Christine E; Seidman, J G; Maughan, David W
2008-04-01
Male but not female mice carrying a single R403Q missense allele for cardiac alpha-myosin heavy chain (M-alphaMHC(R403Q/+) and F-alphaMHC(R403Q/+), respectively) develop significant hypertrophic cardiomyopathy (HCM) compared with male and female wild-type mice (M-alphaMHC(+/+) and F-alphaMHC(+/+), respectively) after approximately 30 wk of age. We tested the hypothesis that myofilament mechanical performance differs between M-alphaMHC(R403Q/+) and F-alphaMHC(R403Q/+) at younger ages (10-20 wk) and could account for sex differences in HCM development. The sensitivity of chemically skinned myocardial strips to Ca(2+) activation (pCa(50)) was significantly (P < 0.05) enhanced in male mice independent of genotype (M-alphaMHC(R403Q/+): 5.70 +/- 0.06, M-alphaMHC(+/+): 5.63 +/- 0.05, F-alphaMHC(R403Q/+): 5.57 +/- 0.03, F-alphaMHC(+/+): 5.54 +/- 0.04) by two-way ANOVA, whereas maximum developed tension was significantly enhanced in alpha-MHC(R403Q/+) independent of sex (M-alphaMHC(R403Q/+): 29.3 +/- 2.3, M-alphaMHC(+/+): 26.0 +/- 1.4, F-alphaMHC(R403Q/+): 30.2 +/- 2.1, F-alphaMHC(+/+): 26.2 +/- 1.2 mN/mm(2)). The frequency of maximum work generated by sinusoidal length perturbation was significantly higher in alphaMHC(R403Q/+) mice than in sex-matched controls (M-alphaMHC(R403Q/+): 2.26 +/- 0.47, M-alphaMHC(+/+): 1.29 +/- 0.18, F-alphaMHC(R403Q/+): 3.21 +/- 0.33, F-alphaMHC(+/+): 2.52 +/- 0.36 Hz). Unloaded shortening velocity was significantly enhanced in alphaMHC(R403Q/+) and in female mice (M-alphaMHC(R403Q/+): 2.26 +/- 0.47, M-alphaMHC(+/+): 1.29 +/- 0.18, F-alphaMHC(R403Q/+): 3.21 +/- 0.33, F-alphaMHC(+/+): 2.52 +/- 0.36 muscle lengths/s), and normalized mechanical power, calculated from the tension-velocity relationship, was significantly enhanced in alphaMHC(R403Q/+) independent of sex (M-alphaMHC(R403Q/+): 60 +/- 2 10(-3), M-alphaMHC(+/+): 37 +/- 3 10(-3), F-alphaMHC(R403Q/+): 57 +/- 3 10(-3), F-alphaMHC(+/+) 25 +/- 3 10(-3) muscle lengths/s x normalized tension). We did not find a statistically significant sex x mutation interaction for any measure of myofilament performance. Therefore, sarcomeric incorporation of the R403Q myosin similarly enhanced left ventricular myofilament mechanical performance in both male and female mice. The sex-dependent development of HCM due to the R403Q myosin may then be inhibited by female sex hormones, which may additionally underlie the observed sex differences for pCa(50) and unloaded shortening velocity.
MPID-T2: a database for sequence-structure-function analyses of pMHC and TR/pMHC structures.
Khan, Javed Mohammed; Cheruku, Harish Reddy; Tong, Joo Chuan; Ranganathan, Shoba
2011-04-15
Sequence-structure-function information is critical in understanding the mechanism of pMHC and TR/pMHC binding and recognition. A database for sequence-structure-function information on pMHC and TR/pMHC interactions, MHC-Peptide Interaction Database-TR version 2 (MPID-T2), is now available augmented with the latest PDB and IMGT/3Dstructure-DB data, advanced features and new parameters for the analysis of pMHC and TR/pMHC structures. http://biolinfo.org/mpid-t2. shoba.ranganathan@mq.edu.au Supplementary data are available at Bioinformatics online.
Heterogeneity of porcine alveolar macrophages in experimental pneumonia.
Berndt, A; Müller, G
1997-07-01
The aim of the study was the morphological and the phenotypic characterization of the porcine non-lymphocytic bronchoalveolar lavage (BAL) cell population of unaffected- and intrabronchial with Pasteurella multocida- (P.m.) infected swine using flow cytometry. Three non-lymphocytic cell populations of the porcine bronchoalveolar lavage could be differentiated: (1) large, high autofluorescent cells, (LHC); (2) small, high autofluorescent cells, (SHC); (3) small, low autofluorescent cells, (SLC). In comparison with the control animals, the percentage of the LHC and SHC within the whole non-lymphocytic cell population was decreased, whereas the SLC was significantly enhanced after infection. In order to investigate the phenotype of these cell populations, monoclonal antibodies against porcine antigens (SWC1, SWC3a, MHC class II, 2G6 (against macrophages)) were used. The results showed that the cells of the SLC seem to belong to the granulocytes, whereas the LHC and the SHC are lung macrophages. After the infection of the animals the percentage of the SWC1 positive cells of LHC and SHC were significantly increased, indicating an entrance of more immature macrophages. The percentage of the MHC class II antibody binding cells of all three non-lymphocytic populations was-decreased after infection, indicating a restricted MHC class II dependent antigen recognition in P.m. pneumonia.
Kim, Jongkyoo; Wellmann, Kimberly B; Smith, Zachary K; Johnson, Bradley J
2018-04-24
All-trans retinoic acid (ATRA) has been associated with various physiological phenomenon in mammalian adipose tissue and skeletal muscle. We hypothesized that ATRA may affect skeletal muscle fiber type in bovine satellite cell culture through various transcriptional processes. Bovine primary satellite cell (BSC) culture experiments were conducted to determine dose effects of ATRA on expression of genes and protein levels related to skeletal muscle fiber type and metabolism. The semimembranosus from crossbred steers (n = 2 steers), aged approximately 24 months, were used to isolate BSC for 3 separate assays. Myogenic differentiation was induced using 3% horse serum upon cultured BSC with increasing doses (0, 1, 10, 100, 1000 nM) of ATRA. After 96 h of incubation, cells were harvested and used to measure the gene expression of protein kinase B (Akt), AMP-activated protein kinase alpha (AMPK), glucose transporter 4 (GLUT4), myogenin, lipoprotein lipase (LPL), myosin heavy chain (MHC) I, MHC IIA,MHC IIX, insulin like growth factor -1 (IGF-1), Peroxisome proliferator activated receptor gamma (PPARγ), PPARδ, and Smad transcription factor 3 (SMAD3) mRNA relative to ribosomal protein subunit 9 (RPS9). The mRNA expression of LPL was increased (P < 0.05) with 100 and 1000nM of ATRA. Expression of GLUT4 was altered (P < 0.05) by ATRA. The treatment of ATRA (1000nM) also increased (P < 0.05) mRNA gene expression of SMAD3. The gene expression of both PPARδ and PPARγ were increased (P < 0.05) with 1000nM of ATRA. Protein level of PPARδ was also affected (P < 0.05) by 1000nM of ATRA and resulted in a greater (P < 0.05) protein level of PPARδ compared to CON. All-trans retinoic acid (10nM) increased gene expression of MHC I (P < 0.05) compared to CON. Expression of MHC IIA was also influenced (P < 0.05) by ATRA. The mRNA expression of MHC IIX was decreased (P < 0.05) with 100 and 1000nM of ATRA.In muscle cells, ATRA may cause muscle fibers to transition towards the MHC isoform that prefers oxidative metabolism, as evidenced by increased expression of genes associated with the MHC I isoform. These changes in MHC isoforms appeared to be brought about by changing PPARδ gene expression and protein levels.
Zhao, Cuiping; Swank, Douglas M
2017-02-01
Stretch activation (SA) is a delayed increase in force that enables high power and efficiency from a cyclically contracting muscle. SA exists in various degrees in almost all muscle types. In Drosophila, the indirect flight muscle (IFM) displays exceptionally high SA force production (F SA ), whereas the jump muscle produces only minimal F SA We previously found that expressing an embryonic (EMB) myosin heavy chain (MHC) isoform in the jump muscle transforms it into a moderately SA muscle type and enables positive cyclical power generation. To investigate whether variation in MHC isoforms is sufficient to produce even higher F SA , we substituted the IFM MHC isoform (IFI) into the jump muscle. Surprisingly, we found that IFI only caused a 1.7-fold increase in F SA , less than half the increase previously observed with EMB, and only at a high Pi concentration, 16 mM. This IFI-induced F SA is much less than what occurs in IFM, relative to isometric tension, and did not enable positive cyclical power generation by the jump muscle. Both isometric tension and F SA of control fibers decreased with increasing Pi concentration. However, for IFI-expressing fibers, only isometric tension decreased. The rate of F SA generation was ~1.5-fold faster for IFI fibers than control fibers, and both rates were Pi dependent. We conclude that MHC isoforms can alter F SA and hence cyclical power generation but that isoforms can only endow a muscle type with moderate F SA Highly SA muscle types, such as IFM, likely use a different or additional mechanism. Copyright © 2017 the American Physiological Society.
Chang, Wenguang; Zhang, Ming; Meng, Zhaojie; Yu, Yang; Yao, Fan; Hatch, Grant M; Chen, Li
2015-12-15
Diabetic cardiomyopathy is the major cause of death in type 2 diabetic patients. Berberine is an isoquinoline alkaloid extract from traditional chinese herbs and its hypoglycemic and hypolipidemic effects make it a promising drug for treatment of type 2 diabetes. We examined if berberine improved cardiac function and attenuated cardiac hypertrophy and fibrosis in high fat diet and streptozotocin induced-type 2 diabetic rats in vivo and reduced expression of hypertrophy markers in palmitate-induced hypertrophic H9c2 cells in vitro. Treatment of diabetic animals with berberine partially improved cardiac function and restored fasting blood insulin, fasting blood glucose, total cholesterol, and triglyceride levels to that of control. In addition, berberine treatment of diabetic animals increased cardiac 5'-adenosine monophosphate-activated protein kinase (AMPK) and protein kinase B (AKT) activation and reduced glycogen synthase kinase 3 beta (GSK3β) activation compared to control. Palmitate incubation of H9c2 cells resulted in cellular hypertrophy and decreased expression of alpha-myosin heavy chain (α-MHC) and increased expression of beta-myosin heavy chain (β-MHC) compared to controls. Berberine treatment of palmitate-incubated H9c2 cells reduced hypertrophy, increased α-MHC expression and decreased β-MHC expression. In addition, berberine treatment of palmitate-incubated H9c2 cells increased AMPK and AKT activation and reduced GSK3β activation. The presence of the AMPK inhibitor Compound C attenuated the effects of berberine. The results strongly indicate that berberine treatment may be protective against the development of diabetic cardiomyopathy. Copyright © 2015 Elsevier B.V. All rights reserved.
2014-01-01
Introduction The horse is a valuable species to assess the effect of allogeneic mesenchymal stromal cells (MSCs) in regenerative treatments. No studies to date have examined recipient response to major histocompatibility complex (MHC)-mismatched equine MSCs. The purposes of this study were to immunophenotype MSCs from horses of known MHC haplotype and to compare the immunogenicity of MSCs with differing MHC class II expression. Methods MSCs and peripheral blood leukocytes (PBLs) were obtained from Thoroughbred horses (n = 10) of known MHC haplotype (ELA-A2, -A3, and -A9 homozygotes). MSCs were cultured through P8; cells from each passage (P2 to P8) were cryopreserved until used. Immunophenotyping of MHC class I and II, CD44, CD29, CD90, LFA-1, and CD45RB was performed by using flow cytometry. Tri-lineage differentiation assays were performed to confirm MSC multipotency. Recombinant equine IFN-γ was used to stimulate MHC class II negative MSCs in culture, after which expression of MHC class II was re-examined. To assess the ability of MHC class II negative or positive MSCs to stimulate an immune response, modified one-way mixed leukocyte reactions (MLRs) were performed by using MHC-matched and mismatched responder PBLs and stimulator PBLs or MSCs. Proliferation of gated CFSE-labeled CD3+ responder T cells was evaluated via CFSE attenuation by using flow cytometry and reported as the number of cells in the proliferating T-cell gate. Results MSCs varied widely in MHC class II expression despite being homogenous in terms of “stemness” marker expression and ability to undergo trilineage differentiation. Stimulation of MHC class II negative MSCs with IFN-γ resulted in markedly increased expression of MHC class II. MLR results revealed that MHC-mismatched MHC class II-positive MSCs caused significantly increased responder T-cell proliferation compared with MHC-mismatched MHC class II-negative and MHC-matched MSCs, and equivalent to that of the positive control of MHC-mismatched leukocytes. Conclusions The results of this study suggest that MSCs should be confirmed as MHC class II negative before allogeneic application. Additionally, it must be considered that even MHC class II-negative MSCs could upregulate MHC class II expression if implanted into an area of active inflammation, as demonstrated with in vitro stimulation with IFN-γ. PMID:24461709
Koyama, Hiroki; Piyapattanakorn, Sanit; Watabe, Shugo
2013-06-01
The physiological and biological properties of skeletal muscle in crustacea have not been well understood compared with those of vertebrates. The present study focused on myosin, the major protein in skeletal muscle, from shrimps. In our previous study, two full-length genes encoding myosin heavy chain (MHC), a large subunit of the myosin molecule, were cloned from abdominal fast skeletal muscle of kuruma Marsupenaeus japonicus, black tiger Penaeus monodon and Pacific white Penaeus vannamei shrimps, and named as MHCa and MHCb. In this study, we renamed these as MHC1 and MHC2, respectively, due to the presence of various isoforms newly identified. Partial MHC sequences were identified from pleopod muscle of these shrimps. Two MHCs, named MHC3 and MHC4, were identified from pleopod muscle of kuruma shrimp, whereas two MHCs, named MHC4 and MHC5, were cloned from Pacific white shrimp pleopod. MHC3 was cloned only from black tiger shrimp pleopod. Partial MHC sequences from zoea, mysis, and postlarvae of black tiger and Pacific white shrimps were also determined. The phylogenetic tree demonstrated that most MHCs from pleopod muscle and larval MHCs formed clades with MHC1 and MHC2, respectively. These MHCs were considered to be of fast type, since MHC1 and MHC2 are fast-type MHCs according to our previous study. MHC5 obtained from pleopod muscle of Pacific white shrimp in this study was monophyletic with American lobster Homarus americanus S2 slow tonic MHC previously reported, indicating that MHC5 from Pacific white shrimp is of slow type. Copyright © 2013 Wiley Periodicals, Inc.
Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer
2017-11-15
NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus infection is largely unknown. Here we demonstrate that Zika virus infection is almost undetected by NK cells, as evidenced by the fact that the expression of activating ligands for NK cells is not induced following Zika infection. We identified a mechanism whereby Zika virus sensing via the RIGI-IRF3 pathway resulted in IFN-β-mediated upregulation of MHC-I molecules and inhibition of NK cell activity. Countering MHC class I upregulation and boosting NK cell activity may be employed as prophylactic measures to combat Zika virus infection. Copyright © 2017 American Society for Microbiology.
Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G.
2017-01-01
ABSTRACT NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus infection is largely unknown. Here we demonstrate that Zika virus infection is almost undetected by NK cells, as evidenced by the fact that the expression of activating ligands for NK cells is not induced following Zika infection. We identified a mechanism whereby Zika virus sensing via the RIGI-IRF3 pathway resulted in IFN-β-mediated upregulation of MHC-I molecules and inhibition of NK cell activity. Countering MHC class I upregulation and boosting NK cell activity may be employed as prophylactic measures to combat Zika virus infection. PMID:28878071
Bahr, Angela; Wilson, Anthony B
2011-05-10
Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates.Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation.
The WT hemochromatosis protein HFE inhibits CD8⁺ T-lymphocyte activation.
Reuben, Alexandre; Phénix, Mikaël; Santos, Manuela M; Lapointe, Réjean
2014-06-01
MHC class I (MHC I) antigen presentation is a ubiquitous process by which cells present endogenous proteins to CD8(+) T lymphocytes during immune surveillance and response. Hereditary hemochromatosis protein, HFE, is involved in cellular iron uptake but, while structurally homologous to MHC I, is unable to bind peptides. However, increasing evidence suggests a role for HFE in the immune system. Here, we investigated the impact of HFE on CD8(+) T-lymphocyte activation. Using transient HFE transfection assays in a model of APCs, we show that WT HFE (HFEWT ), but not C282Y-mutated HFE, inhibits secretion of MIP-1β from antigen-specific CD8(+) T lymphocytes. HFEWT expression also resulted in major decreases in CD8(+) T-lymphocyte activation as measured by 4-1BB expression. We further demonstrate that inhibition of CD8(+) T-lymphocyte activation was independent of MHC I surface levels, β2-m competition, HFE interaction with transferrin receptor, antigen origin, or epitope affinity. Finally, we identified the α1-2 domains of HFEWT as being responsible for inhibiting CD8(+) T-lymphocyte activation. Our data imply a new role for HFEWT in altering CD8(+) T-lymphocyte reactivity, which could modulate antigen immunogenicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LINNANE, LINDA; SERRANO, A. L.; RIVERO, J. L. L.
1999-01-01
The distribution of muscle fibres classified on the basis of their content of different myosin heavy chain (MHC) isoforms was analysed in muscle biopsies from the gluteus medius of adult untrained horses by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies and standard myofibrillar ATPase (mATPase) histochemistry. Percutaneous needle biopsies were taken at 3 depths (20, 40 and 60 mm) from 4 4-y-old Andalusian stallions. The percentage of ‘pure’ I MHC fibres increased whereas that for pure IIX MHC fibres decreased from the most superficial to the deepest sampling site. Within the fast fibres, types IIA and IIAX MHC-classified fibres were proportionately more abundant in the deepest sampling site than in the superficial region of the muscle. The immunohistochemical and histochemical characterisation of a large number of single fibres (n=1375) was compared and correlated on a fibre-to-fibre basis. The results showed that 40% of the fibres analysed were pure type I (expressing only MHC-I); they showed correct matching between their antigenic and mATPase determinants. In contrast, within the fast fibres, a considerable proportion of fibres were found showing a mismatch between their immunohistochemical and mATPase profiles. The most common mismatched fibre phenotypes comprised fibres displaying coexpression of both fast MHCs when analysed by immunocytochemistry, but showing an mATPase profile similar to typical IIX fibres (moderate mATPase reaction after preincubation at pH 4.4). Considered altogether, the total mismatched fibres represented only 4.2% of the whole fast fibre population in the superficial region of the muscle, but their proportion increased to 15.6% and 38.4% in the middle and deep regions, respectively, of gluteus medius. It is concluded that a considerable number of hybrid fast MHC IIAX fibres are present in the gluteus medius of untrained horses, suggesting that equine type II fibres have probably been misclassified in numerous previous publications based on the use of histochemistry alone. This has important implications in attempts to study the physiological properties of fast fibre types adequately in horses. PMID:10386774
HLA-F: A New Kid Licensed for Peptide Presentation.
Sim, Malcolm J W; Sun, Peter D
2017-06-20
HLA-F, a non-classical MHC molecule, is not known to present peptides. Dulberger et al. (2017) show that HLA-F contains a distinct peptide-binding groove and can present a diverse array of peptides. LIR1, however, recognized HLA-F away from bound peptide, leaving open whether peptide-HLA-F-specific T and NK receptors exist. Published by Elsevier Inc.
Comparative Genome Analyses Reveal Distinct Structure in the Saltwater Crocodile MHC
Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M.; Shan, Xueyan; Peterson, Daniel G.; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M.; Isberg, Sally R.; Higgins, Damien P.; Chong, Amanda Y.; John, John St; Glenn, Travis C.; Ray, David A.; Gongora, Jaime
2014-01-01
The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2–6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs. PMID:25503521
Jeyanthi, Venkadapathi; Anbu, Periasamy; Vairamani, Mariappanadar; Velusamy, Palaniyandi
2016-03-01
A halotolerant bacterial isolate-MHC10 with broad spectrum antibacterial activity against clinical pathogens was isolated from saltpans located in Tuticorin and Chennai (India). 16S rRNA gene analysis of MHC10 revealed close similarity to that of Bacillus methylotrophicus. The culture conditions of B. methylotrophicus MHC10 strain were optimized for antibacterial production using different carbon and nitrogen sources, as well as varying temperature, pH, sodium chloride (NaCl) concentrations and incubation periods. The maximum antibacterial activity of B. methylotrophicus MHC10 was attained when ZMB was optimized with 1 % (w/v) glucose, 0.1 % (w/v) soybean meal which corresponded to a C/N ratio of 38.83, temperature at 37 °C, pH 7.0 and 8 % NaCl. The activity remained stable between 72 and 96 h and then drastically decreased after 96 h. Solvent extraction followed by chromatographic purification steps led to the isolation of hydroquinone (benzene-1,4-diol). The structure of the purified compound was elucidated based on FTIR, (1)H NMR, and (13)C NMR spectroscopy. The compound exhibited efficient antibacterial activity against both Gram-positive and Gram-negative bacterial pathogens. The minimum inhibitory concentration (MIC) for Gram-positive pathogens ranged from 15.625 to 62.5 µg/mL(-1), while it was between 7.81 and 250 µg/mL(-1) for Gram-negative bacterial pathogens. This is the first report of hydroquinone produced by halotolerant B. methylotrophicus exhibiting promising antibacterial activity.
1994-01-01
Unlike the highly polymorphic major histocompatibility complex (MHC) class Ia molecules, which present a wide variety of peptides to T cells, it is generally assumed that the nonpolymorphic MHC class Ib molecules may have evolved to function as highly specialized receptors for the presentation of structurally unique peptides. However, a thorough biochemical analysis of one class Ib molecule, the soluble isoform of Qa-2 antigen (H-2SQ7b), has revealed that it binds a diverse array of structurally similar peptides derived from intracellular proteins in much the same manner as the classical antigen-presenting molecules. Specifically, we find that SQ7b molecules are heterodimers of heavy and light chains complexed with nonameric peptides in a 1:1:1 ratio. These peptides contain a conserved hydrophobic residue at the COOH terminus and a combination of one or more conserved residue(s) at P7 (histidine), P2 (glutamine/leucine), and/or P3 (leucine/asparagine) as anchors for binding SQ7b. 2 of 18 sequenced peptides matched cytosolic proteins (cofilin and L19 ribosomal protein), suggesting an intracellular source of the SQ7b ligands. Minimal estimates of the peptide repertoire revealed that at least 200 different naturally processed self-peptides can bind SQ7b molecules. Since Qa-2 molecules associate with a diverse array of peptides, we suggest that they function as effective presenting molecules of endogenously synthesized proteins like the class Ia molecules. PMID:8294869
CYTOMEGALOVIRUS VECTORS VIOLATE CD8+ T CELL EPITOPE RECOGNITION PARADIGMS
Hansen, Scott G.; Sacha, Jonah B.; Hughes, Colette M.; Ford, Julia C.; Burwitz, Benjamin J.; Scholz, Isabel; Gilbride, Roxanne M.; Lewis, Matthew S.; Gilliam, Awbrey N.; Ventura, Abigail B.; Malouli, Daniel; Xu, Guangwu; Richards, Rebecca; Whizin, Nathan; Reed, Jason S.; Hammond, Katherine B.; Fischer, Miranda; Turner, John M.; Legasse, Alfred W.; Axthelm, Michael K.; Edlefsen, Paul T.; Nelson, Jay A.; Lifson, Jeffrey D.; Früh, Klaus; Picker, Louis J.
2013-01-01
CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of anti-pathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing Rhesus Cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8+ T cell responses is suppressed by the RhCMV-encoded Rh189 (US11) gene, and the promiscuous MHC class I- and class II-restricted CD8+ T cell responses only occur in the absence of the Rh157.4-.6 (UL128-131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8+ T cell epitope recognition. PMID:23704576
Diversity in immunological synapse structure
Thauland, Timothy J; Parker, David C
2010-01-01
Immunological synapses (ISs) are formed at the T cell–antigen-presenting cell (APC) interface during antigen recognition, and play a central role in T-cell activation and in the delivery of effector functions. ISs were originally described as a peripheral ring of adhesion molecules surrounding a central accumulation of T-cell receptor (TCR)–peptide major histocompatibility complex (pMHC) interactions. Although the structure of these ‘classical’ ISs has been the subject of intense study, non-classical ISs have also been observed under a variety of conditions. Multifocal ISs, characterized by adhesion molecules dispersed among numerous small accumulations of TCR–pMHC, and motile ‘immunological kinapses’ have both been described. In this review, we discuss the conditions under which non-classical ISs are formed. Specifically, we explore the profound effect that the phenotypes of both T cells and APCs have on IS structure. We also comment on the role that IS structure may play in T-cell function. PMID:21039474
Strandh, Maria; Westerdahl, Helena; Pontarp, Mikael; Canbäck, Björn; Dubois, Marie-Pierre; Miquel, Christian; Taberlet, Pierre; Bonadonna, Francesco
2012-11-07
Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.
Miller, Hilary C.; O’Meally, Denis; Ezaz, Tariq; Amemiya, Chris; Marshall-Graves, Jennifer A.; Edwards, Scott
2015-01-01
Major histocompatibility complex (MHC) genes are a central component of the vertebrate immune system and usually exist in a single genomic region. However, considerable differences in MHC organization and size exist between different vertebrate lineages. Reptiles occupy a key evolutionary position for understanding how variation in MHC structure evolved in vertebrates, but information on the structure of the MHC region in reptiles is limited. In this study, we investigate the organization and cytogenetic location of MHC genes in the tuatara (Sphenodon punctatus), the sole extant representative of the early-diverging reptilian order Rhynchocephalia. Sequencing and mapping of 12 clones containing class I and II MHC genes from a bacterial artificial chromosome library indicated that the core MHC region is located on chromosome 13q. However, duplication and translocation of MHC genes outside of the core region was evident, because additional class I MHC genes were located on chromosome 4p. We found a total of seven class I sequences and 11 class II β sequences, with evidence for duplication and pseudogenization of genes within the tuatara lineage. The tuatara MHC is characterized by high repeat content and low gene density compared with other species and we found no antigen processing or MHC framework genes on the MHC gene-containing clones. Our findings indicate substantial differences in MHC organization in tuatara compared with mammalian and avian MHCs and highlight the dynamic nature of the MHC. Further sequencing and annotation of tuatara and other reptile MHCs will determine if the tuatara MHC is representative of nonavian reptiles in general. PMID:25953959
NASA Astrophysics Data System (ADS)
Chen, Xiaoping; He, Jian; Wang, Fei; Zhang, Peng; Liu, Hongju; Li, Wenjiong
2016-07-01
PGC-1α, a transcriptional co-activator, has been shown mainly to determine the development of oxidative myofibers in skeletal muscle. However, whether PGC-1α functions to regulate the unloaded muscle atrophy and composition of myofiber types keeps unclear. MCK-PGC-1α overexpression transgenic mice (TG) and its wild type littermates (WT) were subjected to hindlimb unloading (HU) and induced unloaded muscle atrophy. After 14 days of HU, the mass of gastrocnemius, soleus, and plantaris muscles in WT mice decreased 17.9%, 28.2%, and 14.8%, respectively (P<0.01), compared with ground weight-bearing control muscles. PGC-1α transgenic mice showed a 14.0% (P<0.05), 20.4% (P<0.01), 11.8% decrease in gastrocnemius, soleus, and plantaris muscles mass after HU. To further confirm the effect of PGC-1α over-expression on the muscle mass loss under HU, change rate of muscle-body weight ratio was calculated, and the results indicated that the reduction of change rate of muscle-body weight ratio in PGC-1α transgenic gastrocnemius and soleus was significantly less than in WT mice (P<0.01). Moreover, in TG mice compared to WT mice there were significantly less reduction rate of slow-twitch myofiber MHC-I and MHC-IIa (MHC-I, -3.0±0.2% vs -14.9±4.2%, p<0.01, MHC-IIa, -3.5±2.7% vs -6.2±3.7%, p<0.01 ), while there was significantly less induction rate of fast-twitch myofiber MHC-IIb (MHC-IIb, +0.6±0.6% vs +3.7±2.9%, p<0.01 ). The real-time PCR and Western blot analysis confirmed that PGC-1α overexpression mice markedly rescued the muscle atrophy and myofiber switching from oxidative to glycolytic associated with a decrease in pSmad3 level after 14 days of HU. Importantly, overexpression of PGC-1α in C2C12 myoblasts protected PGC-1α-transfected myotubes from atrophy in vitro and the effect could be partially blocked by inducing pSmad3 with constitutively activated Smad3(C.A. smad3) transfection. Therefore, this study demonstrated a novel role and mechanism for PGC-1α in maintaining the balance of muscle mass and myofiber type MHCs in unloaded muscle atrophy via suppressing Smad3 activation. This report may prompt a hopeful therapeutic strategy for maintaining muscle mass and fiber type composition in disused muscle atrophies such as space weightlessness- or immobilization-induced muscle atrophy. Acknowledgments This work was supported by the Natural Sciences Foundation of China (31171144, 81272177 and 31171148), the State Key Laboratory Grant of Space Medicine Fundamentals and Application (SMFA13A01), and the National Key Laboratory Grant of Human Factors Engineering (SYFD140051801).
Use of Electronic Nicotine Delivery Systems among Adults with Mental Health Conditions, 2015
Spears, Claire Adams; Jones, Dina M.; Weaver, Scott R.; Pechacek, Terry F.; Eriksen, Michael P.
2016-01-01
Adults with mental health conditions (MHC) are especially likely to smoke and experience tobacco-related health disparities. Individuals with MHC may also use electronic nicotine delivery devices (ENDS) at disproportionately high rates. However, there is a relative dearth of knowledge regarding ENDS use among individuals with MHC. In a large representative sample of U.S. adults (n = 6051), associations between self-reported MHC diagnoses and ENDS use and susceptibility were examined, stratified by smoking status. Participants with MHC were approximately 1.5 times more likely to have used ENDS in their lifetime and almost twice as likely to currently use ENDS as those without MHC. MHC status was most strongly linked to higher ENDS use among former smokers, and former smokers with MHC were more likely to report using ENDS during past smoking quit attempts than those without MHC. Among participants who had not tried ENDS, former smokers with MHC were especially susceptible to future ENDS use. The potential advantage of ENDS for cessation purposes should be balanced with the risk of attracting former smokers with MHC to ENDS. PMID:28025560
Use of Electronic Nicotine Delivery Systems among Adults with Mental Health Conditions, 2015.
Spears, Claire Adams; Jones, Dina M; Weaver, Scott R; Pechacek, Terry F; Eriksen, Michael P
2016-12-23
Adults with mental health conditions (MHC) are especially likely to smoke and experience tobacco-related health disparities. Individuals with MHC may also use electronic nicotine delivery devices (ENDS) at disproportionately high rates. However, there is a relative dearth of knowledge regarding ENDS use among individuals with MHC. In a large representative sample of U.S. adults ( n = 6051), associations between self-reported MHC diagnoses and ENDS use and susceptibility were examined, stratified by smoking status. Participants with MHC were approximately 1.5 times more likely to have used ENDS in their lifetime and almost twice as likely to currently use ENDS as those without MHC. MHC status was most strongly linked to higher ENDS use among former smokers, and former smokers with MHC were more likely to report using ENDS during past smoking quit attempts than those without MHC. Among participants who had not tried ENDS, former smokers with MHC were especially susceptible to future ENDS use. The potential advantage of ENDS for cessation purposes should be balanced with the risk of attracting former smokers with MHC to ENDS.
Pokorny, Ina; Sharma, Reeta; Goyal, Surendra Prakash; Mishra, Sudanshu; Tiedemann, Ralph
2010-10-01
Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal.
Strandh, Maria; Westerdahl, Helena; Pontarp, Mikael; Canbäck, Björn; Dubois, Marie-Pierre; Miquel, Christian; Taberlet, Pierre; Bonadonna, Francesco
2012-01-01
Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea, choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating (p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds. PMID:22951737
Carrasco Pro, S; Zimic, M; Nielsen, M
2014-02-01
Major histocompatibility complex (MHC) molecules play a key role in cell-mediated immune responses presenting bounded peptides for recognition by the immune system cells. Several in silico methods have been developed to predict the binding affinity of a given peptide to a specific MHC molecule. One of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available, and also new structures of MHC class I molecules with a bound peptide have been published. In order to test if the NetMHCpan method can be improved by integrating this novel information, we created new pseudo-sequence definitions for the MHC-binding cleft environment from sequence and structural analyses of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train the method, the NetMHCpan method achieved a significant increase in the predictive performance, in particular, of non-human MHCs. This study hence showed that an improved performance of MHC-binding methods can be achieved not only by the accumulation of more MHC-peptide-binding data but also by a refined definition of the MHC-binding environment including information from non-human species. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rodríguez Cruz, Pedro M; Luo, Yue-Bei; Miller, James; Junckerstorff, Reimar C; Mastaglia, Frank L; Fabian, Victoria
2014-12-01
Although there have been several previous reports of immunohistochemical staining for MHC antigens in muscle biopsies, there appears to be a lack of consensus about its routine use in the diagnostic evaluation of biopsies from patients with suspected inflammatory myopathy. Positive MHC-I staining is nonspecific but is widely used as a marker for inflammatory myopathy, whilst the role of MHC-II staining is not clearly defined. We investigated the sensitivity and specificity of MHC-I and MHC-II immunostaining for the diagnosis of inflammatory myopathy in a large group of biopsies from a single reference laboratory. Positive staining for MHC-I was found to have a high sensitivity in biopsies from patients with inflammatory myopathy but a very low specificity, as it was also common in other non-inflammatory myopathies and neurogenic disorders. On the other hand, MHC-II positivity had a much higher specificity in all major subgroups of inflammatory myopathy, especially inclusion body myositis. The findings indicate that the combination of MHC-I and MHC-II staining results in a higher degree of specificity for the diagnosis of inflammatory myopathy and that in biopsies with inflammation, positive MHC-II staining strongly supports the diagnosis of an immune-mediated myopathy. We recommend that immunohistochemical staining for both MHC-I and MHC-II should be included routinely in the diagnostic evaluation of muscle biopsies from patients with suspected inflammatory myopathy. However, as the sensitivity and interpretation of MHC staining may depend on the technique used, further studies are needed to compare procedures in different centres and develop standardised protocols. Copyright © 2014 Elsevier B.V. All rights reserved.
Miller, Hilary C; O'Meally, Denis; Ezaz, Tariq; Amemiya, Chris; Marshall-Graves, Jennifer A; Edwards, Scott
2015-05-07
Major histocompatibility complex (MHC) genes are a central component of the vertebrate immune system and usually exist in a single genomic region. However, considerable differences in MHC organization and size exist between different vertebrate lineages. Reptiles occupy a key evolutionary position for understanding how variation in MHC structure evolved in vertebrates, but information on the structure of the MHC region in reptiles is limited. In this study, we investigate the organization and cytogenetic location of MHC genes in the tuatara (Sphenodon punctatus), the sole extant representative of the early-diverging reptilian order Rhynchocephalia. Sequencing and mapping of 12 clones containing class I and II MHC genes from a bacterial artificial chromosome library indicated that the core MHC region is located on chromosome 13q. However, duplication and translocation of MHC genes outside of the core region was evident, because additional class I MHC genes were located on chromosome 4p. We found a total of seven class I sequences and 11 class II β sequences, with evidence for duplication and pseudogenization of genes within the tuatara lineage. The tuatara MHC is characterized by high repeat content and low gene density compared with other species and we found no antigen processing or MHC framework genes on the MHC gene-containing clones. Our findings indicate substantial differences in MHC organization in tuatara compared with mammalian and avian MHCs and highlight the dynamic nature of the MHC. Further sequencing and annotation of tuatara and other reptile MHCs will determine if the tuatara MHC is representative of nonavian reptiles in general. Copyright © 2015 Miller et al.
Yamaguchi, Fuminari; Kawana, Ken-ichiro; Tanonaka, Kouichi; Kamano, Isamu; Igarashi, Takahiro; Gen, Eigyoku; Fujimoto, Yoko; Maki, Toshiyuki; Sanbe, Atsushi; Nasa, Yoshihisa; Takeo, Satoshi
1999-01-01
The effects of long-term treatment with trandolapril, an angiotensin I-converting enzyme inhibitor, on exercise capacity of rats with chronic heart failure (CHF) following coronary artery ligation were examined. CHF was developed by 8 weeks after the coronary artery ligation. The running time of rats with CHF in the treadmill test was shortened to approximately 65% of that of sham-operated rats (16.3±1.2 vs 25.1±1.6 min, n=7; P<0.05). ATP, creatine phosphate (CP), and lactate contents of the gracilis muscle of rats with CHF were similar to those of sham-operated rats before running. After running, ATP and CP were decreased and lactate was increased in both rats with CHF and sham-operated rats. There were no significant differences in the levels of energy metabolites between rats with CHF and sham-operated rats. The rates of decrease in ATP and CP and rate of increase in lactate in the gracilis muscle of rats with CHF during exercise were greater than those of sham operated rats (2.5, 2.0 and 1.5 fold high, respectively), suggesting wastage of energy during exercise in the animals with CHF. Myofibrillar Ca2+-stimulated ATPase (Ca-ATPase) activity of skeletal muscle of rats with CHF was increased over that of the sham-operated control (62.03±1.88 vs 52.34±1.19 μmol Pi mg−1 protein h−1 n=7; P<0.05). The compositions of myosin heavy chain (MHC) isoforms of gracilis muscle were altered by CHF; decreases in MHC types I and IIb and an increase in MHC type IIa were found (P<0.05). Rats with CHF were treated with 1 mg kg−1 day−1 trandolapril from the 2nd to 8th week after surgery. Treatment with trandolapril prolonged the running time, reversed the rates of decrease in ATP and CP and the rate of increase in lactate, and restored the Ca-ATPase activity (51.11±0.56 μmol Pi mg−1 protein h−1, n=7; P<0.05) and composition ratio of MHC isoforms in the gracilis muscle. The results suggest that long-term trandolapril treatment of rats with CHF may restore their ability to utilize energy without wastage and thus improve exercise capacity. PMID:10323590
Zeng, Qian-Qian; He, Ke; Sun, Dan-Dan; Ma, Mei-Ying; Ge, Yun-Fa; Fang, Sheng-Guo; Wan, Qiu-Hong
2016-02-18
The major histocompatibility complex (MHC) genes are vital partners in the acquired immune processes of vertebrates. MHC diversity may be directly associated with population resistance to infectious pathogens. Here, we screened for polymorphisms in exons 2 and 3 of the IA1 and IA2 genes in 12 golden pheasant populations across the Chinese mainland to characterize their genetic variation levels, to understand the effects of historical positive selection and recombination in shaping class I diversity, and to investigate the genetic structure of wild golden pheasant populations. Among 339 individual pheasants, we identified 14 IA1 alleles in exon 2 (IA1-E2), 11 IA1-E3 alleles, 27 IA2-E2 alleles, and 28 IA2-E3 alleles. The non-synonymous substitution rate was significantly greater than the synonymous substitution rate at sequences in the IA2 gene encoding putative peptide-binding sites but not in the IA1 gene; we also found more positively selected sites in IA2 than in IA1. Frequent recombination events resulted in at least 9 recombinant IA2 alleles, in accordance with the intermingling pattern of the phylogenetic tree. Although some IA alleles are widely shared among studied populations, large variation occurs in the number of IA alleles across these populations. Allele frequency analysis across 2 IA loci showed low levels of genetic differentiation among populations on small geographic scales; however, significant genetic differentiation was observed between pheasants from the northern and southern regions of the Yangtze River. Both STRUCTURE analysis and F-statistic (F ST ) value comparison classified those populations into 2 major groups: the northern region of the Yangtze River (NYR) and the southern region of the Yangtze River (SYR). More extensive polymorphisms in IA2 than IA1 indicate that IA2 has undergone much stronger positive-selection pressure during evolution. Moreover, the recombination events detected between the genes and the intermingled phylogenetic pattern indicate that interlocus recombination accounts for much of the allelic variation in IA2. Analysis of the population differentiation implied that homogenous balancing selection plays an important part in maintaining an even distribution of MHC variations. The natural barrier of the Yangtze River and heterogeneous balancing selection might help shape the NYR-SYR genetic structure in golden pheasants.
Comparative decline of the protein profiles of nebulin in response to denervation in skeletal muscle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Jih-Hua; Chang, Nen-Chung; Chen, Sy-Ping
The sliding filament model of the sarcomere was developed more than half a century ago. This model, consisting only of thin and thick filaments, has been efficacious in elucidating many, but not all, features of skeletal muscle. Work during the 1980s revealed the existence of two additional filaments: the giant filamentous proteins titin and nebulin. Nebulin, a giant myofibrillar protein, acts as a protein ruler to maintain the lattice arrays of thin filaments and plays a role in signal transduction and contractile regulation. However, the change of nebulin and its effect on thin filaments in denervation-induced atrophic muscle remains unclear.more » The purpose of this study is to examine the content and pattern of nebulin, myosin heavy chain (MHC), actin, and titin in innervated and denervated tibialis anterior (TA) muscles of rats using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), densitometry and electron microscopic (EM) analyses. The results revealed that denervation induced muscle atrophy is accompanied by decreased nebulin content in a time-dependent manner. For instant, the levels of nebulin in denervated muscles were markedly (P < 0.05) decreased, about 24.6% and 40.2% in comparison with innervated muscle after denervation of 28 and 56 days, respectively. The nebulin/MHC, nebulin/actin, and nebulin/titin ratios were decreased, suggesting a concomitant reduction of nebulin in denervated muscle. Moreover, a western blotting assay proved that nebulin declined faster than titin on 28 and 56 days of denervated muscle. In addition, EM study revealed that the disturbed arrangements of myofilaments and a disorganized contractile apparatus were also observed in denervated muscle. Overall, the present study provides evidence that nebulin is more sensitive to the effect of denervation than MHC, actin, and titin. Nebulin decline indeed resulted in disintegrate of thin filaments and shortening of sarcomeres. - Highlights: • We successfully established denervation-induced skeletal muscle atrophy and fibrosis. • Denervation-induced skeletal muscle protein nebulin faster. • Nebulin is more sensitive to the effect of denervation than MHC, actin, and titin. • Electron microscopy observations revealed that denervation induced disorganized myofilaments of sarcomeres.« less
Morishita, Koji; Costantini, Todd W; Eliceiri, Brian; Bansal, Vishal; Coimbra, Raul
2014-03-01
Previous studies have established that posthemorrhagic shock mesenteric lymph (PHSML) contains proinflammatory mediators, while the cellular basis of PHSML is less well characterized in acute models of injury. CD103 dendritic cells (DCs) have been identified in the mesenteric lymph (ML) in models of chronic intestinal inflammation, suggesting an important role in the gut response to injury. We have previously demonstrated the ability of vagal nerve stimulation (VNS) to prevent gut barrier failure after trauma/hemorrhagic shock (T/HS); however, the ability of VNS to alter ML DCs is unknown. We hypothesized that the CD103 MHC-II DC population would change in PHSML and that VNS would prevent injury-induced changes in this population in PHSML. Male Sprague-Dawley rats were randomly assigned to trauma/sham shock or T/HS. T/HS was induced by midline laparotomy and 60 minutes of HS (blood pressure, 35 mm Hg), followed by fluid resuscitation. A separate cohort of animals underwent cervical VNS after the HS phase. Gut tissue was harvested at 2 hours after injury for histologic analysis. ML was collected during the pre-HS, HS, and post-HS phase. For flow cytometric analysis, ML cells were subjected to staining with CD103 and MHC-II antibodies, and this cell population was compared in the pre-HS and post-HS phase from the same animal. The CD4Foxp3 cell (T reg) population in the ML node (MLN) was also tested to determine effects of CD103 DC modulation in the ML. VNS reduced histologic gut injury and ML flow seen after injury. The CD103 MHC-II DC population in the PHSML was significantly decreased compared with pre-HS and was associated with decreased T reg expression in the MLN. VNS prevented the injury-induced decrease in the CD103 MHC-II+ DC population in the ML and restored the T reg population in the MLN. These findings suggest that VNS mediates the inflammatory responses in ML DCs and MLN T reg cells by affecting the set point of T/HS responsiveness.
Azad, Milad; Khaledi, Neda; Hedayati, Mehdi
2016-06-15
Skeletal muscle is a highly elastic tissue which can respond to various functional demands by altering fiber-type composition. Exercise affects muscle fiber phenotype. One of the transcription factors that induce fiber-type transition is forkhead box O1 (FOXO1). Since eccentric contraction considered an essential part of exercise, so we are interested to see the effects of eccentric exercise (acute/chronic) on FOXO1 as an important factor of fiber-type transition in rat skeletal muscles. Twenty-four Sprague-Dawley rats (190-235g) were divided to 3 groups of 8 rats: 1) chronic eccentric exercise (CEE), 2) acute eccentric exercise (AEE), and 3) control (C). The exercise groups underwent downhill running protocol. CEE was running on treadmill in 3 days of week for 9 weeks, that slope and duration gradually managed from -4° to -16° and 15 to 90 min, respectively. AEE group was running with 16 m/min on -16° slope for 3 consecutive days that included 18 sets of 5 min with rest interval of 2 min in between. Soleus and super vastus lateralis (SVL) muscles mRNA were analyzed by real-time RT-PCR. SVL FOXO1 mRNA levels increased by 3.92-fold in the AEE and decreased 0.56-fold in the CEE group and were not significant in soleus muscle. In soleus muscle, myosin heavy chain (MHC) IIa, IIx, and IIb decreased in the AEE group and MHC IIa and IIx decreased in the CEE group. In SVL muscle, MHC I, IIa, and IIx increased in the AEE group and MHC IIa and IIX increased in the CEE group. In summary, both acute and chronic eccentric exercise could lead to change in FOXO1 mRNA only in fast SVL muscle of rat and so could induce fiber-type transition in both muscles regardless of changes in expression of FOXO1. So, oxidative stress can play important role in change of FOXO1. Copyright © 2016 Elsevier B.V. All rights reserved.
Contractile properties of muscle fibers from the deep and superficial digital flexors of horses.
Butcher, M T; Chase, P B; Hermanson, J W; Clark, A N; Brunet, N M; Bertram, J E A
2010-10-01
Equine digital flexor muscles have independent tendons but a nearly identical mechanical relationship to the main joint they act upon. Yet these muscles have remarkable diversity in architecture, ranging from long, unipennate fibers ("short" compartment of DDF) to very short, multipennate fibers (SDF). To investigate the functional relevance of the form of the digital flexor muscles, fiber contractile properties were analyzed in the context of architecture differences and in vivo function during locomotion. Myosin heavy chain (MHC) isoform fiber type was studied, and in vitro motility assays were used to measure actin filament sliding velocity (V(f)). Skinned fiber contractile properties [isometric tension (P(0)/CSA), velocity of unloaded shortening (V(US)), and force-Ca(2+) relationships] at both 10 and 30°C were characterized. Contractile properties were correlated with MHC isoform and their respective V(f). The DDF contained a higher percentage of MHC-2A fibers with myosin (heavy meromyosin) and V(f) that was twofold faster than SDF. At 30°C, P(0)/CSA was higher for DDF (103.5 ± 8.75 mN/mm(2)) than SDF fibers (81.8 ± 7.71 mN/mm(2)). Similarly, V(US) (pCa 5, 30°C) was faster for DDF (2.43 ± 0.53 FL/s) than SDF fibers (1.20 ± 0.22 FL/s). Active isometric tension increased with increasing Ca(2+) concentration, with maximal Ca(2+) activation at pCa 5 at each temperature in fibers from each muscle. In general, the collective properties of DDF and SDF were consistent with fiber MHC isoform composition, muscle architecture, and the respective functional roles of the two muscles in locomotion.
MHC class II expression in lung cancer.
He, Yayi; Rozeboom, Leslie; Rivard, Christopher J; Ellison, Kim; Dziadziuszko, Rafal; Yu, Hui; Zhou, Caicun; Hirsch, Fred R
2017-10-01
Immunotherapy is an exciting development in lung cancer research. In this study we described major histocompatibility complex (MHC) Class II protein expression in lung cancer cell lines and patient tissues. We studied MHC Class II (DP, DQ, DR) (CR3/43, Abcam) protein expression in 55 non-small cell lung cancer (NSCLC) cell lines, 42 small cell lung cancer (SCLC) cell lines and 278 lung cancer patient tissues by immunohistochemistry (IHC). Seven (12.7%) NSCLC cell lines were positive for MHC Class II. No SCLC cell lines were found to be MHC Class II positive. We assessed 139 lung cancer samples available in the Hirsch Lab for MHC Class II. There was no positive MHC Class II staining on SCLC tumor cells. MHC Class II expression on TILs in SCLC was significantly lower than that on TILs in NSCLC (P<0.001). MHC Class II was also assessed in an additional 139 NSCLC tumor tissues from Medical University of Gdansk, Poland. Patients with positive staining of MHC Class II on TILs had longer regression-free survival (RFS) and overall survival (OS) than those whose TILs were MHC Class II negative (2.980 years, 95% CI 1.628-4.332 vs. 1.050 years, 95% CI 0.556-1.554, P=0.028) (3.230 years, 95% CI 2.617-3.843 vs. 1.390 years, 95% CI 0.629-2.151, P=0.014). MHC Class II was expressed both in NSCLC cell lines and tissues. However, MHC Class II was not detected in SCLC cell lines or tissue tumor cells. MHC Class II expression was lower on SCLC TILs than on NSCLC TILs. Loss of expression of MHC Class II on SCLC tumor cells and reduced expression on SCLC TILs may be a means of escaping anti-cancer immunity. Higher MHC Class II expression on TILs was correlated with better prognosis in patients with NSCLC. Copyright © 2017. Published by Elsevier B.V.
NLRC5: a key regulator of MHC class I-dependent immune responses.
Kobayashi, Koichi S; van den Elsen, Peter J
2012-12-01
The expression of MHC class I molecules is crucial for the initiation and regulation of adaptive immune responses against pathogens. NOD-, LRR- and CARD-containing 5 (NLRC5) was recently identified as a specific transactivator of MHC class I genes (CITA). NLRC5 and the master regulator for MHC class II genes, class II transactivator (CIITA), interact with similar MHC promoter-bound factors. Here, we provide a broad overview of the molecular mechanisms behind MHC class I transcription and the role of the class I transactivator NLRC5 in MHC class I-dependent immune responses.
Overproduction of cardiac S-adenosylmethionine decarboxylase in transgenic mice
Nisenberg, Oleg; Pegg, Anthony E.; Welsh, Patricia A.; Keefer, Kerry; Shantz, Lisa M.
2005-01-01
The present study was designed to provide a better understanding of the role played by AdoMetDC (S-adenosylmethionine decarboxylase), the key rate-controlling enzyme in the synthesis of spermidine and spermine, in controlling polyamine levels and the importance of polyamines in cardiac physiology. The αMHC (α-myosin heavy chain) promoter was used to generate transgenic mice with cardiac-specific expression of AdoMetDC. A founder line (αMHC/AdoMetDC) was established with a >100-fold increase in AdoMetDC activity in the heart. Transgene expression was maximal by 1 week of age and remained constant into adulthood. However, the changes in polyamine levels were most pronounced during the first week of age, with a 2-fold decrease in putrescine and spermidine and a 2-fold increase in spermine. At later times, spermine returned to near control levels, whereas putrescine and spermidine levels remained lower, suggesting that compensatory mechanisms exist to limit spermine accumulation. The αMHC/AdoMetDC mice did not display an overt cardiac phenotype, but there was an increased cardiac hypertrophy after β-adrenergic stimulation with isoprenaline (‘isoproterenol’), as well as a small increase in spermine content. Crosses of the αMHC/AdoMetDC with αMHC/ornithine decarboxylase mice that have a >1000-fold increase in cardiac ornithine decarboxylase were lethal in utero, presumably due to increase in spermine to toxic levels. These findings suggest that cardiac spermine levels are highly regulated to avoid polyamine-induced toxicity and that homoeostatic mechanisms can maintain non-toxic levels even when one enzyme of the biosynthetic pathway is greatly elevated but are unable to do so when two biosynthetic enzymes are increased. PMID:16153183
Su, Haibo; Zhu, Shenglin; Zhu, Lin; Huang, Wei; Wang, Honghai; Zhang, Zhi; Xu, Ying
2016-01-01
TLR2-dependent cellular signaling in Mycobacterium tuberculosis -infected macrophages causes apoptosis and inhibits class II major histocompatibility complex (MHC-II) molecules antigen processing, leading to evasion of surveillance. Mycobacterium tuberculosis (MTB) lipoproteins are an important class of Toll-like receptor (TLR) ligand, and identified as specific components that mediate these effects. In this study, we identified and characterized MTB lipoprotein Rv1016c (lpqT) as a cell wall associated-protein that was exposed on the cell surface and enhanced the survival of recombinants M. smegmatis_Rv1016c under stress conditions. We found that Rv1016c lipoprotein was a novel TLR2 ligand and able to induce macrophage apoptosis in a both dose- and time-dependent manner. Additionally, apoptosis induced by Rv1016c was reserved in THP-1 cells blocked with anti-TLR-2 Abs or in TLR2 -/- mouse macrophages, indicating that Rv1016c-induced apoptosis is dependent on TLR2. Moreover, we demonstrated that Rv1016c lipoprotein inhibited IFN-γ-induced MHC-II expression and processing of soluble antigens in a TLR2 dependent manner. Class II transactivator (CIITA) regulates MHC II expression. In this context, Rv1016c lipoprotein diminished IFN-γ-induced expression of CIITA IV through TLR2 and MAPK Signaling. TLR2-dependent apoptosis and inhibition of MHC-II Ag processing induced by Rv1016c during mycobacteria infection may promote the release of residual bacilli from apoptotic cells and decrease recognition by CD4 + T cells. These mechanisms may allow intracellular MTB to evade immune surveillance and maintain chronic infection.
Evolution of major histocompatibility complex class I and class II genes in the brown bear
2012-01-01
Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405
Evolution of major histocompatibility complex class I and class II genes in the brown bear.
Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek
2012-10-02
Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.
Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.
2015-01-01
Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072
Grob, B; Knapp, L A; Martin, R D; Anzenberger, G
1998-01-01
It has been known for decades that MHC genes play a critical role in the cellular immune response, but only recent research has provided a better understanding of how these molecules might affect mate choice. Original studies in inbred mouse strains revealed that mate choice was influenced by MHC dissimilarity. Detection of MHC differences between individuals in these experiments was related to olfactory cues, primarily in urine. Recent studies in humans have shown an analogous picture of MHC-based mating. Taken together, these findings could support either the hypothesis of MHC-based inbreeding avoidance or the hypothesis of MHC-related avoidance of reproductive failure, since studies in mice, humans and pigtailed macaques have shown that parental sharing of certain MHC alleles correlates with frequent spontaneous abortion or prolonged intergestational intervals. Data from many mammalian species clearly demonstrate that reproductive failure occurs as a result of inbreeding. Therefore, MHC similarity might serve as an indicator of genome-wide relatedness. In contrast, increased fitness due to the presence of individual MHC alleles in a pathogenic environment could explain MHC-based selection of currently good genes. Specifically, the physical condition of long-living animals depends on the ability to respond to immunological challenge and an individual's MHC alleles determine the response, since, unlike the T cell receptors, MHC alleles are not somatically recombined. Therefore, sexual selection of condition-dependent traits during mate choice could be used to select successful MHC alleles, thereby providing offspring with a higher relative immunity in their pathogenic environment.
Natural Polymorphisms in Tap2 Influence Negative Selection and CD4∶CD8 Lineage Commitment in the Rat
Tuncel, Jonatan; Haag, Sabrina; Yau, Anthony C. Y.; Norin, Ulrika; Baud, Amelie; Lönnblom, Erik; Maratou, Klio; Ytterberg, A. Jimmy; Ekman, Diana; Thordardottir, Soley; Johannesson, Martina; Gillett, Alan; Stridh, Pernilla; Jagodic, Maja; Olsson, Tomas; Fernández-Teruel, Alberto; Zubarev, Roman A.; Mott, Richard; Aitman, Timothy J.; Flint, Jonathan; Holmdahl, Rikard
2014-01-01
Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells. PMID:24586191
The major histocompatibility complex and the chemosensory signalling of individuality in humans.
Eggert, F; Luszyk, D; Haberkorn, K; Wobst, B; Vostrowsky, O; Westphal, E; Bestmann, H J; Müller-Ruchholtz, W; Ferstl, R
The chemosensory identity of mice and rats is determined partly by polymorphic genes of the major histocompatibility complex (MHC). In inbred strains of mice, as well as in seminatural populations, MHC-associated mating preferences selectively influence reproductive success, thus serving to promote heterozygocity in the MHC. In order to determine whether MHC-associated chemosignals are present in humans, two studies were conducted. In a first study, olfactory identification of MHC-associated chemosignals was conducted on 12 trained rats' responses to the urine odors of humans. In a second study, MHC-associated olfactory cues in humans were analyzed by means of gas chromatography. The results indicate that the urine odors of humans are associated with the MHC and demonstrate that the profile of volatile components in the urine odors shows some association with the MHC. Furthermore, results show that a profile of some specific components, as well as a few ubiquitous volatiles, constitutes MHC-associated odor signals in humans.
Rutigliano, Heloisa M; Thomas, Aaron J; Wilhelm, Amanda; Sessions, Benjamin R; Hicks, Brady A; Schlafer, Donald H; White, Kenneth L; Davies, Christopher J
2016-08-01
Trophoblast cells from bovine somatic cell nuclear transfer (SCNT) conceptuses express major histocompatibility complex class I (MHC-I) proteins early in gestation, and this may be one cause of the significant first-trimester embryonic mortality observed in these pregnancies. MHC-I homozygous-compatible (n = 9), homozygous-incompatible (n = 8), and heterozygous-incompatible (n = 5) SCNT pregnancies were established. The control group consisted of eight pregnancies produced by artificial insemination. Uterine and placental samples were collected on Day 35 ± 1 of pregnancy, and expression of MHC-I, leukocyte markers, and cytokines were examined by immunohistochemistry. Trophoblast cells from all SCNT pregnancies expressed MHC-I, while trophoblast cells from age-matched control pregnancies were negative for MHC-I expression. Expression of MHC-I antigens by trophoblast cells from SCNT pregnancies was associated with lymphocytic infiltration in the endometrium. Furthermore, MHC-I-incompatible conceptuses, particularly the heterozygous-incompatible ones, induced a more pronounced lymphocytic infiltration than MHC-I-compatible conceptuses. Cells expressing cluster of differentiation (CD) 3, gamma/deltaTCR, and MHC-II were increased in the endometrium of SCNT pregnancies compared to the control group. CD4(+) lymphocytes were increased in MHC-I-incompatible pregnancies compared to MHC-I-compatible and control pregnancies. CD8(+), FOXP3(+), and natural killer cells were increased in MHC-I heterozygous-incompatible SCNT pregnancies compared to homozygous SCNT and control pregnancies. © 2016 by the Society for the Study of Reproduction, Inc.
Sasaki, Takanori; Kanaseki, Takayuki; Shionoya, Yosuke; Tokita, Serina; Miyamoto, Sho; Saka, Eri; Kochin, Vitaly; Takasawa, Akira; Hirohashi, Yoshihiko; Tamura, Yasuaki; Miyazaki, Akihiro; Torigoe, Toshihiko; Hiratsuka, Hiroyoshi; Sato, Noriyuki
2016-04-01
Hypoxia and glucose deprivation are often observed in the microenvironment surrounding solid tumors in vivo. However, how they interfere with MHC class I antigen processing and CD8(+) T-cell responses remains unclear. In this study, we analyzed the production of antigenic peptides presented by classical MHC class I in mice, and showed that it is quantitatively decreased in the cells exposed to either hypoxia or glucose deprivation. In addition, we unexpectedly found increased surface expression of HLA-E in human and Qa-1 in mouse tumor cells exposed to combined oxygen and glucose deprivation. The induced Qa-1 on the stressed tumor model interacted with an inhibitory NKG2/CD94 receptor on activated CD8(+) T cells and attenuated their specific response to the antigen. Our results thus suggest that microenvironmental stresses modulate not only classical but also nonclassical MHC class I presentation, and confer the stressed cells the capability to escape from the CD8(+) T-cell recognition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genomic legacy of the African cheetah, Acinonyx jubatus.
Dobrynin, Pavel; Liu, Shiping; Tamazian, Gaik; Xiong, Zijun; Yurchenko, Andrey A; Krasheninnikova, Ksenia; Kliver, Sergey; Schmidt-Küntzel, Anne; Koepfli, Klaus-Peter; Johnson, Warren; Kuderna, Lukas F K; García-Pérez, Raquel; Manuel, Marc de; Godinez, Ricardo; Komissarov, Aleksey; Makunin, Alexey; Brukhin, Vladimir; Qiu, Weilin; Zhou, Long; Li, Fang; Yi, Jian; Driscoll, Carlos; Antunes, Agostinho; Oleksyk, Taras K; Eizirik, Eduardo; Perelman, Polina; Roelke, Melody; Wildt, David; Diekhans, Mark; Marques-Bonet, Tomas; Marker, Laurie; Bhak, Jong; Wang, Jun; Zhang, Guojie; O'Brien, Stephen J
2015-12-10
Patterns of genetic and genomic variance are informative in inferring population history for human, model species and endangered populations. Here the genome sequence of wild-born African cheetahs reveals extreme genomic depletion in SNV incidence, SNV density, SNVs of coding genes, MHC class I and II genes, and mitochondrial DNA SNVs. Cheetah genomes are on average 95 % homozygous compared to the genomes of the outbred domestic cat (24.08 % homozygous), Virunga Mountain Gorilla (78.12 %), inbred Abyssinian cat (62.63 %), Tasmanian devil, domestic dog and other mammalian species. Demographic estimators impute two ancestral population bottlenecks: one >100,000 years ago coincident with cheetah migrations out of the Americas and into Eurasia and Africa, and a second 11,084-12,589 years ago in Africa coincident with late Pleistocene large mammal extinctions. MHC class I gene loss and dramatic reduction in functional diversity of MHC genes would explain why cheetahs ablate skin graft rejection among unrelated individuals. Significant excess of non-synonymous mutations in AKAP4 (p<0.02), a gene mediating spermatozoon development, indicates cheetah fixation of five function-damaging amino acid variants distinct from AKAP4 homologues of other Felidae or mammals; AKAP4 dysfunction may cause the cheetah's extremely high (>80 %) pleiomorphic sperm. The study provides an unprecedented genomic perspective for the rare cheetah, with potential relevance to the species' natural history, physiological adaptations and unique reproductive disposition.
Identification of MHC class I sequences in Chinese-origin rhesus macaques
Karl, Julie A.; Wiseman, Roger W.; Campbell, Kevin J.; Blasky, Alex J.; Hughes, Austin L.; Ferguson, Betsy; Read, Daniel S.
2010-01-01
The rhesus macaque (Macaca mulatta) is an excellent model for human disease and vaccine research. Two populations exhibiting distinctive morphological and physiological characteristics, Indian- and Chinese-origin rhesus macaques, are commonly used in research. Genetic analysis has focused on the Indian macaque population, but the accessibility of these animals for research is limited. Due to their greater availability, Chinese rhesus macaques are now being used more frequently, particularly in vaccine and biodefense studies, although relatively little is known about their immunogenetics. In this study, we discovered major histocompatibility complex (MHC) class I cDNAs in 12 Chinese rhesus macaques and detected 41 distinct Mamu-A and Mamu-B sequences. Twenty-seven of these class I cDNAs were novel, while six and eight of these sequences were previously reported in Chinese and Indian rhesus macaques, respectively. We then performed microsatellite analysis on DNA from these 12 animals, as well as an additional 18 animals, and developed sequence specific primer PCR (PCR-SSP) assays for eight cDNAs found in multiple animals. We also examined our cohort for potential admixture of Chinese and Indian origin animals using a recently developed panel of single nucleotide polymorphisms (SNPs). The discovery of 27 novel MHC class I sequences in this analysis underscores the genetic diversity of Chinese rhesus macaques and contributes reagents that will be valuable for studying cellular immunology in this population. PMID:18097659
Effects of aging on mitochondrial function in skeletal muscle of American Quarter Horses
Li, Chengcheng; White, Sarah H.; Warren, Lori K.
2016-01-01
Skeletal muscle function, aerobic capacity, and mitochondrial (Mt) function have been found to decline with age in humans and rodents. However, not much is known about age-related changes in Mt function in equine skeletal muscle. Here, we compared fiber-type composition and Mt function in gluteus medius and triceps brachii muscle between young (age 1.8 ± 0.1 yr, n = 24) and aged (age 17-25 yr, n = 10) American Quarter Horses. The percentage of myosin heavy chain (MHC) IIX was lower in aged compared with young muscles (gluteus, P = 0.092; triceps, P = 0.012), while the percentages of MHC I (gluteus; P < 0.001) and MHC IIA (triceps; P = 0.023) were increased. Mass-specific Mt density, indicated by citrate synthase activity, was unaffected by age in gluteus, but decreased in aged triceps (P = 0.023). Cytochrome-c oxidase (COX) activity per milligram tissue and per Mt unit decreased with age in gluteus (P < 0.001 for both) and triceps (P < 0.001 and P = 0.003, respectively). Activity of 3-hydroxyacyl-CoA dehydrogenase per milligram tissue was unaffected by age, but increased per Mt unit in aged gluteus and triceps (P = 0.023 and P < 0.001, respectively). Mt respiration of permeabilized muscle fibers per milligram tissue was unaffected by age in both muscles. Main effects of age appeared when respiration was normalized to Mt content, with increases in LEAK, oxidative phosphorylation capacity, and electron transport system capacity (P = 0.038, P = 0.045, and P = 0.007, respectively), independent of muscle. In conclusion, equine skeletal muscle aging was accompanied by a shift in fiber-type composition, decrease in Mt density and COX activity, but preserved Mt respiratory function. PMID:27283918
MHC2NNZ: A novel peptide binding prediction approach for HLA DQ molecules
NASA Astrophysics Data System (ADS)
Xie, Jiang; Zeng, Xu; Lu, Dongfang; Liu, Zhixiang; Wang, Jiao
2017-07-01
The major histocompatibility complex class II (MHC-II) molecule plays a crucial role in immunology. Computational prediction of MHC-II binding peptides can help researchers understand the mechanism of immune systems and design vaccines. Most of the prediction algorithms for MHC-II to date have made large efforts in human leukocyte antigen (HLA, the name of MHC in Human) molecules encoded in the DR locus. However, HLA DQ molecules are equally important and have only been made less progress because it is more difficult to handle them experimentally. In this study, we propose an artificial neural network-based approach called MHC2NNZ to predict peptides binding to HLA DQ molecules. Unlike previous artificial neural network-based methods, MHC2NNZ not only considers sequence similarity features but also captures the chemical and physical properties, and a novel method incorporating these properties is proposed to represent peptide flanking regions (PFR). Furthermore, MHC2NNZ improves the prediction accuracy by combining with amino acid preference at more specific positions of the peptides binding core. By evaluating on 3549 peptides binding to six most frequent HLA DQ molecules, MHC2NNZ is demonstrated to outperform other state-of-the-art MHC-II prediction methods.
Shang, Shaobin; Siddiqui, Sarah; Bian, Yao; Zhao, Jie; Wang, Chyung-Ru
2016-01-01
MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules. PMID:27272249
Spears, Claire Adams; Jones, Dina M; Weaver, Scott R; Pechacek, Terry F; Eriksen, Michael P
2018-05-01
Smoking rates are disproportionately high among adults with mental health conditions (MHC), and recent research suggests that among former smokers, those with MHC are more likely to use electronic nicotine delivery systems (ENDS). This study investigated reasons for ENDS use and related risk perceptions among individuals with versus without MHC. Among adult current ENDS users (n=550), associations between self-reported MHC diagnoses and motives for ENDS use and ENDS risk perceptions were examined, stratified by smoking status. There were no significant associations between MHC status and ENDS motives or perceptions in the overall sample. However, current smokers with MHC indicated thinking more about how ENDS might improve their health, and former smokers with MHC reported thinking less about how ENDS might harm their health, compared to their counterparts without MHC. Former smokers with MHC rated several reasons for ENDS use (e.g., less harmful than regular cigarettes; to quit smoking; appealing flavors) as more important than did those without MHC. Current and former smokers with MHC may be especially optimistic about health benefits of ENDS. However, they might also be prone to health risks of continued ENDS use or concurrent use with traditional cigarettes. It will be important for public health messaging to provide this population with accurate information about benefits and risks of ENDS. Copyright © 2018 Elsevier Ltd. All rights reserved.
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing.
Morozov, Giora I; Zhao, Huaying; Mage, Michael G; Boyd, Lisa F; Jiang, Jiansheng; Dolan, Michael A; Venna, Ramesh; Norcross, Michael A; McMurtrey, Curtis P; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H
2016-02-23
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Jiansheng; Natarajan, Kannan; Boyd, Lisa F.
Central to CD8+ T cell–mediated immunity is the recognition of peptide–major histocompatibility complex class I (p–MHC I) proteins displayed by antigen-presenting cells. Chaperone-mediated loading of high-affinity peptides onto MHC I is a key step in the MHC I antigen presentation pathway. However, the structure of MHC I with a chaperone that facilitates peptide loading has not been determined. We report the crystal structure of MHC I in complex with the peptide editor TAPBPR (TAP-binding protein–related), a tapasin homolog. TAPBPR remodels the peptide-binding groove of MHC I, resulting in the release of low-affinity peptide. Changes include groove relaxation, modifications of keymore » binding pockets, and domain adjustments. This structure captures a peptide-receptive state of MHC I and provides insights into the mechanism of peptide editing by TAPBPR and, by analogy, tapasin.« less
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less
Hacking, Jessica; Bertozzi, Terry; Moussalli, Adnan; Bradford, Tessa; Gardner, Michael
2018-07-01
Characterisation of squamate major histocompatibility complex (MHC) genes has lagged behind other taxonomic groups. MHC genes encode cell-surface glycoproteins that present self- and pathogen-derived peptides to T cells and play a critical role in pathogen recognition. Here we characterise MHC class I transcripts for an agamid lizard (Ctenophorus decresii) and investigate the evolution of MHC class I in Iguanian lizards. An iterative assembly strategy was used to identify six full-length C. decresii MHC class I transcripts, which were validated as likely to encode classical class I MHC molecules. Evidence for exon shuffling recombination was uncovered for C. decresii transcripts and Bayesian phylogenetic analysis of Iguanian MHC class I sequences revealed a pattern expected under a birth-and-death mode of evolution. This work provides a stepping stone towards further research on the agamid MHC class I region. Copyright © 2018 Elsevier Ltd. All rights reserved.
Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing
Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; ...
2016-02-11
Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8 + T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities ofmore » TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.« less
A Tec kinase BTK inhibitor ibrutinib promotes maturation and activation of dendritic cells.
Natarajan, Gayathri; Oghumu, Steve; Terrazas, Cesar; Varikuti, Sanjay; Byrd, John C; Satoskar, Abhay R
2016-06-01
Ibrutinib, a BTK inhibitor, is currently used to treat various hematological malignancies. We evaluated whether ibrutinib treatment during development of murine bone marrow-derived dendritic cells (DCs) modulates their maturation and activation. Ibrutinib treatment increased the proportion of CD11c(+) DCs, upregulated the expression of MHC-II and CD80 and downregulated Ly6C expression by DCs. Additionally, ibrutinib treatment led to an increase in MHC-II(+), CD80(+) and CCR7(+) DCs but a decrease in CD86(+) DCs upon LPS stimulation. LPS/ibrutinib-treated DCs displayed increased IFNβ and IL-10 synthesis and decreased IL-6, IL-12 and NO production compared to DCs stimulated with LPS alone. Finally, LPS/ibrutinib-treated DCs promoted higher rates of CD4(+) T cell proliferation and cytokine production compared to LPS only stimulated DCs. Taken together, our results indicate that ibrutinib enhances the maturation and activation of DCs to promote CD4(+) T cell activation which could be exploited for the development of DC-based cancer therapies.
Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo
2013-01-01
Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation. PMID:23951315
Cho, Sunglim; Kim, Bo Young; Ahn, Kwangseog; Jun, Youngsoo
2013-01-01
Derlin-1 plays a critical role in endoplasmic reticulum-associated protein degradation (ERAD) of a particular subset of proteins. Although it is generally accepted that Derlin-1 mediates the export of ERAD substrates from the ER to the cytosol, little is known about how Derlin-1 interacts with these substrates. Human cytomegalovirus (HCMV) US11 exploits Derlin-1-dependent ERAD to degrade major histocompatibility complex class I (MHC-I) molecules and evade immune surveillance. US11 requires the cytosolic tail of the MHC-I heavy chain to divert MHC-I molecules into the ERAD pathway for degradation; however, the underlying mechanisms remain unknown. Here, we show that the cytosolic tail of the MHC-I heavy chain, although not required for interaction with US11, is required for tight binding to Derlin-1 and thus for US11-induced dislocation of the MHC-I heavy chain to the cytosol for proteasomal degradation. Surprisingly, deletion of a single C-terminal amino acid from the cytosolic tail disrupted the interaction between MHC-I molecules and Derlin-1, rendering mutant MHC-I molecules resistant to US11-induced degradation. Consistently, deleting the C-terminal cytosolic region of Derlin-1 prevented it from binding to MHC-I molecules. Taken together, these results suggest that the cytosolic region of Derlin-1 is involved in ERAD substrate binding and that this interaction is critical for the Derlin-1-mediated dislocation of the MHC-I heavy chain to the cytosol during US11-induced MHC-I degradation.
Herinckx, Heidi A; Swart, Sandra C; Ama, Shane M; Dolezal, Cheri D; King, Steve
2005-07-01
This study examined rearrest and linkage to mental health services among 368 misdemeanants with severe and persistent mental illness who were served by the Clark County Mental Health Court (MHC). This court, established in April 2000, is based on the concepts of therapeutic jurisprudence. This study addressed the following questions about the effectiveness of the Clark County MHC: Did MHC clients receive more comprehensive mental health services? Did the MHC successfully reduce recidivism? Were there any client or program characteristics associated with recidivism? A secondary analysis of use of mental health services and jail data for the MHC clients enrolled from April 2000 through April 2003 was conducted. The authors used a 12-month pre-post comparison design to determine whether MHC participants experienced reduced rearrest rates for new offenses, reduced probation violations, and increased mental health services 12 months postenrollment in the MHC compared with 12 months preenrollment. The overall crime rate for MHC participants was reduced 4.0 times one year postenrollment in the MHC compared with one year preenrollment. One year postenrollment, 54 percent of participants had no arrests, and probation violations were reduced by 62 percent. The most significant factor in determining the success of MHC participants was graduation status from the MHC, with graduates 3.7 times less likely to reoffend compared with nongraduates. The Clark County MHC successfully reduced rearrest rates for new criminal offenses and probation violations and provided the mental health support services to stabilize mental health consumers in the community.
Vandenboom, Rene; Herron, Todd; Favre, Elizabeth; Albayya, Faris P.
2011-01-01
The purpose of this study was to implement a living myocyte in vitro model system to test whether a motor domain-deleted headless myosin construct could be incorporated into the sarcomere and affect contractility. To this end we used gene transfer to express a “headless” myosin heavy chain (headless-MHC) in complement with the native full-length myosin motors in the cardiac sarcomere. An NH2-terminal Flag epitope was used for unique detection of the motor domain-deleted headless-MHC. Total MHC content (i.e., headless-MHC + endogenous MHC) remained constant, while expression of the headless-MHC in transduced myocytes increased from 24 to 72 h after gene transfer until values leveled off at 96 h after gene transfer, at which time the headless-MHC comprised ∼20% of total MHC. Moreover, immunofluorescence labeling and confocal imaging confirmed expression and demonstrated incorporation of the headless-MHC in the A band of the cardiac sarcomere. Functional measurements in intact myocytes showed that headless-MHC modestly reduced amplitude of dynamic twitch contractions compared with controls (P < 0.05). In chemically permeabilized myocytes, maximum steady-state isometric force and the tension-pCa relationship were unaltered by the headless-MHC. These data suggest that headless-MHC can express to 20% of total myosin and incorporate into the sarcomere yet have modest to no effects on dynamic and steady-state contractile function. This would indicate a degree of functional tolerance in the sarcomere for nonfunctional myosin molecules. PMID:21112946
Polymorphism at Expressed DQ and DR Loci in Five Common Equine MHC Haplotypes
Miller, Donald; Tallmadge, Rebecca L.; Binns, Matthew; Zhu, Baoli; Mohamoud, Yasmin Ali; Ahmed, Ayeda; Brooks, Samantha A.; Antczak, Douglas F.
2016-01-01
The polymorphism of Major Histocompatibility Complex (MHC) class II DQ and DR genes in five common Equine Leukocyte Antigen (ELA) haplotypes was determined through sequencing of mRNA transcripts isolated from lymphocytes of eight ELA homozygous horses. Ten expressed MHC class II genes were detected in horses of the ELA-A3 haplotype carried by the donor horses of the equine Bacterial Artificial Chromosome (BAC) library and the reference genome sequence: four DR genes and six DQ genes. The other four ELA haplotypes contained at least eight expressed polymorphic MHC class II loci. Next Generation Sequencing (NGS) of genomic DNA of these four MHC haplotypes revealed stop codons in the DQA3 gene in the ELA-A2, ELA-A5, and ELA-A9 haplotypes. Few NGS reads were obtained for the other MHC class II genes that were not amplified in these horses. The amino acid sequences across haplotypes contained locus-specific residues, and the locus clusters produced by phylogenetic analysis were well supported. The MHC class II alleles within the five tested haplotypes were largely non-overlapping between haplotypes. The complement of equine MHC class II DQ and DR genes appears to be well conserved between haplotypes, in contrast to the recently described variation in class I gene loci between equine MHC haplotypes. The identification of allelic series of equine MHC class II loci will aid comparative studies of mammalian MHC conservation and evolution and may also help to interpret associations between the equine MHC class II region and diseases of the horse. PMID:27889800
Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian
2017-01-01
Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149
Predicting MHC-II binding affinity using multiple instance regression
EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant
2011-01-01
Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923
Taylor, Sabrina S.; Jenkins, Deborah A.; Arcese, Peter
2012-01-01
Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks. PMID:22655029
Delisle, Jean-Sébastien; Gaboury, Louis; Bélanger, Marie-Pier; Tassé, Eliane; Yagita, Hideo; Perreault, Claude
2008-09-01
The immunopathologic condition known as graft-versus-host disease (GVHD) results from a type I T-cell process. However, a prototypical type I cytokine, interferon-gamma (IFN-gamma), can protect against several manifestations of GVHD in recipients of major histocompatibility complex (MHC)-mismatched hematopoietic cells. We transplanted hematopoietic cells from C3H.SW donors in wild-type (wt) and IFN-gamma-receptor-deficient (IFN-gammaRKO) MHC-matched C57BL/6 recipients. In IFN-gammaRKO recipients, host cells were unresponsive to IFN-gamma, whereas wt donor cells were exposed to exceptionally high levels of IFN-gamma. From an IFN-gamma perspective, we could therefore evaluate the impact of a loss-of-function on host cells and gain-of-function on donor cells. We found that lack of IFN-gammaR prevented up-regulation of MHC proteins on host cells but did not mitigate damage to most target organs. Two salient phenotypes in IFN-gammaRKO recipients involved donor cells: lymphoid hypoplasia and hematopoietic failure. Lymphopenia was due to FasL-induced apoptosis and decreased cell proliferation. Bone marrow aplasia resulted from a decreased proliferation of hematopoietic stem/progenitor cells that was associated with down-regulation of 2 genes negatively regulated by IFN-gamma: Ccnd1 and Myc. We conclude that IFN-gamma produced by alloreactive T cells may entail a severe graft-versus-graft reaction and could be responsible for cytopenias that are frequently observed in subjects with GVHD.
2011-01-01
Background Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation. PMID:21569286
Primordial linkage of β2-microglobulin to the MHC.
Ohta, Yuko; Shiina, Takashi; Lohr, Rebecca L; Hosomichi, Kazuyoshi; Pollin, Toni I; Heist, Edward J; Suzuki, Shingo; Inoko, Hidetoshi; Flajnik, Martin F
2011-03-15
β2-Microglobulin (β2M) is believed to have arisen in a basal jawed vertebrate (gnathostome) and is the essential L chain that associates with most MHC class I molecules. It contains a distinctive molecular structure called a constant-1 Ig superfamily domain, which is shared with other adaptive immune molecules including MHC class I and class II. Despite its structural similarity to class I and class II and its conserved function, β2M is encoded outside the MHC in all examined species from bony fish to mammals, but it is assumed to have translocated from its original location within the MHC early in gnathostome evolution. We screened a nurse shark bacterial artificial chromosome library and isolated clones containing β2M genes. A gene present in the MHC of all other vertebrates (ring3) was found in the bacterial artificial chromosome clone, and the close linkage of ring3 and β2M to MHC class I and class II genes was determined by single-strand conformational polymorphism and allele-specific PCR. This study satisfies the long-held conjecture that β2M was linked to the primordial MHC (Ur MHC); furthermore, the apparent stability of the shark genome may yield other genes predicted to have had a primordial association with the MHC specifically and with immunity in general.
Sepil, Irem; Lachish, Shelly; Hinks, Amy E.; Sheldon, Ben C.
2013-01-01
Major histocompatibility complex (Mhc) genes are believed to play a key role in the genetic basis of disease control. Although numerous studies have sought links between Mhc and disease prevalence, many have ignored the ecological and epidemiological aspects of the host–parasite interaction. Consequently, interpreting associations between prevalence and Mhc has been difficult, whereas discriminating alleles for qualitative resistance, quantitative resistance and susceptibility remains challenging. Moreover, most studies to date have quantified associations between genotypes and disease status, overlooking the complex relationship between genotype and the properties of the Mhc molecule that interacts with parasites. Here, we address these problems and demonstrate avian malaria (Plasmodium) parasite species-specific associations with functional properties of Mhc molecules (Mhc supertypes) in a wild great tit (Parus major) population. We further show that correctly interpreting these associations depends crucially on understanding the spatial variation in risk of infection and the fitness effects of infection. We report that a single Mhc supertype confers qualitative resistance to Plasmodium relictum, whereas a different Mhc supertype confers quantitative resistance to Plasmodium circumflexum infections. Furthermore, we demonstrate common functional properties of Plasmodium-resistance alleles in passerine birds, suggesting this is a model system for parasite–Mhc associations in the wild. PMID:23516242
Sequence analysis of MHC class I α2 from sockeye salmon (Oncorhynchus nerka).
McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Miller, Kristina M
2011-09-01
Most studies assessing adaptive MHC diversity in salmon populations have focused on the classical class II DAB or DAA loci, as these have been most amenable to single PCR amplifications due to their relatively low level of sequence divergence. Herein, we report the characterization of the classical class I UBA α2 locus based on collections taken throughout the species range of sockeye salmon (Oncorhynchus nerka). Through use of multiple lineage-specific primer sets, denaturing gradient gel electrophoresis and sequencing, we identified thirty-four alleles from three highly divergent lineages. Sequence identity between lineages ranged from 30.0% to 56.8% but was relatively high within lineages. Allelic identity within the antigen recognition site (ARS) was greater than for the longer sequence. Global positive selection on UBA was seen at the sequence level (dN:dS = 1.012) with four codons under positive selection and 12 codons under negative selection. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meissner, Torsten B.; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02215; Li, Amy
Highlights: Black-Right-Pointing-Pointer NLRC5 requires an intact NLS for its function as MHC class I transactivator. Black-Right-Pointing-Pointer Nuclear presence of NLRC5 is required for MHC class I induction. Black-Right-Pointing-Pointer Nucleotide-binding controls nuclear import and transactivation activity of NLRC5. -- Abstract: Major histocompatibility complex (MHC) class I and class II are crucial for the function of the human adaptive immune system. A member of the NLR (nucleotide-binding domain, leucine-rich repeat) protein family, NLRC5, has recently been identified as a transcriptional regulator of MHC class I and related genes. While a 'master regulator' of MHC class II genes, CIITA, has long been known,more » NLRC5 specifically associates with and transactivates the proximal promoters of MHC class I genes. In this study, we analyzed the molecular requirements of NLRC5 nuclear import and transactivation activity. We show that NLRC5-mediated MHC class I gene induction requires an intact nuclear localization signal and nuclear distribution of NLRC5. In addition, we find that the nucleotide-binding domain (NBD) of NLRC5 is critical not only for nuclear translocation but also for the transactivation of MHC class I genes. Changing the cellular localization of NLRC5 is likely to immediately impact MHC class I expression as well as MHC class I-mediated antigen presentation. NLRC5 may thus provide a promising target for the modulation of MHC class I antigen presentation, especially in the setting of transplant medicine.« less
Human MHC architecture and evolution: implications for disease association studies
Traherne, J A
2008-01-01
Major histocompatibility complex (MHC) variation is a key determinant of susceptibility and resistance to a large number of infectious, autoimmune and other diseases. Identification of the MHC variants conferring susceptibility to disease is problematic, due to high levels of variation and linkage disequilibrium. Recent cataloguing and analysis of variation over the complete MHC has facilitated localization of susceptibility loci for autoimmune diseases, and provided insight into the MHC's evolution. This review considers how the unusual genetic characteristics of the MHC impact on strategies to identify variants causing, or contributing to, disease phenotypes. It also considers the MHC in relation to novel mechanisms influencing gene function and regulation, such as epistasis, epigenetics and microRNAs. These developments, along with recent technological advances, shed light on genetic association in complex disease. PMID:18397301
Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul
2010-01-01
Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579
Identification of an elaborate NK-specific system regulating HLA-C expression
Ivarsson, Martin A.; Walker-Sperling, Victoria E.; Subleski, Jeff; Johnson, Jenna K.; Wright, Paul W.; Carrington, Mary; McVicar, Daniel W.
2018-01-01
The HLA-C gene appears to have evolved in higher primates to serve as a dominant source of ligands for the KIR2D family of inhibitory MHC class I receptors. The expression of NK cell-intrinsic MHC class I has been shown to regulate the murine Ly49 family of MHC class I receptors due to the interaction of these receptors with NK cell MHC in cis. However, cis interactions have not been demonstrated for the human KIR and HLA proteins. We report the discovery of an elaborate NK cell-specific system regulating HLA-C expression, indicating an important role for HLA-C in the development and function of NK cells. A large array of alternative transcripts with differences in intron/exon content are generated from an upstream NK-specific HLA-C promoter, and exon content varies between HLA-C alleles due to SNPs in splice donor/acceptor sites. Skipping of the first coding exon of HLA-C generates a subset of untranslatable mRNAs, and the proportion of untranslatable HLA-C mRNA decreases as NK cells mature, correlating with increased protein expression by mature NK cells. Polymorphism in a key Ets-binding site of the NK promoter has generated HLA-C alleles that lack significant promoter activity, resulting in reduced HLA-C expression and increased functional activity. The NK-intrinsic regulation of HLA-C thus represents a novel mechanism controlling the lytic activity of NK cells during development. PMID:29329284
Heinrich, Franziska; Contioso, Vanessa Bono; Stein, Veronika M; Carlson, Regina; Tipold, Andrea; Ulrich, Reiner; Puff, Christina; Baumgärtner, Wolfgang; Spitzbarth, Ingo
2015-01-15
DH82 cells represent a permanent macrophage cell line isolated from a dog with histiocytic sarcoma (HS) and are commonly used in various fields of research upon infection and cancer, respectively. Despite its frequent use, data on cell surface antigen expression of this cell line are fragmentary and in part inconsistent. We therefore aimed at a detailed morphological and antigenic characterization of DH82 cells with respect to passage-dependent differences. Cellular morphology of early (≤ 13) and late (≥ 66) passages of DH82 cells was evaluated via scanning electron microscopy. Moreover, cells were labelled with 10 monoclonal antibodies directed against CD11c, CD14, CD18, CD44, CD45, CD80, CD86, MHC-I, MHC-II, and ICAM-1 for flow cytometric analysis. Early passage cells were characterized by round cell bodies with abundant small cytoplasmic projections whereas later passages exhibited a spindle-shaped morphology with large processes. The percentage of CD11c-, CD14-, CD18-, CD45-, and CD80 positive cells significantly decreased in late passages whereas the expression of CD44, CD86, MHC-I, MHC-II and ICAM-1 remained unchanged. DH82 cells represent a remarkably heterogeneous cell line with divergent antigenic and morphologic properties. The present findings have important implications for future studies, which should consider distinct characteristics with regard to the used passage. Copyright © 2014 Elsevier B.V. All rights reserved.
Rius, Cristina; Attaf, Meriem; Tungatt, Katie; Bianchi, Valentina; Legut, Mateusz; Bovay, Amandine; Donia, Marco; Thor Straten, Per; Peakman, Mark; Svane, Inge Marie; Ott, Sascha; Connor, Tom; Szomolay, Barbara; Dolton, Garry; Sewell, Andrew K
2018-04-01
Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II-restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations. Copyright © 2018 The Authors.
HLA-F and MHC-I Open Conformers Cooperate in a MHC-I Antigen Cross-Presentation Pathway
Goodridge, Jodie P.; Lee, Ni; Burian, Aura; Pyo, Chul-Woo; Tykodi, Scott S.; Warren, Edus H.; Yee, Cassian; Riddell, Stanley R.
2013-01-01
Peptides that are presented by MHC class I (MHC-I) are processed from two potential sources, as follows: newly synthesized endogenous proteins for direct presentation on the surface of most nucleated cells and exogenous proteins for cross-presentation typically by professional APCs. In this study, we present data that implicate the nonclassical HLA-F and open conformers of MHC-I expressed on activated cells in a pathway for the presentation of exogenous proteins by MHC-I. This pathway is distinguished from the conventional endogenous pathway by its independence from TAP and tapasin and its sensitivity to inhibitors of lysosomal enzymes, and further distinguished by its dependence on MHC-I allotype-specific epitope recognition for Ag uptake. Thus, our data from in vitro experiments collectively support a previously unrecognized model of Ag cross-presentation mediated by HLA-F and MHC-I open conformers on activated lymphocytes and monocytes, which may significantly contribute to the regulation of immune system functions and the immune defense. PMID:23851683
Konopka, Adam R.; Undem, Miranda K.; Hinkley, James M.; Minchev, Kiril; Kaminsky, Leonard A.; Trappe, Todd A.; Trappe, Scott
2012-01-01
To examine potential age-specific adaptations in skeletal muscle size and myofiber contractile physiology in response to aerobic exercise, seven young (YM; 20 ± 1 yr) and six older men (OM; 74 ± 3 yr) performed 12 wk of cycle ergometer training. Muscle biopsies were obtained from the vastus lateralis to determine size and contractile properties of isolated slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofibers, MHC composition, and muscle protein concentration. Aerobic capacity was higher (P < 0.05) after training in both YM (16 ± 2%) and OM (13 ± 3%). Quadriceps muscle volume, determined via MRI, was 5 ± 1 and 6 ± 1% greater (P < 0.05) after training for YM and OM, respectively, which was associated with an increase in MHC I myofiber cross-sectional area (CSA), independent of age. MHC I peak power was higher (P < 0.05) after training for both YM and OM, while MHC IIa peak power was increased (P < 0.05) with training in OM only. MHC I and MHC IIa myofiber peak and normalized (peak force/CSA) force were preserved with training in OM, while MHC I peak force/CSA and MHC IIa peak force were lower (P < 0.05) after training in YM. The age-dependent adaptations in myofiber function were not due to changes in protein content, as total muscle protein and myofibrillar protein concentration were unchanged (P > 0.05) with training. Training reduced (P < 0.05) the proportion of MHC IIx isoform, independent of age, whereas no other changes in MHC composition were observed. These data suggest relative improvements in muscle size and aerobic capacity are similar between YM and OM, while adaptations in myofiber contractile function showed a general improvement in OM. Training-related increases in MHC I and MHC IIa peak power reveal that skeletal muscle of OM is responsive to aerobic exercise training and further support the use of aerobic exercise for improving cardiovascular and skeletal muscle health in older individuals. PMID:22984247
Tobias, Irene S; Lazauskas, Kara K; Arevalo, Jose A; Bagley, James R; Brown, Lee E; Galpin, Andrew J
2018-04-01
Human skeletal muscle is a heterogeneous mixture of multiple fiber types (FT). Unfortunately, present methods for FT-specific study are constrained by limits of protein detection in single-fiber samples. These limitations beget compensatory resource-intensive procedures, ultimately dissuading investigators from pursuing FT-specific research. Additionally, previous studies neglected hybrid FT, confining their analyses to only pure FT. Here we present novel methods of protein detection across a wider spectrum of human skeletal muscle FT using fully automated capillary nanoimmunoassay (CNIA) technology. CNIA allowed a ~20-fold-lower limit of 5'-AMP-activated protein kinase (AMPK) detection compared with Western blotting. We then performed FT-specific assessment of AMPK expression as a proof of concept. Individual human muscle fibers were mechanically isolated, dissolved, and myosin heavy chain (MHC) fiber typed via SDS-PAGE. Single-fiber samples were combined in pairs and grouped into MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx for expression analysis of AMPK isoforms α 1 , α 2 , β 1 , β 2 , γ 2 , and γ 3 with a tubulin loading control. Significant FT-specific differences were found for α 2 (1.7-fold higher in MHC IIa and MHC IIa/IIx vs. others), γ 2 (2.5-fold higher in MHC IIa vs. others), and γ 3 (2-fold higher in MHC IIa and 4-fold higher in MHC IIa/IIx vs. others). Development of a protocol that combines the efficient and sensitive CNIA technology with comprehensive SDS-PAGE fiber typing marks an important advancement in FT-specific research because it allows more precise study of the molecular mechanisms governing metabolism, adaptation, and regulation in human muscle. NEW & NOTEWORTHY We demonstrate the viability of applying capillary nanoimmunoassay technology to the study of fiber type-specific protein analysis in human muscle fibers. This novel technique enables a ~20-fold-lower limit of protein detection compared with traditional Western blotting methods. Combined with SDS-PAGE methods of fiber typing, we apply this technique to compare 5'-AMP-activated protein kinase isoform expression in myosin heavy chain (MHC) I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fiber types.
Odour-based discrimination of similarity at the major histocompatibility complex in birds
Strandh, Maria; Mardon, Jérôme; Westerdahl, Helena; Bonadonna, Francesco
2017-01-01
Many animals are known to preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) in order to maximize the antigen binding repertoire (or disease resistance) in their offspring. Although several mammals, fish or lizards use odour cues to assess MHC similarity with potential partners, the ability of birds to assess MHC similarity using olfactory cues has not yet been explored. Here we used a behavioural binary choice test and high-throughput-sequencing of MHC class IIB to determine whether blue petrels can discriminate MHC similarity based on odour cues alone. Blue petrels are seabirds with particularly good sense of smell, they have a reciprocal mate choice and are known to preferentially mate with MHC-dissimilar partners. Incubating males preferentially approached the odour of the more MHC-dissimilar female, whereas incubating females showed opposite preferences. Given their mating pattern, females were, however, expected to show preference for the odour of the more MHC-dissimilar male. Further studies are needed to determine whether, as in women and female mice, the preference varies with the reproductive cycle in blue petrel females. Our results provide the first evidence that birds can use odour cues only to assess MHC dissimilarity. PMID:28077776
HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail
Roeth, Jeremiah F.; Williams, Maya; Kasper, Matthew R.; Filzen, Tracey M.; Collins, Kathleen L.
2004-01-01
To avoid immune recognition by cytotoxic T lymphocytes (CTLs), human immunodeficiency virus (HIV)-1 Nef disrupts the transport of major histocompatibility complex class I molecules (MHC-I) to the cell surface in HIV-infected T cells. However, the mechanism by which Nef does this is unknown. We report that Nef disrupts MHC-I trafficking by rerouting newly synthesized MHC-I from the trans-Golgi network (TGN) to lysosomal compartments for degradation. The ability of Nef to target MHC-I from the TGN to lysosomes is dependent on expression of the μ1 subunit of adaptor protein (AP) AP-1A, a cellular protein complex implicated in TGN to endolysosomal pathways. We demonstrate that in HIV-infected primary T cells, Nef promotes a physical interaction between endogenous AP-1 and MHC-I. Moreover, we present data that this interaction uses a novel AP-1 binding site that requires amino acids in the MHC-I cytoplasmic tail. In sum, our evidence suggests that binding of AP-1 to the Nef–MHC-I complex is an important step required for inhibition of antigen presentation by HIV. PMID:15569716
Stallion semen quality depends on major histocompatibility complex matching to teaser mare.
Jeannerat, E; Marti, E; Berney, C; Janett, F; Bollwein, H; Sieme, H; Burger, D; Wedekind, C
2018-02-01
The major histocompatibility complex (MHC) has repeatedly been found to influence mate choice of vertebrates, with MHC-dissimilar mates typically being preferred over MHC-similar mates. We used horses (Equus caballus) to test whether MHC matching also affects male investment into ejaculates after short exposure to a female. Semen characteristics varied much among stallions. Controlling for this variance with a full-factorial within-subject experimental design, we found that a short exposure to an MHC-dissimilar mare enhanced male plasma testosterone and led to ejaculates with elevated sperm numbers as compared to exposure to an MHC-similar mare. Sperm velocity seemed not affected by the treatment. Overall genetic similarity between stallions and mares (determined from polymorphic microsatellites on 20 different chromosomes) played no significant role here. The MHC type of the teaser mare also affected characteristics of cold-stored sperm after 24 and 48 hr. As expected from ejaculate economics, sperm viability was elevated after exposure to an MHC-dissimilar mare. However, oxidative stress and the percentage of sperm with a high DNA fragmentation were mostly increased after exposure to an MHC-dissimilar mare, depending also on whether the teaser mare was in oestrous or not. We conclude that males can quickly adjust ejaculate quality relative to a female's MHC, and that this male reaction to the social environment can also affect important characteristics of cold-stored semen. © 2018 John Wiley & Sons Ltd.
HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling
Dirk, Brennan S.; Pawlak, Emily N.; Johnson, Aaron L.; Van Nynatten, Logan R.; Jacob, Rajesh A.; Heit, Bryan; Dikeakos, Jimmy D.
2016-01-01
A defining characteristic of HIV-1 infection is the ability of the virus to persist within the host. Specifically, MHC-I downregulation by the HIV-1 accessory protein Nef is of critical importance in preventing infected cells from cytotoxic T-cell mediated killing. Nef downregulates MHC-I by modulating the host membrane trafficking machinery, resulting in the endocytosis and eventual sequestration of MHC-I within the cell. In the current report, we utilized the intracellular protein-protein interaction reporter system, bimolecular fluorescence complementation (BiFC), in combination with super-resolution microscopy, to track the Nef/MHC-I interaction and determine its subcellular localization in cells. We demonstrate that this interaction occurs upon Nef binding the MHC-I cytoplasmic tail early during endocytosis in a Rab5-positive endosome. Disruption of early endosome regulation inhibited Nef-dependent MHC-I downregulation, demonstrating that Nef hijacks the early endosome to sequester MHC-I within the cell. Furthermore, super-resolution imaging identified that the Nef:MHC-I BiFC complex transits through both early and late endosomes before ultimately residing at the trans-Golgi network. Together we demonstrate the importance of the early stages of the endocytic network in the removal of MHC-I from the cell surface and its re-localization within the cell, which allows HIV-1 to optimally evade host immune responses. PMID:27841315
Role of selected polymorphisms in determining muscle fiber composition in Japanese men and women.
Kumagai, Hiroshi; Tobina, Takuro; Ichinoseki-Sekine, Noriko; Kakigi, Ryo; Tsuzuki, Takamasa; Zempo, Hirofumi; Shiose, Keisuke; Yoshimura, Eiichi; Kumahara, Hideaki; Ayabe, Makoto; Higaki, Yasuki; Yamada, Ryo; Kobayashi, Hiroyuki; Kiyonaga, Akira; Naito, Hisashi; Tanaka, Hiroaki; Fuku, Noriyuki
2018-05-01
Genetic polymorphisms and sex differences are suggested to affect muscle fiber composition; however, no study has investigated the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences. Therefore, the present study examined the effects of genetic polymorphisms on muscle fiber composition with respect to sex differences in the Japanese population. The present study included 211 healthy Japanese individuals (102 men and 109 women). Muscle biopsies were obtained from the vastus lateralis to determine the proportion of myosin heavy chain (MHC) isoforms (MHC-I, MHC-IIa, and MHC-IIx). Moreover, we analyzed polymorphisms in α-actinin-3 gene ( ACTN3; rs1815739 ), angiotensin-converting enzyme gene ( ACE; rs4341 ), hypoxia-inducible factor 1 α gene ( rs11549465 ), vascular endothelial growth factor receptor 2 gene ( rs1870377 ), and angiotensin II receptor, type 2 gene ( rs11091046 ), by TaqMan single-nucleotide polymorphism genotyping assays. The proportion of MHC-I was 9.8% lower in men than in women, whereas the proportion of MHC-IIa and MHC-IIx was higher in men than in women (5.0 and 4.6%, respectively). Men with the ACTN3 RR + RX genotype had a 4.8% higher proportion of MHC-IIx than those with the ACTN3 XX genotype. Moreover, men with the ACE ID + DD genotype had a 4.7% higher proportion of MHC-I than those with the ACE II genotype. Furthermore, a combined genotype of ACTN3 R577X and ACE insertion/deletion (I/D) was significantly correlated with the proportion of MHC-I ( r = -0.23) and MHC-IIx ( r = 0.27) in men. In contrast, no significant correlation was observed between the examined polymorphisms and muscle fiber composition in women. These results suggest that the ACTN3 R577X and ACE I/D polymorphisms independently affect the proportion of human skeletal muscle fibers MHC-I and MHC-IIx in men but not in women. NEW & NOTEWORTHY In men, the RR + RX genotype of the α-actinin-3 gene ( ACTN3) R577X polymorphism was associated with a higher proportion of myosin heavy chain (MHC)-IIx. The ID + DD genotype of the angiotensin-converting enzyme gene ( ACE) insertion/deletion (I/D) polymorphism, in contrast to a previous finding, was associated with a higher proportion of MHC-I in men. In addition, the combined genotype of these polymorphisms was correlated with the proportion of MHC-I and MHC-IIx in men. Thus ACTN3 R577X and ACE I/D polymorphisms influence the muscle fiber composition in Japanese men.
Open conformers: the hidden face of MHC-I molecules.
Arosa, Fernando A; Santos, Susana G; Powis, Simon J
2007-03-01
A pool of MHC-I molecules present at the plasma membrane can dissociate from the peptide and/or the light chain, becoming open MHC-I conformers. Whereas peptide-bound MHC-I molecules have an important role in regulating adaptive and innate immune responses, through trans-interactions with T cell and NK cell receptors, the function of the open MHC-I conformers is less clear but seems to be related to their inherent ability to cis-associate, both with themselves and with other receptors. Here, we review data indicating the open MHC-I conformers as regulators of ligand-receptor interactions and discuss the biological implications for immune and non-immune cells. The likelihood that the MHC-I heavy chains have hidden functions that are determined by the amino acid sequence of the alpha1 and alpha2 domains are discussed.
Altomonte, M; Pucillo, C; Maio, M
1999-06-01
Besides their "classical" antigenic peptide-presenting activity, major histocompatibility complex (MHC) class II antigens can activate different cellular functions in immune and nonimmune cells. However, this "nonclassical" role and its functional consequences are still substantially overlooked. In this review, we will focus on these alternative functional properties of MHC class II antigens, to reawaken attention to their present and foreseeable immunobiologic and pathogenetic implications. The main issues that will be addressed concern 1) the role of MHC class II molecules as basic components of exchangeable oligomeric protein complexes with intracellular signaling ability; 2) the nonclassical functions of MHC class II antigens in immune cells; 3) the pathogenetic role of MHC class II antigens in inflammatory/autoimmune and infectious disease; and 4) the functional role of MHC class II antigens in solid malignancies.
Use of e-cigarettes by individuals with mental health conditions
Cummins, Sharon E; Zhu, Shu-Hong; Tedeschi, Gary J; Gamst, Anthony C; Myers, Mark G
2014-01-01
Background Individuals with mental health conditions (MHC) have disproportionately high tobacco-related morbidity and mortality due to high smoking prevalence rates. As high consumers of cigarettes, smokers with MHC may consider using e-cigarettes as an alternative form of nicotine delivery. Objective Examination of the susceptibility to use e-cigarettes by individuals with MHC. Methods A US population survey with a national probability sample (n=10 041) was used to assess ever use and current use of regular cigarettes, e-cigarettes, and US Food and Drug Administration-approved pharmacotherapy for smoking cessation. Survey respondents provided information about whether they had been diagnosed with an anxiety disorder, depression, or other MHC. Results Individuals with MHC were more likely to have tried e-cigarettes (14.8%) and to be current users of e-cigarettes (3.1%) than those without MHC (6.6% and 1.1%, respectively; p<0.01). Ever smokers with MHC were also more likely to have tried approved pharmacotherapy (52.2% vs 31.1%, p<0.01) and to be currently using these products (9.9% vs 3.5%, p<0.01) than those without MHC. Additionally, current smokers with MHC were more susceptible to future use of e-cigarettes than smokers without MHC (60.5% vs 45.3%, respectively, p<0.01). Conclusions Smokers with MHC are differentially affected by the rise in popularity of e-cigarettes. Clinical interventions and policies for tobacco control on e-cigarettes should take into account the possible outcomes and their implications for this priority population. PMID:24824516
Sasaki, Michihito; Kim, Eunmi; Igarashi, Manabu; Ito, Kimihito; Hasebe, Rie; Fukushi, Hideto; Sawa, Hirofumi; Kimura, Takashi
2011-01-01
Equine herpesvirus-1 (EHV-1), an α-herpesvirus of the family Herpesviridae, causes respiratory disease, abortion, and encephalomyelitis in horses. EHV-1 utilizes equine MHC class I molecules as entry receptors. However, hamster MHC class I molecules on EHV-1-susceptible CHO-K1 cells play no role in EHV-1 entry. To identify the MHC class I molecule region that is responsible for EHV-1 entry, domain exchange and site-directed mutagenesis experiments were performed, in which parts of the extracellular region of hamster MHC class I (clone C5) were replaced with corresponding sequences from equine MHC class I (clone A68). Substitution of alanine for glutamine at position 173 (Q173A) within the α2 domain of the MHC class I molecule enabled hamster MHC class I C5 to mediate EHV-1 entry into cells. Conversely, substitution of glutamine for alanine at position 173 (A173Q) in equine MHC class I A68 resulted in loss of EHV-1 receptor function. Equine MHC class I clone 3.4, which possesses threonine at position 173, was unable to act as an EHV-1 receptor. Substitution of alanine for threonine at position 173 (T173A) enabled MHC class I 3.4 to mediate EHV-1 entry into cells. These results suggest that the amino acid residue at position 173 of the MHC class I molecule is involved in the efficiency of EHV-1 entry. PMID:21949188
Buhler, Stéphane; Sanchez-Mazas, Alicia
2011-01-01
Molecular differences between HLA alleles vary up to 57 nucleotides within the peptide binding coding region of human Major Histocompatibility Complex (MHC) genes, but it is still unclear whether this variation results from a stochastic process or from selective constraints related to functional differences among HLA molecules. Although HLA alleles are generally treated as equidistant molecular units in population genetic studies, DNA sequence diversity among populations is also crucial to interpret the observed HLA polymorphism. In this study, we used a large dataset of 2,062 DNA sequences defined for the different HLA alleles to analyze nucleotide diversity of seven HLA genes in 23,500 individuals of about 200 populations spread worldwide. We first analyzed the HLA molecular structure and diversity of these populations in relation to geographic variation and we further investigated possible departures from selective neutrality through Tajima's tests and mismatch distributions. All results were compared to those obtained by classical approaches applied to HLA allele frequencies. Our study shows that the global patterns of HLA nucleotide diversity among populations are significantly correlated to geography, although in some specific cases the molecular information reveals unexpected genetic relationships. At all loci except HLA-DPB1, populations have accumulated a high proportion of very divergent alleles, suggesting an advantage of heterozygotes expressing molecularly distant HLA molecules (asymmetric overdominant selection model). However, both different intensities of selection and unequal levels of gene conversion may explain the heterogeneous mismatch distributions observed among the loci. Also, distinctive patterns of sequence divergence observed at the HLA-DPB1 locus suggest current neutrality but old selective pressures on this gene. We conclude that HLA DNA sequences advantageously complement HLA allele frequencies as a source of data used to explore the genetic history of human populations, and that their analysis allows a more thorough investigation of human MHC molecular evolution. PMID:21408106
NASA Technical Reports Server (NTRS)
Bamman, M. M.; Clarke, M. S.; Talmadge, R. J.; Feeback, D. L.
1999-01-01
Talmadge and Roy (J. Appl. Physiol. 1993, 75, 2337-2340) previously established a sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE) protocol for separating all four rat skeletal muscle myosin heavy chain (MHC) isoforms (MHC I, IIa, IIx, IIb); however, when applied to human muscle, the type II MHC isoforms (Ila, IIx) are not clearly distinguished. In this brief paper we describe a modification of the SDS-PAGE protocol which yields distinct and consistent separation of all three adult human MHC isoforms (MHC I, IIa, IIx) in a minigel system. MHC specificity of each band was confirmed by Western blot using three monoclonal IgG antibodies (mAbs) immunoreactive against MHCI (mAb MHCs, Novacastra Laboratories), MHCI+IIa (mAb BF-35), and MHCIIa+IIx (mAb SC-71). Results provide a valuable SDS-PAGE minigel technique for separating MHC isoforms in human muscle without the difficult task of casting gradient gels.
Parham, Peter; Moffett, Ashley
2013-02-01
Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.
Kubinak, Jason L.; Stephens, W. Zac; Soto, Ray; Petersen, Charisse; Chiaro, Tyson; Gogokhia, Lasha; Bell, Rickesha; Ajami, Nadim J.; Petrosino, Joseph F.; Morrison, Linda; Potts, Wayne K.; Jensen, Peter E.; O'Connell, Ryan M.; Round, June L.
2015-01-01
The presentation of protein antigens on the cell surface by major histocompatibility complex (MHC) molecules coordinates vertebrate adaptive immune responses, thereby mediating susceptibility to a variety of autoimmune and infectious diseases. The composition of symbiotic microbial communities (the microbiota) is influenced by host immunity and can have a profound impact on host physiology. Here we use an MHC congenic mouse model to test the hypothesis that genetic variation at MHC genes among individuals mediates susceptibility to disease by controlling microbiota composition. We find that MHC genotype significantly influences antibody responses against commensals in the gut, and that these responses are correlated with the establishment of unique microbial communities. Transplantation experiments in germfree mice indicate that MHC-mediated differences in microbiota composition are sufficient to explain susceptibility to enteric infection. Our findings indicate that MHC polymorphisms contribute to defining an individual's unique microbial fingerprint that influences health. PMID:26494419
Bartoccioni, E; Gallucci, S; Scuderi, F; Ricci, E; Servidei, S; Broccolini, A; Tonali, P
1994-01-01
We investigated the relationship between the MHC-I, MHC-II and intercellular adhesion molecule-1 (ICAM-1) expression on myofibres and the presence of inflammatory cells in muscle specimens of 18 patients with inflammatory myopathies (nine polymyositis, seven dermatomyositis, two inclusion body myositis). We observed MHC-I expression in muscle fibres, infiltrating mononuclear cells and endothelial cells in every specimen. In seven patients, some muscle fibres were MHC-II-positive for the DR antigen, while the DP and DQ antigens were absent. ICAM-1 expression, detected in seven patients, was found in clusters of myofibres, associated with a marked MHC-I positivity and a widespread mononuclear infiltration. Most of the ICAM-1-positive fibres were regenerating fibres. Furthermore, some fibres expressed both ICAM-1 and DR antigens near infiltrating cells. This finding could support the hypothesis that myofibres may themselves be the site of autosensitization.
Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates.
Kaufman, Jim
2018-04-26
The major histocompatibility complex (MHC) is a large genetic region with many genes, including the highly polymorphic classical class I and II genes that play crucial roles in adaptive as well as innate immune responses. The organization of the MHC varies enormously among jawed vertebrates, but class I and II genes have not been found in other animals. How did the MHC arise, and are there underlying principles that can help us to understand the evolution of the MHC? This review considers what it means to be an MHC and the potential importance of genome-wide duplication, gene linkage, and gene coevolution for the emergence and evolution of an adaptive immune system. Then it considers what the original antigen-specific receptor and MHC molecule might have looked like, how peptide binding might have evolved, and finally the importance of adaptive immunity in general.
Nielsen, Morten; Andreatta, Massimo
2016-03-30
Binding of peptides to MHC class I molecules (MHC-I) is essential for antigen presentation to cytotoxic T-cells. Here, we demonstrate how a simple alignment step allowing insertions and deletions in a pan-specific MHC-I binding machine-learning model enables combining information across both multiple MHC molecules and peptide lengths. This pan-allele/pan-length algorithm significantly outperforms state-of-the-art methods, and captures differences in the length profile of binders to different MHC molecules leading to increased accuracy for ligand identification. Using this model, we demonstrate that percentile ranks in contrast to affinity-based thresholds are optimal for ligand identification due to uniform sampling of the MHC space. We have developed a neural network-based machine-learning algorithm leveraging information across multiple receptor specificities and ligand length scales, and demonstrated how this approach significantly improves the accuracy for prediction of peptide binding and identification of MHC ligands. The method is available at www.cbs.dtu.dk/services/NetMHCpan-3.0 .
BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity.
Wang, Lian; Pan, Danling; Hu, Xihao; Xiao, Jinyu; Gao, Yangyang; Zhang, Huifang; Zhang, Yan; Liu, Juan; Zhu, Shanfeng
2009-05-01
Effective identification of major histocompatibility complex (MHC) molecules restricted peptides is a critical step in discovering immune epitopes. Although many online servers have been built to predict class II MHC-peptide binding affinity, they have been trained on different datasets, and thus fail in providing a unified comparison of various methods. In this paper, we present our implementation of seven popular predictive methods, namely SMM-align, ARB, SVR-pairwise, Gibbs sampler, ProPred, LP-top2, and MHCPred, on a single web server named BiodMHC (http://biod.whu.edu.cn/BiodMHC/index.html, the software is available upon request). Using a standard measure of AUC (Area Under the receiver operating characteristic Curves), we compare these methods by means of not only cross validation but also prediction on independent test datasets. We find that SMM-align, ProPred, SVR-pairwise, ARB, and Gibbs sampler are the five best-performing methods. For the binding affinity prediction of class II MHC-peptide, BiodMHC provides a convenient online platform for researchers to obtain binding information simultaneously using various methods.
Mumtaz, Shahzad; Nabney, Ian T; Flower, Darren R
2017-10-01
Peptide-binding MHC proteins are thought the most variable across the human population; the extreme MHC polymorphism observed is functionally important and results from constrained divergent evolution. MHCs have vital functions in immunology and homeostasis: cell surface MHC class I molecules report cell status to CD8+ T cells, NKT cells and NK cells, thus playing key roles in pathogen defence, as well as mediating smell recognition, mate choice, Adverse Drug Reactions, and transplantation rejection. MHC peptide specificity falls into several supertypes exhibiting commonality of binding. It seems likely that other supertypes exist relevant to other functions. Since comprehensive experimental characterization is intractable, structure-based bioinformatics is the only viable solution. We modelled functional MHC proteins by homology and used calculated Poisson-Boltzmann electrostatics projected from the top surface of the MHC as multi-dimensional descriptors, analysing them using state-of-the-art dimensionality reduction techniques and clustering algorithms. We were able to recover the 3 MHC loci as separate clusters and identify clear sub-groups within them, vindicating unequivocally our choice of both data representation and clustering strategy. We expect this approach to make a profound contribution to the study of MHC polymorphism and its functional consequences, and, by extension, other burgeoning structural systems, such as GPCRs. Copyright © 2017 Elsevier Inc. All rights reserved.
Odour-based discrimination of similarity at the major histocompatibility complex in birds.
Leclaire, Sarah; Strandh, Maria; Mardon, Jérôme; Westerdahl, Helena; Bonadonna, Francesco
2017-01-11
Many animals are known to preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) in order to maximize the antigen binding repertoire (or disease resistance) in their offspring. Although several mammals, fish or lizards use odour cues to assess MHC similarity with potential partners, the ability of birds to assess MHC similarity using olfactory cues has not yet been explored. Here we used a behavioural binary choice test and high-throughput-sequencing of MHC class IIB to determine whether blue petrels can discriminate MHC similarity based on odour cues alone. Blue petrels are seabirds with particularly good sense of smell, they have a reciprocal mate choice and are known to preferentially mate with MHC-dissimilar partners. Incubating males preferentially approached the odour of the more MHC-dissimilar female, whereas incubating females showed opposite preferences. Given their mating pattern, females were, however, expected to show preference for the odour of the more MHC-dissimilar male. Further studies are needed to determine whether, as in women and female mice, the preference varies with the reproductive cycle in blue petrel females. Our results provide the first evidence that birds can use odour cues only to assess MHC dissimilarity. © 2017 The Author(s).
Wright, David J; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan; Richardson, David S
2016-01-01
The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler ( Acrocephalus sechellensis ), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male-male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues.
Reevaluation of the major histocompatibility complex genes of the NOD-progenitor CTS/Shi strain.
Mathews, C E; Graser, R T; Serreze, D V; Leiter, E H
2000-01-01
The common Kd and/or Db alleles of NOD mice contribute to the development of autoimmune diabetes, but their respective contributions are unresolved. The major histocompatibility complex (MHC) of the CTS/Shi mouse, originally designated as H2ct, shares MHC class II region identity with the H2g7 haplotype of NOD mice. However, CTS mice were reported to express distinct but undefined MHC class I gene products. Because diabetes frequency was reduced 56% in females of a NOD stock congenic for H2ct, this partial resistance may have derived from the MHC class I allelic differences. In the present report, we use a combination of serologic analysis and sequencing of MHC class I cDNAs to establish that NOD/Lt and CTS/Shi share a common H2-Kd allele but differ at the H2-D end of the MHC complex. The H2-D allele of CTS/Shi was identified as the rare H2-Ddx recently described in ALR/Lt, another NOD-related strain. These results in mouse model systems show that multiple MHC genes confer diabetes resistance and suggest that at least one of the protective MHC or MHC-linked genes in CTS mice may be at the H2-D end of the complex.
Burger, D.; Dolivo, G.; Marti, E.; Sieme, H.; Wedekind, C.
2015-01-01
Odours of vertebrates often contain information about the major histocompatibility complex (MHC), and are used in kin recognition, mate choice or female investment in pregnancy. It is, however, still unclear whether MHC-linked signals can also affect male reproductive strategies. We used horses (Equus caballus) to study this question under experimental conditions. Twelve stallions were individually exposed either to an unfamiliar MHC-similar mare and then to an unfamiliar MHC-dissimilar mare, or vice versa. Each exposure lasted over a period of four weeks. Peripheral blood testosterone levels were determined weekly. Three ejaculates each were collected in the week after exposure to both mares (i.e. in the ninth week) to determine mean sperm number and sperm velocity. We found high testosterone levels when stallions were kept close to MHC-dissimilar mares and significantly lower ones when kept close to MHC-similar mares. Mean sperm number per ejaculate (but not sperm velocity) was positively correlated to mean testosterone levels and also affected by the order of presentation of mares: sperm numbers were higher if MHC-dissimilar mares were presented last than if MHC-similar mares were presented last. We conclude that MHC-linked signals influence testosterone secretion and semen characteristics, two indicators of male reproductive strategies. PMID:25904670
Nicholls, Sarah; Piper, Karen P.; Mohammed, Fiyaz; Dafforn, Timothy R.; Tenzer, Stefan; Salim, Mahboob; Mahendra, Premini; Craddock, Charles; van Endert, Peter; Schild, Hansjörg; Cobbold, Mark; Engelhard, Victor H.; Moss, Paul A. H.; Willcox, Benjamin E.
2009-01-01
T cell recognition of minor histocompatibility antigens (mHags) underlies allogeneic immune responses that mediate graft-versus-host disease and the graft-versus-leukemia effect following stem cell transplantation. Many mHags derive from single amino acid polymorphisms in MHC-restricted epitopes, but our understanding of the molecular mechanisms governing mHag immunogenicity and recognition is incomplete. Here we examined antigenic presentation and T-cell recognition of HA-1, a prototypic autosomal mHag derived from single nucleotide dimorphism (HA-1H versus HA-1R) in the HMHA1 gene. The HA-1H peptide is restricted by HLA-A2 and is immunogenic in HA-1R/R into HA-1H transplants, while HA-1R has been suggested to be a “null allele” in terms of T cell reactivity. We found that proteasomal cleavage and TAP transport of the 2 peptides is similar and that both variants can bind to MHC. However, the His>Arg change substantially decreases the stability and affinity of HLA-A2 association, consistent with the reduced immunogenicity of the HA-1R variant. To understand these findings, we determined the structure of an HLA-A2-HA-1H complex to 1.3Å resolution. Whereas His-3 is accommodated comfortably in the D pocket, incorporation of the lengthy Arg-3 is predicted to require local conformational changes. Moreover, a soluble TCR generated from HA-1H-specific T-cells bound HA-1H peptide with moderate affinity but failed to bind HA-1R, indicating complete discrimination of HA-1 variants at the level of TCR/MHC interaction. Our results define the molecular mechanisms governing immunogenicity of HA-1, and highlight how single amino acid polymorphisms in mHags can critically affect both MHC association and TCR recognition. PMID:19234124
Leichner, Theresa M; Satake, Atsushi; Kambayashi, Taku
2016-06-01
To maintain immune tolerance, regulatory T cell (Treg) numbers must be closely indexed to the number of conventional T cells (Tconvs) so that an adequate Treg:Tconv ratio can be maintained. Two factors important in this process are the cytokine interleukin-2 (IL-2) and T cell receptor (TCR) stimulation by major histocompatibility complex class II (MHC-II). Here, we report that in addition to TCR stimulation of Tregs themselves, the maintenance of Tregs also requires TCR signaling by Tconvs. We found that Tconvs produce IL-2 in response to self-peptide-MHC-II complexes and that Tconvs possessing more highly self-reactive TCRs express more IL-2 at baseline. Furthermore, selective disruption of TCR signaling in Tconvs led to a trend toward decreased expression of IL-2 and attenuated their ability to maintain Treg numbers. These data suggest that in order to maintain an adequate Treg:Tconv ratio, Tregs are continuously indexed to self-peptide-MHC-II-induced TCR signaling of Tconvs. These results have implications in attempts to modulate immune tolerance, as Treg numbers adjust to the self-reactivity, and ultimately IL-2 production by the T cells around them.
Changing the Properties of Multipotent Mesenchymal Stromal Cells by IFNγ Administration.
Petinati, N A; Kapranov, N M; Bigil'deev, A E; Popova, M D; Davydova, Yu O; Gal'tseva, I V; Drize, N I; Kuz'mina, L A; Parovichnikova, E N; Savchenko, V G
2017-06-01
We studied changes in the population of human multipotent mesenchymal stromal cells activated by IFNγ. The cells were cultured under standard conditions; IFNγ was added in various concentrations for 4 h or over 2 passages. It was shown that the total cell production significantly decreased after long-term culturing with IFNγ, but 4-h exposure did not affect this parameter. After 4-h culturing, the expression levels of IDO1, CSF1, and IL-6 increased by 300, 7, and 2.4 times, respectively, and this increase persisted 1 and 2 days after removal of IFNγ from the culture medium. The expression of class I and II MHC (HLA) on cell surface practically did not change immediately after exposure to IFNγ, but during further culturing, HLA-ABC (MHC I) and HLA-DR (MHC II) expression significantly increased, which abolished the immune privilege in these cells, the property allowing clinical use of allogenic multipotent mesenchymal stromal cells. Multipotent mesenchymal stromal cells can suppress proliferation of lymphocytes. The degree of this suppression depends on individual properties of multipotent mesenchymal stromal cell donor. Treatment with IFNγ did not significantly affect the intensity of inhibition of lymphocyte proliferation by these cells.
The genetics of celiac disease: A comprehensive review of clinical implications.
Dieli-Crimi, Romina; Cénit, M Carmen; Núñez, Concepción
2015-11-01
Celiac disease (CD) is a complex immune-related disease with a very strong genetic component. Multiple genetic findings over the last decade have added to the already known MHC influence numerous genetic variants associated to CD susceptibility. Currently, it is well-established that 6 MHC and 39 non-MHC loci, including a higher number of independent genetic variants, are associated to disease risk. Moreover, additional regions have been recently implicated in the disease, which would increase the number of involved loci. Together, the firmly described genetic variants account for roughly 31% of CD heritability, being 25% explained by the MHC influence. These new variants represent markers of disease risk and turn the identification of the causal genes and the causal variants inside the associated loci, as well as their precise biological role on the disease, into a major challenge in CD research. Numerous studies have been developed with this aim showing the high impact of risk variants on gene expression. These studies also indicate a central role of CD4(+) T cells in CD pathogenesis and point to B cells as important players, which is in accordance with the key steps highlighted by the immunological models of pathogenesis. We comprehensively summarize the current knowledge about the genetic architecture of CD, characterized by multiple low-risk variants located within diverse loci which are most likely affecting genes with immune-related functions. These findings are leading to a better understanding of CD pathogenesis and helping in the design of new treatments. The repertoire of potential drug targets for CD has largely broadened last years, bringing us closer to get alternative or complementary treatments to the life-long gluten-free diet, the only effective treatment so far. Epigenetics and microbiota are emerging as potent factors modulating disease risk and putatively affecting disease manifestation, which are also being explored as therapeutic targets. Copyright © 2015 Elsevier Ltd. All rights reserved.
Madariaga, M L; Michel, S G; La Muraglia, G M; Sekijima, M; Villani, V; Leonard, D A; Powell, H J; Kurtz, J M; Farkash, E A; Colvin, R B; Allan, J S; Cetrulo, C L; Huang, C A; Sachs, D H; Yamada, K; Madsen, J C
2015-06-01
Kidney allografts possess the ability to enable a short course of immunosuppression to induce tolerance of themselves and of cardiac allografts across a full-MHC barrier in miniature swine. However, the renal element(s) responsible for kidney-induced cardiac allograft tolerance (KICAT) are unknown. Here we investigated whether MHC disparities between parenchyma versus hematopoietic-derived "passenger" cells of the heart and kidney allografts affected KICAT. Heart and kidney allografts were co-transplanted into MHC-mismatched recipients treated with high-dose tacrolimus for 12 days. Group 1 animals (n = 3) received kidney and heart allografts fully MHC-mismatched to each other and to the recipient. Group 2 animals (n = 3) received kidney and heart allografts MHC-matched to each other but MHC-mismatched to the recipient. Group 3 animals (n = 3) received chimeric kidney allografts whose parenchyma was MHC-mismatched to the donor heart. Group 4 animals (n = 3) received chimeric kidney allografts whose passenger leukocytes were MHC-mismatched to the donor heart. Five of six heart allografts in Groups 1 and 3 rejected <40 days. In contrast, heart allografts in Groups 2 and 4 survived >150 days without rejection (p < 0.05). These data demonstrate that KICAT requires MHC-matching between kidney allograft parenchyma and heart allografts, suggesting that cells intrinsic to the kidney enable cardiac allograft tolerance. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.
Structure of a Pheromone Receptor-Associated Mhc Molecule With An Open And Empty Groove
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, R.; Huey-Tubman, K.E.; Dulac, C.
2006-10-06
Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide-bindingmore » MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I-binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8-10-mer class I-binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC-binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs.« less
Analysis of MHC class I genes across horse MHC haplotypes
Tallmadge, Rebecca L.; Campbell, Julie A.; Miller, Donald C.; Antczak, Douglas F.
2010-01-01
The genomic sequences of 15 horse Major Histocompatibility Complex (MHC) class I genes and a collection of MHC class I homozygous horses of five different haplotypes were used to investigate the genomic structure and polymorphism of the equine MHC. A combination of conserved and locus-specific primers was used to amplify horse MHC class I genes with classical and non-classical characteristics. Multiple clones from each haplotype identified three to five classical sequences per homozygous animal, and two to three non-classical sequences. Phylogenetic analysis was applied to these sequences and groups were identified which appear to be allelic series, but some sequences were left ungrouped. Sequences determined from MHC class I heterozygous horses and previously described MHC class I sequences were then added, representing a total of ten horse MHC haplotypes. These results were consistent with those obtained from the MHC homozygous horses alone, and 30 classical sequences were assigned to four previously confirmed loci and three new provisional loci. The non-classical genes had few alleles and the classical genes had higher levels of allelic polymorphism. Alleles for two classical loci with the expected pattern of polymorphism were found in the majority of haplotypes tested, but alleles at two other commonly detected loci had more variation outside of the hypervariable region than within. Our data indicate that the equine Major Histocompatibility Complex is characterized by variation in the complement of class I genes expressed in different haplotypes in addition to the expected allelic polymorphism within loci. PMID:20099063
Reichstetter, S; Ettinger, R A; Liu, A W; Gebe, J A; Nepom, G T; Kwok, W W
2000-12-15
The polyclonal nature of T cells expanding in an ongoing immune response results in a range of disparate affinities and activation potential. Recently developed human class II tetramers provide a means to analyze this diversity by direct characterization of the trimolecular TCR-peptide-MHC interaction in live cells. Two HSV-2 VP16(369-379)-specific, DQA1*0102/DQB1*0602 (DQ0602)-restricted T cell clones were compared by means of T cell proliferation assay and HLA-DQ0602 tetramer staining. These two clones were obtained from the same subject, but show different TCR gene usage. Clone 48 was 10-fold more sensitive to VP16(369-379) peptide stimulation than clone 5 as assayed by proliferation assays, correlating with differences in MHC tetramer binding. Clone 48 gave positive staining with the DQ0602/VP16(369-379) tetramer at either 23 or 37 degrees C. Weak staining was also observed at 4 degrees C. Clone 5 showed weaker staining compared with clone 48 at 37 degrees C, and no staining was observed at 23 degrees C or on ice. Receptor internalization was not required for positive staining. Competitive binding indicates that the cell surface TCR of clone 48 has higher affinity for the DQ0602/VP16(369-379) complex than clone 5. The higher binding affinity of clone 48 for the peptide-MHC complex also correlates with a slower dissociation rate compared with clone 5.
Ichikawa, Kosuke; Kagamu, Hiroshi; Koyama, Kenichi; Miyabayashi, Takao; Koshio, Jun; Miura, Satoru; Watanabe, Satoshi; Yoshizawa, Hirohisa; Narita, Ichiei
2012-09-21
MHC class I-restricted peptide-based vaccination therapies have been conducted to treat cancer patients, because CD8⁺ CTL can efficiently induce apoptosis of tumor cells in an MHC class I-restricted epitope-specific manner. Interestingly, clinical responders are known to demonstrate reactivity to epitopes other than those used for vaccination; however, the mechanism underlying how antitumor T cells with diverse specificity are induced is unclear. In this study, we demonstrated that dendritic cells (DCs) that engulfed apoptotic tumor cells in the presence of non-tumor MHC class II-restricted epitope peptides, OVA(323-339), efficiently presented tumor-associated antigens upon effector-dominant CD4⁺ T cell balance against regulatory T cells (Treg) for the OVA(323-339) epitope. Th1 and Th17 induced tumor-associated antigens presentation of DC, while Th2 ameliorated tumor-antigen presentation for CD8⁺ T cells. Blocking experiments with anti-IL-23p19 antibody and anti-IL-23 receptor indicated that an autocrine mechanism of IL-23 likely mediated the diverted tumor-associated antigens presentation of DC. Tumor-associated antigens presentation of DC induced by OVA(323-339) epitope-specific CD4⁺ T cells resulted in facilitated antitumor immunity in both priming and effector phase in vivo. Notably, this immunotherapy did not require pretreatment to reduce Treg induced by tumor. This strategy may have clinical implications for designing effective antitumor immunotherapies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Osborne, Megan J; Turner, Thomas F
2011-06-01
The major histocompatibility complex (MHC) is a critical component of the adaptive immune response in vertebrates. Due to the role that MHC plays in immunity, absence of variation within these genes may cause species to be vulnerable to emerging diseases. The freshwater fish family Cyprinidae comprises the most diverse and species-rich group of freshwater fish in the world, but some are imperiled. Despite considerable species richness and the long evolutionary history of the family, there are very few reports of MHC sequences (apart from a few model species), and no sequences are reported from endemic North American cyprinids (subfamily Leuciscinae). Here we isolate and characterize the MH Class II beta genes from complementary DNA and genomic DNA of the non-model, endangered Rio Grande silvery minnow (Hybognathus amarus), a North American cyprinid. Phylogenetic reconstruction revealed two groups of divergent MH alleles that are paralogous to previously described loci found in deeply divergent cyprinid taxa including common carp, zebrafish, African large barb and bream. Both groups of alleles were under the influence of diversifying selection yet not all individuals had alleles belonging to both allelic groups. We concluded that the general organization and pattern of variation of MH class II genes in Rio Grande silvery minnow is similar to that identified in other cyprinid fishes studied to date, despite distant evolutionary relationships and evidence of a severe genetic bottleneck. Copyright © 2011 Elsevier Ltd. All rights reserved.
Characterization of inflammatory cell infiltration in feline allergic skin disease.
Taglinger, K; Day, M J; Foster, A P
2007-11-01
Sixteen cats with allergic dermatitis and six control cats with no skin disease were examined. Lymphoid and histiocytic cells in skin sections were examined immunohistochemically and mast cells were identified by toluidine blue staining. The 16 allergic cats showed one or more of several features (alopecia, eosinophilic plaques or granulomas, papulocrusting lesions), and histopathological findings were diverse. In control cats there were no cells that expressed IgM or MAC387, a few that were immunolabelled for IgG, IgA or CD3, and moderate numbers of mast cells. In allergic cats, positively labelled inflammatory cells were generally more numerous in lesional than in non-lesional skin sections, and were particularly associated with the superficial dermis and perifollicular areas. There were low numbers of plasma cells expressing cytoplasmic immunoglobulin; moderate numbers of MHC II-, MAC387- and CD3-positive cells; and moderate to numerous mast cells. MHC class II expression was associated with inflammatory cells morphologically consistent with dermal dendritic cells and macrophages, and epidermal Langerhans cells. Dendritic cells expressing MHC class II were usually associated with an infiltrate of CD3 lymphocytes, suggesting that these cells participate in maintenance of the local immune response by presenting antigen to T lymphocytes. These findings confirm that feline allergic skin disease is characterized by infiltration of activated antigen-presenting cells and T lymphocytes in addition to increased numbers of dermal mast cells. This pattern mimics the dermal inflammation that occurs in the chronic phase of both canine and human atopic dermatitis.
Bell, Charlotte R; MacHugh, Niall D; Connelley, Timothy K; Degnan, Kathryn; Morrison, W Ivan
2015-07-09
Bovine Neonatal Pancytopenia (BNP) is a disease of calves characterised by haematopoietic depletion, mediated by ingestion of alloantibodies in colostrum. It has been linked epidemiologically to vaccination of the dams of affected calves with a particular vaccine (Pregsure) containing a novel adjuvant. Evidence suggests that BNP-alloantibodies are directed against MHC I molecules, induced by contaminant bovine cellular material from Madin-Darby Bovine Kidney (MDBK) cells used in the vaccine's production. We aimed to investigate the specificity of BNP-alloantibody for bovine MHC I alleles, particularly those expressed by MDBK cells, and whether depletion of particular cell types is due to differential MHC I expression levels. A complement-mediated cytotoxicity assay was used to assess functional serum alloantibody titres in BNP-dams, Pregsure-vaccinated dams with healthy calves, cows vaccinated with an alternative product and unvaccinated controls. Alloantibody specificity was investigated using transfected mouse lines expressing the individual MHC I alleles identified from MDBK cells and MHC I-defined bovine leukocyte lines. All BNP-dams and 50% of Pregsure-vaccinated cows were shown to have MDBK-MHC I specific alloantibodies, which cross-reacted to varying degrees with other MHC I genotypes. MHC I expression levels on different blood cell types, assessed by flow cytometry, were found to correlate with levels of alloantibody-mediated damage in vitro and in vivo. Alloantibody-killed bone marrow cells were shown to express higher levels of MHC I than undamaged cells. The results provide evidence that MHC I-specific alloantibodies play a dominant role in the pathogenesis of BNP. Haematopoietic depletion was shown to be dependent on the titre and specificity of alloantibody produced by individual cows and the density of surface MHC I expression by different cell types. Collectively, the results support the hypothesis that MHC I molecules originating from MDBK cells used in vaccine production, coupled with a powerful adjuvant, are responsible for the generation of pathogenic alloantibodies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
ERp57 interacts with conserved cysteine residues in the MHC class I peptide-binding groove.
Antoniou, Antony N; Santos, Susana G; Campbell, Elaine C; Lynch, Sarah; Arosa, Fernando A; Powis, Simon J
2007-05-15
The oxidoreductase ERp57 is a component of the major histocompatibility complex (MHC) class I peptide-loading complex. ERp57 can interact directly with MHC class I molecules, however, little is known about which of the cysteine residues within the MHC class I molecule are relevant to this interaction. MHC class I molecules possess conserved disulfide bonds between cysteines 101-164, and 203-259 in the peptide-binding and alpha3 domain, respectively. By studying a series of mutants of these conserved residues, we demonstrate that ERp57 predominantly associates with cysteine residues in the peptide-binding domain, thus indicating ERp57 has direct access to the peptide-binding groove of MHC class I molecules during assembly.
Histopathology of spleen allograft rejection in miniature swine
Dor, Frank J M F; Gollackner, Bernd; Kuwaki, Kenji; Ko, Dicken S C; Cooper, David K C; Houser, Stuart L
2005-01-01
Spleen transplantation (SpTx) has established donor-specific tolerance in rodents, but not in large animals or humans. We report the histopathology of rejection in an established model of SpTx in major histocompatibility complex (MHC)-defined miniature swine. Of the 17 SpTx, rejection was observed in two grafts transplanted into untreated, MHC-matched, minor antigen-disparate recipients (group 1, n = 4), but not in the two that received a 12-day course of cyclosporin A (CyA). Rejection also occurred in five grafts transplanted into fully MHC-disparate recipients (group 2, n = 12), one of which was untreated and four of which received some form of immunosuppressive therapy. One recipient of an MHC class-I-mismatched spleen treated with 12 days of CyA did not show rejection. Following biopsy and/or necropsy, fixed allograft tissue sections were treated with multiple stains, immunohistochemical markers and TUNEL assay. Common features of rejection occurred in grafts from both groups, but with varying time courses. Necrosis developed as early as day 8 in group 2 and day 27 in group 1, ranging from focal fibrinoid necrosis of arteriolar walls and sinusoids to diffuse liquefactive necrosis, usually associated with haemorrhage. Other features of rejection included white pulp expansion by atypical cells and decreased staining of basement membranes and reticular fibres. A doubling of the baseline TUNEL index preceded histologically identifiable rejection. This study establishes histologic guidelines for diagnosing and, perhaps, in future studies, predicting acute rejection of splenic allografts transplanted across known histocompatibility barriers in a large-animal model. PMID:15676033
Samant, Sadhana A.; Pillai, Vinodkumar B.; Sundaresan, Nagalingam R.; Shroff, Sanjeev G.; Gupta, Mahesh P.
2015-01-01
Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, p300/CREB-binding protein-associated factor, associate with cardiac sarcomeres and that a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to A-band of sarcomeres and capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and β-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the Km for the actin-activated ATPase activity of MHC isoforms. By in vitro motility assay, we found that lysine acetylation increased the actin-sliding velocity of α-myosin by 20% and β-myosin by 36% compared with their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli independently of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms. PMID:25911107
Kawamura, Kazuyuki; McLaughlin, Katherine A.; Weissert, Robert; Forsthuber, Thomas G.
2009-01-01
Genes of the major histocompatibility complex (MHC) show the strongest genetic association with multiple sclerosis (MS) but the underlying mechanisms have remained unresolved. Here, we asked whether the MS-associated MHC class II molecules, HLA-DRB1*1501, HLA-DRB5*0101, and HLA-DRB1*0401 contribute to autoimmune central nervous system (CNS) demyelination by promoting pathogenic T cell responses to human myelin basic protein (hMBP), using three transgenic (Tg) mouse lines expressing these MHC molecules. Unexpectedly, profound T cell tolerance to the high-affinity MHC-binding hMBP82-100 epitope was observed in all Tg mouse lines. T cell tolerance to hMBP82-100 was abolished upon backcrossing the HLA-DR Tg mice to MBP-deficient mice. In contrast, T cell tolerance was incomplete for low-affinity MHC-binding hMBP epitopes. Furthermore, hMBP82-100-specific “type B” T cells escaped tolerance in HLA-DRB5*0101 Tg mice. Importantly, T cells specific for low-affinity MHC-binding hMBP epitopes and hMBP82-100-specific “type B” T cells were highly encephalitogenic. Collectively, the results show that MS-associated MHC class II molecules are highly efficient at inducing T cell tolerance to high-affinity MHC-binding epitope, whereas autoreactive T cells specific for the low-affinity MHC-binding epitopes and “type B” T cells can escape the induction of T cell tolerance and may promote MS. PMID:18713991
Murray, J S; Fois, S D S; Schountz, T; Ford, S R; Tawde, M D; Brown, J C; Siahaan, T J
2002-03-01
Several major histocompatibility complex class II (MHC II) complexes with known minimal immunogenic peptides have now been solved by X-ray crystallography. Specificity pockets within the MHC II binding groove provide distinct peptide contacts that influence peptide conformation and define the binding register within different allelic MHC II molecules. Altering peptide ligands with respect to the residues that contact the T-cell receptor (TCR) can drastically change the nature of the ensuing immune response. Here, we provide an example of how MHC II (I-A) molecules may indirectly effect TCR contacts with a peptide and drive functionally distinct immune responses. We modeled the same immunogenic 12-amino acid peptide into the binding grooves of two allelic MHC II molecules linked to distinct cytokine responses against the peptide. Surprisingly, the favored conformation of the peptide in each molecule was distinct with respect to the exposure of the N- or C-terminus of the peptide above the MHC II binding groove. T-cell clones derived from each allelic MHC II genotype were found to be allele-restricted with respect to the recognition of these N- vs. C-terminal residues on the bound peptide. Taken together, these data suggest that MHC II alleles may influence T-cell functions by restricting TCR access to specific residues of the I-A-bound peptide. Thus, these data are of significance to diseases that display genetic linkage to specific MHC II alleles, e.g. type 1 diabetes and rheumatoid arthritis.
MHC class II molecules control murine B cell responsiveness to lipopolysaccharide stimulation.
Rodo, Joana; Gonçalves, Lígia A; Demengeot, Jocelyne; Coutinho, António; Penha-Gonçalves, Carlos
2006-10-01
LPS is a strong stimulator of the innate immune system and inducer of B lymphocyte activation. Two TLRs, TLR4 and RP105 (CD180), have been identified as mediators of LPS signaling in murine B cells, but little is known about genetic factors that are able to control LPS-induced cell activation. We performed a mouse genome-wide screen that aside from identifying a controlling locus mapping in the TLR4 region (logarithm of odds score, 2.77), also revealed that a locus closely linked to the MHC region (logarithm of odds score, 3.4) governed B cell responsiveness to LPS stimulation. Using purified B cells obtained from MHC congenic strains, we demonstrated that the MHC(b) haplotype is accountable for higher cell activation, cell proliferation, and IgM secretion, after LPS stimulation, when compared with the MHC(d) haplotype. Furthermore, B cells from MHC class II(-/-) mice displayed enhanced activation and proliferation in response to LPS. In addition, we showed that the MHC haplotype partially controls expression of RP105 (a LPS receptor molecule), following a pattern that resembles the LPS responsiveness phenotype. Together, our results strongly suggest that murine MHC class II molecules play a role in constraining the B cell response to LPS and that genetic variation at the MHC locus is an important component in controlling B cell responsiveness to LPS stimulation. This work raises the possibility that constraining of B cell responsiveness by MHC class II molecules may represent a functional interaction between adaptive and innate immune systems.
Non-Invasive Monitoring of CNS MHC-I Molecules in Ischemic Stroke Mice.
Xia, Jing; Zhang, Ying; Zhao, Huanhuan; Wang, Jie; Gao, Xueren; Chen, Jinpeng; Fu, Bo; Shen, Yuqing; Miao, Fengqin; Zhang, Jianqiong; Teng, Gaojun
2017-01-01
Ischemic stroke is one of the leading causes of morbidity and mortality worldwide. The expression of major histocompatibility complex class I (MHC-I) molecules in the central nervous system, which are silenced under normal physiological conditions, have been reported to be induced by injury stimulation. The purpose of this study was to determine whether MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke and to assess whether a high-affinity peptide specific for MHC-I molecules could be applied in the near-infrared imaging of cerebral ischemic mice. Quantitative real-time PCR and Western blotting were used to detect the expression of MHC-I molecules in two mouse models of cerebral ischemic stroke and an in vitro model of ischemia. The NetMHC 4.0 server was used to screen a high-affinity peptide specific for mouse MHC-I molecules. The Rosetta program was used to identify the specificity and affinity of the screened peptide (histocompatibility-2 binding peptide, H2BP). The results demonstrated that MHC-I molecules could serve as molecular targets for the acute phase of ischemic stroke. Cy5.5-H2BP molecular probes could be applied in the near-infrared imaging of cerebral ischemic mice. Research on the expression of MHC-I molecules in the acute phase after ischemia and MHC-I-targeted imaging may not only be helpful for understanding the mechanism of ischemic and hypoxic brain injury and repair but also has potential application value in the imaging of ischemic stroke.
Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten
2008-07-01
NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.
Mental health claims management and return to work: qualitative insights from Melbourne, Australia.
Brijnath, Bianca; Mazza, Danielle; Singh, Nabita; Kosny, Agnieszka; Ruseckaite, Rasa; Collie, Alex
2014-12-01
Mental health conditions (MHC) are an increasing reason for claiming injury compensation in Australia; however little is known about how these claims are managed by different gatekeepers to injury entitlements. This study, drawing on the views of four stakeholders-general practitioners (GPs), injured persons, employers and compensation agents, aims to describe current management of MHC claims and to identify the current barriers to return to work (RTW) for injured persons with a MHC claim and/or mental illness. Ninety-three in-depth interviews were undertaken with GPs, compensation agents, employers and injured persons. Data were collected in Melbourne, Australia. Thematic techniques were used to analyse data. MHC claims were complex to manage because of initial assessment and diagnostic difficulties related to the invisibility of the injury, conflicting medical opinions and the stigma associated with making a MHC claim. Mental illness also developed as a secondary issue in the recovery process. These factors made MHC difficult to manage and impeded timely RTW. It is necessary to undertake further research (e.g. guideline development) to improve current practice in order to enable those with MHC claims to make a timely RTW. Further education and training interventions (e.g. on diagnosis and management of MHC) are also needed to enable GPs, employers and compensation agents to better assess and manage MHC claims.
NLRC5/MHC class I transactivator is a target for immune evasion in cancer.
Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A; Lizee, Gregory A; Kobayashi, Koichi S
2016-05-24
Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers.
No evidence for MHC class II-based non-random mating at the gametic haplotype in Atlantic salmon.
Promerová, M; Alavioon, G; Tusso, S; Burri, R; Immler, S
2017-06-01
Genes of the major histocompatibility complex (MHC) are a likely target of mate choice because of their role in inbreeding avoidance and potential benefits for offspring immunocompetence. Evidence for female choice for complementary MHC alleles among competing males exists both for the pre- and the postmating stages. However, it remains unclear whether the latter may involve non-random fusion of gametes depending on gametic haplotypes resulting in transmission ratio distortion or non-random sequence divergence among fused gametes. We tested whether non-random gametic fusion of MHC-II haplotypes occurs in Atlantic salmon Salmo salar. We performed in vitro fertilizations that excluded interindividual sperm competition using a split family design with large clutch sample sizes to test for a possible role of the gametic haplotype in mate choice. We sequenced two MHC-II loci in 50 embryos per clutch to assess allelic frequencies and sequence divergence. We found no evidence for transmission ratio distortion at two linked MHC-II loci, nor for non-random gamete fusion with respect to MHC-II alleles. Our findings suggest that the gametic MHC-II haplotypes play no role in gamete association in Atlantic salmon and that earlier findings of MHC-based mate choice most likely reflect choice among diploid genotypes. We discuss possible explanations for these findings and how they differ from findings in mammals.
Wright, David J.; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan
2016-01-01
The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler (Acrocephalus sechellensis), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male–male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues. PMID:26792973
NLRC5/MHC class I transactivator is a target for immune evasion in cancer
Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B.; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A.; Lizee, Gregory A.; Kobayashi, Koichi S.
2016-01-01
Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as “NLRC5” [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8+ cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers. PMID:27162338
Ayres, Cory M.; Corcelli, Steven A.; Baker, Brian M.
2017-01-01
Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic “energy landscapes” of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology. PMID:28824655
Ayres, Cory M; Corcelli, Steven A; Baker, Brian M
2017-01-01
Structural biology of peptides presented by class I and class II MHC proteins has transformed immunology, impacting our understanding of fundamental immune mechanisms and allowing researchers to rationalize immunogenicity and design novel vaccines. However, proteins are not static structures as often inferred from crystallographic structures. Their components move and breathe individually and collectively over a range of timescales. Peptides bound within MHC peptide-binding grooves are no exception and their motions have been shown to impact recognition by T cell and other receptors in ways that influence function. Furthermore, peptides tune the motions of MHC proteins themselves, which impacts recognition of peptide/MHC complexes by other proteins. Here, we review the motional properties of peptides in MHC binding grooves and discuss how peptide properties can influence MHC motions. We briefly review theoretical concepts about protein motion and highlight key data that illustrate immunological consequences. We focus primarily on class I systems due to greater availability of data, but segue into class II systems as the concepts and consequences overlap. We suggest that characterization of the dynamic "energy landscapes" of peptide/MHC complexes and the resulting functional consequences is one of the next frontiers in structural immunology.
Johnson, Douglas B.; Estrada, Monica V.; Salgado, Roberto; Sanchez, Violeta; Doxie, Deon B.; Opalenik, Susan R.; Vilgelm, Anna E.; Feld, Emily; Johnson, Adam S.; Greenplate, Allison R.; Sanders, Melinda E.; Lovly, Christine M.; Frederick, Dennie T.; Kelley, Mark C.; Richmond, Ann; Irish, Jonathan M.; Shyr, Yu; Sullivan, Ryan J.; Puzanov, Igor; Sosman, Jeffrey A.; Balko, Justin M.
2016-01-01
Anti-PD-1 therapy yields objective clinical responses in 30–40% of advanced melanoma patients. Since most patients do not respond, predictive biomarkers to guide treatment selection are needed. We hypothesize that MHC-I/II expression is required for tumour antigen presentation and may predict anti-PD-1 therapy response. In this study, across 60 melanoma cell lines, we find bimodal expression patterns of MHC-II, while MHC-I expression was ubiquitous. A unique subset of melanomas are capable of expressing MHC-II under basal or IFNγ-stimulated conditions. Using pathway analysis, we show that MHC-II(+) cell lines demonstrate signatures of ‘PD-1 signalling', ‘allograft rejection' and ‘T-cell receptor signalling', among others. In two independent cohorts of anti-PD-1-treated melanoma patients, MHC-II positivity on tumour cells is associated with therapeutic response, progression-free and overall survival, as well as CD4+ and CD8+ tumour infiltrate. MHC-II+ tumours can be identified by melanoma-specific immunohistochemistry using commercially available antibodies for HLA-DR to improve anti-PD-1 patient selection. PMID:26822383
NASA Technical Reports Server (NTRS)
di Maso, N. A.; Caiozzo, V. J.; Baldwin, K. M.
2000-01-01
The primary objective of this study was to follow the developmental time course of myosin heavy chain (MHC) isoform transitions in single fibers of the rodent plantaris muscle. Hypothyroidism was used in conjunction with single-fiber analyses to better describe a possible linkage between the neonatal and fast type IIB MHC isoforms during development. In contrast to the general concept that developmental MHC isoform transitions give rise to muscle fibers that express only a single MHC isoform, the single-fiber analyses revealed a very high degree of MHC polymorphism throughout postnatal development. In the adult state, MHC polymorphism was so pervasive that the rodent plantaris muscles contained approximately 12-15 different pools of fibers (i.e., fiber types). The degree of polymorphism observed at the single-fiber level made it difficult to determine specific developmental schemes analogous to those observed previously for the rodent soleus muscle. However, hypothyroidism was useful in that it confirmed a possible link between the developmental regulation of the neonatal and fast type IIB MHC isoforms.
Bartoccioni, E; Gallucci, S; Scuderi, F; Ricci, E; Servidei, S; Broccolini, A; Tonali, P
1994-01-01
We investigated the relationship between the MHC-I, MHC-II and intercellular adhesion molecule-1 (ICAM-1) expression on myofibres and the presence of inflammatory cells in muscle specimens of 18 patients with inflammatory myopathies (nine polymyositis, seven dermatomyositis, two inclusion body myositis). We observed MHC-I expression in muscle fibres, infiltrating mononuclear cells and endothelial cells in every specimen. In seven patients, some muscle fibres were MHC-II-positive for the DR antigen, while the DP and DQ antigens were absent. ICAM-1 expression, detected in seven patients, was found in clusters of myofibres, associated with a marked MHC-I positivity and a widespread mononuclear infiltration. Most of the ICAM-1-positive fibres were regenerating fibres. Furthermore, some fibres expressed both ICAM-1 and DR antigens near infiltrating cells. This finding could support the hypothesis that myofibres may themselves be the site of autosensitization. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7507012
An MHC class I immune evasion gene of Marek׳s disease virus.
Hearn, Cari; Preeyanon, Likit; Hunt, Henry D; York, Ian A
2015-01-15
Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years. Copyright © 2014 Elsevier Inc. All rights reserved.
Innate lymphoid cells and the MHC.
Robinette, M L; Colonna, M
2016-01-01
Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Different responses in soleus muscle fibers of Wistar and Wistar Hannover rats to hindlimb unloading
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Kawano, Fuminori; Terada, Masahiro; Matsuoka, Yoshikazu; Shinoda, Yo; Ishihara, Akihiko; Ohira, Yoshinobu
2005-08-01
Effects of 16 days of hindlimb suspension on the characteristics of single soleus muscle fibers were compared between male Wistar and Wistar Hannover rats (5 weeks old). The greater effects of unloading were noted in Wistar Hannover rats. The unloading-related reductions of muscle weight and fiber cross-sectional area vs. the pre-suspension levels were greater than Wistar rats. The percent of fibers expressing pure type I myosin heavy chain (MHC) was decreased and that of type I+II MHC fibers was increased, the magnitudes of these changes were greater than Wistar rats. Total number of myonuclei in control situation was greater in Wistar Hannover rats, but the more numbers of myonuclei were decreased following unloading. Responses of myonuclear domain levels were similar. The numbers of both quiescent and mitotic active satellite cells in control situation were greater in Wistar rats. But the magnitude of the unloading- related decrease was identical for Wistar Hannover and Wistar rats. Although the level of heat shock protein 27 (HSP27) expression in Wistar rats was decreased by unloading, de novo appearance of HSP27 was noted in Wistar Hannover rats. It is suggested that greater responses of soleus muscle fibers of Wistar Hannover than Wistar rats may be related to the different expression of protein, although the precise mechanism is still unclear.
Drews, Anna; Strandh, Maria; Råberg, Lars; Westerdahl, Helena
2017-06-26
The Major Histocompatibility Complex (MHC) plays a central role in immunity and has been given considerable attention by evolutionary ecologists due to its associations with fitness-related traits. Songbirds have unusually high numbers of MHC class I (MHC-I) genes, but it is not known whether all are expressed and equally important for immune function. Classical MHC-I genes are highly expressed, polymorphic and present peptides to T-cells whereas non-classical MHC-I genes have lower expression, are more monomorphic and do not present peptides to T-cells. To get a better understanding of the highly duplicated MHC genes in songbirds, we studied gene expression in a phylogenetic framework in three species of sparrows (house sparrow, tree sparrow and Spanish sparrow), using high-throughput sequencing. We hypothesize that sparrows could have classical and non-classical genes, as previously indicated though never tested using gene expression. The phylogenetic analyses reveal two distinct types of MHC-I alleles among the three sparrow species, one with high and one with low level of polymorphism, thus resembling classical and non-classical genes, respectively. All individuals had both types of alleles, but there was copy number variation both within and among the sparrow species. However, the number of highly polymorphic alleles that were expressed did not vary between species, suggesting that the structural genomic variation is counterbalanced by conserved gene expression. Overall, 50% of the MHC-I alleles were expressed in sparrows. Expression of the highly polymorphic alleles was very variable, whereas the alleles with low polymorphism had uniformly low expression. Interestingly, within an individual only one or two alleles from the polymorphic genes were highly expressed, indicating that only a single copy of these is highly expressed. Taken together, the phylogenetic reconstruction and the analyses of expression suggest that sparrows have both classical and non-classical MHC-I genes, and that the evolutionary origin of these genes predate the split of the three investigated sparrow species 7 million years ago. Because only the classical MHC-I genes are involved in antigen presentation, the function of different MHC-I genes should be considered in future ecological and evolutionary studies of MHC-I in sparrows and other songbirds.
Kovess-Masfety, Vivane; Boyd, Anders; van de Velde, Sarah; de Graaf, Ron; Vilagut, Gemma; Haro, Josep Maria; Florescu, Silvia; O'Neill, Siobhan; Weinberg, Lauren; Alonso, Jordi
2014-07-01
Women are more likely than men to use mental healthcare (MHC) due to differences in the types of problems and help-seeking behaviours. The consistency of this relationship across European countries, whose MHC organisation differs substantially, is unknown. Lifetime MHC-use and the type of MHC provider were assessed in 37 289 participants from the EU-World Mental Health (EU-WMH) survey, including 10 European countries (Northern Ireland, The Netherlands, Belgium, Germany, France, Spain, Italy, Portugal, Bulgaria and Romania). Lifetime mood/anxiety disorders (DSM-IV) and severity were evaluated using the CIDI V.3.0. MHC use was significantly higher for women than men in every country except for Romania (overall OR=1.80, 95% CI1.64 to 1.98), while remaining so after adjusting for socioeconomic characteristics (age, income level, employment status, education, marital status; adjusted OR=1.87, 95% CI 1.69 to 2.06) and country-level indicators (MHC provision, private household out-of-pocket expenditure, and Gender Gap Index; adjusted OR=1.89, 95% CI 1.71 to 2.08). Compared with men, women were also more likely to consult general practitioners (GP) versus specialised MHC (OR=1.32, 95% CI 1.12 to 1.56) with high between-country variability. In participants with mood disorder, the gender relationship in MHC use and type of MHC did not change. Conversely, in participants with anxiety disorder, no significant gender relationship in MHC use was observed (adjusted OR=1.21, 95% CI 0.99 to 1.47). Finally, men with severe mental health problems had a significantly higher odds of MHC use (OR=14.70) when compared with women with similar levels (OR=8.95, p for interaction=0.03) after adjusting for socioeconomic characteristics and country-level indicators. Women use MHC and GPs more frequently than men, yet this depends on the type and severity of mental health problems. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Frequency dependence limits divergent evolution by favouring rare immigrants over residents.
Bolnick, Daniel I; Stutz, William E
2017-06-08
Two distinct forms of natural selection promote adaptive biological diversity. Divergent selection occurs when different environments favour different phenotypes, leading to increased differences between populations. Negative frequency-dependent selection occurs when rare variants within a population are favoured over common ones, increasing diversity within populations. These two diversifying forces promote genetic variation at different spatial scales, and may act in opposition, but their relative effects remain unclear because they are rarely measured concurrently. Here we show that negative frequency-dependent selection within populations can favor rare immigrants over locally adapted residents. We reciprocally transplanted lake and stream ecotypes of threespine stickleback into lake and stream habitats, while manipulating the relative abundance of residents versus immigrants. We found negative frequency-dependence: survival was highest for the locally rare ecotype, rather than natives. Also, individuals with locally rare major histocompatibility complex (MHC) class IIb genotypes were infected by fewer parasites. This negative frequency-dependent selection will tend to favour rare immigrants over common residents, amplifying the effect of migration and undermining the efficacy of divergent natural selection to drive population differences. The only signal of divergent selection was a tendency for foreign fish to have higher parasite loads than residents, after controlling for MHC genotype rarity. Frequency-dependent ecological interactions have long been thought to promote speciation. Our results suggest a more nuanced view in which negative frequency dependence alters the fate of migrants to promote or constrain evolutionary divergence between populations.
In vivo virulence of MHC-adapted AIDS virus serially-passaged through MHC-mismatched hosts
Yamamoto, Hiroyuki; Ishii, Hiroshi; Matsuoka, Saori; Mizuta, Kazuta; Sakawaki, Hiromi; Miura, Tomoyuki; Naruse, Taeko K.; Kimura, Akinori
2017-01-01
CD8+ T-cell responses exert strong suppressive pressure on HIV replication and select for viral escape mutations. Some of these major histocompatibility complex class I (MHC-I)-associated mutations result in reduction of in vitro viral replicative capacity. While these mutations can revert after viral transmission to MHC-I-disparate hosts, recent studies have suggested that these MHC-I-associated mutations accumulate in populations and make viruses less pathogenic in vitro. Here, we directly show an increase in the in vivo virulence of an MHC-I-adapted virus serially-passaged through MHC-I-mismatched hosts in a macaque AIDS model despite a reduction in in vitro viral fitness. The first passage simian immunodeficiency virus (1pSIV) obtained 1 year after SIVmac239 infection in a macaque possessing a protective MHC-I haplotype 90-120-Ia was transmitted into 90-120-Ia- macaques, whose plasma 1 year post-infection was transmitted into other 90-120-Ia- macaques to obtain the third passage SIV (3pSIV). Most of the 90-120-Ia-associated mutations selected in 1pSIV did not revert even in 3pSIV. 3pSIV showed lower in vitro viral fitness but induced persistent viremia in 90-120-Ia- macaques. Remarkably, 3pSIV infection in 90-120-Ia+ macaques resulted in significantly higher viral loads and reduced survival compared to wild-type SIVmac239. These results indicate that MHC-I-adapted SIVs serially-transmitted through MHC-I-mismatched hosts can have higher virulence in MHC-I-matched hosts despite their lower in vitro viral fitness. This study suggests that multiply-passaged HIVs could result in loss of HIV-specific CD8+ T cell responses in human populations and the in vivo pathogenic potential of these escaped viruses may be enhanced. PMID:28931083
Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing
2018-01-15
Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.
Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S
2006-05-01
The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogate, N.; Yamabe, Toshio; Verma, L.
1996-04-01
Lack of major histocompatibility class I antigens on neurons has been implicated as a possible mechanism for viral persistence in the brain since these antigens are required for cytotoxic T-lymphocyte recognition of infected cells. In subacute sclerosing panencephalitis (SSPE), measles virus (MV) persists in neurons, resulting in a fatal chronic infection. MHC class I mRNA expression was examined in formalin-fixed brain tissue from 6 SSPE patients by in situ hybridization. In addition MHC class I protein expression in MV-infected neurons was examined in experimental Subacute Measles Encephalitis (SME) by double immunohistochemistry. MHC class I mRNA expression was found to bemore » upregulated in SSPE tissues studied, and in 5 out of 6 cases the expression was definitively seen on neurons. The percentage of neurons expressing MHC class I mRNA ranged between 20 to 84% in infected areas. There was no correlation between the degree of infection and expression of MHC class I molecules on neurons. Importantly, the number of neurons co-expressing MHC class I and MV antigens was markedly low, varying between 2 to 8%. Similar results were obtained in SME where 20 to 30% of the neurons expressed MHC class I but < 8% co-expressed MHC class I and MV antigens. Perivascular infiltrating cells in the infected regions in SME expressed IFN{gamma} immunoreactivity. The results suggest that MV may not be directly involved in the induction of MHC class I on neurons and that cytokines such as IFN{gamma} may play an important role. Furthermore, the paucity of neurons co-expressing MHC class I and MV antigens in SSPE and SME suggests that such cells are either rapidly cleared by cytotoxic T lymphocytes (CTL), or, alternatively, lack of co-expression of MHC class I on MV infected neurons favors MV persistence in these cells by escaping CTL recognition. 33 refs., 3 figs., 3 tabs.« less
Velásquez, Lis N; Milillo, M Ayelén; Delpino, M Victoria; Trotta, Aldana; Fernández, Pablo; Pozner, Roberto G; Lang, Roland; Balboa, Luciana; Giambartolomei, Guillermo H; Barrionuevo, Paula
2017-03-01
Brucella abortus is an intracellular pathogen capable of surviving inside of macrophages. The success of B. abortus as a chronic pathogen relies on its ability to orchestrate different strategies to evade the adaptive CD4 + T cell responses that it elicits. Previously, we demonstrated that B. abortus inhibits the IFN-γ-induced surface expression of MHC class II (MHC-II) molecules on human monocytes, and this phenomenon correlated with a reduction in antigen presentation. However, the molecular mechanisms, whereby B. abortus is able to down-regulate the expression of MHC-II, remained to be elucidated. In this study, we demonstrated that B. abortus infection inhibits the IFN-γ-induced transcription of MHC-II, transactivator (CIITA) and MHC-II genes. Accordingly, we observed that the synthesis of MHC-II proteins was also diminished. B. abortus was not only able to reduce the expression of mature MHC-II, but it also inhibited the expression of invariant chain (Ii)-associated immature MHC-II molecules. Outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, diminished the expression of MHC-II and CIITA transcripts to the same extent as B. abortus infection. IL-6 contributes to these down-regulatory phenomena. In addition, B. abortus and its lipoproteins, through IL-6 secretion, induced the transcription of the negative regulators of IFN-γ signaling, suppressor of cytokine signaling (SOCS)-1 and -3, without interfering with STAT1 activation. Yet, B. abortus lipoproteins via IL-6 inhibit the expression of IFN regulatory factor 1 (IRF-1), a critical regulatory transcription factor for CIITA induction. Overall, these results indicate that B. abortus inhibits the expression of MHC-II molecules at very early points in their synthesis and in this way, may prevent recognition by T cells establishing a chronic infection. © Society for Leukocyte Biology.
Wan, Zemin; Zhang, Xiujuan; Peng, Anping; He, Min; Lei, Zhenhua; Wang, Yunxiu
2016-12-01
To analyze the effects of TLR4 on the expression of the HMGB1, MHC-I and downstream cytokines IL-6 and TNF-α, and to investigate the biological role of the TLR4-HMGB1 signaling pathway in the development of the autoimmune myositis. We built mice models with experimental autoimmune myositis (EAM) and used the inverted screen experiment to measure their muscle endurance; we also examined inflammatory infiltration of muscle tissues after HE staining; and we assessed the expression of MHC-I using immunohistochemistry. In addition, peripheral blood mononuclear cells (PBMC) were extracted and flow cytometry was utilized to detect the effect of IFN-γ on the expression of MHC-I. Furthermore, PBMCs were treated with IFN-γ, anti-TLR4, anti-HMGB1 and anti-MHC-I. Real-time PCR and western blotting were employed to examine the expressions of TLR4, HMGB1 and MHC-I in different groups. The ELISA method was also utilized to detect the expression of the downstream cytokines TNF-α and IL-6. The expressions of TLR4, HMGB1 and MHC-I in muscle tissues from mice with EAM were significantly higher than those in the control group (all P<0.05). After IFN-γ treatment, the expressions of TLR4, HMGB1, MHC-I, TNF-α and IL-6 in PBMCs significantly increased (all P<0.05). The treatment of anti-TLR4, anti-HMGB1 and anti-MHC-I could significantly downregulate the expression of MHC-I (all P<0.05). In addition, anti-TLR4 and anti-HMGB1 significantly reduced the expression of TNF-α and IL-6 (all P<0.05). The TLR4-HMGB1 signaling pathway affects the process of autoimmune myositis inflammation by regulating the expression of MHC-I and other pro-inflammatory cytokines. Copyright © 2016 Elsevier B.V. All rights reserved.
2012-01-01
Background The ovine Major Histocompatibility Complex (MHC) harbors genes involved in overall resistance/susceptibility of the host to infectious diseases. Compared to human and mouse, the ovine MHC is interrupted by a large piece of autosome insertion via a hypothetical chromosome inversion that constitutes ~25% of ovine chromosome 20. The evolutionary consequence of such an inversion and an insertion (inversion/insertion) in relation to MHC function remains unknown. We previously constructed a BAC clone physical map for the ovine MHC exclusive of the insertion region. Here we report the construction of a high-density physical map covering the autosome insertion in order to address the question of what the inversion/insertion had to do with ruminants during the MHC evolution. Results A total of 119 pairs of comparative bovine oligo primers were utilized to screen an ovine BAC library for positive clones and the orders and overlapping relationships of the identified clones were determined by DNA fingerprinting, BAC-end sequencing, and sequence-specific PCR. A total of 368 positive BAC clones were identified and 108 of the effective clones were ordered into an overlapping BAC contig to cover the consensus region between ovine MHC class IIa and IIb. Therefore, a continuous physical map covering the entire ovine autosome inversion/insertion region was successfully constructed. The map confirmed the bovine sequence assembly for the same homologous region. The DNA sequences of 185 BAC-ends have been deposited into NCBI database with the access numbers HR309252 through HR309068, corresponding to dbGSS ID 30164010 through 30163826. Conclusions We have constructed a high-density BAC clone physical map for the ovine autosome inversion/insertion between the MHC class IIa and IIb. The entire ovine MHC region is now fully covered by a continuous BAC clone contig. The physical map we generated will facilitate MHC functional studies in the ovine, as well as the comparative MHC evolution in ruminants. PMID:22897909
Wedekind, C; Füri, S
1997-01-01
The major histocompatibility complex (MHC) is an immunologically important group of genes that appears to be under natural as well as sexual selection. Several hypotheses suggest that certain MHC-allele combinations (usually heterozygous ones) are superior under selective pressure by pathogens. This could influence mate choice in a way that preferences function to create MHC-heterozygous offspring, or that they function to create specific allele combinations that are beneficial under the current environmental conditions through their complementary or epistatic effects. To test these hypotheses, we asked 121 men and women to score the odours of six T-shirts, worn by two women and four men. Their scorings of pleasantness correlated negatively with the degree of MHC similarity between smeller and T-shirt-wearer in men and women who were not using the contraceptive pill (but not in Pill-users). Depending on the T-shirt-wearer, the amount of variance in the scorings of odour pleasantness that was explained by the degree of MHC similarity (r2) varied between nearly 0 and 23%. There was no apparent effect of gender in this correlation: the highest r2 was actually reached with one of the male odours sniffed by male smellers. Men and women who were reminded of their own mate/ex-mate when sniffing a T-shirt had significantly fewer MHC-alleles in common with this T-shirt-wearer than expected by chance. This suggests that the MHC or linked genes influence human mate choice. We found no significant effect when we tested for an influence of the MHC on odour preferences after the degree of similarity between T-shirt-wearer and smeller was statistically controlled for. This suggests that in our study populations the MHC influences body odour preferences mainly, if not exclusively, by the degree of similarity or dissimilarity. The observed preferences would increase heterozygosity in the progeny. They do not seem to aim for more specific MHC combinations. PMID:9364787
Jørgensen, Kasper W; Rasmussen, Michael; Buus, Søren; Nielsen, Morten
2014-01-01
Major histocompatibility complex class I (MHC-I) molecules play an essential role in the cellular immune response, presenting peptides to cytotoxic T lymphocytes (CTLs) allowing the immune system to scrutinize ongoing intracellular production of proteins. In the early 1990s, immunogenicity and stability of the peptide–MHC-I (pMHC-I) complex were shown to be correlated. At that time, measuring stability was cumbersome and time consuming and only small data sets were analysed. Here, we investigate this fairly unexplored area on a large scale compared with earlier studies. A recent small-scale study demonstrated that pMHC-I complex stability was a better correlate of CTL immunogenicity than peptide–MHC-I affinity. We here extended this study and analysed a total of 5509 distinct peptide stability measurements covering 10 different HLA class I molecules. Artificial neural networks were used to construct stability predictors capable of predicting the half-life of the pMHC-I complex. These predictors were shown to predict T-cell epitopes and MHC ligands from SYFPEITHI and IEDB to form significantly more stable MHC-I complexes compared with affinity-matched non-epitopes. Combining the stability predictions with a state-of-the-art affinity predictions NetMHCcons significantly improved the performance for identification of T-cell epitopes and ligands. For the HLA alleles included in the study, we could identify distinct sub-motifs that differentiate between stable and unstable peptide binders and demonstrate that anchor positions in the N-terminal of the binding motif (primarily P2 and P3) play a critical role for the formation of stable pMHC-I complexes. A webserver implementing the method is available at http://www.cbs.dtu.dk/services/NetMHCstab. PMID:23927693
Which Pediatricians Comanage Mental Health Conditions?
Green, Cori; Storfer-Isser, Amy; Stein, Ruth E K; Garner, Andrew S; Kerker, Bonnie D; Szilagyi, Moira; O'Connor, Karen G; Hoagwood, Kimberly E; Horwitz, Sarah M
2017-07-01
Given the prevalence of mental health (MH) conditions (MHC) in children, pediatricians should initiate treatment alone or in collaboration with a specialist for children with MHC. However, the majority of pediatricians do not manage or comanage common MHC even with an on-site MH provider. We examined which physician, practice, and training characteristics are associated with pediatricians' comanaging at least half of their patients with MHC. We analyzed responses of general pediatricians (n = 305) from the American Academy of Pediatrics 2013 Periodic Survey. Practice characteristics include presence of an on-site MH provider and perceived access to services. Independent variables included sociodemographics, training experiences, and interest in further training. The outcome was comanagement of ≥50% of patients with MHC. Weighted univariate, bivariate, and multivariable analyses were performed. Of the pediatricians who reported comanaging ≥50% of their patients with MHC, logistic regression analysis showed that pediatricians who completed ≥4 weeks of developmental behavioral pediatrics training had 1.8 increased odds (95% confidence interval 1.06, 3.08, P = .03) of comanagement, those very interested in further education in managing/treating MHC had 2.75 increased odds (95% confidence interval 1.63, 3.08, P < .001), and those with more training in MH treatment with medications had 1.4 increased odds (95% confidence interval 1.12, 1.75, P = .004) of comanaging children with MHC. Specific educational experiences and interest in further education in managing or treating MHC were significantly associated with comanaging ≥50% of patients, suggesting that enhanced MH training among pediatricians could increase the comanagement of children with MHC. Copyright © 2016 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Tsang, Julia Yuen-Shan; Tanriver, Yakup; Jiang, Shuiping; Xue, Shao-An; Ratnasothy, Kulachelvy; Chen, Daxin; Stauss, Hans J.; Bucy, R. Pat; Lombardi, Giovanna; Lechler, Robert
2008-01-01
T cell responses to MHC-mismatched transplants can be mediated via direct recognition of allogeneic MHC molecules on the cells of the transplant or via recognition of allogeneic peptides presented on the surface of recipient APCs in recipient MHC molecules — a process known as indirect recognition. As CD4+CD25+ Tregs play an important role in regulating alloresponses, we investigated whether mouse Tregs specific for allogeneic MHC molecules could be generated in vitro and could promote transplantation tolerance in immunocompetent recipient mice. Tregs able to directly recognize allogeneic MHC class II molecules (dTregs) were obtained by stimulating CD4+CD25+ cells from C57BL/6 mice (H-2b) with allogeneic DCs from BALB/c mice (H-2d). To generate Tregs that indirectly recognized allogeneic MHC class II molecules, dTregs were retrovirally transduced with TCR genes conferring specificity for H-2Kd presented by H-2Ab MHC class II molecules. The dual direct and indirect allospecificity of the TCR-transduced Tregs was confirmed in vitro. In mice, TCR-transduced Tregs, but not dTregs, induced long-term survival of partially MHC-mismatched heart grafts when combined with short-term adjunctive immunosuppression. Further, although dTregs were only slightly less effective than TCR-transduced Tregs at inducing long-term survival of fully MHC-mismatched heart grafts, histologic analysis of long-surviving hearts demonstrated marked superiority of the TCR-transduced Tregs. Thus, Tregs specific for allogeneic MHC class II molecules are effective in promoting transplantation tolerance in mice, which suggests that such cells have clinical potential. PMID:18846251
The carboxypeptidase angiotensin converting enzyme (ACE) shapes the MHC class I peptide repertoire
Shen, Xiao Z.; Billet, Sandrine; Lin, Chentao; Okwan-Duodu, Derick; Chen, Xu; Lukacher, Aron E.; Bernstein, Kenneth E.
2011-01-01
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to CD8+ T cell mediated adaptive immune responses. Aminopeptidases are implicated in the editing of peptides for MHC class I loading, but C-terminal editing is thought due to proteasome cleavage. By comparing genetically deficient, wild-type and over-expressing mice, we now identify the dipeptidase angiotensin-converting enzyme (ACE) as playing a physiologic role in peptide processing for MHC class I. ACE edits the C-termini of proteasome-produced class I peptides. The lack of ACE exposes novel antigens but also abrogates some self-antigens. ACE has major effects on surface MHC class I expression in a haplotype-dependent manner. We propose a revised model of MHC class I peptide processing by introducing carboxypeptidase activity. PMID:21964607
Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile
2015-01-01
Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5-16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry.
Hadrup, Sine Reker; Maurer, Dominik; Laske, Karoline; Frøsig, Thomas Mørch; Andersen, Sofie Ramskov; Britten, Cedrik M; van der Burg, Sjoerd H; Walter, Steffen; Gouttefangeas, Cécile
2015-01-01
Fluorescence-labeled peptide-MHC class I multimers serve as ideal tools for the detection of antigen-specific T cells by flow cytometry, enabling functional and phenotypical characterization of specific T cells at the single cell level. While this technique offers a number of unique advantages, MHC multimer reagents can be difficult to handle in terms of stability and quality assurance. The stability of a given fluorescence-labeled MHC multimer complex depends on both the stability of the peptide-MHC complex itself and the stability of the fluorochrome. Consequently, stability is difficult to predict and long-term storage is generally not recommended. We investigated here the possibility of cryopreserving MHC multimers, both in-house produced and commercially available, using a wide range of peptide-MHC class I multimers comprising virus and cancer-associated epitopes of different affinities presented by various HLA-class I molecules. Cryopreservation of MHC multimers was feasible for at least 6 months, when they were dissolved in buffer containing 5–16% glycerol (v/v) and 0.5% serum albumin (w/v). The addition of cryoprotectants was tolerated across three different T-cell staining protocols for all fluorescence labels tested (PE, APC, PE-Cy7 and Quantum dots). We propose cryopreservation as an easily implementable method for stable storage of MHC multimers and recommend the use of cryopreservation in long-term immunomonitoring projects, thereby eliminating the variability introduced by different batches and inconsistent stability. © 2014 International Society for Advancement of Cytometry PMID:25297339
NASA Technical Reports Server (NTRS)
Adams, G. R.; McCue, S. A.; Zeng, M.; Baldwin, K. M.
1999-01-01
During the postnatal period, rat limb muscles adapt to weight bearing via the replacement of embryonic (Emb) and neonatal (Neo) myosin heavy chains (MHCs) by the adult isoforms. Our aim was to characterize this transition in terms of the six MHC isoforms expressed in skeletal muscle and to determine the importance of innervation and thyroid hormone status on the attainment of the adult MHC phenotype. Neonatal rats were made hypothyroid via propylthiouracil (PTU) injection. In normal and PTU subgroups, leg muscles were unilaterally denervated at 15 days of age. The MHC profiles of plantaris (PLN) and soleus (Sol) muscles were determined at 7, 14, 23, and 30 days postpartum. At day 7, the Sol MHC profile was 55% type I, 30% Emb, and 10% Neo; in the PLN, the pattern was 60% Neo and 25% Emb. By day 30 the Sol and PLN had essentially attained an adult MHC profile in the controls. PTU augmented slow MHC expression in the Sol, whereas in the PLN it markedly repressed IIb MHC by retaining neonatal MHC expression. Denervation blunted the upregulation of IIb in the PLN and of Type I in the Sol and shifted the pattern to greater expression of IIa and IIx MHCs in both muscles. In contrast to previous observations, these findings collectively suggest that both an intact thyroid and innervation state are obligatory for the attainment of the adult MHC phenotype, particularly in fast-twitch muscles.
Kizub, Igor V; Lakhkar, Anand; Dhagia, Vidhi; Joshi, Sachindra R; Jiang, Houli; Wolin, Michael S; Falck, John R; Koduru, Sreenivasulu Reddy; Errabelli, Ramu; Jacobs, Elizabeth R; Schwartzman, Michal L; Gupte, Sachin A
2016-04-15
In response to hypoxia, the pulmonary artery normally constricts to maintain optimal ventilation-perfusion matching in the lung, but chronic hypoxia leads to the development of pulmonary hypertension. The mechanisms of sustained hypoxic pulmonary vasoconstriction (HPV) remain unclear. The aim of this study was to determine the role of gap junctions (GJs) between smooth muscle cells (SMCs) in the sustained HPV development and involvement of arachidonic acid (AA) metabolites in GJ-mediated signaling. Vascular tone was measured in bovine intrapulmonary arteries (BIPAs) using isometric force measurement technique. Expression of contractile proteins was determined by Western blot. AA metabolites in the bath fluid were analyzed by mass spectrometry. Prolonged hypoxia elicited endothelium-independent sustained HPV in BIPAs. Inhibition of GJs by 18β-glycyrrhetinic acid (18β-GA) and heptanol, nonspecific blockers, and Gap-27, a specific blocker, decreased HPV in deendothelized BIPAs. The sustained HPV was not dependent on Ca(2+) entry but decreased by removal of Ca(2+) and by Rho-kinase inhibition with Y-27632. Furthermore, inhibition of GJs decreased smooth muscle myosin heavy chain (SM-MHC) expression and myosin light chain phosphorylation in BIPAs. Interestingly, inhibition of 15- and 20-hydroxyeicosatetraenoic acid (HETE) synthesis decreased HPV in deendothelized BIPAs. 15-HETE- and 20-HETE-stimulated constriction of BIPAs was inhibited by 18β-GA and Gap-27. Application of 15-HETE and 20-HETE to BIPAs increased SM-MHC expression, which was also suppressed by 18β-GA and by inhibitors of lipoxygenase and cytochrome P450 monooxygenases. More interestingly, 15,20-dihydroxyeicosatetraenoic acid and 20-OH-prostaglandin E2, novel derivatives of 20-HETE, were detected in tissue bath fluid and synthesis of these derivatives was almost completely abolished by 18β-GA. Taken together, our novel findings show that GJs between SMCs are involved in the sustained HPV in BIPAs, and 15-HETE and 20-HETE, through GJs, appear to mediate SM-MHC expression and contribute to the sustained HPV development. Copyright © 2016 the American Physiological Society.
Borbulevych, Oleg Y; Do, Priscilla; Baker, Brian M
2010-09-01
Presentation of peptides by class I or class II major histocompatibility complex (MHC) molecules is required for the initiation and propagation of a T cell-mediated immune response. Peptides from the Wilms Tumor 1 transcription factor (WT1), upregulated in many hematopoetic and solid tumors, can be recognized by T cells and numerous efforts are underway to engineer WT1-based cancer vaccines. Here we determined the structures of the class I MHC molecule HLA-A*0201 bound to the native 126-134 epitope of the WT1 peptide and a recently described variant (R1Y) with improved MHC binding. The R1Y variant, a potential vaccine candidate, alters the positions of MHC charged side chains near the peptide N-terminus and significantly reduces the peptide/MHC electrostatic surface potential. These alterations indicate that the R1Y variant is an imperfect mimic of the native WT1 peptide, and suggest caution in its use as a therapeutic vaccine. Stability measurements revealed how the R1Y substitution enhances MHC binding affinity, and together with the structures suggest a strategy for engineering WT1 variants with improved MHC binding that retain the structural features of the native peptide/MHC complex. Copyright 2010 Elsevier Ltd. All rights reserved.
Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange
Kelton, William; Waindok, Ann Cathrin; Pesch, Theresa; Pogson, Mark; Ford, Kyle; Parola, Cristina; Reddy, Sai T.
2017-01-01
The development of programmable nucleases has enabled the application of new genome engineering strategies for cellular immunotherapy. While targeted nucleases have mostly been used to knock-out or knock-in genes in immune cells, the scarless exchange of entire immunogenomic alleles would be of great interest. In particular, reprogramming the polymorphic MHC locus could enable the creation of matched donors for allogeneic cellular transplantation. Here we show a proof-of-concept for reprogramming MHC-specificity by performing CRISPR-Cas9-assisted cassette exchange. Using murine antigen presenting cell lines (RAW264.7 macrophages), we demonstrate that the generation of Cas9-induced double-stranded breaks flanking the native MHC-I H2-Kd locus led to exchange of an orthogonal H2-Kb allele. MHC surface expression allowed for easy selection of reprogrammed cells by flow cytometry, thus obviating the need for additional selection markers. MHC-reprogrammed cells were fully functional as they could present H2-Kd-restricted peptide and activate cognate T cells. Finally, we investigated the role of various donor template formats on exchange efficiency, discovering that templates that underwent in situ linearization resulted in the highest MHC-reprogramming efficiency. These findings highlight a potential new approach for the correcting of MHC mismatches in cellular transplantation. PMID:28374766
Selector function of MHC I molecules is determined by protein plasticity
NASA Astrophysics Data System (ADS)
Bailey, Alistair; Dalchau, Neil; Carter, Rachel; Emmott, Stephen; Phillips, Andrew; Werner, Jörn M.; Elliott, Tim
2015-10-01
The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models encoding distinct mechanistic hypotheses for two molecules, HLA-B*44:02 (B*4402) and HLA-B*44:05 (B*4405), which differ by a single residue yet lie at opposite ends of the spectrum in their intrinsic ability to select high affinity peptides. We used in vivo biochemical data to infer that a conformational intermediate of MHC I is significant for peptide selection. We used molecular dynamics simulations to show that peptide selector function correlates with protein plasticity, and confirmed this experimentally by altering the plasticity of MHC I with a single point mutation, which altered in vivo selector function in a predictable way. Finally, we investigated the mechanisms by which the co-factor tapasin influences MHC I plasticity. We propose that tapasin modulates MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I allosterically, resulting in enhanced peptide selector function.
Juola, Frans A; Dearborn, Donald C
2012-01-07
The major histocompatibility complex (MHC) is a polymorphic gene family associated with immune defence, and it can play a role in mate choice. Under the genetic compatibility hypothesis, females choose mates that differ genetically from their own MHC genotypes, avoiding inbreeding and/or enhancing the immunocompetence of their offspring. We tested this hypothesis of disassortative mating based on MHC genotypes in a population of great frigatebirds (Fregata minor) by sequencing the second exon of MHC class II B. Extensive haploid cloning yielded two to four alleles per individual, suggesting the amplification of two genes. MHC similarity between mates was not significantly different between pairs that did (n = 4) or did not (n = 42) exhibit extra-pair paternity. Comparing all 46 mated pairs to a distribution based on randomized re-pairings, we observed the following (i): no evidence for mate choice based on maximal or intermediate levels of MHC allele sharing (ii), significantly disassortative mating based on similarity of MHC amino acid sequences, and (iii) no evidence for mate choice based on microsatellite alleles, as measured by either allele sharing or similarity in allele size. This suggests that females choose mates that differ genetically from themselves at MHC loci, but not as an inbreeding-avoidance mechanism.
Antoniou, Antony N.; Ford, Stuart; Alphey, Magnus; Osborne, Andrew; Elliott, Tim; Powis, Simon J.
2002-01-01
The oxidoreductase ERp57 is an integral component of the peptide loading complex of major histocompatibility complex (MHC) class I molecules, formed during their chaperone-assisted assembly in the endoplasmic reticulum. Misfolded MHC class I molecules or those denied suitable peptides are retrotranslocated and degraded in the cytosol. The presence of ERp57 during class I assembly suggests it may be involved in the reduction of intrachain disulfides prior to retrotranslocation. We have studied the ability of ERp57 to reduce MHC class I molecules in vitro. Recombinant ERp57 specifically reduced partially folded MHC class I molecules, whereas it had little or no effect on folded and peptide-loaded MHC class I molecules. Reductase activity was associated with cysteines at positions 56 and 405 of ERp57, the N-terminal residues of the active CXXC motifs. Our data suggest that the reductase activity of ERp57 may be involved during the unfolding of MHC class I molecules, leading to targeting for degradation. PMID:12032078
No evidence for the effect of MHC on male mating success in the brown bear.
Kuduk, Katarzyna; Babik, Wieslaw; Bellemain, Eva; Valentini, Alice; Zedrosser, Andreas; Taberlet, Pierre; Kindberg, Jonas; Swenson, Jon E; Radwan, Jacek
2014-01-01
Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC) genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear.
NASA Technical Reports Server (NTRS)
Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.
1999-01-01
The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.
Zinzow-Kramer, W M; Long, A B; Youngblood, B A; Rosenthal, K M; Butler, R; Mohammed, A-U-R; Skountzou, I; Ahmed, R; Evavold, B D; Boss, J M
2012-06-01
Three distinct promoters control the master regulator of major histocompatibility complex (MHC) class II expression, class II transactivator (CIITA), in a cell type-specific manner. Promoter I (pI) CIITA, expressed primarily by dendritic cells (DCs) and macrophages, expresses a unique isoform that contains a caspase-recruitment domain (CARD). The activity and function of this isoform are not understood, but are believed to enhance the function of CIITA in antigen-presenting cells. To determine whether isoform I of CIITA has specific functions, CIITA mutant mice were created in which isoform I was replaced with isoform III sequences. Mice in which pI and the CARD-encoding exon were deleted were also created. No defect in the formation of CD4 T cells, the ability to respond to a model antigen or bacterial or viral challenge was observed in mice lacking CIITA isoform I. Although CIITA and MHC-II expression was decreased in splenic DCs, pI knockout animals expressed CIITA from downstream promoters, suggesting that control of pI activity is mediated by unknown distal elements that could act at pIII, the B-cell promoter. Thus, no critical function is linked to the CARD domain of CIITA isoform I with respect to basic immune system development, function and challenge.
Du, Yushen; Zhang, Tian-Hao; Dai, Lei; Zheng, Xiaojuan; Gorin, Aleksandr M; Oishi, John; Wu, Ting-Ting; Yoshizawa, Janice M; Li, Xinmin; Yang, Otto O; Martinez-Maza, Otoniel; Detels, Roger; Sun, Ren
2017-11-28
Certain "protective" major histocompatibility complex class I (MHC-I) alleles, such as B*57 and B*27, are associated with long-term control of HIV-1 in vivo mediated by the CD8 + cytotoxic-T-lymphocyte (CTL) response. However, the mechanism of such superior protection is not fully understood. Here we combined high-throughput fitness profiling of mutations in HIV-1 Gag, in silico prediction of MHC-peptide binding affinity, and analysis of intraperson virus evolution to systematically compare differences with respect to CTL escape mutations between epitopes targeted by protective MHC-I alleles and those targeted by nonprotective MHC-I alleles. We observed that the effects of mutations on both viral replication and MHC-I binding affinity are among the determinants of CTL escape. Mutations in Gag epitopes presented by protective MHC-I alleles are associated with significantly higher fitness cost and lower reductions in binding affinity with respect to MHC-I. A linear regression model accounting for the effect of mutations on both viral replicative capacity and MHC-I binding can explain the protective efficacy of MHC-I alleles. Finally, we found a consistent pattern in the evolution of Gag epitopes in long-term nonprogressors versus progressors. Overall, our results suggest that certain protective MHC-I alleles allow superior control of HIV-1 by targeting epitopes where mutations typically incur high fitness costs and small reductions in MHC-I binding affinity. IMPORTANCE Understanding the mechanism of viral control achieved in long-term nonprogressors with protective HLA alleles provides insights for developing functional cure of HIV infection. Through the characterization of CTL escape mutations in infected persons, previous researchers hypothesized that protective alleles target epitopes where escape mutations significantly reduce viral replicative capacity. However, these studies were usually limited to a few mutations observed in vivo Here we utilized our recently developed high-throughput fitness profiling method to quantitatively measure the fitness of mutations across the entirety of HIV-1 Gag. The data enabled us to integrate the results with in silico prediction of MHC-peptide binding affinity and analysis of intraperson virus evolution to systematically determine the differences in CTL escape mutations between epitopes targeted by protective HLA alleles and those targeted by nonprotective HLA alleles. We observed that the effects of Gag epitope mutations on HIV replicative fitness and MHC-I binding affinity are among the major determinants of CTL escape. Copyright © 2017 Du et al.
Ambler, S Kelly; Hodges, Yvonne K; Jones, Gayle M; Long, Carlin S; Horwitz, Lawrence D
2008-09-01
The prolonged production of reactive oxygen species due to ischemia-reperfusion (I/R) is a potential cause of the pathological remodeling that frequently precedes heart failure. We tested the ability of a potent dithiol antioxidant, bucillamine, to protect against the long-term consequences of I/R injury in a murine model of myocardial infarction. After transiently occluding the left anterior descending coronary artery for 30 min, saline or bucillamine (10 microg/g body wt) was injected intravenously as a bolus within the first 5 min of reperfusion. The antioxidant treatment continued with daily subcutaneous injections for 4 wk. There were no differences in infarct sizes between bucillamine- and saline-treated animals. After 4 wk of reperfusion, cardiac hypertrophy was decreased by bucillamine treatment (ventricular weight-to-body weight ratios: I/R + saline, 4.5 +/- 0.2 mg/g vs. I/R + bucillamine, 4.2 +/- 0.1 mg/g; means +/- SE; P < 0.05). Additionally, the hearts of bucillamine-treated mice had improved contractile function (echocardiographic measurement of fractional shortening) relative to saline controls: I/R + saline, 32 +/- 3%, versus I/R + bucillamine, 41 +/- 4% (P < 0.05). Finally, I/R-induced injury in the saline-treated mice was accompanied by a fetal pattern of gene expression determined by ribonuclease protection assay that was consistent with pathological cardiac hypertrophy and remodeling [increased atrial natriuretic peptide, beta-myosin heavy chain (MHC), skeletal alpha-actin; decreased sarco(endo)plasmic reticulum Ca2+ ATPase 2a, and alpha-MHC-to-beta-MHC ratio]. These changes in gene expression were significantly attenuated by bucillamine. Therefore, treatment with a dithiol antioxidant for 4 wk after I/R preserved ventricular function and prevented the abnormal pattern of gene expression associated with pathological cardiac remodeling.
MHC-disassortative mate choice and inbreeding avoidance in a solitary primate.
Huchard, Elise; Baniel, Alice; Schliehe-Diecks, Susanne; Kappeler, Peter M
2013-08-01
Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by-product of inbreeding avoidance based on MHC-independent cues. Here, we used 454-sequencing and a 10-year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC-dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB-disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC-dependent mate choice. © 2013 John Wiley & Sons Ltd.
Analysis of myosin heavy chain mRNA expression by RT-PCR
NASA Technical Reports Server (NTRS)
Wright, C.; Haddad, F.; Qin, A. X.; Baldwin, K. M.
1997-01-01
An assay was developed for rapid and sensitive analysis of myosin heavy chain (MHC) mRNA expression in rodent skeletal muscle. Only 2 microg of total RNA were necessary for the simultaneous analysis of relative mRNA expression of six different MHC genes. We designed synthetic DNA fragments as internal standards, which contained the relevant primer sequences for the adult MHC mRNAs type I, IIa, IIx, IIb as well as the embryonic and neonatal MHC mRNAs. A known amount of the synthetic fragment was added to each polymerase chain reaction (PCR) and yielded a product of different size than the amplified MHC mRNA fragment. The ratio of amplified MHC fragment to synthetic fragment allowed us to calculate percentages of the gene expression of the different MHC genes in a given muscle sample. Comparison with the traditional Northern blot analysis demonstrated that our reverse transcriptase-PCR-based assay was reliable, fast, and quantitative over a wide range of relative MHC mRNA expression in a spectrum of adult and neonatal rat skeletal muscles. Furthermore, the high sensitivity of the assay made it very useful when only small quantities of tissue were available. Statistical analysis of the signals for each MHC isoform across the analyzed samples showed a highly significant correlation between the PCR and the Northern signals as Pearson correlation coefficients ranged between 0.77 and 0.96 (P < 0.005). This assay has potential use in analyzing small muscle samples such as biopsies and samples from pre- and/or neonatal stages of development.
Genetic Variants in TAP Are Associated with High-Grade Cervical Neoplasia
Einstein, Mark H.; Leanza, Suzanne; Chiu, Lydia G.; Schlecht, Nicolas F.; Goldberg, Gary L.; Steinberg, Bettie M.; Burk, Robert D.
2018-01-01
Purpose The transporter associated with antigen processing (TAP) is essential in assembling MHC-I proteins. Human papillomavirus (HPV) evades immune recognition by decreasing class I MHC cell surface expression through down-regulation of TAP1 levels. Consistent with heterogeneity in MHC expression is the individual variability in clearing detectable HPV infections. Genetic polymorphisms in TAP genes may affect protein structure, function, and the ability to clear HPV infection. Experimental Design Case-control study of women with cervical intraepithelial neoplasia (CIN) II or III (n = 114) and women without high-grade CIN (n = 366). Five nonsynonymous single nucleotide polymorphisms (SNP) in TAP1 and TAP2 were genotyped using DNA collected in cervicovaginal lavage samples using microsphere array technology (Luminex ×MAP). HPV typing was done using a PCR-based system with MY09/MY11 primers. TAP1 and TAP2 SNPs were validated by direct sequencing. Results Differences in allele distribution between women with high-grade cervical neoplasia and women without was seen for TAP1 I333V (P = 0.02) and TAP1 D637G (p = 0.01).The odds ratios (OR) for CIN III were significantly lower among carriers of the TAP1 I333V polymorphism (OR, 0.28; 95% confidence interval, 0.1-0.8), and TAP1 D637G polymorphism (OR, 0.27; 95% confidence interval, 0.1-0.7). These associations remained significant even after restricting the evaluation to women who were positive for high-risk HPV types. Conclusions In addition to the down-regulation of MHC-1 by oncogenic HPV, HPV pathogenesis might be facilitated by polymorphisms in the TAP proteins. Identifying TAP polymorphisms may potentially be used to identify women less susceptible to progression to high-grade CIN and cervical cancer. PMID:19188174
Balreira, Andrea; Cavallari, Marco; Sá Miranda, Maria Clara; Arosa, Fernando A
2010-06-01
Gaucher disease (GD) is associated with upregulation of CD1d and MHC-class II expression by monocytes. While the physiological impact of CD1d upregulation remains uncertain, it has been proposed that MHC-class II upregulation is associated with inflammation. Hereby, we show that the decrease in MHC-class II expression seen in GD patients under therapy correlates positively with chitotriosidase activity, a marker of inflamed macrophages. We also show that retinoic acid (RA) and the beta-glucocerebrosidase inhibitor conduritol-B-epoxide (CBE) lead to upregulation of CD1d expression by THP-1 cells, which correlated with an increase in mRNA expression. In vitro co-culture experiments showed that RA treated THP-1 cells were more stimulatory for CD4(+) than for CD8(+) T cells, as determined by CFSE loss, in comparison to untreated THP-1 cells. Interestingly, even though addition of exogenous isoglobotrihexosylceramide (iGb3), a physiological CD1d ligand, augmented the percentage of dividing CD4(+) T cells, we could not detect a significant expansion of CD4(+)Valpha24(+) invariant Natural Killer T (iNKT) cells. In contrast, addition of alpha-galactosylceramide (alpha-GC) induced expansion of Valpha24(+) iNKT cells as determined by using alpha-GC-loaded human CD1d dimers. These results strengthen the existence of a cross-talk between monocyte lipid accumulation, inflammation and changes in cell surface CD1d and MHC-class II in monocytes, which may result in inappropriate recognition events by immune cells and perpetuate chronic inflammation. Copyright 2009 Elsevier GmbH. All rights reserved.
Vambutas, Andrea; Bonagura, Vincent R.; Steinberg, Bettie M.
2000-01-01
Recurrent respiratory papillomatosis (RRP) is an insidious disease caused by human papillomavirus (HPV) infection. It is characterized by a variable clinical course that can include frequent disease recurrence, significant morbidity, and occasional mortality. The mechanisms responsible for the variability in the clinical course and the persistence of latent HPV infection remain unknown. Effective T-cell-mediated clearance of HPV-infected cells may be defective in patients with RRP, leading to recurrent disease and failure to suppress latent HPV reactivation. This study describes the down-regulation of the transporter associated with antigen presentation (TAP-1) and the major histocompatibility complex (MHC) class I protein expression in laryngeal papilloma tissue biopsies and cell culture of primary explants. There was a statistically significant correlation between reduction of TAP-1 expression in biopsy tissues and rapid recurrence of disease. Patients with RRP had less frequent recurrence if their papillomas expressed TAP-1 at levels close to that of normal tissue, compared with those with very low expression of TAP-1, who had frequent recurrence (32 versus 5 weeks to the next surgical intervention). These findings suggest that HPV may evade immune recognition by down-regulating class I MHC cell surface expression via decreased TAP-1 levels. Expression of TAP-1 could be used for prognostic evaluation of disease severity. Gamma interferon was able to restore class I MHC expression at the surfaces of laryngeal papilloma cells in culture. This up-regulation of class I MHC antigen at the cell surface potentially allows the infected cell to become a target for the immune system again. This finding provides some promise for nonsurgical treatment of laryngeal papillomas. PMID:10618282
Stephen, Tom Li; Wilson, Bridget S; Laufer, Terri M
2012-05-08
Mature peripheral T cells respond to foreign but not to self-antigens. During development in the thymus, deletion of high-affinity self-reactive immature thymocytes contributes to tolerance of mature T cells. However, double-positive thymocytes are positively selected to survive if they respond to self-peptide-MHC complexes; thus, there must be mechanisms to prevent overt reactivity to those same complexes in the periphery. "Developmental tuning" is the active process through which T-cell receptor (TCR)-associated signaling pathways of single-positive (SP) thymocytes are attenuated to respond appropriately to self-peptide-MHC complexes in the periphery. We previously showed that MHC class II expression in the thymic medulla was necessary to tune CD4(+) SP (CD4 SP) thymocytes. CD4 SP thymocytes from mice lacking medullary MHC class II expression had inappropriately enhanced proximal TCR signaling to low-affinity self-ligands that was associated with altered cellular distribution of the tyrosine kinase Lck. Now, we report that activation of both tuned and untuned CD4 SP thymocytes is Lck-dependent. Untuned CD4 SP cells contain a pool of Lck with increased basal phosphorylation that is not associated with the CD4 coreceptor. Phosphorylation of this pool of Lck decreases with tuning. Immunogold transmission electron microscopy of membrane sheets permitted direct visualization of Lck. In the absence of tuning, a significant proportion of Lck and the TCR subunit CD3ζ are expressed on the same protein island; this close association of Lck and the TCR probably explains the enhanced activation of untuned CD4 SP cells. Thus, changes in membrane topography during thymic maturation determine the set point for TCR responsiveness.
Semi-empirical quantum evaluation of peptide - MHC class II binding
NASA Astrophysics Data System (ADS)
González, Ronald; Suárez, Carlos F.; Bohórquez, Hugo J.; Patarroyo, Manuel A.; Patarroyo, Manuel E.
2017-01-01
Peptide presentation by the major histocompatibility complex (MHC) is a key process for triggering a specific immune response. Studying peptide-MHC (pMHC) binding from a structural-based approach has potential for reducing the costs of investigation into vaccine development. This study involved using two semi-empirical quantum chemistry methods (PM7 and FMO-DFTB) for computing the binding energies of peptides bonded to HLA-DR1 and HLA-DR2. We found that key stabilising water molecules involved in the peptide binding mechanism were required for finding high correlation with IC50 experimental values. Our proposal is computationally non-intensive, and is a reliable alternative for studying pMHC binding interactions.
Sibling rivalry: competition between MHC class II family members inhibits immunity.
Denzin, Lisa K; Cresswell, Peter
2013-01-01
Peptide loading of major histocompatibility complex (MHC) class II molecules in the endosomes and lysosomes of antigen-presenting cells is catalyzed by human leukocyte antigen-DM (HLA-DM) and modulated by HLA-DO. In a structural study in this issue, Guce et al. show that HLA-DO is an MHC class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM activity, thereby inhibiting MHC class II antigen presentation.
Invariant Chain Complexes and Clusters as Platforms for MIF Signaling
Lindner, Robert
2017-01-01
Invariant chain (Ii/CD74) has been identified as a surface receptor for migration inhibitory factor (MIF). Most cells that express Ii also synthesize major histocompatibility complex class II (MHC II) molecules, which depend on Ii as a chaperone and a targeting factor. The assembly of nonameric complexes consisting of one Ii trimer and three MHC II molecules (each of which is a heterodimer) has been regarded as a prerequisite for efficient delivery to the cell surface. Due to rapid endocytosis, however, only low levels of Ii-MHC II complexes are displayed on the cell surface of professional antigen presenting cells and very little free Ii trimers. The association of Ii and MHC II has been reported to block the interaction with MIF, thus questioning the role of surface Ii as a receptor for MIF on MHC II-expressing cells. Recent work offers a potential solution to this conundrum: Many Ii-complexes at the cell surface appear to be under-saturated with MHC II, leaving unoccupied Ii subunits as potential binding sites for MIF. Some of this work also sheds light on novel aspects of signal transduction by Ii-bound MIF in B-lymphocytes: membrane raft association of Ii-MHC II complexes enables MIF to target Ii-MHC II to antigen-clustered B-cell-receptors (BCR) and to foster BCR-driven signaling and intracellular trafficking. PMID:28208600
Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A
2012-07-11
Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explainsmore » how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.« less
2012-01-01
Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI)-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology. PMID:22694285
Dimeric MHC-peptides inserted into an immunoglobulin scaffold as new immunotherapeutic agents
Goldberg, Burt; Bona, Constantin
2011-01-01
Abstract The interactions of the T cell receptor (TCR) with cognate MHC-peptide and co-stimulatory molecules expressed at surface of antigen presenting cells (APC) leads to activation or tolerance of T cells. The development of molecular biological tools allowed for the preparation of soluble MHC-peptide molecules as surrogate for the APC. A decade ago a monomeric class II MHC molecule in which the peptide was covalently linked to β-chain of class II molecule was generated. This type of molecule had a low-binding affinity and did not cause the multimerization of TCR. The requirement of multimerization of TCR led to development of a new class of reagents, chimeric peptides covalently linked to MHC that was dimerized via Fc fragment of an immunoglobulin and linked to 3′ end of the β-chain of MHC class II molecule. These soluble dimerized MHC-peptide chimeric molecules display high affinity for the TCR and caused multimerization of TCR without processing by an APC. Because dimeric molecules are devoid of co-stimulatory molecules interacting with CD28, a second signal, they induce anergy rather the activation of T cells. In this review, we compare the human and murine dimerized MHC class II-peptides and their effect on CD4+ T cells, particularly the generation of T regulatory cells, which make these chimeric molecules an appealing approach for the treatment of autoimmune diseases. PMID:21435177
Regulation of calreticulin–major histocompatibility complex (MHC) class I interactions by ATP
Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K.; Arora, Karunesh; Brooks, Charles L.; Raghavan, Malini
2015-01-01
The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin–substrate interactions and as key determinants of PLC dynamics. PMID:26420867
NetCTLpan: pan-specific MHC class I pathway epitope predictions
Larsen, Mette Voldby; Lundegaard, Claus; Nielsen, Morten
2010-01-01
Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at http://www.cbs.dtu.dk/services/NetCTLpan/. Electronic supplementary material The online version of this article (doi:10.1007/s00251-010-0441-4) contains supplementary material, which is available to authorized users. PMID:20379710
A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.
Sgourakis, Nikolaos G; May, Nathan A; Boyd, Lisa F; Ying, Jinfa; Bax, Ad; Margulies, David H
2015-11-27
As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the β2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and β2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Lee, Sungwook; Park, Boyoun; Kang, Kwonyoon
2009-01-01
In contrast to the fairly well-characterized mechanism of assembly of MHC class I-peptide complexes, the disassembly mechanism by which peptide-loaded MHC class I molecules are released from the peptide-loading complex and exit the endoplasmic reticulum (ER) is poorly understood. Optimal peptide binding by MHC class I molecules is assumed to be sufficient for triggering exit of peptide-filled MHC class I molecules from the ER. We now show that protein disulfide isomerase (PDI) controls MHC class I disassembly by regulating dissociation of the tapasin-ERp57 disulfide conjugate. PDI acts as a peptide-dependent molecular switch; in the peptide-bound state, it binds to tapasin and ERp57 and induces dissociation of the tapasin-ERp57 conjugate. In the peptide-free state, PDI is incompetent to bind to tapasin or ERp57 and fails to dissociate the tapasin-ERp57 conjugates, resulting in ER retention of MHC class I molecules. Thus, our results indicate that even after optimal peptide loading, MHC class I disassembly does not occur by default but, rather, is a regulated process involving PDI-mediated interactions within the peptide-loading complex. PMID:19477919
Regulation of MHC class I expression by Foxp3 and its effect on Treg cell function
Mu, Jie; Tai, Xuguang; Iyer, Shankar S.; Weissman, Jocelyn D.; Singer, Alfred; Singer, Dinah S.
2014-01-01
Expression of MHC class I molecules, which provide immune surveillance against intracellular pathogens, is higher on lymphoid cells than on any other cell types. In T cells, this is a result of activation of class I transcription by the T cell enhanceosome consisting of Runx1, CBFβ and LEF1. We now report that MHC class I transcription in T cells also is enhanced by Foxp3, resulting in higher levels of class I in CD4+CD25+ T regulatory cells than in conventional CD4+CD25− T cells. Interestingly, the effect of Foxp3 regulation of MHC class I transcription is cell-type specific: Foxp3 increases MHC class I expression in T cells but represses it in epithelial tumor cells. In both cell types, Foxp3 targets the upstream IRE and downstream core promoter of the class I gene. Importantly, expression of MHC class I contributes to the function of CD4+CD25+ T regulatory cells by enhancing immune suppression, both in in vitro and in vivo. These findings identify MHC class I genes as direct targets of Foxp3 whose expression augments regulatory T cell function. PMID:24523508
Baptista, Maria João; Recamán, Mónica; Melo-Rocha, Gustavo; Nogueira-Silva, Cristina; Roriz, José-Mário; Soares-Fernandes, João; Gonzaga, Silvia; Santos, Marta; Leite-Moreira, Adelino; Areias, José Carlos; Correia-Pinto, Jorge
2006-09-01
Previous morphological studies had produced controversial results with regard to heart development in congenital diaphragmatic hernia (CDH), whereas a few publications investigated cardiac function and myocardial maturation. Myocardium maturation is associated with age-dependent increasing of gene expression of gap junction protein connexin 43 (Cx43), adenosine triphosphatase of the sarcoplasmic reticulum (SERCA2a), as well as switching of myosin heavy chains (MHCs) from beta to alpha isoforms. Our aim was to evaluate myocardium maturity in nitrofen-induced CDH rat model. Fetuses from dated pregnant Sprague-Dawley rats were assigned to 3 experimental groups: control, nitrofen (exposed to nitrofen, without CDH), and CDH (exposed to nitrofen, with CDH). Myocardial samples collected from left ventricle free wall were processed to (i) quantification of messenger RNA (mRNA) of Cx43, SERCA2a, alpha and beta MHC isoforms, as well as beta-actin (housekeeping gene); and (ii) separation of MHC isoforms (alpha and beta isoforms) by sodium dodecyl sulfate polyacrylamide gel electrophoresis silver stained. We demonstrated that there is no difference in myocardial gene expression of Cx43 (control, 1.0 +/- 0.1; nitrofen, 1.1 +/- 0.2; CDH, 1.3 +/- 0.2) and SERCA2a (control, 1.0 +/- 0.1; nitrofen, 0.9 +/- 0.1; CDH, 1.0 +/- 0.2). Myocardial gene expressions of alpha and beta mRNA of MHC isoforms were slightly decreased both in nitrofen and CDH fetuses when compared with control fetuses, but evaluation of the alpha-to-beta ratios of MHC isoforms at protein level revealed no significant differences between CDH and control (control, 16.9 +/- 2.5; CDH, 17.0 +/- 2.0). Myocardial quantification of Cx43 and SERCA2a mRNA, as well as the expression pattern of MHC isoforms at protein levels, was similar in all studied groups. We predict, therefore, that acute heart failure commonly observed in CDH infants might be attributed predominantly to cardiac overload secondary to severe pulmonary hypertension rather than to myocardial immaturity.
Ohta, Yuko; McKinney, E Churchill; Criscitiello, Michael F; Flajnik, Martin F
2002-01-15
Cartilaginous fish (e.g., sharks) are derived from the oldest vertebrate ancestor having an adaptive immune system, and thus are key models for examining MHC evolution. Previously, family studies in two shark species showed that classical class I (UAA) and class II genes are genetically linked. In this study, we show that proteasome genes LMP2 and LMP7, shark-specific LMP7-like, and the TAP1/2 genes are linked to class I/II. Functional LMP7 and LMP7-like genes, as well as multiple LMP2 genes or gene fragments, are found only in some sharks, suggesting that different sets of peptides might be generated depending upon inherited MHC haplotypes. Cosmid clones bearing the MHC-linked classical class I genes were isolated and shown to contain proteasome gene fragments. A non-MHC-linked LMP7 gene also was identified on another cosmid, but only two exons of this gene were detected, closely linked to a class I pseudogene (UAA-NC2); this region probably resulted from a recent duplication and translocation from the functional MHC. Tight linkage of proteasome and class I genes, in comparison with gene organizations of other vertebrates, suggests a primordial MHC organization. Another nonclassical class I gene (UAA-NC1) was detected that is linked neither to MHC nor to UAA-NC2; its high level of sequence similarity to UAA suggests that UAA-NC1 also was recently derived from UAA and translocated from MHC. These data further support the principle of a primordial class I region with few class I genes. Finally, multiple paternities in one family were demonstrated, with potential segregation distortions.
Jiang, Weihua; Qin, Anqi X.; Bodell, Paul W.; Baldwin, Kenneth M.; Haddad, Fadia
2012-01-01
Postnatal development of fast skeletal muscle is characterized by a transition in expression of myosin heavy chain (MHC) isoforms, from primarily neonatal MHC at birth to primarily IIb MHC in adults, in a tightly coordinated manner. These isoforms are encoded by distinct genes, which are separated by ∼17 kb on rat chromosome 10. The neonatal-to-IIb MHC transition is inhibited by a hypothyroid state. We examined RNA products [mRNA, pre-mRNA, and natural antisense transcript (NAT)] of developmental and adult-expressed MHC genes (embryonic, neonatal, I, IIa, IIx, and IIb) at 2, 10, 20, and 40 days after birth in normal and thyroid-deficient rat neonates treated with propylthiouracil. We found that a long noncoding antisense-oriented RNA transcript, termed bII NAT, is transcribed from a site within the IIb-Neo intergenic region and across most of the IIb MHC gene. NATs have previously been shown to mediate transcriptional repression of sense-oriented counterparts. The bII NAT is transcriptionally regulated during postnatal development and in response to hypothyroidism. Evidence for a regulatory mechanism is suggested by an inverse relationship between IIb MHC and bII NAT in normal and hypothyroid-treated muscle. Neonatal MHC transcription is coordinately expressed with bII NAT. A comparative phylogenetic analysis also suggests that bII NAT-mediated regulation has been a conserved trait of placental mammals for most of the eutherian evolutionary history. The evidence in support of the regulatory model implicates long noncoding antisense RNA as a mechanism to coordinate the transition between neonatal and IIb MHC during postnatal development. PMID:22262309
Pandorf, Clay E; Jiang, Weihua; Qin, Anqi X; Bodell, Paul W; Baldwin, Kenneth M; Haddad, Fadia
2012-04-01
Postnatal development of fast skeletal muscle is characterized by a transition in expression of myosin heavy chain (MHC) isoforms, from primarily neonatal MHC at birth to primarily IIb MHC in adults, in a tightly coordinated manner. These isoforms are encoded by distinct genes, which are separated by ∼17 kb on rat chromosome 10. The neonatal-to-IIb MHC transition is inhibited by a hypothyroid state. We examined RNA products [mRNA, pre-mRNA, and natural antisense transcript (NAT)] of developmental and adult-expressed MHC genes (embryonic, neonatal, I, IIa, IIx, and IIb) at 2, 10, 20, and 40 days after birth in normal and thyroid-deficient rat neonates treated with propylthiouracil. We found that a long noncoding antisense-oriented RNA transcript, termed bII NAT, is transcribed from a site within the IIb-Neo intergenic region and across most of the IIb MHC gene. NATs have previously been shown to mediate transcriptional repression of sense-oriented counterparts. The bII NAT is transcriptionally regulated during postnatal development and in response to hypothyroidism. Evidence for a regulatory mechanism is suggested by an inverse relationship between IIb MHC and bII NAT in normal and hypothyroid-treated muscle. Neonatal MHC transcription is coordinately expressed with bII NAT. A comparative phylogenetic analysis also suggests that bII NAT-mediated regulation has been a conserved trait of placental mammals for most of the eutherian evolutionary history. The evidence in support of the regulatory model implicates long noncoding antisense RNA as a mechanism to coordinate the transition between neonatal and IIb MHC during postnatal development.
Nishi, Manami; El-Hage, Sandy; Fox, Barbara A.; Bzik, David J.
2015-01-01
Toxoplasma gondii is an obligate intracellular protozoan parasite. This apicomplexan is the causative agent of toxoplasmosis, a leading cause of central nervous system disease in AIDS. It has long been known that T. gondii interferes with major histocompatibility complex class II (MHC-II) antigen presentation to attenuate CD4+ T cell responses and establish persisting infections. Transcriptional downregulation of MHC-II genes by T. gondii was previously established, but the precise mechanisms inhibiting MHC-II function are currently unknown. Here, we show that, in addition to transcriptional regulation of MHC-II, the parasite modulates the expression of key components of the MHC-II antigen presentation pathway, namely, the MHC-II-associated invariant chain (Ii or CD74) and the peptide editor H2-DM, in professional antigen-presenting cells (pAPCs). Genetic deletion of CD74 restored the ability of infected dendritic cells to present a parasite antigen in the context of MHC-II in vitro. CD74 mRNA and protein levels were, surprisingly, elevated in infected cells, whereas MHC-II and H2-DM expression was inhibited. CD74 accumulated mainly in the endoplasmic reticulum (ER), and this phenotype required live parasites, but not active replication. Finally, we compared the impacts of genetic deletion of CD74 and H2-DM genes on parasite dissemination toward lymphoid organs in mice, as well as activation of CD4+ T cells and interferon gamma (IFN-γ) levels during acute infection. Cyst burdens and survival during the chronic phase of infection were also evaluated in wild-type and knockout mice. These results highlight the fact that the infection is influenced by multiple levels of parasite manipulation of the MHC-II antigen presentation pathway. PMID:26195549
MHC-correlated mate choice in humans: a review.
Havlicek, Jan; Roberts, S Craig
2009-05-01
Extremely high variability in genes of the major histocompatibility complex (MHC) in vertebrates is assumed to be a consequence of frequency-dependent parasite-driven selection and mate preferences based on promotion of offspring heterozygosity at MHC, or potentially, genome-wide inbreeding avoidance. Where effects have been found, mate choice studies on rodents and other species usually find preference for MHC-dissimilarity in potential partners. Here we critically review studies on MHC-associated mate choice in humans. These are based on three broadly different aspects: (1) odor preferences, (2) facial preferences and (3) actual mate choice surveys. As in animal studies, most odor-based studies demonstrate disassortative preferences, although there is variation in the strength and nature of the effects. In contrast, facial attractiveness research indicates a preference for MHC-similar individuals. Results concerning MHC in actual couples show a bias towards similarity in one study, dissimilarity in two studies and random distribution in several other studies. These vary greatly in sample size and heterogeneity of the sample population, both of which may significantly bias the results. This pattern of mixed results across studies may reflect context-dependent and/or life history sensitive preference expression, in addition to higher level effects arising out of population differences in genetic heterogeneity or cultural and ethnic restrictions on random mating patterns. Factors of special relevance in terms of individual preferences are reproductive status and long- vs. short-term mating context. We discuss the idea that olfactory and visual channels may work in a complementary way (i.e. odor preference for MHC-dissimilarity and visual preference for MHC-similarity) to achieve an optimal level of genetic variability, methodological issues and interesting avenues for further research.
Nishida, Naoya; Taguchi, Aki; Motoyoshi, Kazumi; Hyodo, Masamitsu; Gyo, Kiyofumi; Desaki, Junzo
2013-03-01
We compared age-related changes in the intrinsic laryngeal muscles of aged and young adult rats by determining the number and diameter of muscle fibers, contractile muscle protein (myosin heavy chain isoforms, MHC) composition, and the morphology of the subneural apparatuses. In aged rats, both the numbers and the diameters of muscle fibers decreased in the cricothyroid (CT) muscle. The number of fibers, but not diameter, decreased in the thyroarytenoid (TA) muscle. In the posterior cricoarytenoid (PCA) muscle, neither the number nor the diameter of fibers changed significantly. Aging was associated with a decrease in type IIB and an increase in type IIA MHC isoform levels in CT muscle, but no such changes were observed in the TA or PCA muscles. Morphological examination of primary synaptic clefts of the subneural apparatus revealed that aging resulted in decreased labyrinthine and increased depression types in only the CT muscle. In the aged group, morphologically immature subneural apparatuses were found infrequently in the CT muscle, indicating continued tissue remodeling. We suggest, therefore, that age-related changes in the intrinsic laryngeal muscles primarily involve the CT muscle, whereas the structures of the TA and PCA muscles may better resist aging processes and therefore are less vulnerable to functional impairment. This may reflect differences in their roles; the CT muscle controls the tone of the vocal folds, while the TA and PCA muscles play an essential role in vital activities such as respiration and swallowing.
Intrahaplotypic Variants Differentiate Complex Linkage Disequilibrium within Human MHC Haplotypes
Lam, Tze Hau; Tay, Matthew Zirui; Wang, Bei; Xiao, Ziwei; Ren, Ee Chee
2015-01-01
Distinct regions of long-range genetic fixation in the human MHC region, known as conserved extended haplotypes (CEHs), possess unique genomic characteristics and are strongly associated with numerous diseases. While CEHs appear to be homogeneous by SNP analysis, the nature of fine variations within their genomic structure is unknown. Using multiple, MHC-homozygous cell lines, we demonstrate extensive sequence conservation in two common Asian MHC haplotypes: A33-B58-DR3 and A2-B46-DR9. However, characterization of phase-resolved MHC haplotypes revealed unique intra-CEH patterns of variation and uncovered 127 single nucleotide variants (SNVs) which are missing from public databases. We further show that the strong linkage disequilibrium structure within the human MHC that typically confounds precise identification of genetic features can be resolved using intra-CEH variants, as evidenced by rs3129063 and rs448489, which affect expression of ZFP57, a gene important in methylation and epigenetic regulation. This study demonstrates an improved strategy that can be used towards genetic dissection of diseases. PMID:26593880
Tenzer, S; Peters, B; Bulik, S; Schoor, O; Lemmel, C; Schatz, M M; Kloetzel, P-M; Rammensee, H-G; Schild, H; Holzhütter, H-G
2005-05-01
Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).
No evidence of an MHC-based female mating preference in great reed warblers.
Westerdahl, Helena
2004-08-01
Female mate-choice based on genetic compatibility is an area of growing interest. The major histocompatibility complex (MHC) genes are likely candidates for such mate-choice since these highly polymorphic genes may both increase offspring viability and also provide direct cues for mate-choice. In great reed warblers, females actively choose a breeding partner out of a handful of males that they visit and evaluate; thus, female preference for compatible or heterozygous MHC genes could have evolved. Here, I investigate whether great reed warbler females preferentially mate with males with dissimilar MHC class I alleles or with males that are heterozygous at MHC class I. Despite favourable conditions, a thorough screening method and a large sample size, there was no evidence of an MHC-based female mating preference based on either genetic compatibility or heterozygosity in this population. Power analyses of the data sets revealed that relatively small differences (15% and 8%, respectively) between true and random pairs should have been detected. Copyright 2004 Blackwell Publishing Ltd
Kropp, Laura E.; Garg, Manish; Binder, Robert J.
2010-01-01
Cellular peptides generated by proteasomal degradation of proteins in the cytosol and destined for presentation by MHC I are associated with several chaperones. Hsp70, hsp90 and the TCP1-ring complex have been implicated as important cytosolic players for chaperoning these peptides. In this study we report that gp96 and calreticulin are essential for chaperoning peptides in the endoplasmic reticulum. Importantly we demonstrate that cellular peptides are transferred sequentially from gp96 to calreticulin and then to MHC I forming a relay line. Disruption of this relay line by removal of gp96 or calreticulin prevents the binding of peptides by MHC I and hence presentation of the MHC I-peptide complex on the cell surface. Our results are important for understanding how peptides are processed and trafficked within the endoplasmic reticulum before exiting in association with MHC I heavy chains and β2-microglobulin as a trimolecular complex. PMID:20410492
Brent, G A; Williams, G R; Harney, J W; Forman, B M; Samuels, H H; Moore, D D; Larsen, P R
1992-04-01
Thyroid hormone response elements (T3REs) have been identified in a variety of promoters including those directing expression of rat GH (rGH), alpha-myosin heavy chain (rMHC), and malic enzyme (rME). A detailed biochemical and genetic analysis of the rGH element has shown that it consists of three hexamers related to the consensus [(A/G)GGT(C/A)A]. We have extended this analysis to the rMHC and rME elements. Binding of highly purified thyroid hormone receptor (T3R) to T3REs was determined using the gel shift assay, and thyroid hormone (T3) induction was measured in transient tranfections. We show that the wild type version of each of the three elements binds T3R dimers cooperatively. Mutational analysis of the rMHC and rME elements identified domains important for binding T3R dimers and allowed a direct determination of the relationship between T3R binding and function. In each element two hexamers are required for dimer binding, and mutations that interfere with dimer formation significantly reduce T3 induction. Similar to the rGH element, the rMHC T3RE contains three hexameric domains arranged as a direct repeat followed by an inverted copy, although the third domain is weaker than in rGH. All three are required for full function and T3R binding. The rME T3RE is a two-hexamer direct repeat T3RE, which also binds T3R monomer and dimer. Across a series of mutant elements, there was a strong correlation between dimer binding in vitro and function in vivo for rMHC (r = 0.99, P less than 0.01) and rME (r = 0.67, P less than 0.05) T3REs. Our results demonstrate a similar pattern of T3R dimer binding to a diverse array of hexameric sequences and arrangements in three wild type T3REs. Addition of nuclear protein enhanced T3R binding but did not alter the specificity of binding to wild type or mutant elements. Binding of purified T3R to T3REs was highly correlated with function, both with and without the addition of nuclear protein. T3R dimer formation is the common feature which defines the capacity of these elements to confer T3 induction.
Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project
Horton, Roger; Gibson, Richard; Coggill, Penny; Miretti, Marcos; Allcock, Richard J.; Almeida, Jeff; Forbes, Simon; Gilbert, James G. R.; Halls, Karen; Harrow, Jennifer L.; Hart, Elizabeth; Howe, Kevin; Jackson, David K.; Palmer, Sophie; Roberts, Anne N.; Sims, Sarah; Stewart, C. Andrew; Traherne, James A.; Trevanion, Steve; Wilming, Laurens; Rogers, Jane; de Jong, Pieter J.; Elliott, John F.; Sawcer, Stephen; Todd, John A.; Trowsdale, John
2008-01-01
The human major histocompatibility complex (MHC) is contained within about 4 Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine. PMID:18193213
Methods for MHC genotyping in non-model vertebrates.
Babik, W
2010-03-01
Genes of the major histocompatibility complex (MHC) are considered a paradigm of adaptive evolution at the molecular level and as such are frequently investigated by evolutionary biologists and ecologists. Accurate genotyping is essential for understanding of the role that MHC variation plays in natural populations, but may be extremely challenging. Here, I discuss the DNA-based methods currently used for genotyping MHC in non-model vertebrates, as well as techniques likely to find widespread use in the future. I also highlight the aspects of MHC structure that are relevant for genotyping, and detail the challenges posed by the complex genomic organization and high sequence variation of MHC loci. Special emphasis is placed on designing appropriate PCR primers, accounting for artefacts and the problem of genotyping alleles from multiple, co-amplifying loci, a strategy which is frequently necessary due to the structure of the MHC. The suitability of typing techniques is compared in various research situations, strategies for efficient genotyping are discussed and areas of likely progress in future are identified. This review addresses the well established typing methods such as the Single Strand Conformation Polymorphism (SSCP), Denaturing Gradient Gel Electrophoresis (DGGE), Reference Strand Conformational Analysis (RSCA) and cloning of PCR products. In addition, it includes the intriguing possibility of direct amplicon sequencing followed by the computational inference of alleles and also next generation sequencing (NGS) technologies; the latter technique may, in the future, find widespread use in typing complex multilocus MHC systems. © 2009 Blackwell Publishing Ltd.
Limited MHC class I intron 2 repertoire variation in bonobos.
de Groot, Natasja G; Heijmans, Corrine M C; Helsen, Philippe; Otting, Nel; Pereboom, Zjef; Stevens, Jeroen M G; Bontrop, Ronald E
2017-10-01
Common chimpanzees (Pan troglodytes) experienced a selective sweep, probably caused by a SIV-like virus, which targeted their MHC class I repertoire. Based on MHC class I intron 2 data analyses, this selective sweep took place about 2-3 million years ago. As a consequence, common chimpanzees have a skewed MHC class I repertoire that is enriched for allotypes that are able to recognise conserved regions of the SIV proteome. The bonobo (Pan paniscus) shared an ancestor with common chimpanzees approximately 1.5 to 2 million years ago. To investigate whether the signature of this selective sweep is also detectable in bonobos, the MHC class I gene repertoire of two bonobo panels comprising in total 29 animals was investigated by Sanger sequencing. We identified 14 Papa-A, 20 Papa-B and 11 Papa-C alleles, of which eight, five and eight alleles, respectively, have not been reported previously. Within this pool of MHC class I variation, we recovered only 2 Papa-A, 3 Papa-B and 6 Papa-C intron 2 sequences. As compared to humans, bonobos appear to have an even more diminished MHC class I intron 2 lineage repertoire than common chimpanzees. This supports the notion that the selective sweep may have predated the speciation of common chimpanzees and bonobos. The further reduction of the MHC class I intron 2 lineage repertoire observed in bonobos as compared to the common chimpanzee may be explained by a founding effect or other subsequent selective processes.
Ferrandiz-Rovira, Mariona; Allainé, Dominique; Callait-Cardinal, Marie-Pierre; Cohas, Aurélie
2016-07-01
Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.
Stephen, Tom Li; Tikhonova, Anastasia; Riberdy, Janice M; Laufer, Terri M
2009-11-01
Immature thymocytes that are positively selected based upon their response to self-peptide-MHC complexes develop into mature T cells that are not overtly reactive to those same complexes. Developmental tuning is the active process through which TCR-associated signaling pathways of single-positive thymocytes are attenuated to respond appropriately to the peptide-MHC molecules that will be encountered in the periphery. In this study, we explore the mechanisms that regulate the tuning of CD4(+) single-positive T cells to MHC class II encountered in the thymic medulla. Experiments with murine BM chimeras demonstrate that tuning can be mediated by MHC class II expressed by either thymic medullary epithelial cells or thymic dendritic cells. Tuning does not require the engagement of CD4 by MHC class II on stromal cells. Rather, it is mediated by interactions between MHC class II and the TCR. To understand the molecular changes that distinguish immature hyperactive T cells from tuned mature CD4(+) T cells, we compared their responses to TCR stimulation. The altered response of mature CD4 single-positive thymocytes is characterized by the inhibition of ERK activation by low-affinity self-ligands and increased expression of the inhibitory tyrosine phosphatase SHP-1. Thus, persistent TCR engagement by peptide-MHC class II on thymic medullary stroma inhibits reactivity to self-Ags and prevents autoreactivity in the mature repertoire.
Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number
NASA Technical Reports Server (NTRS)
Ohira, Y.; Yoshinaga, T.; Nomura, T.; Kawano, F.; Ishihara, A.; Nonaka, I.; Roy, R. R.; Edgerton, V. R.
2002-01-01
The effects of gravitational unloading with or without intact neural activity and/or tension development on myosin heavy chain (MHC) composition, cross-sectional area (CSA), number of myonuclei, and myonuclear domain (cytoplasmic volume per myonucleus ratio) in single fibers of both slow and fast muscles of rat hindlimbs are reviewed briefly. The atrophic response to unloading is generally graded as follows: slow extensors > fast extensors > fast flexors. Reduction of CSA is usually greater in the most predominant fiber type of that muscle. The percentage of fibers expressing fast MHC isoforms increases in unloaded slow but not fast muscles. Myonuclear number per mm of fiber length and myonuclear domain is decreased in the fibers of the unloaded predominantly slow soleus muscle, but not in the predominantly fast plantaris. Decreases in myonuclear number and domain, however, are observed in plantaris fibers when tenotomy, denervation, or both are combined with hindlimb unloading. All of these results are consistent with the view that a major factor for fiber atrophy is an inhibition or reduction of loading of the hindlimbs. These data also indicate that predominantly slow muscles are more responsive to unloading than predominantly fast muscles. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Yasukochi, Yoshiki; Satta, Yoko
2014-05-02
An extraordinary diversity of amino acid sequences in the peptide-binding region (PBR) of human leukocyte antigen [HLA; human major histocompatibility complex (MHC)] molecules has been maintained by balancing selection. The process of accumulation of amino acid diversity in the PBR for six HLA genes (HLA-A, B, C, DRB1, DQB1, and DPB1) shows that the number of amino acid substitutions in the PBR among alleles does not linearly correlate with the divergence time of alleles at the six HLA loci. At these loci, some pairs of alleles show significantly less nonsynonymous substitutions at the PBR than expected from the divergence time. The same phenomenon was observed not only in the HLA but also in the rat MHC. To identify the cause for this, DRB1 sequences, a representative case of a typical nonlinear pattern of substitutions, were examined. When the amino acid substitutions in the PBR were placed with maximum parsimony on a maximum likelihood tree based on the non-PBR substitutions, heterogeneous rates of nonsynonymous substitutions in the PBR were observed on several branches. A computer simulation supported the hypothesis that allelic pairs with low PBR substitution rates were responsible for the stagnation of accumulation of PBR nonsynonymous substitutions. From these observations, we conclude that the nonsynonymous substitution rate at the PBR sites is not constant among the allelic lineages. The deceleration of the rate may be caused by the coexistence of certain pathogens for a substantially long time during HLA evolution. Copyright © 2014 Yasukochi and Satta.
Wu, Huaxun; Chen, Jingyu; Song, Shasha; Yuan, Pingfan; Liu, Lihua; Zhang, Yunfang; Zhou, Aiwu; Chang, Yan; Zhang, Lingling; Wei, Wei
2016-01-01
Rheumatoid arthritis (RA) is characterized by inflammation of the synovium, which leads to the progressive destruction of cartilage and bone. Adrenoreceptor (AR) signaling may play an important role in modulating dendritic cell (DC), which may be involved in the pathogenesis of RA. We examined the effect of the β-AR agonist isoprenaline (ISO) on DC function, the impact of the β2-AR agonist salbutamol on adjuvant-induced arthritic (AA) rats, and changes in β2-AR signaling in DCs during the course of AA. ISO inhibited the expression of the surface molecules CD86 and MHC-II, inhibited the stimulation of T lymphocyte proliferation by DC and TNF-α secretion, and promoted DC antigen uptake and IL-10 secretion. The effects of ISO on MHC-II expression, DC stimulation of T lymphocyte proliferation, and DC antigen uptake were mediated by β2-AR. Treatment with salbutamol ameliorated the severity of AA and histopathology of the joints and inhibited proliferation of thymus lymphocytes and FLS in vivo. β2-AR signaling was weaker in AA rats compared to the control. Elevated GRK2 and decreased β2-AR expression in DC cytomembranes were observed in AA and may have decreased the anti-inflammatory effect of β2-AR signaling. Decreased β2-AR signaling may be relevant to the exacerbation of arthritis inflammation. PMID:27079168
Associations between malaria and MHC genes in a migratory songbird
Westerdahl, Helena; Waldenström, Jonas; Hansson, Bengt; Hasselquist, Dennis; von Schantz, Torbjörn; Bensch, Staffan
2005-01-01
Malaria parasites are a widespread and species-rich group infecting many wild populations of mammals, birds and reptiles. Studies on humans have demonstrated that genetic factors play a key role in the susceptibility and outcome of malaria infections. Until the present study, it has not been examined whether genetic variation in hosts is important for the outcome of malaria infections in natural avian populations. We investigated associations between major histocompatibility complex (MHC) genes and prevalence of three different avian malaria parasites (Haemoproteus payevskyi (GRW1), Plasmodium sp. (GRW2) and Plasmodium sp. (GRW4)) in a long-term study of great reed warblers Acrocephalus arundinaceus. We hypothesized that the MHC genes could either give full protection against a malaria infection, or confer protection against lethal malaria and direct the infection towards being milder. We found a positive association between numbers of MHC class I alleles (a measure of level of heterozygosity) and prevalence of the GRW2 parasite, suggesting the latter scenario. There was also a positive association between a specific MHC allele (B4b), previously shown to be under frequency-dependent selection in the study population, and prevalence of GRW2. These associations suggest that individuals carrying either a large number of MHC alleles or a specific MHC allele are protected against lethal malaria infections. PMID:16011927
Associations between malaria and MHC genes in a migratory songbird.
Westerdahl, Helena; Waldenström, Jonas; Hansson, Bengt; Hasselquist, Dennis; von Schantz, Torbjörn; Bensch, Staffan
2005-07-22
Malaria parasites are a widespread and species-rich group infecting many wild populations of mammals, birds and reptiles. Studies on humans have demonstrated that genetic factors play a key role in the susceptibility and outcome of malaria infections. Until the present study, it has not been examined whether genetic variation in hosts is important for the outcome of malaria infections in natural avian populations. We investigated associations between major histocompatibility complex (MHC) genes and prevalence of three different avian malaria parasites (Haemoproteus payevskyi (GRW1), Plasmodium sp. (GRW2) and Plasmodium sp. (GRW4)) in a long-term study of great reed warblers Acrocephalus arundinaceus. We hypothesized that the MHC genes could either give full protection against a malaria infection, or confer protection against lethal malaria and direct the infection towards being milder. We found a positive association between numbers of MHC class I alleles (a measure of level of heterozygosity) and prevalence of the GRW2 parasite, suggesting the latter scenario. There was also a positive association between a specific MHC allele (B4b), previously shown to be under frequency-dependent selection in the study population, and prevalence of GRW2. These associations suggest that individuals carrying either a large number of MHC alleles or a specific MHC allele are protected against lethal malaria infections.
Maccari, Giuseppe; Robinson, James; Ballingall, Keith; Guethlein, Lisbeth A.; Grimholt, Unni; Kaufman, Jim; Ho, Chak-Sum; de Groot, Natasja G.; Flicek, Paul; Bontrop, Ronald E.; Hammond, John A.; Marsh, Steven G. E.
2017-01-01
The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group. PMID:27899604
A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance.
Feng, Yongqiang; van der Veeken, Joris; Shugay, Mikhail; Putintseva, Ekaterina V; Osmanbeyoglu, Hatice U; Dikiy, Stanislav; Hoyos, Beatrice E; Moltedo, Bruno; Hemmers, Saskia; Treuting, Piper; Leslie, Christina S; Chudakov, Dmitriy M; Rudensky, Alexander Y
2015-12-03
T-cell receptor (TCR) signalling has a key role in determining T-cell fate. Precursor cells expressing TCRs within a certain low-affinity range for complexes of self-peptide and major histocompatibility complex (MHC) undergo positive selection and differentiate into naive T cells expressing a highly diverse self-MHC-restricted TCR repertoire. In contrast, precursors displaying TCRs with a high affinity for 'self' are either eliminated through TCR-agonist-induced apoptosis (negative selection) or restrained by regulatory T (Treg) cells, whose differentiation and function are controlled by the X-chromosome-encoded transcription factor Foxp3 (reviewed in ref. 2). Foxp3 is expressed in a fraction of self-reactive T cells that escape negative selection in response to agonist-driven TCR signals combined with interleukin 2 (IL-2) receptor signalling. In addition to Treg cells, TCR-agonist-driven selection results in the generation of several other specialized T-cell lineages such as natural killer T cells and innate mucosal-associated invariant T cells. Although the latter exhibit a restricted TCR repertoire, Treg cells display a highly diverse collection of TCRs. Here we explore in mice whether a specialized mechanism enables agonist-driven selection of Treg cells with a diverse TCR repertoire, and the importance this holds for self-tolerance. We show that the intronic Foxp3 enhancer conserved noncoding sequence 3 (CNS3) acts as an epigenetic switch that confers a poised state to the Foxp3 promoter in precursor cells to make Treg cell lineage commitment responsive to a broad range of TCR stimuli, particularly to suboptimal ones. CNS3-dependent expansion of the TCR repertoire enables Treg cells to control self-reactive T cells effectively, especially when thymic negative selection is genetically impaired. Our findings highlight the complementary roles of these two main mechanisms of self-tolerance.
2011-01-01
Background Several susceptibility genetic variants for autoimmune diseases have been identified. A subset of these polymorphisms displays an opposite risk profile in different autoimmune conditions. This observation open interesting questions on the evolutionary forces shaping the frequency of these alleles in human populations. We aimed at testing the hypothesis whereby balancing selection has shaped the frequency of opposite risk alleles. Results Since balancing selection signatures are expected to extend over short genomic portions, we focused our analyses on 11 regions carrying putative functional polymorphisms that may represent the disease variants (and the selection targets). No exceptional nucleotide diversity was observed for ZSCAN23, HLA-DMB, VARS2, PTPN22, BAT3, C6orf47, and IL10; summary statistics were consistent with evolutionary neutrality for these gene regions. Conversely, CDSN/PSORS1C1, TRIM10/TRIM40, BTNL2, and TAP2 showed extremely high nucleotide diversity and most tests rejected neutrality, suggesting the action of balancing selection. For TAP2 and BTNL2 these signatures are not secondary to linkage disequilibrium with HLA class II genes. Nonetheless, with the exception of variants in TRIM40 and CDSN, our data suggest that opposite risk SNPs are not selection targets but rather have accumulated as neutral variants. Conclusion Data herein indicate that balancing selection is common within the extended MHC region and involves several non-HLA loci. Yet, the evolutionary history of most SNPs with an opposite effect for autoimmune diseases is consistent with evolutionary neutrality. We suggest that variants with an opposite effect on autoimmune diseases should not be considered a distinct class of disease alleles from the evolutionary perspective and, in a few cases, the opposite effect on distinct diseases may derive from complex haplotype structures in regions with high genetic diversity. PMID:21682861
Wan, Qiu-Hong; Zhang, Pei; Ni, Xiao-Wei; Wu, Hai-Long; Chen, Yi-Yan; Kuang, Ye-Ye; Ge, Yun-Fa; Fang, Sheng-Guo
2011-01-01
The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated “HURRAH” based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1) and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens. PMID:21267075
Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J
2016-08-01
Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
O'Herrin, Sean M.; Lebowitz, Michael S.; Bieler, Joan G.; al-Ramadi, Basel K.; Utz, Ursula; Bothwell, Alfred L.M.; Schneck, Jonathan P.
1997-01-01
Understanding the regulation of cell surface expression of specific peptide–major histocompatibility complex (MHC) complexes is hindered by the lack of direct quantitative analyses of specific peptide–MHC complexes. We have developed a direct quantitative biochemical approach by engineering soluble divalent T cell receptor analogues (TCR–Ig) that have high affinity for their cognate peptide–MHC ligands. The generality of this approach was demonstrated by specific staining of peptide-pulsed cells with two different TCR–Ig complexes: one specific for the murine alloantigen 2C, and one specific for a viral peptide from human T lymphocyte virus–1 presented by human histocompatibility leukocyte antigens–A2. Further, using 2C TCR– Ig, a more detailed analysis of the interaction with cognate peptide–MHC complexes revealed several interesting findings. Soluble divalent 2C TCR–Ig detected significant changes in the level of specific antigenic–peptide MHC cell surface expression in cells treated with γ-interferon (γ-IFN). Interestingly, the effects of γ-IFN on expression of specific peptide–MHC complexes recognized by 2C TCR–Ig were distinct from its effects on total H-2 Ld expression; thus, lower doses of γ-IFN were required to increase expression of cell surface class I MHC complexes than were required for upregulation of expression of specific peptide–MHC complexes. Analysis of the binding of 2C TCR–Ig for specific peptide–MHC ligands unexpectedly revealed that the affinity of the 2C TCR–Ig for the naturally occurring alloreactive, putatively, negatively selecting, complex, dEV-8–H-2 Kbm3, is very low, weaker than 71 μM. The affinity of the 2C TCR for the other naturally occurring, negatively selecting, alloreactive complex, p2Ca–H-2 Ld, is ∼1000-fold higher. Thus, negatively selecting peptide–MHC complexes do not necessarily have intrinsically high affinity for cognate TCR. These results, uniquely revealed by this analysis, indicate the importance of using high affinity biologically relevant cognates, such as soluble divalent TCR, in furthering our understanding of immune responses. PMID:9334373
PTSD risk and mental health care engagement in a multi-war era community sample of women veterans.
Washington, Donna L; Davis, Teri D; Der-Martirosian, Claudia; Yano, Elizabeth M
2013-07-01
Post-traumatic stress disorder (PTSD) is common in women veterans (WVs), and associated with significant co-morbidity. Effective treatment is available; however, PTSD is often unrecognized. Identify PTSD prevalence and mental healthcare (MHC) use in a representative national WV sample. Cross-sectional, population-based 2008-2009 national survey of 3,611 WVs, weighted to the population. We screened for PTSD using a validated instrument, and also assessed demographic characteristics, health characteristics, and MHC use in the prior 12 months. Among those screening positive, we conducted multivariate logistic regression to identify independent predictors of MHC use. Overall, 13.0 % (95 % confidence interval [CI] 9.8-16.2) of WVs screened PTSD-positive. Veterans Health Administration (VA) healthcare was used by 31.1 % of PTSD-positives and 11.4 % of PTSD-negatives (p<0.001). Among those screening positive, 48.7 % (95 % CI 35.9-61.6) used MHC services (66.3 % of VA-users, 40.8 % of VA-nonusers; p<0.001). Having a diagnosis of depression (OR=8.6; 95 % CI 1.5-48.9) and VA healthcare use (OR=2.7; 95 % CI 1.1-7.0) predicted MHC use, whereas lacking a regular provider for health care (OR=0.2; 95 % CI 0.1-0.4) and household income below the federal poverty level (OR=0.2; 95 % CI 0.1-0.5) predicted nonuse. More than one in eight WVs screened positive for PTSD. Though a majority of VA-users received MHC, low income predicted nonuse. Only a minority of VA-nonusers received MHC. The majority of WVs use non-VA healthcare providers, who may be unaware of their veteran status and PTSD risk. VA outreach to educate VA-nonusers and their healthcare providers about WVs' PTSD risk and available evidence-based VA treatment options is one approach to extend the reach of VA MHC. Research to characterize barriers to VA MHC use for VA-nonusers and low income VA-users is warranted to better understand low service utilization, and to inform program development to engage more WVs in needed MHC.
Comprehensive analysis of MHC class I genes from the U-, S-, and Z-lineages in Atlantic salmon.
Lukacs, Morten F; Harstad, Håvard; Bakke, Hege G; Beetz-Sargent, Marianne; McKinnel, Linda; Lubieniecki, Krzysztof P; Koop, Ben F; Grimholt, Unni
2010-03-05
We have previously sequenced more than 500 kb of the duplicated MHC class I regions in Atlantic salmon. In the IA region we identified the loci for the MHC class I gene Sasa-UBA in addition to a soluble MHC class I molecule, Sasa-ULA. A pseudolocus for Sasa-UCA was identified in the nonclassical IB region. Both regions contained genes for antigen presentation, as wells as orthologues to other genes residing in the human MHC region. The genomic localisation of two MHC class I lineages (Z and S) has been resolved. 7 BACs were sequenced using a combination of standard Sanger and 454 sequencing. The new sequence data extended the IA region with 150 kb identifying the location of one Z-lineage locus, ZAA. The IB region was extended with 350 kb including three new Z-lineage loci, ZBA, ZCA and ZDA in addition to a UGA locus. An allelic version of the IB region contained a functional UDA locus in addition to the UCA pseudolocus. Additionally a BAC harbouring two MHC class I genes (UHA) was placed on linkage group 14, while a BAC containing the S-lineage locus SAA (previously known as UAA) was placed on LG10. Gene expression studies showed limited expression range for all class I genes with exception of UBA being dominantly expressed in gut, spleen and gills, and ZAA with high expression in blood. Here we describe the genomic organization of MHC class I loci from the U-, Z-, and S-lineages in Atlantic salmon. Nine of the described class I genes are located in the extension of the duplicated IA and IB regions, while three class I genes are found on two separate linkage groups. The gene organization of the two regions indicates that the IB region is evolving at a different pace than the IA region. Expression profiling, polymorphic content, peptide binding properties and phylogenetic relationship show that Atlantic salmon has only one MHC class Ia gene (UBA), in addition to a multitude of nonclassical MHC class I genes from the U-, S- and Z-lineages.
Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos
2010-01-01
Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance. PMID:20419139
Sanderson, Nicholas D.; Norman, Paul J.; Guethlein, Lisbeth A.; Ellis, Shirley A.; Williams, Christina; Breen, Matthew; Park, Steven D. E.; Magee, David A.; Babrzadeh, Farbod; Warry, Andrew; Watson, Mick; Bradley, Daniel G.; MacHugh, David E.; Parham, Peter
2014-01-01
Under selection pressure from pathogens, variable NK cell receptors that recognize polymorphic MHC class I evolved convergently in different species of placental mammal. Unexpectedly, diversified killer cell Ig–like receptors (KIRs) are shared by simian primates, including humans, and cattle, but not by other species. Whereas much is known of human KIR genetics and genomics, knowledge of cattle KIR is limited to nine cDNA sequences. To facilitate comparison of the cattle and human KIR gene families, we determined the genomic location, structure, and sequence of two cattle KIR haplotypes and defined KIR sequences of aurochs, the extinct wild ancestor of domestic cattle. Larger than its human counterpart, the cattle KIR locus evolved through successive duplications of a block containing ancestral KIR3DL and KIR3DX genes that existed before placental mammals. Comparison of two cattle KIR haplotypes and aurochs KIR show the KIR are polymorphic and the gene organization and content appear conserved. Of 18 genes, 8 are functional and 10 were inactivated by point mutation. Selective inactivation of KIR3DL and activating receptor genes leaves a functional cohort of one inhibitory KIR3DL, one activating KIR3DX, and six inhibitory KIR3DX. Functional KIR diversity evolved from KIR3DX in cattle and from KIR3DL in simian primates. Although independently evolved, cattle and human KIR gene families share important function-related properties, indicating that cattle KIR are NK cell receptors for cattle MHC class I. Combinations of KIR and MHC class I are the major genetic factors associated with human disease and merit investigation in cattle. PMID:25398326
Berry, Neil; Ham, Claire; Mee, Edward T.; Rose, Nicola J.; Mattiuzzo, Giada; Jenkins, Adrian; Page, Mark; Elsley, William; Robinson, Mark; Smith, Deborah; Ferguson, Deborah; Towers, Greg; Almond, Neil; Stebbings, Richard
2011-01-01
Background Live attenuated simian immunodeficiency virus (SIV) vaccines represent the most effective means of vaccinating macaques against pathogenic SIV challenge. However, thus far, protection has been demonstrated to be more effective against homologous than heterologous strains. Immune correlates of vaccine-induced protection have also been difficult to identify, particularly those measurable in the peripheral circulation. Methodology/Principal Findings Here we describe potent protection in 6 out of 8 Mauritian-derived cynomolgus macaques (MCM) against heterologous virus challenge with the pathogenic, uncloned SIVsmE660 viral stock following vaccination with live attenuated SIVmac251/C8. MCM provided a characterised host genetic background with limited Major Histocompatibility Complex (MHC) and TRIM5α allelic diversity. Early protection, observed as soon as 3 weeks post-vaccination, was comparable to that of 20 weeks vaccination. Recrudescence of vaccine virus was most pronounced in breakthrough cases where simultaneous identification of vaccine and challenge viruses by virus-specific PCR was indicative of active co-infection. Persistence of the vaccine virus in a range of lymphoid tissues was typified by a consistent level of SIV RNA positive cells in protected vaccinates. However, no association between MHC class I /II haplotype or TRIM5α polymorphism and study outcome was identified. Conclusion/Significance This SIV vaccine study, conducted in MHC-characterised MCM, demonstrated potent protection against the pathogenic, heterologous SIVsmE660 challenge stock after only 3 weeks vaccination. This level of protection against this viral stock by intravenous challenge has not been hitherto observed. The mechanism(s) of protection by vaccination with live attenuated SIV must account for the heterologous and early protection data described in this study, including those which relate to the innate immune system. PMID:21853072
Zhang, Jianhua; Chen, Yong; Qi, Jianxun; Gao, Feng; Liu, Yanjie; Liu, Jun; Zhou, Xuyu; Kaufman, Jim; Xia, Chun; Gao, George F.
2016-01-01
The major histocompatibility complex (MHC) has genetic associations with many diseases, often due to differences in presentation of antigenic peptides by polymorphic MHC molecules to T lymphocytes of the immune system. In chickens, only a single classical class I molecule in each MHC haplotype is expressed well due to co-evolution with the polymorphic transporters associated with antigen presentation (TAPs), which means that resistance and susceptibility to infectious pathogens are particularly easy to observe. Previously, structures of chicken MHC class I molecule BF2*2101 from B21 haplotype showed an unusually large peptide-binding groove that accommodates a broad spectrum of peptides to present as epitopes to cytotoxic T lymphocytes (CTL), explaining the MHC-determined resistance of B21 chickens to Marek's disease. Here, we report the crystal structure of BF2*0401 from the B4 (also known as B13) haplotype, showing a highly positively-charged surface hitherto unobserved in other MHC molecules, as well as a remarkably narrow groove due to the allele-specific residues with bulky side chains. Together, these properties limit the number of epitope peptides that can bind this class I molecule. However, peptide-binding assays show that in vitro BF2*0401 can bind a wider variety of peptides than are found on the surface of B4 cells. Thus, a combination of the specificities of the polymorphic TAP transporter and the MHC results in a very limited set of BF2*0401 peptides with negatively charged anchors to be presented to T lymphocytes. PMID:23041567
Santos, Susana G; Powis, Simon J; Arosa, Fernando A
2004-12-17
Knowledge of the origin and biochemical status of beta(2)-microglobulin-free or misfolded major histocompatibility complex (MHC)-I molecules is essential for understanding their pleiotropic properties. Here we show that in normal human T cells, misfolding of MHC-I molecules is turned on upon activation and cell division and is proportional to the level of proliferation. Immunoprecipitation showed that a number of proteins are associated with MHC-I heavy chains at the surface of activated T cells, including the CD8alphabeta receptor and the chaperone tandem calreticulin/ERp57, associations that rely upon the existence of a pool of HC-10-reactive molecules. Biochemical analysis showed that misfolded MHC-I molecules present at the cell surface are fully glycosylated mature molecules. Importantly, misfolded MHC-I molecules are tyrosine phosphorylated and are associated with kinase activity. In vitro kinase assays followed by reprecipitation indicated that tyrosine phosphorylation of the class I heavy chain is probably mediated by a Src tyrosine kinase because Lck was found associated with HC-10 immunocomplexes. Finally, we show that inhibition of tyrosine phosphorylation by using the Src-family tyrosine kinase inhibitor PP2 resulted in enhanced release of MHC-I heavy chains from the cell surface of activated T cells and a slight down-regulation of cell surface W6/32-reactive molecules. This study provides new insights into the biology of MHC-I molecules and suggests that tyrosine phosphorylation may be involved in the regulation of MHC-I misfolding and expression.
Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke
2013-01-01
Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.
Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke
2013-01-01
Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts. PMID:24023631
Ahn, Richard; Ding, Yuan Chun; Murray, Joseph; Fasano, Alessio; Green, Peter H. R.; Neuhausen, Susan L.; Garner, Chad
2012-01-01
Celiac disease is a common autoimmune disease caused by sensitivity to the dietary protein gluten. Forty loci have been implicated in the disease. All disease loci have been characterized as low-penetrance, with the exception of the high-risk genotypes in the HLA-DQA1 and HLA-DQB1 genes, which are necessary but not sufficient to cause the disease. The very strong effects from the known HLA loci and the genetically complex nature of the major histocompatibility complex (MHC) have precluded a thorough investigation of the region. The purpose of this study was to test the hypothesis that additional celiac disease loci exist within the extended MHC (xMHC). A set of 1898 SNPs was analyzed for association across the 7.6 Mb xMHC region in 1668 confirmed celiac disease cases and 517 unaffected controls. Conditional recursive partitioning was used to create an informative indicator of the known HLA-DQA1 and HLA-DQB1 high-risk genotypes that was included in the association analysis to account for their effects. A linkage disequilibrium-based grouping procedure was utilized to estimate the number of independent celiac disease loci present in the xMHC after accounting for the known effects. There was significant statistical evidence for four new independent celiac disease loci within the classic MHC region. This study is the first comprehensive association analysis of the xMHC in celiac disease that specifically accounts for the known HLA disease genotypes and the genetic complexity of the region. PMID:22615847
New design of MHC class II tetramers to accommodate fundamental principles of antigen presentation.
Landais, Elise; Romagnoli, Pablo A; Corper, Adam L; Shires, John; Altman, John D; Wilson, Ian A; Garcia, K Christopher; Teyton, Luc
2009-12-15
Direct identification and isolation of Ag-specific T cells became possible with the development of MHC tetramers, based on fluorescent avidins displaying biotinylated peptide-MHC complexes. This approach, extensively used for MHC class I-restricted T cells, has met very limited success with class II peptide-MHC complex tetramers (pMHCT-2) for the detection of CD4(+)-specific T cells. In addition, a very large number of these reagents, although capable of specifically activating T cells after being coated on solid support, is still unable to stain. To try to understand this puzzle and design usable tetramers, we examined each parameter critical for the production of pMHCT-2 using the I-A(d)-OVA system as a model. Through this process, the geometry of peptide-MHC display by avidin tetramers was examined, as well as the stability of rMHC molecules. However, we discovered that the most important factor limiting the reactivity of pMHCT-2 was the display of peptides. Indeed, long peptides, as presented by MHC class II molecules, can be bound to I-A/HLA-DQ molecules in more than one register, as suggested by structural studies. This mode of anchorless peptide binding allows the selection of a broader repertoire on single peptides and should favor anti-infectious immune responses. Thus, beyond the technical improvements that we propose, the redesign of pMHCT-2 will give us the tools to evaluate the real size of the CD4 T cell repertoire and help us in the production and testing of new vaccines.
Cunnusamy, Khrishen; Niederkorn, Jerry Y.
2014-01-01
Th1 CD4+ cells are believed to be the primary mediators of corneal allograft rejection. However, rejection of fully allogeneic C57BL/6 corneal allografts soared from 50% to 90% in both INF-γ−/− and anti-IFN-γ-treated BALB/c mice. In contrast, similar deficits in IFN-γ in BALB/c hosts enhanced immune privilege of BALB.B (minor histocompatibility antigen-matched, MHC-mismatched) and NZB (major histocompatibility complex-matched, minor histocompatibility antigen-mismatched) corneal allografts – decreasing rejection from 80% to ~20%. This effect of IFN-γ was independent of CD4+ T cell lineage commitment as both anti-IFN-γ-treated acceptor and rejector mice displayed a Th2 cytokine profile. The presence of IFN-γ prevented the generation of alloantigen-specific CD4+CD25+ Tregs in hosts receiving either MHC only mismatched BALB.B or minor only histocompatibility (minor H)-mismatched NZB corneal allografts. Tregs in these hosts, promoted corneal allograft survival by suppressing Th2 effector cells. By contrast, IFN-γ was necessary for the generation of CD4+CD25+ Tregs that prevented rejection of fully allogeneic C57BL/6 corneal allografts in BALB/c hosts. These findings suggest that MHC-matching in combination with blockade of IFN-γ holds promise as a means of enhancing corneal allograft survival. PMID:24119152
A Systematic Review of Fetal Genes as Biomarkers of Cardiac Hypertrophy in Rodent Models of Diabetes
2014-01-01
Pathological cardiac hypertrophy activates a suite of genes called the fetal gene program (FGP). Pathological hypertrophy occurs in diabetic cardiomyopathy (DCM); therefore, the FGP is widely used as a biomarker of DCM in animal studies. However, it is unknown whether the FGP is a consistent marker of hypertrophy in rodent models of diabetes. Therefore, we analyzed this relationship in 94 systematically selected studies. Results showed that diabetes induced with cytotoxic glucose analogs such as streptozotocin was associated with decreased cardiac weight, but genetic or diet-induced models of diabetes were significantly more likely to show cardiac hypertrophy (P<0.05). Animal strain, sex, age, and duration of diabetes did not moderate this effect. There were no correlations between the heart weight:body weight index and mRNA or protein levels of the fetal genes α-myosin heavy chain (α-MHC) or β-MHC, sarco/endoplasmic reticulum Ca2+-ATPase, atrial natriuretic peptide (ANP), or brain natriuretic peptide. The only correlates of non-indexed heart weight were the protein levels of α-MHC (Spearman's ρ = 1, P<0.05) and ANP (ρ = −0.73, P<0.05). These results indicate that most commonly measured genes in the FGP are confounded by diabetogenic methods, and are not associated with cardiac hypertrophy in rodent models of diabetes. PMID:24663494
Cost analysis of long-term outcomes of an urban mental health court.
Kubiak, Sheryl; Roddy, Juliette; Comartin, Erin; Tillander, Elizabeth
2015-10-01
Multiple studies have demonstrated decreased recidivism and increased treatment engagement for individuals with serious mental illness involved in Mental Health Courts (MHC). However, the limited availability of social and fiscal resources requires an analysis of the relationship between a program's effectiveness and its costs. Outcome costs associated with a sample of 105 participants discharged for more than 1 year - and grouped by completion status - were compared to an eligible sample not enrolled (n=45). Transactional costs analysis (TCA) was used to calculate outcomes associated with treatment, arrest, and confinement in the 12-month post-MHC. Total outcome costs for the Successful Group ($16,964) significantly differed from the Unsuccessful ($32,258) and Compare Groups ($39,870). Costs associated with the higher number of arrests for those in the Compare Group created the largest differences. Total cost savings between Successful and Compare (M=$22,906) equated to $916,240 and savings between Unsuccessful and Compare (M=$7612) were $494,708. The total combined cost savings for participants in the 12-month post-MHC period was $1,411,020. While it is important to understand that MHCs and the individuals that they serve vary and these results are for a felony-level court, policy makers and researchers can use these results to guide their decision-making. Copyright © 2015 Elsevier Ltd. All rights reserved.
Downregulation in GATA4 and Downstream Structural and Contractile Genes in the db/db Mouse Heart
Broderick, Tom L.; Jankowski, Marek; Wang, Donghao; Danalache, Bogdan A.; Parrott, Cassandra R.; Gutkowska, Jolanta
2012-01-01
Reduced expression of GATA4, a transcriptional factor for structural and cardioprotective genes, has been proposed as a factor contributing to the development of cardiomyopathy. We investigated whether the reduction of cardiac GATA4 expression reported in diabetes alters the expression of downstream genes, namely, atrial natriuretic peptide (ANP), B-type natriuretic, peptide (BNP), and α- and β-myosin heavy chain (MHC). db/db mice, a model of type 2 diabetes, with lean littermates serving as controls, were studied. db/db mice exhibited obesity, hyperglycemia, and reduced protein expression of cardiac GLUT4 and IRAP (insulin-regulated aminopeptidase), the structural protein cosecreted with GLUT4. Hearts from db/db mice had reduced protein expression of GATA4 (~35%) with accompanying reductions in mRNA expression of ANP (~40%), BNP (~85%), and α-MHC mRNA (~50%) whereas expression of β-MHC mRNA was increased by ~60%. Low GATA4 was not explained by an increased ligase or atrogin1 expression. CHIP protein content was modestly downregulated (27%) in db/db mice whereas mRNA and protein expression of the CHIP cochaperone HSP70 was significantly decreased in db/db hearts. Our results indicate that low GATA4 in db/db mouse heart is accompanied by reduced expression of GATA4-regulated cardioprotective and structural genes, which may explain the development of cardiomyopathy in diabetes. PMID:22474596
Williams, Corin; Brown, Xin Q; Bartolak-Suki, Erzsebet; Ma, Hongwei; Chilkoti, Ashutosh; Wong, Joyce Y
2010-01-01
In the healthy artery, contractile vascular smooth muscle cells (VSMCs) have an elongated shape and are highly aligned but transition to a synthetic phenotype in culture, while additionally becoming well spread and randomly organized. Thus, controlling VSMC phenotype is a challenge in tissue engineering. In this study, we investigated the effects of micropatterning on contractile protein expression in VSMCs at low and high passage and in the presence of transforming growth factor beta 1 (TGFβ1). Micropatterning led to significantly decreased cell area, increased elongation, and increased alignment compared to non-patterned VSMCs independent of passage number. In the presence of serum, micropatterning led to increased smooth muscle myosin heavy chain (SM-MHC) and α-actin expression in low passage VSMCs, but had no effect on high passage VSMCs. Micropatterning was as effective as TGFβ1 in up-regulating SM-MHC at low passage; however, micropatterning limited VSMC response to TGFβ1 at both low and high passage. Investigation of TGFβ receptor 1 revealed higher expression in non-patterned VSMCs compared to patterned at high passage. Our studies demonstrate that micropatterning is an important regulator of SM-MHC expression in contractile VSMCs and that it may provide a mechanism for phenotype stabilization in the presence of growth factors. PMID:20858564
Burlingham, W J
2016-10-01
Conventional wisdom argues against inbreeding, to maintain hybrid vigor and increase MHC diversity in response to pathogens. A recent report from the laboratory of Sing-Sing Way uses a mouse model to test a hypothesis put forward by Ray D. Owen more than 60 years ago: that a certain amount of inbreeding is a good thing. Owen proposed that antigens not inherited from the mother (noninherited maternal antigens), when replicated on the mate of the daughter, could protect the latter's developing child from fetal wastage due to immune attack during her pregnancy. Kinder et al use elegant mouse breeding models and MHC class II peptide tetramers to show that Owen's hypothesis, based only on humoral (anti-Rh IgG) data and a small sample size, was indeed correct. The mediators of this cross-generational protection turn out to be a special kind of Foxp3 + T regulatory cell, the development of which requires the persistence of maternal microchimerism into adulthood. The implications of this discovery for the role of microchimerism in tolerance to transplants are discussed. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.
Mapping the genetic diversity of HLA haplotypes in the Japanese populations
Saw, Woei-Yuh; Liu, Xuanyao; Khor, Chiea-Chuen; Takeuchi, Fumihiko; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Akiyama, Koichi; Asano, Hiroyuki; Asayama, Kei; Haga, Toshikazu; Hara, Azusa; Hirose, Takuo; Hosaka, Miki; Ichihara, Sahoko; Imai, Yutaka; Inoue, Ryusuke; Ishiguro, Aya; Isomura, Minoru; Isono, Masato; Kamide, Kei; Kato, Norihiro; Katsuya, Tomohiro; Kikuya, Masahiro; Kohara, Katsuhiko; Matsubara, Tatsuaki; Matsuda, Ayako; Metoki, Hirohito; Miki, Tetsuro; Murakami, Keiko; Nabika, Toru; Nakatochi, Masahiro; Ogihara, Toshio; Ohnaka, Keizo; Ohkubo, Takayoshi; Rakugi, Hiromi; Satoh, Michihiro; Shiwaku, Kunihiro; Sugimoto, Ken; Tabara, Yasuharu; Takami, Yoichi; Takayanagi, Ryoichi; Takeuchi, Fumihiko; Tsubota-Utsugi, Megumi; Yamamoto, Ken; Yamamoto, Koichi; Yamasaki, Masayuki; Yasui, Daisaku; Yokota, Mitsuhiro; Teo, Yik-Ying; Kato, Norihiro
2015-01-01
Japan has often been viewed as an Asian country that possesses a genetically homogenous community. The basis for partitioning the country into prefectures has largely been geographical, although cultural and linguistic differences still exist between some of the districts/prefectures, especially between Okinawa and the mainland prefectures. The Major Histocompatibility Complex (MHC) region has consistently emerged as the most polymorphic region in the human genome, harbouring numerous biologically important variants; nevertheless the presence of population-specific long haplotypes hinders the imputation of SNPs and classical HLA alleles. Here, we examined the extent of genetic variation at the MHC between eight Japanese populations sampled from Okinawa, and six other prefectures located in or close to the mainland of Japan, specifically focusing at the haplotypes observed within each population, and what the impact of any variation has on imputation. Our results indicated that Okinawa was genetically farther to the mainland Japanese than were Gujarati Indians from Tamil Indians, while the mainland Japanese from six prefectures were more homogeneous than between northern and southern Han Chinese. The distribution of haplotypes across Japan was similar, although imputation was most accurate for Okinawa and several mainland prefectures when population-specific panels were used as reference. PMID:26648100
Genetic incompatibility drives mate choice in a parasitic wasp.
Thiel, Andra; Weeda, Anne C; de Boer, Jetske G; Hoffmeister, Thomas S
2013-07-30
Allelic incompatibility between individuals of the same species should select for mate choice based on the genetic make-up of both partners at loci that influence offspring fitness. As a consequence, mate choice may be an important driver of allelic diversity. A complementary sex determination (CSD) system is responsible for intraspecific allelic incompatibility in many species of ants, bees, and wasps. CSD may thus favour disassortative mating and in this, resembles the MHC of the vertebrate immune system, or the self-incompatibility (SI) system of higher plants. Here we show that in the monogamous parasitic wasp Bracon brevicornis (Wesmael), females are able to reject partners with incompatible alleles. Forcing females to accept initially rejected partners resulted in sex ratio distortion and partial infertility of offspring. CSD-disassortative mating occurred independent of kin recognition and inbreeding avoidance in our experiment. The fitness consequences of mate choice are directly observable, not influenced by environmental effects, and more severe than in comparable systems (SI or MHC), on individuals as well as at the population level. Our results thus demonstrate the strong potential of female mate choice for maintaining high offspring fitness in this species.
Population-level studies using the major histocompatibility complex (Mhc) have linked specific alleles with specific diseases, but data requirements are high and power to detect disease association is low. A novel use of Mhc population surveys is that they map allelic substituti...
75 FR 28685 - Colonial Bankshares, MHC, Vineland, NJ; Approval of Conversion Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-21
... DEPARTMENT OF THE TREASURY Office of Thrift Supervision [AC-41: OTS Nos. 04983, H-3879, and H-4714] Colonial Bankshares, MHC, Vineland, NJ; Approval of Conversion Application Notice is hereby given that on May 14, 2010, the Office of Thrift Supervision approved the application of Colonial Bankshares, MHC...
Skeletal muscle calcineurin: influence of phenotype adaptation and atrophy
NASA Technical Reports Server (NTRS)
Spangenburg, E. E.; Williams, J. H.; Roy, R. R.; Talmadge, R. J.; Spangenberg, E. E. (Principal Investigator)
2001-01-01
Calcineurin (CaN) has been implicated as a signaling molecule that can transduce physiological stimuli (e.g., contractile activity) into molecular signals that initiate slow-fiber phenotypic gene expression and muscle growth. To determine the influence of muscle phenotype and atrophy on CaN levels in muscle, the levels of soluble CaN in rat muscles of varying phenotype, as assessed by myosin heavy chain (MHC)-isoform proportions, were determined by Western blotting. CaN levels were significantly greater in the plantaris muscle containing predominantly fast (IIx and IIb) MHC isoforms, compared with the soleus (predominantly type I MHC) or vastus intermedius (VI, contains all 4 adult MHC isoforms). Three months after a complete spinal cord transection (ST), the CaN levels in the VI muscle were significantly reduced, despite a significant increase in fast MHC isoforms. Surprisingly, the levels of CaN in the VI were highly correlated with muscle mass but not MHC isoform proportions in ST and control rats. These data demonstrate that CaN levels in skeletal muscle are highly correlated to muscle mass and that the normal relationship with phenotype is lost after ST.
NF-Y and the immune response: Dissecting the complex regulation of MHC genes.
Sachini, Nikoleta; Papamatheakis, Joseph
2017-05-01
Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani. Copyright © 2016 Elsevier B.V. All rights reserved.
A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization
Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.
2011-01-01
Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human Immunodeficiency Virus Gag-Pol polyprotein. PMID:22022238
Das, Krishna; Eisel, David; Lenkl, Clarissa; Goyal, Ashish; Diederichs, Sven; Dickes, Elke; Osen, Wolfram; Eichmüller, Stefan B
2017-01-01
In this study, the CRISPR/Cas9 technology was used to establish murine tumor cell lines, devoid of MHC I or MHC II surface expression, respectively. The melanoma cell line B16F10 and the murine breast cancer cell line EO-771, the latter stably expressing the tumor antigen NY-BR-1 (EO-NY), were transfected with an expression plasmid encoding a β2m-specific single guide (sg)RNA and Cas9. The resulting MHC I negative cells were sorted by flow cytometry to obtain single cell clones, and loss of susceptibility of peptide pulsed MHC I negative clones to peptide-specific CTL recognition was determined by IFNγ ELISpot assay. The β2m knockout (KO) clones did not give rise to tumors in syngeneic mice (C57BL/6N), unless NK cells were depleted, suggesting that outgrowth of the β2m KO cell lines was controlled by NK cells. Using sgRNAs targeting the β-chain encoding locus of the IAb molecule we also generated several B16F10 MHC II KO clones. Peptide loaded B16F10 MHC II KO cells were insusceptible to recognition by OT-II cells and tumor growth was unaltered compared to parental B16F10 cells. Thus, in our hands the CRISPR/Cas9 system has proven to be an efficient straight forward strategy for the generation of MHC knockout cell lines. Such cell lines could serve as parental cells for co-transfection of compatible HLA alleles together with human tumor antigens of interest, thereby facilitating the generation of HLA matched transplantable tumor models, e.g. in HLAtg mouse strains of the newer generation, lacking cell surface expression of endogenous H2 molecules. In addition, our tumor cell lines established might offer a useful tool to investigate tumor reactive T cell responses that function independently from MHC molecule surface expression by the tumor.
NASA Astrophysics Data System (ADS)
Andersen, Peter S.; Stryhn, Anette; Hansen, Bjarke E.; Fugger, Lars; Engberg, Jan; Buus, Soren
1996-03-01
Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.