Science.gov

Sample records for mhc heterozygote superiority

  1. Heterozygote advantage at MHC DRB may influence response to infectious disease epizootics.

    PubMed

    Osborne, Amy J; Pearson, John; Negro, Sandra S; Chilvers, B Louise; Kennedy, Martin A; Gemmell, Neil J

    2015-04-01

    The effect of MHC polymorphism on individual fitness variation in the wild remains equivocal; however, much evidence suggests that heterozygote advantage is a major determinant. To understand the contribution of MHC polymorphism to individual disease resistance or susceptibility in natural populations, we investigated two MHC class II B loci, DQB and DRB, in the New Zealand sea lion (NZSL, Phocarctos hookeri). The NZSL is a threatened species which is unusually susceptible to death by bacterial infection at an early age; it has suffered three bacterial induced epizootics resulting in high mortality levels of young pups since 1997. The MHC DQB and DRB haplotypes of dead NZSL pups with known cause of death (bacteria, enteritis or trauma) were sequenced and reconstructed, compared to pups that survived beyond 2 months of age, and distinct MHC DRB allele frequency and genotype differences were identified. Two findings were striking: (i) one DRB allele was present only in dead pups, and (ii) one heterozygous DRB genotype, common in live pups, was absent from dead pups. These results are consistent with some functional relationship with these variants and suggest heterozygote advantage is operating at DRB. We found no association between heterozygosity and fitness at 17 microsatellite loci, indicating that general heterozygosity is not responsible for the effect on fitness detected here. This result may be a consequence of recurrent selection by multiple pathogen assault over recent years and highlights the importance of heterozygote advantage at MHC as a potential mechanism for fitness differences in wild populations. PMID:25728376

  2. Choosy Wolves? Heterozygote Advantage But No Evidence of MHC-Based Disassortative Mating.

    PubMed

    Galaverni, Marco; Caniglia, Romolo; Milanesi, Pietro; Lapalombella, Silvana; Fabbri, Elena; Randi, Ettore

    2016-03-01

    A variety of nonrandom mate choice strategies, including disassortative mating, are used by vertebrate species to avoid inbreeding, maintain heterozygosity and increase fitness. Disassortative mating may be mediated by the major histocompatibility complex (MHC), an important gene cluster controlling immune responses to pathogens. We investigated the patterns of mate choice in 26 wild-living breeding pairs of gray wolf (Canis lupus) that were identified through noninvasive genetic methods and genotyped at 3 MHC class II and 12 autosomal microsatellite (STR) loci. We tested for deviations from random mating and evaluated the covariance of genetic variables at functional and STR markers with fitness proxies deduced from pedigree reconstructions. Results did not show evidences of MHC-based disassortative mating. Rather we found a higher peptide similarity between mates at MHC loci as compared with random expectations. Fitness values were positively correlated with heterozygosity of the breeders at both MHC and STR loci, whereas they decreased with relatedness at STRs. These findings may indicate fitness advantages for breeders that, while avoiding highly related mates, are more similar at the MHC and have high levels of heterozygosity overall. Such a pattern of MHC-assortative mating may reflect local coadaptation of the breeders, while a reduction in genetic diversity may be balanced by heterozygote advantages. PMID:26610365

  3. High levels of MHC class II allelic diversity in lake trout from Lake Superior

    USGS Publications Warehouse

    Dorschner, M.O.; Duris, T.; Bronte, C.R.; Burnham-Curtis, M. K.; Phillips, R.B.

    2000-01-01

    Sequence variation in a 216 bp portion of the major histocompatibility complex (MHC) II B1 domain was examined in 74 individual lake trout (Salvelinus namaycush) from different locations in Lake Superior. Forty-three alleles were obtained which encoded 71-72 amino acids of the mature protein. These sequences were compared with previous data obtained from five Pacific salmon species and Atlantic salmon using the same primers. Although all of the lake trout alleles clustered together in the neighbor-joining analysis of amino acid sequences, one amino acid allelic lineage was shared with Atlantic salmon (Salmo salar), a species in another genus which probably diverged from Salvelinus more than 10-20 million years ago. As shown previously in other salmonids, the level of nonsynonymous nucleotide substitution (d(N)) exceeded the level of synonymous substitution (d(S)). The level of nucleotide diversity at the MHC class II B1 locus was considerably higher in lake trout than in the Pacific salmon (genus Oncorhynchus). These results are consistent with the hypothesis that lake trout colonized Lake Superior from more than one refuge following the Wisconsin glaciation. Recent population bottlenecks may have reduced nucleotide diversity in Pacific salmon populations.

  4. The Heterozygote Superiority Hypothesis for Polymorphic Color Vision Is Not Supported by Long-Term Fitness Data from Wild Neotropical Monkeys

    PubMed Central

    Fedigan, Linda M.; Melin, Amanda D.; Addicott, John F.; Kawamura, Shoji

    2014-01-01

    The leading explanatory model for the widespread occurrence of color vision polymorphism in Neotropical primates is the heterozygote superiority hypothesis, which postulates that trichromatic individuals have a fitness advantage over other phenotypes because redgreen chromatic discrimination is useful for foraging, social signaling, or predator detection. Alternative explanatory models predict that dichromatic and trichromatic phenotypes are each suited to distinct tasks. To conclusively evaluate these models, one must determine whether proposed visual advantages translate into differential fitness of trichromatic and dichromatic individuals. We tested whether color vision phenotype is a significant predictor of female fitness in a population of wild capuchins, using longterm 26 years survival and fertility data. We found no advantage to trichromats over dichromats for three fitness measures fertility rates, offspring survival and maternal survival. This finding suggests that a selective mechanism other than heterozygote advantage is operating to maintain the color vision polymorphism. We propose that attention be directed to field testing the alternative mechanisms of balancing selection proposed to explain opsin polymorphism nichedivergence, frequencydependence and mutual benefit of association. This is the first indepth, longterm study examining the effects of color vision variation on survival and reproductive success in a naturallyoccurring population of primates. PMID:24404195

  5. The heterozygote superiority hypothesis for polymorphic color vision is not supported by long-term fitness data from wild neotropical monkeys.

    PubMed

    Fedigan, Linda M; Melin, Amanda D; Addicott, John F; Kawamura, Shoji

    2014-01-01

    The leading explanatory model for the widespread occurrence of color vision polymorphism in Neotropical primates is the heterozygote superiority hypothesis, which postulates that trichromatic individuals have a fitness advantage over other phenotypes because redgreen chromatic discrimination is useful for foraging, social signaling, or predator detection. Alternative explanatory models predict that dichromatic and trichromatic phenotypes are each suited to distinct tasks. To conclusively evaluate these models, one must determine whether proposed visual advantages translate into differential fitness of trichromatic and dichromatic individuals. We tested whether color vision phenotype is a significant predictor of female fitness in a population of wild capuchins, using longterm 26 years survival and fertility data. We found no advantage to trichromats over dichromats for three fitness measures fertility rates, offspring survival and maternal survival. This finding suggests that a selective mechanism other than heterozygote advantage is operating to maintain the color vision polymorphism. We propose that attention be directed to field testing the alternative mechanisms of balancing selection proposed to explain opsin polymorphism nichedivergence, frequencydependence and mutual benefit of association. This is the first indepth, longterm study examining the effects of color vision variation on survival and reproductive success in a naturallyoccurring population of primates. PMID:24404195

  6. MHC heterozygosity and survival in red junglefowl.

    PubMed

    Worley, Kirsty; Collet, Julie; Spurgin, Lewis G; Cornwallis, Charlie; Pizzari, Tommaso; Richardson, David S

    2010-08-01

    Genes of the major histocompatibility complex (MHC) form a vital part of the vertebrate immune system and play a major role in pathogen resistance. The extremely high levels of polymorphism observed at the MHC are hypothesised to be driven by pathogen-mediated selection. Although the exact nature of selection remains unclear, three main hypotheses have been put forward; heterozygote advantage, negative frequency-dependence and fluctuating selection. Here, we report the effects of MHC genotype on survival in a cohort of semi-natural red junglefowl (Gallus gallus) that suffered severe mortality as a result of an outbreak of the disease coccidiosis. The cohort was followed from hatching until 250 days of age, approximately the age of sexual maturity in this species, during which time over 80% of the birds died. We show that on average birds with MHC heterozygote genotypes survived infection longer than homozygotes and that this effect was independent of genome-wide heterozygosity, estimated across microsatellite loci. This MHC effect appeared to be caused by a single susceptible haplotype (CD_c) the effect of which was masked in all heterozygote genotypes by other dominant haplotypes. The CD_c homozygous genotype had lower survival than all other genotypes, but CD_c heterozygous genotypes had survival probabilities equal to the most resistant homozygote genotype. Importantly, no heterozygotes conferred greater resistance than the most resistant homozygote genotype, indicating that the observed survival advantage of MHC heterozygotes was the product of dominant, rather than overdominant processes. This pattern and effect of MHC diversity in our population could reflect the processes ongoing in similarly small, fragmented natural populations. PMID:20618904

  7. Individual odortypes: Interaction of MHC and background genes

    SciTech Connect

    Willse, Alan R.; Kwak, Jae; Yamazaki, Kunio; Preti, George; Wahl, Jon H.; Beauchamp, Gary

    2006-12-01

    Genes of the major histocompatibility complex (MHC) influence the urinary odors of mice. Behavioral studies have shown (1) that mice differing only at MHC have distinct urinary odors, suggesting an MHC odor phenotype or odortype; (2) that the MHC odortype can be recognized across different (potentially interfering) background strains; and (3) that the MHC odortype is not an additive trait. Very little is known about the odorants underlying this behavioral phenotype. We compared urinary volatile metabolite profiles of two MHC haplotypes (H-2b and H-2k) and their heterozygous cross (H-2b ? H-2k) for two different background strains using SPME headspace analysis followed by gas chromatography/mass spectrometry. For a surprisingly large number of compounds an MHC association was found to be moderated by background genotype (i.e., there is a significant MHC ? background interaction effect in the statistical model relating genotype to relative compound concentration). A few compounds have an MHC association that is independent of background strain, consistent with MHC discriminations across background strains observed in behavioral experiments. Perhaps more relevant to the role of MHC in social settings where odors are perceived combinatorially, numerous relative ratios between pairs of compounds were found to discriminate MHC types invariant of background type. In addition, a heterozygous effect ? where the metabolite expression (concentration) for the heterozygote is more extreme than the expression for either homozygote ? was observed for many compounds. The large number of compounds involved as well as the strong background and heterozygous influence suggest a complex (but unknown) mechanism of MHC-related odor expression.

  8. The separate and combined effects of MHC genotype, parasite clone, and host gender on the course of malaria in mice

    PubMed Central

    Wedekind, Claus; Walker, Mirjam; Little, Tom J

    2006-01-01

    Background The link between host MHC (major histocompatibility complex) genotype and malaria is largely based on correlative data with little or no experimental control of potential confounding factors. We used an experimental mouse model to test for main effects of MHC-haplotypes, MHC heterozygosity, and MHC × parasite clone interactions. We experimentally infected MHC-congenic mice (F2 segregants, homo- and heterozygotes, males and females) with one of two clones of Plasmodium chabaudi and recorded disease progression. Results We found that MHC haplotype and parasite clone each have a significant influence on the course of the disease, but there was no significant host genotype by parasite genotype interaction. We found no evidence for overdominance nor any other sort of heterozygote advantage or disadvantage. Conclusion When tested under experimental conditions, variation in the MHC can significantly influence the course of malaria. However, MHC heterozygote advantage through overdominance or dominance of resistance cannot be assumed in the case of single-strain infections. Future studies might focus on the interaction between MHC heterozygosity and multiple-clone infections. PMID:17118203

  9. Heterozygote advantage in the American chestnut, Castanea dentata (Fagaceae).

    PubMed

    Stilwell, Kevin L; Wilbur, Henry M; Werth, Charles R; Taylor, Douglas R

    2003-02-01

    The American chestnut (Castanea dentata; Fagaceae) was a dominant canopy tree in the Appalachian Mountains of North America. Since the introduction of the chestnut blight fungus (Cryphonectria parasitica; Valsaceae) in America, the American chestnut has been reduced to a predominantly clonal, understory species. Our objective was to determine whether the ecological changes and absence of new recruits have influenced the population genetics of American chestnut. Leaf samples were collected from four populations in southwestern Virginia. Electrophoretic data from five polymorphic loci were used to determine the genetic diversity and population structure of the populations and subpopulations. Growth data and infection status were recorded for one of the populations to determine their relationship with heterozygosity. F statistics revealed a significant amount of differentiation among subpopulations and an excess of heterozygotes within subpopulations. Heterozygous individuals also had higher rates of vegetative growth. The superior performance and excess of heterozygotes suggests that selection favors heterozygous individuals. The prolonged absence of sexual reproduction in C. dentata has allowed subtle fitness differences to accumulate to the extent that they have had significant effects on the genetics of chestnut populations.

  10. Heterozygote PCR product melting curve prediction.

    PubMed

    Dwight, Zachary L; Palais, Robert; Kent, Jana; Wittwer, Carl T

    2014-03-01

    Melting curve prediction of PCR products is limited to perfectly complementary strands. Multiple domains are calculated by recursive nearest neighbor thermodynamics. However, the melting curve of an amplicon containing a heterozygous single-nucleotide variant (SNV) after PCR is the composite of four duplexes: two matched homoduplexes and two mismatched heteroduplexes. To better predict the shape of composite heterozygote melting curves, 52 experimental curves were compared with brute force in silico predictions varying two parameters simultaneously: the relative contribution of heteroduplex products and an ionic scaling factor for mismatched tetrads. Heteroduplex products contributed 25.7 ± 6.7% to the composite melting curve, varying from 23%-28% for different SNV classes. The effect of ions on mismatch tetrads scaled to 76%-96% of normal (depending on SNV class) and averaged 88 ± 16.4%. Based on uMelt (www.dna.utah.edu/umelt/umelt.html) with an expanded nearest neighbor thermodynamic set that includes mismatched base pairs, uMelt HETS calculates helicity as a function of temperature for homoduplex and heteroduplex products, as well as the composite curve expected from heterozygotes. It is an interactive Web tool for efficient genotyping design, heterozygote melting curve prediction, and quality control of melting curve experiments. The application was developed in Actionscript and can be found online at http://www.dna.utah.edu/hets/.

  11. Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC) Genes

    PubMed Central

    Ejsmond, Maciej Jan; Radwan, Jacek

    2015-01-01

    Major Histocompatibility Complex (MHC) genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens) of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS) are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process). Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation. PMID:26599213

  12. Complex Mhc-based mate choice in a wild passerine

    PubMed Central

    Bonneaud, Camille; Chastel, Olivier; Federici, Pierre; Westerdahl, Helena; Sorci, Gabriele

    2006-01-01

    The extreme polymorphism of the vertebrate major histocompatibility complex (Mhc) is famous for protecting hosts against constantly evolving pathogens. Mate choice is often evoked as a means of maintaining Mhc variability through avoidance of partners with similar Mhc alleles or preference for heterozygotes. Evidence for these two hypotheses mostly comes from studies on humans and laboratory mice. Here, we tested these hypotheses in a wild outbred population of house sparrows (Passer domesticus). Females were not more or less closely related to the males they paired with when considering neutral genetic variation. However, males failed to form breeding pairs when they had too few Mhc alleles and when they were too dissimilar from females at Mhc loci (i.e. had no common alleles). Furthermore, pairs did not form at random as Mhc diversity positively correlated in mating pairs. These results suggest that mate choice evolves in response to (i) benefits in terms of parasite resistance acquired from allelic diversity, and (ii) costs associated with the disruption of co-adapted genes. PMID:16600889

  13. Efficacy of Marek's disease vaccines in Mhc heterozygous chickens: Mhc congenic x inbred line F1 matings.

    PubMed

    Bacon, L D; Witter, R L

    1995-01-01

    The goal of this study is to demonstrate that Mhc (B) heterozygous chickens differ in efficacy of response to several Marek's disease (MD) vaccines. Four types of B2 heterozygotes, in addition to B2B2 homozygotes, were developed by crossing 15.B congenic males to inbred line 7(1) (B2B2) hens. The five types of F1 chicks were intermingled in isolators and vaccinated with one of four types of MD vaccine before inoculation with the very virulent Md5 strain of MD herpesvirus. The F1 chickens differ in development of protective immunity following MD vaccination from two perspectives. First, chickens of a particular Mhc genotype were protected better by some vaccines than others. Second, individual vaccine preparations protected some Mhc genotypes more effectively. We conclude that some MD vaccines are more appropriate than others for certain B-haplotypes when chickens are heterozygous for the Mhc. The value of using Mhc-congenic x inbred line F1 animals for studies concerning the influence of the Mhc on vaccinal immunity is discussed.

  14. Assessment of the radiosensitivity of ataxia-telangiectasia heterozygotes

    SciTech Connect

    Arlett, C.F.; Priestley, A.

    1985-01-01

    Heterozygotes of ataxia-telangiectasia (AT) can, in certain parts of the world, represent a significant proportion of the population. Epidemiological studies suggest that they are more cancer prone than normal individuals. Fibroblasts of five AT heterozygotes are significantly more sensitive to gamma irradiation (mean D0 = 1.18 Gy) than five normals (mean D0 = 1.49 Gy) although some overlap in response is observed. Experiments designed to maximize differences in survival by allowing a period for the repair of potentially lethal damage (PLD) showed that only one out of five AT heterozygotes was defective in the repair of PLD. This technique does not, therefore, permit an improved discrimination of AT heterozygotes. Two AT heterozygotes were tested for their ability to repair lesions that give rise to micronuclei. Both, like the homozygote, were seen to be defective in this capacity. Defects in the repair of chromosome damage may permit a cellular discrimination of the heterozygotes.

  15. Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism.

    PubMed

    Reusch, T B; Häberli, M A; Aeschlimann, P B; Milinski, M

    2001-11-15

    The origin and maintenance of polymorphism in major histocompatibility complex (MHC) genes in natural populations is still unresolved. Sexual selection, frequency-dependent selection by parasites and pathogens, and heterozygote advantage have been suggested to explain the maintenance of high allele diversity at MHC genes. Here we argue that there are two (non-exclusive) strategies for MHC-related sexual selection, representing solutions to two different problems: inbreeding avoidance and parasite resistance. In species prone to inadvertent inbreeding, partners should prefer dissimilar MHC genotypes to similar ones. But if the goal is to maximize the resistance of offspring towards potential infections, the choosing sex should prefer mates with a higher diversity of MHC alleles. This latter strategy should apply when there are several MHC loci, as is the case in most vertebrates. We tested the relative importance of an 'allele counting' strategy compared to a disassortative mating strategy using wild-caught three-spined sticklebacks (Gasterosteus aculeatus) from an interconnected system of lakes. Here we show that gravid female fish preferred the odour of males with a large number of MHC class-IIB alleles to that of males with fewer alleles. Females did not prefer male genotypes dissimilar to their own. PMID:11713527

  16. Sex-specific selection for MHC variability in Alpine chamois

    PubMed Central

    2012-01-01

    Background In mammals, males typically have shorter lives than females. This difference is thought to be due to behavioural traits which enhance competitive abilities, and hence male reproductive success, but impair survival. Furthermore, in many species males usually show higher parasite burden than females. Consequently, the intensity of selection for genetic factors which reduce susceptibility to pathogens may differ between sexes. High variability at the major histocompatibility complex (MHC) genes is believed to be advantageous for detecting and combating the range of infectious agents present in the environment. Increased heterozygosity at these immune genes is expected to be important for individual longevity. However, whether males in natural populations benefit more from MHC heterozygosity than females has rarely been investigated. We investigated this question in a long-term study of free-living Alpine chamois (Rupicapra rupicapra), a polygynous mountain ungulate. Results Here we show that male chamois survive significantly (P = 0.022) longer if heterozygous at the MHC class II DRB locus, whereas females do not. Improved survival of males was not a result of heterozygote advantage per se, as background heterozygosity (estimated across twelve microsatellite loci) did not change significantly with age. Furthermore, reproductively active males depleted their body fat reserves earlier than females leading to significantly impaired survival rates in this sex (P < 0.008). This sex-difference was even more pronounced in areas affected by scabies, a severe parasitosis, as reproductively active males were less likely to survive than females. However, we did not find evidence for a survival advantage associated with specific MHC alleles in areas affected by scabies. Conclusions Increased MHC class II DRB heterozygosity with age in males, suggests that MHC heterozygous males survive longer than homozygotes. Reproductively active males appear to be less likely to

  17. Gene duplication and divergence produce divergent MHC genotypes without disassortative mating.

    PubMed

    Dearborn, Donald C; Gager, Andrea B; McArthur, Andrew G; Gilmour, Morgan E; Mandzhukova, Elena; Mauck, Robert A

    2016-09-01

    Genes of the major histocompatibility complex (MHC) exhibit heterozygote advantage in immune defence, which in turn can select for MHC-disassortative mate choice. However, many species lack this expected pattern of MHC-disassortative mating. A possible explanation lies in evolutionary processes following gene duplication: if two duplicated MHC genes become functionally diverged from each other, offspring will inherit diverse multilocus genotypes even under random mating. We used locus-specific primers for high-throughput sequencing of two expressed MHC Class II B genes in Leach's storm-petrels, Oceanodroma leucorhoa, and found that exon 2 alleles fall into two gene-specific monophyletic clades. We tested for disassortative vs. random mating at these two functionally diverged Class II B genes, using multiple metrics and different subsets of exon 2 sequence data. With good statistical power, we consistently found random assortment of mates at MHC. Despite random mating, birds had MHC genotypes with functionally diverged alleles, averaging 13 amino acid differences in pairwise comparisons of exon 2 alleles within individuals. To test whether this high MHC diversity in individuals is driven by evolutionary divergence of the two duplicated genes, we built a phylogenetic permutation model. The model showed that genotypic diversity was strongly impacted by sequence divergence between the most common allele of each gene, with a smaller additional impact of monophyly of the two genes. Divergence of allele sequences between genes may have reduced the benefits of actively seeking MHC-dissimilar mates, in which case the evolutionary history of duplicated genes is shaping the adaptive landscape of sexual selection. PMID:27376487

  18. MHC genotypes associate with resistance to a frog-killing fungus

    PubMed Central

    Savage, Anna E.; Zamudio, Kelly R.

    2011-01-01

    The emerging amphibian disease chytridiomycosis is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Amphibian populations and species differ in susceptibility to Bd, yet we know surprisingly little about the genetic basis of this natural variation. MHC loci encode peptides that initiate acquired immunity in vertebrates, making them likely candidates for determining disease susceptibility. However, MHC genes have never been characterized in the context of chytridiomycosis. Here, we performed experimental Bd infections in laboratory-reared frogs collected from five populations that show natural variation in Bd susceptibility. We found that alleles of an expressed MHC class IIB locus associate with survival following Bd infection. Across populations, MHC heterozygosity was a significant predictor of survival. Within populations, MHC heterozygotes and individuals bearing MHC allele Q had a significantly reduced risk of death, and we detected a significant signal of positive selection along the evolutionary lineage leading to allele Q. Our findings demonstrate that immunogenetic variation affects chytridiomycosis survival under controlled experimental conditions, confirming that host genetic polymorphisms contribute to chytridiomycosis resistance. PMID:21949385

  19. The functional importance of sequence versus expression variability of MHC alleles in parasite resistance.

    PubMed

    Axtner, Jan; Sommer, Simone

    2012-12-01

    Understanding selection processes driving the pronounced allelic polymorphism of the major histocompatibility complex (MHC) genes and its functional associations to parasite load have been the focus of many recent wildlife studies. Two main selection scenarios are currently debated which explain the susceptibility or resistance to parasite infections either by the effects of (1) specific MHC alleles which are selected frequency-dependent in space and time or (2) a heterozygote or divergent allele advantage. So far, most studies have focused only on structural variance in co-evolutionary processes although this might not be the only trait subject to natural selection. In the present study, we analysed structural variance stretching from exon1 through exon3 of MHC class II DRB genes as well as genotypic expression variance in relation to the gastrointestinal helminth prevalence and infection intensity in wild yellow-necked mice (Apodemus flavicollis). We found support for the functional importance of specific alleles both on the sequence and expression level. By resampling a previously investigated study population we identified specific MHC alleles affected by temporal shifts in parasite pressure and recorded associated changes in allele frequencies. The allele Apfl-DRB*23 was associated with resistance to infections by the oxyurid nematode Syphacia stroma and at the same time with susceptibility to cestode infection intensity. In line with our expectation, MHC mRNA transcript levels tended to be higher in cestode-infected animals carrying the allele Apfl-DRB*23. However, no support for a heterozygote or divergent allele advantage on the sequence or expression level was detected. The individual amino acid distance of genotypes did not explain individual differences in parasite loads and the genetic distance had no effect on MHC genotype expression. For ongoing studies on the functional importance of expression variance in parasite resistance, allele

  20. Cystic fibrosis heterozygote screening in 5,161 pregnant women.

    PubMed Central

    Witt, D. R.; Schaefer, C.; Hallam, P.; Wi, S.; Blumberg, B.; Fishbach, A.; Holtzman, J.; Kornfeld, S.; Lee, R.; Nemzer, L.; Palmer, R.

    1996-01-01

    A screening program for cystic fibrosis (CF) heterozygotes was conducted in a large HMO prenatal population, to evaluate the level of interest among eligible patients, the effectiveness of prescreening education, attitudes toward the screening process, psychological effects, and utilization of prenatal diagnosis and its outcomes. The heterozygote identification rate and frequency of specific CFTR mutations were also assessed. Identified carriers were offered genetic counseling and testing of male partners. Prenatal diagnosis was offered if both parents were identified as carriers. A total of 5,161 women underwent carrier testing; 947 others completed survey instruments only. The acceptance rate of screening was high (78%), and pretest education by videotape was generally effective. Adverse psychological effects were not reported. Participants generally found screening to be desirable and useful. Screening identified 142 female heterozygotes, 109 couples in which the male partner was not a carrier, and 7 high-risk couples. The incidence of R117H mutations was much higher than expected. The number of identified carriers was much lower in Hispanics than in Caucasians. We conclude that large-scale prenatal screening for CF heterozygotes in the absence of a family history of CF is an acceptable method for identifying couples at risk for affected fetuses. Sufficient pretest education can be accomplished efficiently, test insensitivity is well accepted, adverse psychological events are not observed, and general patient satisfaction is high. PMID:8644747

  1. Cystic fibrosis heterozygote screening in 5,161 pregnant women

    SciTech Connect

    Witt, D.R.; Hallam, P.; Blumberg, B.; Fishbach, A.

    1996-04-01

    A screening program for cystic fibrosis (CF) heterozygotes was conducted in a large HMO prenatal population, to evaluate the level of interest among eligible patients, the effectiveness of prescreening education, attitudes toward the screening process, psychological effects, and utilization of prenatal diagnosis and its outcomes. The heterozygote identification rate and frequency of specific CFTR mutations were also assessed. Identified carriers were offered genetic counseling and testing of male partners. Prenatal diagnosis was offered if both partners were identified as carriers. A total of 5,161 women underwent carrier testing; 947 others completed survey instruments only. The acceptance rate of screening was high (78%), and pretest education by videotape was generally effective. Adverse psychological effects were not reported. Participants generally found screening to be desirable and useful. Screening identified 142 female heterozygotes, 109 couples in which the male partner was not a carrier, and 7 high-risk couples. The incidence of R117H mutations was much higher than expected. The number of identified carriers was much lower in Hispanics than in Caucasians. We conclude that large-scale prenatal screening for CF heterozygotes in the absence of a family history of CF is an acceptable method for identifying couples at risk for affected fetuses. Sufficient pretest education can be accomplished efficiently, test insensitivity is well accepted, adverse psychological events are not observed, and general patient satisfaction is high. 66 refs., 1 fig., 8 tabs.

  2. Negative relationships between cellular immune response, Mhc class II heterozygosity and secondary sexual trait in the montane water vole.

    PubMed

    Charbonnel, Nathalie; Bryja, Josef; Galan, Maxime; Deter, Julie; Tollenaere, Charlotte; Chaval, Yannick; Morand, Serge; Cosson, Jean-François

    2010-05-01

    Heterogeneities in immune responsiveness may affect key epidemiological parameters and the dynamics of pathogens. The roles of immunogenetics in these variations remain poorly explored. We analysed the influence of Major histocompatibility complex (Mhc) genes and epigamic traits on the response to phytohaemagglutinin in males from cyclic populations of the montane water vole (Arvicola scherman). Besides, we tested the relevance of lateral scent glands as honest signals of male quality. Our results did not corroborate neither the hypotheses of genome-wide heterozygosity-fitness correlation nor the Mhc heterozygote advantage. We found a negative relationship between Mhc hetetozygosity and response to phytohaemagglutinin, mediated by a specific Mhc homozygous genotype. Our results therefore support the hypothesis of the Arte-Dqa-05 homozygous genotype being a 'good' Mhc variant in terms of immunogenetic quality. The development of the scent glands seems to be an honest signal for mate choice as it is negatively correlated with helminth load. The 'good gene' hypothesis was not validated as Arte-Dqa-05 homozygous males did not exhibit larger glands. Besides, the negative relationship observed between the size of these glands and the response to phytohaemagglutinin, mainly for Mhc homozygotes, corroborates the immunocompetence handicap hypothesis. The Mhc variants associated with larger glands remain yet to be determined. PMID:25567924

  3. Negative relationships between cellular immune response, Mhc class II heterozygosity and secondary sexual trait in the montane water vole.

    PubMed

    Charbonnel, Nathalie; Bryja, Josef; Galan, Maxime; Deter, Julie; Tollenaere, Charlotte; Chaval, Yannick; Morand, Serge; Cosson, Jean-François

    2010-05-01

    Heterogeneities in immune responsiveness may affect key epidemiological parameters and the dynamics of pathogens. The roles of immunogenetics in these variations remain poorly explored. We analysed the influence of Major histocompatibility complex (Mhc) genes and epigamic traits on the response to phytohaemagglutinin in males from cyclic populations of the montane water vole (Arvicola scherman). Besides, we tested the relevance of lateral scent glands as honest signals of male quality. Our results did not corroborate neither the hypotheses of genome-wide heterozygosity-fitness correlation nor the Mhc heterozygote advantage. We found a negative relationship between Mhc hetetozygosity and response to phytohaemagglutinin, mediated by a specific Mhc homozygous genotype. Our results therefore support the hypothesis of the Arte-Dqa-05 homozygous genotype being a 'good' Mhc variant in terms of immunogenetic quality. The development of the scent glands seems to be an honest signal for mate choice as it is negatively correlated with helminth load. The 'good gene' hypothesis was not validated as Arte-Dqa-05 homozygous males did not exhibit larger glands. Besides, the negative relationship observed between the size of these glands and the response to phytohaemagglutinin, mainly for Mhc homozygotes, corroborates the immunocompetence handicap hypothesis. The Mhc variants associated with larger glands remain yet to be determined.

  4. MHC and Evolution in Teleosts

    PubMed Central

    Grimholt, Unni

    2016-01-01

    Major histocompatibility complex (MHC) molecules are key players in initiating immune responses towards invading pathogens. Both MHC class I and class II genes are present in teleosts, and, using phylogenetic clustering, sequences from both classes have been classified into various lineages. The polymorphic and classical MHC class I and class II gene sequences belong to the U and A lineages, respectively. The remaining class I and class II lineages contain nonclassical gene sequences that, despite their non-orthologous nature, may still hold functions similar to their mammalian nonclassical counterparts. However, the fact that several of these nonclassical lineages are only present in some teleost species is puzzling and questions their functional importance. The number of genes within each lineage greatly varies between teleost species. At least some gene expansions seem reasonable, such as the huge MHC class I expansion in Atlantic cod that most likely compensates for the lack of MHC class II and CD4. The evolutionary trigger for similar MHC class I expansions in tilapia, for example, which has a functional MHC class II, is not so apparent. Future studies will provide us with a more detailed understanding in particular of nonclassical MHC gene functions. PMID:26797646

  5. Hemochromatosis heterozygotes may constitute a radiation-sensitive subpopulation.

    SciTech Connect

    Stevens, R G.; Morris, James E. ); Anderson, Larry E. )

    1999-12-01

    A primary mechanism of radiation-induced DNA damage is by generation of free radicals. Chronically increased oxidative stress from elevated body iron may increase radiation sensitivity by decreasing cellular oxygen radical scavenging capability. Hemochromatosis heterozygotes have elevated body iron. Low-level radiation sensitization by iron may be particularly pertinent for risk of breast cancer. Since ten percent of the population appears to be heterozygous for the hemochromatosis gene, a radiosensitizing effect would have pervasive implications.

  6. Heterozygote advantage as a natural consequence of adaptation in diploids

    PubMed Central

    Sellis, Diamantis; Callahan, Benjamin J.; Petrov, Dmitri A.; Messer, Philipp W.

    2011-01-01

    Molecular adaptation is typically assumed to proceed by sequential fixation of beneficial mutations. In diploids, this picture presupposes that for most adaptive mutations, the homozygotes have a higher fitness than the heterozygotes. Here, we show that contrary to this expectation, a substantial proportion of adaptive mutations should display heterozygote advantage. This feature of adaptation in diploids emerges naturally from the primary importance of the fitness of heterozygotes for the invasion of new adaptive mutations. We formalize this result in the framework of Fisher's influential geometric model of adaptation. We find that in diploids, adaptation should often proceed through a succession of short-lived balanced states that maintain substantially higher levels of phenotypic and fitness variation in the population compared with classic adaptive walks. In fast-changing environments, this variation produces a diversity advantage that allows diploids to remain better adapted compared with haploids despite the disadvantage associated with the presence of unfit homozygotes. The short-lived balanced states arising during adaptive walks should be mostly invisible to current scans for long-term balancing selection. Instead, they should leave signatures of incomplete selective sweeps, which do appear to be common in many species. Our results also raise the possibility that balancing selection, as a natural consequence of frequent adaptation, might play a more prominent role among the forces maintaining genetic variation than is commonly recognized. PMID:22143780

  7. Can Molecular Imprinting Explain Heterozygote Deficiency and Hybrid Vigor?

    PubMed Central

    Chakraborty, R.

    1989-01-01

    Molecular imprinting, the phenomenon of differential expressions of a gene based on whether it is paternally or maternally derived, has been noted in mice, humans, and other nonmammalian organisms. Effects of differential imprinting are important not only in the study of the manifestation of deleterious genes; they have important evolutionary implications as well. It is shown here that molecular imprinting may mimic observations that are often construed to be due to hybrid vigor and/or inbreeding depression. Furthermore, if a locus undergoes differential imprinting, it also yields observed genotypic proportions which mimic heterozygote deficiency in the population without the aid of natural selection. PMID:2759426

  8. Aspartame metabolism in normal adults, phenylketonuric heterozygotes, and diabetic subjects.

    PubMed

    Filer, L J; Stegink, L D

    1989-01-01

    This study reviews clinical studies testing the effects of various doses of aspartame on blood levels of phenylalanine, aspartate, and methanol in normal subjects and known phenylketonuric heterozygotes. The effect of aspartame on the phenylalanine-to-large neutral amino acid ratio under various feeding situations is shown. The clinical studies of aspartame in diabetic subjects are limited to observations of its effects on blood levels of glucose, lipids, insulin, and glucagon. These studies clearly demonstrate the safety of this high-intensity sweetener for use by humans.

  9. Extremely varied phenotypes in granular corneal dystrophy type 2 heterozygotes

    PubMed Central

    Han, Kyung Eun; Choi, Seung-il; Chung, Woo Suk; Jung, Se Hwan; Katsanis, Nicholas; Kim, Tae-im

    2012-01-01

    Purpose To investigate the phenotypic variability of patients bearing the heterozygous R124H mutation in the TGFBI (transforming growth factor-beta-induced) gene that causes granular corneal dystrophy type 2 (GCD2). Methods We describe the phenotypic range of GCD2 heterozygotes for the common R124H mutation in TGFBI; seven with an extremely mild phenotype and six with an extremely severe phenotype. Detailed slit-lamp photographs of these patients were generated. All patients had no history of ocular surgery and were diagnosed as being heterozygous for GCD2 by DNA analysis from peripheral blood. Expression levels of transforming growth factor-beta-induced protein (TGFBIp) were compared among cultured corneal fibroblasts from ten normal donors. Results We report profound differences in the severity of the phenotype across our case series. Two patients with a mild phenotype were diagnosed as unaffected at presentation; however follow-up examinations revealed granular deposits. Importantly, we also observed familial clustering of phenotypic variance; five patients from two families with a mild phenotype showed a similarly mild phenotype within family members. Similarly, six patients from two families with severe phenotypes showed corneal deposits with similar patterns and severity within each distinct family, but distinct patterns between families. TGFBIp expressions from different donor derived cultured corneal fibroblasts were different between one another. Conclusions GCD2 heterozygotes have extremely varied phenotypes between individual patients. However phenotypes were broadly consistent within families, suggesting that the observed variable expressivity might be regulated by other genetic factors that could influence the abundance of TGFBIp or the function of the pathway. From a clinical perspective, our data also highlighted that genetic analysis and meticulous slit-lamp examination in both eyes at multiple time intervals is necessary. PMID:22815629

  10. Patterns of MHC-G-Like and MHC-B Diversification in New World Monkeys

    PubMed Central

    Lugo, Juan S.; Cadavid, Luis F.

    2015-01-01

    The MHC class I (MHC-I) region in New World monkeys (Platyrrhini) has remained relatively understudied. To evaluate the diversification patterns and transcription behavior of MHC-I in Platyrrhini, we first analyzed public genomic sequences from the MHC-G-like subregion in Saimiri boliviensis, Ateles geoffroyi and Callicebus moloch, and from the MHC-B subregion in Saimiri boliviensis. While S. boliviensis showed multiple copies of both MHC-G-like (10) and –B (15) loci, A. geoffroyi and C. moloch had only three and four MHC-G-like genes, respectively, indicating that not all Platyrrhini species have expanded their MHC-I loci. We then sequenced MHC-G-like and -B cDNAs from nine Platyrrhini species, recovering two to five unique cDNAs per individual for both loci classes. In two Saguinus species, however, no MHC-B cDNAs were found. In phylogenetic trees, MHC-G-like cDNAs formed genus-specific clusters whereas the MHC-B cDNAs grouped by Platyrrhini families, suggesting a more rapid diversification of the former. Furthermore, cDNA sequencing in 12 capuchin monkeys showed that they transcribe at least four MHC-G-like and five MHC-B polymorphic genes, showing haplotypic diversity for gene copy number and signatures of positive natural selection at the peptide binding region. Finally, a quantitative index for MHC:KIR affinity was proposed and tested to predict putative interacting pairs. Altogether, our data indicate that i) MHC-I genes has expanded differentially among Platyrrhini species, ii) Callitrichinae (tamarins and marmosets) MHC-B loci have limited or tissue-specific expression, iii) MHC-G-like genes have diversified more rapidly than MHC-B genes, and iv) the MHC-I diversity is generated mainly by genetic polymorphism and gene copy number variation, likely promoted by natural selection for ligand binding. PMID:26121030

  11. MHC variability in heritage breeds of chickens.

    PubMed

    Fulton, J E; Lund, A R; McCarron, A M; Pinegar, K N; Korver, D R; Classen, H L; Aggrey, S; Utterbach, C; Anthony, N B; Berres, M E

    2016-02-01

    The chicken Major Histocompatibility Complex (MHC) is very strongly associated with disease resistance and thus is a very important region of the chicken genome. Historically, MHC (B locus) has been identified by the use of serology with haplotype specific alloantisera. These antisera can be difficult to produce and frequently cross-react with multiple haplotypes and hence their application is generally limited to inbred and MHC-defined lines. As a consequence, very little information about MHC variability in heritage chicken breeds is available. DNA-based methods are now available for examining MHC variability in these previously uncharacterized populations. A high density SNP panel consisting of 101 SNP that span a 230,000 bp region of the chicken MHC was used to examine MHC variability in 17 heritage populations of chickens from five universities from Canada and the United States. The breeds included 6 heritage broiler lines, 3 Barred Plymouth Rock, 2 New Hampshire and one each of Rhode Island Red, Light Sussex, White Leghorn, Dark Brown Leghorn, and 2 synthetic lines. These heritage breeds contained from one to 11 haplotypes per line. A total of 52 unique MHC haplotypes were found with only 10 of them identical to serologically defined haplotypes. Furthermore, nine MHC recombinants with their respective parental haplotypes were identified. This survey confirms the value of these non-commercially utilized lines in maintaining genetic diversity. The identification of multiple MHC haplotypes and novel MHC recombinants indicates that diversity is being generated and maintained within these heritage populations.

  12. Heterozygote Advantage in a Finite Population: Black Color in Wolves.

    PubMed

    Hedrick, Philip W; Stahler, Daniel R; Dekker, Dick

    2014-05-01

    There is a striking color polymorphism for wolves in the Yellowstone National Park where approximately half the wolves are black. The genetic basis for this polymorphism is known, and fitnesses of the genotypes are estimated. These estimates suggest that there is strong heterozygote advantage but substantial asymmetry in the fitness differences of the 2 homozygotes. Theoretically, such fitnesses in a finite population are thought to reduce genetic variation at least as fast as if there were no selection at all. Because the color polymorphism has remained at about the same frequency for 17 years, about 4 generations, we investigated whether this was consistent with the theoretical predictions. Counter to this general expectation of loss, given the initial frequency of black wolves, the theoretical expectation in this case was found to be that the frequency would only decline slowly over time. For example, if the effective population size is 20, then the expected black allele frequency after 4 generations would be 0.191, somewhat less than the observed value of 0.237. However, nearly 30% of the time the expected frequency is 0.25 or greater, consistent with the contemporary observed frequency. In other words and in contrast to general theoretical predictions, because of the short period of time in evolutionary terms and the relatively weak selection at low frequencies, the observed variation and the predicted theoretical variation are not inconsistent. PMID:24795451

  13. Admission of Hb S heterozygotes to a general hospital is relatively reduced in malarial areas.

    PubMed Central

    Colombo, B; Felicetti, L

    1985-01-01

    A comparison between the frequency of Hb S heterozygotes in blood donors, outpatients, and inpatients of a general hospital carried out at the Maputo Central Hospital, Mozambique, where Plasmodium falciparum malaria is endemic, showed a statistically significant lower percentage of Hb S heterozygotes in the inpatient group. Evidence is thus provided that the protection given by Hb S to heterozygotes concerns not only malarial infection itself, but probably a wide spectrum of diseases to which persons who have a special resistance to P falciparum infection are less prone. PMID:4045956

  14. MHC-assortative facial preferences in humans

    PubMed Central

    Roberts, S. Craig; Little, Anthony C; Gosling, L. Morris; Jones, Benedict C; Perrett, David I; Carter, Vaughan; Petrie, Marion

    2005-01-01

    Individuals tend to choose mates who are sufficiently genetically dissimilar to avoid inbreeding. As facial attractiveness is a key factor in human mate preference, we investigated whether facial preferences were related to genetic dissimilarity. We asked female volunteers to rate the attractiveness of men from photographs and compared these results with individual genotypes at the major histocompatibility complex (MHC). In contrast to previously reported preferences based on odour, we found a non-significant tendency for women to rate MHC-similar faces as more attractive, suggesting a preference for cues to a self-similar MHC in faces. Further analysis revealed that male faces received higher attractiveness scores when rated by women who were MHC-similar than by MHC-dissimilar women. Although unexpected, this MHC-similar facial preference is consistent with other studies documenting assortative preferences in humans, including for facial phenotype. PMID:17148217

  15. Cohesin regulates MHC class II genes through interactions with MHC class II insulators.

    PubMed

    Majumder, Parimal; Boss, Jeremy M

    2011-10-15

    Cohesin is a multiprotein, ringed complex that is most well-known for its role in stabilizing the association of sister chromatids between S phase and M. More recently, cohesin was found to be associated with transcriptional insulators, elements that are associated with the organization of chromatin into regulatory domains. The human MHC class II (MHC-II) locus contains 10 intergenic elements, termed MHC-II insulators, which bind the transcriptional insulator protein CCCTC-binding factor. MHC-II insulators interact with each other, forming a base architecture of discrete loops and potential regulatory domains. When MHC-II genes are expressed, their proximal promoter regulatory regions reorganize to the foci established by the interacting MHC-II insulators. MHC-II insulators also bind cohesin, but the functional role of cohesin in regulating this system is not known. In this article, we show that the binding of cohesin to MHC-II insulators occurred irrespective of MHC-II expression but was required for optimal expression of the HLA-DR and HLA-DQ genes. In a DNA-dependent manner, cohesin subunits interacted with CCCTC-binding factor and the MHC-II-specific transcription factors regulatory factor X and CIITA. Intriguingly, cohesin subunits were important for DNA looping interactions between the HLA-DRA promoter region and a 5' MHC-II insulator but were not required for interactions between the MHC-II insulators themselves. This latter observation introduces cohesin as a regulator of MHC-II expression by initiating or stabilizing MHC-II promoter regulatory element interactions with the MHC-II insulator elements, events that are required for maximal MHC-II transcription.

  16. Antigen Presentation by MHC-Dressed Cells

    PubMed Central

    Nakayama, Masafumi

    2015-01-01

    Professional antigen-presenting cells (APCs) such as conventional dendritic cells (DCs) process protein antigens to MHC-bound peptides and then present the peptide–MHC complexes to T cells. In addition to this canonical antigen presentation pathway, recent studies have revealed that DCs and non-APCs can acquire MHC class I (MHCI) and/or MHC class II (MHCII) from neighboring cells through a process of cell–cell contact-dependent membrane transfer called trogocytosis. These MHC-dressed cells subsequently activate or regulate T cells via the preformed antigen peptide–MHC complexes without requiring any further processing. In addition to trogocytosis, intercellular transfer of MHCI and MHCII can be mediated by secretion of membrane vesicles such as exosomes from APCs, generating MHC-dressed cells. This review focuses on the physiological role of antigen presentation by MHCI- or MHCII-dressed cells, and also discusses differences and similarities between trogocytosis and exosome-mediated transfer of MHC. PMID:25601867

  17. The MHC class I genes of zebrafish.

    PubMed

    Dirscherl, Hayley; McConnell, Sean C; Yoder, Jeffrey A; de Jong, Jill L O

    2014-09-01

    Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species.

  18. Innate lymphoid cells and the MHC.

    PubMed

    Robinette, M L; Colonna, M

    2016-01-01

    Innate lymphoid cells (ILCs) are a new class of immune cells that include natural killer (NK) cells and appear to be the innate counterparts to CD4(+) helper T cells and CD8(+) cytotoxic T cells based on developmental and functional similarities. Like T cells, both NK cells and other ILCs also show connections to the major histocompatibility complex (MHC). In human and mouse, NK cells recognize and respond to classical and nonclassical MHC I molecules as well as structural homologues, whereas mouse ILCs have recently been shown to express MHC II. We describe the history of MHC I recognition by NK cells and discuss emerging roles for MHC II expression by ILC subsets, making comparisons between both mouse and human when possible.

  19. Enhanced Detection of Antigen-Specific CD4+ T Cells Using Altered Peptide Flanking Residue Peptide–MHC Class II Multimers

    PubMed Central

    Holland, Christopher J.; Dolton, Garry; Scurr, Martin; Ladell, Kristin; Schauenburg, Andrea J.; Miners, Kelly; Madura, Florian; Sewell, Andrew K.; Price, David A.

    2015-01-01

    Fluorochrome-conjugated peptide–MHC (pMHC) class I multimers are staple components of the immunologist’s toolbox, enabling reliable quantification and analysis of Ag-specific CD8+ T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4+ T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II–bound peptides, can enhance TCR–pMHC-II binding and T cell activation without loss of specificity. Consistent with these findings, pMHC-II multimers incorporating peptide flanking residue modifications proved superior for the ex vivo detection, characterization, and manipulation of Ag-specific CD4+ T cells, highlighting an unappreciated feature of TCR–pMHC-II interactions. PMID:26553072

  20. Heterozygote advantage: the effect of artificial selection in livestock and pets.

    PubMed

    Hedrick, Philip W

    2015-01-01

    There are a number of mutants in livestock and pets that have a heterozygote advantage because of artificial selection for these mutants in heterozygotes and strong detrimental effects from natural selection in homozygotes. In livestock, these mutants include ones that influence milk yield in dairy cattle, fecundity in sheep, litter size in pigs, muscling in beef cattle, color in horses, lean meat content in pigs, and comb morphology in chickens. In pets, these mutants include ones that influence tail length in cats and hairlessness, muscling, color, or ridgeback hair in dogs. A large variety of mutants are responsible, including small or large deletions or insertions and single base-pair nonsynonymous changes. Many of the mutants cause loss of function for the genes involved, a change that results in the pleiotropic effects of a desired phenotype in heterozygotes and low fitness or an undesirable phenotype in mutant homozygotes. I examine how selection changes the frequency of these mutants and provide an approach to estimate the amount of artificial selection that is necessary to maintain these mutants at the high frequencies often observed. The amount of artificial selection ranges from low selection favoring heterozygotes for double muscling in whippet dogs to very strong selection favoring the "flash" (part white, part solid) heterozygote in boxer dogs and the rose comb in chickens. In several examples (rose comb in Wyandotte chickens and the hair ridge in Rhodesian ridgeback dogs), there is actually stronger selection for the mutant than against it, making the frequency of the mutant greater than 50%.

  1. Symptomatic female heterozygotes for adrenoleukodystrophy: A report of two unrelated cases and review of the literature.

    PubMed

    O'Brien, T J; Gates, P G; Byrne, E

    1996-04-01

    We report two cases of unrelated female heterozygotes for adrenoleukodystrophy (ALD) who have developed progressive neurological disease. Both presented with a progressive myelopathy in midlife and one has since also developed a peripheral neuropathy. Both women had elevated very long chain fatty acid (VLCFA) levels. One patient has been on Lorenzo's oil for 2 years with normalisation of her plasma VLCFA assays but her condition has progressed relentlessly and the second discontinued Lorenzo's oil after 1 month due to unacceptable weight loss. Review of the literature reveals that significant neurological symptoms develop in 15-20% of female heterozygotes and that abnormalities on neurological examination occur in up to 55%. Despite a not excessively rare estimated gene frequency of 1 20,000 the diagnosis of a symptomatic heterozygote for ALD is rarely made in the absence of an affected male relative with most patients misdiagnosed as suffering from multiple sclerosis.

  2. Cystic Fibrosis Heterozygote Resistance to Cholera Toxin in the Cystic Fibrosis Mouse Model

    NASA Astrophysics Data System (ADS)

    Gabriel, Sherif E.; Brigman, Kristen N.; Koller, Beverly H.; Boucher, Richard C.; Stutts, M. Jackson

    1994-10-01

    The effect of the number of cystic fibrosis (CF) alleles on cholera toxin (CT)-induced intestinal secretion was examined in the CF mouse model. CF mice that expressed no CF transmembrane conductance regulator (CFTR) protein did not secrete fluid in response to CT. Heterozygotes expressed 50 percent of the normal amount of CFTR protein in the intestinal epithelium and secreted 50 percent of the normal fluid and chloride ion in response to CT. This correlation between CFTR protein and CT-induced chloride ion and fluid secretion suggests that CF heterozygotes might possess a selective advantage of resistance to cholera.

  3. Laboratory evalution of a translocation double heterozygote for genetic control of Aedes aegypti.

    PubMed

    Uppal, D K; Curtis, C F; Soni, V K

    1978-07-01

    Two pure translocation homozygote stocks, T1/T1 and T3/T3, were used to produce a double translocation heterozygote system designated T1/T3, employing T1/T1 as the male and T3/T3 as the female parent. The double heterozygote showed 73 % sterility when mated to wild females. Tests on mating competitiveness, recombination frequency in the differential segment, insemination rate and inheritance of sterility after release, for four generations in laboratory cages, have been carried out to evaluate the efficiency of this strain as an agent for a population control programme.

  4. Towards the MHC-peptide combinatorics.

    PubMed

    Kangueane, P; Sakharkar, M K; Kolatkar, P R; Ren, E C

    2001-05-01

    The exponentially increased sequence information on major histocompatibility complex (MHC) alleles points to the existence of a high degree of polymorphism within them. To understand the functional consequences of MHC alleles, 36 nonredundant MHC-peptide complexes in the protein data bank (PDB) were examined. Induced fit molecular recognition patterns such as those in MHC-peptide complexes are governed by numerous rules. The 36 complexes were clustered into 19 subgroups based on allele specificity and peptide length. The subgroups were further analyzed for identifying common features in MHC-peptide binding pattern. The four major observations made during the investigation were: (1) the positional preference of peptide residues defined by percentage burial upon complex formation is shown for all the 19 subgroups and the burial profiles within entries in a given subgroup are found to be similar; (2) in class I specific 8- and 9-mer peptides, the fourth residue is consistently solvent exposed, however this observation is not consistent in class I specific 10-mer peptides; (3) an anchor-shift in positional preference is observed towards the C terminal as the peptide length increases in class II specific peptides; and (4) peptide backbone atoms are proportionately dominant at the MHC-peptide interface.

  5. Quality control of MHC class I maturation.

    PubMed

    Paulsson, Kajsa M; Wang, Ping

    2004-01-01

    Assembly of MHC class I molecules in the ER is regulated by the so-called loading complex (LC). This multiprotein complex is of definite importance for class I maturation, but its exact organization and order of assembly are not known. Evidence implies that the quality of peptides loaded onto class I molecules is controlled at multiple stages during MHC class I assembly. We recently found that tapasin, an important component of the LC, interacts with COPI-coated vesicles. Biochemical studies suggested that the tapa-sin-COPI interaction regulates the retrograde transport of immature MHC class I molecules from the Golgi network back to the ER. Also other findings now propose that in addition to the peptide-loading control, the quality control of MHC class I antigen presentation includes the restriction of export of suboptimally loaded MHC class I molecules to the cell surface. In this review, we use recent studies of tapasin to examine the efficiency of TAP, the LC constitution, ER quality control of class I assembly, and peptide optimization. The concepts of MHC class I recycling and ER retention are also discussed. PMID:14718384

  6. Ultrastructure and cell cycle distribution of erythropoietic cells in heterozygotes and homozygotes for haemoglobin E.

    PubMed

    Wickramasinghe, S N; Hughes, M; Wasi, P; Fucharoen, S; Litwinczuk, R A

    1984-08-01

    Marrow aspirates from heterozygotes and homozygotes for haemoglobin E (HbE) have been studied by electron microscopy and by the technique of combined Feulgen microspectrophotometry and 3H-thymidine autoradiography. The erythropoietic cells of heterozygotes did not contain any precipitated globin chains and the proliferating erythroblasts of such individuals showed no abnormality in their distribution in the different stages of interphase. By contrast, 0-1.5% of late erythroblast profiles and 3.1-12.8% of marrow reticulocyte profiles of homozygotes contained intracellular inclusions resembling precipitated alpha-chains. Although precipitated globin chains were not seen in the early polychromatic erythroblasts of homozygotes, the number of these cells in the G2 phase relative to that in the S phase was increased. These data indicate that there is probably little or no imbalance of globin chain synthesis in heterozygotes, a substantial degree of imbalance in homozygotes, and a disturbance of erythroblast proliferation in homozygotes which cannot be attributed to the deleterious effects of detectable intracellular alpha-chain precipitates. The electron microscope and cell cycle distribution data in the homozygotes for HbE were similar to those in two heterozygotes for beta thalassaemia. PMID:6743574

  7. Heterologous Synapsis and Crossover Suppression in Heterozygotes for a Pericentric Inversion in the Zebra Finch.

    PubMed

    del Priore, Lucía; Pigozzi, María I

    2015-01-01

    In the zebra finch, 2 alternative morphs regarding centromere position were described for chromosome 6. This polymorphism was interpreted to be the result of a pericentric inversion, but other causes of the centromere repositioning were not ruled out. We used immunofluorescence localization to examine the distribution of MLH1 foci on synaptonemal complexes to test the prediction that pericentric inversions cause synaptic irregularities and/or crossover suppression in heterozygotes. We found complete suppression of crossing over in the region involved in the rearrangement in male and female heterozygotes. In contrast, the same region showed high levels of crossing over in homozygotes for the acrocentric form of this chromosome. No inversion loops or synaptic irregularities were detected along bivalent 6 in heterozygotes suggesting that heterologous pairing is achieved during zygotene or early pachytene. Altogether these findings strongly indicate that the polymorphic chromosome 6 originated by a pericentric inversion. Since inversions are common rearrangements in karyotypic evolution in birds, it seems likely that early heterologous pairing could help to fix these rearrangements, preventing crossing overs in heterozygotes and their deleterious effects on fertility.

  8. "Untangling Sickle-Cell Anemia and the Teaching of Heterozygote Protection"

    ERIC Educational Resources Information Center

    Howe, Eric Michael

    2007-01-01

    Introductory biology textbooks often use the example of sickle-cell anemia to illustrate the concept of heterozygote protection. Ordinarily scientists expect the frequency of a gene associated with a debilitating illness would be low owing to its continual elimination by natural selection. The gene that causes sickle-cell anemia, however, has a…

  9. `Untangling Sickle-cell Anemia and the Teaching of Heterozygote Protection'

    NASA Astrophysics Data System (ADS)

    Howe, Eric Michael

    2007-01-01

    Introductory biology textbooks often use the example of sickle-cell anemia to illustrate the concept of heterozygote protection. Ordinarily scientists expect the frequency of a gene associated with a debilitating illness would be low owing to its continual elimination by natural selection. The gene that causes sickle-cell anemia, however, has a relatively high frequency in many parts of the world. Historically, scientists proposed and defended several alternative theories to account for this anomaly, though it is now widely recognized among the scientific community that high frequencies of the gene reflect its benefit to heterozygotes against malaria. Textbooks normally develop this concept with reference to the often-used maps of Africa showing how in areas where the frequency of the sickle-cell gene is high, there is also higher exposure to the disease malaria. While sickle-cell anemia is often the example of choice for explaining and illustrating the concept of heterozygote protection, the present paper argues that exploring the history of scientific research behind our contemporary understanding has advantages for helping students understand multiple factors related to population genetics (e.g. mutation, gene flow, drift) in addition to heterozygote protection. In so doing, this approach invites students to evaluate the legitimacy of their own alternative conceptions about introductory population genetics or about the genetics of the disease sickle-cell anemia. The various historical theories scientists proposed and defended often resemble those of students who first learn about the disease. As such, a discussion of how scientists reached consensus about the role of heterozygote protection may help students understand and appreciate what are now recognized to be limitations in the views they bring to their classrooms. The paper concludes by discussing the ramifications of this approach in potentially helping students to examine certain aspects of the nature of

  10. Genomic organization of the crested ibis MHC provides new insight into ancestral avian MHC structure

    PubMed Central

    Chen, Li-Cheng; Lan, Hong; Sun, Li; Deng, Yan-Li; Tang, Ke-Yi; Wan, Qiu-Hong

    2015-01-01

    The major histocompatibility complex (MHC) plays an important role in immune response. Avian MHCs are not well characterized, only reporting highly compact Galliformes MHCs and extensively fragmented zebra finch MHC. We report the first genomic structure of an endangered Pelecaniformes (crested ibis) MHC containing 54 genes in three regions spanning ~500 kb. In contrast to the loose BG (26 loci within 265 kb) and Class I (11 within 150) genomic structures, the Core Region is condensed (17 within 85). Furthermore, this Region exhibits a COL11A2 gene, followed by four tandem MHC class II αβ dyads retaining two suites of anciently duplicated “αβ” lineages. Thus, the crested ibis MHC structure is entirely different from the known avian MHC architectures but similar to that of mammalian MHCs, suggesting that the fundamental structure of ancestral avian class II MHCs should be “COL11A2-IIαβ1-IIαβ2.” The gene structures, residue characteristics, and expression levels of the five class I genes reveal inter-locus functional divergence. However, phylogenetic analysis indicates that these five genes generate a well-supported intra-species clade, showing evidence for recent duplications. Our analyses suggest dramatic structural variation among avian MHC lineages, help elucidate avian MHC evolution, and provide a foundation for future conservation studies. PMID:25608659

  11. The opossum MHC genomic region revisited.

    PubMed

    Krasnec, Katina V; Sharp, Alana R; Williams, Tracey L; Miller, Robert D

    2015-04-01

    The gray short-tailed opossum Monodelphis domestica is one of the few marsupial species for which a high quality whole genome sequence is available and the major histocompatibility complex (MHC) region has been annotated. Previous analyses revealed only a single locus within the opossum MHC region, designated Modo-UA1, with the features expected for encoding a functionally classical class I α-chain. Nine other class I genes found within the MHC are highly divergent and have features usually associated with non-classical roles. The original annotation, however, was based on an early version of the opossum genome assembly. More recent analyses of allelic variation in individual opossums revealed too many Modo-UA1 sequences per individual to be accounted for by a single MHC class I locus found in the genome assembly. A reanalysis of a later generation assembly, MonDom5, revealed the presence of two additional loci, now designated Modo-UA3 and UA4, in a region that was expanded and more complete than in the earlier assembly. Modo-UA1, UA3, and UA4 are all transcribed, although Modo-UA4 transcripts are rarer. Modo-UA4 is also relatively non-polymorphic. Evidence presented support the accuracy of the later assembly and the existence of three related class I genes in the opossum, making opossums more typical of mammals and most tetrapods by having multiple apparent classical MHC class I loci.

  12. Decreased HIV Type 1 Transcription in CCR5-Δ32 Heterozygotes During Suppressive Antiretroviral Therapy

    PubMed Central

    Wang, Charlene; Abdel-Mohsen, Mohamed; Strain, Matthew C.; Lada, Steven M.; Yukl, Steven; Cockerham, Leslie R.; Pilcher, Christopher D.; Hecht, Frederick M.; Sinclair, Elizabeth; Liegler, Teri; Richman, Douglas D.; Deeks, Steven G.; Pillai, Satish K.

    2014-01-01

    Individuals who are heterozygous for the CCR5-Δ32 mutation provide a natural model to examine the effects of reduced CCR5 expression on human immunodeficiency virus (HIV) persistence. We evaluated the HIV reservoir in 18 CCR5-Δ32 heterozygotes and 54 CCR5 wild-type individuals during suppressive antiretroviral therapy. Cell-associated HIV RNA levels (P = .035), RNA to DNA transcriptional ratios (P = .013), and frequency of detectable HIV 2–long terminal repeat circular DNA (P = .013) were significantly lower in CD4+ T cells from CCR5-Δ32 heterozygotes. Cell-associated HIV RNA was significantly correlated with CCR5 surface expression on CD4+ T cells (r2 = 0.136; P = .002). Our findings suggest that curative strategies should further explore manipulation of CCR5. PMID:24935955

  13. Decreased HIV type 1 transcription in CCR5-Δ32 heterozygotes during suppressive antiretroviral therapy.

    PubMed

    Wang, Charlene; Abdel-Mohsen, Mohamed; Strain, Matthew C; Lada, Steven M; Yukl, Steven; Cockerham, Leslie R; Pilcher, Christopher D; Hecht, Frederick M; Sinclair, Elizabeth; Liegler, Teri; Richman, Douglas D; Deeks, Steven G; Pillai, Satish K

    2014-12-01

    Individuals who are heterozygous for the CCR5-Δ32 mutation provide a natural model to examine the effects of reduced CCR5 expression on human immunodeficiency virus (HIV) persistence. We evaluated the HIV reservoir in 18 CCR5-Δ32 heterozygotes and 54 CCR5 wild-type individuals during suppressive antiretroviral therapy. Cell-associated HIV RNA levels (P=.035), RNA to DNA transcriptional ratios (P=.013), and frequency of detectable HIV 2-long terminal repeat circular DNA (P=.013) were significantly lower in CD4+ T cells from CCR5-Δ32 heterozygotes. Cell-associated HIV RNA was significantly correlated with CCR5 surface expression on CD4+ T cells (r2=0.136; P=.002). Our findings suggest that curative strategies should further explore manipulation of CCR5.

  14. Heterogeneity of chromosomal breakage levels in epithelial tissue of ataxia-telangiectasia homozygotes and heterozygotes.

    PubMed

    Rosin, M P; Ochs, H D; Gatti, R A; Boder, E

    1989-09-01

    The objective of this study was to obtain an estimate of the frequency distribution of spontaneous chromosomal breakage occurring in vivo in oral epithelia of 20 ataxia-telangiectasia patients (A-T homozygotes) and 26 parents (A-T obligate heterozygotes). Samples of exfoliated cells were obtained from each individual by swabbing the oral cavity and preparing air-dried slides. The percentage of exfoliated cells with micronuclei (MEC frequency) was used as an in vivo indicator for the amount of chromosomal breakage occurring in the tissue. As a population group, MEC frequencies of the A-T patients differed significantly from controls (mean for A-T patients, 1.51; for controls, 0.29; P less than 0.01). However, the values observed in individual patients ranged from MEC frequencies 10- to 12-fold above control values, to frequencies overlapping the upper values observed in the controls. Similarly, MEC frequencies observed among the A-T heterozygotes differed significantly from controls (mean for A-T heterozygotes, 1.02, mean for controls, 0.29; P less than 0.01). However, only 16 of the 26 individuals sampled had MEC frequencies greater than 0.5%, the 90th percentile for controls (compared with 16 of the 20 A-T patients examined). Of the A-T patients 11 had been previously assigned to complementation groups on the basis of sensitivity to x-irradiation. Seven of the patients belonged to group A and had MEC frequencies ranging from 0.3% to 1.9% with the remaining patients belonging to group C with MEC frequencies of 0.2% to 0.9%. The data presented in this paper suggest that although levels of spontaneous breakage in epithelial tissues of A-T patients and A-T obligate heterozygotes are often significantly elevated, this is not the case in all individuals.

  15. Heterozygote Advantage Probably Maintains Rhesus Factor Blood Group Polymorphism: Ecological Regression Study

    PubMed Central

    Flegr, Jaroslav

    2016-01-01

    Rhesus factor polymorphism has been an evolutionary enigma since its discovery in 1939. Carriers of the rarer allele should be eliminated by selection against Rhesus positive children born to Rhesus negative mothers. Here I used an ecologic regression study to test the hypothesis that Rhesus factor polymorphism is stabilized by heterozygote advantage. The study was performed in 65 countries for which the frequencies of RhD phenotypes and specific disease burden data were available. I performed multiple multivariate covariance analysis with five potential confounding variables: GDP, latitude (distance from the equator), humidity, medical care expenditure per capita and frequencies of smokers. The results showed that the burden associated with many diseases correlated with the frequencies of particular Rhesus genotypes in a country and that the direction of the relation was nearly always the opposite for the frequency of Rhesus negative homozygotes and that of Rhesus positive heterozygotes. On the population level, a Rhesus-negativity-associated burden could be compensated for by the heterozygote advantage, but for Rhesus negative subjects this burden represents a serious problem. PMID:26811928

  16. Heterozygote to homozygote related living donor liver transplantation in maple syrup urine disease: a case report.

    PubMed

    Patel, N; Loveland, J; Zuckerman, M; Moshesh, P; Britz, R; Botha, J

    2015-05-01

    Liver transplantation is an accepted treatment modality in the management of MSUD. To our knowledge, ours is only the second successful case to date of a patient with MSUD receiving an allograft from an RLD who is a heterozygous carrier for the disease. In view of the worldwide shortage of available organs for transplantation, heterozygote to homozygote transplantation in the setting of MSUD may provide a viable alternative for those awaiting transplantation. We report on the case of a two-yr-old infant with MSUD, who received a left lateral segment (segments II and III) liver transplant from his mother, a heterozygote carrier of one of the three abnormal genes implicated in MSUD. Post-operative BCAA levels normalized in our patient and remained so on an unrestricted protein diet and during times of physiological stress. To date, this is only the second case of a successful RLD liver transplant in a child with MSUD. Preliminary results indicate that RLD liver transplants are at least equivalent to deceased donor liver transplants in the treatment of MSUD, although longer term follow-up is required. Heterozygote to homozygote RLD transplant in patients with MSUD presents a new pool of potential liver donors. PMID:25677046

  17. Evaluation of an aspartame loading test for the detection of heterozygotes for classical phenylketonuria.

    PubMed

    Silva, L C; Pires, R F; Coelho, J C; Jardim, L B; Giugliani, R

    1997-04-01

    Classical phenylketonuria (PKU) is an inborn error of metabolism of autosomal recessive inheritance characterized by the accumulation of phenylalanine (Phe) in tissues due to Phe-4-hydroxylase deficiency. Several methods have been developed for the detection of PKU heterozygotes based on the determination of plasma Phe and tyrosine (Tyr) levels, on the analysis of the Phe/Tyr and Phe2/Tyr ratios and on the use of discriminant functions. The objective of the present study was to test the value of loading with aspartame (a sweetener consisting of Phe, aspartate and methanol) for the identification of PKU carriers. The study was conducted on 22 obligate heterozygotes and 27 controls. Two blood samples were collected (under fasting conditions and 30 min after the loading) for fluorometric determination of Phe and Tyr. Phe, Phe/Tyr and Phe2/Tyr values were higher in heterozygotes, whereas Tyr was higher in controls in both situations investigated. Linear discriminant function was considered to be the best parameter for differentiation of the individuals in the two groups. Under the conditions employed in the present study, aspartame loading did not show any advantages in discriminating between PKU carriers and normal individuals when compared to the same analysis performed under fasting conditions.

  18. Ubiquitination by March-I prevents MHC class II recycling and promotes MHC class II turnover in antigen-presenting cells.

    PubMed

    Cho, Kyung-Jin; Walseng, Even; Ishido, Satoshi; Roche, Paul A

    2015-08-18

    MHC class II (MHC-II)-dependent antigen presentation by antigen-presenting cells (APCs) is carefully controlled to achieve specificity of immune responses; the regulated assembly and degradation of antigenic peptide-MHC-II complexes (pMHC-II) is one aspect of such control. In this study, we have examined the role of ubiquitination in regulating pMHC-II biosynthesis, endocytosis, recycling, and turnover in APCs. By using APCs obtained from MHC-II ubiquitination mutant mice, we find that whereas ubiquitination does not affect pMHC-II formation in dendritic cells (DCs), it does promote the subsequent degradation of newly synthesized pMHC-II. Acute activation of DCs or B cells terminates expression of the MHC-II E3 ubiquitin ligase March-I and prevents pMHC-II ubiquitination. Most importantly, this change results in very efficient pMHC-II recycling from the surface of DCs and B cells, thereby preventing targeting of internalized pMHC-II to lysosomes for degradation. Biochemical and functional assays confirmed that pMHC-II turnover is suppressed in MHC-II ubiquitin mutant DCs or by acute activation of wild-type DCs. These studies demonstrate that acute APC activation blocks the ubiquitin-dependent turnover of pMHC-II by promoting efficient pMHC-II recycling and preventing lysosomal targeting of internalized pMHC-II, thereby enhancing pMHC-II stability for efficient antigen presentation to CD4 T cells.

  19. Effect of high-protein meal plus aspartame ingestion on plasma phenylalanine concentrations in obligate heterozygotes for phenylketonuria.

    PubMed

    Curtius, H C; Endres, W; Blau, N

    1994-04-01

    The effect of a protein-rich meal alone or in combination with 85 mumol/kg body weight aspartame (APM) on plasma phenylalanine and large neutral amino acids (LNAA) was evaluated in obligate heterozygotes for phenylketonuria (PKU) and normal subjects (controls). Thirteen PKU heterozygotes (seven women, six men) and 13 controls (five women, eight men) ingested a 12-noon meal providing approximately 303 mumol/kg Phe. In addition, 10 PKU heterozygotes (five women, five men) and 10 controls (five women, five men) ingested the same meal with 85 mumol/kg APM (providing 75 mumol/kg Phe). Plasma amino acids were analyzed at baseline (-4 and 0 hours) and at 1, 3, and 20 hours after the meal or meal plus APM. Compared with the meal alone, ingestion of the meal plus APM significantly increased plasma Phe concentrations in both controls and PKU heterozygotes. Mean plasma Phe values were higher for controls at 1 hour (95 +/- 7 mumol/L) and for PKU heterozygotes at 3 hours (153 +/- 21 mumol/L). After the addition of APM to the meal, the highest mean plasma Phe concentration was only slightly greater than the usual postprandial range for both controls and PKU heterozygotes. Ingestion of the meal did not increase the plasma Phe/LNAA ratio in either controls or PKU heterozygotes. Compared with baseline, the plasma Phe/LNAA ratio increased significantly 1 hour after combined ingestion of the meal plus APM in both groups (P = .020 and P = .008, respectively); however, the ratios were well below the range of Phe/LNAA values in individuals with mild hyperphenylalaninemia, who are clinically normal and do not require a Phe-restricted diet.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Coevolution of T-cell receptors with MHC and non-MHC ligands

    PubMed Central

    Castro, Caitlin C.; Luoma, Adrienne M.; Adams, Erin J.

    2015-01-01

    Summary The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages. PMID:26284470

  1. Identifiying human MHC supertypes using bioinformatic methods.

    PubMed

    Doytchinova, Irini A; Guan, Pingping; Flower, Darren R

    2004-04-01

    Classification of MHC molecules into supertypes in terms of peptide-binding specificities is an important issue, with direct implications for the development of epitope-based vaccines with wide population coverage. In view of extremely high MHC polymorphism (948 class I and 633 class II HLA alleles) the experimental solution of this task is presently impossible. In this study, we describe a bioinformatics strategy for classifying MHC molecules into supertypes using information drawn solely from three-dimensional protein structure. Two chemometric techniques-hierarchical clustering and principal component analysis-were used independently on a set of 783 HLA class I molecules to identify supertypes based on structural similarities and molecular interaction fields calculated for the peptide binding site. Eight supertypes were defined: A2, A3, A24, B7, B27, B44, C1, and C4. The two techniques gave 77% consensus, i.e., 605 HLA class I alleles were classified in the same supertype by both methods. The proposed strategy allowed "supertype fingerprints" to be identified. Thus, the A2 supertype fingerprint is Tyr(9)/Phe(9), Arg(97), and His(114) or Tyr(116); the A3-Tyr(9)/Phe(9)/Ser(9), Ile(97)/Met(97) and Glu(114) or Asp(116); the A24-Ser(9) and Met(97); the B7-Asn(63) and Leu(81); the B27-Glu(63) and Leu(81); for B44-Ala(81); the C1-Ser(77); and the C4-Asn(77). PMID:15034046

  2. [Para-Bombay phenotype caused by combined heterozygote of two bases deletion on fut1 alleles].

    PubMed

    Ma, Kan-Rong; Tao, Shu-Dan; Lan, Xiao-Fei; Hong, Xiao-Zhen; Xu, Xian-Guo; Zhu, Fa-Ming; Lü, Hang-Jun; Yan, Li-Xing

    2011-02-01

    This study was purposed to investigate the molecular basis of a para-Bombay phenotype for screening and identification of rare blood group. ABO and H phenotypes of the proband were identified by serological techniques. The exon 6 to exon 7 of ABO gene and full coding region of α-1,2-fucosyltransferase (fut1) gene of the proband were analyzed by polymerase chain reaction and direct sequencing of the amplified fragments. The haplotype of compound heterozygote of fut1 was also identified by cloning sequencing. The results indicated that a rare para-Bombay phenotype was confirmed by serological techniques. Two deletion or insertion variant sites near nucleotide 547 and 880 were detected in fut1 gene. The results of cloning sequence showed that one haplotype of fut1 gene was two bases deletion at 547-552 (AGAGAG→AGAG), and another one was two bases deletion at position 880-882 (TTT→T). Both two variants caused a reading frame shift and a premature stop codon. It is concluded that a rare para-Bombay phenotype is found and confirmed in blood donor population. The molecular basis of this individual is compound heterozygote of two bases deletion on fut1 gene which weaken the activity of α-1, 2-fucosyltransferase.

  3. The frequency among Japanese of heterozygotes for deficiency variants of 11 enzymes.

    PubMed Central

    Satoh, C; Neel, J V; Yamashita, A; Goriki, K; Fujita, M; Hamilton, H B

    1983-01-01

    Eleven human enzymes, chosen for this study because of relatively small coefficients of variation for mean activity, have been surveyed for the frequency with which activities less than or equal to 66% of the mean value occur. This criterion should detect almost all heterozygotes for variants lacking any activity plus a fraction of the persons with variants characterized by markedly depressed activity and/or instability. The enzymes surveyed are TPI, PGK, AK1, LDH, GAPD, GPI, PK, 6PGD, G6PD, GOT1, and HK. The number of determinations per enzyme ranged from 310 to 3,173, for a total of 26,634 determinations. Family studies have thus far been possible in 52 instances in which the initial observation of activity less than or equal to 66% of normal was confirmed. In every instance, a parent exhibited a similar finding, giving confidence that a true genetic entity was being detected. With this approach, the frequency of heterozygotes per 1,000 determinations varied from 0.0 (AK1, 6PGD) to 13.8 (PK), with an average of 2.4. For these same systems, in this laboratory the frequency of "rare" electrophoretic variants is 2.3/1,000, the ratio of the latter to the former thus being 1.0 in Japanese. Our experience with these deficiency phenotypes to date suggests that for selected enzymes such phenotypes can be incorporated into a program designed to detect mutational events. PMID:6881142

  4. The allotetraploidization of maize : Part 3: Gene segregation in trisomic heterozygotes.

    PubMed

    Doyle, G G

    1982-03-01

    Allotetraploidization is the creation of artificial allotetraploids. Allotetraploidization of maize can be accomplished by concentrating differential pairing affinity (DPA) factors into lines by a recurrent selection breeding system. Selection will be based on changes in genetic ratios which are the result of changes in the relative frequencies of various pairing configurations caused by DPA. Part 1 of this series gave extensive data on gene segregation in trisomic and tetraploid heterozygotes. Some of these tetraploids behaved like segmental allotetraploids. Part 2 presented a model for gene segregation in segmental allotetraploids. This paper presents an analogous model for gene segregation in trisomic heterozygotes. The pairing configurations of trisomes are analyzed by considering pairing in single arms which then are combined to obtain pairing configurations for whole chromosomes. The chromosome disjunction patterns of the various pairing configurations are hypothesized and expected genetic ratios are given that result from different levels of DPA expressed in several hypothetical trisomes. The model analyzes the effect of random pairing in one arm and non-random pairing in the other arms. Also, the effect of crossing over is taken into account. Because crossing over rates are affected by the environment, part of the variability in the data (Part 1) is explained. In addition, an hypothesis is advanced to explain the frequent enhancement of pairing affinity following x-irradiation. PMID:24271379

  5. DNA sequence of the Peromyscus leucopus MHC class II gene Aa (MhcPeleAa)

    SciTech Connect

    Crew, M.D.; Bates, L.M.

    1996-09-01

    The genus Peromyscus has been extensively studied by populations biologists and ecologists for over eighty years, with P. leucopus (the white-footed mouse) being one of the most intensively investigated species. Polymorphic major histocompatibility complex (MHC) genes have proven useful in population genetic studies and might be helpful in understanding the population dynamics of Peromyscus species which are ubiquitously distributed over North and Central America. Polymorphism of P. leucopus MHC (MhcPele) class II genes was evident by restriction fragment length polymorphism (RFLP) analyses using human and mouse probes and Pele class II loci exhibited degrees of polymorphism similar to H2 class II genes (A-like>E-like). 8 refs., 2 figs.

  6. Genetic basis for MHC-dependent mate choice.

    PubMed

    Yamazaki, Kunio; Beauchamp, Gary K

    2007-01-01

    Genes in the major histocompatibility complex (MHC), best known for their role in immune recognition and transplantation success, are also involved in modulating mate choice in mice. Early studies with inbred, congenic mouse lines showed that mate choice tended to favor nonself MHC types. A similar phenomenon was demonstrated with semi-wild mice as well. Subsequent studies showed that, rather than nonself choices, it was more accurate to say that mice chose nonparental MHC types for mates since preferences for nonself could be reversed if mice were fostered from birth on parents with nonself MHC types. Other studies have demonstrated that parent-offspring recognition is also regulated by MHC-determined signals suggesting that this system is one of general importance for mouse behavior. Many studies have now demonstrated that volatile mouse body odors are regulated by MHC genes and it is presumably these odor differences that underlie mate choice and familial recognition. Recent studies have shown that many odorants are controlled by the MHC but the mechanism by which MHC genes exert their influence has not been identified. Surprisingly, not only are volatile body odors influenced by MHC genes but so too are nonvolatile signals. Peptides bound to the MHC protein may also function in individual recognition. The extent to which this system is involved in mate choice of other species is unclear although there are some suggestive studies. Indeed, there is tentative evidence that MHC differences, presumably acting via odor changes, may influence human partner selection. Further studies should clarify both the mechanism underlying MHC influence on body odors as well as the generality of their importance in mate selection.

  7. TCR-MHC docking orientation: natural selection, or thymic selection?

    PubMed

    Collins, Edward J; Riddle, David S

    2008-01-01

    T cell receptors (TCR) dock on their peptide-major histocompatibility complex (pMHC) targets in a conserved orientation. Since amino acid sidechains are the foundation of specific protein-protein interactions, a simple explanation for the conserved docking orientation is that key amino acids encoded by the TCR and MHC genes have been selected and maintained through evolution in order to preserve TCR/pMHC binding. Expectations that follow from the hypothesis that TCR and MHC evolved to interact are discussed in light of the data that both support and refute them. Finally, an alternative and equally simple explanation for the driving force behind the conserved docking orientation is described.

  8. Primordial linkage of β2-microglobulin to the MHC.

    PubMed

    Ohta, Yuko; Shiina, Takashi; Lohr, Rebecca L; Hosomichi, Kazuyoshi; Pollin, Toni I; Heist, Edward J; Suzuki, Shingo; Inoko, Hidetoshi; Flajnik, Martin F

    2011-03-15

    β2-Microglobulin (β2M) is believed to have arisen in a basal jawed vertebrate (gnathostome) and is the essential L chain that associates with most MHC class I molecules. It contains a distinctive molecular structure called a constant-1 Ig superfamily domain, which is shared with other adaptive immune molecules including MHC class I and class II. Despite its structural similarity to class I and class II and its conserved function, β2M is encoded outside the MHC in all examined species from bony fish to mammals, but it is assumed to have translocated from its original location within the MHC early in gnathostome evolution. We screened a nurse shark bacterial artificial chromosome library and isolated clones containing β2M genes. A gene present in the MHC of all other vertebrates (ring3) was found in the bacterial artificial chromosome clone, and the close linkage of ring3 and β2M to MHC class I and class II genes was determined by single-strand conformational polymorphism and allele-specific PCR. This study satisfies the long-held conjecture that β2M was linked to the primordial MHC (Ur MHC); furthermore, the apparent stability of the shark genome may yield other genes predicted to have had a primordial association with the MHC specifically and with immunity in general.

  9. Natural Splice Variant of MHC Class I Cytoplasmic Tail Enhances Dendritic Cell-Induced CD8+ T-Cell Responses and Boosts Anti-Tumor Immunity

    PubMed Central

    Khalili, Jahan S.; Whittington, Mayra; Zhang, Minying; Overwijk, Willem; Lizée, Gregory

    2011-01-01

    Dendritic cell (DC)-mediated presentation of MHC class I (MHC-I)/peptide complexes is a crucial first step in the priming of CTL responses, and the cytoplasmic tail of MHC-I plays an important role in modulating this process. Several species express a splice variant of the MHC-I tail that deletes exon 7-encoding amino acids (Δ7), including a conserved serine phosphorylation site. Previously, it has been shown that Δ7 MHC-I molecules demonstrate extended DC surface half-lives, and that mice expressing Δ7-Kb generate significantly augmented CTL responses to viral challenge. Herein, we show that Δ7-Db-expressing DCs stimulated significantly more proliferation and much higher cytokine secretion by melanoma antigen-specific (Pmel-1) T cells. Moreover, in combination with adoptive Pmel-1 T-cell transfer, Δ7-Db DCs were superior to WT-Db DCs at stimulating anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival. Human DCs engineered to express Δ7-HLA-A*0201 showed similarly enhanced CTL stimulatory capacity. Further studies demonstrated impaired lateral membrane movement and clustering of human Δ7-MHC-I/peptide complexes, resulting in significantly increased bioavailability of MHC-I/peptide complexes for specific CD8+ T cells. Collectively, these data suggest that targeting exon 7-encoded MHC-I cytoplasmic determinants in DC vaccines has the potential to increase CD8+ T-cell stimulatory capacity and substantially improve their clinical efficacy. PMID:21860662

  10. MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris).

    PubMed

    Pokorny, Ina; Sharma, Reeta; Goyal, Surendra Prakash; Mishra, Sudanshu; Tiedemann, Ralph

    2010-10-01

    Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal.

  11. MHC class I and MHC class II DRB gene variability in wild and captive Bengal tigers (Panthera tigris tigris).

    PubMed

    Pokorny, Ina; Sharma, Reeta; Goyal, Surendra Prakash; Mishra, Sudanshu; Tiedemann, Ralph

    2010-10-01

    Bengal tigers are highly endangered and knowledge on adaptive genetic variation can be essential for efficient conservation and management. Here we present the first assessment of allelic variation in major histocompatibility complex (MHC) class I and MHC class II DRB genes for wild and captive tigers from India. We amplified, cloned, and sequenced alpha-1 and alpha-2 domain of MHC class I and beta-1 domain of MHC class II DRB genes in 16 tiger specimens of different geographic origin. We detected high variability in peptide-binding sites, presumably resulting from positive selection. Tigers exhibit a low number of MHC DRB alleles, similar to other endangered big cats. Our initial assessment-admittedly with limited geographic coverage and sample size-did not reveal significant differences between captive and wild tigers with regard to MHC variability. In addition, we successfully amplified MHC DRB alleles from scat samples. Our characterization of tiger MHC alleles forms a basis for further in-depth analyses of MHC variability in this illustrative threatened mammal. PMID:20821315

  12. Can a polymorphism in the thalassemia gene and a heterozygote CFTR mutation cause acute pancreatitis?

    PubMed

    Löhr, J-Matthias; Haas, Stephan

    2014-03-16

    The case of a 32-year-old black woman of African descent who suffered from repeated episodes of acute pancreatitis, initially triggered when flying on airplanes, is reported. She did not drink alcohol or smoke. Genetic analysis was negative for cationic trypsinogen, serine protease inhibitor Kazal type 1 and chymotrypsin C. However, hemoglobin F was elevated. Sequencing of the thalassemia gene revealed a novel alteration in the 5' region indicative of a functional abnormality of the molecule. Sequencing the cystic fibrosis transmembrane conductance regulator (CFTR) gene revealed a heterozygote sequence variant. The combination of a hemoglobin gene mutation known for thalassemia in conjunction with the hitherto undescribed CFTR mutation is suggested to pave the road for initial and repetitive pancreatitis attacks. This will be discussed.

  13. Chronic obstructive pulmonary disease in α1-antitrypsin PI MZ heterozygotes: a meta-analysis

    PubMed Central

    Hersh, C; Dahl, M; Ly, N; Berkey, C; Nordestgaard, B; Silverman, E

    2004-01-01

    Background: Severe α1-antitrypsin deficiency, usually related to homozygosity for the protease inhibitor (PI) Z allele, is a proven genetic risk factor for chronic obstructive pulmonary disease (COPD). The risk of COPD in PI MZ heterozygous individuals is controversial. Methods: A search of MEDLINE from January 1966 to May 2003 identified studies that examined the risk of COPD in PI MZ individuals and studies that measured forced expiratory volume in 1 second (FEV1) in heterozygotes. Results: In 16 studies that reported COPD as a categorical outcome, the combined odds ratio (OR) for PI MZ versus PI MM (normal genotype) was 2.31 (95% CI 1.60 to 3.35). The summary OR was higher in case-control studies (OR 2.97; 95% CI 2.08 to 4.26) than in cross sectional studies (OR 1.50; 95% CI 0.97 to 2.31) and was attenuated in studies that adjusted for cigarette smoking (OR 1.61; 95% CI 0.92 to 2.81). In seven studies that reported FEV1 as a continuous outcome there was no difference in mean FEV1 between PI MM and PI MZ individuals. Conclusions: Case-control studies showed increased odds of COPD in PI MZ individuals, but this finding was not confirmed in cross sectional studies. Variability in study design and quality limits the interpretation. These results are consistent with a small increase in risk of COPD in all PI MZ individuals or a larger risk in a subset. Future studies that adjust for smoking and include other COPD related phenotypes are required to conclusively determine the risk of COPD in PI MZ heterozygotes. PMID:15454649

  14. Pictorial Superiority Effect

    ERIC Educational Resources Information Center

    Nelson, Douglas L.; And Others

    1976-01-01

    Pictures generally show superior recognition relative to their verbal labels. This experiment was designed to link this pictorial superiority effect to sensory or meaning codes associated with the two types of symbols. (Editor)

  15. Neurons Preferentially Respond to Self-MHC Class I Allele Products Regardless of Peptide Presented

    PubMed Central

    Escande-Beillard, Nathalie; Washburn, Lorraine; Zekzer, Dan; Wu, Zhongqi-Phyllis; Eitan, Shoshy; Ivkovic, Sonja; Lu, Yuxin; Dang, Hoa; Middleton, Blake; Bilousova, Tina V.; Yoshimura, Yoshitaka; Evans, Christopher J.; Joyce, Sebastian; Tian, Jide; Kaufman, Daniel L.

    2010-01-01

    Studies of mice lacking MHC class I (MHC I)-associated proteins have demonstrated a role for MHC I in neurodevelopment. A central question arising from these observations is whether neuronal recognition of MHC I has specificity for the MHC I allele product and the peptide presented. Using a well-established embryonic retina explant system, we observed that picomolar levels of a recombinant self-MHC I molecule inhibited neurite outgrowth. We then assessed the neurobiological activity of a panel of recombinant soluble MHC Is, consisting of different MHC I heavy chains with a defined self- or nonself-peptide presented, on cultured embryonic retinas from mice with different MHC I haplotypes. We observed that self-MHC I allele products had greater inhibitory neuroactivity than nonself-MHC I molecules, regardless of the nature of the peptide presented, a pattern akin to MHC I recognition by some innate immune system receptors. However, self-MHC I molecules had no effect on retinas from MHC I-deficient mice. These observations suggest that neuronal recognition of MHC I may be coordinated with the inherited MHC I alleles, as occurs in the innate immune system. Consistent with this notion, we show that MHC I and MHC I receptors are coexpressed by precursor cells at the earliest stages of retina development, which could enable such coordination. PMID:20018625

  16. MHC-mediated mate choice increases parasite resistance in salmon.

    PubMed

    Consuegra, Sofia; Garcia de Leaniz, Carlos

    2008-06-22

    Natural (parasite-driven) and sexual selection are thought to maintain high polymorphism in the genes of the major histocompatibility complex (MHC), but support for a link between mate choice, MHC variation and increased parasite resistance is circumstantial. We compared MHC diversity and Anisakis loads among anadromous Atlantic salmon (Salmo salar L.) returning to four rivers to spawn, which had originated from natural spawning (parents allowed to mate freely) or artificial crosses (parents deprived from the potential benefits of mate choice). We found that the offspring of artificially bred salmon had higher parasite loads and were almost four times more likely to be infected than free-mating salmon, despite having similar levels of MHC diversity. Moreover, the offspring of wild salmon were more MHC dissimilar than the offspring of artificially crossed salmon, and uninfected fish were more dissimilar for MHC than infected fish. Thus, our results suggest a link between disassortative mating and offspring benefits and indicate that MHC-mediated mate choice and natural (parasite-driven) selection act in combination to maintain MHC diversity, and hence fitness. Therefore, artificial breeding programmes that negate the potential genetic benefits of mate choice may result in inherently inferior offspring, regardless of population size, rearing conditions or genetic diversity.

  17. MHC genotype and near-deterministic mortality in grey seals.

    PubMed

    de Assunção-Franco, M; Hoffman, J I; Harwood, J; Amos, W

    2012-01-01

    The Major Histocompatability Complex (MHC) is one of the best known and best characterised components of the immune system, yet its functions remain somewhat enigmatic, including both anti-pathogen activity and kin recognition. To explore the importance of the MHC relative to literally hundreds of other components of the immune system, we compared MHC genotype frequencies between pups and adults in the grey seal (Halichoerus grypus), one of many marine mammals that exhibit low allelic diversity. We find that one allele is strongly associated with pup survival, pups being more likely to be found dead if they lack it, while total allele number is a remarkably strong predictor of survivorship to adulthood. We estimate that approximately 70% of mortality can be attributed to the MHC. Our study therefore shows that low MHC allele diversity belies its critical role in determining whether a weaned pup negotiates disease to become a breeding adult. PMID:22997548

  18. Both man & bird & beast: Comparative organization of MHC genes

    SciTech Connect

    Trowsdale, J.

    1995-01-01

    The major histocompatibility complex (MHC) is the center of the immune universe. Genes in the MHC determine which antigens are processed and presented. Not surprisingly, the MHC contributes the major genetic component to important autoimmune diseases and will no doubt, although evidence is limited, contribute to resistance to infectious disorders. Vertebrates all seem to have MHC genes and it should be possible to determine, within the next few years, whether the clustering of antigen processing and presenting genes in this region is a conserved feature. One could imagine an evolutionary advantage to maintaining the MHC as a unit, either to coordinate expression of the genes in different tissues, or to coordinate T-cell selection during thymic ontogeny, since inheriting a linked set of polymorphic gene products may help to avoid conflicts during positive and negative selection. 153 refs., 9 figs., 3 tabs.

  19. Chromosome synapsis and recombination in simple and complex chromosomal heterozygotes of tuco-tuco (Ctenomys talarum: Rodentia: Ctenomyidae).

    PubMed

    Basheva, Ekaterina A; Torgasheva, Anna A; Gomez Fernandez, Maria Jimena; Boston, Emma; Mirol, Patricia; Borodin, Pavel M

    2014-09-01

    The chromosomal speciation hypothesis suggests that irregularities in synapsis, recombination, and segregation in heterozygotes for chromosome rearrangements may restrict gene flow between karyotypically distinct populations and promote speciation. Ctenomys talarum is a South American subterranean rodent inhabiting the coastal regions of Argentina, whose populations polymorphic for Robertsonian and tandem translocations seem to have a very restricted gene flow. To test if chromosomal differences are involved in isolation among its populations, we examined chromosome pairing, recombination, and meiotic silencing of unsynapsed chromatin in male meiosis of simple and complex translocation heterozygotes using immunolocalization of the MLH1 marking mature recombination nodules and phosphorylated histone γH2A.X marking unrepaired double-strand breaks. We observed small asynaptic areas labeled by γH2A.X in pericentromeric regions of the chromosomes involved in the trivalents and quadrivalents. We also observed a decrease of recombination frequency and a distalization of the crossover distribution in the heterozygotes and metacentric homozygotes compared to acrocentric homozygotes. We suggest that the asynapsis of the pericentromeric regions are unlikely to induce germ cell death and decrease fertility of the heterozygotes; however, suppressed recombination in pericentromeric areas of the multivalents may reduce gene flow between chromosomally different populations of the Talas tuco-tuco.

  20. Analysis of compound heterozygotes reveals that the mouse floxed Pax6 (tm1Ued) allele produces abnormal eye phenotypes.

    PubMed

    Dorà, Natalie J; Crookshanks, Aaron J F; Leung, Karen K Y; Simpson, T Ian; Mason, John O; Price, David J; West, John D

    2016-10-01

    Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6 (tm1Ued) (Pax6 (fl) ) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6 (fl/fl) and heterozygous Pax6 (fl/+) mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6 (fl/fl) corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6 (Sey-Neu) (Pax6 (-)) null allele. Pax6 (fl/-) compound heterozygotes had more severe eye abnormalities than Pax6 (+/-) heterozygotes, implying that Pax6 (fl) differs from the wild-type Pax6 (+) allele. Immunohistochemistry showed that the Pax6 (fl/-) corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6 (fl) allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles.

  1. Analysis of compound heterozygotes reveals that the mouse floxed Pax6 (tm1Ued) allele produces abnormal eye phenotypes.

    PubMed

    Dorà, Natalie J; Crookshanks, Aaron J F; Leung, Karen K Y; Simpson, T Ian; Mason, John O; Price, David J; West, John D

    2016-10-01

    Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6 (tm1Ued) (Pax6 (fl) ) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6 (fl/fl) and heterozygous Pax6 (fl/+) mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6 (fl/fl) corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6 (Sey-Neu) (Pax6 (-)) null allele. Pax6 (fl/-) compound heterozygotes had more severe eye abnormalities than Pax6 (+/-) heterozygotes, implying that Pax6 (fl) differs from the wild-type Pax6 (+) allele. Immunohistochemistry showed that the Pax6 (fl/-) corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6 (fl) allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles. PMID:27240603

  2. Colonizing the world in spite of reduced MHC variation

    USGS Publications Warehouse

    Gangoso, L.; Alcaide, M.; Grande, J.M.; Muñoz, J.; Talbot, Sandra L.; Sonsthagen, Sarah A.; Sage, Kevin; Figuerola, J.

    2012-01-01

    Reduced immune gene diversity is thought to negatively affect the capacity of organisms to adapt to pathogen challenges, which represent a major force in natural selection. Genes of the Major Histocompatibility Complex (MHC) are the most widely invoked adaptive loci in conservation biology, and have become the most popular genetic markers to investigate pathogen-host interactions in vertebrates. Although MHC genes are the most polymorphic genes described in the vertebrate genome, the extent to which MHC diversity determines the long-term persistence of populations is, unclear and often debated, as recent studies have documented the occurrence of natural populations thriving even after a depletion of MHC diversity caused by genetic drift. Here, we show that some phylogenetically related species belonging to the Falco genus (Aves: Falconidae) present a dramatically low MHC variability that has not precluded, nevertheless, the successful colonization of almost all existing regions and habitats worldwide. We found evidence for two remarkably different patterns of MHC variation within the genus. While kestrels show a high MHC variation according to the general theory, falcons exhibit an ancestrally low intra- and inter-specific MHC allelic diversity. We provide compelling evidence that this pattern is not caused by the degeneration of functional genes into pseudogenes, the inadvertent analyses of paralogous MHC genes, or the devastating action of genetic drift. Instead, our results strongly support the idea of an evolutionary transition driven and maintained by natural selection from primarily highly variable towards low polymorphic, but functional and expressed, MHC genes with species-specific pathogen-recognition capabilities.

  3. T cells and their eons-old obsession with MHC

    PubMed Central

    Yin, Lei; Scott-Browne, James; Kappler, John W.; Gapin, Laurent; Marrack, Philippa

    2014-01-01

    Summary T cells bearing receptors made up of α and β chains (TCRs) usually react with peptides bound to major histocompatibility complex proteins (MHC). This bias could be imposed by positive selection, the phenomenon that selects thymocytes to mature into T cells only if the TCRs they bear react with low but appreciable affinity with MHC + peptide combinations in the thymus cortex. However, it is also possible that the polypeptides of TCRs themselves do not have random specificities but rather are biased toward reaction with MHC. Evolution would therefore have selected for a collection of TCR variable elements that are prone to react with MHC. If this were to be so, positive selection would act on thymocytes bearing a pre biased collection of TCRs to pick out those that react to some extent, but not too well, with self MHC + self-peptides. A problem with studies of this evolutionary idea is the fact that there are many TCR variable elements and that these differ considerably in the amino acids with which they contact MHC. However, recent experiments by our group and others suggest that one group of TCR variable elements, those related to the mouse Vβ8 family, has amino acids in their CDR2 regions that consistently bind a particular site on an MHC α-helix. Other groups of variable elements may use different patterns of amino acids to achieve the same goal. Mutation of these amino acids reduces the ability of T cells and thymocytes to react with MHC. These amino acids are present in the variable regions of distantly related species such as sharks and human. Overall the data indicate that TCR elements have indeed been selected by evolution to react with MHC proteins. Many mysteries about TCRs remain to be solved, including the nature of auto-recognition, the basis of MHC allele specificity, and the very nature and complexity of TCRs on mature T cells. PMID:23046122

  4. T cells and their eons-old obsession with MHC.

    PubMed

    Yin, Lei; Scott-Browne, James; Kappler, John W; Gapin, Laurent; Marrack, Philippa

    2012-11-01

    T cells bearing receptors made up of α and β chains (TCRs) usually react with peptides bound to major histocompatibility complex proteins (MHC). This bias could be imposed by positive selection, the phenomenon that selects thymocytes to mature into T cells only if the TCRs they bear react with low but appreciable affinity with MHC + peptide combinations in the thymus cortex. However, it is also possible that the polypeptides of TCRs themselves do not have random specificities but rather are biased toward reaction with MHC. Evolution would therefore have selected for a collection of TCR variable elements that are prone to react with MHC. If this were to be so, positive selection would act on thymocytes bearing a pre biased collection of TCRs to pick out those that react to some extent, but not too well, with self MHC + self-peptides. A problem with studies of this evolutionary idea is the fact that there are many TCR variable elements and that these differ considerably in the amino acids with which they contact MHC. However, recent experiments by our group and others suggest that one group of TCR variable elements, those related to the mouse Vβ8 family, has amino acids in their CDR2 regions that consistently bind a particular site on an MHC α-helix. Other groups of variable elements may use different patterns of amino acids to achieve the same goal. Mutation of these amino acids reduces the ability of T cells and thymocytes to react with MHC. These amino acids are present in the variable regions of distantly related species such as sharks and human. Overall the data indicate that TCR elements have indeed been selected by evolution to react with MHC proteins. Many mysteries about TCRs remain to be solved, including the nature of auto-recognition, the basis of MHC allele specificity, and the very nature and complexity of TCRs on mature T cells. PMID:23046122

  5. MHC in a monogamous lizard--Characterization of class I MHC genes in the Australian skink Tiliqua rugosa.

    PubMed

    Ansari, Talat Hojat; Bertozzi, Terry; Miller, Robert D; Gardner, Michael G

    2015-12-01

    The major histocompatibility complex (MHC) is a highly variable region of vertebrate genomes that encodes cellular proteins involved in the immune response. In addition to the benefits of MHC research in understanding the genetic basis of host resistance to disease, the MHC is an ideal candidate for studying genetic diversity under strong natural selection. However, the MHC of many non-model vertebrate taxa are poorly characterized, hindering an understanding of disease resistance and its application to conservation genetics in these groups. Squamates (lizards and snakes) remain particularly underrepresented despite their being the most diverse order of non-avian sauropsids. We characterized MHC class I sequence diversity from an Australian skink, the sleepy lizard (Tiliqua rugosa), using both cDNA and genomic sequence data and also present genomic class I sequences from the related skinks Tiliqua adelaidensis and Egernia stokesii. Phylogenetic analysis of Tiliqua and other published sqamate MHC class I sequences suggest that MHC diverged very early in Tiliqua compared with the other studied squamates. We identified at least 4 classical MHC class I loci in T. rugosa and also shared polymorphism among T. rugosa, T. adelaidensis and E. stokesii in the sequences encoding peptide-binding α1 and α2 domains.

  6. Accurate quantitation of MHC-bound peptides by application of isotopically labeled peptide MHC complexes.

    PubMed

    Hassan, Chopie; Kester, Michel G D; Oudgenoeg, Gideon; de Ru, Arnoud H; Janssen, George M C; Drijfhout, Jan W; Spaapen, Robbert M; Jiménez, Connie R; Heemskerk, Mirjam H M; Falkenburg, J H Frederik; van Veelen, Peter A

    2014-09-23

    Knowledge of the accurate copy number of HLA class I presented ligands is important in fundamental and clinical immunology. Currently, the best copy number determinations are based on mass spectrometry, employing single reaction monitoring (SRM) in combination with a known amount of isotopically labeled peptide. The major drawback of this approach is that the losses during sample pretreatment, i.e. immunopurification and filtration steps, are not well defined and must, therefore, be estimated. In addition, such losses can vary for individual peptides. Therefore, we developed a new approach in which isotopically labeled peptide-MHC monomers (hpMHC) are prepared and added directly after cell lysis, i.e. before the usual sample processing. Using this approach, all losses during sample processing can be accounted for and allows accurate determination of specific MHC class I-presented ligands. Our study pinpoints the immunopurification step as the origin of the rather extreme losses during sample pretreatment and offers a solution to account for these losses. Obviously, this has important implications for accurate HLA-ligand quantitation. The strategy presented here can be used to obtain a reliable view of epitope copy number and thus allows improvement of vaccine design and strategies for immunotherapy.

  7. Mice lacking all conventional MHC class II genes

    PubMed Central

    Madsen, Lars; Labrecque, Nathalie; Engberg, Jan; Dierich, Andrée; Svejgaard, Arne; Benoist, Christophe; Mathis, Diane; Fugger, Lars

    1999-01-01

    MHC class II (MHC-II) molecules play a central role in the selection of the T cell repertoire, in the establishment and regulation of the adaptive immune response, and in autoimmune deviation. We have generated knockout mice lacking all four of the classical murine MHC-II genes (MHCIIΔ/Δ mice), via a large (80-kilobase) deletion of the entire class II region that was engineered by homologous recombination and Cre recombinase-mediated excision. These mice feature immune system perturbations like those of Aα and Aβ knockout animals, notably a dearth of CD4+ lymphocytes in the thymus and spleen. No new anatomical or physiological abnormalities were observed in MHCIIΔ/Δ mice. Because these animals are devoid of all classical MHC-II chains, even unpaired chains, they make excellent recipients for MHC-II transgenes from other species, avoiding the problem of interspecies cross-pairing of MHC-II chains. Therefore, they should be invaluable for engineering “humanized” mouse models of human MHC-II-associated autoimmune disorders. PMID:10468609

  8. MHC-Dependent Desensitization of Intrinsic Anti-Self Reactivity

    PubMed Central

    Jubala, Cristan M.; Lamerato-Kozicki, Angela R.; Borakove, Michelle; Lang, Julie; Gardner, Lori A.; Coffey, David; Helm, Karen M.; Schaack, Jerome; Baier, Monika; Cutter, Gary R.; Bellgrau, Donald; Modiano, Jaime F.

    2008-01-01

    The survival of naïve T cells is compromised in the absence of molecules encoded by the major histocompatibility complex (MHC) while antigen-experienced T cells survive. We hypothesized that survival pressures in an in vivo, MHC-deficient environment would permit enrichment of less frequent antigen-experienced autoreactive cells at the expense of the majority of antigen naïve T cells. To test this hypothesis, we generated MHC class I and class II-deficient mice in NOD and C57Bl/6 (B6) backgrounds, and examined the capacity of adoptively transferred autoimmune-prone NOD T cells, or non-autoimmune prone naïve B6 T cells, respectively, to reject transplanted wild type pancreatic islets or transplantable tumors in the MHC-deficient mice. In the MHC-deficient environment, CD4 T cells acquired self-hostile properties (islet rejection and tumor invasion) that were independent from their genetic propensity for autoreactivity, while CD8 T cells required appropriate prior exposure to antigen in order to survive and function (reject tumor) in this environment; however, disengagement of Tob1, a negative regulator of proliferation, led to a reverse phenotype with regard to persistence of CD4 and CD8 T cells in the MHC-deficient environment. Our data suggest that self-peptide/MHC interactions have dual roles to facilitate survival and restrain autoreactivity, thus acting as integral components of an intrinsic network of negative regulation that maintains tolerance. PMID:18523772

  9. Major Histocompatibility Complex (MHC) Markers in Conservation Biology

    PubMed Central

    Ujvari, Beata; Belov, Katherine

    2011-01-01

    Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity. PMID:21954351

  10. Autophagy proteins in antigen processing for presentation on MHC molecules.

    PubMed

    Münz, Christian

    2016-07-01

    Autophagy describes catabolic pathways that deliver cytoplasmic constituents for lysosomal degradation. Since major histocompatibility complex (MHC) molecules sample protein degradation products and present them to T cells for adaptive immunity, it is maybe not too surprising that autophagy contributes to this protein antigen processing for MHC presentation. However, the recently recognized breath of pathways, by which autophagy contributes to MHC antigen processing, is exciting. Macroautophagy does not only seem to deliver intracellular but facilitates also extracellular antigen processing by lysosomal hydrolysis for MHC class II presentation. Moreover, even MHC class I molecules that usually display proteasomal products are regulated by macroautophagy, probably using a pool of these molecules outside the endoplasmic reticulum, where MHC class I molecules are loaded with peptide during canonical MHC class I antigen processing. This review aims to summarize these recent developments and point out gaps of knowledge, which should be filled by further investigation, in order to harness the different antigen-processing pathways via autophagy for vaccine improvement. PMID:27319339

  11. Blocking MHC class II on human endothelium mitigates acute rejection

    PubMed Central

    Abrahimi, Parwiz; Qin, Lingfeng; Chang, William G.; Bothwell, Alfred L.M.; Tellides, George; Saltzman, W. Mark; Pober, Jordan S.

    2016-01-01

    Acute allograft rejection is mediated by host CD8+ cytotoxic T lymphocytes (CTL) targeting graft class I major histocompatibility complex (MHC) molecules. In experimental rodent models, rejection requires differentiation of naive CD8+ T cells into alloreactive CTL within secondary lymphoid organs, whereas in humans, CTL may alternatively develop within the graft from circulating CD8+ effector memory T cells (TEM) that recognize class I MHC molecules on graft endothelial cells (EC). This latter pathway is poorly understood. Here, we show that host CD4+ TEM, activated by EC class II MHC molecules, provide critical help for this process. First, blocking HLA-DR on EC lining human artery grafts in immunodeficient mice reduces CD8+ CTL development within and acute rejection of the artery by adoptively transferred allogeneic human lymphocytes. Second, siRNA knockdown or CRISPR/Cas9 ablation of class II MHC molecules on EC prevents CD4+ TEM from helping CD8+ TEM to develop into CTL in vitro. Finally, implanted synthetic microvessels, formed from CRISPR/Cas9-modified EC lacking class II MHC molecules, are significantly protected from CD8+ T cell–mediated destruction in vivo. We conclude that human CD8+ TEM–mediated rejection targeting graft EC class I MHC molecules requires help from CD4+ TEM cells activated by recognition of class II MHC molecules. PMID:26900601

  12. Superior mesenteric artery syndrome.

    PubMed Central

    Ahmed, A. R.; Taylor, I.

    1997-01-01

    Superior mesenteric artery syndrome is a rare and controversial form of upper intestinal obstruction in which the third part of the duodenum is compressed by the overlying superior mesenteric artery. Any disease process decreasing the angle between the superior mesenteric artery and the abdominal aorta can result in the external compression of the duodenum and subsequent intestinal obstruction. The aetiology, presentation, investigation and management of this unusual condition are discussed. PMID:9497945

  13. Colonizing the world in spite of reduced MHC variation.

    PubMed

    Gangoso, L; Alcaide, M; Grande, J M; Muñoz, J; Talbot, S L; Sonsthagen, S A; Sage, G K; Figuerola, J

    2012-07-01

    The major histocompatibility complex (MHC), which harbours the most polymorphic vertebrate genes, plays a critical role in the host-pathogen coevolutionary arms race. However, the extent to which MHC diversity determines disease susceptibility and long-term persistence of populations is currently under debate, as recent studies have demonstrated that low MHC variability does not necessarily hamper population viability. However, these studies typically assayed small and decimated populations in species with restricted distribution, thereby making inferences about the evolutionary potential of these populations difficult. Here, we show that MHC impoverishment has not constrained the ecological radiation and flourishing of falcons (Aves: Falconidae) worldwide. We found two remarkably different patterns of MHC variation within the genus Falco. Whereas MHC variation in kestrels (the basal group within the genus) is very high, falcons exhibit ancestrally low intra- and interspecific MHC variability. This pattern is not due to the inadvertent survey of paralogous genes or pseudogenes. Further, patterns of variation in mitochondrial or other nuclear genes do not indicate a generalized low level of genome-wide variability among falcons. Although a relative contribution of genetic drift cannot be completely ruled out, we propose the falcons went through an evolutionary transition, driven and maintained by natural selection, from primarily highly variable towards low polymorphic and slow-evolving MHC genes with a very specific immune function. This study highlights that the importance of MHC diversity cannot be generalized among vertebrates, and hints at the evolution of compensatory immune mechanisms in falcons to cope with emerging and continuously evolving pathogens.

  14. Complex MHC Class I Gene Transcription Profiles and Their Functional Impact in Orangutans.

    PubMed

    de Groot, Natasja G; Heijmans, Corrine M C; van der Wiel, Marit K H; Blokhuis, Jeroen H; Mulder, Arend; Guethlein, Lisbeth A; Doxiadis, Gaby G M; Claas, Frans H J; Parham, Peter; Bontrop, Ronald E

    2016-01-15

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented in this article. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by killer cell Ig-like receptor. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I Abs, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209

  15. Assortative mate choice and dominance modification: alternative ways of removing heterozygote disadvantage.

    PubMed

    Durinx, Michel; Van Dooren, Tom J M

    2009-02-01

    In genetic polymorphisms of two alleles, heterozygous individuals may contribute to the next generation on average more or fewer descendants than the homozygotes. Two different evolutionary responses that remove a disadvantageous heterozygote phenotype from the population are the evolution of strictly assortative mate choice, and that of a modifier making one of the two alleles completely dominant. We derive invasion fitness of mutants introducing dominance or assortative mate choice in a randomly mating population with a genetic polymorphism for an ecological trait. Mutations with small effects as well as mutants introducing complete dominance or perfect assorting are considered. Using adaptive dynamics techniques, we are able to calculate the ratio of fitness gradients for the effects of a dominance modifier and a mate choice locus, near evolutionary branching points. With equal resident allele frequencies, selection for mate choice is always stronger. Dominance is more strongly selected than assortative mating when the resident (common) alleles have very unequal frequencies at equilibrium. With female mate choice the difference in frequencies where dominance is more strongly selected is smaller than when mutants of both sexes can choose without costs. A symmetric resource-competition model illustrates the results. PMID:19054051

  16. Drosophila as a Model for Intractable Epilepsy: Gilgamesh Suppresses Seizures in parabss1 Heterozygote Flies

    PubMed Central

    Howlett, Iris C.; Rusan, Zeid M.; Parker, Louise; Tanouye, Mark A.

    2013-01-01

    Intractable epilepsies, that is, seizure disorders that do not respond to currently available therapies, are difficult, often tragic, neurological disorders. Na+ channelopathies have been implicated in some intractable epilepsies, including Dravet syndrome (Dravet 1978), but little progress has been forthcoming in therapeutics. Here we examine a Drosophila model for intractable epilepsy, the Na+ channel gain-of-function mutant parabss1 that resembles Dravet syndrome in some aspects (parker et al. 2011a). In particular, we identify second-site mutations that interact with parabss1, seizure enhancers, and seizure suppressors. We describe one seizure-enhancer mutation named charlatan (chn). The chn gene normally encodes an Neuron-Restrictive Silencer Factor/RE1-Silencing Transcription factor transcriptional repressor of neuronal-specific genes. We identify a second-site seizure-suppressor mutation, gilgamesh (gish), that reduces the severity of several seizure-like phenotypes of parabss1/+ heterozygotes. The gish gene normally encodes the Drosophila ortholog of casein kinase CK1g3, a member of the CK1 family of serine-threonine kinases. We suggest that CK1g3 is an unexpected but promising new target for seizure therapeutics. PMID:23797108

  17. Compound heterozygote mutations in SPG7 in a family with adult-onset primary lateral sclerosis

    PubMed Central

    Yang, Yi; Lynch, David R.; Lukas, Thomas; Ahmeti, Kreshnik; Sleiman, Patrick M.A.; Ryan, Eanna; Schadt, Kimberly A.; Newman, Jordan H.; Deng, Han-Xiang; Siddique, Nailah

    2016-01-01

    Objective: To identify the genetic defect for adult-onset primary lateral sclerosis (PLS) in a family with 5 patients. Methods: Whole-exome sequencing was performed to identify the shared genetic variants in 3 affected members in a PLS family with 5 affected individuals. Sanger sequencing was used for validation of the variants and for cosegregation analysis. Mitochondrial activity for both patients and unaffected siblings was measured using a SeaHorse metabolic analyzer. Results: Whole-exome sequencing and subsequent cosegregation analysis demonstrated that compound heterozygous missense variants L695P and I743T in SPG7 were the only mutations cosegregating with the disease in an autosomal recessive fashion in this family. The parents and siblings are genetically heterozygous and clinically unaffected. Functional studies suggested that the PLS-associated SPG7 mutants affect mitochondrial function when glucose is reduced. Conclusions: Compound heterozygote mutations in SPG7 are associated with adult-onset PLS, extending the spectrum of SPG7-linked neurologic diseases. Patients with the PLS phenotype should have genetic testing for paraplegin, especially when the condition is familial. PMID:27123479

  18. Electro-rentinal abnormalities in heterozygotes of renal-retinal dysplasia.

    PubMed

    Hogewind, B L; Veltkamp, J J; Polak, B C; van Es, L A

    1977-01-01

    The relatives of two patients with medullary cystic disease associated with retinitis pigmentosa were studied. A new case was found in one of these families, and consanguinity of the parents was established in another. Conventional fundoscopic examination of relatives without renal disease did not show retinal abnormalities, but electro-ophthalmologic investigation demonstrated retinal dysfunction in three relatives, including two of the four parents who may be considered obligatory heterozygotes under the assumption of autosomal recessive inheritance of this syndrome. Less severe electro-ophthalmological abnormalities were observed in the other two parents. It is considered highly probable that all three patients are homozygous for a mutant gene causing both the renal and the retinal abnormalities. The results of this study support the view that medullary cystic disease associated with retinitis pigmentosa is transmitted as an autosomal recessive trait, in contrast to the dominant form, which is reported not to be associated with eye abnormalities. With respect to genetic couseling and donation of kidneys by relatives, it is important to establish the mode of inheritance of cystic medullary disease in a given family. Electro-ophthalmologic examination should therefore be included in the examination of families in which medullary cystic disease occurs.

  19. Molecular and genetic analysis of a compound heterozygote for dysprothrombinemia of prothrombin Tokushima and hypoprothrombinemia

    SciTech Connect

    Iwahana, Hiroyuki; Yoshimoto, Katsuhiko; Shigekiyo, Toshio; Shirakami, Akira; Saito, Shiro; Itakura, Mitsuo )

    1992-12-01

    The molecular and genetic basis of a compound heterozygote for dys- and hypoprothrombinemia was analyzed. Abnormal nucleotide sequences of the human prothrombin gene were screened by PCR-single-strand conformation polymorphism (PCR-SSCP) with endonuclease digestion and mutated primer-mediated PCR-RFLP. A single nucleotide substitution responsible for dysprothrombinemia of prothrombin Tokushima was detected, as were three polymorphisms. The mutation for hypoprothrombinemia was detected by PCR-single-strand conformation polymorphism (PCR-SSCP) with endonuclease digestion in exon 6, near MboII-RFLP and NcoI-RFLP. Sequencing of PCR-amplified genomic DNA revealed a single base insertion of thymine (T) at position 4177. The resulting frameshift mutation caused both an altered amino acid sequence from codon 114 and a premature termination codon (i.e., TGA) at codon 174 in exon 7. Because exon 7 encodes the kringle 2 domain preceding the thrombin sequence, this frameshift leads to the null prothrombin phenotype. The inheritance of the hypoprothrombinemia gene from the father to the proband was proved by PCR-SSCP with endonuclease digestion and mutated primer-mediated PCR-RFLP. 30 refs., 7 figs., 1 tab.

  20. MHC class I antigen presentation: learning from viral evasion strategies.

    PubMed

    Hansen, Ted H; Bouvier, Marlene

    2009-07-01

    The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation pathway and prevent the display of viral peptides. This Review highlights how the elucidation of mechanisms of viral immune evasion is important for advancing our understanding of virus-host interactions and can further our knowledge of the MHC class I presentation pathway as well as other cellular pathways.

  1. The urinary excretion of radiocopper in presymptomatic and symptomatic Wilson's disease, heterozygotes and controls: its significance in diagnosis and management.

    PubMed

    Gibbs, K; Hanka, R; Walshe, J M

    1978-07-01

    Radiocopper (64Cu, 67CU), given intravenously, has been used to study the pattern of excretion of copper in patients with presymptomatic, symptomatic and treated Wilson's disease, together with heterozygotes for the Wilson's disease gene and a control group of patients with a variety of neurological lesions mimicking Wilson's disease. Urine was collected for three periods after injection, 0 to 8 hours, 8 to 24 hours, at which time a test dose of penicillamine was given, and from 24 to 30 hours. Stable (endogenous) copper was also estimated on these samples and specific activity was determined. This was multiplied by a correction factor to allow for variations in dose and body weight. The findings for stable copper in urine were largely predictable. Controls and heterozygotes had the least copper excretion, the amounts rising in the presymptomatic to a peak in the symptomatic patients. Institution of therapy was associated with a fall in copper excretion pro rata with time. The most important radiochemical findings were as follows. Heterozygotes excreted less of the injected copper than controls both under basal conditions and after penicillamine. Presymptomatic patients excreted less radiocopper than heterozygotes after penicillamine although the excretion during the basal 24 hour period was very much greater. Patients with symptomatic Wilson's disease had by far the highest excretion of radiocopper in all three time periods which fell after treatment, pro rata with time, as had been found for stable copper. These results were subjected to computer analysis. There was no overlap between the various groups with the exception of a single control subject who had combined pyramidal and extrapyramidal system degeneration of obscure aetiology. This patient was classified by the computer study as 'heterozygote'. These findings lend further support to the hypothesis that the loss of a single gene for copper balance can be detected with a high degree of accuracy and also

  2. Evolution of nonclassical MHC-dependent invariant T cells

    PubMed Central

    Edholm, Eva-Stina; Grayfer, Leon; Robert, Jacques

    2014-01-01

    TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets. PMID:25117267

  3. High levels of gene flow and heterozygote excess characterize Rhizoctonia solani AG-1 IA (Thanatephorus cucumeris) from Texas.

    PubMed

    Rosewich, U L; Pettway, R E; McDonald, B A; Kistler, H C

    1999-12-01

    To date, much of the genetics of the basidiomycete Thanatephorus cucumeris (anamorph = Rhizoctonia solani) remains unknown. Here, we present a population genetics study using codominant markers to augment laboratory analyses. Seven single-copy nuclear RFLP markers were used to examine 182 isolates of Rhizoctonia solani AG-1 IA collected from six commercial rice fields in Texas. Thirty-six multilocus RFLP genotypes were identified. Population subdivision analyses indicated a high degree of gene flow/migration between the six geographic populations. Tests for Hardy-Weinberg equilibrium (HWE) among the 36 multilocus RFLP genotypes revealed that four of the seven loci did not significantly differ from HWE. Subsequent analysis demonstrated that departures from HWE at the three remaining loci were due to an excess of heterozygotes. Data presented here suggest that R. solani AG-1 IA is actively outbreeding (heterothallic). Possible explanations for heterozygote excess, which was observed at all seven RFLP loci, are discussed.

  4. Allelic complementation between MHC haplotypes B(Q) and B17 increases regression of Rous sarcomas.

    PubMed

    Senseney, H L; Briles, W E; Abplanalp, H; Taylor, R L

    2000-12-01

    Major histocompatibility (B) complex haplotypes B(Q) and B17 were examined for their effect on Rous sarcoma outcome. Pedigree matings of B(Q)B17 chickens from the second backcross generation (BC2) of Line UCD 001 (B(Q)B(Q)) mated to Line UCD 003 (B17B17) produced progeny with genotypes B(Q)B(Q), B(Q)B17, and B17B17. Six-week-old chickens were injected with subgroup A Rous sarcoma virus (RSV). The tumors were scored for size at 2, 3, 4, 6, 8, and 10 weeks postinoculation. A tumor profile index (TPI) was assigned to each bird based on the six tumor scores. Two experiments with two trials each were conducted. In Experiment 1, chickens (n = 84) were inoculated with 30 pock-forming units (pfu) RSV. There was no significant B genotype effect on tumor growth over time or TPI among the 70 chickens that developed tumors. Chickens (n = 141) were injected with 15 PFU RSV in Experiment 2. The B genotype significantly affected tumor growth pattern over time in the 79 chickens with sarcomas. The B(Q)B17 chickens had the lowest TPI, which was significantly different from B17B17 but not B(Q)B(Q). The data indicate complementation because more tumor regression occurs in the B(Q)B17 heterozygote than in either B(Q)B(Q) or B17B17 genotypes at a 15 pfu RSV dose and significantly so compared to B17B17. By contrast, the 30 pfu RSV dose utilized in the first experiment overwhelmed all genotypic combinations of the B(Q) and B17 haplotypes, suggesting that certain MHC genotypes affect the immune response under modest levels of viral challenge.

  5. A single nomenclature and associated database for alleles at the MHC class II DRB1 locus of sheep: IPD-MHC-OLA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of standardised nomenclatures with associated databases containing reference sequences for alleles at polymorphic loci within the Major Histocompatibility Complex (MHC) has been facilitated by the development of the Immuno Polymorphism Database (IPD-MHC). Recently, included within I...

  6. MHC-correlated mate choice in humans: a review.

    PubMed

    Havlicek, Jan; Roberts, S Craig

    2009-05-01

    Extremely high variability in genes of the major histocompatibility complex (MHC) in vertebrates is assumed to be a consequence of frequency-dependent parasite-driven selection and mate preferences based on promotion of offspring heterozygosity at MHC, or potentially, genome-wide inbreeding avoidance. Where effects have been found, mate choice studies on rodents and other species usually find preference for MHC-dissimilarity in potential partners. Here we critically review studies on MHC-associated mate choice in humans. These are based on three broadly different aspects: (1) odor preferences, (2) facial preferences and (3) actual mate choice surveys. As in animal studies, most odor-based studies demonstrate disassortative preferences, although there is variation in the strength and nature of the effects. In contrast, facial attractiveness research indicates a preference for MHC-similar individuals. Results concerning MHC in actual couples show a bias towards similarity in one study, dissimilarity in two studies and random distribution in several other studies. These vary greatly in sample size and heterogeneity of the sample population, both of which may significantly bias the results. This pattern of mixed results across studies may reflect context-dependent and/or life history sensitive preference expression, in addition to higher level effects arising out of population differences in genetic heterogeneity or cultural and ethnic restrictions on random mating patterns. Factors of special relevance in terms of individual preferences are reproductive status and long- vs. short-term mating context. We discuss the idea that olfactory and visual channels may work in a complementary way (i.e. odor preference for MHC-dissimilarity and visual preference for MHC-similarity) to achieve an optimal level of genetic variability, methodological issues and interesting avenues for further research.

  7. A Peptide Filtering Relation Quantifies MHC Class I Peptide Optimization

    PubMed Central

    Goldstein, Leonard D.; Howarth, Mark; Cardelli, Luca; Emmott, Stephen; Elliott, Tim; Werner, Joern M.

    2011-01-01

    Major Histocompatibility Complex (MHC) class I molecules enable cytotoxic T lymphocytes to destroy virus-infected or cancerous cells, thereby preventing disease progression. MHC class I molecules provide a snapshot of the contents of a cell by binding to protein fragments arising from intracellular protein turnover and presenting these fragments at the cell surface. Competing fragments (peptides) are selected for cell-surface presentation on the basis of their ability to form a stable complex with MHC class I, by a process known as peptide optimization. A better understanding of the optimization process is important for our understanding of immunodominance, the predominance of some T lymphocyte specificities over others, which can determine the efficacy of an immune response, the danger of immune evasion, and the success of vaccination strategies. In this paper we present a dynamical systems model of peptide optimization by MHC class I. We incorporate the chaperone molecule tapasin, which has been shown to enhance peptide optimization to different extents for different MHC class I alleles. Using a combination of published and novel experimental data to parameterize the model, we arrive at a relation of peptide filtering, which quantifies peptide optimization as a function of peptide supply and peptide unbinding rates. From this relation, we find that tapasin enhances peptide unbinding to improve peptide optimization without significantly delaying the transit of MHC to the cell surface, and differences in peptide optimization across MHC class I alleles can be explained by allele-specific differences in peptide binding. Importantly, our filtering relation may be used to dynamically predict the cell surface abundance of any number of competing peptides by MHC class I alleles, providing a quantitative basis to investigate viral infection or disease at the cellular level. We exemplify this by simulating optimization of the distribution of peptides derived from Human

  8. Female Rose Bitterling Prefer MHC-Dissimilar Males: Experimental Evidence

    PubMed Central

    Reichard, Martin; Spence, Rowena; Bryjová, Anna; Bryja, Josef; Smith, Carl

    2012-01-01

    The role of genetic benefits in female mate choice remains a controversial aspect of sexual selection theory. In contrast to “good allele” models of sexual selection, “compatible allele” models of mate choice predict that females prefer mates with alleles complementary to their own rather than conferring additive effects. While correlative results suggest complementary genetic effects to be plausible, direct experimental evidence is scarce. A previous study on the Chinese rose bitterling (Rhodeus ocellatus) demonstrated a positive correlation between female mate choice, offspring growth and survival, and the functional dissimilarity between the Major Histocompatibility Complex (MHC) alleles of males and females. Here we directly tested whether females used cues associated with MHC genes to select genetically compatible males in an experimental framework. By sequentially pairing females with MHC similar and dissimilar males, based on a priori known MHC profiles, we showed that females discriminated between similar and dissimilar males and deposited significantly more eggs with MHC dissimilar males. Notably, the degree of dissimilarity was an important factor for female decision to mate, possibly indicating a potential threshold value of dissimilarity for decision making, or of an indirect effect of the MHC. PMID:22815816

  9. Viral immune evasion: Lessons in MHC class I antigen presentation.

    PubMed

    van de Weijer, Michael L; Luteijn, Rutger D; Wiertz, Emmanuel J H J

    2015-03-01

    The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.

  10. Genic Heterozygosity and Variation in Permanent Translocation Heterozygotes of the OENOTHERA BIENNIS Complex

    PubMed Central

    Levy, Morris; Levin, Donald A.

    1975-01-01

    Genic heterozygosity and variation were studied in the permanent translocation heterozygotes Oenothera biennis I, Oe. biennis II, Oe. biennis III, Oe. strigosa, Oe. parviflora I, Oe. parviflora II, and in the related bivalent formers Oe. argillicola and Oe. hookeri. From variation at 20 enzyme loci, we find that translocation heterozygosity for the entire chromosome complex is accompanied by only moderate levels of genic heterozygosity: 2.8% in Oe. strigosa, 9.5% in Oe. biennis and 14.9% in Oe. parviflora. Inbred garden strains of Oe. argillicola exhibited 8% heterozygosity; neither garden nor wild strains of Oe. hookeri displayed heterozygosity and only a single allozyme genotype was found. The mean number of alleles per locus is only 1.30 in Oe. strigosa, 1.40 in Oe. biennis, and 1.55 in Oe. parviflora, compared to 1.40 in Oe. argillicola. Clearly, the ability to accumulate and/or retain heterozygosity and variability has not been accompanied by extraordinary levels of either. Clinal variation is evident at some loci in each ring-former. A given translocation complex may vary geographically in its allozymic constitution. From gene frequencies, Oe. biennis I, II, and III, Oe. strigosa and Oe. hookeri are judged to be very closely related, whereas Oe. argillicola seems quite remote; Oe. parviflora is intermediate to the two phylads. Gene frequencies also suggest that Oe. argillicola diverged from the Euoenothera progenitor about 1,000,000 years ago, whereas most of the remaining evolution in the complex has occurred within the last 150,000 years. PMID:17248680

  11. Impact of heterozygote CFTR Mutations in COPD patients with Chronic Bronchitis

    PubMed Central

    2014-01-01

    Background Cigarette smoking causes Chronic Obstructive Pulmonary Disease (COPD), the 3rd leading cause of death in the U.S. CFTR ion transport dysfunction has been implicated in COPD pathogenesis, and is associated with chronic bronchitis. However, susceptibility to smoke induced lung injury is variable and the underlying genetic contributors remain unclear. We hypothesized that presence of CFTR mutation heterozygosity may alter susceptibility to cigarette smoke induced CFTR dysfunction. Consequently, COPD patients with chronic bronchitis may have a higher rate of CFTR mutations compared to the general population. Methods Primary human bronchial epithelial cells derived from F508del CFTR heterozygotes and mice with (CFTR+/-) and without (CFTR+/+) CFTR heterozygosity were exposed to whole cigarette smoke (WCS); CFTR-dependent ion transport was assessed by Ussing chamber electrophysiology and nasal potential difference measurements, respectively. Caucasians with COPD and chronic bronchitis, age 40 to 80 with FEV1/FVC < 0.70 and FEV1 < 60% predicted, were selected for genetic analysis from participants in the NIH COPD Clinical Research Network’s Azithromycin for Prevention of Exacerbations of COPD in comparison to 32,900 Caucasian women who underwent prenatal genetic testing. Genetic analysis involved an allele-specific genotyping of 89 CFTR mutations. Results Exposure to WCS caused a pronounced reduction in CFTR activity in both CFTR (+/+) cells and F508del CFTR (+/-) cells; however, neither the degree of decrement (44.7% wild-type vs. 53.5% F508del heterozygous, P = NS) nor the residual CFTR activity were altered by CFTR heterozygosity. Similarly, WCS caused a marked reduction in CFTR activity measured by NPD in both wild type and CFTR heterozygous mice, but the severity of decrement (91.1% wild type vs. 47.7% CF heterozygous, P = NS) and the residual activity were not significantly affected by CFTR genetic status. Five of 127 (3.9%) COPD patients

  12. NLRC5: a key regulator of MHC class I-dependent immune responses.

    PubMed

    Kobayashi, Koichi S; van den Elsen, Peter J

    2012-12-01

    The expression of MHC class I molecules is crucial for the initiation and regulation of adaptive immune responses against pathogens. NOD-, LRR- and CARD-containing 5 (NLRC5) was recently identified as a specific transactivator of MHC class I genes (CITA). NLRC5 and the master regulator for MHC class II genes, class II transactivator (CIITA), interact with similar MHC promoter-bound factors. Here, we provide a broad overview of the molecular mechanisms behind MHC class I transcription and the role of the class I transactivator NLRC5 in MHC class I-dependent immune responses.

  13. Development of MHC-Linked Microsatellite Markers in the Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and Gir Lions

    PubMed Central

    Morris, Katrina M.; Kirby, Katherine; Beatty, Julia A.; Barrs, Vanessa R.; Cattley, Sonia; David, Victor; O’Brien, Stephen J.; Menotti-Raymond, Marilyn

    2014-01-01

    Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and an inexpensive method for studying MHC diversity in large-scale studies. We have developed 6 MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with 5 neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52), whereas the Burmese population has significantly lower MHC diversity (average allelic richness = 6.81; P < 0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species. PMID:24620003

  14. T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen

    PubMed Central

    1993-01-01

    While recent evidence strongly suggests that the third complementarity determining regions (CDR3s) of T cell receptors (TCRs) directly contact antigenic peptides bound to major histocompatibility complex (MHC) molecules, the nature of other TCR contact(s) is less clear. Here we probe the extent to which different antigens can affect this interaction by comparing the responses of T cells bearing structurally related TCRs to cytochrome c peptides and staphylococcal enterotoxin A (SEA) presented by 13 mutant antigen-presenting cell (APC) lines. Each APC expresses a class II MHC molecule (I-Ek) with a single substitution of an amino acid residue predicted to be located on the MHC alpha helices and to point "up" towards the TCR. We find that very limited changes (even a single amino acid) in either a CDR3 loop of the TCR or in a contact residue of the antigenic peptide can have a profound effect on relatively distant TCR/MHC interactions. The extent of these effects can be as great as that observed between T cells bearing entirely different TCRs and recognizing different peptides. We also find that superantigen presentation entails a distinct mode of TCR/MHC interaction compared with peptide presentation. These data suggest that TCR/MHC contacts can be made in a variety of ways between the same TCR and MHC, with the final configuration apparently dominated by the antigen. These observations suggest a molecular basis for recent reports in which either peptide analogues or superantigens trigger distinct pathways of T cell activation. PMID:8393480

  15. Intrahaplotypic Variants Differentiate Complex Linkage Disequilibrium within Human MHC Haplotypes.

    PubMed

    Lam, Tze Hau; Tay, Matthew Zirui; Wang, Bei; Xiao, Ziwei; Ren, Ee Chee

    2015-11-23

    Distinct regions of long-range genetic fixation in the human MHC region, known as conserved extended haplotypes (CEHs), possess unique genomic characteristics and are strongly associated with numerous diseases. While CEHs appear to be homogeneous by SNP analysis, the nature of fine variations within their genomic structure is unknown. Using multiple, MHC-homozygous cell lines, we demonstrate extensive sequence conservation in two common Asian MHC haplotypes: A33-B58-DR3 and A2-B46-DR9. However, characterization of phase-resolved MHC haplotypes revealed unique intra-CEH patterns of variation and uncovered 127 single nucleotide variants (SNVs) which are missing from public databases. We further show that the strong linkage disequilibrium structure within the human MHC that typically confounds precise identification of genetic features can be resolved using intra-CEH variants, as evidenced by rs3129063 and rs448489, which affect expression of ZFP57, a gene important in methylation and epigenetic regulation. This study demonstrates an improved strategy that can be used towards genetic dissection of diseases.

  16. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    PubMed

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M; Shan, Xueyan; Peterson, Daniel G; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M; Isberg, Sally R; Higgins, Damien P; Chong, Amanda Y; John, John St; Glenn, Travis C; Ray, David A; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.

  17. Comparative Genome Analyses Reveal Distinct Structure in the Saltwater Crocodile MHC

    PubMed Central

    Jaratlerdsiri, Weerachai; Deakin, Janine; Godinez, Ricardo M.; Shan, Xueyan; Peterson, Daniel G.; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M.; Isberg, Sally R.; Higgins, Damien P.; Chong, Amanda Y.; John, John St; Glenn, Travis C.; Ray, David A.; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus) and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2–6 times longer) than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity) with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs. PMID:25503521

  18. A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant

    PubMed Central

    Dirscherl, Hayley; Yoder, Jeffrey A.

    2015-01-01

    Three sequence lineages of MHC class I genes have been described in zebrafish (Danio rerio): U, Z, and L. The U lineage genes encoded on zebrafish chromosome 19 are predicted to provide the classical function of antigen presentation. This MHC class I locus displays significant haplotypic variation and is the only MHC class I locus in zebrafish that shares conserved synteny with the core mammalian MHC. Here we describe two MHC class I U lineage genes, mhc1ula and mhc1uma, that map to chromosome 22. Unlike the U lineage proteins encoded on chromosome 19, Ula and Uma likely play a nonclassical role as they lack conservation of key peptide binding residues, display limited polymorphic variation, and exhibit tissue-specific expression. We also describe a null haplotype at this chromosome 22 locus in which the mhc1ula and mhc1uma genes are absent due to a ∼30 kb deletion with no other MHC class I sequences present. Functional and non-functional transcripts of mhc1ula and mhc1uma were identified; however, mhc1uma transcripts were often not amplified or amplified at low levels from individuals possessing an apparently bona fide gene. These distinct U lineage genes may be restricted to the superorder Ostariophysi as similar sequences only could be identified from the blind cavefish (Astyanyx mexicanus), fathead minnow (Pimephales promelas), goldfish (Carassius auratus), and grass carp (Ctenopharyngodon idellus). PMID:26254596

  19. A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant.

    PubMed

    Dirscherl, Hayley; Yoder, Jeffrey A

    2015-09-01

    Three sequence lineages of MHC class I genes have been described in zebrafish (Danio rerio): U, Z, and L. The U lineage genes encoded on zebrafish chromosome 19 are predicted to provide the classical function of antigen presentation. This MHC class I locus displays significant haplotypic variation and is the only MHC class I locus in zebrafish that shares conserved synteny with the core mammalian MHC. Here, we describe two MHC class I U lineage genes, mhc1ula and mhc1uma, that map to chromosome 22. Unlike the U lineage proteins encoded on chromosome 19, Ula and Uma likely play a nonclassical role as they lack conservation of key peptide binding residues, display limited polymorphic variation, and exhibit tissue-specific expression. We also describe a null haplotype at this chromosome 22 locus in which the mhc1ula and mhc1uma genes are absent due to a ~30 kb deletion with no other MHC class I sequences present. Functional and non-functional transcripts of mhc1ula and mhc1uma were identified; however, mhc1uma transcripts were often not amplified or amplified at low levels from individuals possessing an apparently bona fide gene. These distinct U lineage genes may be restricted to the superorder Ostariophysi as similar sequences only could be identified from the blind cavefish (Astyanax mexicanus), fathead minnow (Pimephales promelas), goldfish (Carassius auratus), and grass carp (Ctenopharyngodon idella). PMID:26254596

  20. Prediction of binding to MHC class I molecules.

    PubMed

    Adams, H P; Koziol, J A

    1995-09-25

    The binding of antigenic peptide sequences to major histocompatibility complex (MHC) molecules is a prerequisite for stimulation of cytotoxic T cell responses. Neural networks are here used to predict the binding capacity of polypeptides to MHC class I molecules encoded by the gene HLA-A*0201. Given a large database of 552 nonamers and 486 decamers and their known binding capacities, the neural networks achieve a predictive hit rate of 0.78 for classifying peptides which might induce an immune response (good or intermediate binders) vs. those which cannot (weak or non-binders). The neural nets also depict specific motifs for different binding capacities. This approach is in principle applicable to all MHC class I and II molecules, given a suitable set of known binding capacities. The trained networks can then be used to perform a systematic search through all pathogen or tumor antigen protein sequences for potential cytotoxic T lymphocyte epitopes.

  1. In vitro digestion with proteases producing MHC class II ligands.

    PubMed

    Tohmé, Mira; Maschalidi, Sophia; Manoury, Bénédicte

    2013-01-01

    Proteases generate peptides that bind to MHC class II molecules to interact with a wide diversity of CD4(+) T cells. They are expressed in dedicated organelles: endosomes and lysosomes of professional antigen presenting cells (pAPCs) such as B cells, macrophages, and dendritic cells. The identification of endosomal proteases which produce antigenic peptides is important, for example, for better vaccination and to prevent autoimmune diseases. Here, we describe a panel of technics (in vitro digestion assays of protein with recombinant proteases or purified endosomes/lysosomes, T cell stimulation) to monitor the production of MHC class II ligands. PMID:23329510

  2. Rapid Flow Cytometry–Based Structural Maintenance of Chromosomes 1 (SMC1) Phosphorylation Assay for Identification of Ataxia-Telangiectasia Homozygotes and Heterozygotes

    PubMed Central

    Nahas, Shareef A.; Butch, Anthony W.; Du, Liutao; Gatti, Richard A.

    2010-01-01

    BACKGROUND No rapid reliable method exists for identifying ataxia-telangiectasia (A-T) homozygotes or heterozygotes. Heterozygotes are at an increased risk of cancer and are more sensitive to the effects of ionizing radiation (IR) than the general population. We report a rapid flow cytometry (FC)-based ataxia-telangiectasia mutated (ATM) kinase assay that measures ATM-dependent phosphorylation of structural maintenance of chromosomes 1 (SMC1) following DNA damage (FC-pSMC1 assay). METHODS After optimizing conditions with lymphoblastoid cell lines (LCLs), we studied peripheral blood mononuclear cells (PBMCs) isolated from 16 healthy donors (unknowns), 10 obligate A-T heterozygotes, and 6 unrelated A-T patients. One hour after DNA damage (by either IR or bleomycin), the cells were fixed and incubated with a primary antibody to SMC1pSer966. We analyzed the stained cells by FC to determine the difference in geometric mean fluorescence intensity (ΔGMFI) of untreated and treated cells; this difference was expressed as a percentage of daily experimental controls. RESULTS The FC-pSMC1 assay reliably distinguished ATM heterozygotes and homozygotes from controls. Average ΔGMFI percentages (SD) of daily controls were, for unknowns, 106.1 (37.6); for A-T heterozygotes, 37.0 (18.7); and for A-T homozygotes; −8.73 (16.2). Values for heterozygotes and homozygotes were significantly different from those of controls (P < 0.0001). CONCLUSIONS The FC-pSMC1 assay shortens the turnaround time for diagnosing A-T homozygotes from approximately 3 months to approximately 3 h. It also identifies A-T heterozygotes and can be used for pre-natal counseling or for screening individuals in large study cohorts for potential ATM heterozygosity, which can then be confirmed by sequencing. PMID:19147735

  3. Balancing selection on MHC class I in wild brown trout Salmo trutta.

    PubMed

    O'Farrell, B; Dennis, C; Benzie, J A; McGinnity, P; Carlsson, J; de Eyto, E; Coughlan, J P; Igoe, F; Meehan, R; Cross, T F

    2012-09-01

    Evidence is reported for balancing selection acting on variation at major histocompatibility complex (MHC) in wild populations of brown trout Salmo trutta. First, variation at an MHC class I (satr-uba)-linked microsatellite locus (mhc1) is retained in small S. trutta populations isolated above waterfalls although variation is lost at neutral microsatellite markers. Second, populations across several catchments are less differentiated at mhc1 than at neutral markers, as predicted by theory. The population structure of these fish was also elucidated.

  4. Improved pan-specific MHC class I peptide-binding predictions using a novel representation of the MHC-binding cleft environment.

    PubMed

    Carrasco Pro, S; Zimic, M; Nielsen, M

    2014-02-01

    Major histocompatibility complex (MHC) molecules play a key role in cell-mediated immune responses presenting bounded peptides for recognition by the immune system cells. Several in silico methods have been developed to predict the binding affinity of a given peptide to a specific MHC molecule. One of the current state-of-the-art methods for MHC class I is NetMHCpan, which has a core ingredient for the representation of the MHC class I molecule using a pseudo-sequence representation of the binding cleft amino acid environment. New and large MHC-peptide-binding data sets are constantly being made available, and also new structures of MHC class I molecules with a bound peptide have been published. In order to test if the NetMHCpan method can be improved by integrating this novel information, we created new pseudo-sequence definitions for the MHC-binding cleft environment from sequence and structural analyses of different MHC data sets including human leukocyte antigen (HLA), non-human primates (chimpanzee, macaque and gorilla) and other animal alleles (cattle, mouse and swine). From these constructs, we showed that by focusing on MHC sequence positions found to be polymorphic across the MHC molecules used to train the method, the NetMHCpan method achieved a significant increase in the predictive performance, in particular, of non-human MHCs. This study hence showed that an improved performance of MHC-binding methods can be achieved not only by the accumulation of more MHC-peptide-binding data but also by a refined definition of the MHC-binding environment including information from non-human species. PMID:24447175

  5. An analysis of the sensitivity and specificity of MHC-I and MHC-II immunohistochemical staining in muscle biopsies for the diagnosis of inflammatory myopathies.

    PubMed

    Rodríguez Cruz, Pedro M; Luo, Yue-Bei; Miller, James; Junckerstorff, Reimar C; Mastaglia, Frank L; Fabian, Victoria

    2014-12-01

    Although there have been several previous reports of immunohistochemical staining for MHC antigens in muscle biopsies, there appears to be a lack of consensus about its routine use in the diagnostic evaluation of biopsies from patients with suspected inflammatory myopathy. Positive MHC-I staining is nonspecific but is widely used as a marker for inflammatory myopathy, whilst the role of MHC-II staining is not clearly defined. We investigated the sensitivity and specificity of MHC-I and MHC-II immunostaining for the diagnosis of inflammatory myopathy in a large group of biopsies from a single reference laboratory. Positive staining for MHC-I was found to have a high sensitivity in biopsies from patients with inflammatory myopathy but a very low specificity, as it was also common in other non-inflammatory myopathies and neurogenic disorders. On the other hand, MHC-II positivity had a much higher specificity in all major subgroups of inflammatory myopathy, especially inclusion body myositis. The findings indicate that the combination of MHC-I and MHC-II staining results in a higher degree of specificity for the diagnosis of inflammatory myopathy and that in biopsies with inflammation, positive MHC-II staining strongly supports the diagnosis of an immune-mediated myopathy. We recommend that immunohistochemical staining for both MHC-I and MHC-II should be included routinely in the diagnostic evaluation of muscle biopsies from patients with suspected inflammatory myopathy. However, as the sensitivity and interpretation of MHC staining may depend on the technique used, further studies are needed to compare procedures in different centres and develop standardised protocols.

  6. Cholesterol lowering drug may influence cellular immune response by altering MHC II function[S

    PubMed Central

    Roy, Koushik; Ghosh, Moumita; Pal, Tuhin Kumar; Chakrabarti, Saikat; Roy, Syamal

    2013-01-01

    Major histocompatibility complex class II (MHC II) expressed on the surface of antigen-presenting cells (APCs) displays peptides to CD4+ T cells. Depletion of membrane cholesterol from APCs by methyl β-cyclodextrin treatment compromises peptide-MHC II complex formation coupled with impaired binding of conformational antibody, which binds close to the peptide binding groove of MHC II. Interestingly, the total cell surface of MHC II remains unaltered. These defects can be corrected by restoring membrane cholesterol. In silico docking studies with a three-dimensional model showed the presence of a cholesterol binding site in the transmembrane domain of MHC II (TM-MHC-II). From the binding studies it was clear that cholesterol, indeed, interacts with the TM-MHC-II and alters its conformation. Mutation of cholesterol binding residues (F240, L243, and F246) in the TM-MHC-II decreased the affinity for cholesterol. Furthermore, transfection of CHO cells with full-length mutant MHC II, but not wild-type MHC II, failed to activate antigen-specific T cells coupled with decreased binding of conformation-specific antibodies. Thus, cholesterol-induced conformational change of TM-MHC-II may allosterically modulate the peptide binding groove of MHC II leading to T cell activation. PMID:24038316

  7. Unraveling of Enigmatic Hearing-Impaired GJB2 Single Heterozygotes by Massive Parallel Sequencing: DFNB1 or Not?

    PubMed Central

    Kim, So Young; Kim, Ah Reum; Kim, Nayoung K. D.; Lee, Chung; Kim, Min Young; Jeon, Eun-Hee; Park, Woong-Yang; Choi, Byung Yoon

    2016-01-01

    Abstract The molecular etiology of nonsyndromic sensorineural hearing loss (SNHL) in subjects with only one detectable autosomal recessive GJB2 mutation is unclear. Here, we report GJB2 single heterozygotes with various final genetic diagnoses and suggest appropriate diagnostic strategies. A total of 160 subjects with SNHL without phenotypic markers were screened for GJB2 mutations. Single-nucleotide variants or structural variations within the DFNB1 locus or in other deafness genes were examined by Sanger sequencing, breakpoint PCR, and targeted exome sequencing (TES) of 129 deafness genes. We identified 27 subjects with two mutations and 10 subjects with only one detectable mutation in GJB2. The detection rate of the single GJB2 mutation among the 160 SNHL subjects in the present study (6.25%) was higher than 2.58% in normal hearing controls in Korean. The DFNB1 was clearly excluded as a molecular etiology in four (40%) subjects: other recessive deafness genes (N = 3) accounted for SNHL and the causative gene for the other non-DFNB1 subject (N = 1) was not identified. The etiology of additional two subjects was potentially explained by digenic etiology (N = 2) of GJB2 with MITF and GJB3, respectively. The contribution of the single GJB2 mutation in the four remaining subjects is unclear. Comprehensive diagnostic testing including TES is prerequisite for understanding GJB2 single heterozygotes. PMID:27057829

  8. All Paired Up with No Place to Go: Pairing, Synapsis, and DSB Formation in a Balancer Heterozygote

    PubMed Central

    Gong, Wei J; McKim, Kim S; Hawley, R. Scott

    2005-01-01

    The multiply inverted X chromosome balancer FM7 strongly suppresses, or eliminates, the occurrence of crossing over when heterozygous with a normal sequence homolog. We have utilized the LacI-GFP: lacO system to visualize the effects of FM7 on meiotic pairing, synapsis, and double-strand break formation in Drosophila oocytes. Surprisingly, the analysis of meiotic pairing and synapsis for three lacO reporter couplets in FM7/X heterozygotes revealed they are paired and synapsed during zygotene/pachytene in 70%–80% of oocytes. Moreover, the regions defined by these lacO couplets undergo double-strand break formation at normal frequency. Thus, even complex aberration heterozygotes usually allow high frequencies of meiotic pairing, synapsis, and double-strand break formation in Drosophila oocytes. However, the frequencies of failed pairing and synapsis were still 1.5- to 2-fold higher than were observed for corresponding regions in oocytes with two normal sequence X chromosomes, and this effect was greatest near a breakpoint. We propose that heterozygosity for breakpoints creates a local alteration in synaptonemal complex structure that is propagated across long regions of the bivalent in a fashion analogous to chiasma interference, which also acts to suppress crossing over. PMID:16299588

  9. Lake Superior, Duluth, MN

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This view shows the west end of Lake Superior and Duluth, MN (47.0N, 91.0W). Portions of Minnesota, Michigan and Ontario, Canada are in the scene. The Duluth metropolitan area is at the west end of the lake. The discoloration plume in the water at Duluth is the result of tailings from the iron ore smelters that process the iron ore from the nearby open pit mines seen near the upper left corner of the photo.

  10. Peptide Immunization Elicits Polyomavirus-Specific MHC Class Ib-Restricted CD8 T Cells in MHC Class Ia Allogeneic Mice

    PubMed Central

    Hofstetter, Amelia R.; Evavold, Brian D.

    2013-01-01

    Abstract Unlike the polymorphic MHC class Ia molecules, MHC class Ib molecules are oligomorphic or nonpolymorphic. We recently discovered a protective CD8 T cell response to mouse polyomavirus (MPyV) in H-2b haplotype mice that is restricted by H2-Q9, a member of the Qa-2 MHC class Ib family. Here, we demonstrate that immunization with a peptide corresponding to a virus capsid-derived peptide presented by Q9 also elicits MHC class Ib-restricted MPyV-specific CD8 T cells in mice of H-2s and H-2g7 strains. These findings support the concept that immunization with a single MHC class Ib-restricted peptide can expand CD8 T cells in MHC class Ia allogeneic hosts. PMID:23374150

  11. MHC class II DR allelic diversity in bighorn sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that decreased diversity and/or unique polymorphisms in MHC class II alleles of bighorn sheep (BHS, Ovis canadensis) are responsible for lower titer of antibodies against Mannheimia haemolytica leukotoxin, in comparison to domestic sheep (DS, Ovis aries). To test this hypothesis, DRA...

  12. Modo-UG, a marsupial nonclassical MHC class I locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modo-UG is a class I gene located in the MHC of the marsupial Monodelphis domestica, the gray short-tailed opossum. Modo-UG is expressed as three alternatively spliced mRNA forms, all of which encode a transmembrane form with a short cytoplasmic tail that lacks phosphorylation sites typically found...

  13. Strong selection at MHC in Mexicans since admixture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the major histocompatibility complex (MHC) region Mexicans have excessive African ance...

  14. MHC Class II Association with Lipid Rafts on the Antigen Presenting Cell Surface

    PubMed Central

    Anderson, Howard A.; Roche, Paul A.

    2014-01-01

    MHC class II (MHC-II) molecules function by binding peptides derived from either self-or foreign proteins and expressing these peptides on the surface of antigen presenting cells (APCs) for recognition by CD4 T cells. MHC-II is known to exist on clusters on the surface of APCs, and a variety of biochemical and functional studies have suggested that these clusters represent lipid raft microdomain-associated MHC-II. This review will summarize data exploring the biosynthesis of raft-associated MHC-II and the role that lipid raft association plays in regulating T cell activation by APCs. PMID:25261705

  15. Role of the MHC2TA gene in autoimmune diseases

    PubMed Central

    Martínez, Alfonso; Sánchez‐Lopez, Marta; Varadé, Jezabel; Mas, Ana; Martín, M Carmen; de las Heras, Virginia; Arroyo, Rafael; Mendoza, Juan Luis; Díaz‐Rubio, Manuel; Fernández‐Gutiérrez, Benjamín; de la Concha, Emilio G; Urcelay, Elena

    2007-01-01

    Objectives Expression of major histocompatibility complex (MHC) class II genes is almost exclusively regulated by the class II transactivator. A promoter polymorphism (−168A/G, rs3087456) in the MHC2TA gene was associated with increased susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction in a northern European population. However, no evidence of association of this MHC2TA variant with the two autoimmune diseases could be subsequently detected in independent cohorts. Aim To test the aforementioned single nucleotide polymorphism and another G→C change (nt1614 from coding sequence, rs4774) to analyse the haplotype pattern in this MHC2TA gene. Methods A case–control study was performed with 350 patients with rheumatoid arthritis, 396 patients with multiple sclerosis, 663 patients with inflammatory bowel disease (IBD) and 519 healthy controls from Madrid. Genotyping was ascertained by using TaqMan assays‐on‐demand on a 7900HT analyser, following the manufacturer's suggestions (Applied Biosystems, Foster City, California, USA). Haplotypes were inferred with the expectation–maximisation algorithm implemented by the Arlequin software. Results No independent association with these autoimmune diseases was found for either polymorphism in the Spanish cohorts tested. However, when haplotypes were compared between patients with rheumatoid arthritis and controls, a significant difference in their overall frequency distribution was observed, evidencing a protective haplotype (−168A/1614C, p = 0.006; odds ratio (OR) 0.7) and a risk haplotype (−168G/1614C, p = 0.019; OR 1.6). Patients with multiple sclerosis mirrored these results, but no effect on IBD was identified. Conclusions The MHC2TA gene influences predisposition to rheumatoid arthritis and multiple sclerosis, but not to IBD. The −168G allele is not an aetiological variant in itself, but a genetic marker of susceptibility/protection haplotypes. PMID:17012290

  16. MHC genotype predicts mate choice in the ring-necked pheasant Phasianus colchicus.

    PubMed

    Baratti, M; Dessì-Fulgheri, F; Ambrosini, R; Bonisoli-Alquati, A; Caprioli, M; Goti, E; Matteo, A; Monnanni, R; Ragionieri, L; Ristori, E; Romano, M; Rubolini, D; Scialpi, A; Saino, N

    2012-08-01

    Females of several vertebrate species selectively mate with males on the basis of the major histocompatibility complex (MHC) genes. As androgen-mediated maternal effects have long-lasting consequences for the adult phenotype, both mating and reproductive success may depend on the combined effect of MHC genotype and exposure to androgens during early ontogeny. We studied how MHC-based mate choice in ring-necked pheasants (Phasianus colchicus) was influenced by an experimental in ovo testosterone (T) increase. There was no conclusive evidence of in ovo T treatment differentially affecting mate choice in relation to MHC genotype. However, females avoided mating with males with a wholly different MHC genotype compared with males sharing at least one MHC allele. Females also tended to avoid mating with MHC-identical males, though not significantly so. These findings suggest that female pheasants preferred males with intermediate MHC dissimilarity. Male MHC heterozygosity or diversity did not predict the expression of ornaments or male dominance rank. Thus, MHC-based mating preferences in the ring-necked pheasant do not seem to be mediated by ornaments' expression and may have evolved mainly to reduce the costs of high heterozygosity at MHC loci for the progeny, such as increased risk of autoimmune diseases or disruption of coadapted gene pools.

  17. Co-evolution of MHC class I and variable NK cell receptors in placental mammals

    PubMed Central

    Guethlein, Lisbeth A.; Norman, Paul J.; Hilton, Hugo G.; Parham, Peter

    2015-01-01

    Summary Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer-cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines a stepwise co-evolution of MHC class I and KIRs is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C, drove further elaboration of MHC-C-specific KIRs, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes. PMID:26284483

  18. Co-evolution of MHC class I and variable NK cell receptors in placental mammals.

    PubMed

    Guethlein, Lisbeth A; Norman, Paul J; Hilton, Hugo H G; Parham, Peter

    2015-09-01

    Shaping natural killer (NK) cell functions in human immunity and reproduction are diverse killer cell immunoglobulin-like receptors (KIRs) that recognize polymorphic MHC class I determinants. A survey of placental mammals suggests that KIRs serve as variable NK cell receptors only in certain primates and artiodactyls. Divergence of the functional and variable KIRs in primates and artiodactyls predates placental reproduction. Among artiodactyls, cattle but not pigs have diverse KIRs. Catarrhine (humans, apes, and Old World monkeys) and platyrrhine (New World monkeys) primates, but not prosimians, have diverse KIRs. Platyrrhine and catarrhine systems of KIR and MHC class I are highly diverged, but within the catarrhines, a stepwise co-evolution of MHC class I and KIR is discerned. In Old World monkeys, diversification focuses on MHC-A and MHC-B and their cognate lineage II KIR. With evolution of C1-bearing MHC-C from MHC-B, as informed by orangutan, the focus changes to MHC-C and its cognate lineage III KIR. Evolution of C2 from C1 and fixation of MHC-C drove further elaboration of MHC-C-specific KIR, as exemplified by chimpanzee. In humans, the evolutionary trajectory changes again. Emerging from reorganization of the KIR locus and selective attenuation of KIR avidity for MHC class I are the functionally distinctive KIR A and KIR B haplotypes.

  19. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing

    PubMed Central

    Morozov, Giora I.; Zhao, Huaying; Mage, Michael G.; Boyd, Lisa F.; Jiang, Jiansheng; Dolan, Michael A.; Venna, Ramesh; Norcross, Michael A.; McMurtrey, Curtis P.; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H.

    2016-01-01

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8+ T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing. PMID:26869717

  20. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing.

    PubMed

    Morozov, Giora I; Zhao, Huaying; Mage, Michael G; Boyd, Lisa F; Jiang, Jiansheng; Dolan, Michael A; Venna, Ramesh; Norcross, Michael A; McMurtrey, Curtis P; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H

    2016-02-23

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing. PMID:26869717

  1. Preen secretions encode information on MHC similarity in certain sex-dyads in a monogamous seabird

    PubMed Central

    Leclaire, Sarah; van Dongen, Wouter F. D.; Voccia, Steeve; Merkling, Thomas; Ducamp, Christine; Hatch, Scott A.; Blanchard, Pierrick; Danchin, Étienne; Wagner, Richard H.

    2014-01-01

    Animals are known to select mates to maximize the genetic diversity of their offspring in order to achieve immunity against a broader range of pathogens. Although several bird species preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC), it remains unknown whether they can use olfactory cues to assess MHC similarity with potential partners. Here we combined gas chromatography data with genetic similarity indices based on MHC to test whether similarity in preen secretion chemicals correlated with MHC relatedness in the black-legged kittiwake (Rissa tridactyla), a species that preferentially mates with genetically dissimilar partners. We found that similarity in preen secretion chemicals was positively correlated with MHC relatedness in male-male and male-female dyads. This study provides the first evidence that preen secretion chemicals can encode information on MHC relatedness and suggests that odor-based mechanisms of MHC-related mate choice may occur in birds. PMID:25370306

  2. Interaction of TAPBPR, a tapasin homolog, with MHC-I molecules promotes peptide editing.

    PubMed

    Morozov, Giora I; Zhao, Huaying; Mage, Michael G; Boyd, Lisa F; Jiang, Jiansheng; Dolan, Michael A; Venna, Ramesh; Norcross, Michael A; McMurtrey, Curtis P; Hildebrand, William; Schuck, Peter; Natarajan, Kannan; Margulies, David H

    2016-02-23

    Peptide loading of major histocompatibility complex class I (MHC-I) molecules is central to antigen presentation, self-tolerance, and CD8(+) T-cell activation. TAP binding protein, related (TAPBPR), a widely expressed tapasin homolog, is not part of the classical MHC-I peptide-loading complex (PLC). Using recombinant MHC-I molecules, we show that TAPBPR binds HLA-A*02:01 and several other MHC-I molecules that are either peptide-free or loaded with low-affinity peptides. Fluorescence polarization experiments establish that TAPBPR augments peptide binding by MHC-I. The TAPBPR/MHC-I interaction is reversed by specific peptides, related to their affinity. Mutational and small-angle X-ray scattering (SAXS) studies confirm the structural similarities of TAPBPR with tapasin. These results support a role of TAPBPR in stabilizing peptide-receptive conformation(s) of MHC-I, permitting peptide editing.

  3. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes.

    PubMed

    Bordner, Andrew J

    2010-01-01

    The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632-0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with those for class I MHC

  4. MHC class II-assortative mate choice in European badgers (Meles meles).

    PubMed

    Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L

    2015-06-01

    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population. PMID:25913367

  5. MHC class II-assortative mate choice in European badgers (Meles meles).

    PubMed

    Sin, Yung Wa; Annavi, Geetha; Newman, Chris; Buesching, Christina; Burke, Terry; Macdonald, David W; Dugdale, Hannah L

    2015-06-01

    The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC-based mate choice in wild mammals are under-represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite-derived pairwise relatedness, to attempt to distinguish MHC-specific effects from genomewide effects. We found MHC-assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within-group and neighbouring-group parent pairs, only neighbouring-group pairs showed MHC-assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide-based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC-assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.

  6. Experience of Routine Live-birth Screening for Galactosaemia in a British Hospital, with Emphasis on Heterozygote Detection

    PubMed Central

    Ellis, Graham; Wilcock, A. Ross; Goldberg, David M.

    1972-01-01

    Results are reported of a screening programme for galactosaemia covering a period of 2½ years and 6415 births. The gene frequency for galactosaemia estimated from the data of the screening programme was 0·002. This conflicted with the known live-birth incidence of at least 1: 50,000 during this same period. 2 of the 4 galactosaemic infants concerned died under circumstances that were preventable had they been screened at birth. The need to screen all sick infants for galactosaemia is emphasized, as is the requirement for reliable information on its incidence in Great Britain. The screening test employed (Beutler and Baluda, 1966a) seemed appropriate for this purpose. It was simple to perform and apparently accurate in galactosaemic infants. Its accuracy in detecting heterozygotes is uncertain. This test should be available in all hospitals receiving sick neonates. PMID:4401641

  7. Lake Superior revisited 1984

    USGS Publications Warehouse

    MacCallum, Wayne R.; Selgeby, James H.

    1987-01-01

    The Lake Superior fish community has changed substantially since the early 1960s, when control of the sea lamprey (Petromyzon marinus) became effective. Self-reproducing stocks of lake trout (Salvelinus namaycush) have been reestablished in many inshore areas, although they have not yet reached pre-sea lamprey abundance; offshore lake trout are probably at or near pre-sea lamprey abundance. Stocks of lake whitefish (Coregonus clupeaformis) appear to have fully recovered; commercial catches are at or above historical levels. Lake herring (Coregonus artedii) are recovering rapidly in U.S. waters and are abundant in western Canadian waters. The population of rainbow smelt (Osmerus mordax), which declined in the 1970s, is recovering. Pacific salmon (Oncorhynchus) are becoming more abundant as a result of increased stocking in U.S. waters and are reproducing in most suitable tributaries; they have become significant in anglers' creels.

  8. Mechanistic understanding and significance of small peptides interaction with MHC class II molecules for therapeutic applications.

    PubMed

    Afridi, Saifullah; Hoessli, Daniel C; Hameed, Muhammad Waqar

    2016-07-01

    Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4(+) T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4(+) T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II-peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II-peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4(+) T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II-peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide-MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.

  9. TAPBPR and tapasin binding to MHC class I is mutually exclusive

    PubMed Central

    Hermann, Clemens; Strittmatter, Lisa M; Deane, Janet E; Boyle, Louise H

    2013-01-01

    The loading of peptide antigens onto MHC class I molecules is a highly controlled process in which the MHC class I dedicated chaperone tapasin is a key player. We recently identified a tapasin related molecule, TAPBPR, as an additional component in the MHC class I antigen presentation pathway. Here we show that the amino acid residues important for tapasin to interact with MHC class I are highly conserved on TAPBPR. We identify specific residues in the N-terminal and C-terminal domains of TAPBPR involved in associating with MHC class I. Furthermore, we demonstrate that residues on MHC class I crucial for its association with tapasin, such as T134, are also essential for its interaction with TAPBPR. Taken together, the data indicate that TAPBPR and tapasin bind in a similar orientation to the same face of MHC class I. In the absence of tapasin, the association of MHC class I with TAPBPR is increased. However, in the absence of TAPBPR, the interaction between MHC class I and tapasin does not increase. In light of our findings, previous data determining the function of tapasin in the MHC class I antigen processing and presentation pathway must be re-evaluated. PMID:24163410

  10. Condition-dependent mate choice and a reproductive disadvantage for MHC-divergent male tiger salamanders.

    PubMed

    Bos, David H; Williams, Rod N; Gopurenko, David; Bulut, Zafer; DeWoody, J Andrew

    2009-08-01

    Major histocompatibility complex (MHC) alleles likely have adaptive value because of overdominance, in which case MHC heterozygous individuals have increased fitness relative to homozygotes. Because of this potential benefit, the evolution of sexual reproduction between MHC-divergent individuals (i.e. negative assortative mating, NAM) may be favoured. However, the strongest evidence for MHC-based NAM comes from inbred animals, and context-dependent mating preferences have rarely been evaluated although they often occur in nature. We assessed the extent MHC-based mating preferences among wild tiger salamanders (Ambystoma tigrinum) using multiple molecular approaches. We genotyped 102 adults and 864 larvae from 36 breeding trials at both microsatellite and MHC loci. Parentage analysis revealed that reproductive success among males was positively associated with increased tail length and that with respect to the focal female, MHC-similar males sired a significantly higher number of offspring than more dissimilar males. This trend was consistent, even under context-dependent scenarios that favour traditional MHC-based NAM. These results suggest that the most MHC-divergent males may be at a reproductive disadvantage in pairwise breeding trials. Our data add to a growing body of evidence that suggests where it exists, MHC-based choice is probably dynamic and mediated by many factors that vary in the wild, notably signals from other indicator traits and by the quality and quantity of potential mates. PMID:19508451

  11. Genetic variation in MHC proteins is associated with T cell receptor expression biases.

    PubMed

    Sharon, Eilon; Sibener, Leah V; Battle, Alexis; Fraser, Hunter B; Garcia, K Christopher; Pritchard, Jonathan K

    2016-09-01

    In each individual, a highly diverse T cell receptor (TCR) repertoire interacts with peptides presented by major histocompatibility complex (MHC) molecules. Despite extensive research, it remains controversial whether germline-encoded TCR-MHC contacts promote TCR-MHC specificity and, if so, whether differences exist in TCR V gene compatibilities with different MHC alleles. We applied expression quantitative trait locus (eQTL) mapping to test for associations between genetic variation and TCR V gene usage in a large human cohort. We report strong trans associations between variation in the MHC locus and TCR V gene usage. Fine-mapping of the association signals identifies specific amino acids from MHC genes that bias V gene usage, many of which contact or are spatially proximal to the TCR or peptide in the TCR-peptide-MHC complex. Hence, these MHC variants, several of which are linked to autoimmune diseases, can directly affect TCR-MHC interaction. These results provide the first examples of trans-QTL effects mediated by protein-protein interactions and are consistent with intrinsic TCR-MHC specificity. PMID:27479906

  12. Spatially variable coevolution between a haemosporidian parasite and the MHC of a widely distributed passerine

    PubMed Central

    Jones, Matthew R; Cheviron, Zachary A; Carling, Matthew D

    2015-01-01

    The environment shapes host–parasite interactions, but how environmental variation affects the diversity and composition of parasite-defense genes of hosts is unresolved. In vertebrates, the highly variable major histocompatibility complex (MHC) gene family plays an essential role in the adaptive immune system by recognizing pathogen infection and initiating the cellular immune response. Investigating MHC-parasite associations across heterogeneous landscapes may elucidate the role of spatially fluctuating selection in the maintenance of high levels of genetic variation at the MHC. We studied patterns of association between an avian haemosporidian blood parasite and the MHC of rufous-collared sparrows (Zonotrichia capensis) that inhabit environments with widely varying haemosporidian infection prevalence in the Peruvian Andes. MHC diversity peaked in populations with high infection prevalence, although intra-individual MHC diversity was not associated with infection status. MHC nucleotide and protein sequences associated with infection absence tended to be rare, consistent with negative frequency-dependent selection. We found an MHC variant associated with a ∽26% decrease in infection probability at middle elevations (1501–3100 m) where prevalence was highest. Several other variants were associated with a significant increase in infection probability in low haemosporidian prevalence environments, which can be interpreted as susceptibility or quantitative resistance. Our study highlights important challenges in understanding MHC evolution in natural systems, but may point to a role of negative frequency-dependent selection and fluctuating spatial selection in the evolution of Z. capensisMHC. PMID:25798222

  13. Structural prediction of peptides bound to MHC class I.

    PubMed

    Fagerberg, Theres; Cerottini, Jean-Charles; Michielin, Olivier

    2006-02-17

    An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.

  14. Strong Selection at MHC in Mexicans since Admixture

    PubMed Central

    Zhou, Quan; Zhao, Liang; Guan, Yongtao

    2016-01-01

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive African ancestral alleles compared to the rest of the genome, which is the hallmark of recent selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for two datasets, which put our finding among the strongest known selections observed in humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans. Using inaccurate Amerindian training samples was a major concern for the credibility of previously reported selection signals in Latinos. Taking advantage of the flexibility of our statistical model, we devised a model fitting technique that can learn Amerindian ancestral haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans using only European and African training samples. The strong selection signal at the MHC remains without Amerindian training samples. Finally, we note that medical history studies suggest such a strong selection at MHC is plausible in Mexicans. PMID:26863142

  15. MHC Class II haplotypes of Colombian Amerindian tribes.

    PubMed

    Yunis, Juan J; Yunis, Edmond J; Yunis, Emilio

    2013-07-01

    We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family), Embera, Waunana (Choco linguistic family), Puinave and Nukak (Maku-Puinave linguistic families), Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family), Guahibo and Guayabero (Guayabero Linguistic Family), Curripaco and Piapoco (Arawak linguistic family) and Yucpa (Karib linguistic family). for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1). Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America.

  16. MHC associations with clinical and autoantibody manifestations in European SLE.

    PubMed

    Morris, D L; Fernando, M M A; Taylor, K E; Chung, S A; Nititham, J; Alarcón-Riquelme, M E; Barcellos, L F; Behrens, T W; Cotsapas, C; Gaffney, P M; Graham, R R; Pons-Estel, B A; Gregersen, P K; Harley, J B; Hauser, S L; Hom, G; Langefeld, C D; Noble, J A; Rioux, J D; Seldin, M F; Vyse, T J; Criswell, L A

    2014-04-01

    Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease affecting multiple organ systems and characterized by autoantibody formation to nuclear components. Although genetic variation within the major histocompatibility complex (MHC) is associated with SLE, its role in the development of clinical manifestations and autoantibody production is not well defined. We conducted a meta-analysis of four independent European SLE case collections for associations between SLE sub-phenotypes and MHC single-nucleotide polymorphism genotypes, human leukocyte antigen (HLA) alleles and variant HLA amino acids. Of the 11 American College of Rheumatology criteria and 7 autoantibody sub-phenotypes examined, anti-Ro/SSA and anti-La/SSB antibody subsets exhibited the highest number and most statistically significant associations. HLA-DRB1*03:01 was significantly associated with both sub-phenotypes. We found evidence of associations independent of MHC class II variants in the anti-Ro subset alone. Conditional analyses showed that anti-Ro and anti-La subsets are independently associated with HLA-DRB1*0301, and that the HLA-DRB1*03:01 association with SLE is largely but not completely driven by the association of this allele with these sub-phenotypes. Our results provide strong evidence for a multilevel risk model for HLA-DRB1*03:01 in SLE, where the association with anti-Ro and anti-La antibody-positive SLE is much stronger than SLE without these autoantibodies.

  17. MHC Class II haplotypes of Colombian Amerindian tribes

    PubMed Central

    Yunis, Juan J.; Yunis, Edmond J.; Yunis, Emilio

    2013-01-01

    We analyzed 1041 individuals belonging to 17 Amerindian tribes of Colombia, Chimila, Bari and Tunebo (Chibcha linguistic family), Embera, Waunana (Choco linguistic family), Puinave and Nukak (Maku-Puinave linguistic families), Cubeo, Guanano, Tucano, Desano and Piratapuyo (Tukano linguistic family), Guahibo and Guayabero (Guayabero Linguistic Family), Curripaco and Piapoco (Arawak linguistic family) and Yucpa (Karib linguistic family). for MHC class II haplotypes (HLA-DRB1, DQA1, DQB1). Approximately 90% of the MHC class II haplotypes found among these tribes are haplotypes frequently encountered in other Amerindian tribes. Nonetheless, striking differences were observed among Chibcha and non-Chibcha speaking tribes. The DRB1*04:04, DRB1*04:11, DRB1*09:01 carrying haplotypes were frequently found among non-Chibcha speaking tribes, while the DRB1*04:07 haplotype showed significant frequencies among Chibcha speaking tribes, and only marginal frequencies among non-Chibcha speaking tribes. Our results suggest that the differences in MHC class II haplotype frequency found among Chibcha and non-Chibcha speaking tribes could be due to genetic differentiation in Mesoamerica of the ancestral Amerindian population into Chibcha and non-Chibcha speaking populations before they entered into South America. PMID:23885196

  18. Strong Selection at MHC in Mexicans since Admixture.

    PubMed

    Zhou, Quan; Zhao, Liang; Guan, Yongtao

    2016-02-01

    Mexicans are a recent admixture of Amerindians, Europeans, and Africans. We performed local ancestry analysis of Mexican samples from two genome-wide association studies obtained from dbGaP, and discovered that at the MHC region Mexicans have excessive African ancestral alleles compared to the rest of the genome, which is the hallmark of recent selection for admixed samples. The estimated selection coefficients are 0.05 and 0.07 for two datasets, which put our finding among the strongest known selections observed in humans, namely, lactase selection in northern Europeans and sickle-cell trait in Africans. Using inaccurate Amerindian training samples was a major concern for the credibility of previously reported selection signals in Latinos. Taking advantage of the flexibility of our statistical model, we devised a model fitting technique that can learn Amerindian ancestral haplotype from the admixed samples, which allows us to infer local ancestries for Mexicans using only European and African training samples. The strong selection signal at the MHC remains without Amerindian training samples. Finally, we note that medical history studies suggest such a strong selection at MHC is plausible in Mexicans. PMID:26863142

  19. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution.

    PubMed

    Parham, Peter; Moffett, Ashley

    2013-02-01

    Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, in which they have progressively co-evolved with MHC class I molecules. The emergence of the MHC-C gene in hominids drove the evolution of a system of NK cell receptors for MHC-C molecules that is most elaborate in chimpanzees. By contrast, the human system of MHC-C receptors seems to have been subject to different selection pressures that have acted in competition on the immunological and reproductive functions of MHC class I molecules. We suggest that this compromise facilitated the development of the bigger brains that enabled archaic and modern humans to migrate out of Africa and populate other continents.

  20. An MHC class I immune evasion gene of Marek׳s disease virus.

    PubMed

    Hearn, Cari; Preeyanon, Likit; Hunt, Henry D; York, Ian A

    2015-01-15

    Marek׳s disease virus (MDV) is a widespread α-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198-205 (2001)), but the gene(s) involved have not been identified. Here we demonstrate that an MDV gene, MDV012, is capable of reducing surface expression of MHC class I on chicken cells. Co-expression of an MHC class I-binding peptide targeted to the endoplasmic reticulum (bypassing the requirement for the TAP peptide transporter) partially rescued MHC class I expression in the presence of MDV012, suggesting that MDV012 is a TAP-blocking MHC class I immune evasion protein. This is the first unique non-mammalian MHC class I immune evasion gene identified, and suggests that α-herpesviruses have conserved this function for at least 100 million years.

  1. An MHC-defined primate model reveals significant rejection of bone marrow after mixed chimerism induction despite full MHC matching.

    PubMed

    Larsen, C P; Page, A; Linzie, K H; Russell, M; Deane, T; Stempora, L; Strobert, E; Penedo, M C T; Ward, T; Wiseman, R; O'Connor, D; Miller, W; Sen, S; Singh, K; Kean, L S

    2010-11-01

    In murine models, mixed hematopoietic chimerism induction leads to robust immune tolerance. However, translation to primates and to patients has been difficult. In this study, we used a novel MHC-defined rhesus macaque model to examine the impact of MHC matching on the stability of costimulation blockade-/sirolimus-mediated chimerism, and to probe possible mechanisms of bone marrow rejection after nonmyeloablative transplant. Using busulfan-based pretransplant preparation and maintenance immunosuppression with sirolimus, as well as CD28 and CD154 blockade, all recipients demonstrated donor engraftment after transplant. However, the mixed chimerism that resulted was compartmentalized, with recipients demonstrating significantly higher whole blood chimerism compared to T cell chimerism. Thus, the vast majority of T cells presenting posttransplant were recipient-rather than donor-derived. Surprisingly, even in MHC-matched transplants, rejection of donor hematopoiesis predominated after immunosuppression withdrawal. Weaning of immunosuppression was associated with a surge of antigen-experienced T cells, and transplant rejection was associated with the acquisition of donor-directed T cell alloreactivity. These results suggest that a reservoir of alloreactive cells was present despite prior costimulation blockade and sirolimus, and that the post-immunosuppression lymphocytic rebound may have lead to a phenotypic shift in these recipient T cells towards an activated, antigen-experienced phenotype, and ultimately, to transplant rejection. PMID:20849552

  2. Interspecific hybridization increases MHC class II diversity in two sister species of newts.

    PubMed

    Nadachowska-Brzyska, Krystyna; Zieliński, Piotr; Radwan, Jacek; Babik, Wiesław

    2012-02-01

    Our understanding of the evolutionary mechanisms generating variation within the highly polymorphic major histocompatibility complex (MHC) genes remains incomplete. Assessing MHC variation across multiple populations, of recent and ancient divergence, may facilitate understanding of geographical and temporal aspects of variation. Here, we applied 454 sequencing to perform a large-scale, comprehensive analysis of MHC class II in the closely related, hybridizing newts, Lissotriton vulgaris (Lv) and Lissotriton montandoni (Lm). Our study revealed an extensive (299 alleles) geographically structured polymorphism. Populations at the southern margin of the Lv distribution, inhabited by old and distinct lineages (southern Lv), exhibited moderate MHC variation and strong population structure, indicating little gene flow or extensive local adaptation. Lissotriton vulgaris in central Europe and the northern Balkans (northern Lv) and almost all Lm populations had a high MHC variation. A much higher proportion of MHC alleles was shared between Lm and northern Lv than between Lm and southern Lv. Strikingly, the average pairwise F(ST) between northern Lv and Lm was significantly lower than between northern and southern Lv for MHC, but not for microsatellites. Thus, high MHC variation in Lm and northern Lv may result from gene flow between species. We hypothesize that the interspecific exchange of MHC genes may be facilitated by frequency-dependent selection. A marginally significant correlation between the MHC and microsatellite allelic richness indicates that demographic factors may have contributed to the present-day pattern of MHC variation, but unequivocal signatures of adaptive evolution in MHC class II sequences emphasize the role of selection on a longer timescale.

  3. Characterization of a divergent non-classical MHC class I gene in sharks.

    PubMed

    Wang, Carren; Perera, Thushara V; Ford, Heide L; Dascher, Christopher C

    2003-04-01

    Sharks are the most ancient group of vertebrates known to possess members of the major histocompatibility complex (MHC) gene family. For this reason, sharks provide a unique opportunity to gain insight into the evolution of the vertebrate immune system through comparative analysis. Two genes encoding proteins related to the MHC class I gene family were isolated from splenic cDNA derived from spiny dogfish shark ( Squalus acanthias). The genes have been designated MhcSqac-UAA*01 and MhcSqac-UAA*NC1. Comparative analysis demonstrates that the Sqac-UAA*01 protein sequence clusters with classical MHC class I of several shark species and has structural elements common to most classical MHC class I molecules. In contrast, Sqac-UAA*NC1 is highly divergent from all vertebrate classical MHC class I proteins, including the Sqac-UAA *01 sequence and those of other shark species. Although Sqac-UAA*NC1 is clearly related to the MHC class I gene family, no orthologous genes from other species were identified due to the high degree of sequence divergence. In fact, the Sqac NC1 protein sequence is the most divergent MHC class-I-like protein identified thus far in any shark species. This high degree of divergence is similar in magnitude to some of the MHC class-I-related genes found in mammals, such as MICA or CD1. These data support the existence of a class of highly divergent non-classical MHC class I genes in the most primitive vertebrates known to possess homologues of the MHC and other components of the adaptive immune system.

  4. Hypothesis: Possible respiratory advantages for heterozygote carriers of cystic fibrosis linked mutations during dusty climate of last glaciation.

    PubMed

    Borzan, Vladimir; Tomašević, Boris; Kurbel, Sven

    2014-12-21

    This paper puts forward a new hypothesis to interpret the high carrier frequency of CFTR mutations in individuals of European descent. The proposed heterozygote advantage factor is related to the specific climate conditions in Europe during the last 50 ky that might have heavily compromised the respiratory function of our ancestors in Eurasia. A large part of the last 50 ky was cold, and the coldest period was the Last Glacial Maximum (LGM) (26.5 to 19 kya). The global climate was dry with a dust-laden atmosphere (20 to 25 times more dust than the present level). High levels of atmospheric dust started more than 40 kya and ended less than 10 kya. Secretion of airway fluid is usually related to the submucosal tissue hydration, while salt reabsorption relies on activation of CFTRs that allow ENaCs to absorb salt and water. The water loss by evaporation depends on the air humidity and flow rate. Salt accumulation in the mucus is normally prevented by reabsorption of Na(+) and Cl(-) by epithelial cells if the presence of functional CFTRs is normal. If one gene for CFTR is mutated, the number of functional CFTRs is reduced and this limits the capacity of salt reabsorption by epithelial cells. This means that evaporation makes the airway fluid more hypertonic, and osmotic forces bring more water from the interstitial space, thus leading to a new balance in mucosal fluid traffic. Increased osmolarity and volume of airway fluid can be more moveable in cases when evaporation and dust exposure is increased. If both CFTR genes are mutated, low number of functional CFTRs diminishes salt resorption of epithelial cells. Salt accumulated in the mucous fluid within respiratory ducts, as previously described. The hypertonic ductal content forces more water and some electrolytes to enter the airway fluid from the interstitial fluid, and evaporation leads to further concentration of thick immobile mucus. The proposed interpretation is that CFTR mutations have spread among our

  5. Hypothesis: Possible respiratory advantages for heterozygote carriers of cystic fibrosis linked mutations during dusty climate of last glaciation.

    PubMed

    Borzan, Vladimir; Tomašević, Boris; Kurbel, Sven

    2014-12-21

    This paper puts forward a new hypothesis to interpret the high carrier frequency of CFTR mutations in individuals of European descent. The proposed heterozygote advantage factor is related to the specific climate conditions in Europe during the last 50 ky that might have heavily compromised the respiratory function of our ancestors in Eurasia. A large part of the last 50 ky was cold, and the coldest period was the Last Glacial Maximum (LGM) (26.5 to 19 kya). The global climate was dry with a dust-laden atmosphere (20 to 25 times more dust than the present level). High levels of atmospheric dust started more than 40 kya and ended less than 10 kya. Secretion of airway fluid is usually related to the submucosal tissue hydration, while salt reabsorption relies on activation of CFTRs that allow ENaCs to absorb salt and water. The water loss by evaporation depends on the air humidity and flow rate. Salt accumulation in the mucus is normally prevented by reabsorption of Na(+) and Cl(-) by epithelial cells if the presence of functional CFTRs is normal. If one gene for CFTR is mutated, the number of functional CFTRs is reduced and this limits the capacity of salt reabsorption by epithelial cells. This means that evaporation makes the airway fluid more hypertonic, and osmotic forces bring more water from the interstitial space, thus leading to a new balance in mucosal fluid traffic. Increased osmolarity and volume of airway fluid can be more moveable in cases when evaporation and dust exposure is increased. If both CFTR genes are mutated, low number of functional CFTRs diminishes salt resorption of epithelial cells. Salt accumulated in the mucous fluid within respiratory ducts, as previously described. The hypertonic ductal content forces more water and some electrolytes to enter the airway fluid from the interstitial fluid, and evaporation leads to further concentration of thick immobile mucus. The proposed interpretation is that CFTR mutations have spread among our

  6. DockTope: a Web-based tool for automated pMHC-I modelling

    PubMed Central

    Menegatti Rigo, Maurício; Amaral Antunes, Dinler; Vaz de Freitas, Martiela; Fabiano de Almeida Mendes, Marcus; Meira, Lindolfo; Sinigaglia, Marialva; Fioravanti Vieira, Gustavo

    2015-01-01

    The immune system is constantly challenged, being required to protect the organism against a wide variety of infectious pathogens and, at the same time, to avoid autoimmune disorders. One of the most important molecules involved in these events is the Major Histocompatibility Complex class I (MHC-I), responsible for binding and presenting small peptides from the intracellular environment to CD8+ T cells. The study of peptide:MHC-I (pMHC-I) molecules at a structural level is crucial to understand the molecular mechanisms underlying immunologic responses. Unfortunately, there are few pMHC-I structures in the Protein Data Bank (PDB) (especially considering the total number of complexes that could be formed combining different peptides), and pMHC-I modelling tools are scarce. Here, we present DockTope, a free and reliable web-based tool for pMHC-I modelling, based on crystal structures from the PDB. DockTope is fully automated and allows any researcher to construct a pMHC-I complex in an efficient way. We have reproduced a dataset of 135 non-redundant pMHC-I structures from the PDB (Cα RMSD below 1 Å). Modelling of pMHC-I complexes is remarkably important, contributing to the knowledge of important events such as cross-reactivity, autoimmunity, cancer therapy, transplantation and rational vaccine design. PMID:26674250

  7. Balancing selection on MHC class I in wild brown trout Salmo trutta.

    PubMed

    O'Farrell, B; Dennis, C; Benzie, J A; McGinnity, P; Carlsson, J; de Eyto, E; Coughlan, J P; Igoe, F; Meehan, R; Cross, T F

    2012-09-01

    Evidence is reported for balancing selection acting on variation at major histocompatibility complex (MHC) in wild populations of brown trout Salmo trutta. First, variation at an MHC class I (satr-uba)-linked microsatellite locus (mhc1) is retained in small S. trutta populations isolated above waterfalls although variation is lost at neutral microsatellite markers. Second, populations across several catchments are less differentiated at mhc1 than at neutral markers, as predicted by theory. The population structure of these fish was also elucidated. PMID:22957875

  8. Two mechanisms for the non-MHC-linked resistance to spontaneous autoimmunity.

    PubMed

    Verdaguer, J; Amrani, A; Anderson, B; Schmidt, D; Santamaria, P

    1999-04-15

    Genetic susceptibility and resistance to most autoimmune disorders are associated with highly polymorphic genes of the MHC and with non-MHC-linked polygenic modifiers. It is known that non-MHC-linked polymorphisms can override or enhance the susceptibility to an autoimmune disease provided by pathogenic MHC genes, but the mechanisms remain elusive. In this study, we have followed the fate of two highly diabetogenic beta cell-specific T cell receptors (Kd and I-Ag7 restricted, respectively) in NOR/Lt mice, which are resistant to autoimmune diabetes despite expressing two copies of the diabetogenic MHC haplotype H-2g7. We show that at least two mechanisms of non-MHC-linked control of pathogenic T cells operate in these mice. One segregates as a recessive trait and is associated with a reduction in the peripheral frequency of diabetogenic CD8+ (but not CD4+) T cells. The other segregates as a dominant trait and is mediated by IL-4- and TGF-beta1-independent immune suppressive functions provided by lymphocytes that target diabetogenic CD4+ and CD8+ T cells, without causing their deletion, anergy, immune deviation, or ignorance. These results provide explanations as to how non-MHC-linked polymorphisms can override the susceptibility to an autoimmune disease provided by pathogenic MHC haplotypes, and demonstrate that protective non-MHC-linked genes may selectively target specific lymphoid cell types in cellularly complex autoimmune responses. PMID:10202001

  9. Parasite load and MHC diversity in undisturbed and agriculturally modified habitats of the ornate dragon lizard.

    PubMed

    Radwan, Jacek; Kuduk, Katarzyna; Levy, Esther; LeBas, Natasha; Babik, Wiesław

    2014-12-01

    Major histocompatibility complex (MHC) gene polymorphism is thought to be driven by host-parasite co-evolution, but the evidence for an association between the selective pressure from parasites and the number of MHC alleles segregating in a population is scarce and inconsistent. Here, we characterized MHC class I polymorphism in a lizard whose habitat preferences (rock outcrops) lead to the formation of well-defined and stable populations. We investigated the association between the load of ticks, which were used as a proxy for the load of pathogens they transmit, and MHC class I polymorphism across populations in two types of habitat: undisturbed reserves and agricultural land. We hypothesized that the association would be positive across undisturbed reserve populations, but across fragmented agricultural land populations, the relationship would be distorted by the loss of MHC variation due to drift. After controlling for habitat, MHC diversity was not associated with tick number, and the habitats did not differ in this respect. Neither did we detect a difference between habitats in the relationship between MHC and neutral diversity, which was positive across all populations. However, there was extensive variation in the number of MHC alleles per individual, and we found that tick number was positively associated with the average number of alleles carried by lizards across reserve populations, but not across populations from disturbed agricultural land. Our results thus indicate that local differences in selection from parasites may contribute to MHC copy number variation within species, but habitat degradation can distort this relationship.

  10. The arginine methyltransferase PRMT5 regulates CIITA-dependent MHC II transcription.

    PubMed

    Fan, Zhiwen; Kong, Xiaocen; Xia, Jun; Wu, Xiaoyan; Li, He; Xu, Huihui; Fang, Mingming; Xu, Yong

    2016-05-01

    Class II major histocompatibility complex (MHC II) dependent antigen presentation serves as a key step in mammalian adaptive immunity and host defense. In antigen presenting cells (e.g., macrophages), MHC II transcription can be activated by interferon gamma (IFN-γ) and mediated by class II transactivator (CIITA). The underlying epigenetic mechanism, however, is not completely understood. Here we report that following IFN-γ stimulation, symmetrically dimethylated histone H3 arginine 2 (H3R2Me2s) accumulated on the MHC II promoter along with CIITA. IFN-γ augmented expression, nuclear translocation, and promoter binding of the protein arginine methyltransferase PRMT5 in macrophages. Over-expression of PRMT5 potentiated IFN-γ induced activation of MHC II transcription in an enzyme activity-dependent manner. In contrast, PRMT5 silencing or inhibition of PRMT5 activity by methylthioadenosine (MTA) suppressed MHC II transactivation by IFN-γ. CIITA interacted with and recruited PRMT5 to the MHC II promoter and mediated the synergy between PRMT5 and ASH2/WDR5 to activate MHC II transcription. PRMT5 expression was down-regulated in senescent and H2O2-treated macrophages rendering ineffectual induction of MHC II transcription by IFN-γ. Taken together, our data reveal a pathophysiologically relevant role for PRMT5 in MHC II transactivation in macrophages. PMID:26972221

  11. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression.

    PubMed

    Downs, Isaac; Vijayan, Saptha; Sidiq, Tabasum; Kobayashi, Koichi S

    2016-07-01

    Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016. PMID:27087581

  12. Loss of Mhc and Neutral Variation in Peary Caribou: Genetic Drift Is Not Mitigated by Balancing Selection or Exacerbated by Mhc Allele Distributions

    PubMed Central

    Taylor, Sabrina S.; Jenkins, Deborah A.; Arcese, Peter

    2012-01-01

    Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks. PMID:22655029

  13. Loss of MHC and neutral variation in Peary caribou: genetic drift is not mitigated by balancing selection or exacerbated by MHC allele distributions.

    PubMed

    Taylor, Sabrina S; Jenkins, Deborah A; Arcese, Peter

    2012-01-01

    Theory and empirical results suggest that the rate of loss of variation at Mhc and neutral microsatellite loci may differ because selection influences Mhc genes, and because a high proportion of rare alleles at Mhc loci may result in high rates of loss via drift. Most published studies compare Mhc and microsatellite variation in various contemporary populations to infer the effects of population size on genetic variation, even though different populations are likely to have different demographic histories that may also affect contemporary genetic variation. We directly compared loss of variation at Mhc and microsatellite loci in Peary caribou by comparing historical and contemporary samples. We observed that similar proportions of genetic variation were lost over time at each type of marker despite strong evidence for selection at Mhc genes. These results suggest that microsatellites can be used to estimate genome-wide levels of variation, but also that adaptive potential is likely to be lost following population bottlenecks. However, gene conversion and recombination at Mhc loci may act to increase variation following bottlenecks.

  14. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.

    PubMed

    Lundegaard, Claus; Lamberth, Kasper; Harndahl, Mikkel; Buus, Søren; Lund, Ole; Nielsen, Morten

    2008-07-01

    NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained on data from 55 MHC alleles (43 Human and 12 non-human), and position-specific scoring matrices (PSSMs) for additional 67 HLA alleles. As only the MHC class I prediction server is available, predictions are possible for peptides of length 8-11 for all 122 alleles. artificial neural network predictions are given as actual IC(50) values whereas PSSM predictions are given as a log-odds likelihood scores. The output is optionally available as download for easy post-processing. The training method underlying the server is the best available, and has been used to predict possible MHC-binding peptides in a series of pathogen viral proteomes including SARS, Influenza and HIV, resulting in an average of 75-80% confirmed MHC binders. Here, the performance is further validated and benchmarked using a large set of newly published affinity data, non-redundant to the training set. The server is free of use and available at: http://www.cbs.dtu.dk/services/NetMHC.

  15. Drosophila as a model for intractable epilepsy: gilgamesh suppresses seizures in para(bss1) heterozygote flies.

    PubMed

    Howlett, Iris C; Rusan, Zeid M; Parker, Louise; Tanouye, Mark A

    2013-08-01

    Intractable epilepsies, that is, seizure disorders that do not respond to currently available therapies, are difficult, often tragic, neurological disorders. Na(+) channelopathies have been implicated in some intractable epilepsies, including Dravet syndrome (Dravet 1978), but little progress has been forthcoming in therapeutics. Here we examine a Drosophila model for intractable epilepsy, the Na(+) channel gain-of-function mutant para(bss1) that resembles Dravet syndrome in some aspects (parker et al. 2011a). In particular, we identify second-site mutations that interact with para(bss1), seizure enhancers, and seizure suppressors. We describe one seizure-enhancer mutation named charlatan (chn). The chn gene normally encodes an Neuron-Restrictive Silencer Factor/RE1-Silencing Transcription factor transcriptional repressor of neuronal-specific genes. We identify a second-site seizure-suppressor mutation, gilgamesh (gish), that reduces the severity of several seizure-like phenotypes of para(bss1)/+ heterozygotes. The gish gene normally encodes the Drosophila ortholog of casein kinase CK1g3, a member of the CK1 family of serine-threonine kinases. We suggest that CK1g3 is an unexpected but promising new target for seizure therapeutics. PMID:23797108

  16. Cystic fibrosis mutations for p.F508del compound heterozygotes predict sweat chloride levels and pancreatic sufficiency

    PubMed Central

    Sebro, R; Levy, H; Schneck, K; Dimmock, D; Raby, BA; Cannon, CL; Broeckel, U; Risch, NJ

    2014-01-01

    Cystic fibrosis (CF) is a monogenetic disease with a complex phenotype. Over 1500 mutations in the CFTR gene have been identified; however, the p.F508del mutation is most common. There has been limited correlation between the CFTR mutation genotype and the disease phenotypes. We evaluated the non-p.F508del mutation of 108 p.F508del compound heterozygotes using the biological classification method, Grantham and Sorting Intolerant from Tolerant (SIFT) scores to assess whether these scoring systems correlated with sweat chloride levels, pancreatic sufficiency, predicted FEV1, and risk of infection with Pseudomonas aeruginosa in the last year. Mutations predicted to be ‘mild’ by the biological classification method are associated with more normal sweat chloride levels (p < 0.001), pancreatic sufficiency (p < 0.001) and decreased risk of infection with Pseudomonas in the last year (p = 0.014). Lower Grantham scores are associated with more normal sweat chloride levels (p < 0.001), and pancreatic sufficiency (p = 0.014). Higher SIFT scores are associated with more normal sweat chloride levels (p < 0.001) and pancreatic sufficiency (p = 0.011). There was no association between pulmonary function measured by predicted FEV1 and the biological classification (p = 0.98), Grantham (p = 0.28) or SIFT scores (p = 0.62), which suggests the pulmonary disease related to CF may involve other modifier genes and environmental factors. PMID:22035343

  17. A compound heterozygote harboring novel and recurrent DTDST mutations with intermediate phenotype between atelosteogenesis type II and diastrophic dysplasia.

    PubMed

    Maeda, Koichi; Miyamoto, Yoshinari; Sawai, Hideaki; Karniski, Lawrence P; Nakashima, Eiji; Nishimura, Gen; Ikegawa, Shiro

    2006-06-01

    Diastrophic dysplasia sulfate transporter (DTDST) is a sulfate transporter required for the synthesis of sulfated proteoglycans in the cartilage. Over 30 mutations have been described in the DTDST gene, which result in a continuous clinical spectrum of recessively inherited chondrodysplasias, including, in order of increasing severity, a recessive form of multiple epiphyseal dysplasia (rMED), diastrophic dysplasia (DTD), atelosteogenesis type II (AO-II) and achondrogenesis 1B (ACG-1B). Correlation between disease severity and residual sulfate transport activity has been reported. Here we report a patient with DTDST mutations, whose manifestations fell in a range between AO-II and DTD. The patient was a compound heterozygote for the recurrent c.835C>T (p.R279W) and novel c.1987G>A (p.G663R) mutations. Immunocytochemical analysis in HEK293 cells showed that the p.G663R mutation was localized within the cytoplasm, and not to the cell membrane, suggesting p.G663R is a loss-of-function mutation. Our case supports the previously described correlation between the severity of the phenotype and the putative level of residual transport function. PMID:16642506

  18. Synaptic E3 Ligase SCRAPPER in Contextual Fear Conditioning: Extensive Behavioral Phenotyping of Scrapper Heterozygote and Overexpressing Mutant Mice

    PubMed Central

    Yao, Ikuko; Takao, Keizo; Miyakawa, Tsuyoshi; Ito, Seiji; Setou, Mitsutoshi

    2011-01-01

    SCRAPPER, an F-box protein coded by FBXL20, is a subunit of SCF type E3 ubiquitin ligase. SCRAPPER localizes synapses and directly binds to Rab3-interacting molecule 1 (RIM1), an essential factor for synaptic vesicle release, thus it regulates neural transmission via RIM1 degradation. A defect in SCRAPPER leads to neurotransmission abnormalities, which could subsequently result in neurodegenerative phenotypes. Because it is likely that the alteration of neural transmission in Scrapper mutant mice affect their systemic condition, we have analyzed the behavioral phenotypes of mice with decreased or increased the amount of SCRAPPER. We carried out a series of behavioral test batteries for Scrapper mutant mice. Scrapper transgenic mice overexpressing SCRAPPER in the hippocampus did not show any significant difference in every test argued in this manuscript by comparison with wild-type mice. On the other hand, heterozygotes of Scrapper knockout [SCR (+/−)] mice showed significant difference in the contextual but not cued fear conditioning test. In addition, SCR (+/−) mice altered in some tests reflecting anxiety, which implies the loss of functions of SCRAPPER in the hippocampus. The behavioral phenotypes of Scrapper mutant mice suggest that molecular degradation conferred by SCRAPPER play important roles in hippocampal-dependent fear memory formation. PMID:21390313

  19. Transferrin response in normal and iron-deficient mice heterozygotic for hypotransferrinemia; effects on iron and manganese accumulation.

    PubMed

    Malecki, E A; Devenyi, A G; Beard, J L; Connor, J R

    1998-09-01

    Hypotransferrinemia is a genetic defect in mice resulting < 1% of normal plasma transferrin (Tf) concentrations; heterozygotes for this mutation (+/hpx) have low circulating Tf concentrations. These mice provide a unique opportunity to examine the developmental pattern and response of Tf to iron-deficient diets, and furthermore, to address the controversial role of Tf in Mn transport. Twenty-three weanling +/hpx mice and forty-five wild-type BALB/cJ mice were either killed at weaning or fed diets containing either 13 or 72 mg kg-1 Fe, and killed after four or eight weeks. Plasma Tf concentrations were lower in +/hpx mice, plasma Tf nearly doubled and liver Tf was only 50% of normal in response to iron deficiency. Brain iron concentration did not correlate significantly with either plasma Tf or TIBC. However, iron accumulation into brain continued with iron deficiency whereas most other organs had less iron. These results imply that either there is a selected targeting of iron to the brain by plasma Tf or there is an alternative iron delivery system to the brain. Furthermore, we observed no differences in tissue distribution of 54Mn despite the differences in circulating Tf concentrations and body iron stores; this suggests that there are non-Tf dependent mechanisms for Mn transport. PMID:9850571

  20. Neuropsychological and biochemical investigations in heterozygotes for phenylketonuria during ingestion of high dose aspartame (a sweetener containing phenylalanine).

    PubMed

    Trefz, F; de Sonneville, L; Matthis, P; Benninger, C; Lanz-Englert, B; Bickel, H

    1994-04-01

    Aspartame, a high intensity sweetener, is used extensively worldwide in over 5,000 products. Upon ingestion, aspartame is completely metabolized to two amino acids and methanol (approximately 50% phenylalanine, 40% aspartic acid, and 10% methanol). The effects of aspartame on cognitive function, electroencephalograms (EEGs) and biochemical parameters were evaluated in 48 adult (21 men, 27 women) heterozygotes for phenylketonuria (PKUH), PKUH subjects whose carrier status had been proven by DNA analysis ingested aspartame (either 15 or 45 mg/kg/day) and placebo for 12 weeks on each treatment using a randomized, double-blind, placebo-controlled, crossover study. A computerized battery of neuropsychological tests was administered at baseline weeks -2 and -1, and during treatment at weeks 6, 12, 18, and 24. Samples for plasma amino acids and urinary organic acids were also collected during these visits. EEGs were evaluated by conventional and spectral analysis at baseline week -1 and treatment weeks 12 and 24. The results of the neuropsychological tests demonstrated that aspartame had no effect on cognitive function. Plasma phenylalanine significantly increased, within the normal range for PKUH, at 1 and 3 h following the morning dose of aspartame in the group receiving the 45 mg/kg per day dose only. There were no significant differences in the conventional or spectral EEG analyses, urinary organic acid concentrations, and adverse experiences when aspartame was compared with placebo. This study reaffirms the safety of aspartame in PKUH and refutes the speculation that aspartame affects cognitive performance, EEGs, and urinary organic acids.

  1. A method for genotype validation and primer assessment in heterozygote-deficient species, as demonstrated in the prosobranch mollusc Hydrobia ulvae

    PubMed Central

    Brownlow, Robert J; Dawson, Deborah A; Horsburgh, Gavin J; Bell, James J; Fish, John D

    2008-01-01

    Background In studies where microsatellite markers are employed, it is essential that the primers designed will reliably and consistently amplify target loci. In populations conforming to Hardy-Weinberg equilibrium (HWE), screening for unreliable markers often relies on the identification of heterozygote deficiencies and subsequent departures from HWE. However, since many populations naturally deviate from HWE, such as many marine invertebrates, it can be difficult to distinguish heterozygote deficiencies resulting from unreliable markers from natural processes. Thus, studies of populations that are suspected to deviate from HWE naturally would benefit from a method to validate genotype data-sets and test the reliability of the designed primers. Levels of heterozygosity are reported for the prosobranch mollusc Hydrobia ulvae (Pennant) together with a method of genotype validation and primer assessment that utilises two primer sets for each locus. Microsatellite loci presented are the first described for the species Hydrobia ulvae; the five loci presented will be of value in further study of populations of H. ulvae. Results We have developed a novel method of testing primer reliability in naturally heterozygote deficient populations. After the design of an initial primer set, genotyping in 48 Hydrobia ulvae specimens using a single primer set (Primer set_A) revealed heterozygote deficiency in six of the seven loci examined. Redesign of six of the primer pairs (Primer set_B), re-genotyping of the successful individuals from Primer set_A using Primer set_B, and comparison of genotypes between the two primer sets, enabled the identification of two loci (Hulv-06 & Hulv-07) that showed a high degree of discrepancy between primer sets A and B (0% & only 25% alleles matching, respectively), suggesting unreliability in these primers. The discrepancies included changes from heterozygotes to homozygotes or vice versa, and some individuals who also displayed new alleles of

  2. No evidence for MHC class I-based disassortative mating in a wild population of great tits.

    PubMed

    Sepil, I; Radersma, R; Santure, A W; De Cauwer, I; Slate, J; Sheldon, B C

    2015-03-01

    Genes of the major histocompatibility complex (MHC) are regarded as a potentially important target of mate choice due to the fitness benefits that may be conferred to the offspring. According to the complementary genes hypothesis, females mate with MHC dissimilar males to enhance the immunocompetence of their offspring or to avoid inbreeding depression. Here, we investigate whether selection favours a preference for maximally dissimilar or optimally dissimilar MHC class I types, based on MHC genotypes, average amino acid distances and the functional properties of the antigen-binding sites (MHC supertypes); and whether MHC type dissimilarity predicts relatedness between mates in a wild great tit population. In particular, we explore the role that MHC class I plays in female mate choice decisions while controlling for relatedness and spatial population structure, and examine the reproductive fitness consequences of MHC compatibility between mates. We find no evidence for the hypotheses that females select mates on the basis of either maximal or optimal MHC class I dissimilarity. A weak correlation between MHC supertype sharing and relatedness suggests that MHC dissimilarity at functional variants may not provide an effective index of relatedness. Moreover, the reproductive success of pairs did not vary with MHC dissimilarity. Our results provide no support for the suggestion that selection favours, or that mate choice realizes, a preference for complimentary MHC types. PMID:25661713

  3. Human MHC class I antigens are associated with a 90-kDa cell surface protein.

    PubMed

    Ferm, M T; Grönberg, A

    1991-08-01

    Human MHC class I proteins are expressed on almost all nucleated cells as a heavy chain (about 45 kDa) non-covalently associated with beta 2-microglobulin (12 kDa). In this report we show that MHC class I (MHC-I) proteins can also be associated with a 90-kDa protein in the cell membrane. Surface-radiolabelled cells were treated with dithiobis succinimidyl propionate (DSP) in order to preserve multimer protein complexes during cell lysis. The lysates were immunoprecipitated and analysed by SDS-PAGE and autoradiography. Immunoprecipitation of human MHC-I proteins co-precipitated another protein of about 90 kDa in molecular weight-p90. p90 was coprecipitated from all the MHC-I expressing cells tested: U937, Raji, Molt-4 and IFN-gamma treated K562, but not from untreated, MHC-I negative K562. A 90-kDa protein was also co-precipitated with MHC-I from fresh peripheral blood mononuclear cells (PBMC). Furthermore, p90 was coprecipitated by different MoAbs to the MHC-I heavy chain or beta 2-microglobulin, but not by control antibodies. Two additional co-precipitating proteins at 34 kDa and 28 kDa were seen in MHC-I precipitates from Raji cells. Our results suggest that MHC-I proteins and the 90-kDa protein are associated in the cell membrane, probably by a close but weak, non-covalent interaction. Two additional cell surface proteins at 34 kDa and 28 kDa seem to be MHC-I associated on Raji Burkitt's lymphoma cells.

  4. Cheetah paradigm revisited: MHC diversity in the world's largest free-ranging population.

    PubMed

    Castro-Prieto, Aines; Wachter, Bettina; Sommer, Simone

    2011-04-01

    For more than two decades, the cheetah (Acinonyx jubatus) has been considered a paradigm of disease vulnerability associated with low genetic diversity, particularly at the immune genes of the major histocompatibility complex (MHC). Cheetahs have been used as a classic example in numerous conservation genetics textbooks as well as in many related scientific publications. However, earlier studies used methods with low resolution to quantify MHC diversity and/or small sample sizes. Furthermore, high disease susceptibility was reported only for captive cheetahs, whereas free-ranging cheetahs show no signs of infectious diseases and a good general health status. We examined whether the diversity at MHC class I and class II-DRB loci in 149 Namibian cheetahs was higher than previously reported using single-strand conformation polymorphism analysis, cloning, and sequencing. MHC genes were examined at the genomic and transcriptomic levels. We detected ten MHC class I and four class II-DRB alleles, of which nine MHC class I and all class II-DRB alleles were expressed. Phylogenetic analyses and individual genotypes suggested that the alleles belong to four MHC class I and three class II-DRB putative loci. Evidence of positive selection was detected in both MHC loci. Our study indicated that the low number of MHC class I alleles previously observed in cheetahs was due to a smaller sample size examined. On the other hand, the low number of MHC class II-DRB alleles previously observed in cheetahs was further confirmed. Compared with other mammalian species including felids, cheetahs showed low levels of MHC diversity, but this does not seem to influence the immunocompetence of free-ranging cheetahs in Namibia and contradicts the previous conclusion that the cheetah is a paradigm species of disease vulnerability.

  5. MHC class I immune evasion in MCMV infection.

    PubMed

    Doom, Carmen M; Hill, Ann B

    2008-06-01

    Murine cytomegalovirus (MCMV) is a well-studied model of natural beta-herpesvirus infection. However, many questions remain regarding its control by and evasion of the immune response it generates. CD8 and CD4 T cells have both unique and redundant roles in control of the virus that differ based on the immunocompetence of the infected mice. MCMV encodes major histocompatibility complex (MHC) class I immune evasion genes that can have an impact in vitro, but their role in infection of immunocompetent mice has been difficult to identify. This review addresses the evidence for their in vivo function and suggests why they may be evolutionarily conserved.

  6. The β2-microglobulin-free heterodimerization of rhesus monkey MHC class I A with its normally spliced variant reduces the ubiquitin-dependent degradation of MHC class I A.

    PubMed

    Dai, Zheng-Xi; Zhang, Gao-Hong; Zhang, Xi-He; Xia, Hou-Jun; Li, Shao-You; Zheng, Yong-Tang

    2012-03-01

    The MHC class I (MHC I) molecules play a pivotal role in the regulation of immune responses by presenting antigenic peptides to CTLs and by regulating cytolytic activities of NK cells. In this article, we show that MHC I A in rhesus macaques can be alternatively spliced, generating a novel MHC I A isoform (termed "MHC I A-sv1") devoid of α(3) domain. Despite the absence of β2-microglobulin (β2m), the MHC I A-sv1 proteins reached the cell surface of K562-transfected cells as endoglycosidase H-sensitive glycoproteins that could form disulfide-bonded homodimers. Cycloheximide-based protein chase experiments showed that the MHC I A-sv1 proteins were more stable than the full-length MHC I A in transiently or stably transfected cell lines. Of particular interest, our studies demonstrated that MHC I A-sv1 could form β2m-free heterodimers with its full-length protein in mammalian cells. The formation of heterodimers was accompanied by a reduction in full-length MHC I A ubiquitination and consequent stabilization of the protein. Taken together, these results demonstrated that MHC I A-sv1 and MHC I A can form a novel heterodimeric complex as a result of the displacement of β2m and illustrated the relevance of regulated MHC I A protein degradation in the β2m-free heterodimerization-dependent control, which may have some implications for the MHC I A splice variant in the fine tuning of classical MHC I A/TCR and MHC I A/killer cell Ig-like receptor interactions.

  7. Clinical spectrum in homozygotes and compound heterozygotes inheriting cystic fibrosis mutation 3849+10kbC>T: Significance for geneticists

    SciTech Connect

    Gilbert, F.; Li, Zhen; Arzimanoglou, I.

    1995-09-25

    We describe patients inheriting cystic fibrosis (CF) mutation 3849+10kbC>T as homozygotes or compound heterozygotes. Three unrelated homozygotes for this mutation were all pancreatic-sufficient and sweat test-negative or inconclusive. Among the compound heterozygotes, both pancreatic sufficiency and insufficiency, as well as positive and negative/inconclusive sweat test results are reported, expanding the range of clinical expression associated with inheritance of this mutation. 3849+10kbC>T is one of several CF mutations that can result in atypical or variant forms of CF. For geneticists, the diagnosis of variant CF has implications for recurrence risk and prognosis counseling of the families of affected individuals, and possibly for CF carrier screening in the general population. 19 refs., 1 tab.

  8. Rheumatoid Rescue of Misfolded Cellular Proteins by MHC Class II Molecules: A New Hypothesis for Autoimmune Diseases.

    PubMed

    Arase, Hisashi

    2016-01-01

    Misfolded proteins localized in the endoplasmic reticulum are degraded promptly and thus are not transported outside cells. However, misfolded proteins in the endoplasmic reticulum are rescued from protein degradation upon association with major histocompatibility complex (MHC) class II molecules and are transported to the cell surface by MHC class II molecules without being processed to peptides. Studies on the misfolded proteins rescued by MHC class II molecules have revealed that misfolded proteins associated with MHC class II molecules are specific targets for autoantibodies produced in autoimmune diseases. Furthermore, a strong correlation has been observed between autoantibody binding to misfolded proteins associated with MHC class II molecules and the autoimmune disease susceptibility conferred by each MHC class II allele. These new insights into MHC class II molecules suggest that misfolded proteins rescued from protein degradation by MHC class II molecules are recognized as "neo-self" antigens by immune system and are involved in autoimmune diseases as autoantibody targets.

  9. αβ T cell receptor germline CDR regions moderate contact with MHC ligands and regulate peptide cross-reactivity

    PubMed Central

    Attaf, Meriem; Holland, Stephan J.; Bartok, Istvan; Dyson, Julian

    2016-01-01

    αβ T cells respond to peptide epitopes presented by major histocompatibility complex (MHC) molecules. The role of T cell receptor (TCR) germline complementarity determining regions (CDR1 and 2) in MHC restriction is not well understood. Here, we examine T cell development, MHC restriction and antigen recognition where germline CDR loop structure has been modified by multiple glycine/alanine substitutions. Surprisingly, loss of germline structure increases TCR engagement with MHC ligands leading to excessive loss of immature thymocytes. MHC restriction is, however, strictly maintained. The peripheral T cell repertoire is affected similarly, exhibiting elevated cross-reactivity to foreign peptides. Our findings are consistent with germline TCR structure optimising T cell cross-reactivity and immunity by moderating engagement with MHC ligands. This strategy may operate alongside co-receptor imposed MHC restriction, freeing germline TCR structure to adopt this novel role in the TCR-MHC interface. PMID:27775030

  10. MHC-correlated odour preferences in humans and the use of oral contraceptives

    PubMed Central

    Roberts, S. Craig; Gosling, L. Morris; Carter, Vaughan; Petrie, Marion

    2008-01-01

    Previous studies in animals and humans show that genes in the major histocompatibility complex (MHC) influence individual odours and that females often prefer odour of MHC-dissimilar males, perhaps to increase offspring heterozygosity or reduce inbreeding. Women using oral hormonal contraceptives have been reported to have the opposite preference, raising the possibility that oral contraceptives alter female preference towards MHC similarity, with possible fertility costs. Here we test directly whether contraceptive pill use alters odour preferences using a longitudinal design in which women were tested before and after initiating pill use; a control group of non-users were tested with a comparable interval between test sessions. In contrast to some previous studies, there was no significant difference in ratings between odours of MHC-dissimilar and MHC-similar men among women during the follicular cycle phase. However, single women preferred odours of MHC-similar men, while women in relationships preferred odours of MHC-dissimilar men, a result consistent with studies in other species, suggesting that paired females may seek to improve offspring quality through extra-pair partnerships. Across tests, we found a significant preference shift towards MHC similarity associated with pill use, which was not evident in the control group. If odour plays a role in human mate choice, our results suggest that contraceptive pill use could disrupt disassortative mate preferences. PMID:18700206

  11. Tricks with tetramers: how to get the most from multimeric peptide-MHC.

    PubMed

    Wooldridge, Linda; Lissina, Anna; Cole, David K; van den Berg, Hugo A; Price, David A; Sewell, Andrew K

    2009-02-01

    The development of fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) multimers in conjunction with continuing advances in flow cytometry has transformed the study of antigen-specific T cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we bring together and discuss some of the 'tricks' that can be used to get the most out of pMHC multimers. These include: (1) simple procedures that can substantially enhance the staining intensity of cognate T cells with pMHC multimers; (2) the use of pMHC multimers to stain T cells with very-low-affinity T-cell receptor (TCR)/pMHC interactions, such as those that typically predominate in tumour-specific responses; and (3) the physical grading and clonotypic dissection of antigen-specific T cells based on the affinity of their cognate TCR using mutant pMHC multimers in conjunction with new approaches to the molecular analysis of TCR gene expression. We also examine how soluble pMHC can be used to examine T-cell activation, manipulate T-cell responses and study allogeneic and superantigen interactions with TCRs. Finally, we discuss the problems that arise with pMHC class II (pMHCII) multimers because of the low affinity of TCR/pMHCII interactions and lack of 'coreceptor help'.

  12. NLRC5/MHC class I transactivator is a target for immune evasion in cancer.

    PubMed

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A; Lizee, Gregory A; Kobayashi, Koichi S

    2016-05-24

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers. PMID:27162338

  13. Signals of heterogeneous selection at an MHC locus in geographically proximate ecotypes of sockeye salmon.

    PubMed

    Larson, Wesley A; Seeb, James E; Dann, Tyler H; Schindler, Daniel E; Seeb, Lisa W

    2014-11-01

    The genes of the major histocompatibility complex (MHC) are an important component of the vertebrate immune system and can provide insights into the role of pathogen-mediated selection in wild populations. Here, we examined variation at the MHC class II peptide-binding region in 27 populations of sockeye salmon (Oncorhynchus nerka), distributed among three distinct spawning ecotypes, from a complex of interconnected rivers and lakes in south-western Alaska. We also obtained genotypes from 90 putatively neutral single nucleotide polymorphisms for each population to compare the relative roles of demography and selection in shaping the observed MHC variation. We found that MHC divergence was generally partitioned by spawning ecotype (lake beaches, rivers and streams) and was 30 times greater than variation at neutral markers. Additionally, we observed substantial differences in modes of selection and diversity among ecotypes, with beach populations displaying higher levels of directional selection and lower MHC diversity than the other two ecotypes. Finally, the level of MHC differentiation in our study system was comparable to that observed over much larger geographic ranges, suggesting that MHC variation does not necessarily increase with increasing spatial scale and may instead be driven by fine-scale differences in pathogen communities or pathogen virulence. The low levels of neutral structure and spatial proximity of populations in our study system indicate that MHC differentiation can be maintained through strong selective pressure even when ample opportunities for gene flow exist. PMID:25283474

  14. Social pairing of Seychelles warblers under reduced constraints: MHC, neutral heterozygosity, and age

    PubMed Central

    Wright, David J.; Brouwer, Lyanne; Mannarelli, Maria-Elena; Burke, Terry; Komdeur, Jan

    2016-01-01

    The prevalence and significance of precopulatory mate choice remains keenly debated. The major histocompatibility complex (MHC) plays a key role in vertebrate adaptive immunity, and variation at the MHC influences individual survival. Although MHC-dependent mate choice has been documented in certain species, many other studies find no such pattern. This may be, at least in part, because in natural systems constraints may reduce the choices available to individuals and prevent full expression of underlying preferences. We used translocations to previously unoccupied islands to experimentally reduce constraints on female social mate choice in the Seychelles warbler (Acrocephalus sechellensis), a species in which patterns of MHC-dependent extrapair paternity (EPP), but not social mate choice, have been observed. We find no evidence of MHC-dependent social mate choice in the new populations. Instead, we find that older males and males with more microsatellite heterozygosity are more likely to have successfully paired. Our data cannot resolve whether these patterns in pairing were due to male–male competition or female choice. However, our research does suggest that female Seychelles warblers do not choose social mates using MHC class I to increase fitness. It may also indicate that the MHC-dependent EPP observed in the source population is probably due to mechanisms other than female precopulatory mate choice based on MHC cues. PMID:26792973

  15. Maintenance of MHC Class IIB diversity in a recently established songbird population

    PubMed Central

    Whittaker, Danielle J.; Dapper, Amy L.; Peterson, Mark P.; Atwell, Jonathan W.; Ketterson, Ellen D.

    2012-01-01

    We examined variation at MHC Class IIB genes in a recently established population of dark-eyed juncos (Junco hyemalis) in a coastal urban environment in southern California, USA relative to an ancestral-range population from a nearby species-typical montane environment. The founding population is estimated to have been quite small, but we predicted that variation at the major histocompatibility complex (MHC) among the founders would nevertheless be preserved owing to the high functional significance of MHC. Previous studies of MHC in songbirds have had varying degrees of success in isolating loci, as passerines show extensive MHC gene duplication. In order to compare diversity in the two populations, we employed two published approaches to sequencing MHC Class II exon 2: direct sequencing with exon-based primers, and traditional cloning and sequencing with intron-based primers. Results from both methods show that the colonist population has maintained high levels of variation. Our results also indicate varying numbers of alleles across individuals, corroborating evidence for gene duplication in songbird MHC. While future studies in songbirds may need to take a genomic approach to fully understand the structure of MHC in this lineage, our results show that it is possible to use traditional methods to reveal functional variation across populations. PMID:22685370

  16. Maintenance of MHC Class IIB diversity in a recently established songbird population.

    PubMed

    Whittaker, Danielle J; Dapper, Amy L; Peterson, Mark P; Atwell, Jonathan W; Ketterson, Ellen D

    2012-03-01

    We examined variation at MHC Class IIB genes in a recently established population of dark-eyed juncos (Junco hyemalis) in a coastal urban environment in southern California, USA relative to an ancestral-range population from a nearby species-typical montane environment. The founding population is estimated to have been quite small, but we predicted that variation at the major histocompatibility complex (MHC) among the founders would nevertheless be preserved owing to the high functional significance of MHC. Previous studies of MHC in songbirds have had varying degrees of success in isolating loci, as passerines show extensive MHC gene duplication. In order to compare diversity in the two populations, we employed two published approaches to sequencing MHC Class II exon 2: direct sequencing with exon-based primers, and traditional cloning and sequencing with intron-based primers. Results from both methods show that the colonist population has maintained high levels of variation. Our results also indicate varying numbers of alleles across individuals, corroborating evidence for gene duplication in songbird MHC. While future studies in songbirds may need to take a genomic approach to fully understand the structure of MHC in this lineage, our results show that it is possible to use traditional methods to reveal functional variation across populations.

  17. Evidence for selection maintaining MHC diversity in a rodent species despite strong density fluctuations.

    PubMed

    Schuster, Andrea C; Herde, Antje; Mazzoni, Camila J; Eccard, Jana A; Sommer, Simone

    2016-07-01

    Strong spatiotemporal variation in population size often leads to reduced genetic diversity limiting the adaptive potential of individual populations. Key genes of adaptive variation are encoded by the immune genes of the major histocompatibility complex (MHC) playing an essential role in parasite resistance. How MHC variation persists in rodent populations that regularly experience population bottlenecks remains an important topic in evolutionary genetics. We analysed the consequences of strong population fluctuations on MHC class II DRB exon 2 diversity in two distant common vole (Microtus arvalis) populations in three consecutive years using a high-throughput sequencing approach. In 143 individuals, we detected 25 nucleotide alleles translating into 14 unique amino acid MHC alleles belonging to at least three loci. Thus, the overall allelic diversity and amino acid distance among the remaining MHC alleles, used as a surrogate for the range of pathogenic antigens that can be presented to T-cells, are still remarkably high. Both study populations did not show significant population differentiation between years, but significant differences were found between sites. We concluded that selection processes seem to be strong enough to maintain moderate levels of MHC diversity in our study populations outcompeting genetic drift, as the same MHC alleles were conserved between years. Differences in allele frequencies between populations might be the outcome of different local parasite pressures and/or genetic drift. Further understanding of how pathogens vary across space and time will be crucial to further elucidate the mechanisms maintaining MHC diversity in cyclic populations. PMID:27225422

  18. Structure of a Pheromone Receptor-Associated MHC Molecule with an Open and Empty Groove

    PubMed Central

    2005-01-01

    Neurons in the murine vomeronasal organ (VNO) express a family of class Ib major histocompatibility complex (MHC) proteins (M10s) that interact with the V2R class of VNO receptors. This interaction may play a direct role in the detection of pheromonal cues that initiate reproductive and territorial behaviors. The crystal structure of M10.5, an M10 family member, is similar to that of classical MHC molecules. However, the M10.5 counterpart of the MHC peptide-binding groove is open and unoccupied, revealing the first structure of an empty class I MHC molecule. Similar to empty MHC molecules, but unlike peptide-filled MHC proteins and non-peptide–binding MHC homologs, M10.5 is thermally unstable, suggesting that its groove is normally occupied. However, M10.5 does not bind endogenous peptides when expressed in mammalian cells or when offered a mixture of class I–binding peptides. The F pocket side of the M10.5 groove is open, suggesting that ligands larger than 8–10-mer class I–binding peptides could fit by extending out of the groove. Moreover, variable residues point up from the groove helices, rather than toward the groove as in classical MHC structures. These data suggest that M10s are unlikely to provide specific recognition of class I MHC–binding peptides, but are consistent with binding to other ligands, including proteins such as the V2Rs. PMID:16089503

  19. Towards the simplification of MHC typing protocols: targeting classical MHC class II genes in a passerine, the pied flycatcher Ficedula hypoleuca

    PubMed Central

    2010-01-01

    Background Major Histocompatibility Complex (MHC) has drawn the attention of evolutionary biologists due to its importance in crucial biological processes, such as sexual selection and immune response in jawed vertebrates. However, the characterization of classical MHC genes subjected to the effects of natural selection still remains elusive in many vertebrate groups. Here, we have tested the suitability of flanking intron sequences to guide the selective exploration of classical MHC genes driving the co-evolutionary dynamics between pathogens and their passerine (Aves, Order Passeriformes) hosts. Findings Intronic sequences flanking the usually polymorphic exon 2 were isolated from different species using primers sitting on conserved coding regions of MHC class II genes (β chain). Taking the pied flycatcher Ficedula hypoleuca as an example, we demonstrate that careful primer design can evade non-classical MHC gene and pseudogene amplification. At least four polymorphic and expressed loci were co-replicated using a single pair of primers in five non-related individuals (N = 28 alleles). The cross-amplification and preliminary inspection of similar MHC fragments in eight unrelated songbird taxa suggests that similar approaches can also be applied to other species. Conclusions Intron sequences flanking the usually polymorphic exon 2 may assist the specific investigation of classical MHC class II B genes in species characterized by extensive gene duplication and pseudogenization. Importantly, the evasion of non-classical MHC genes with a more specific function and non-functional pseudogenes may accelerate data collection and diminish lab costs. Comprehensive knowledge of gene structure, polymorphism and expression profiles may be useful not only for the selective examination of evolutionarily relevant genes but also to restrict chimera formation by minimizing the number of co-amplifying loci. PMID:20815923

  20. Population genetic segmentation of MHC-correlated perfume preferences.

    PubMed

    Hämmerli, A; Schweisgut, C; Kaegi, M

    2012-04-01

    It has become difficult to find a matching perfume. An overwhelming number of 300 new perfumes launch each year, and marketing campaigns target pre-defined groups based on gender, age or income rather than on individual preferences. Recent evidence for a genetic basis of perfume preferences, however, could be the starting point for a novel population genetic approach to better match perfumes with people's preferences. With a total of 116 participants genotyped for alleles of three loci of the major histocompatibility complex (MHC), the aim of this study was to test whether common MHC alleles could be used as genetic markers to segment a given population into preference types. Significant deviations from random expectations for a set of 10 common perfume ingredients indicate how such segmentation could be achieved. In addition, preference patterns of participants confronted with images that contained a sexual communication context significantly differed in their ratings for some of the scents compared with participants confronted with images of perfume bottles. This strongly supports the assumption that genetically correlated perfume preferences evolved in the context of sexual communication. The results are discussed in the light of perfume customization.

  1. Targeting the MHC II presentation pathway in allergy vaccine development.

    PubMed

    Rhyner, C; Kündig, T; Akdis, C A; Crameri, R

    2007-08-01

    The worldwide increase in the incidence of allergic diseases and the limited efficacy of current vaccines require the development of new efficient vaccination strategies. Based on PTD (protein transduction domain) technology, we have engineered MAT (modular antigen translocation) molecules, aimed to enhance antigen presentation through intracellular targeting of the MHC II presentation pathway. MAT vaccines consist of a cloning cassette, which fuses Tat (transactivator of transcription) peptide to a truncated Ii (invariant chain), which is able to target antigens to the nascent MHC II molecules in the trans-Golgi compartment. To test the efficacy of intracellular targeting, we engineered arrays of MAT-fusions and compared the effects of recombinant allergens, Tat-conjugated allergens and MAT-conjugated allergens for the ability to stimulate T-cell proliferation and cytokine production in human PBMC (peripheral blood mononuclear cell) cultures derived from allergic individuals, and to elicit protective immune responses in mice. MAT-vaccines induced a strong proliferation of PBMCs at a low concentration and induced a Th2/Treg (regulatory T-cell) cell shift in the cytokine profile, reflecting those reported in successfully desensitized allergic individuals. In allergic mouse models, we showed that MAT-vaccines are highly efficient in desensitizing mice and protect them from anaphylactic shock. The technology is applicable not only for the treatment of allergies, but also for the development of preventive vaccines in general.

  2. Towards Universal Structure-Based Prediction of Class II MHC Epitopes for Diverse Allotypes

    PubMed Central

    Bordner, Andrew J.

    2010-01-01

    The binding of peptide fragments of antigens to class II MHC proteins is a crucial step in initiating a helper T cell immune response. The discovery of these peptide epitopes is important for understanding the normal immune response and its misregulation in autoimmunity and allergies and also for vaccine design. In spite of their biomedical importance, the high diversity of class II MHC proteins combined with the large number of possible peptide sequences make comprehensive experimental determination of epitopes for all MHC allotypes infeasible. Computational methods can address this need by predicting epitopes for a particular MHC allotype. We present a structure-based method for predicting class II epitopes that combines molecular mechanics docking of a fully flexible peptide into the MHC binding cleft followed by binding affinity prediction using a machine learning classifier trained on interaction energy components calculated from the docking solution. Although the primary advantage of structure-based prediction methods over the commonly employed sequence-based methods is their applicability to essentially any MHC allotype, this has not yet been convincingly demonstrated. In order to test the transferability of the prediction method to different MHC proteins, we trained the scoring method on binding data for DRB1*0101 and used it to make predictions for multiple MHC allotypes with distinct peptide binding specificities including representatives from the other human class II MHC loci, HLA-DP and HLA-DQ, as well as for two murine allotypes. The results showed that the prediction method was able to achieve significant discrimination between epitope and non-epitope peptides for all MHC allotypes examined, based on AUC values in the range 0.632–0.821. We also discuss how accounting for peptide binding in multiple registers to class II MHC largely explains the systematically worse performance of prediction methods for class II MHC compared with those for class I

  3. Structural interplay between germline and adaptive recognition determines TCR-peptide-MHC cross-reactivity

    PubMed Central

    Adams, Jarrett J.; Narayanan, Samanthi; Birnbaum, Michael E.; Sidhu, Sachdev S.; Blevins, Sydney J.; Gee, Marvin H.; Sibener, Leah V.; Baker, Brian M.; Kranz, David M.; Garcia, K. Christopher

    2015-01-01

    The T cell receptor - peptide-MHC interface is comprised of conserved and diverse regions, yet the relative contributions of each in shaping T cell recognition remain unclear. We isolated cross-reactive peptides with limited homology, allowing us to compare the structural properties of nine peptides for a single TCR-MHC pair. The TCR’s cross-reactivity is rooted in highly similar recognition of an apical ‘hotspot’ position in the peptide, while tolerating significant sequence variation at ancillary positions. Furthermore, we find a striking structural convergence onto a germline-mediated interaction between TCR CDR1α and the MHC α2 helix of twelve TCR-pMHC complexes. Our studies suggest that TCR-MHC germline-mediated constraints, together with a focus on a small peptide hotspot, may place limits on peptide antigen cross-reactivity. PMID:26523866

  4. High-throughput engineering and analysis of peptide binding to class II MHC.

    PubMed

    Jiang, Wei; Boder, Eric T

    2010-07-27

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity.

  5. Downregulation of MHC-I expression is prevalent but reversible in Merkel cell carcinoma

    PubMed Central

    Paulson, Kelly G.; Tegeder, Andrew; Willmes, Christoph; Iyer, Jayasri G; Afanasiev, Olga K.; Schrama, David; Koba, Shinichi; Thibodeau, Renee; Nagase, Kotaro; Simonson, William T; Seo, Aaron; Koelle, David M.; Madeleine, Margaret; Bhatia, Shailender; Nakajima, Hideki; Sano, Shigetoshi; Hardwick, James S.; Disis, Mary L.; Cleary, Michele A; Becker, Jürgen C.; Nghiem, Paul

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive, polyomavirus-associated skin cancer. Robust cellular immune responses are associated with excellent outcomes in MCC patients, but these responses are typically absent. We determined the prevalence and reversibility of class I MHC (MHC-I) downregulation in MCC, a potentially reversible immune evasion mechanism. Cell surface MHC-I expression was assessed on 5 MCC cell lines using flow cytometry as well as immunohistochemistry on tissue microarrays representing 114 patients. Three additional patients were included that had received intralesional interferon treatment and had evaluable specimens before and after treatment. mRNA expression analysis of antigen presentation pathway genes from 35 MCC tumors was used to examine mechanisms of downregulation. 84% of MCCs (total n=114) demonstrated reduced MHC-I expression as compared to surrounding tissues, and 51% had poor or undetectable MHC-1 expression. Expression of MHC-I was lower in polyomavirus-positive MCCs as compared to virus-negative MCCs (p<0.01). The MHC-I downregulation mechanism was multifactorial and did not depend solely on HLA gene expression. Treatment of MCC cell lines with ionizing radiation, etoposide, or interferon (IFN) resulted in MHC-I upregulation, with IFNs strongly upregulating MHC-I expression in vitro and in 3 of 3 patients treated with intralesional IFNs. MCC tumors may be amenable to immunotherapy, but downregulation of MHC-I is frequently present in these tumors, particularly those that are polyomavirus-positive. This downregulation is reversible with any of several clinically available treatments that may thus promote the effectiveness of immune stimulating therapies for MCC. PMID:25116754

  6. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays

    PubMed Central

    Justesen, Sune; Harndahl, Mikkel; Lamberth, Kasper; Nielsen, Lise-Lotte B; Buus, Søren

    2009-01-01

    Background Molecules of the class II major histocompability complex (MHC-II) specifically bind and present exogenously derived peptide epitopes to CD4+ T helper cells. The extreme polymorphism of the MHC-II hampers the complete analysis of peptide binding. It is also a significant hurdle in the generation of MHC-II molecules as reagents to study and manipulate specific T helper cell responses. Methods to generate functional MHC-II molecules recombinantly, and measure their interaction with peptides, would be highly desirable; however, no consensus methodology has yet emerged. Results We generated α and β MHC-II chain constructs, where the membrane-spanning regions were replaced by dimerization motifs, and the C-terminal of the β chains was fused to a biotinylation signal peptide (BSP) allowing for in vivo biotinylation. These chains were produced separately as inclusion bodies in E. coli , extracted into urea, and purified under denaturing and non-reducing conditions using conventional column chromatography. Subsequently, diluting the two chains into a folding reaction with appropriate peptide resulted in efficient peptide-MHC-II complex formation. Several different formats of peptide-binding assay were developed including a homogeneous, non-radioactive, high-throughput (HTS) binding assay. Binding isotherms were generated allowing the affinities of interaction to be determined. The affinities of the best binders were found to be in the low nanomolar range. Recombinant MHC-II molecules and accompanying HTS peptide-binding assay were successfully developed for nine different MHC-II molecules including the DPA1*0103/DPB1*0401 (DP401) and DQA1*0501/DQB1*0201, where both α and β chains are polymorphic, illustrating the advantages of producing the two chains separately. Conclusion We have successfully developed versatile MHC-II resources, which may assist in the generation of MHC class II -wide reagents, data, and tools. PMID:19416502

  7. High Levels of MeCP2 Depress MHC Class I Expression in Neuronal Cells

    PubMed Central

    Miralvès, Julie; Magdeleine, Eddy; Kaddoum, Lara; Brun, Hélène; Peries, Sophie; Joly, Etienne

    2007-01-01

    Background The expression of MHC class I genes is repressed in mature neurons. The molecular basis of this regulation is poorly understood, but the genes are particularly rich in CpG islands. MeCP2 is a transcriptional repressor that binds to methylated CpG dinucleotides; mutations in this protein also cause the neurodevelopmental disease called Rett syndrome. Because MHC class I molecules play a role in neuronal connectivity, we hypothesised that MeCP2 might repress MHC class I expression in the CNS and that this might play a role in the pathology of Rett syndrome. Methodology We show here that transiently transfected cells expressing high levels of MeCP2 specifically downregulate cell-surface expression of MHC class I molecules in the neuronal cell line N2A and they prevent the induction of MHC class I expression in response to interferon in these cells, supporting our first hypothesis. Surprisingly, however, overexpression of the mutated forms of MeCP2 that cause Rett syndrome had a similar effect on MHC class I expression as the wild-type protein. Immunohistological analyses of brain slices from MECP2 knockout mice (the MeCP2tm1.1Bird strain) demonstrated a small but reproducible increase in MHC class I when compared to their wild type littermates, but we found no difference in MHC class I expression in primary cultures of mixed glial cells (mainly neurons and astrocytes) from the knockout and wild-type mice. Conclusion These data suggest that high levels of MeCP2, such as those found in mature neurons, may contribute to the repression of MHC expression, but we find no evidence that MeCP2 regulation of MHC class I is important for the pathogenesis of Rett syndrome. PMID:18159237

  8. Disparate MHC class II haplotypes in myelin oligodendrocyte glycoprotein- and myelin basic protein-induced experimental autoimmune encephalomyelitis.

    PubMed

    Muhallab, Saad; Dahlman, Ingrid; Wallström, Erik

    2005-04-01

    The major histocompatibility complex (MHC) regulates multiple sclerosis (MS) and its model experimental autoimmune encephalomyelitis (EAE). We created four new intra-MHC recombinant rat strains, between the MHC haplotypes RT1(n) (BN) and RT1(l) (LEW) on the LEW background, to define disease regulation and localization within the MHC. Immunization with recombinant myelin oligodendrocyte glycoprotein (a.a.1-125; MOG)/IFA induced EAE in strains expressing the MHC class II allele RT1.B(n), whereas strains expressing the RT1.B(l) were resistant. In myelin basic protein peptide (MBP(GP)63-88)/CFA-induced EAE, RT1.B(l) expressing strains were susceptible whereas strains expressing the RT1.B(n) were resistant. High levels of antigen-specific IFN-gamma secreting lymphoid cells and antigen-specific serum IgG antibodies were only recorded in rats with an MHC class II allele that permitted MOG- or MBP-EAE, respectively. Genetically, we localized the MHC regulation of the investigated EAE models to the central part of the MHC, containing the MHC class II (RT1.B/D) and the centromeric parts of the MHC class III. No influences were evident from the classical MHC class I (RT1.A), the telomeric parts of the MHC class III or the non-classical MHC class I (RT1.C/E/M) in contrast to previous reports. The MHC class II haplotype-specific regulation of EAE induced with two different CNS antigens demonstrates a strikingly specific MHC-association even within the same target organ. PMID:15748954

  9. Dimeric MHC-peptides inserted into an immunoglobulin scaffold as new immunotherapeutic agents

    PubMed Central

    Goldberg, Burt; Bona, Constantin

    2011-01-01

    Abstract The interactions of the T cell receptor (TCR) with cognate MHC-peptide and co-stimulatory molecules expressed at surface of antigen presenting cells (APC) leads to activation or tolerance of T cells. The development of molecular biological tools allowed for the preparation of soluble MHC-peptide molecules as surrogate for the APC. A decade ago a monomeric class II MHC molecule in which the peptide was covalently linked to β-chain of class II molecule was generated. This type of molecule had a low-binding affinity and did not cause the multimerization of TCR. The requirement of multimerization of TCR led to development of a new class of reagents, chimeric peptides covalently linked to MHC that was dimerized via Fc fragment of an immunoglobulin and linked to 3′ end of the β-chain of MHC class II molecule. These soluble dimerized MHC-peptide chimeric molecules display high affinity for the TCR and caused multimerization of TCR without processing by an APC. Because dimeric molecules are devoid of co-stimulatory molecules interacting with CD28, a second signal, they induce anergy rather the activation of T cells. In this review, we compare the human and murine dimerized MHC class II-peptides and their effect on CD4+ T cells, particularly the generation of T regulatory cells, which make these chimeric molecules an appealing approach for the treatment of autoimmune diseases. PMID:21435177

  10. Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts?

    PubMed

    Ferrandiz-Rovira, Mariona; Allainé, Dominique; Callait-Cardinal, Marie-Pierre; Cohas, Aurélie

    2016-07-01

    Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal. PMID:27386072

  11. Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts?

    PubMed

    Ferrandiz-Rovira, Mariona; Allainé, Dominique; Callait-Cardinal, Marie-Pierre; Cohas, Aurélie

    2016-07-01

    Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.

  12. Cryptic preference for MHC-dissimilar females in male red junglefowl, Gallus gallus.

    PubMed

    Gillingham, Mark A F; Richardson, David S; Løvlie, Hanne; Moynihan, Anna; Worley, Kirsty; Pizzari, Tom

    2009-03-22

    An increasing number of studies test the idea that females increase offspring fitness by biasing fertilization in favour of genetically compatible partners; however, few have investigated or controlled for corresponding preferences in males. Here, we experimentally test whether male red junglefowl, Gallus gallus, prefer genetically compatible females, measured by similarity at the major histocompatibility complex (MHC), a key gene complex in vertebrate immune function. Theory predicts that because some degree of MHC heterozygosity favours viability, individuals should prefer partners that carry MHC alleles different from their own. While male fowl showed no preference when simultaneously presented with an MHC-similar and an MHC-dissimilar female, they showed a 'cryptic' preference, by allocating more sperm to the most MHC-dissimilar of two sequentially presented females. These results provide the first experimental evidence that males might respond to the MHC similarity of a female through differential ejaculate expenditure. By revealing that cryptic male behaviours may bias fertilization success in favour of genetically compatible partners, this study demonstrates the need to experimentally disentangle male and female effects when studying preferences for genetically compatible partners. PMID:19129124

  13. Evidence for multiple MHC class II β loci in New Zealand's critically endangered kakapo, Strigops habroptilus.

    PubMed

    Knafler, Gabrielle J; Fidler, Andrew; Jamieson, Ian G; Robertson, Bruce C

    2014-02-01

    Immunologically important genes of the major histocompatibility complex (MHC) have been characterized in a number of avian species with the general finding of considerable variation in size and structural organization among organisms. A range of nonpasserines which represent early-diverging Neoave lineages have been described as having only one MHC class II β locus potentially leading to the conclusion that this is the ancestral condition. Here, we examine the monotypic, early-diverging, critically endangered kakapo, Strigops habroptilus, for allelic variation at MHC class II β exon 2, as part of species' recovery efforts. We found two to four confirmed sequence variants per individual indicating the presence of more than one MHC class II β locus. Given the kakapo's basal evolutionary status, evidence for multiple MHC class II β loci seems to counter the proposed mono-locus history of modern birds. However, MHC gene duplication, maintenance, and loss among and within bird species may confound avian relationships making it difficult to elucidate the ancestral state. This study adds essential data for disentangling the course of MHC structural evolution in birds.

  14. NK cell inhibitory receptor Ly-49C residues involved in MHC class I binding.

    PubMed

    Sundbäck, Jonas; Achour, Adnane; Michaëlsson, Jakob; Lindström, Hannah; Kärre, Klas

    2002-01-15

    Mouse NK cells express Ly-49 receptors specific for classical MHC class I molecules. Several of the Ly-49 receptors have been characterized in terms of function and ligand specificity. However, the only Ly-49 receptor-ligand interaction previously described in detail is that between Ly-49A and H-2D(d), as studied by point mutations in the ligand and the crystal structure of the co-complex of these molecules. It is not known whether other Ly-49 receptors bind MHC class I in a similar manner as Ly-49A. Here we have studied the effect of mutations in Ly-49C on binding to the MHC class I molecules H-2K(b), H-2D(b), and H-2D(d). The MHC class I molecules were used as soluble tetramers to stain transiently transfected 293T cells expressing the mutated Ly-49C receptors. Three of nine mutations in Ly-49C led to loss of MHC class I binding. The three Ly-49C mutations that affected MHC binding correspond to Ly-49A residues that are in contact or close to H-2D(d) in the co-crystal, demonstrating that MHC class I binding by Ly-49C is dependent on residues in the same area as that used by Ly-49A for ligand contacts.

  15. Are large wattles related to particular MHC genotypes in the male pheasant?

    PubMed

    Baratti, Mariella; Ammannati, Martina; Magnelli, Claudia; Massolo, Alessandro; Dessì-Fulgheri, Francesco

    2010-06-01

    In sexually dimorphic species, partners can assess heritable mate quality by analyzing costly sexual ornaments in terms of their dimension and possibly of their symmetry. In vertebrates an important aspect of genetic quality is the efficiency of the immune system, and in particular the Major Histocompatibility Complex (MHC). If ornaments are honest advertisements of pathogen resistance (good genes), in line with the Hamilton-Zuk hypothesis, a correlation between ornament expression and MHC profiles should exist. We tested this hypothesis in the common pheasant Phasianus colchicus by comparing male ornament characteristics (wattle and spur size, and wattle fluctuating asymmetry) with a portion of exon 2 of the class IIB MHC genes containing 19 putative antigen recognition sites. A total of 8 new alleles was observed in the MHCPhco exon IIB. We found significant differences in the occurrence of MHC genotypes between males carrying large or small wattles. Homozygous genotypes predicted large wattle males more correctly than small wattle males. The association between the dimension of the spur and the occurrence of MHC genotypes was marginally significant, however, we did not find any significant association between MHC genotypes and asymmetry. Our results suggest that female pheasants may use the ornament size as a cue to evaluate male quality and thus choose males carrying particular MHC profiles.

  16. Evolution and comparative analysis of the bat MHC-I region

    PubMed Central

    Ng, Justin H. J.; Tachedjian, Mary; Deakin, Janine; Wynne, James W.; Cui, Jie; Haring, Volker; Broz, Ivano; Chen, Honglei; Belov, Katherine; Wang, Lin-Fa; Baker, Michelle L.

    2016-01-01

    Bats are natural hosts to numerous viruses and have ancient origins, having diverged from other eutherian mammals early in evolution. These characteristics place them in an important position to provide insights into the evolution of the mammalian immune system and antiviral immunity. We describe the first detailed partial map of a bat (Pteropus alecto) MHC-I region with comparative analysis of the MHC-I region and genes. The bat MHC-I region is highly condensed, yet relatively conserved in organisation, and is unusual in that MHC-I genes are present within only one of the three highly conserved class I duplication blocks. We hypothesise that MHC-I genes first originated in the β duplication block, and subsequently duplicated in a step-wise manner across the MHC-I region during mammalian evolution. Furthermore, bat MHC-I genes contain unique insertions within their peptide-binding grooves potentially affecting the peptide repertoire presented to T cells, which may have implications for the ability of bats to control infection without overt disease. PMID:26876644

  17. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes.

    PubMed

    Sutton, Jolene T; Nakagawa, Shinichi; Robertson, Bruce C; Jamieson, Ian G

    2011-11-01

    The major histocompatibility complex (MHC) forms an integral component of the vertebrate immune response and, due to strong selection pressures, is one of the most polymorphic regions of the entire genome. Despite over 15 years of research, empirical studies offer highly contradictory explanations of the relative roles of different evolutionary forces, selection and genetic drift, acting on MHC genes during population bottlenecks. Here, we take a meta-analytical approach to quantify the results of studies into the effects of bottlenecks on MHC polymorphism. We show that the consequences of selection acting on MHC loci prior to a bottleneck event, combined with drift during the bottleneck, will result in overall loss of MHC polymorphism that is ∼15% greater than loss of neutral genetic diversity. These results are counter to general expectations that selection should maintain MHC polymorphism, but do agree with the results of recent simulation models and at least two empirical studies. Notably, our results suggest that negative frequency-dependent selection could be more important than overdominance for maintaining high MHC polymorphism in pre-bottlenecked populations.

  18. Early Duplication of a Single MHC IIB Locus Prior to the Passerine Radiations

    PubMed Central

    Eimes, John A.; Lee, Sang-im; Townsend, Andrea K.; Jablonski, Piotr; Nishiumi, Isao; Satta, Yoko

    2016-01-01

    A key characteristic of MHC genes is the persistence of allelic lineages over macroevolutionary periods, often through multiple speciation events. This phenomenon, known as trans-species polymorphism (TSP), is well documented in several major taxonomic groups, but has less frequently been observed in birds. The order Passeriformes is arguably the most successful terrestrial vertebrate order in terms of diversity of species and ecological range, but the reasons for this success remain unclear. Passerines exhibit the most highly duplicated MHC genes of any major vertebrate taxonomic group, which may generate increased immune response relative to other avian orders with fewer MHC loci. Here, we describe phylogenetic patterns of the MHC IIB in the passerine family Corvidae. Our results indicate wide-spread TSP within this family, with at least four supported MHC IIB allelic lineages that predate speciation by many millions of years. Markov chain Monte Carlo simulations indicate that divergence of these lineages occurred near the time of the divergence of the Passeriformes and other avian orders. We suggest that the current MHC diversity observed in passerines is due in part to the multiple duplication of a single MHC locus, DAB1, early in passerine evolution and that subsequent duplications of these paralogues have contributed to the enormous success of this order by increasing their ability to recognize and mount immune responses to novel pathogens. PMID:27658204

  19. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  20. Cryptic preference for MHC-dissimilar females in male red junglefowl, Gallus gallus

    PubMed Central

    Gillingham, Mark A.F.; Richardson, David S.; Løvlie, Hanne; Moynihan, Anna; Worley, Kirsty; Pizzari, Tom

    2008-01-01

    An increasing number of studies test the idea that females increase offspring fitness by biasing fertilization in favour of genetically compatible partners; however, few have investigated or controlled for corresponding preferences in males. Here, we experimentally test whether male red junglefowl, Gallus gallus, prefer genetically compatible females, measured by similarity at the major histocompatibility complex (MHC), a key gene complex in vertebrate immune function. Theory predicts that because some degree of MHC heterozygosity favours viability, individuals should prefer partners that carry MHC alleles different from their own. While male fowl showed no preference when simultaneously presented with an MHC-similar and an MHC-dissimilar female, they showed a ‘cryptic’ preference, by allocating more sperm to the most MHC-dissimilar of two sequentially presented females. These results provide the first experimental evidence that males might respond to the MHC similarity of a female through differential ejaculate expenditure. By revealing that cryptic male behaviours may bias fertilization success in favour of genetically compatible partners, this study demonstrates the need to experimentally disentangle male and female effects when studying preferences for genetically compatible partners. PMID:19129124

  1. MHC diversity and mate choice in the magellanic penguin, Spheniscus magellanicus.

    PubMed

    Knafler, Gabrielle J; Clark, J Alan; Boersma, P Dee; Bouzat, Juan L

    2012-01-01

    We estimated levels of diversity at the major histocompatibility complex (MHC) class II DRß1 gene in 50 breeding pairs of the Magellanic penguin and compared those to estimates from Humboldt and Galapagos penguins. We tested for positive selection and 2 conditions required for the evolution of MHC-based disassortative mating: 1) greater MHC diversity between breeding pairs compared to random mating, and 2) associations between MHC genotype and fitness. Cloning and sequencing of the DRß1 gene showed that Magellanic penguins had higher levels of genetic variation than Galapagos and Humboldt penguins. Sequence analysis revealed 45 alleles with 3.6% average proportion of nucleotide differences, nucleotide diversity of 0.030, and observed heterozygosity of 0.770. A gene phylogeny showed 9 allelic lineages with interspersed DRß1 sequences from Humboldt and Galapagos penguins, indicating ancestral polymorphisms. d (N)/d (S) ratios revealed evidence for positive selection. Analysis of breeding pairs showed no disassortative mating preferences. Significant MHC genotype/fitness associations in females suggest, however, that selection for pathogen resistance plays a more important role than mate choice in maintaining diversity at the MHC in the Magellanic penguin. The differential effect of MHC heterozygosity on fitness between the sexes is likely associated with the relative role of hatching and fledging rates as reliable indicators of overall fitness in males and females.

  2. Genetic variation at the MHC in a population of introduced wild turkeys.

    PubMed

    Bauer, Miranda M; Miller, Marcia M; Briles, W Elwood; Reed, Kent M

    2013-01-01

    Genetic variation in the major histocompatibility complex (MHC) is known to affect disease resistance in many species. Investigations of MHC diversity in populations of wild species have focused on the antigen presenting class IIβ molecules due to the known polymorphic nature of these genes and the role these molecules play in pathogen recognition. Studies of MHC haplotype variation in the turkey ( Meleagris gallopavo ) are limited. This study was designed to examine MHC diversity in a group of Eastern wild turkeys ( Meleagris gallopavo silvestris ) collected during population expansion following reintroduction of the species in southern Wisconsin, USA. Southern blotting with BG and class IIβ probes and single nucleotide polymorphism (SNP) genotyping was used to measure MHC variation. SNP analysis focused on single copy MHC genes flanking the highly polymorphic class IIβ genes. Southern blotting identified 27 class IIβ phenotypes, whereas SNP analysis identified 13 SNP haplotypes occurring in 28 combined genotypes. Results show that genetic diversity estimates based on RFLP (Southern blot) analysis underestimate the level of variation detected by SNP analysis. Sequence analysis of the mitochondrial D-loop identified 7 mitochondrial haplotypes (mitotypes) in the sampled birds. Results show that wild turkeys located in southern Wisconsin have a genetically diverse MHC and originate from several maternal lineages.

  3. TAPBPR alters MHC class I peptide presentation by functioning as a peptide exchange catalyst

    PubMed Central

    Hermann, Clemens; van Hateren, Andy; Trautwein, Nico; Neerincx, Andreas; Duriez, Patrick J; Stevanović, Stefan; Trowsdale, John; Deane, Janet E; Elliott, Tim; Boyle, Louise H

    2015-01-01

    Our understanding of the antigen presentation pathway has recently been enhanced with the identification that the tapasin-related protein TAPBPR is a second major histocompatibility complex (MHC) class I-specific chaperone. We sought to determine whether, like tapasin, TAPBPR can also influence MHC class I peptide selection by functioning as a peptide exchange catalyst. We show that TAPBPR can catalyse the dissociation of peptides from peptide-MHC I complexes, enhance the loading of peptide-receptive MHC I molecules, and discriminate between peptides based on affinity in vitro. In cells, the depletion of TAPBPR increased the diversity of peptides presented on MHC I molecules, suggesting that TAPBPR is involved in restricting peptide presentation. Our results suggest TAPBPR binds to MHC I in a peptide-receptive state and, like tapasin, works to enhance peptide optimisation. It is now clear there are two MHC class I specific peptide editors, tapasin and TAPBPR, intimately involved in controlling peptide presentation to the immune system. DOI: http://dx.doi.org/10.7554/eLife.09617.001 PMID:26439010

  4. TNF-α Induces Macroautophagy and Regulates MHC Class II Expression in Human Skeletal Muscle Cells*

    PubMed Central

    Keller, Christian W.; Fokken, Claudia; Turville, Stuart G.; Lünemann, Anna; Schmidt, Jens; Münz, Christian; Lünemann, Jan D.

    2011-01-01

    Macroautophagy, a homeostatic process that shuttles cytoplasmic constituents into endosomal and lysosomal compartments, has recently been shown to deliver antigens for presentation on major histocompatibility complex (MHC) class II molecules. Skeletal muscle fibers show a high level of constitutive macroautophagy and express MHC class II molecules upon immune activation. We found that tumor necrosis factor-α (TNF-α), a monokine overexpressed in inflammatory myopathies, led to a marked up-regulation of macroautophagy in skeletal myocytes. Furthermore, TNF-α augmented surface expression of MHC class II molecules in interferon-γ (IFN-γ)-treated myoblasts. The synergistic effect of TNF-α and IFN-γ on the induction of MHC class II surface expression was not reflected by higher intracellular human leukocyte antigen (HLA)-DR levels and was reversed by macroautophagy inhibition, suggesting that TNF-α facilitates antigen processing via macroautophagy for more efficient MHC class II loading. Muscle biopsies from patients with sporadic inclusion body myositis, a well defined myopathy with chronic inflammation, showed that over 20% of fibers that contained autophagosomes costained for MHC class II molecules and that more than 40% of double-positive muscle fibers had contact with CD4+ and CD8+ immune cells. These findings establish a mechanism through which TNF-α regulates both macroautophagy and MHC class II expression and suggest that macroautophagy-mediated antigen presentation contributes to the immunological environment of the inflamed human skeletal muscle. PMID:20980264

  5. Evolution and comparative analysis of the bat MHC-I region.

    PubMed

    Ng, Justin H J; Tachedjian, Mary; Deakin, Janine; Wynne, James W; Cui, Jie; Haring, Volker; Broz, Ivano; Chen, Honglei; Belov, Katherine; Wang, Lin-Fa; Baker, Michelle L

    2016-01-01

    Bats are natural hosts to numerous viruses and have ancient origins, having diverged from other eutherian mammals early in evolution. These characteristics place them in an important position to provide insights into the evolution of the mammalian immune system and antiviral immunity. We describe the first detailed partial map of a bat (Pteropus alecto) MHC-I region with comparative analysis of the MHC-I region and genes. The bat MHC-I region is highly condensed, yet relatively conserved in organisation, and is unusual in that MHC-I genes are present within only one of the three highly conserved class I duplication blocks. We hypothesise that MHC-I genes first originated in the β duplication block, and subsequently duplicated in a step-wise manner across the MHC-I region during mammalian evolution. Furthermore, bat MHC-I genes contain unique insertions within their peptide-binding grooves potentially affecting the peptide repertoire presented to T cells, which may have implications for the ability of bats to control infection without overt disease. PMID:26876644

  6. Regulation of calreticulin-major histocompatibility complex (MHC) class I interactions by ATP.

    PubMed

    Wijeyesakere, Sanjeeva Joseph; Gagnon, Jessica K; Arora, Karunesh; Brooks, Charles L; Raghavan, Malini

    2015-10-13

    The MHC class I peptide loading complex (PLC) facilitates the assembly of MHC class I molecules with peptides, but factors that regulate the stability and dynamics of the assembly complex are largely uncharacterized. Based on initial findings that ATP, in addition to MHC class I-specific peptide, is able to induce MHC class I dissociation from the PLC, we investigated the interaction of ATP with the chaperone calreticulin, an endoplasmic reticulum (ER) luminal, calcium-binding component of the PLC that is known to bind ATP. We combined computational and experimental measurements to identify residues within the globular domain of calreticulin, in proximity to the high-affinity calcium-binding site, that are important for high-affinity ATP binding and for ATPase activity. High-affinity calcium binding by calreticulin is required for optimal nucleotide binding, but both ATP and ADP destabilize enthalpy-driven high-affinity calcium binding to calreticulin. ATP also selectively destabilizes the interaction of calreticulin with cellular substrates, including MHC class I molecules. Calreticulin mutants that affect ATP or high-affinity calcium binding display prolonged associations with monoglucosylated forms of cellular MHC class I, delaying MHC class I dissociation from the PLC and their transit through the secretory pathway. These studies reveal central roles for ATP and calcium binding as regulators of calreticulin-substrate interactions and as key determinants of PLC dynamics.

  7. Trafficking of MHC molecules to the cell surface creates dynamic protein patches.

    PubMed

    Blumenthal, Daniel; Edidin, Michael; Gheber, Levi A

    2016-09-01

    Major histocompatibility complex class I (MHC-I) molecules signal infection or transformation by engaging receptors on T lymphocytes. The spatial organization of MHC-I on the plasma membranes is important for this engagement. We and others have shown that MHC-I molecules, like other membrane proteins, are not uniformly distributed, but occur in patches in the plasma membrane. Here, we describe the temporal details of MHC-I patch formation and combine them with the spatial details, which we have described earlier, to yield a comprehensive quantitative description of patch formation. MHC-I is delivered to the plasma membrane in clathrin-coated vesicles, arriving at a rate of ∼2.5×10(-3) μm(-1) min(-1) (or about two arrivals per minute over the whole cell). The vesicles dock and fuse at non-random, apparently targeted, locations on the membrane and the newly delivered MHC-I molecules form patches that are a few hundred nanometers in diameter. The patches are maintained at steady state by a dynamic equilibrium between the rate of delivery and the rate of hindered diffusion of MHC-I molecules out of the patches (caused by components of the actin cytoskeleton). PMID:27466380

  8. Selector function of MHC I molecules is determined by protein plasticity

    NASA Astrophysics Data System (ADS)

    Bailey, Alistair; Dalchau, Neil; Carter, Rachel; Emmott, Stephen; Phillips, Andrew; Werner, Jörn M.; Elliott, Tim

    2015-10-01

    The selection of peptides for presentation at the surface of most nucleated cells by major histocompatibility complex class I molecules (MHC I) is crucial to the immune response in vertebrates. However, the mechanisms of the rapid selection of high affinity peptides by MHC I from amongst thousands of mostly low affinity peptides are not well understood. We developed computational systems models encoding distinct mechanistic hypotheses for two molecules, HLA-B*44:02 (B*4402) and HLA-B*44:05 (B*4405), which differ by a single residue yet lie at opposite ends of the spectrum in their intrinsic ability to select high affinity peptides. We used in vivo biochemical data to infer that a conformational intermediate of MHC I is significant for peptide selection. We used molecular dynamics simulations to show that peptide selector function correlates with protein plasticity, and confirmed this experimentally by altering the plasticity of MHC I with a single point mutation, which altered in vivo selector function in a predictable way. Finally, we investigated the mechanisms by which the co-factor tapasin influences MHC I plasticity. We propose that tapasin modulates MHC I plasticity by dynamically coupling the peptide binding region and α3 domain of MHC I allosterically, resulting in enhanced peptide selector function.

  9. Identification of a nuclear export sequence in the MHC CIITA.

    PubMed

    Chiu, Emily; Gold, Theresa; Fettig, Veronica; LeVasseur, Michael T; Cressman, Drew E

    2015-06-15

    Initiation of an immune response through expression of MHC class II and related genes is under the control of the CIITA. Normally found in both the cytoplasm and nucleus, CIITA is tightly controlled by a variety of posttranslational modifications as well as interactions with other nuclear and cytoplasmic factors, whereas disruption of this dual subcellular localization impairs CIITA functioning and expression of target genes. Although CIITA has well-defined domains necessary for its nuclear import, the region responsible for the translocation of CIITA from the nucleus has not been characterized. In this study, we identify a leucine-rich motif at residues 717-724 that bears strong homology to known nuclear export sequence (NES) domains. Mutation of this region renders CIITA insensitive to treatment with leptomycin B, an inhibitor of nuclear export, whereas fusion of this domain to a heterologous GFP is sufficient to induce its export to the cytoplasm or cause its retention in the nucleus following leptomycin B treatment. Point mutations of specific leucine residues within the NES disrupt the normal subcellular distribution of the full-length CIITA, impair its ability to interact with the nuclear export factor CRM1, and enhance CIITA-induced gene expression from an MHC class II gene promoter. IFN-γ stimulation of class II genes is further enhanced by inhibiting the nuclear export of endogenous CIITA. Collectively, these data demonstrate the first identification of a specific NES within CIITA and place it among the other protein domains that contribute to the posttranslational regulation of CIITA activity.

  10. Leukocyte Ig-Like Receptors – A Model for MHC Class I Disease Associations

    PubMed Central

    Hudson, Laura Emily; Allen, Rachel Louise

    2016-01-01

    MHC class I (MHC-I) polymorphisms are associated with the outcome of some viral infections and autoimmune diseases. MHC-I proteins present antigenic peptides and are recognized by receptors on natural killer cells and cytotoxic T lymphocytes, thus enabling the immune system to detect self-antigens and eliminate targets lacking self or expressing foreign antigens. Recognition of MHC-I, however, extends beyond receptors on cytotoxic leukocytes. Members of the leukocyte Ig-like receptor (LILR) family are expressed on monocytic cells and can recognize both classical and non-classical MHC-I alleles. Despite their relatively broad specificity when compared to the T cell receptor or killer Ig-like receptors, variations in the strength of LILR binding between different MHC-I alleles have recently been shown to correlate with control of HIV infection. We suggest that LILR recognition may mediate MHC-I disease association in a manner that does not depend on a binary discrimination of self/non-self by cytotoxic cells. Instead, the effects of LILR activity following engagement by MHC-I may represent a “degrees of self” model, whereby strength of binding to different alleles determines the degree of influence exerted by these receptors on immune cell functions. LILRs are expressed by myelomonocytic cells and lymphocytes, extending their influence across antigen-presenting cell subsets including dendritic cells, macrophages, and B cells. They have been identified as important players in the response to infection, inflammatory diseases, and cancer, with recent literature to indicate that MHC-I recognition by these receptors and consequent allelic effects could extend an influence beyond the immune system. PMID:27504110

  11. Olfactory signals and the MHC: a review and a case study in Lemur catta.

    PubMed

    Knapp, Leslie A; Robson, Julie; Waterhouse, John S

    2006-06-01

    The major histocompatibility complex (MHC) is the most polymorphic genetic system known in vertebrates. Decades of research demonstrate that it plays a critical role in immune response and disease resistance. It has also been suggested that MHC genes influence social behavior and reproductive phenomena. Studies in laboratory mice and rats report that kin recognition and mate choice are influenced by olfactory cues determined at least in part by an individual's MHC genes. This issue has stimulated intense but controversial research. However, work in this field has only been carried out in rodents and humans. Thus far, no study has directly investigated the relationship between olfactory cues and MHC genotype in nonhuman primates. Furthermore, other genetic loci, including those linked to the MHC, have not been ruled out as the primary influence on odor profiles. To explore the relationship between individual odor profiles and MHC alleles, we are studying ring-tailed lemurs (Lemur catta). These animals are an ideal model species because they are extremely scent-oriented and their behaviors suggest that olfactory signals form an important part of their intra- and intergroup communication systems. Individual odor profiles from tail and scent gland samples were generated for six males using gas chromatography mass spectrometry (GC-MS). MHC genotypes were identified using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). The GC-MS analyses demonstrated a difference between profiles obtained from tail and scent gland samples. Although our sample size is relatively small and statistical significance could not be obtained, our analyses suggest a relationship between MHC and concentrations of volatile compounds. While these results are preliminary, they support the need for further studies of the MHC and olfactory signals in lemurs and other primates. PMID:16715507

  12. Paucity of class I MHC gene heterogeneity between individuals in the endangered Hawaiian monk seal population.

    PubMed

    Aldridge, Brian M; Bowen, Lizabeth; Smith, Brett R; Antonelis, George A; Gulland, Frances; Stott, Jeffrey L

    2006-04-01

    The Hawaiian monk seal population has experienced precipitous declines in the last 50 years. In this study, we provide evidence that individuals from remaining endangered population exhibit alarming uniformity in class I major histocompatibility (MHC) genes. The peripheral blood leukocyte-derived mRNA of six captive animals rescued from a stranding incident on the French frigate shoals in the Hawaiian archipelago was used to characterize genes in the monk seal class I MHC gene family, from which techniques for genotyping the broader population were designed using degenerate primers designed for the three major established human MHC class I loci (HLA-A, HLA-B, and HLA-C), and by sequencing multiple clones, six unique full-length classical MHC class I gene transcripts were identified among the six animals, three of which were only found in single individuals. Since The low degree of sequence variation between these transcripts and the similarity of genotype between individuals provided preliminary evidence for low class I MHC variability in the population. The sequence information from the class I transcripts from these six animals was used to design several primer sets for examining the extent of MHC variability in the remaining population using a combination of polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). Several DGGE assays, each one amplifying subtly different class I MHC gene combinations, were designed to compare exons encoding the highly polymorphic domains of the putative peptide-binding region of MHC class I. In combination, these assays failed to show interindividual variability at any of the class I MHC gene loci examined in either the six captive seals or in 80 free-ranging animals ( approximately 6.7% of the estimated population) representing all six major subpopulations of Hawaiian monk seal.

  13. The cytoplasmic and the transmembrane domains are not sufficient for class I MHC signal transduction.

    PubMed

    Gur, H; Geppert, T D; Wacholtz, M C; Lipsky, P E

    1999-02-01

    Class I MHC molecules deliver activation signals to T cells. To analyze the role of the cytoplasmic and the transmembrane (TM) domains of class I MHC molecules in T cell activation, Jurkat cells were transfected with genes for truncated class I MHC molecules which had only four intracytoplasmic amino acids and no potential phosphorylation sites or native molecules or both. Cross-linking either the native or the truncated molecules induced IL-2 production even under limiting stimulation conditions of low engagement of the stimulating mAb. Moreover, direct comparison of transfected truncated and native class I MHC molecules expressed on the same cell revealed significant stimulation induced by cross-linking the truncated molecules, despite low expression. In addition, truncated class I MHC molecules were as able to synergize with CD3, CD2, or CD28 initiated IL-2 production as native molecules. In further experiments, hybrid constructs made of the extracellular portion of the murine CD8 alpha chain and of the TM and the intracytoplasmic domains of H-2Kk class I MHC molecule were transfected into Jurkat T cells. The expression of the transfected hybrid molecules was comparable to that of the native HLA-B7 molecules. Cross-linking the intact monomorphic HLA-A,B,C epitope or the polymorphic HLA-B7 epitope induced IL-2 production upon costimulation with PMA. In contrast, cross-linking the hybrid molecules generated neither an increase in intracellular calcium concentration ([Ca2+]i) nor stimulated IL-2 production. By contrast, cross-linking intact murine class I MHC molecules induced [Ca2+]i, signal and IL-2 production in transfected Jurkat cells. The data therefore indicate that unlike many other signaling molecules, signaling via class I MHC molecules does not involve the cytoplasmic and the TM portions of the molecule, but rather class I MHC signal transduction is likely to be mediated by the extracellular domain of the molecule.

  14. Limitations of Ab Initio Predictions of Peptide Binding to MHC Class II Molecules

    PubMed Central

    Xu, Ying; Sette, Alessandro; Bourne, Philip E.; Lund, Ole; Ponomarenko, Julia; Nielsen, Morten; Peters, Bjoern

    2010-01-01

    Successful predictions of peptide MHC binding typically require a large set of binding data for the specific MHC molecule that is examined. Structure based prediction methods promise to circumvent this requirement by evaluating the physical contacts a peptide can make with an MHC molecule based on the highly conserved 3D structure of peptide:MHC complexes. While several such methods have been described before, most are not publicly available and have not been independently tested for their performance. We here implemented and evaluated three prediction methods for MHC class II molecules: statistical potentials derived from the analysis of known protein structures; energetic evaluation of different peptide snapshots in a molecular dynamics simulation; and direct analysis of contacts made in known 3D structures of peptide:MHC complexes. These methods are ab initio in that they require structural data of the MHC molecule examined, but no specific peptide:MHC binding data. Moreover, these methods retain the ability to make predictions in a sufficiently short time scale to be useful in a real world application, such as screening a whole proteome for candidate binding peptides. A rigorous evaluation of each methods prediction performance showed that these are significantly better than random, but still substantially lower than the best performing sequence based class II prediction methods available. While the approaches presented here were developed independently, we have chosen to present our results together in order to support the notion that generating structure based predictions of peptide:MHC binding without using binding data is unlikely to give satisfactory results. PMID:20174654

  15. Paucity of class I MHC gene heterogeneity between individuals in the endangered Hawaiian monk seal population.

    PubMed

    Aldridge, Brian M; Bowen, Lizabeth; Smith, Brett R; Antonelis, George A; Gulland, Frances; Stott, Jeffrey L

    2006-04-01

    The Hawaiian monk seal population has experienced precipitous declines in the last 50 years. In this study, we provide evidence that individuals from remaining endangered population exhibit alarming uniformity in class I major histocompatibility (MHC) genes. The peripheral blood leukocyte-derived mRNA of six captive animals rescued from a stranding incident on the French frigate shoals in the Hawaiian archipelago was used to characterize genes in the monk seal class I MHC gene family, from which techniques for genotyping the broader population were designed using degenerate primers designed for the three major established human MHC class I loci (HLA-A, HLA-B, and HLA-C), and by sequencing multiple clones, six unique full-length classical MHC class I gene transcripts were identified among the six animals, three of which were only found in single individuals. Since The low degree of sequence variation between these transcripts and the similarity of genotype between individuals provided preliminary evidence for low class I MHC variability in the population. The sequence information from the class I transcripts from these six animals was used to design several primer sets for examining the extent of MHC variability in the remaining population using a combination of polymerase chain reaction and denaturing gradient gel electrophoresis (DGGE). Several DGGE assays, each one amplifying subtly different class I MHC gene combinations, were designed to compare exons encoding the highly polymorphic domains of the putative peptide-binding region of MHC class I. In combination, these assays failed to show interindividual variability at any of the class I MHC gene loci examined in either the six captive seals or in 80 free-ranging animals ( approximately 6.7% of the estimated population) representing all six major subpopulations of Hawaiian monk seal. PMID:16528500

  16. HLA-F and MHC Class I Open Conformers Are Ligands for NK Cell Ig-like Receptors

    PubMed Central

    Goodridge, Jodie P.; Burian, Aura; Lee, Ni

    2013-01-01

    Killer Ig-like receptors (KIRs) are innate immune receptors expressed by NK and T cells classically associated with the detection of missing self through loss of their respective MHC ligand. Some KIR specificities for allelic classical class I MHC (MHC-I) have been described, whereas other KIR receptor–ligand relationships, including those associated with nonclassical MHC-I, have yet to be clearly defined. We report in this article that KIR3DL2 and KIR2DS4 and the nonclassical Ag HLA-F, expressed as a free form devoid of peptide, physically and functionally interact. These interactions extend to include classical MHC-I open conformers as ligands, defining new relationships between KIR receptors and MHC-I. The data collectively suggest a broader, previously unrecognized interaction between MHC-I open conformers—including prototypical HLA-F—and KIR receptors, acting in an immunoregulatory capacity centered on the inflammatory response. PMID:24018270

  17. 75 FR 28542 - Superior Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... orient the new Superior Resource Advisory Committee members on their roles and responsibilities. DATES... of the roles and responsibilities of the Superior Resource Advisory Committee members; Election of... Forest Service Superior Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice...

  18. Direct activation of human dendritic cells by particle-bound but not soluble MHC class II ligand.

    PubMed

    Baleeiro, Renato B; Wiesmüller, Karl-Heinz; Dähne, Lars; Lademann, Jürgen; Barbuto, José A; Walden, Peter

    2013-01-01

    Dendritic cells (DCs) are key activators of cellular immune responses through their capacity to induce naïve T cells and sustained effector T cell responses. This capacity is a function of their superior efficiency of antigen presentation via MHC class I and class II molecules, and the expression of co-stimulatory cell surface molecules and cytokines. Maturation of DCs is induced by microbial factors via pattern recognition receptors such as Toll-like receptors, pro-inflammatory cytokines or cognate interaction with CD4(+) T cells. Here we show that, unexpectedly, the PanDR helper T cell epitope PADRE, a generic T helper cell antigen presented by a large fraction of HLA-DR alleles, when delivered in particle-bound form induced maturation of human DCs. The DCs that received the particle-bound PADRE displayed all features of fully mature DCs, such as high expression of the co-stimulatory molecules CD80, CD86, CD83, the MHC-II molecule HLA-DR, secretion of high levels of the biologically active IL-12 (IL-12p70) and induction of vigorous proliferation of naïve CD4(+) T cells. Furthermore, the maturation of DCs induced by particle-bound PADRE was shown to involve sphingosine kinase, calcium signaling from internal sources and downstream signaling through the MAP kinase and the p72syk pathways, and finally activation of the transcription factor NF-κB. Based on our findings, we propose that particle-bound PADRE may be used as a DC activator in DC-based vaccines.

  19. Oncolytic adenoviruses coated with MHC-I tumor epitopes increase the antitumor immunity and efficacy against melanoma

    PubMed Central

    Capasso, Cristian; Hirvinen, Mari; Garofalo, Mariangela; Romaniuk, Dmitrii; Kuryk, Lukasz; Sarvela, Teea; Vitale, Andrea; Antopolsky, Maxim; Magarkar, Aniket; Viitala, Tapani; Suutari, Teemu; Bunker, Alex; Yliperttula, Marjo; Urtti, Arto; Cerullo, Vincenzo

    2016-01-01

    ABSTRACT The stimulation of the immune system using oncolytic adenoviruses (OAds) has attracted significant interest and several studies suggested that OAds immunogenicity might be important for their efficacy. Therefore, we developed a versatile and rapid system to adsorb tumor-specific major histocompatibility complex class I (MHC-I) peptides onto the viral surface to drive the immune response toward the tumor epitopes. By studying the model epitope SIINFEKL, we demonstrated that the peptide-coated OAd (PeptiCRAd) retains its infectivity and the cross presentation of the modified-exogenous epitope on MHC-I is not hindered. We then showed that the SIINFEKL-targeting PeptiCRAd achieves a superior antitumor efficacy and increases the percentage of antitumor CD8+ T cells and mature epitope-specific dendritic cells in vivo. PeptiCRAds loaded with clinically relevant tumor epitopes derived from tyrosinase-related protein 2 (TRP-2) and human gp100 could reduce the growth of primary-treated tumors and secondary-untreated melanomas, promoting the expansion of antigen-specific T-cell populations. Finally, we tested PeptiCRAd in humanized mice bearing human melanomas. In this model, a PeptiCRAd targeting the human melanoma-associated antigen A1 (MAGE-A1) and expressing granulocyte and macrophage colony-stimulating factor (GM-CSF) was able to eradicate established tumors and increased the human MAGE-A1-specific CD8+ T cell population. Herein, we show that the immunogenicity of OAds plays a key role in their efficacy and it can be exploited to direct the immune response system toward exogenous tumor epitopes. This versatile and rapid system overcomes the immunodominance of the virus and elicits a tumor-specific immune response, making PeptiCRAd a promising approach for clinical testing. PMID:27141389

  20. Identifying Intellectually Superior Black Children.

    ERIC Educational Resources Information Center

    Ryan, Judith S.

    1983-01-01

    The effectiveness of several methods used to identify intellectually superior black children was evaluated. Findings suggest that less commonly used identification methods, such as parents' opinion and the Leiter International Performance Scale, may point out these children more accurately than do traditional measures. (Author/PP)

  1. Hardy-Weinberg analysis of a large set of published association studies reveals genotyping error and a deficit of heterozygotes across multiple loci

    PubMed Central

    2008-01-01

    In genetic association studies, deviation from Hardy-Weinberg equilibrium (HWD) can be due to recent admixture or selection at a locus, but is most commonly due to genotyping errors. In addition to its utility for identifying potential genotyping errors in individual studies, here we report that HWD can be useful in detecting the presence, magnitude and direction of genotyping error across multiple studies. If there is a consistent genotyping error at a given locus, larger studies, in general, will show more evidence for HWD than small studies. As a result, for loci prone to genotyping errors, there will be a correlation between HWD and the study sample size. By contrast, in the absence of consistent genotyping errors, there will be a chance distribution of p-values among studies without correlation with sample size. We calculated the evidence for HWD at 17 separate polymorphic loci investigated in 325 published genetic association studies. In the full set of studies, there was a significant correlation between HWD and locus-standardised sample size (p = 0.001). For 14/17 of the individual loci, there was a positive correlation between extent of HWD and sample size, with the evidence for two loci (5-HTTLPR and CTSD) rising to the level of statistical significance. Among single nucleotide polymorphisms (SNPs), 15/23 studies that deviated significantly from Hardy-Weinberg equilibrium (HWE) did so because of a deficit of hetero-zygotes. The inbreeding coefficient (F(is)) is a measure of the degree and direction of deviation from HWE. Among studies investigating SNPs, there was a significant correlation between F(is) and HWD (R = 0.191; p = 0.002), indicating that the greater the deviation from HWE, the greater the deficit of heterozygotes. By contrast, for repeat variants, only one in five studies that deviated significantly from HWE showed a deficit of heterozygotes and there was no significant correlation between F(is) and HWD. These results indicate the presence of

  2. Parasexual recombination in Dictyostelium discoideum: selection of stable diploid heterozygotes and stable haploid segregants (clones-temperature sensitive-ploidy-fruiting bodies-spore-slime mold).

    PubMed

    Katz, E R; Sussman, M

    1972-02-01

    Haploid strains of Dictyostelium discoideum bearing temperature-sensitive mutations have been used to select stable diploid, heterozygotic clones, which arise at low frequency (about 10(-5)). Segregants arise from such diploids at low frequency (about 10(-3)). The diploids were heterozygous for resistance to cycloheximide and were phenotypically sensitive to the drug. Growth of the diploid cells in the presence of cycloheximide automatically selected those segregants bearing the resistant allele, and facilitated examination of the assortment of unselected markers. The combination of the two selective methods provides a workable system of genetic analysis in this species. We have used this method to locate six markers on three different linkage groups.

  3. Compound heterozygote for lipoprotein lipase deficiency: Ser----Thr244 and transition in 3' splice site of intron 2 (AG----AA) in the lipoprotein lipase gene.

    PubMed Central

    Hata, A; Emi, M; Luc, G; Basdevant, A; Gambert, P; Iverius, P H; Lalouel, J M

    1990-01-01

    Cloning and sequencing of translated exons and intron-exon boundaries of the lipoprotein lipase gene in a patient of French descent who has the chylomicronemia syndrome revealed that he was a compound heterozygote for two nucleotide substitutions. One (TCC----ACC) leads to an amino acid substitution (Ser----Thr244), while the other alters the 3' splice site of intron 2 (AG----AA). The functional significance of the Thr244 amino acid substitution was established by in vitro expression in cultured mammalian cells. Images Figure 1 Figure 2 PMID:2121025

  4. Unusual features of Self-Peptide/MHC Binding by Autoimmune T Cell Receptors

    SciTech Connect

    Nicholson,M.; Hahn, M.; Wucherpfennig, K.

    2005-01-01

    Structural studies on T cell receptors (TCRs) specific for foreign antigens demonstrated a remarkably similar topology characterized by a central, diagonal TCR binding mode that maximizes interactions with the MHC bound peptide. However, three recent structures involving autoimmune TCRs demonstrated unusual interactions with self-peptide/MHC complexes. Two TCRs from multiple sclerosis patients bind with unconventional topologies, and both TCRs are shifted toward the peptide N terminus and the MHC class II {beta} chain helix. A TCR from the experimental autoimmune encephalomyelitis (EAE) model binds in a conventional orientation, but the structure is unusual because the self-peptide only partially fills the binding site. For all three TCRs, interaction with the MHC bound self-peptide is suboptimal, and only two or three TCR loops contact the peptide. Optimal TCR binding modes confer a competitive advantage for antimicrobial T cells during an infection, whereas altered binding properties may permit survival of a subset of autoreactive T cells during thymic selection.

  5. Molecular characterization of MHC class II in the Australian invasive cane toad reveals multiple splice variants.

    PubMed

    Lillie, Mette; Cui, Jian; Shine, Richard; Belov, Katherine

    2016-07-01

    The cane toad has gained notoriety for its invasion across the Australian landscape, with significant impacts on the native Australian fauna. The invasion has accelerated over time, with invading cane toads adapted for highly dispersive traits. This, however, has come at the cost of the immune system, with lower investment in some immune functions. To investigate the cane toad's immunogenetics, we characterized four major histocompatibility complex (MHC) class IIA and three MHC class IIB loci. Preliminary observations suggest very low allelic diversity at all loci. We also observed various splice isoforms. One isoform seen at one class IIA and two class IIB loci was missing exon 2, which is essential to peptide binding and presentation. The other isoform, observed at a class IIA locus, is likely to be a soluble MHC product. These results may suggest a significant role of alternative splicing of MHC loci in the Australian cane toad. PMID:27233954

  6. MHC class II exacerbates demyelination in vivo independently of T cells.

    PubMed

    Hiremath, Meenaxi M; Chen, Vivian S; Suzuki, Kinuko; Ting, Jenny P Y; Matsushima, Glenn K

    2008-10-15

    We have shown previously the importance of MHC class II for central nervous system remyelination; however, the function of MHC class II during cuprizone-induced demyelination has not been examined. Here, we show that I-A(beta)-/- mice exhibit significantly reduced inflammation and demyelination. RAG-1(1/1) mice are indistinguishable from controls, indicating T cells may not play a role. The role of MHC class II depends on an intact cytoplasmic tail that leads to the production of IL-1beta, TNF-alpha, and nitric oxide, and oligodendrocyte apoptosis. Thus, the function of MHC class II cytoplasmic tail appears to increase microglial proliferation and activation that exacerbates demyelination. PMID:18805594

  7. The effect of transfected MHC class I genes on sensitivity to natural killer cells.

    PubMed Central

    Holscher, M; Givan, A L; Brooks, C G

    1991-01-01

    To test the hypothesis that major histocompatibility complex (MHC) molecules protect target cells from lysis by natural killer cells (NKC), we transfected the MHC- B16 melanoma line F10 with the class I genes encoding Dd, Kb, and Kk. Only low levels of Dd expression could be obtained and there was no protection against NKC. By contrast, Kb and Kk transfectants were obtained which displayed significant resistance to NKC, and with the latter transfectants resistance was clearly related to the level of transgene expression. Various mutants of the F10 line with altered patterns of MHC expression were also obtained. These mutant lines provided evidence that (i) the Db molecule is also capable of inducing resistance to NKC and (ii) high MHC class I expression does not by itself guarantee lowered susceptibility to NKC. PMID:1904402

  8. Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes.

    PubMed

    Kropshofer, H; Spindeldreher, S; Röhn, T A; Platania, N; Grygar, C; Daniel, N; Wölpl, A; Langen, H; Horejsi, V; Vogt, A B

    2002-01-01

    Complexes of peptide and major histocompatibility complex (MHC) class II are expressed on the surface of antigen-presenting cells but their molecular organization is unknown. Here we show that subsets of MHC class II molecules localize to membrane microdomains together with tetraspan proteins, the peptide editor HLA-DM and the costimulator CD86. Tetraspan microdomains differ from other membrane areas such as lipid rafts, as they enrich MHC class II molecules carrying a selected set of peptide antigens. Antigen-presenting cells deficient in tetraspan microdomains have a reduced capacity to activate CD4+ T cells. Thus, the organization of uniformly loaded peptide-MHC class II complexes in tetraspan domains may be a very early event that determines both the composition of the immunological synapse and the quality of the subsequent T helper cell response.

  9. MHC class II antigen presentation pathway in murine tumours: tumour evasion from immunosurveillance?

    PubMed Central

    Walter, W; Lingnau, K; Schmitt, E; Loos, M; Maeurer, M J

    2000-01-01

    Qualitative differences in the MHC class II antigen processing and presentation pathway may be instrumental in shaping the CD4+ T cell response directed against tumour cells. Efficient loading of many MHC class II alleles with peptides requires the assistance of H2-M, a heterodimeric MHC class II-like molecule. In contrast to the HLA-DM region in humans, the β-chain locus is duplicated in mouse, with the H2-Mb1 (Mb1β-chain distal to H2-Mb2 (Mb2) and the H2-Ma (Ma) α-chain gene). Here, we show that murine MHC class II and H2-M genes are coordinately regulated in murine tumour cell lines by T helper cell 1 (IFN-γ) and T helper cell 2 (IL-4 or IL-10) cytokines in the presence of the MHC class II-specific transactivator CIITA as determined by mRNA expression and Western blot analysis. Furthermore, Mαβ1 and Mαβ2 heterodimers are differentially expressed in murine tumour cell lines of different histology. Both H2-M isoforms promote equally processing and presentation of native protein antigens to H2-Ad- and H2-Ed-restricted CD4+ T cells. Murine tumour cell lines could be divided into three groups: constitutive MHC class II and CIITA expression; inducible MHC class II and CIITA expression upon IFN-γ-treatment; and lack of constitutive and IFN-γ-inducible MHC class II and CIITA expression. These differences may impact on CD4+ T cell recognition of cancer cells in murine tumour models. © 2000 Cancer Research Campaign PMID:11027433

  10. Specificity of Amyloid Precursor-like Protein 2 Interactions with MHC Class I Molecules

    PubMed Central

    Tuli, Amit; Sharma, Mahak; Naslavsky, Naava; Caplan, Steve; Solheim, Joyce C.

    2008-01-01

    The ubiquitously expressed amyloid precursor-like protein 2 (APLP2) has been previously found to regulate cell surface expression of the MHC class I molecule Kd and bind strongly to Kd. In the study reported here, we demonstrated that APLP2 binds, in varied degrees, to several other mouse MHC class I allotypes, and that the ability of APLP2 to affect cell surface expression of an MHC class I molecule is not limited to Kd. Ld, like Kd, was found associated with APLP2 in the Golgi, but Kd was also associated with APLP2 within intracellular vesicular structures. We also investigated the effect of β2m on APLP2/MHC interaction, and found that human β2m transfection increased the association of APLP2 with mouse MHC class I molecules, likely by affecting H2 class I heavy chain conformation. APLP2 was demonstrated to bind specifically to the conformation of Ld having folded outer domains, consistent with our previous results with Kd and indicating APLP2 interacts with the α1α2 region on each of these H2 class I molecules. Furthermore, we observed that binding to APLP2 involved the MHC α3/transmembrane/cytoplasmic region, suggesting that conserved as well as polymorphic regions of the H2 class I molecule may participate in interaction with APLP2. In summary, we demonstrated that APLP2′s binding, co-localization pattern, and functional impact vary among H2 class I molecules, and that APLP2/MHC association is influenced by multiple domains of the MHC class I heavy chain and by β2m’s effects on the conformation of the heavy chain. PMID:18452037

  11. Viral MHC class I-like molecule allows evasion of NK cell effector responses in vivo.

    PubMed

    Pyzik, Michal; Dumaine, Anne; Dumaine, Anne A; Charbonneau, Benoît; Fodil-Cornu, Nassima; Jonjic, Stipan; Vidal, Silvia M

    2014-12-15

    The outcome of mouse CMV (MCMV) infection varies among different inbred mouse strains depending on NK cell effector functions governed through recognition receptor triggering. NK cells from different mouse strains possess diverse repertoires of activating or inhibitory Ly49 receptors, which share some of their polymorphic MHC class I (MHC-I) ligands. By examining the NK cell response to MCMV infection in novel BALB substrains congenic for different MHC (or H-2 in mice) haplotypes, we show that recognition of viral MHC-I-like protein m157 by inhibitory Ly49C receptor allows escape from NK cell control of viral replication. Dominant inhibition by Ly49C bound to self-H-2(b) encoded MHC-I molecules masks this effect, which only becomes apparent in distinct H-2 haplotypes, such as H-2(f). The recognition of m157-expressing cells by Ly49C resulted in both decreased NK cell killing in vitro and reduced rejection in vivo. Further, control of infection with m157-deletant (Δm157) MCMV was improved in mice carrying H-2 molecules unrecognized by Ly49C but allowing expansion of NK cell effectors expressing activating Ly49L receptors. Hence, our study is the first, to our knowledge, to demonstrate that MHC-I mimicry strategies used by MCMV to avoid NK cell control are biologically relevant during in vivo viral infection. Of value for human studies is that only a few genetic assortments conditional on the repertoires of viral MHC-I-like proteins/host NK receptors/MHC haplotypes should allow efficient protection against CMV infection.

  12. MHC II expression in the CNS after long-term demyelination

    SciTech Connect

    Cannella, B.; Aquino, D.A.; Raine, C.S.

    1995-07-01

    The ability of chronically demyelinated central nervous system (CNS) tissue to express major histocompatibility complex (MHC) class II molecules has been measured in mouse spinal cord cultures exposed for 1 and 3 weeks to demyelinating anti-white matter (WM) serum. From previous studies, It was known that after 3 weeks of demyelination in vitro, such cultures are incapable of remyelination. In the present report, MHC II levels were evaluated by immunocytochemistry and by Western and Northern blots. The results have shown that after both 1 and 3 weeks of exposure to myelinotoxic anti-WM serum, the cultures retained the ability to express MHC II and this could be further upregulated by incubation with interferon {gamma} (IFN{gamma}). Control groups showed increased expression of MHC II with age. By immunocytochemistry, all groups of cultures expressed high levels of MHC II and all groups showed upregulation after IFN{gamma} treatment. Anti-WM-treated cultures demonstrated slightly higher levels of MHC II than controls. Morphologically, the MHC II expression was associated with the surface of astrocytes. Semiquantitative analysis by Western blotting confirmed the increase in class II MHC expression in the long-term treated cultures after IFN{gamma} exposure, revealing no differences between anti-WM-treated and complement-treated cultures. This was also supported by Northern blotting which showed similar mRNA levels in both groups. These findings suggest that long-term demyelinated CNS tissue still possesses the ability to interact with CD4{sup +} T cells, observations of significance to the expansion of the chronic multiple sclerosis lesion. 50 refs., 6 figs., 2 tabs.

  13. Targeted capture enrichment and sequencing identifies extensive nucleotide variation in the turkey MHC-B.

    PubMed

    Reed, Kent M; Mendoza, Kristelle M; Settlage, Robert E

    2016-03-01

    Variation in the major histocompatibility complex (MHC) is increasingly associated with disease susceptibility and resistance in avian species of agricultural importance. This variation includes sequence polymorphisms but also structural differences (gene rearrangement) and copy number variation (CNV). The MHC has now been described for multiple galliform species including the best defined assemblies of the chicken (Gallus gallus) and domestic turkey (Meleagris gallopavo). Using this sequence resource, this study applied high-throughput sequencing to investigate MHC variation in turkeys of North America (NA turkeys). An MHC-specific SureSelect (Agilent) capture array was developed, and libraries were created for 14 turkeys representing domestic (commercial bred), heritage breed, and wild turkeys. In addition, a representative of the Ocellated turkey (M. ocellata) and chicken (G. gallus) was included to test cross-species applicability of the capture array allowing for identification of new species-specific polymorphisms. Libraries were hybridized to ∼12 K cRNA baits and the resulting pools were sequenced. On average, 98% of processed reads mapped to the turkey whole genome sequence and 53% to the MHC target. In addition to the MHC, capture hybridization recovered sequences corresponding to other MHC regions. Sequence alignment and de novo assembly indicated the presence of several additional BG genes in the turkey with evidence for CNV. Variant detection identified an average of 2245 polymorphisms per individual for the NA turkeys, 3012 for the Ocellated turkey, and 462 variants in the chicken (RJF-256). This study provides an extensive sequence resource for examining MHC variation and its relation to health of this agriculturally important group of birds.

  14. New Insights into the Role of MHC Diversity in Devil Facial Tumour Disease

    PubMed Central

    Wright, Belinda; Hamede, Rodrigo; Levan, Laura; Jones, Menna; Ujvari, Beata; Belov, Katherine

    2012-01-01

    Background Devil facial tumour disease (DFTD) is a fatal contagious cancer that has decimated Tasmanian devil populations. The tumour has spread without invoking immune responses, possibly due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. Animals from a region in north-western Tasmania have lower infection rates than those in the east of the state. This area is a genetic transition zone between sub-populations, with individuals from north-western Tasmania displaying greater diversity than eastern devils at MHC genes, primarily through MHC class I gene copy number variation. Here we test the hypothesis that animals that remain healthy and tumour free show predictable differences at MHC loci compared to animals that develop the disease. Methodology/Principal Findings We compared MHC class I sequences in 29 healthy and 22 diseased Tasmanian devils from West Pencil Pine, a population in north-western Tasmania exhibiting reduced disease impacts of DFTD. Amplified alleles were assigned to four loci, Saha-UA, Saha-UB, Saha-UC and Saha-UD based on recently obtained genomic sequence data. Copy number variation (caused by a deletion) at Saha-UA was confirmed using a PCR assay. No association between the frequency of this deletion and disease status was identified. All individuals had alleles at Saha-UD, disproving theories of disease susceptibility relating to copy number variation at this locus. Genetic variation between the two sub-groups (healthy and diseased) was also compared using eight MHC-linked microsatellite markers. No significant differences were identified in allele frequency, however differences were noted in the genotype frequencies of two microsatellites located near non-antigen presenting genes within the MHC. Conclusions/Significance We did not find predictable differences in MHC class I copy number variation to account for differences in susceptibility to DFTD. Genotypic data was equivocal but indentified genomic

  15. MHC-disassortative mate choice and inbreeding avoidance in a solitary primate.

    PubMed

    Huchard, Elise; Baniel, Alice; Schliehe-Diecks, Susanne; Kappeler, Peter M

    2013-08-01

    Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by-product of inbreeding avoidance based on MHC-independent cues. Here, we used 454-sequencing and a 10-year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC-dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB-disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC-dependent mate choice.

  16. Selective pressures on MHC class II genes in the guppy (Poecilia reticulata) as inferred by hierarchical analysis of population structure.

    PubMed

    Herdegen, M; Babik, W; Radwan, J

    2014-11-01

    Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre-eminent system for the study of selective pressures that arise from host-pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population-genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.

  17. Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity.

    PubMed

    Rasmussen, Michael; Fenoy, Emilio; Harndahl, Mikkel; Kristensen, Anne Bregnballe; Nielsen, Ida Kallehauge; Nielsen, Morten; Buus, Søren

    2016-08-15

    Binding of peptides to MHC class I (MHC-I) molecules is the most selective event in the processing and presentation of Ags to CTL, and insights into the mechanisms that govern peptide-MHC-I binding should facilitate our understanding of CTL biology. Peptide-MHC-I interactions have traditionally been quantified by the strength of the interaction, that is, the binding affinity, yet it has been shown that the stability of the peptide-MHC-I complex is a better correlate of immunogenicity compared with binding affinity. In this study, we have experimentally analyzed peptide-MHC-I complex stability of a large panel of human MHC-I allotypes and generated a body of data sufficient to develop a neural network-based pan-specific predictor of peptide-MHC-I complex stability. Integrating the neural network predictors of peptide-MHC-I complex stability with state-of-the-art predictors of peptide-MHC-I binding is shown to significantly improve the prediction of CTL epitopes. The method is publicly available at http://www.cbs.dtu.dk/services/NetMHCstabpan. PMID:27402703

  18. Characterization of MHC class I and II genes in a subantarctic seabird, the blue petrel, Halobaena caerulea (Procellariiformes).

    PubMed

    Strandh, Maria; Lannefors, Mimi; Bonadonna, Francesco; Westerdahl, Helena

    2011-10-01

    The great polymorphism observed in the major histocompatibility complex (MHC) genes is thought to be maintained by pathogen-mediated selection possibly combined with MHC-disassortative mating, guided by MHC-determined olfactory cues. Here, we partly characterize the MHC class I and II B of the blue petrel, Halobaena caerulea (Procellariiformes), a bird with significant olfactory abilities that lives under presumably low pathogen burdens in Subantarctica. Blue petrels are long-lived, monogamous birds which suggest the necessity of an accurate mate choice process. The species is ancestral to songbirds (Passeriformes; many MHC loci), although not to gamefowls (Galliformes; few MHC loci). Considering the phylogenetic relationships and the low subantarctic pathogen burden, we expected few rather than many MHC loci in the blue petrel. However, when we analysed partial MHC class I and class II B cDNA and gDNA sequences we found evidence for as many as at least eight MHC class I loci and at least two class II B loci. These class I and II B sequences showed classical MHC characteristics, e.g. high nucleotide diversity, especially in putative peptide-binding regions where signatures of positive selection was detected. Trans-species polymorphism was found between MHC class II B sequences of the blue petrel and those of thin-billed prion, Pachyptila belcheri, two species that diverged ∼25 MYA. The observed MHC allele richness in the blue petrel may well serve as a basis for mate choice, especially since olfactory discrimination of MHC types may be possible in this species. PMID:21607694

  19. Adenosine signaling inhibits CIITA-mediated MHC class II transactivation in lung fibroblast cells.

    PubMed

    Fang, Mingming; Xia, Jun; Wu, Xiaoyan; Kong, Hui; Wang, Hong; Xie, Weiping; Xu, Yong

    2013-08-01

    Efficient antigen presentation by major histocompatibility complex (MHC) molecules represents a critical process in adaptive immunity. Class II transactivator (CIITA) is considered the master regulator of MHC class II (MHC II) transcription. Previously, we have shown that CIITA expression is upregulated in smooth muscle cells deficient in A2b adenosine receptor. Here, we report that treatment with the adenosine receptor agonist adenosine-5'N-ethylcarboxamide (NECA) attenuated MHC II transcription in lung fibro-blast cells as a result of CIITA repression. Further analysis revealed that NECA preferentially abrogated CIITA transcription through promoters III and IV. Blockade with a selective A2b receptor antagonist MRS-1754 restored CIITA-dependent MHC II transactivation. Forskolin, an adenylyl cyclase activator, achieved the same effect as NECA. A2b signaling repressed CIITA transcription by altering histone modifications and recruitment of key factors on the CIITA promoters in a STAT1-dependent manner. MRS-1754 blocked the antagonism of transforming growth factor beta (TGF-β) in CIITA induction by interferon gamma (IFN-γ), alluding to a potential dialogue between TGF-β and adenosine signaling pathways. Finally, A2b signaling attenuated STAT1 phosphorylation and stimulated TGF-β synthesis. In conclusion, we have identified an adenosine-A2b receptor-adenylyl cyclase axis that influences CIITA-mediated MHC II transactivation in lung fibroblast cells and as such have provided invaluable insights into the development of novel immune-modulatory strategies.

  20. Refining the association of MHC with multiple sclerosis in African Americans.

    PubMed

    McElroy, Joseph P; Cree, Bruce A C; Caillier, Stacy J; Gregersen, Peter K; Herbert, Joseph; Khan, Omar A; Freudenberg, Jan; Lee, Annette; Bridges, S Louis; Hauser, Stephen L; Oksenberg, Jorge R; Gourraud, Pierre-Antoine

    2010-08-01

    Multiple sclerosis (MS) is a common demyelinating disease of the central nervous system mediated by autoimmune and neurodegenerative pathogenic mechanisms. Multiple genes account for its moderate heritability, but the only genetic region shown to have a large replicable effect on MS susceptibility is the major histocompatibility complex (MHC). Strong linkage disequilibrium (LD) across the MHC has made it difficult to fully characterize individual genetic contributions of this region to MS risk in previous studies. African Americans are at a lower risk for MS when compared with northern Europeans and Americans of European descent, but greater haplotypic diversity and distinct patterns of LD suggest that this population may be particularly informative for fine-mapping efforts. To examine the role of the MHC in African American MS, a case-control association study was performed with 499 African American MS patients and 750 African American controls that were genotyped for 6040 MHC region single nucleotide polymorphisms (SNPs). A replication data set consisting of 451 African American patients and 718 African American controls was genotyped for selected SNPs. Two MHC class II SNPs, rs2647040 and rs3135021, were significant in the replication cohort and partially tagged DRB1*15 alleles. Surprisingly, in comparison to similar studies of individuals of European descent, the MHC seems to play a smaller role in MS susceptibility in African Americans, consistent with pervasive genetic heterogeneity across ancestral groups, and may explain the difference in MS susceptibility between African Americans and individuals of European descent.

  1. Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus)

    PubMed Central

    Loiseau, Claire; Zoorob, Rima; Robert, Alexandre; Chastel, Olivier; Julliard, Romain; Sorci, Gabriele

    2011-01-01

    Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level. PMID:20943698

  2. Redirecting soluble antigen for MHC class I cross-presentation during phagocytosis.

    PubMed

    Hari, Aswin; Ganguly, Anutosh; Mu, Libing; Davis, Shevaun P; Stenner, Melanie D; Lam, Raymond; Munro, Fay; Namet, Inana; Alghamdi, Enaam; Fürstenhaupt, Tobias; Dong, Wei; Detampel, Pascal; Shen, Lian Jun; Amrein, Matthias W; Yates, Robin M; Shi, Yan

    2015-02-01

    Peptides presented by MHC class I molecules are mostly derived from proteins synthesized by the antigen-presenting cell itself, while peptides presented by MHC class II molecules are predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross-presentation. Here, we report that mouse dendritic cell (DC) engagement to a phagocytic target alters endocytic processing and inhibits the proteolytic activities. During phagocytosis, endosome maturation is delayed, shows less progression toward the lysosome, and the endocytosed soluble antigen is targeted for MHC class I cross-presentation. The antigen processing in these arrested endosomes is under the control of NAPDH oxidase associated ROS. We also show that cathepsin S is responsible for the generation of the MHC class I epitope. Taken together, our results suggest that in addition to solid structure uptake, DC phagocytosis simultaneously modifies the kinetics of endosomal trafficking and maturation. As a consequence, external soluble antigens are targeted into the MHC class I cross-presentation pathway.

  3. Single-Molecule Motions of MHC Class II Rely on Bound Peptides

    PubMed Central

    Kozono, Haruo; Matsushita, Yufuku; Ogawa, Naoki; Kozono, Yuko; Miyabe, Toshihiro; Sekiguchi, Hiroshi; Ichiyanagi, Kouhei; Okimoto, Noriaki; Taiji, Makoto; Kanagawa, Osami; Sasaki, Yuji C.

    2015-01-01

    The major histocompatibility complex (MHC) class II protein can bind peptides of different lengths in the region outside the peptide-binding groove. Peptide-flanking residues (PFRs) contribute to the binding affinity of the peptide for MHC and change the immunogenicity of the peptide/MHC complex with regard to T cell receptor (TCR). The mechanisms underlying these phenomena are currently unknown. The molecular flexibility of the peptide/MHC complex may be an important determinant of the structures recognized by certain T cells. We used single-molecule x-ray analysis (diffracted x-ray tracking (DXT)) and fluorescence anisotropy to investigate these mechanisms. DXT enabled us to monitor the real-time Brownian motion of the peptide/MHC complex and revealed that peptides without PFRs undergo larger rotational motions than peptides with PFRs. Fluorescence anisotropy further revealed that peptides without PFRs exhibit slightly larger motions on the nanosecond timescale. These results demonstrate that peptides without PFRs undergo dynamic motions in the groove of MHC and consequently are able to assume diverse structures that can be recognized by T cells. PMID:25606683

  4. Use of MHC class II tetramers to investigate CD4+ T cell responses: problems and solutions.

    PubMed

    Cecconi, Virginia; Moro, Monica; Del Mare, Sara; Dellabona, Paolo; Casorati, Giulia

    2008-11-01

    MHC-class I tetramers technology enabled the characterization of peptide-specific T cells at the single cell level in a variety of studies. Several laboratories have also developed MHC-class II multimers to characterize Ag-specific CD4+ T cells. However, the generation and use of MHC-class II multimers seems more problematic than that of MHC-I multimers. We have generated HLA-DR*1101 tetramers in a versatile empty form, which can be loaded after purification with peptides of interest. We discuss the impact of critical biological and structural parameters for the optimal staining of Ag-specific CD4+ T cells using HLA-DR*1101 tetramers, such as: (i) activation state of CD4+ T cells; (ii) membrane trafficking in the target CD4+ T cells; (iii) binding characteristics of the loaded CD4 epitope. Our data indicate that reorganization of TCR on the plasma membrane upon CD4+ T cell activation, as well as an homogenous binding frame of the CD4 epitopes to the soluble HLA-DR monomer, are critical for a stable TCR/MHC-class II tetramer interaction. These factors, together with the low frequencies and affinities of specific CD4+ T cells, explain the need for in vitro expansion or ex vivo enrichment of specific T cells for the optimal visualization with MHC-class II tetramers. PMID:18612991

  5. Evaluation of the major histocompatibility complex (Mhc) in cranes: applications to conservation efforts

    USGS Publications Warehouse

    Jarvi, S.I.; Miller, M.M.; Goto, R.M.; Gee, G.F.; Briles, W.E.

    2001-01-01

    Although there have been heated discussions concerning the relative importance of using Mhc diversity as a basis for selecting breeders in conservation projects, most parties agree that the genetic variability residual in an endangered species should be maintained through genetic management, if at all possible. Substantial evidence exists (particularly in birds) documenting the influences of specific Mhc haplotypes on disease outcome and also that those individuals which are heterozygous for Mhc alleles appear to have an advantage for survival over those that are homozygous. Thus, conservation of genetic variability of the Mhc is likely important for the preservation of fitness, especially in small breeding populations. More than half of the world's crane species are listed as endangered. Members of all 15 known species are represented among breeding animals for captive propagation at the International Crane Foundation (Wisconsin) and the USGS Patuxent Wildlife Research Center (Maryland). Collaborative multi-organization efforts and the availability of extensive pedigree records have allowed the study of Mhc variability in several species of cranes. We have found, for example, that Mhc diversity in the captive Florida sandhill crane (Grus canadensis pratensis) population appears high, whereas in the captive whooping crane (Grus americana), which has undergone a severe 'genetic bottleneck,? both the number of alleles and the levels of heterozygosity appear to be substantially reduced.

  6. Vemurafenib enhances MHC induction in BRAFV600E homozygous melanoma cells

    PubMed Central

    Sapkota, Bishu; Hill, Charles E.; Pollack, Brian P.

    2013-01-01

    To optimally integrate targeted kinase inhibitors and immunotherapies in the treatment of melanoma, it will be critical to understand how BRAFV600E mutational status and BRAFV600E inhibition influence the expression of genes that govern antitumor immune responses. Because major histocompatibility complex (MHC) molecules are critical for interactions between tumor cells and lymphocytes, we investigated the impact of BRAFV600E-selective inhibitors on the expression of MHC molecules. We found that the treatment of A375 melanoma cells with vemurafenib enhances the induction of MHC Class I and Class II molecules by interferon γ and IFNα2b. Consistent with these findings, we observed that the forced overexpression of BRAFV600E has the opposite effect and can repress the baseline expression of MHC Class I molecules in A375 cells. Further studies utilizing eight other melanoma cell lines revealed that the vemurafenib-mediated enhancement of MHC induction by IFNγ only occurs in the context of homozygous, but not heterozygous, BRAFV600E mutation. These findings suggest that BRAFV600Eactivity directly influences the expression of MHC molecules and the response to Type I and Type II IFNs. Furthermore, our data suggest that the effect of vemurafenib on the expression of immune system-relevant genes may depend on the zygosity of the BRAFV600E mutation, which is not routinely assessed in melanoma patients. PMID:23483066

  7. ERAAP Shapes the Peptidome Associated with Classical and Nonclassical MHC Class I Molecules.

    PubMed

    Nagarajan, Niranjana A; de Verteuil, Danielle A; Sriranganadane, Dev; Yahyaoui, Wafaa; Thibault, Pierre; Perreault, Claude; Shastri, Nilabh

    2016-08-15

    The peptide repertoire presented by classical as well as nonclassical MHC class I (MHC I) molecules is altered in the absence of the endoplasmic reticulum aminopeptidase associated with Ag processing (ERAAP). To characterize the extent of these changes, peptides from cells lacking ERAAP were eluted from the cell surface and analyzed by high-throughput mass spectrometry. We found that most peptides found in wild-type (WT) cells were retained in the absence of ERAAP. In contrast, a subset of "ERAAP-edited" peptides was lost in WT cells, and ERAAP-deficient cells presented a unique "unedited" repertoire. A substantial fraction of MHC-associated peptides from ERAAP-deficient cells contained N-terminal extensions and had a different molecular composition than did those from WT cells. We found that the number and immunogenicity of peptides associated with nonclassical MHC I was increased in the absence of ERAAP. Conversely, only peptides presented by classical MHC I were immunogenic in ERAAP-sufficient cells. Finally, MHC I peptides were also derived from different intracellular sources in ERAAP-deficient cells. PMID:27371725

  8. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment

    PubMed Central

    Joncker, Nathalie T.; Shifrin, Nataliya; Delebecque, Frédéric

    2010-01-01

    Some mature natural killer (NK) cells cannot be inhibited by major histocompatibility complex (MHC) I molecules, either because they lack corresponding inhibitory receptors or because the host lacks the corresponding MHC I ligands for the receptors. Such NK cells nevertheless remain self-tolerant and exhibit a generalized hyporesponsiveness to stimulation through activating receptors. To address whether NK cell responsiveness is set only during the NK cell differentiation process, we transferred mature NK cells from wild-type (WT) to MHC I–deficient hosts or vice versa. Remarkably, mature responsive NK cells from WT mice became hyporesponsive after transfer to MHC I–deficient mice, whereas mature hyporesponsive NK cells from MHC I–deficient mice became responsive after transfer to WT mice. Altered responsiveness was evident among mature NK cells that had not divided in the recipient animals, indicating that the cells were mature before transfer and that alterations in activity did not require cell division. Furthermore, the percentages of NK cells expressing KLRG1, CD11b, CD27, and Ly49 receptors specific for H-2b were not markedly altered after transfer. Thus, the functional activity of mature NK cells can be reset when the cells are exposed to a changed MHC environment. These findings have important implications for how NK cell functions may be curtailed or enhanced in the context of disease. PMID:20819928

  9. Reduced MHC and neutral variation in the Galápagos hawk, an island endemic

    PubMed Central

    2011-01-01

    Background Genes at the major histocompatibility complex (MHC) are known for high levels of polymorphism maintained by balancing selection. In small or bottlenecked populations, however, genetic drift may be strong enough to overwhelm the effect of balancing selection, resulting in reduced MHC variability. In this study we investigated MHC evolution in two recently diverged bird species: the endemic Galápagos hawk (Buteo galapagoensis), which occurs in small, isolated island populations, and its widespread mainland relative, the Swainson's hawk (B. swainsoni). Results We amplified at least two MHC class II B gene copies in each species. We recovered only three different sequences from 32 Galápagos hawks, while we amplified 20 unique sequences in 20 Swainson's hawks. Most of the sequences clustered into two groups in a phylogenetic network, with one group likely representing pseudogenes or nonclassical loci. Neutral genetic diversity at 17 microsatellite loci was also reduced in the Galápagos hawk compared to the Swainson's hawk. Conclusions The corresponding loss in neutral diversity suggests that the reduced variability present at Galápagos hawk MHC class II B genes compared to the Swainson's hawk is primarily due to a founder event followed by ongoing genetic drift in small populations. However, purifying selection could also explain the low number of MHC alleles present. This lack of variation at genes involved in the adaptive immune response could be cause for concern should novel diseases reach the archipelago. PMID:21612651

  10. Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse?

    PubMed

    Strand, Tanja M; Segelbacher, Gernot; Quintela, María; Xiao, Lingyun; Axelsson, Tomas; Höglund, Jacob

    2012-02-01

    The ability of natural populations to adapt to new environmental conditions is crucial for their survival and partly determined by the standing genetic variation in each population. Populations with higher genetic diversity are more likely to contain individuals that are better adapted to new circumstances than populations with lower genetic diversity. Here, we use both neutral and major histocompatibility complex (MHC) markers to test whether small and highly fragmented populations hold lower genetic diversity than large ones. We use black grouse as it is distributed across Europe and found in populations with varying degrees of isolation and size. We sampled 11 different populations; five continuous, three isolated, and three small and isolated. We tested patterns of genetic variation in these populations using three different types of genetic markers: nine microsatellites and 21 single nucleotide polymorphisms (SNPs) which both were found to be neutral, and two functional MHC genes that are presumably under selection. The small isolated populations displayed significantly lower neutral genetic diversity compared to continuous populations. A similar trend, but not as pronounced, was found for genotypes at MHC class II loci. Populations were less divergent at MHC genes compared to neutral markers. Measures of genetic diversity and population genetic structure were positively correlated among microsatellites and SNPs, but none of them were correlated to MHC when comparing all populations. Our results suggest that balancing selection at MHC loci does not counteract the power of genetic drift when populations get small and fragmented.

  11. No evidence for the effect of MHC on male mating success in the brown bear.

    PubMed

    Kuduk, Katarzyna; Babik, Wieslaw; Bellemain, Eva; Valentini, Alice; Zedrosser, Andreas; Taberlet, Pierre; Kindberg, Jonas; Swenson, Jon E; Radwan, Jacek

    2014-01-01

    Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC) genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear. PMID:25470381

  12. ZXDC, a novel zinc finger protein that binds CIITA and activates MHC gene transcription

    PubMed Central

    Al-Kandari, Wafa; Jambunathan, Srikarthika; Navalgund, Vandana; Koneni, Rupa; Freer, Margot; Parimi, Neeta; Mudhasani, Rajini; Fontes, Joseph D.

    2006-01-01

    The class II trans-activator (CIITA) is recognized as the master regulator of major histocompatibility complex (MHC) class II gene transcription and contributes to the transcription of MHC class I genes. To better understand the function of CIITA, we performed yeast two-hybrid with the C-terminal 807 amino acids of CIITA, and cloned a novel human cDNA named zinc finger, X-linked, duplicated family member C (ZXDC). The 858 amino acid ZXDC protein contains 10 zinc fingers and a transcriptional activation domain, and was found to interact with the region of CIITA containing leucine-rich repeats. Over-expression of ZXDC in human cell lines resulted in super-activation of MHC class I and class II promoters by CIITA. Conversely, silencing of ZXDC expression reduced the ability of CIITA to activate transcription of MHC class II genes. Given the specific interaction between the ZXDC and CIITA proteins, as well as the effect of ZXDC on MHC gene transcription, it appears that ZXDC is an important regulator of both MHC class I and class II transcription. PMID:16600381

  13. Intracellular Transport Routes for MHC I and Their Relevance for Antigen Cross-Presentation

    PubMed Central

    Adiko, Aimé Cézaire; Babdor, Joel; Gutiérrez-Martínez, Enric; Guermonprez, Pierre; Saveanu, Loredana

    2015-01-01

    Cross-presentation, in which exogenous antigens are presented via MHC I complexes, is involved both in the generation of anti-infectious and anti-tumoral cytotoxic CD8+ T cells and in the maintenance of immune tolerance. While cross-presentation was described almost four decades ago and while it is now established that some dendritic cell (DC) subsets are better than others in processing and cross-presenting internalized antigens, the involved molecular mechanisms remain only partially understood. Some of the least explored molecular mechanisms in cross-presentation concern the origin of cross-presenting MHC I molecules and the cellular compartments where antigenic peptide loading occurs. This review focuses on MHC I molecules and their intracellular trafficking. We discuss the source of cross-presenting MHC I in DCs as well as the role of the endocytic pathway in their recycling from the cell surface. Next, we describe the importance of the TAP peptide transporter for delivering peptides to MHC I during cross-presentation. Finally, we highlight the impact of innate immunity mechanisms on specific antigen cross-presentation mechanisms in which TLR activation modulates MHC I trafficking and TAP localization. PMID:26191062

  14. Evolution of MHC class II E beta diversity within the genus Peromyscus.

    PubMed Central

    Richman, Adam D; Herrera, L Gerardo; Nash, Deanna

    2003-01-01

    Progress in understanding the evolution of variation at the MHC has been slowed by an inability to assess the relative roles of mutation vs. intragenic recombination in contributing to observed polymorphism. Recent theoretical advances now permit a quantitative treatment of the problem, with the result that the amount of recombination is at least an order of magnitude greater than that of mutation in the history of class II genes. We suggest that this insight allows progress in evaluating the importance of other factors affecting the evolution of the MHC. We investigated the evolution of MHC class II E beta sequence diversity in the genus Peromyscus. We find evidence for extensive recombination in the history of these sequences. Nevertheless, it appears that intragenic recombination alone is insufficient to account for evolution of MHC diversity in Peromyscus. Significant differences in silent variation among subgenera arose over a relatively short period of time, with little subsequent change. We argue that these observations are consistent with the effects of historical population bottleneck(s). Population restrictions may explain general features of MHC evolution, including the large amount of recombination in the history of MHC genes, because intragenic recombination may efficiently regenerate allelic polymorphism following a population constriction. PMID:12750340

  15. MetaMHCpan, A Meta Approach for Pan-Specific MHC Peptide Binding Prediction.

    PubMed

    Xu, Yichang; Luo, Cheng; Mamitsuka, Hiroshi; Zhu, Shanfeng

    2016-01-01

    Recent computational approaches in bioinformatics can achieve high performance, by which they can be a powerful support for performing real biological experiments, making biologists pay more attention to bioinformatics than before. In immunology, predicting peptides which can bind to MHC alleles is an important task, being tackled by many computational approaches. However, this situation causes a serious problem for immunologists to select the appropriate method to be used in bioinformatics. To overcome this problem, we develop an ensemble prediction-based Web server, which we call MetaMHCpan, consisting of two parts: MetaMHCIpan and MetaMHCIIpan, for predicting peptides which can bind MHC-I and MHC-II, respectively. MetaMHCIpan and MetaMHCIIpan use two (MHC2SKpan and LApan) and four (TEPITOPEpan, MHC2SKpan, LApan, and MHC2MIL) existing predictors, respectively. MetaMHCpan is available at http://datamining-iip.fudan.edu.cn/MetaMHCpan/index.php/pages/view/info . PMID:27076335

  16. No Evidence for the Effect of MHC on Male Mating Success in the Brown Bear

    PubMed Central

    Kuduk, Katarzyna; Babik, Wieslaw; Bellemain, Eva; Valentini, Alice; Zedrosser, Andreas; Taberlet, Pierre; Kindberg, Jonas; Swenson, Jon E.; Radwan, Jacek

    2014-01-01

    Mate choice is thought to contribute to the maintenance of the spectacularly high polymorphism of the Major Histocompatibility Complex (MHC) genes, along with balancing selection from parasites, but the relative contribution of the former mechanism is debated. Here, we investigated the association between male MHC genotype and mating success in the brown bear. We analysed fragments of sequences coding for the peptide-binding region of the highly polymorphic MHC class I and class II DRB genes, while controlling for genome-wide effects using a panel of 18 microsatellite markers. Male mating success did not depend on the number of alleles shared with the female or amino-acid distance between potential mates at either locus. Furthermore, we found no indication of female mating preferences for MHC similarity being contingent on the number of alleles the females carried. Finally, we found no significant association between the number of MHC alleles a male carried and his mating success. Thus, our results provided no support for the role of mate choice in shaping MHC polymorphism in the brown bear. PMID:25470381

  17. Refining the association of MHC with multiple sclerosis in African Americans

    PubMed Central

    McElroy, Joseph P.; Cree, Bruce A. C.; Caillier, Stacy J.; Gregersen, Peter K.; Herbert, Joseph; Khan, Omar A.; Freudenberg, Jan; Lee, Annette; Bridges, S. Louis; Hauser, Stephen L.; Oksenberg, Jorge R.; Gourraud, Pierre-Antoine

    2010-01-01

    Multiple sclerosis (MS) is a common demyelinating disease of the central nervous system mediated by autoimmune and neurodegenerative pathogenic mechanisms. Multiple genes account for its moderate heritability, but the only genetic region shown to have a large replicable effect on MS susceptibility is the major histocompatibility complex (MHC). Strong linkage disequilibrium (LD) across the MHC has made it difficult to fully characterize individual genetic contributions of this region to MS risk in previous studies. African Americans are at a lower risk for MS when compared with northern Europeans and Americans of European descent, but greater haplotypic diversity and distinct patterns of LD suggest that this population may be particularly informative for fine-mapping efforts. To examine the role of the MHC in African American MS, a case–control association study was performed with 499 African American MS patients and 750 African American controls that were genotyped for 6040 MHC region single nucleotide polymorphisms (SNPs). A replication data set consisting of 451 African American patients and 718 African American controls was genotyped for selected SNPs. Two MHC class II SNPs, rs2647040 and rs3135021, were significant in the replication cohort and partially tagged DRB1*15 alleles. Surprisingly, in comparison to similar studies of individuals of European descent, the MHC seems to play a smaller role in MS susceptibility in African Americans, consistent with pervasive genetic heterogeneity across ancestral groups, and may explain the difference in MS susceptibility between African Americans and individuals of European descent. PMID:20466734

  18. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration

    PubMed Central

    Cebrián, Carolina; Zucca, Fabio A.; Mauri, Pierluigi; Steinbeck, Julius A.; Studer, Lorenz; Scherzer, Clemens R.; Kanter, Ellen; Budhu, Sadna; Mandelbaum, Jonathan; Vonsattel, Jean P.; Zecca, Luigi; Loike, John D.; Sulzer, David

    2014-01-01

    Subsets of rodent neurons are reported to express major histocompatibilty complex class I (MHC-I), but such expression has not been reported in normal adult human neurons. Here we provide evidence from immunolabel, RNA expression, and mass spectrometry analysis of postmortem samples that human catecholaminergic substantia nigra and locus coeruleus neurons express MHC-I, and that this molecule is inducible in human stem cell derived dopamine (DA) neurons. Catecholamine murine cultured neurons are more responsive to induction of MHC-I by gamma-interferon than other neuronal populations. Neuronal MHC-I is also induced by factors released from microglia activated by neuromelanin or alpha-synuclein, or high cytosolic DA and/or oxidative stress. DA neurons internalize foreign ovalbumin and display antigen derived from this protein by MHC-I, which triggers DA neuronal death in the presence of appropriate cytotoxic T-cells. Thus, neuronal MHC-I can trigger antigenic response, and catecholamine neurons may be particularly susceptible to T cell-mediated cytotoxic attack. PMID:24736453

  19. The letter height superiority illusion.

    PubMed

    New, Boris; Doré-Mazars, Karine; Cavézian, Céline; Pallier, Christophe; Barra, Julien

    2016-02-01

    Letters are identified better when they are embedded within words rather than within pseudowords, a phenomenon known as the word superiority effect (Reicher in Journal of Experimental Psychology, 81, 275-280, 1969). This effect is, inter alia, accounted for by the interactive-activation model (McClelland & Rumelhart in Psychological Review, 88, 375-407, 1981) through feedback from word to letter nodes. In this study, we investigated whether overactivation of features could lead to perceptual bias, wherein letters would be perceived as being taller than pseudoletters, or words would be perceived as being taller than pseudowords. In two experiments, we investigated the effects of letter and lexical status on the perception of size. Participants who had to compare the heights of letters and pseudoletters, or of words and pseudowords, indeed perceived the former stimuli as being taller than the latter. Possible alternative interpretations of this height superiority effect for letters and words are discussed. PMID:26370216

  20. Genotyping for cytokine polymorphisms in a Northern Ivory Coast population reveals a high frequency of the heterozygote genotypes for the TNF-α-308G/A SNP.

    PubMed

    Santovito, A; Cervella, P; Schleicherova, D; Delpero, M

    2012-08-01

    Cytokine polymorphisms influence the outcomes of parasitic diseases and vary among populations because of their different evolutionary histories and selective pressures imposed by host-pathogen interactions. In this frame, we investigated the frequencies of TNF-α (-308G/A), TGF-β(1) (codon 10C/T, codon 25C/G) and IL-10 (-1082A/G) SNPs in 133 individuals from Ouangolodougou, a rural village in Northern Ivory Coast, where malaria and other parasitic diseases are endemic. The SNPs alleles were determined by ARMS-PCR methodology. Allele frequencies of the SNPs investigated were as follows: IL 10 -1082G = 0.741 and -1082A = 0.259; TGF-β(1) Codon 10 C = 0.835 and T = 0.165; TGF-β(1) Codon 25 G = 0.782 and C = 0.218. For the TNF-α gene, we found high frequencies of the -308A allele (0.305) and heterozygote genotypes (0.594), with a consequent deviation from the Hardy-Weinberg equilibrium. The high heterozygosity at the TNF-α locus suggests a possible selective advantage of the heterozygote genomes, associated with intermediate levels of TNF-α expression, against the infectious agents endemic in Western Africa.

  1. Mechanisms for dominance: Adh heterodimer formation in heterozygotes between ENU or x-ray induced null alleles and normal alleles in drosophila melanogaster

    SciTech Connect

    Jiang, J.C.; Lee, W.R.; Chang, S.H.; Silverman, H. )

    1992-01-01

    To study mechanisms for dominance of phenotype, eight ENU- and four x-ray-induced mutations at the alcohol dehydrogenase (Adh) locus were analyzed for partial dominance in their interaction with normal alleles. All ENU and one of the x-ray mutations were single base substitutions; the other three x-ray mutations were 9-21 base deletions. All but one of the 12 mutant alleles were selected for this study because they produced detectable mutant polypeptides, but seven of the 11 producing a peptide could not form dimers with the normal peptide and the enzyme activity of heterozygotes was about half that of normal homozygotes. Four mutations formed dimers with a decreased catalytic efficiency and two of these were near the limit of detectability; these two also inhibited the formation of normal homodimers. The mutant alleles therefore show multiple mechanisms leading to partial enzyme expression in heterozygotes and a wide range of dominance ranging from almost complete recessive to nearly dominant. All amino acid changes in mutant peptides that form dimers are located between amino acids 182 and 194, so this region is not critical for dimerization. It may, however, be an important surface domain for catalyzation. 34 refs., 8 figs., 2 tabs.

  2. Writing superiority in cued recall.

    PubMed

    Fueller, Carina; Loescher, Jens; Indefrey, Peter

    2013-01-01

    In list learning paradigms with free recall, written recall has been found to be less susceptible to intrusions of related concepts than spoken recall when the list items had been visually presented. This effect has been ascribed to the use of stored orthographic representations from the study phase during written recall (Kellogg, 2001). In other memory retrieval paradigms, by contrast, either better recall for modality-congruent items or an input-independent writing superiority effect have been found (Grabowski, 2005). In a series of four experiments using a paired associate learning paradigm we tested (a) whether output modality effects on verbal recall can be replicated in a paradigm that does not involve the rejection of semantically related intrusion words, (b) whether a possible superior performance for written recall was due to a slower response onset for writing as compared to speaking in immediate recall, and (c) whether the performance in paired associate word recall was correlated with performance in an additional episodic memory recall task. We observed better written recall in the first half of the recall phase, irrespective of the modality in which the material was presented upon encoding. An explanation for this effect based on longer response latencies for writing and hence more time for memory retrieval could be ruled out by showing that the effect persisted in delayed response versions of the task. Although there was some evidence that stored additional episodic information may contribute to the successful retrieval of associate words, this evidence was only found in the immediate response experiments and hence is most likely independent from the observed output modality effect. In sum, our results from a paired associate learning paradigm suggest that superior performance for written vs. spoken recall cannot be (solely) explained in terms of additional access to stored orthographic representations from the encoding phase. Our findings rather

  3. Superior sulcus tumors (Pancoast tumors).

    PubMed

    Marulli, Giuseppe; Battistella, Lucia; Mammana, Marco; Calabrese, Francesca; Rea, Federico

    2016-06-01

    Superior Sulcus Tumors, frequently termed as Pancoast tumors, are a wide range of tumors invading the apical chest wall. Due to its localization in the apex of the lung, with the potential invasion of the lower part of the brachial plexus, first ribs, vertebrae, subclavian vessels or stellate ganglion, the superior sulcus tumors cause characteristic symptoms, like arm or shoulder pain or Horner's syndrome. The management of superior sulcus tumors has dramatically evolved over the past 50 years. Originally deemed universally fatal, in 1956, Shaw and Paulson introduced a new treatment paradigm with combined radiotherapy and surgery ensuring 5-year survival of approximately 30%. During the 1990s, following the need to improve systemic as well as local control, a trimodality approach including induction concurrent chemoradiotherapy followed by surgical resection was introduced, reaching 5-year survival rates up to 44% and becoming the standard of care. Many efforts have been persecuted, also, to obtain higher complete resection rates using appropriate surgical approaches and involving multidisciplinary team including spine surgeon or vascular surgeon. Other potential treatment options are under consideration like prophylactic cranial irradiation or the addition of other chemotherapy agents or biologic agents to the trimodality approach.

  4. Superior sulcus tumors (Pancoast tumors).

    PubMed

    Marulli, Giuseppe; Battistella, Lucia; Mammana, Marco; Calabrese, Francesca; Rea, Federico

    2016-06-01

    Superior Sulcus Tumors, frequently termed as Pancoast tumors, are a wide range of tumors invading the apical chest wall. Due to its localization in the apex of the lung, with the potential invasion of the lower part of the brachial plexus, first ribs, vertebrae, subclavian vessels or stellate ganglion, the superior sulcus tumors cause characteristic symptoms, like arm or shoulder pain or Horner's syndrome. The management of superior sulcus tumors has dramatically evolved over the past 50 years. Originally deemed universally fatal, in 1956, Shaw and Paulson introduced a new treatment paradigm with combined radiotherapy and surgery ensuring 5-year survival of approximately 30%. During the 1990s, following the need to improve systemic as well as local control, a trimodality approach including induction concurrent chemoradiotherapy followed by surgical resection was introduced, reaching 5-year survival rates up to 44% and becoming the standard of care. Many efforts have been persecuted, also, to obtain higher complete resection rates using appropriate surgical approaches and involving multidisciplinary team including spine surgeon or vascular surgeon. Other potential treatment options are under consideration like prophylactic cranial irradiation or the addition of other chemotherapy agents or biologic agents to the trimodality approach. PMID:27429965

  5. Superior sulcus tumors (Pancoast tumors)

    PubMed Central

    Battistella, Lucia; Mammana, Marco; Calabrese, Francesca; Rea, Federico

    2016-01-01

    Superior Sulcus Tumors, frequently termed as Pancoast tumors, are a wide range of tumors invading the apical chest wall. Due to its localization in the apex of the lung, with the potential invasion of the lower part of the brachial plexus, first ribs, vertebrae, subclavian vessels or stellate ganglion, the superior sulcus tumors cause characteristic symptoms, like arm or shoulder pain or Horner’s syndrome. The management of superior sulcus tumors has dramatically evolved over the past 50 years. Originally deemed universally fatal, in 1956, Shaw and Paulson introduced a new treatment paradigm with combined radiotherapy and surgery ensuring 5-year survival of approximately 30%. During the 1990s, following the need to improve systemic as well as local control, a trimodality approach including induction concurrent chemoradiotherapy followed by surgical resection was introduced, reaching 5-year survival rates up to 44% and becoming the standard of care. Many efforts have been persecuted, also, to obtain higher complete resection rates using appropriate surgical approaches and involving multidisciplinary team including spine surgeon or vascular surgeon. Other potential treatment options are under consideration like prophylactic cranial irradiation or the addition of other chemotherapy agents or biologic agents to the trimodality approach. PMID:27429965

  6. Characterization and phylogenetic relationship of prosimian MHC class I genes.

    PubMed

    Flügge, Perris; Zimmermann, Elke; Hughes, Austin L; Günther, Eberhard; Walter, Lutz

    2002-12-01

    MHC class I cDNA sequences from the most divergent primate group of extant primates compared to human, the suborder Strepsirrhini (prosimians), are described. The sequences are derived from the gray mouse lemur (Microcebus murinus) and the ring-tailed lemur (Lemur catta), which are members of the malagasy Lemuriformes, as well as from the pygmy slow loris (Nycticebus pygmaeus), a prosimian from East Asia. The M. murinus sequences have been analyzed in detail. Analysis of the expression level, G/C content, and synonymous vs. nonsynonymous substitution rates in the peptide-binding region codons suggests that these cDNA clones represent classical class I (class Ia) genes. According to Southern blot analysis, the genome of the gray mouse lemur might contain about 10 class I genes. In gene tree analysis, the strepsirrhine class Ia genes described here cluster significantly separately from the known class I genes of Catarrhini (humans, apes, Old World monkeys) and Platyrrhini (New World monkeys) species, suggesting that the class I loci of Simiiformes arose by gene duplications which occurred after the divergence of prosimians. PMID:12486535

  7. Spectrum of MHC Class II Variability in Darwin’s Finches and Their Close Relatives

    PubMed Central

    Sato, Akie; Tichy, Herbert; Grant, Peter R.; Grant, B. Rosemary; Sato, Tetsuji; O’hUigin, Colm

    2011-01-01

    The study describes >400 major histocompatibility complex (MHC) class II B exon 2 and 114 intron 2 sequences of 36 passerine bird species, 13 of which belong to the group of Darwin’s finches (DFs) and the remaining 23 to close or more distant relatives of DFs in Central and South America. The data set is analyzed by a combination of judiciously selected statistical methods. The analysis reveals that reliable information concerning MHC organization, including the assignment of sequences to loci, and evolution, as well as the process of species divergence, can be obtained in the absence of genomic sequence data, if the analysis is taken several steps beyond the standard phylogenetic tree construction approach. The main findings of the present study are these: The MHC class II B region of the passerine birds is as elaborate in its organization, divergence, and genetic diversity as the MHC of the eutherian mammals, specifically the primates. Hence, the reported simplicity of the fowl MHC is an oddity. With the help of appropriate markers, the divergence of the MHC genes can be traced deep in the phylogeny of the bird taxa. Transspecies polymorphism is rampant at many of the bird MHC loci. In this respect, the DFs behave as if they were a single, genetically undifferentiated population. There is thus far no indication of alleles that could be considered species, genus, or even DF group specific. The implication of these findings is that DFs are in the midst of adaptive radiations, in which morphological differentiation into species is running ahead of genetic differentiation in genetic systems such as the MHC or the mitochondrial DNA. The radiations are so young that there has not been enough time to sort out polymorphisms at most of the loci among the morphologically differentiating species. These findings parallel those on Lake Victoria haplochromine fishes. Several of the DF MHC allelic lineages can be traced back to the MHC genes of the species Tiaris obscura

  8. Genotyping of black grouse MHC class II B using reference Strand-Mediated Conformational Analysis (RSCA)

    PubMed Central

    2011-01-01

    Background The Major Histocompatibility Complex (MHC) is a cluster of genes involved in the vertebrate immune system and includes loci with an extraordinary number of alleles. Due to the complex evolution of MHC genes, alleles from different loci within the same MHC class can be very similar and therefore difficult to assign to separate loci. Consequently, single locus amplification of MHC genes is hard to carry out in species with recently duplicated genes in the same MHC class, and multiple MHC loci have to be genotyped simultaneously. Since amplified alleles have the same length, accurate genotyping is difficult. Reference Strand-Mediated Conformational Analysis (RSCA), which is increasingly used in studies of natural populations with multiple MHC genes, is a genotyping method capable to provide high resolution and accuracy in such cases. Findings We adapted the RSCA method to genotype multiple MHC class II B (BLB) genes in black grouse (Tetrao tetrix), a non-model galliform bird species, using a 96-Capillary Array Electrophoresis, the MegaBACE™ 1000 DNA Analysing System (GE Healthcare). In this study we used fluorescently labelled reference strands from both black grouse and hazel grouse and observed good agreement between RSCA and cloning/sequencing since 71 alleles were observed by cloning/sequencing and 76 alleles by RSCA among the 24 individuals included in the comparison. At the individual level however, there was a trend towards more alleles scored with RSCA (1-6 per individual) than cloning/sequencing (1-4 per individual). In 63% of the pair-wise comparison, the identical allele was scored in RSCA as in cloning/sequencing. Nine out of 24 individuals had the same number of alleles in RSCA as in cloning/sequencing. Our RSCA protocol allows a faster RSCA genotyping than presented in many other RSCA studies. Conclusions In this study, we have developed the RSCA typing method further to work on a 96-Capillary Array Electrophoresis (MegaBACE™ 1000). Our

  9. Interleukin-17A-Induced Human Mesenchymal Stem Cells Are Superior Modulators of Immunological Function.

    PubMed

    Sivanathan, Kisha Nandini; Rojas-Canales, Darling M; Hope, Christopher M; Krishnan, Ravi; Carroll, Robert P; Gronthos, Stan; Grey, Shane T; Coates, Patrick T

    2015-09-01

    Interferon-γ (IFN-γ)-preactivated mesenchymal stem cells (MSC-γ) are highly immunosuppressive but immunogenic in vivo due to their inherent expression of major histocompatibility (MHC) molecules. Here, we present an improved approach where we modified human bone marrow-derived MSC with interleukin-17A (MSC-17) to enhance T cell immunosuppression but not their immunogenicity. MSC-17, unlike MSC-γ, showed no induction or upregulation of MHC class I, MHC class II, and T cell costimulatory molecule CD40, but maintained normal MSC morphology and phenotypic marker expression. When cocultured with phytohemagglutinin (PHA)-activated human T cells, MSCs-17 were potent suppressors of T cell proliferation. Furthermore, MSC-17 inhibited surface CD25 expression and suppressed the elaboration of Th1 cytokines, IFN-γ, tumor necrosis factor-α (TNF-α), and IL-2 when compared with untreated MSCs (UT-MSCs). T cell suppression by MSC-17 correlated with increased IL-6 but not with indoleamine 2,3-dioxygenase 1, cyclooxygenase 1, and transforming growth factor β-1. MSC-17 but not MSC-γ consistently induced CD4(+) CD25(high) CD127(low) FoxP3(+) regulatory T cells (iTregs) from PHA-activated CD4(+) CD25(-) T cells. MSC-induced iTregs expressed CD39, CD73, CD69, OX40, cytotoxic T-lymphocyte associated antigen-4 (CTLA-4), and glucocorticoid-induced TNFR-related protein (GITR). These suppressive MSCs-17 can engender Tregs to potently suppress T cell activation with minimal immunogenicity and thus represent a superior T cell immunomodulator for clinical application. PMID:26037953

  10. Structure-based clustering of major histocompatibility complex (MHC) proteins for broad-based T-cell vaccine design.

    PubMed

    Tong, Joo Chuan; Tan, Tin Wee; Ranganathan, Shoba

    2014-01-01

    Structure-based clustering technique is useful for identifying superfamilies of major histocompatibility complex (MHC) proteins with similar binding specificities. The resolved MHC superfamilies play an important role in vaccine development, from discovering new targets for broad-based vaccines and therapeutics to optimizing the affinity and selectivity of hits. Here, we describe a protocol and provide a summary for grouping MHC proteins according to their structural interaction characteristics.

  11. Stepwise Threshold Clustering: A New Method for Genotyping MHC Loci Using Next-Generation Sequencing Technology

    PubMed Central

    Stutz, William E.; Bolnick, Daniel I.

    2014-01-01

    Genes of the vertebrate major histocompatibility complex (MHC) are of great interest to biologists because of their important role in immunity and disease, and their extremely high levels of genetic diversity. Next generation sequencing (NGS) technologies are quickly becoming the method of choice for high-throughput genotyping of multi-locus templates like MHC in non-model organisms.Previous approaches to genotyping MHC genes using NGS technologies suffer from two problems:1) a “gray zone” where low frequency alleles and high frequency artifacts can be difficult to disentangle and 2) a similar sequence problem, where very similar alleles can be difficult to distinguish as two distinct alleles. Here were present a new method for genotyping MHC loci – Stepwise Threshold Clustering (STC) – that addresses these problems by taking full advantage of the increase in sequence data provided by NGS technologies. Unlike previous approaches for genotyping MHC with NGS data that attempt to classify individual sequences as alleles or artifacts, STC uses a quasi-Dirichlet clustering algorithm to cluster similar sequences at increasing levels of sequence similarity. By applying frequency and similarity based criteria to clusters rather than individual sequences, STC is able to successfully identify clusters of sequences that correspond to individual or similar alleles present in the genomes of individual samples. Furthermore, STC does not require duplicate runs of all samples, increasing the number of samples that can be genotyped in a given project. We show how the STC method works using a single sample library. We then apply STC to 295 threespine stickleback (Gasterosteus aculeatus) samples from four populations and show that neighboring populations differ significantly in MHC allele pools. We show that STC is a reliable, accurate, efficient, and flexible method for genotyping MHC that will be of use to biologists interested in a variety of downstream applications. PMID

  12. Multiple divergent haplotypes express completely distinct sets of class I MHC genes in zebrafish.

    PubMed

    McConnell, Sean C; Restaino, Anthony C; de Jong, Jill L O

    2014-03-01

    The zebrafish is an important animal model for stem cell biology, cancer, and immunology research. Histocompatibility represents a key intersection of these disciplines; however, histocompatibility in zebrafish remains poorly understood. We examined a set of diverse zebrafish class I major histocompatibility complex (MHC) genes that segregate with specific haplotypes at chromosome 19, and for which donor-recipient matching has been shown to improve engraftment after hematopoietic transplantation. Using flanking gene polymorphisms, we identified six distinct chromosome 19 haplotypes. We describe several novel class I U lineage genes and characterize their sequence properties, expression, and haplotype distribution. Altogether, ten full-length zebrafish class I genes were analyzed, mhc1uba through mhc1uka. Expression data and sequence properties indicate that most are candidate classical genes. Several substitutions in putative peptide anchor residues, often shared with deduced MHC molecules from additional teleost species, suggest flexibility in antigen binding. All ten zebrafish class I genes were uniquely assigned among the six haplotypes, with dominant or codominant expression of one to three genes per haplotype. Interestingly, while the divergent MHC haplotypes display variable gene copy number and content, the different genes appear to have ancient origin, with extremely high levels of sequence diversity. Furthermore, haplotype variability extends beyond the MHC genes to include divergent forms of psmb8. The many disparate haplotypes at this locus therefore represent a remarkable form of genomic region configuration polymorphism. Defining the functional MHC genes within these divergent class I haplotypes in zebrafish will provide an important foundation for future studies in immunology and transplantation. PMID:24291825

  13. Low MHC variation in the endangered Galápagos penguin (Spheniscus mendiculus).

    PubMed

    Bollmer, Jennifer L; Vargas, F Hernán; Parker, Patricia G

    2007-07-01

    The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC. PMID:17457582

  14. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism.

    PubMed

    Eimes, John A; Townsend, Andrea K; Sepil, Irem; Nishiumi, Isao; Satta, Yoko

    2015-01-01

    A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of

  15. Evolution of MHC class I genes in the European badger (Meles meles)

    PubMed Central

    Sin, Yung Wa; Dugdale, Hannah L; Newman, Chris; Macdonald, David W; Burke, Terry

    2012-01-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune system and provides a good model with which to understand the evolutionary processes underlying functional genes. Trans-species polymorphism and orthology are both commonly found in MHC genes; however, mammalian MHC class I genes tend to cluster by species. Concerted evolution has the potential to homogenize different loci, whereas birth-and-death evolution can lead to the loss of orthologs; both processes result in monophyletic groups within species. Studies investigating the evolution of MHC class I genes have been biased toward a few particular taxa and model species. We present the first study of MHC class I genes in a species from the superfamily Musteloidea. The European badger (Meles meles) exhibits moderate variation in MHC class I sequences when compared to other carnivores. We identified seven putatively functional sequences and nine pseudogenes from genomic (gDNA) and complementary (cDNA) DNA, signifying at least two functional class I loci. We found evidence for separate evolutionary histories of the α1 and α2/α3 domains. In the α1 domain, several sequences from different species were more closely related to each other than to sequences from the same species, resembling orthology or trans-species polymorphism. Balancing selection and probable recombination maintain genetic diversity in the α1 domain, evidenced by the detection of positive selection and a recombination event. By comparison, two recombination breakpoints indicate that the α2/α3 domains have most likely undergone concerted evolution, where recombination has homogenized the α2/α3 domains between genes, leading to species-specific clusters of sequences. Our findings highlight the importance of analyzing MHC domains separately. PMID:22957169

  16. MHC-mediated spatial distribution in brown trout (Salmo trutta) fry

    PubMed Central

    O'Farrell, B; Benzie, J A H; McGinnity, P; Carlsson, J; Eyto, E de; Dillane, E; Graham, C; Coughlan, J; Cross, T

    2012-01-01

    Major histocompatibility complex (MHC) class I-linked microsatellite data and parental assignment data for a group of wild brown trout (Salmo trutta L.) provide evidence of closer spatial aggregation among fry sharing greater numbers of MHC class I alleles under natural conditions. This result confirms predictions from laboratory experiments demonstrating a hierarchical preference for association of fry sharing MHC alleles. Full-siblings emerge from the same nest (redd), and a passive kin association pattern arising from limited dispersal from the nest (redd effect) would predict that all such pairs would have a similar distribution. However, this study demonstrates a strong, significant trend for reduced distance between pairs of full-sibling fry sharing more MHC class I alleles reflecting their closer aggregation (no alleles shared, 311.5±(s.e.)21.03m; one allele shared, 222.2±14.49m; two alleles shared, 124.9±23.88m; P<0.0001). A significant trend for closer aggregation among fry sharing more MHC class I alleles was also observed in fry pairs, which were known to have different mothers and were otherwise unrelated (ML-r=0) (no alleles: 457.6±3.58m; one allele (422.4±3.86 m); two alleles (381.7±10.72 m); P<0.0001). These pairs are expected to have emerged from different redds and a passive association would then be unlikely. These data suggest that sharing MHC class I alleles has a role in maintaining kin association among full-siblings after emergence. This study demonstrates a pattern consistent with MHC-mediated kin association in the wild for the first time. PMID:21934705

  17. On the relative roles of selection and genetic drift in shaping MHC variation.

    PubMed

    Alcaide, Miguel

    2010-09-01

    Genes of the major histocompatibility complex (MHC) have provided some of the clearest examples of how natural selection generates discordances between adaptive and neutral variation in natural populations. The type and intensity of selection as well as the strength of genetic drift are believed to be important in shaping the resulting pattern of MHC diversity. However, evaluating the relative contribution of multiple microevolutionary forces is challenging, and empirical studies have reported contrasting results. For instance, balancing selection has been invoked to explain high levels of MHC diversity and low population differentiation in comparison with other nuclear markers. Other studies have shown that genetic drift can sometimes overcome selection and then patterns of genetic variation at adaptive loci cannot be discerned from those occurring at neutral markers. Both empirical and simulated data also indicate that loss of genetic diversity at adaptive loci can occur faster than at neutral loci when selection and population bottlenecks act simultaneously. Diversifying selection, on the other hand, explains accelerated MHC divergence as the result of spatial variation in pathogen-mediated selective regimes. Because of all these possible scenarios and outcomes, collecting information from as many study systems as possible, is crucial to enhance our understanding about the evolutionary forces driving MHC polymorphism. In this issue, Miller and co-workers present an illuminating contribution by combining neutral markers (microsatellites) and adaptive MHC class I loci during the investigation of genetic differentiation across island populations of tuatara Sphenodon punctatus. Their study of geographical variation reveals a major role of genetic drift in shaping MHC variation, yet they also discuss some support for diversifying selection.

  18. A new polymorphic and multicopy MHC gene family related to nonmammalian class I

    SciTech Connect

    Leelayuwat, C.; Degli-Esposti, M.A.; Abraham, L.J.; Townend, D.C.; Dawkins, R.L. ||

    1994-12-31

    The authors have used genomic analysis to characterize a region of the central major histocompatibility complex (MHC) spanning {approximately} 300 kilobases (kb) between TNF and HLA-B. This region has been suggested to carry genetic factors relevant to the development of autoimmune diseases such as myasthenia gravis (MG) and insulin dependent diabetes mellitus (IDDM). Genomic sequence was analyzed for coding potential, using two neural network programs, GRAIL and GeneParser. A genomic probe, JAB, containing putative coding sequences (PERB11) located 60 kb centromeric of HLA-B, was used for northern analysis of human tissues. Multiple transcripts were detected. Southern analysis of genomic DNA and overlapping YAC clones, covering the region from BAT1 to HLA-F, indicated that there are at least five copies of PERB11, four of which are located within this region of the MHC. The partial cDNA sequence of PERB11 was obtained from poly-A RNA derived from skeletal muscle. The putative amino acid sequence of PERB11 shares {approximately} 30% identity to MHC class I molecules from various species, including reptiles, chickens, and frogs, as well as to other MHC class I-like molecules, such as the IgG FcR of the mouse and rat and the human Zn-{alpha}2-glycoprotein. From direct comparison of amino acid sequences, it is concluded that PERB11 is a distinct molecule more closely related to nonmammalian than known mammalian MHC class I molecules. Genomic sequence analysis of PERB11 from five MHC ancestral haplotypes (AH) indicated that the gene is polymorphic at both DNA and protein level. The results suggest that the authors have identified a novel polymorphic gene family with multiple copies within the MHC. 48 refs., 10 figs., 2 tabs.

  19. Computational prediction of cleavage using proteasomal in vitro digestion and MHC I ligand data*

    PubMed Central

    Lu, Yu-feng; Sheng, Hao; Zhang, Yi; Li, Zhi-yang

    2013-01-01

    Proteasomes are responsible for the production of the majority of cytotoxic T lymphocyte (CTL) epitopes. Hence, it is important to identify correctly which peptides will be generated by proteasomes from an unknown protein. However, the pool of proteasome cleavage data used in the prediction algorithms, whether from major histocompatibility complex (MHC) I ligand or in vitro digestion data, is not identical to in vivo proteasomal digestion products. Therefore, the accuracy and reliability of these models still need to be improved. In this paper, three types of proteasomal cleavage data, constitutive proteasome (cCP), immunoproteasome (iCP) in vitro cleavage, and MHC I ligand data, were used for training cleave-site predictive methods based on the kernel-function stabilized matrix method (KSMM). The predictive accuracies of the KSMM+pair coefficients were 75.0%, 72.3%, and 83.1% for cCP, iCP, and MHC I ligand data, respectively, which were comparable to the results from support vector machine (SVM). The three proteasomal cleavage methods were combined in turn with MHC I-peptide binding predictions to model MHC I-peptide processing and the presentation pathway. These integrations markedly improved MHC I peptide identification, increasing area under the receiver operator characteristics (ROC) curve (AUC) values from 0.82 to 0.91. The results suggested that both MHC I ligand and proteasomal in vitro degradation data can give an exact simulation of in vivo processed digestion. The information extracted from cCP and iCP in vitro cleavage data demonstrated that both cCP and iCP are selective in their usage of peptide bonds for cleavage. PMID:24009202

  20. Patterns of evolution of MHC class II genes of crows (Corvus) suggest trans-species polymorphism

    PubMed Central

    Townsend, Andrea K.; Sepil, Irem; Nishiumi, Isao; Satta, Yoko

    2015-01-01

    A distinguishing characteristic of genes that code for the major histocompatibility complex (MHC) is that alleles often share more similarity between, rather than within species. There are two likely mechanisms that can explain this pattern: convergent evolution and trans-species polymorphism (TSP), in which ancient allelic lineages are maintained by balancing selection and retained by descendant species. Distinguishing between these two mechanisms has major implications in how we view adaptation of immune genes. In this study we analyzed exon 2 of the MHC class IIB in three passerine bird species in the genus Corvus: jungle crows (Corvus macrorhynchos japonensis) American crows (C. brachyrhynchos) and carrion crows (C. corone orientalis). Carrion crows and American crows are recently diverged, but allopatric, sister species, whereas carrion crows and jungle crows are more distantly related but sympatric species, and possibly share pathogens linked to MHC IIB polymorphisms. These patterns of evolutionary divergence and current geographic ranges enabled us to test for trans-species polymorphism and convergent evolution of the MHC IIB in crows. Phylogenetic reconstructions of MHC IIB sequences revealed several well supported interspecific clusters containing all three species, and there was no biased clustering of variants among the sympatric carrion crows and jungle crows. The topologies of phylogenetic trees constructed from putatively selected sites were remarkably different than those constructed from putatively neutral sites. In addition, trees constructed using non-synonymous substitutions from a continuous fragment of exon 2 had more, and generally more inclusive, supported interspecific MHC IIB variant clusters than those constructed from the same fragment using synonymous substitutions. These phylogenetic patterns suggest that recombination, especially gene conversion, has partially erased the signal of allelic ancestry in these species. While clustering of

  1. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population.

    PubMed

    Sepil, Irem; Lachish, Shelly; Hinks, Amy E; Sheldon, Ben C

    2013-05-22

    Major histocompatibility complex (Mhc) genes are believed to play a key role in the genetic basis of disease control. Although numerous studies have sought links between Mhc and disease prevalence, many have ignored the ecological and epidemiological aspects of the host-parasite interaction. Consequently, interpreting associations between prevalence and Mhc has been difficult, whereas discriminating alleles for qualitative resistance, quantitative resistance and susceptibility remains challenging. Moreover, most studies to date have quantified associations between genotypes and disease status, overlooking the complex relationship between genotype and the properties of the Mhc molecule that interacts with parasites. Here, we address these problems and demonstrate avian malaria (Plasmodium) parasite species-specific associations with functional properties of Mhc molecules (Mhc supertypes) in a wild great tit (Parus major) population. We further show that correctly interpreting these associations depends crucially on understanding the spatial variation in risk of infection and the fitness effects of infection. We report that a single Mhc supertype confers qualitative resistance to Plasmodium relictum, whereas a different Mhc supertype confers quantitative resistance to Plasmodium circumflexum infections. Furthermore, we demonstrate common functional properties of Plasmodium-resistance alleles in passerine birds, suggesting this is a model system for parasite-Mhc associations in the wild. PMID:23516242

  2. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population

    PubMed Central

    Sepil, Irem; Lachish, Shelly; Hinks, Amy E.; Sheldon, Ben C.

    2013-01-01

    Major histocompatibility complex (Mhc) genes are believed to play a key role in the genetic basis of disease control. Although numerous studies have sought links between Mhc and disease prevalence, many have ignored the ecological and epidemiological aspects of the host–parasite interaction. Consequently, interpreting associations between prevalence and Mhc has been difficult, whereas discriminating alleles for qualitative resistance, quantitative resistance and susceptibility remains challenging. Moreover, most studies to date have quantified associations between genotypes and disease status, overlooking the complex relationship between genotype and the properties of the Mhc molecule that interacts with parasites. Here, we address these problems and demonstrate avian malaria (Plasmodium) parasite species-specific associations with functional properties of Mhc molecules (Mhc supertypes) in a wild great tit (Parus major) population. We further show that correctly interpreting these associations depends crucially on understanding the spatial variation in risk of infection and the fitness effects of infection. We report that a single Mhc supertype confers qualitative resistance to Plasmodium relictum, whereas a different Mhc supertype confers quantitative resistance to Plasmodium circumflexum infections. Furthermore, we demonstrate common functional properties of Plasmodium-resistance alleles in passerine birds, suggesting this is a model system for parasite–Mhc associations in the wild. PMID:23516242

  3. The minor myosin heavy chain, mhcA, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly.

    PubMed Central

    Waterston, R H

    1989-01-01

    Caenorhabditis elegans body wall muscle has two distinct myosin heavy chain isoforms, mhcA and mhcB. Mutations eliminating the major isoform, mhcB, have previously been shown to yield paralyzed, viable animals. In this paper we show that the minor isoform, mhcA, is essential for viability. We have utilized the known physical map position of the gene encoding mhcA to obtain two recessive lethal mutations that virtually eliminate accumulation of mhcA. The mutations are allelic, and the interactions of these alleles with mutations affecting other thick filament components are consistent with the hypothesis that the new mutations lie in the structural gene for mhcA. The homozygous mutant animals move very little and morphological analysis shows that thick filament assembly is severely impaired. Together with the location of mhcA in the center of the thick filament (Miller et al., 1983), the results suggest that mhcA has a unique role in initiating filament assembly. The homozygous mutations have an unexpected effect on morphogenesis that indicates an interaction between the muscle cells and the hypodermis during development. The resultant phenotype may be useful in the search for additional essential muscle genes. Images PMID:2583106

  4. The Arthroscopic Superior Capsular Reconstruction.

    PubMed

    Adams, Christopher R; Denard, Patrick J; Brady, Paul C; Hartzler, Robert U; Burkhart, Stephen S

    2016-01-01

    In a subset of patients with rotator cuff tears, the glenohumeral joint has minimal degenerative changes and the rotator cuff tendon is either irreparable or very poor quality and unlikely to heal. Reverse shoulder arthroplasty (RSA) is often considered for these patients despite the lack of glenohumeral arthritis. However, due to the permanent destruction of the glenohumeral articular surfaces, complication rates, and concerns about implant longevity with RSA, we believe the superior capsular reconstruction (SCR) is a viable alternative. In this article, we describe our technique for the SCR. PMID:27552457

  5. Construction of bioactive chimeric MHC class I tetramer by expression and purification of human-murine chimeric MHC heavy chain and beta(2)m as a fusion protein in Escherichia coli.

    PubMed

    Ren, Ding; Wang, Fang; He, Xiaowen; Jiang, Lei; Li, Dean; Ying, He; Sun, Shuhan

    2006-12-01

    Major histocompatibility (MHC) class I tetramers are used in the quantitative analysis of epitope peptide-specific CD8+ T-cells. An MHC class I tetramer was composed of 4 MHC class I complexes and a fluorescently labeled streptavidin (SA) molecule. Each MHC class I complex consists of an MHC heavy chain, a beta(2)-microglobulin (beta(2)m) molecule and a synthetic epitope peptide. In most previous studies, an MHC class I complex was formed in the refolding buffer with an expressed MHC heavy chain molecule and beta(2)m, respectively. This procedure inevitably resulted in the disadvantages of forming unwanted multimers and self-refolding products, and the purification of each kind of monomer was time-consuming. In the present study, the genes of a human/murine chimeric MHC heavy chain (HLA-A2 alpha1, HLA-A2 alpha2 and MHC-H2D alpha3) and beta(2)m were tandem-cloned into plasmid pET17b and expressed as a fusion protein. The recombinant fusion protein was refolded with each of the three HLA-A2 restricted peptides (HBc18-27 FLPSDFFPSI, HBx52-60 HLSLRGLPV, and HBx92-100 VLHKRTLGL) and thus three chimeric MHC class I complexes were obtained. Biotinylation was performed, and its level of efficiency was observed via a band-shift assay in non-reducing polyacrylamide gel electrophoresis (PAGE). Such chimeric MHC class I tetramers showed a sensitive binding activity in monitoring HLA/A2 restrictive cytotoxic T lymphocytes (CTLs) in immunized HLA/A*0201 transgenic mice. PMID:17046278

  6. INTERDEPENDENT SUPERIORITY AND INFERIORITY FEELINGS

    PubMed Central

    Ingham, Harrington V.

    1949-01-01

    It is postulated that in neurotic persons who have unrealistic feelings of superiority and inferiority the two are interdependent. This is a departure from the concept of previous observers that either one or the other is primary and its opposite is overcompensation. The author postulates considerable parallelism, with equal importance for each. He submits that the neurotic person forms two logic-resistant compartments for the two opposed self-estimates and that treatment which makes inroads of logic upon one compartment, simultaneously does so upon the other. Two examples are briefly reported. The neurotic benefits sought in exaggeration of capability are the same as those sought in insistence upon inferiority: Presumption of superiority at once bids for approbation and delivers the subject from the need to prove himself worthy of it in dreaded competition; exaggeration of incapability baits sympathy and makes competition unnecessary because failure is conceded. Some of the characteristics of abnormal self-estimates that distinguish them from normal are: Preoccupation with self, resistance to logical explanation of personality problems, inconsistency in reasons for beliefs in adequacy on the one hand and inadequacy on the other, unreality, rationalization of faults, and difficulty and vacillation in the selection of adequate goals. PMID:15390573

  7. Epigenetic Mechanisms Regulate MHC and Antigen Processing Molecules in Human Embryonic and Induced Pluripotent Stem Cells

    PubMed Central

    Suárez-Álvarez, Beatriz; Rodriguez, Ramón M.; Calvanese, Vincenzo; Blanco-Gelaz, Miguel A.; Suhr, Steve T.; Ortega, Francisco; Otero, Jesus; Cibelli, Jose B.; Moore, Harry; Fraga, Mario F.; López-Larrea, Carlos

    2010-01-01

    Background Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. Methodology/Principal Findings We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of β2-microglobulin (β2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and β2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. Conclusions/Significance Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance

  8. Large-scale MHC class II genotyping of a wild lemur population by next generation sequencing.

    PubMed

    Huchard, Elise; Albrecht, Christina; Schliehe-Diecks, Susanne; Baniel, Alice; Roos, Christian; Kappeler, Peter M; Peter, Peter M Kappeler; Brameier, Markus

    2012-12-01

    The critical role of major histocompatibility complex (MHC) genes in disease resistance, along with their putative function in sexual selection, reproduction and chemical ecology, make them an important genetic system in evolutionary ecology. Studying selective pressures acting on MHC genes in the wild nevertheless requires population-wide genotyping, which has long been challenging because of their extensive polymorphism. Here, we report on large-scale genotyping of the MHC class II loci of the grey mouse lemur (Microcebus murinus) from a wild population in western Madagascar. The second exons from MHC-DRB and -DQB of 772 and 672 individuals were sequenced, respectively, using a 454 sequencing platform, generating more than 800,000 reads. Sequence analysis, through a stepwise variant validation procedure, allowed reliable typing of more than 600 individuals. The quality of our genotyping was evaluated through three independent methods, namely genotyping the same individuals by both cloning and 454 sequencing, running duplicates, and comparing parent-offspring dyads; each displaying very high accuracy. A total of 61 (including 20 new) and 60 (including 53 new) alleles were detected at DRB and DQB genes, respectively. Both loci were non-duplicated, in tight linkage disequilibrium and in Hardy-Weinberg equilibrium, despite the fact that sequence analysis revealed clear evidence of historical selection. Our results highlight the potential of 454 sequencing technology in attempts to investigate patterns of selection shaping MHC variation in contemporary populations. The power of this approach will nevertheless be conditional upon strict quality control of the genotyping data.

  9. MHC evolution in three salmonid species: a comparison between class II alpha and beta genes.

    PubMed

    Gómez, Daniela; Conejeros, Pablo; Marshall, Sergio H; Consuegra, Sofia

    2010-08-01

    The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II alpha and class II beta loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II alpha and beta genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIalpha gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites. PMID:20521040

  10. Evolution of Mhc Class i Complex Region with Special Reference to Fragmentary Line Sequences

    NASA Astrophysics Data System (ADS)

    Tateno, Yoshio; Fukami-Kobayashi, Kaoru; Inoko, Hidetoshi

    2008-03-01

    We reviewed the origin and evolution of the two pairs of immune genes, (MHC-B and MHC-C) and (MICA and MICB) in man, chimpanzee and rhesus monkey based mainly on our previous work. Since those genes were well known to have been subject to strong natural selection in evolution, they themselves were not suitable for our study. We thus took another approach to use fragmented and nonfunctional LINEs that had coevolved with the two pairs in the same genomic fragments. Our results showed that MHC-B and MHC-C duplicated about 22 Mry (million years) ago, and MICA and MICB duplicated about 14 Myr ago. Interestingly, rhesus monkey was found not to have either pair but many repeats similar to MHC-B. Therefore, we estimated the divergence time of the monkey, and found that it diverged out from a common ancestor of man and chimpanzee about 30 Myr ago. The divergence time was consistent with the duplication times of the two pairs of immune genes. Based on our results we would predict that orangutan and gorilla also have the two pairs, because the both primate species are considered to have diverged less than 14 Myr ago.

  11. MHC evolution in three salmonid species: a comparison between class II alpha and beta genes.

    PubMed

    Gómez, Daniela; Conejeros, Pablo; Marshall, Sergio H; Consuegra, Sofia

    2010-08-01

    The genes of the major histocompatibility complex (MHC) are amongst the most variable in vertebrates and represent some of the best candidates to study processes of adaptive evolution. However, despite the number of studies available, most of the information on the structure and function of these genes come from studies in mammals and birds in which the MHC class I and II genes are tightly linked and class II alpha exhibits low variability in many cases. Teleost fishes are among the most primitive vertebrates with MHC and represent good organisms for the study of MHC evolution because their class I and class II loci are not physically linked, allowing for independent evolution of both classes of genes. We have compared the diversity and molecular mechanisms of evolution of classical MH class II alpha and class II beta loci in farm populations of three salmonid species: Oncorhynchus kisutch, Oncorhynchus mykiss and Salmo salar. We found single classical class II loci and high polymorphism at both class II alpha and beta genes in the three species. Mechanisms of evolution were common for both class II genes, with recombination and point mutation involved in generating diversity and positive selection acting on the peptide-binding residues. These results suggest that the maintenance of variability at the class IIalpha gene could be a mechanism to increase diversity in the MHC class II in salmonids in order to compensate for the expression of one single classical locus and to respond to a wider array of parasites.

  12. Molecular characterization of classical and nonclassical MHC class I genes from the golden pheasant (Chrysolophus pictus).

    PubMed

    Zeng, Q-Q; Zhong, G-H; He, K; Sun, D-D; Wan, Q-H

    2016-02-01

    Classical major histocompatibility complex (MHC) class I allelic polymorphism is essential for competent antigen presentation. To improve the genotyping efforts in the golden pheasant, it is necessary to differentiate more accurately between classical and nonclassical class I molecules. In our study, all MHC class I genes were isolated from one golden pheasant based on two overlapping PCR amplifications. In total, six full-length class I nucleotide sequences (A-F) were identified, and four were novel. Two (A and C) belonged to the IA1 gene, two (B and D) were alleles derived from the IA2 gene through transgene amplification, and two (E and F) comprised a third novel locus, IA3 that was excluded from the core region of the golden pheasant MHC-B. IA1 and IA2 exhibited the broad expression profiles characteristic of classical loci, while IA3 showed no expression in multiple tissues and was therefore defined as a nonclassical gene. Phylogenetic analysis indicated that the three IA genes in the golden pheasant share a much closer evolutionary relationship than the corresponding sequences in other galliform species. This observation was consistent with high sequence similarity among them, which likely arises from the homogenizing effect of recombination. Our careful distinction between the classical and nonclassical MHC class I genes in the golden pheasant lays the foundation for developing locus-specific genotyping and establishing a good molecular marker system of classical MHC I loci.

  13. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  14. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation

    PubMed Central

    Bataille, Arnaud; Cashins, Scott D.; Grogan, Laura; Skerratt, Lee F.; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A.; Macris, Amy; Harlow, Peter S.; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-01-01

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal. PMID:25808889

  15. Diversity of MHC DQB and DRB Genes in the Endangered Australian Sea Lion (Neophoca cinerea).

    PubMed

    Lau, Quintin; Chow, Natalie; Gray, Rachael; Gongora, Jaime; Higgins, Damien P

    2015-01-01

    Major histocompatibility complex (MHC) class II molecules have an important role in vertebrate adaptive immunity, being responsible for recognizing, binding, and presenting specific antigenic peptides to T lymphocytes. Here, we study the MHC class II DQB and DRB exon 2 genes of the Australian sea lion (Neophoca cinerea), an endangered pinniped species that experiences high pup mortality. Following characterization of N. cinerea DQB and DRB by molecular cloning, and evaluation of diversity in pups across 2 colonies using variant screening (n = 47), 3 DQB alleles and 10 DRB variants (including 1 pseudogene allele) were identified. The higher diversity at DRB relative to DQB is consistent with other studies in marine mammals. Despite overall lower MHC class II allelic diversity relative to some other pinniped species, we observed similar levels of nucleotide diversity and selection in N. cinerea. In addition, we provide support for recent divergence of MHC class II alleles. The characterization of MHC class II diversity in the Australian sea lion establishes a baseline for further investigation of associations with disease, including endemic hookworm infection, and contributes to the conservation management of this species. PMID:25908666

  16. No major role for insulin-degrading enzyme in antigen presentation by MHC molecules.

    PubMed

    Culina, Slobodan; Mauvais, François-Xavier; Hsu, Hsiang-Ting; Burgevin, Anne; Guénette, Suzanne; Moser, Anna; van Endert, Peter

    2014-01-01

    Antigen presentation by MHC class I molecules requires degradation of epitope source proteins in the cytosol. Although the preeminent role of the proteasome is clearly established, evidence suggesting a significant role for proteasome-independent generation of class I ligands has been reported repeatedly. However, an enzyme responsible for such a role has not been identified. Recently insulin-degrading enzyme (IDE) was shown to produce an antigenic peptide derived from the tumor antigen MAGE-A3 in an entirely proteasome-independent manner, raising the question of the global impact of IDE in MHC class I antigen processing. Here we report that IDE knockdown in human cell lines, or knockout in two different mouse strains, has no effect on cell surface expression of various MHC class I molecules, including allomorphs such as HLA-A3 and HLA-B27 suggested to be loaded in an at least a partly proteasome-independent manner. Moreover, reduced or absent IDE expression does not affect presentation of five epitopes including epitopes derived from beta amyloid and proinsulin, two preferred IDE substrates. Thus, IDE does not play a major role in MHC class I antigen processing, confirming the dominant and almost exclusive role of the proteasome in cytosolic production of MHC class I ligands.

  17. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation.

    PubMed

    Bataille, Arnaud; Cashins, Scott D; Grogan, Laura; Skerratt, Lee F; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A; Macris, Amy; Harlow, Peter S; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-04-22

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal. PMID:25808889

  18. Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation.

    PubMed

    Bataille, Arnaud; Cashins, Scott D; Grogan, Laura; Skerratt, Lee F; Hunter, David; McFadden, Michael; Scheele, Benjamin; Brannelly, Laura A; Macris, Amy; Harlow, Peter S; Bell, Sara; Berger, Lee; Waldman, Bruce

    2015-04-22

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) can cause precipitous population declines in its amphibian hosts. Responses of individuals to infection vary greatly with the capacity of their immune system to respond to the pathogen. We used a combination of comparative and experimental approaches to identify major histocompatibility complex class II (MHC-II) alleles encoding molecules that foster the survival of Bd-infected amphibians. We found that Bd-resistant amphibians across four continents share common amino acids in three binding pockets of the MHC-II antigen-binding groove. Moreover, strong signals of selection acting on these specific sites were evident among all species co-existing with the pathogen. In the laboratory, we experimentally inoculated Australian tree frogs with Bd to test how each binding pocket conformation influences disease resistance. Only the conformation of MHC-II pocket 9 of surviving subjects matched those of Bd-resistant species. This MHC-II conformation thus may determine amphibian resistance to Bd, although other MHC-II binding pockets also may contribute to resistance. Rescuing amphibian biodiversity will depend on our understanding of amphibian immune defence mechanisms against Bd. The identification of adaptive genetic markers for Bd resistance represents an important step forward towards that goal.

  19. Transporter associated with antigen processing preselection of peptides binding to the MHC: a bioinformatic evaluation.

    PubMed

    Doytchinova, Irini; Hemsley, Shelley; Flower, Darren R

    2004-12-01

    TAP is responsible for the transit of peptides from the cytosol to the lumen of the endoplasmic reticulum. In an immunological context, this event is followed by the binding of peptides to MHC molecules before export to the cell surface and recognition by T cells. Because TAP transport precedes MHC binding, TAP preferences may make a significant contribution to epitope selection. To assess the impact of this preselection, we have developed a scoring function for TAP affinity prediction using the additive method, have used it to analyze and extend the TAP binding motif, and have evaluated how well this model acts as a preselection step in predicting MHC binding peptides. To distinguish between MHC alleles that are exclusively dependent on TAP and those exhibiting only a partial dependence on TAP, two sets of MHC binding peptides were examined: HLA-A*0201 was selected as a representative of partially TAP-dependent HLA alleles, and HLA-A*0301 represented fully TAP-dependent HLA alleles. TAP preselection has a greater impact on TAP-dependent alleles than on TAP-independent alleles. The reduction in the number of nonbinders varied from 10% (TAP-independent) to 33% (TAP-dependent), suggesting that TAP preselection is an important component in the successful in silico prediction of T cell epitopes. PMID:15557175

  20. Defining the Role of the MHC in Autoimmunity: A Review and Pooled Analysis

    PubMed Central

    Fernando, Michelle M. A.; Stevens, Christine R.; Walsh, Emily C.; De Jager, Philip L.; Goyette, Philippe; Plenge, Robert M.; Vyse, Timothy J.; Rioux, John D.

    2008-01-01

    The major histocompatibility complex (MHC) is one of the most extensively studied regions in the human genome because of the association of variants at this locus with autoimmune, infectious, and inflammatory diseases. However, identification of causal variants within the MHC for the majority of these diseases has remained difficult due to the great variability and extensive linkage disequilibrium (LD) that exists among alleles throughout this locus, coupled with inadequate study design whereby only a limited subset of about 20 from a total of approximately 250 genes have been studied in small cohorts of predominantly European origin. We have performed a review and pooled analysis of the past 30 years of research on the role of the MHC in six genetically complex disease traits – multiple sclerosis (MS), type 1 diabetes (T1D), systemic lupus erythematosus (SLE), ulcerative colitis (UC), Crohn's disease (CD), and rheumatoid arthritis (RA) – in order to consolidate and evaluate the current literature regarding MHC genetics in these common autoimmune and inflammatory diseases. We corroborate established MHC disease associations and identify predisposing variants that previously have not been appreciated. Furthermore, we find a number of interesting commonalities and differences across diseases that implicate both general and disease-specific pathogenetic mechanisms in autoimmunity. PMID:18437207

  1. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease.

    PubMed

    Zhou, Fusheng; Cao, Hongzhi; Zuo, Xianbo; Zhang, Tao; Zhang, Xiaoguang; Liu, Xiaomin; Xu, Ricong; Chen, Gang; Zhang, Yuanwei; Zheng, Xiaodong; Jin, Xin; Gao, Jinping; Mei, Junpu; Sheng, Yujun; Li, Qibin; Liang, Bo; Shen, Juan; Shen, Changbing; Jiang, Hui; Zhu, Caihong; Fan, Xing; Xu, Fengping; Yue, Min; Yin, Xianyong; Ye, Chen; Zhang, Cuicui; Liu, Xiao; Yu, Liang; Wu, Jinghua; Chen, Mengyun; Zhuang, Xuehan; Tang, Lili; Shao, Haojing; Wu, Longmao; Li, Jian; Xu, Yu; Zhang, Yijie; Zhao, Suli; Wang, Yu; Li, Ge; Xu, Hanshi; Zeng, Lei; Wang, Jianan; Bai, Mingzhou; Chen, Yanling; Chen, Wei; Kang, Tian; Wu, Yanyan; Xu, Xun; Zhu, Zhengwei; Cui, Yong; Wang, Zaixing; Yang, Chunjun; Wang, Peiguang; Xiang, Leihong; Chen, Xiang; Zhang, Anping; Gao, Xinghua; Zhang, Furen; Xu, Jinhua; Zheng, Min; Zheng, Jie; Zhang, Jianzhong; Yu, Xueqing; Li, Yingrui; Yang, Sen; Yang, Huanming; Wang, Jian; Liu, Jianjun; Hammarström, Lennart; Sun, Liangdan; Wang, Jun; Zhang, Xuejun

    2016-07-01

    The human major histocompatibility complex (MHC) region has been shown to be associated with numerous diseases. However, it remains a challenge to pinpoint the causal variants for these associations because of the extreme complexity of the region. We thus sequenced the entire 5-Mb MHC region in 20,635 individuals of Han Chinese ancestry (10,689 controls and 9,946 patients with psoriasis) and constructed a Han-MHC database that includes both variants and HLA gene typing results of high accuracy. We further identified multiple independent new susceptibility loci in HLA-C, HLA-B, HLA-DPB1 and BTNL2 and an intergenic variant, rs118179173, associated with psoriasis and confirmed the well-established risk allele HLA-C*06:02. We anticipate that our Han-MHC reference panel built by deep sequencing of a large number of samples will serve as a useful tool for investigating the role of the MHC region in a variety of diseases and thus advance understanding of the pathogenesis of these disorders. PMID:27213287

  2. A Versatile Simple Capture Assay for Assessing the Structural Integrity of MHC Multimer Reagents

    PubMed Central

    Malo, Courtney S.; Renner, Danielle N.; Van Keulen, Virginia S.; Girtman, Megan A.; Nevala, Wendy N.; Pavelko, Kevin D.; Gil, Diana; Schrum, Adam G.; Johnson, Aaron J.; Pease, Larry R.

    2015-01-01

    Antigen-specific T cell responses can be visualized using MHC:peptide multimers. In cases where robust T cell controls are not readily available to assess the integrity of multimer reagents prior to analyzing limited sample, the ability to assess the structural integrity of MHC multimers before their use in critical experiments would be useful. We present a method to probe the structural integrity of MHC multimers using antibodies specific for conformational determinants. Beads coated with anti-mouse Ig are incubated with conformation-specific mouse monoclonal antibody and then with fluorescently tagged MHC multimer. The ability of the bead to capture the labeled multimer can be measured semi-quantitatively by flow cytometry. In this manner, the correct folding of MHC multimers can be visualized and batches of multimer can be compared for quality control. Because there are multiple conformational epitopes formed by various molecular interactions among heavy chain, peptide, and β2M, this capture assay can assess the fidelity of each aspect of multimer structure, depending on the availability of antibodies. The described approach could be particularly useful for studies using irreplaceable samples, including patient samples collected in clinical trials. PMID:26389800

  3. Features of target cell lysis by class I and class II MHC restricted cytolytic T lymphocytes

    SciTech Connect

    Maimone, M.M.; Morrison, L.A.; Braciale, V.L.; Braciale, T.J.

    1986-12-01

    The lytic activity of influenza virus-specific muvine cytolytic T lymphocyte (CTL) clones that are restricted by either H-2K/D (class I) or H-2I (class II) major histocompatibility (MHC) locus products was compared on an influenza virus-infected target cell expressing both K/D and I locus products. With the use of two in vitro measurements of cytotoxicity, conventional /sup 51/Cr release, and detergent-releasable radiolabeled DNA (as a measure of nuclear disintegration in the early post-lethal hit period), the authors found no difference between class I and class II MHC-restricted CTL in the kinetics of target cell destruction. In addition, class II MHC-restricted antiviral CTL failed to show any lysis of radiolabeled bystander cells. Killing of labeled specific targets by these class II MHC-restricted CTL was also efficiently inhibited by unlabeled specific competitor cells in a cold target inhibition assay. In sum, these data suggest that class I and class II MHC-restricted CTL mediate target cell destruction by an essentially similar direct mechanism.

  4. Analysis of recombinational hot spots associated with the p haplotype fo the mouse MHC

    SciTech Connect

    Heine, D.; Khambata, S.; Wydner, K.S.; Passmore, H.C.

    1994-09-01

    Most of the recombination events detected within the major histocompatibility complex (MHC) of the mouse fall into areas of limited physical size that have been designated recombinational hot spots. One of these hot spots, associated with the Ea gene, appears to be active only in the presence of the p haplotype of the MHC. To study the regulation of the Ea recombinational hot spot and its haplotype specificity, a high-resolution comparative map fo the MHC and adjacent regions was completed in four different backcrosses carrying the p haplotype. This mapping study utilized a total of 29 PCR-based molecular markers, including 7 newly developed markers spanning the region between Pim1 and D17Mit11 on Chromosome 17. The analysis of a total of 1093 backcross animals: (1) revealed that the presence of the p haplotype of the MHC is not sufficient to induce recombination at the Ea hot spot in a dominant manner, and (2) resulted in the definition of a new intra-MHC recombinational hot spot between the Tnfb and the H2-D genes.

  5. High-throughput engineering and analysis of peptide binding to class II MHC

    PubMed Central

    Jiang, Wei; Boder, Eric T.

    2010-01-01

    Class II major histocompatibility complex (MHC-II) proteins govern stimulation of adaptive immunity by presenting antigenic peptides to CD4+ T lymphocytes. Many allelic variants of MHC-II exist with implications in peptide presentation and immunity; thus, high-throughput experimental tools for rapid and quantitative analysis of peptide binding to MHC-II are needed. Here, we present an expression system wherein peptide and MHC-II are codisplayed on the surface of yeast in an intracellular association-dependent manner and assayed by flow cytometry. Accordingly, the relative binding of different peptides and/or MHC-II variants can be assayed by genetically manipulating either partner, enabling the application of directed evolution approaches for high-throughput characterization or engineering. We demonstrate the application of this tool to map the side-chain preference for peptides binding to HLA-DR1 and to evolve novel HLA-DR1 mutants with altered peptide-binding specificity. PMID:20622157

  6. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease.

    PubMed

    Zhou, Fusheng; Cao, Hongzhi; Zuo, Xianbo; Zhang, Tao; Zhang, Xiaoguang; Liu, Xiaomin; Xu, Ricong; Chen, Gang; Zhang, Yuanwei; Zheng, Xiaodong; Jin, Xin; Gao, Jinping; Mei, Junpu; Sheng, Yujun; Li, Qibin; Liang, Bo; Shen, Juan; Shen, Changbing; Jiang, Hui; Zhu, Caihong; Fan, Xing; Xu, Fengping; Yue, Min; Yin, Xianyong; Ye, Chen; Zhang, Cuicui; Liu, Xiao; Yu, Liang; Wu, Jinghua; Chen, Mengyun; Zhuang, Xuehan; Tang, Lili; Shao, Haojing; Wu, Longmao; Li, Jian; Xu, Yu; Zhang, Yijie; Zhao, Suli; Wang, Yu; Li, Ge; Xu, Hanshi; Zeng, Lei; Wang, Jianan; Bai, Mingzhou; Chen, Yanling; Chen, Wei; Kang, Tian; Wu, Yanyan; Xu, Xun; Zhu, Zhengwei; Cui, Yong; Wang, Zaixing; Yang, Chunjun; Wang, Peiguang; Xiang, Leihong; Chen, Xiang; Zhang, Anping; Gao, Xinghua; Zhang, Furen; Xu, Jinhua; Zheng, Min; Zheng, Jie; Zhang, Jianzhong; Yu, Xueqing; Li, Yingrui; Yang, Sen; Yang, Huanming; Wang, Jian; Liu, Jianjun; Hammarström, Lennart; Sun, Liangdan; Wang, Jun; Zhang, Xuejun

    2016-07-01

    The human major histocompatibility complex (MHC) region has been shown to be associated with numerous diseases. However, it remains a challenge to pinpoint the causal variants for these associations because of the extreme complexity of the region. We thus sequenced the entire 5-Mb MHC region in 20,635 individuals of Han Chinese ancestry (10,689 controls and 9,946 patients with psoriasis) and constructed a Han-MHC database that includes both variants and HLA gene typing results of high accuracy. We further identified multiple independent new susceptibility loci in HLA-C, HLA-B, HLA-DPB1 and BTNL2 and an intergenic variant, rs118179173, associated with psoriasis and confirmed the well-established risk allele HLA-C*06:02. We anticipate that our Han-MHC reference panel built by deep sequencing of a large number of samples will serve as a useful tool for investigating the role of the MHC region in a variety of diseases and thus advance understanding of the pathogenesis of these disorders.

  7. Diversity of MHC DQB and DRB Genes in the Endangered Australian Sea Lion (Neophoca cinerea).

    PubMed

    Lau, Quintin; Chow, Natalie; Gray, Rachael; Gongora, Jaime; Higgins, Damien P

    2015-01-01

    Major histocompatibility complex (MHC) class II molecules have an important role in vertebrate adaptive immunity, being responsible for recognizing, binding, and presenting specific antigenic peptides to T lymphocytes. Here, we study the MHC class II DQB and DRB exon 2 genes of the Australian sea lion (Neophoca cinerea), an endangered pinniped species that experiences high pup mortality. Following characterization of N. cinerea DQB and DRB by molecular cloning, and evaluation of diversity in pups across 2 colonies using variant screening (n = 47), 3 DQB alleles and 10 DRB variants (including 1 pseudogene allele) were identified. The higher diversity at DRB relative to DQB is consistent with other studies in marine mammals. Despite overall lower MHC class II allelic diversity relative to some other pinniped species, we observed similar levels of nucleotide diversity and selection in N. cinerea. In addition, we provide support for recent divergence of MHC class II alleles. The characterization of MHC class II diversity in the Australian sea lion establishes a baseline for further investigation of associations with disease, including endemic hookworm infection, and contributes to the conservation management of this species.

  8. The peptide-receptive transition state of MHC-1 molecules: Insight from structure and molecular dynamics

    SciTech Connect

    Robinson H.; Mage, M.; Dolan, M.; Wang, R.; Boyd, L.; Revilleza, M.; Natarajan, K.; Myers, N.; Hansen, T.; Margulies, D.

    2012-05-01

    MHC class I (MHC-I) proteins of the adaptive immune system require antigenic peptides for maintenance of mature conformation and immune function via specific recognition by MHC-I-restricted CD8(+) T lymphocytes. New MHC-I molecules in the endoplasmic reticulum are held by chaperones in a peptide-receptive (PR) transition state pending release by tightly binding peptides. In this study, we show, by crystallographic, docking, and molecular dynamics methods, dramatic movement of a hinged unit containing a conserved 3(10) helix that flips from an exposed 'open' position in the PR transition state to a 'closed' position with buried hydrophobic side chains in the peptide-loaded mature molecule. Crystallography of hinged unit residues 46-53 of murine H-2L(d) MHC-I H chain, complexed with mAb 64-3-7, demonstrates solvent exposure of these residues in the PR conformation. Docking and molecular dynamics predict how this segment moves to help form the A and B pockets crucial for the tight peptide binding needed for stability of the mature peptide-loaded conformation, chaperone dissociation, and Ag presentation.

  9. Association of MHC region SNPs with irritant susceptibility in healthcare workers.

    PubMed

    Yucesoy, Berran; Talzhanov, Yerkebulan; Michael Barmada, M; Johnson, Victor J; Kashon, Michael L; Baron, Elma; Wilson, Nevin W; Frye, Bonnie; Wang, Wei; Fluharty, Kara; Gharib, Rola; Meade, Jean; Germolec, Dori; Luster, Michael I; Nedorost, Susan

    2016-09-01

    Irritant contact dermatitis is the most common work-related skin disease, especially affecting workers in "wet-work" occupations. This study was conducted to investigate the association between single nucleotide polymorphisms (SNPs) within the major histocompatibility complex (MHC) and skin irritant response in a group of healthcare workers. 585 volunteer healthcare workers were genotyped for MHC SNPs and patch tested with three different irritants: sodium lauryl sulfate (SLS), sodium hydroxide (NaOH) and benzalkonium chloride (BKC). Genotyping was performed using Illumina Goldengate MHC panels. A number of SNPs within the MHC Class I (OR2B3, TRIM31, TRIM10, TRIM40 and IER3), Class II (HLA-DPA1, HLA-DPB1) and Class III (C2) genes were associated (p < 0.001) with skin response to tested irritants in different genetic models. Linkage disequilibrium patterns and functional annotations identified two SNPs in the TRIM40 (rs1573298) and HLA-DPB1 (rs9277554) genes, with a potential impact on gene regulation. In addition, SNPs in PSMB9 (rs10046277 and ITPR3 (rs499384) were associated with hand dermatitis. The results are of interest as they demonstrate that genetic variations in inflammation-related genes within the MHC can influence chemical-induced skin irritation and may explain the connection between inflamed skin and propensity to subsequent allergic contact sensitization. PMID:27258892

  10. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules.

    PubMed

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these "non-traditional" class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  11. Essential glycan-dependent interactions optimize MHC class I peptide loading

    PubMed Central

    Wearsch, Pamela A.; Peaper, David R.; Cresswell, Peter

    2011-01-01

    In this study we sought to better understand the role of the glycoprotein quality control machinery in the assembly of MHC class I molecules with high-affinity peptides. The lectin-like chaperone calreticulin (CRT) and the thiol oxidoreductase ERp57 participate in the final step of this process as part of the peptide-loading complex (PLC). We provide evidence for an MHC class I/CRT intermediate before PLC engagement and examine the nature of that chaperone interaction in detail. To investigate the mechanism of peptide loading and roles of individual components, we reconstituted a PLC subcomplex, excluding the Transporter Associated with Antigen Processing, from purified, recombinant proteins. ERp57 disulfide linked to the class I-specific chaperone tapasin and CRT were the minimal PLC components required for MHC class I association and peptide loading. Mutations disrupting the interaction of CRT with ERp57 or the class I glycan completely eliminated PLC activity in vitro. By using the purified system, we also provide direct evidence for a role for UDP-glucose:glycoprotein glucosyltransferase 1 in MHC class I assembly. The recombinant Drosophila enzyme reglucosylated MHC class I molecules associated with suboptimal ligands and allowed PLC reengagement and high-affinity peptide exchange. Collectively, the data indicate that CRT in the PLC enhances weak tapasin/class I interactions in a manner that is glycan-dependent and regulated by UDP-glucose:glycoprotein glucosyltransferase 1. PMID:21383180

  12. Identification, inheritance, and linkage of B-G-like and MHC class I genes in cranes

    USGS Publications Warehouse

    Jarvi, S.I.; Goto, R.M.; Gee, G.F.; Briles, W.E.; Miller, M.M.

    1999-01-01

    We identified B-G-like genes in the whooping and Florida sandhill cranes and linked them to the major histocompatibility complex (MHC). We evaluated the inheritance of B-G-like genes in families of whooping and Florida sandhill cranes using restriction fragment patterns (RFPs). Two B-G-like genes, designated wcbgl and wcbg2, were located within 8 kb of one another. The fully sequenced wcbg2 gene encodes a B-G IgV-like domain, an additional Ig-like domain, a transmembrane domain, and a single heptad domain typical of '-helical coiled coils. Patterns of restriction fragments in DNA from the whooping crane and from a number of other species indicate that the B-G-like gene families of cranes are large with diverse sequences. Segregation of RFPs in families of Florida sandhill cranes provide evidence for genetic polymorphism in the B-G-like genes. The restriction fragments generally segregated in concert with MHC haplotypes assigned by serological typing and by single stranded conformational polymorphism (SSCP) assays based in the second exon of the crane MHC class I genes. This study supports the concept of a long-term association of polymorphic B-G-like genes with the MHC. It also establishes SSCP as a means for evaluating MHC genetic variability in cranes.

  13. R4 regulators of G protein signaling (RGS) identify an ancient MHC-linked synteny group

    PubMed Central

    Suurväli, Jaanus; Robert, Jacques; Boudinot, Pierre; Boudinot, Sirje Rüütel

    2012-01-01

    Regulators of G Protein Signaling (RGS) are key regulators of G protein signaling. RGS proteins of the R4 RGS group are composed of a mere RGS domain and are mainly involved in immune response modulation. In both human and mouse, most genes encoding the R4 RGS proteins are located in the same region of chromosome 1. We show here that the RGS1/RGS16 neighborhood constitutes a synteny group well conserved across tetrapods, and closely linked to the MHC paralogon of chromosome 1. Genes located in the RGS1/RGS16 region have paralogs close to the MHC on chromosome 6 or close to the other MHC paralogons. In amphioxus, a cephalochordate, these genes possess orthologs that are located in the same scaffolds as a number of markers defining the proto-MHC in this species (Abi-Rached et al. 2002). We therefore propose that the RGS1/RGS16 region provides useful markers to investigate the origins and the evolution of the MHC. In addition, we show that some genes of the region appear to have immune functions not only in human, but also in Xenopus. PMID:23129146

  14. No Major Role for Insulin-Degrading Enzyme in Antigen Presentation by MHC Molecules

    PubMed Central

    Hsu, Hsiang-Ting; Burgevin, Anne; Guénette, Suzanne; Moser, Anna; van Endert, Peter

    2014-01-01

    Antigen presentation by MHC class I molecules requires degradation of epitope source proteins in the cytosol. Although the preeminent role of the proteasome is clearly established, evidence suggesting a significant role for proteasome-independent generation of class I ligands has been reported repeatedly. However, an enzyme responsible for such a role has not been identified. Recently insulin-degrading enzyme (IDE) was shown to produce an antigenic peptide derived from the tumor antigen MAGE-A3 in an entirely proteasome-independent manner, raising the question of the global impact of IDE in MHC class I antigen processing. Here we report that IDE knockdown in human cell lines, or knockout in two different mouse strains, has no effect on cell surface expression of various MHC class I molecules, including allomorphs such as HLA-A3 and HLA-B27 suggested to be loaded in an at least a partly proteasome-independent manner. Moreover, reduced or absent IDE expression does not affect presentation of five epitopes including epitopes derived from beta amyloid and proinsulin, two preferred IDE substrates. Thus, IDE does not play a major role in MHC class I antigen processing, confirming the dominant and almost exclusive role of the proteasome in cytosolic production of MHC class I ligands. PMID:24516642

  15. 76 FR 11193 - Superior Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Forest Service Superior Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Superior Resource Advisory Committee will meet in Duluth, Minnesota. The...

  16. 75 FR 65296 - Superior Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF AGRICULTURE Forest Service Superior Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Superior Resource Advisory Committee will meet in Duluth, Minnesota. The...

  17. Short alleles revealed by PCR demonstrate no heterozygote deficiency at minisatellite loci D1S7, D7S21, and D12S11

    SciTech Connect

    Alonso, S.; Castro, A.; Fernandez-Fernandez, I.; Pancorbo, M.M. de

    1997-02-01

    Short VNTR alleles that go undetected after conventional Southern blot hybridization may constitute an alternative explanation for the heterozygosity deficiency observed at some minisatellite loci. To examine this hypothesis, we have employed a screening procedure based on PCR amplification of those individuals classified as homozygotes in our databases for the loci D1S7, D7S21, and D12S11. The results obtained indicate that the frequency of these short alleles is related to the heterozygosity deficiency observed. For the most polymorphic locus, D1S7, {approximately}60% of those individuals previously classified as homozygotes were in fact heterozygotes for a short allele. After the inclusion of these new alleles, the agreement between observed and expected heterozygosity, along with other statistical tests employed, provide additional evidence for lack of population substructuring. Comparisons of allele frequency distributions reveal greater differences between racial groups than between closely related populations. 45 refs., 3 figs., 6 tabs.

  18. Short alleles revealed by PCR demonstrate no heterozygote deficiency at minisatellite loci D1S7, D7S21, and D12S11.

    PubMed Central

    Alonso, S; Castro, A; Fernández-Fernández, I; de Pancorbo, M M

    1997-01-01

    Short VNTR alleles that go undetected after conventional Southern blot hybridization may constitute an alternative explanation for the heterozygosity deficiency observed at some minisatellite loci. To examine this hypothesis, we have employed a screening procedure based on PCR amplification of those individuals classified as homozygotes in our databases for the loci D1S7, D7S21, and D12S11. The results obtained indicate that the frequency of these short alleles is related to the heterozygosity deficiency observed. For the most polymorphic locus, D1S7, approximately 60% of those individuals previously classified as homozygotes were in fact heterozygotes for a short allele. After the inclusion of these new alleles, the agreement between observed and expected heterozygosity, along with other statistical tests employed, provide additional evidence for lack of population substructuring. Comparisons of allele frequency distributions reveal greater differences between racial groups than between closely related populations. Images Figure 2 Figure 3 PMID:9012415

  19. Design of a predicted MHC restricted short peptide immunodiagnostic and vaccine candidate for Fowl adenovirus C in chicken infection.

    PubMed

    Valdivia-Olarte, Hugo; Requena, David; Ramirez, Manuel; Saravia, Luis E; Izquierdo, Ray; Falconi-Agapito, Francesca; Zavaleta, Milagros; Best, Iván; Fernández-Díaz, Manolo; Zimic, Mirko

    2015-01-01

    Fowl adenoviruses (FAdVs) are the ethiologic agents of multiple pathologies in chicken. There are five different species of FAdVs grouped as FAdV-A, FAdV-B, FAdV-C, FAdV-D, and FAdV-E. It is of interest to develop immunodiagnostics and vaccine candidate for Peruvian FAdV-C in chicken infection using MHC restricted short peptide candidates. We sequenced the complete genome of one FAdV strain isolated from a chicken of a local farm. A total of 44 protein coding genes were identified in each genome. We sequenced twelve Cobb chicken MHC alleles from animals of different farms in the central coast of Peru, and subsequently determined three optimal human MHC-I and four optimal human MHC-II substitute alleles for MHC-peptide prediction. The potential MHC restricted short peptide epitope-like candidates were predicted using human specific (with determined suitable chicken substitutes) NetMHC MHC-peptide prediction model with web server features from all the FAdV genomes available. FAdV specific peptides with calculated binding values to known substituted chicken MHC-I and MHC-II were further filtered for diagnostics and potential vaccine epitopes. Promiscuity to the 3/4 optimal human MHC-I/II alleles and conservation among the available FAdV genomes was considered in this analysis. The localization on the surface of the protein was considered for class II predicted peptides. Thus, a set of class I and class II specific peptides from FAdV were reported in this study. Hence, a multiepitopic protein was built with these peptides, and subsequently tested to confirm the production of specific antibodies in chicken.

  20. Design of a predicted MHC restricted short peptide immunodiagnostic and vaccine candidate for Fowl adenovirus C in chicken infection

    PubMed Central

    Valdivia-Olarte, Hugo; Requena, David; Ramirez, Manuel; Saravia, Luis E; Izquierdo, Ray; Falconi-Agapito, Francesca; Zavaleta, Milagros; Best, Iván; Fernández-Díaz, Manolo; Zimic, Mirko

    2015-01-01

    Fowl adenoviruses (FAdVs) are the ethiologic agents of multiple pathologies in chicken. There are five different species of FAdVs grouped as FAdV-A, FAdV-B, FAdV-C, FAdV-D, and FAdV-E. It is of interest to develop immunodiagnostics and vaccine candidate for Peruvian FAdV-C in chicken infection using MHC restricted short peptide candidates. We sequenced the complete genome of one FAdV strain isolated from a chicken of a local farm. A total of 44 protein coding genes were identified in each genome. We sequenced twelve Cobb chicken MHC alleles from animals of different farms in the central coast of Peru, and subsequently determined three optimal human MHC-I and four optimal human MHC-II substitute alleles for MHC-peptide prediction. The potential MHC restricted short peptide epitope-like candidates were predicted using human specific (with determined suitable chicken substitutes) NetMHC MHC-peptide prediction model with web server features from all the FAdV genomes available. FAdV specific peptides with calculated binding values to known substituted chicken MHC-I and MHC-II were further filtered for diagnostics and potential vaccine epitopes. Promiscuity to the 3/4 optimal human MHC-I/II alleles and conservation among the available FAdV genomes was considered in this analysis. The localization on the surface of the protein was considered for class II predicted peptides. Thus, a set of class I and class II specific peptides from FAdV were reported in this study. Hence, a multiepitopic protein was built with these peptides, and subsequently tested to confirm the production of specific antibodies in chicken. PMID:26664030

  1. MHC class I BFIV gene polymorphisms in four Chinese native chicken breeds.

    PubMed

    Dai, Yin; Liu, Xue-Lan; Tang, Qing-Feng; Hu, Xiao-Miao; Shen, Xue-Huai; Zhang, Dan-Jun

    2016-09-01

    The major histocompatibility complex (MHC) includes the most polymorphic genes in vertebrates, and balancing selection has been proposed as a main evolutionary force. Here we present one of the first data sets examining the genetic characteristics of chicken MHC I BFIV molecules in four Chinese native breeds, sourced from different regions in China. In all, 89 BFIV alleles were isolated from 102 individuals sampled, and 13 repeated alleles were observed. No significant correlation was found between genetic differentiation and geographical distance in the phylogenetic tree. BFIV genes exhibited a high level of nucleotide polymorphisms, and most of the polymorphic sites were located in the peptide-binding region (PBR) encoded in exons 2 and 3. A comparison of the three-dimensional structures of PBRs in chicken BFIV and human HLA-A molecules revealed evident structural and functional similarities. The results suggested that MHC I molecules had similar structural features in different species. PMID:27168230

  2. Recent advances in viral evasion of the MHC Class I processing pathway.

    PubMed

    Schuren, Anouk Bc; Costa, Ana I; Wiertz, Emmanuel Jhj

    2016-06-01

    T-cell mediated adaptive immunity against viruses relies on recognition of virus-derived peptides by CD4(+) and CD8(+) T cells. Detection of pathogen-derived peptide-MHC-I complexes triggers CD8(+) T cells to eliminate the infected cells. Viruses have evolved several mechanisms to avoid recognition, many of which target the MHC-I antigen-processing pathway. While many immune evasion strategies have been described in the context of herpesvirus infections, it is becoming clear that this 'disguise' ability is more widespread. Here, we address recent findings in viral evasion of the MHC-I antigen presentation pathway and the impact on CD8(+) T cell responses.

  3. Expressed MHC class II genes in sea otters (Enhydra lutris) from geographically disparate populations

    USGS Publications Warehouse

    Bowen, L.; Aldridge, B.M.; Miles, A.K.; Stott, J.L.

    2006-01-01

    The major histocompatibility complex (MHC) is central to maintaining the immunologic vigor of individuals and populations. Classical MHC class II genes were targeted for partial sequencing in sea otters (Enhydra lutris) from populations in California, Washington, and Alaska. Sequences derived from sea otter peripheral blood leukocyte mRNAs were similar to those classified as DQA, DQB, DRA, and DRB in other species. Comparisons of the derived amino acid compositions supported the classification of these as functional molecules from at least one DQA, DQB, and DRA locus and at least two DRB loci. While limited in scope, phylogenetic analysis of the DRB peptide-binding region suggested the possible existence of distinct clades demarcated by geographic region. These preliminary findings support the need for additional MHC gene sequencing and expansion to a comprehensive study targeting additional otters. ?? 2006 Blackwell Munksgaard.

  4. Influence of kinship and MHC class II genotype on visual traits in zebrafish larvae (Danio rerio).

    PubMed

    Hinz, Cornelia; Gebhardt, Katharina; Hartmann, Alexander K; Sigman, Lauren; Gerlach, Gabriele

    2012-01-01

    Kin recognition can drive kin selection and the evolution of social behaviour. In zebrafish (Danio rerio, Hamilton 1822), kin recognition is based on olfactory and visual imprinting processes. If larvae are exposed to visual and chemical cues of kin at day 5 and 6 post fertilization they will recognize kin throughout life, while exposure to non-kin fails to trigger any recognition. Chemical imprinting signals are transcribed by polymorphic genes of the major histocompatibility complex (MHC) code; however, the underlying mechanism for visual imprinting remains unclear. Here we provide evidence for the existence of family-specific differences in morphometry and pigmentation pattern of six day old zebrafish larvae. While rump, tail and body pigmentation were dependent on relatedness, iris pigmentation and morphometry were also influenced by MHC class II genotype. Our study revealed that the MHC not only influences the chemical signature of individuals, but also their visual appearance. PMID:23251449

  5. Extensive Allelic Diversity of MHC Class I in Wild Mallard Ducks.

    PubMed

    Fleming-Canepa, Ximena; Jensen, Shawna M; Mesa, Christine M; Diaz-Satizabal, Laura; Roth, Alexa J; Parks-Dely, Julie A; Moon, Debra A; Wong, Janet P; Evseev, Danyel; Gossen, Desolie A; Tetrault, David G; Magor, Katharine E

    2016-08-01

    MHC class I is critically involved in defense against viruses, and diversity from polygeny and polymorphism contributes to the breadth of the immune response and health of the population. In this article, we examine MHC class I diversity in wild mallard ducks, the natural host and reservoir of influenza A viruses. We previously showed domestic ducks predominantly use UAA, one of five MHC class I genes, but whether biased expression is also true for wild mallards is unknown. Using RT-PCR from blood, we examined expressed MHC class I alleles from 38 wild mallards (Anas platyrhynchos) and identified 61 unique alleles, typically 1 or 2 expressed alleles in each individual. To determine whether expressed alleles correspond to UAA adjacent to TAP2 as in domestic ducks, we cloned and sequenced genomic UAA-TAP2 fragments from all mallards, which matched transcripts recovered and allowed us to assign most alleles as UAA Allelic differences are primarily located in α1 and α2 domains in the residues known to interact with peptide in mammalian MHC class I, suggesting the diversity is functional. Most UAA alleles have unique residues in the cleft predicting distinct specificity; however, six alleles have an unusual conserved cleft with two cysteine residues. Residues that influence peptide-loading properties and tapasin involvement in chicken are fixed in duck alleles and suggest tapasin independence. Biased expression of one MHC class I gene may make viral escape within an individual easy, but high diversity in the population places continual pressure on the virus in the reservoir species. PMID:27342841

  6. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL.

    PubMed

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4(+) T cells. ldlr(-/-) syk(-/-) mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr(-/-) mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis.

  7. Diversification of porcine MHC class II genes: evidence for selective advantage.

    PubMed

    Luetkemeier, Erin S; Malhi, Ripan S; Beever, Jonathan E; Schook, Lawrence B

    2009-02-01

    The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene PsiDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (PsiDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (PsiDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (PsiDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d (N) (DQB 1.476, DRB1 1.724, and PsiDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred.

  8. Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae)

    USGS Publications Warehouse

    Jarvi, S.I.; Tarr, C.L.; Mcintosh, C.E.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II ?? chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > d S and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II ?? chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.

  9. Refinement of the MHC Risk Map in a Scandinavian Primary Sclerosing Cholangitis Population

    PubMed Central

    Næss, Sigrid; Lie, Benedicte A.; Melum, Espen; Olsson, Marita; Hov, Johannes R.; Croucher, Peter J. P.; Hampe, Jochen; Thorsby, Erik; Bergquist, Annika; Traherne, James A.; Schrumpf, Erik; Boberg, Kirsten Muri; Schreiber, Stefan; Franke, Andre; Karlsen, Tom H.

    2014-01-01

    Background Genetic variants within the major histocompatibility complex (MHC) represent the strongest genetic susceptibility factors for primary sclerosing cholangitis (PSC). Identifying the causal variants within this genetic complex represents a major challenge due to strong linkage disequilibrium and an overall high physical density of candidate variants. We aimed to refine the MHC association in a geographically restricted PSC patient panel. Methodology/Principal Findings A total of 365 PSC cases and 368 healthy controls of Scandinavian ancestry were included in the study. We incorporated data from HLA typing (HLA-A, -B, -C, -DRB3, -DRB1, -DQB1) and single nucleotide polymorphisms across the MHC (n = 18,644; genotyped and imputed) alongside previously suggested PSC risk determinants in the MHC, i.e. amino acid variation of DRβ, a MICA microsatellite polymorphism and HLA-C and HLA-B according to their ligand properties for killer immunoglobulin-like receptors. Breakdowns of the association signal by unconditional and conditional logistic regression analyses demarcated multiple PSC associated MHC haplotypes, and for eight of these classical HLA class I and II alleles represented the strongest association. A novel independent risk locus was detected near NOTCH4 in the HLA class III region, tagged by rs116212904 (odds ratio [95% confidence interval] = 2.32 [1.80, 3.00], P = 1.35×10−11). Conclusions/Significance Our study shows that classical HLA class I and II alleles, predominantly at HLA-B and HLA-DRB1, are the main risk factors for PSC in the MHC. In addition, the present assessments demonstrated for the first time an association near NOTCH4 in the HLA class III region. PMID:25521205

  10. SYK regulates macrophage MHC-II expression via activation of autophagy in response to oxidized LDL

    PubMed Central

    Choi, Soo-Ho; Gonen, Ayelet; Diehl, Cody J; Kim, Jungsu; Almazan, Felicidad; Witztum, Joseph L; Miller, Yury I

    2015-01-01

    Adaptive immunity, which plays an important role in the development of atherosclerosis, is mediated by major histocompatibility complex (MHC)-dependent antigen presentation. In atherosclerotic lesions, macrophages constitute an important class of antigen-presenting cells that activate adaptive immune responses to oxidized low-density lipoprotein (OxLDL). It has been reported that autophagy regulates adaptive immune responses by enhancing antigen presentation to MHC class II (MHC-II). In a previous study, we have demonstrated that SYK (spleen tyrosine kinase) regulates generation of reactive oxygen species (ROS) and activation of MAPK8/JNK1 in macrophages. Because ROS and MAPK8 are known to regulate autophagy, in this study we investigated the role of SYK in autophagy, MHC-II expression and adaptive immune response to OxLDL. We demonstrate that OxLDL induces autophagosome formation, MHC-II expression, and phosphorylation of SYK in macrophages. Gene knockout and pharmacological inhibitors of NOX2 and MAPK8 reduced OxLDL-induced autophagy. Using bone marrow-derived macrophages isolated from wild-type and myeloid-specific SYK knockout mice, we demonstrate that SYK regulates OxLDL-induced ROS generation, MAPK8 activation, BECN1-BCL2 dissociation, autophagosome formation and presentation of OxLDL-derived antigens to CD4+ T cells. ldlr−/− syk−/− mice fed a high-fat diet produced lower levels of IgG to malondialdehyde (MDA)-LDL, malondialdehyde-acetaldehyde (MAA)-LDL, and OxLDL compared to ldlr−/− mice. These results provide new insights into the mechanisms by which SYK regulates MHC-II expression via autophagy in macrophages and may contribute to regulation of adaptive immune responses in atherosclerosis. PMID:25946330

  11. MHC class II transcription is associated with inflammatory responses in a wild marine mammal.

    PubMed

    Montano-Frías, Jorge E; Vera-Massieu, Camila; Álvarez-Martínez, Roberto; Flores-Morán, Adriana; Acevedo-Whitehouse, Karina

    2016-08-01

    Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population. PMID:27137083

  12. Eco-immunology of fish invasions: the role of MHC variation.

    PubMed

    Monzón-Argüello, C; Garcia de Leaniz, C; Gajardo, G; Consuegra, S

    2014-06-01

    The relationship between invaders and the pathogens encountered in their new environment can have a large effect on invasion success. Invaders can become free from their natural pathogens and reallocate costly immune resources to growth and reproduction, thereby increasing invasion success. Release from enemies and relaxation of selective pressures could render newly founded populations more variable at immune-related genes, such as the major histocompatibility complex (MHC), particularly when they have different origins. Using rainbow and brown trout, two of the world's most successful fish invaders, we tested the general hypothesis that invaders should display high intrapopulation immunogenetic diversity and interpopulation divergence, due to the interplay between genetic drift and successive waves of genetically divergent introductions. We analysed genetic diversity and signatures of selection at the MHC class II β immune-related locus. In both species, MHC diversity (allelic richness and heterozygosity) for southern hemisphere populations was similar to values reported for populations at their native range. However, MHC functional diversity was limited, and population immunogenetic structuring weaker than that observed using neutral markers. Depleted MHC functional diversity could reflect a decrease in immune response, immune-related assortative mating or selection for resistance to newly encountered parasites. Given that the role of MHC diversity in the survival of these populations remains unclear, depleted functional diversity of invasive salmonids could compromise their long-term persistence. A better understanding of the eco-immunology of invaders may help in managing and preventing the impact of biological invasions, a major cause of loss of biodiversity worldwide.

  13. Structural Features of the αβTCR Mechanotransduction Apparatus That Promote pMHC Discrimination

    PubMed Central

    Brazin, Kristine N.; Mallis, Robert J.; Das, Dibyendu Kumar; Feng, Yinnian; Hwang, Wonmuk; Wang, Jia-huai; Wagner, Gerhard; Lang, Matthew J.; Reinherz, Ellis L.

    2015-01-01

    The αβTCR was recently revealed to function as a mechanoreceptor. That is, it leverages mechanical energy generated during immune surveillance and at the immunological synapse to drive biochemical signaling following ligation by a specific foreign peptide–MHC complex (pMHC). Here, we review the structural features that optimize this transmembrane (TM) receptor for mechanotransduction. Specialized adaptations include (1) the CβFG loop region positioned between Vβ and Cβ domains that allosterically gates both dynamic T cell receptor (TCR)–pMHC bond formation and lifetime; (2) the rigid super β-sheet amalgams of heterodimeric CD3εγ and CD3εδ ectodomain components of the αβTCR complex; (3) the αβTCR subunit connecting peptides linking the extracellular and TM segments, particularly the oxidized CxxC motif in each CD3 heterodimeric subunit that facilitates force transfer through the TM segments and surrounding lipid, impacting cytoplasmic tail conformation; and (4) quaternary changes in the αβTCR complex that accompany pMHC ligation under load. How bioforces foster specific αβTCR-based pMHC discrimination and why dynamic bond formation is a primary basis for kinetic proofreading are discussed. We suggest that the details of the molecular rearrangements of individual αβTCR subunit components can be analyzed utilizing a combination of structural biology, single-molecule FRET, optical tweezers, and nanobiology, guided by insightful atomistic molecular dynamic studies. Finally, we review very recent data showing that the pre-TCR complex employs a similar mechanobiology to that of the αβTCR to interact with self-pMHC ligands, impacting early thymic repertoire selection prior to the CD4+CD8+ double positive thymocyte stage of development. PMID:26388869

  14. Contrasting patterns of variation in MHC loci in the Alpine newt.

    PubMed

    Babik, W; Pabijan, M; Radwan, J

    2008-05-01

    Major histocompatibility complex (MHC) genes are essential in pathogen recognition and triggering an adaptive immune response. Although they are the most polymorphic genes in vertebrates, very little information on MHC variation and patterns of evolution are available for amphibians, a group known to be declining rapidly worldwide. As infectious diseases are invoked in the declines, information on MHC variation should contribute to devising appropriate conservation strategies. In this study, we examined MHC variation in 149 Alpine newts (Mesotriton alpestris) from three allopatric population groups in Poland at the northeastern margin of the distribution of this species. The genetic distinctiveness of the population groups has previously been shown by studies of skin graft rejection, allozymes and microsatellites. Two putative expressed MHC II loci with contrasting levels of variation and clear evidence of gene conversion/recombination between them were detected. The Meal-DAB locus is highly polymorphic (37 alleles), and shows evidence of historical positive selection for amino acid replacements and substantial geographical differentiation in allelic richness. On the contrary, the Meal-DBB locus exhibits low polymorphism (three alleles differing by up to two synonymous substitutions) and a uniform distribution of three alleles among geographical regions. The uniform frequencies of the presumptively neutral Meal-DBB alleles may be explained by linkage to Meal-DAB. We found differences in allelic richness in Meal-DAB between regions, consistent with the hypothesis that genetic drift prevails with increasing distance from glacial refugia. Pseudogene loci appear to have evolved neutrally. The level of DAB variation correlated with variation in microsatellite loci, implying that selection and drift interplayed to produce the pattern of MHC variation observed in marginal populations of the Alpine newt.

  15. Diversification of porcine MHC class II genes: evidence for selective advantage.

    PubMed

    Luetkemeier, Erin S; Malhi, Ripan S; Beever, Jonathan E; Schook, Lawrence B

    2009-02-01

    The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene PsiDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (PsiDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (PsiDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (PsiDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d (N) (DQB 1.476, DRB1 1.724, and PsiDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred. PMID:19142631

  16. Enhanced induction of thyroid cell MHC class II antigen expression in rats highly responsive to thyroglobulin.

    PubMed

    Lahat, N; Hirose, W; Davies, T F

    1989-04-01

    Initial experiments demonstrated that the degree of autoantibody and proliferative T cell responses to syngeneic rat thyroglobulin differed markedly between Buffalo (high responder) and Fisher (low responder) rats after classical immunization schedules. While varying immune responsiveness may be due to qualitative and quantitative T and B cell differences, the role of thyroid cell MHC class II antigens may be pivotal to the onset of autoimmune thyroiditis in such animal models. We, therefore, examined the induction of MHC class II antigens in thyroid monolayers derived from Buffalo and Fisher rats treated with methimazole (0.1% in their water) for 4 weeks to induce mild thyroid hyperplasia. After thyroidectomy, thyroid cell monolayers were prepared and exposed to recombinant rat gamma-interferon (gamma IF; 10-1000 U/ml) for 1-7 days in the presence and absence of TSH (1 mU/ml). Both Buffalo and Fisher thyroid monolayers responded to gamma IF with MHC class II antigen expression when assessed by laser flow cytometry using MRC OX-6 monoclonal anti-RT1.B. In both types of culture, TSH enhanced MHC class II antigen expression in the presence of gamma IF to the same degree. However, there was a consistently earlier and greater degree of MHC class II antigen expression in Buffalo thyroid monolayers compared to Fisher monolayers, a phenomenon not explicable on the basis of fibroblast contamination as assessed by cytokeratin staining. These data demonstrate that end-organ sensitivity to MHC class II antigen expression may be important in the pathogenesis of autoimmune thyroid disease.

  17. The comings and goings of MHC class I molecules herald a new dawn in cross-presentation.

    PubMed

    Blander, J Magarian

    2016-07-01

    MHC class I (MHC-I) molecules are the centerpieces of cross-presentation. They are loaded with peptides derived from exogenous sources and displayed on the plasma membrane to communicate with CD8 T cells, relaying a message of tolerance or attack. The study of cross-presentation has been focused on the relative contributions of the vacuolar versus cytosolic pathways of antigen processing and the location where MHC-I molecules are loaded. While vacuolar processing generates peptides loaded onto vacuolar MHC-I molecules, how and where exogenous peptides generated by the proteasome and transported by TAP meet MHC-I molecules for loading has been a matter of debate. The source and trafficking of MHC-I molecules in dendritic cells have largely been ignored under the expectation that these molecules came from the Endoplasmic reticulum (ER) or the plasma membrane. New studies reveal a concentrated pool of MHC-I molecules in the endocytic recycling compartment (ERC). These pools are rapidly mobilized to phagosomes carrying microbial antigens, and in a signal-dependent manner under the control of Toll-like receptors. The phagosome becomes a dynamic hub receiving traffic from multiple sources, the ER-Golgi intermediate compartment for delivering the peptide-loading machinery and the ERC for deploying MHC-I molecules that alert CD8 T cells of infection.

  18. Contrasting patterns of selection acting on MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota).

    PubMed

    Kuduk, K; Johanet, A; Allainé, D; Cohas, A; Radwan, J

    2012-08-01

    The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.

  19. Cross reactive cytotoxic T lymphocytes from MHC-defined birds against homologous and heterologous avian influenza subtypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous reports have implicated a role of the major-histocompatibility complex (MHC) in genetic resistance of chickens to bacterial infection and viral diseases. However, little is known about the role of MHC in generating protective immunity following avian influenza (AI) infection. Because vacc...

  20. EBP1 protein modulates the expression of human MHC class II molecules in non-hematopoietic cancer cells

    PubMed Central

    PISAPIA, LAURA; BARBA, PASQUALE; CORTESE, ANGELA; CICATIELLO, VALERIA; MORELI, FRANCO; DEL POZZO, GIOVANNA

    2015-01-01

    Many solid tumours including melanoma, glioblastoma, and breast carcinomas express MHC class II molecules (MHC II). The surface expression of these molecules confers to non-hematopoietic tumour cells the role of non-professional antigen presenting cells and the ability to potentially stimulate tumour-specific CD4+ T cell response. We studied EBP1, an ErbB3 binding protein, and the effects of p48 and p42 isoforms on the MHC II expression in U87 glioblastoma, M14 melanoma and MCF7 mammary carcinoma cell lines. We found that overexpression of p48 increases MHC II transcription in U87 and M14, through upregulation of CIITA transactivator and STAT1 phosphorylation. In addition, p48 protein influences MHC II expression by increasing mRNA stability. In melanoma and glioblastoma cell lines, p48 isoform functions as oncogene promoting tumour growth, while p42 isoform, that does not affect MHC II expression, acts as a tumour suppressor by blocking cell growth and inducing apoptosis. In contrast, p48 seems to act as tumour suppressor in breast carcinoma inhibiting proliferation, favouring apoptosis, and inducing a slight increase of MHC II expression similar to p42. Our data highlight the tissue specificity function of EBP1 isoforms and demonstrate that only the oncogene p48 activates MHC II expression in human solid tumours, via STAT1 phosphorylation, in order to affect tumour progression by triggering specific immune response. PMID:26081906

  1. Generation of a genomic tiling array of the human Major Histocompatibility Complex (MHC) and its application for DNA methylation analysis

    PubMed Central

    Tomazou, Eleni M; Rakyan, Vardhman K; Lefebvre, Gregory; Andrews, Robert; Ellis, Peter; Jackson, David K; Langford, Cordelia; Francis, Matthew D; Bäckdahl, Liselotte; Miretti, Marcos; Coggill, Penny; Ottaviani, Diego; Sheer, Denise; Murrell, Adele; Beck, Stephan

    2008-01-01

    Background The major histocompatibility complex (MHC) is essential for human immunity and is highly associated with common diseases, including cancer. While the genetics of the MHC has been studied intensively for many decades, very little is known about the epigenetics of this most polymorphic and disease-associated region of the genome. Methods To facilitate comprehensive epigenetic analyses of this region, we have generated a genomic tiling array of 2 Kb resolution covering the entire 4 Mb MHC region. The array has been designed to be compatible with chromatin immunoprecipitation (ChIP), methylated DNA immunoprecipitation (MeDIP), array comparative genomic hybridization (aCGH) and expression profiling, including of non-coding RNAs. The array comprises 7832 features, consisting of two replicates of both forward and reverse strands of MHC amplicons and appropriate controls. Results Using MeDIP, we demonstrate the application of the MHC array for DNA methylation profiling and the identification of tissue-specific differentially methylated regions (tDMRs). Based on the analysis of two tissues and two cell types, we identified 90 tDMRs within the MHC and describe their characterisation. Conclusion A tiling array covering the MHC region was developed and validated. Its successful application for DNA methylation profiling indicates that this array represents a useful tool for molecular analyses of the MHC in the context of medical genomics. PMID:18513384

  2. A single-fibre study of the relationship between MHC and TnC isoform composition in rat skeletal muscle.

    PubMed Central

    O'Connell, Brett; Nguyen, Long T; Stephenson, Gabriela M M

    2004-01-01

    In the present study, we investigated the possibility that MHC (myosin heavy chain) and TnC (troponin C) isoforms exist in specific combinations in rat-skeletal-muscle fibres. Single fibres (numbering 245) from soleus (predominantly slow-twitch) and sternomastoid (predominantly fast-twitch) muscles of adult rats were analysed for MHC and TnC isoform composition, using alanine-SDS/PAGE for separating MHC isoforms, and a novel method (based on the previously reported influence of Ca2+ on the mobility of Ca2+-binding proteins in SDS gels) for unequivocal identification of TnC isoforms in single-fibre segments. In this study, all fibres that contained only one MHC isoform (slow or fast) contained only the matching TnC isoform and all fibres that contained multiple fast MHC isoforms contained only the fast TnC isoform. Fibres expressing both slow and fast MHC isoforms displayed either both TnC isoforms or only one TnC isoform of a type depending on the relative proportion of fast/slow MHC present. Our results suggest a close relationship between MHC and TnC isoform composition in non-transforming skeletal muscles of adult rat. PMID:14572306

  3. Horse cDNA clones encoding two MHC class I genes

    SciTech Connect

    Barbis, D.P.; Maher, J.K.; Stanek, J.; Klaunberg, B.A.; Antczak, D.F.

    1994-12-31

    Two full-length clones encoding MHC class I genes were isolated by screening a horse cDNA library, using a probe encoding in human HLA-A2.2Y allele. The library was made in the pcDNA1 vector (Invitrogen, San Diego, CA), using mRNA from peripheral blood lymphocytes obtained from a Thoroughbred stallion (No. 0834) homozygous for a common horse MHC haplotype (ELA-A2, -B2, -D2; Antczak et al. 1984; Donaldson et al. 1988). The clones were sequenced, using SP6 and T7 universal primers and horse-specific oligonucleotides designed to extend previously determined sequences.

  4. Is the Framework of Cohn's 'Tritope Model' for How T Cell Receptors Recognize Peptide/Self-MHC Complexes and Allo-MHC Plausible?

    PubMed

    Bretscher, Peter A

    2016-05-01

    Cohn has developed the tritope model to describe how distinct domains of the T cell receptor (TcR) recognize peptide/self-MHC complexes and allo-MHC. He has over the years employed this model as a framework for considering how the TcR might mediate various signals [1-5]. In a recent publication [5], Cohn employs the Tritope Model to propose a detailed mechanism for the T cell receptor's involvement in positive thymic selection [5]. During a review of this proposal, I became uneasy over the plausibility of the underlying framework of the Tritope Model. I outline here the evolutionary considerations making me question this framework. I also suggest that the proposed framework underlying the Tritope Model makes strong predictions whose validity can most probably be assessed by considering observations reported in the literature.

  5. Selective immunosuppression by administration of major histocompatibility complex (MHC) class II-binding peptides. I. Evidence for in vivo MHC blockade preventing T cell activation

    PubMed Central

    1992-01-01

    Draining lymph node cells (LNC) from mice immunized with hen egg white lysozyme (HEL) display at their surface antigen-MHC complexes able to stimulate, in the absence of any further antigen addition, HEL peptide- specific, class II-restricted T cell hybridomas. Chloroquine addition to these LNC cultures fails to inhibit antigen presentation, indicating that antigenic complexes of class II molecules and HEL peptides are formed in vivo. MHC class II restriction of antigen presentation by LNC from HEL-primed mice was verified by the use of anti-class II monoclonal antibodies. Coinjection of HEL and the I-Ak-binding peptide HEL 112-129 in mice of H-2k haplotype inhibits the ability of LNC to stimulate I-Ak-restricted, HEL 46-61-specific T cell hybridomas. Similar results are obtained in mice coinjected with the HEL peptides 46-61 and 112-129. Inhibition of T hybridoma activation can also be observed using as antigen-presenting cells irradiated, T cell-depleted LNC from mice coinjected with HEL 46-61 and HEL 112-129, ruling out the possible role of either specific or nonspecific suppressor T cells. Inhibition of T cell proliferation is associated with MHC-specific inhibition of antigen presentation and with occupancy by the competitor of class II binding sites, as measured by activation of peptide- specific T cell hybridomas. These results demonstrate that administration of MHC class II binding peptide competitors selectively inhibits antigen presentation to class II-restricted T cells, indicating competitive blockade of class II molecules in vivo. PMID:1569402

  6. An MHC-defined primate model reveals significant rejection of bone marrow after mixed-chimerism induction despite full MHC matching

    PubMed Central

    Larsen, Christian P.; Page, Andrew; Linzie, Kelly Hamby; Russell, Maria; Deane, Taylor; Stempora, Linda; Strobert, Elizabeth; Penedo, Maria Cecilia T.; Ward, Thea; Wiseman, Roger; O'Connor, David; Miller, Weston; Sen, Sharon; Singh, Karnail; Kean, Leslie S.

    2010-01-01

    In murine models, mixed hematopoietic chimerism-induction leads to robust immune tolerance. However, translation to primates and to patients has been difficult. In this study, we used a novel MHC-defined rhesus macaque model to examine the impact of MHC matching on the stability of costimulation blockade/sirolimus-mediated chimerism, and to probe possible mechanisms of bone marrow rejection after non-myeloablative transplant. Using busulfan-based pre-transplant preparation and maintenance immunosuppression with sirolimus, as well as CD28- and CD154-blockade, all recipients demonstrated donor engraftment after transplant. However, the mixed-chimerism that resulted was compartmentalized, with recipients demonstrating significantly higher whole blood chimerism compared to T cell chimerism Thus, the vast majority of T cells present post-transplant were recipient- rather than donor-derived. Surprisingly, even in MHC-matched transplants, rejection of donor hematopoiesis predominated after immunosuppression withdrawal. Weaning of immunosuppression was associated with a surge of antigen-experienced T cells, and transplant rejection was associated with the acquisition of donor-directed T cell alloreactivity. These results suggest that a reservoir of alloreactive cells was present despite prior costimulation blockade and sirolimus, and that the post-immunosuppression lymphocytic rebound may have lead to a phenotypic shift in these recipient T cells towards an activated, antigen experienced phenotype, and ultimately, to transplant rejection. PMID:20849552

  7. Spatial-Temporal Expression of Non-classical MHC Class I Molecules in the C57 Mouse Brain.

    PubMed

    Liu, Jiane; Shen, Yuqing; Li, Mingli; Lv, Dan; Zhang, Aifeng; Peng, Yaqin; Miao, Fengqin; Zhang, Jianqiong

    2015-07-01

    Recent studies clearly demonstrate major histocompatibility complex (MHC) class I expression in the brain plays an important functional role in neural development and plasticity. A previous study from our laboratory demonstrated the temporal and spatial expression patterns of classical MHC class I molecules in the brain of C57 mice. Studies regarding non-classical MHC class I molecules remain limited. Here we examine the expression of non-classical MHC class I molecules in mouse central nervous system (CNS) during embryonic and postnatal developmental stages using in situ hybridization and immunofluorescence. We find non-classical MHC class I molecules, M3/T22/Q1, are expressed in the cerebral cortex, neuroepithelium of the lateral ventricle, neuroepithelium of aquaeductus and developing cerebellum during embryonic developmental stages. During the postnatal period from P0 to adult, non-classical MHC class I mRNAs are detected in olfactory bulb, hippocampus, cerebellum and some nerve nuclei. Overall, the expression patterns of non-classical MHC class I molecules are similar to those of classical MHC class I molecules in the developing mouse brain. In addition, non-classical MHC class I molecules are present in the H2-K(b) and H2-D(b) double knock-out mice where their expression levels are greatly increased within the same locations as compared to wild type mice. The elucidation and discovery of the expression profile of MHC class I molecules during development is important for supporting an enhanced understanding of their physiological and potential pathological roles within the CNS.

  8. Characterization and expression of MHC class II alpha and II beta genes in mangrove red snapper (Lutjanus argentimaculatus).

    PubMed

    Wang, Tianyan; Tan, Shangjin; Cai, Zhonghua

    2015-12-01

    The major histocompatibility complex (MHC) class II plays a key role in adaptive immunity by presenting foreign peptides to CD4(+) T cells and by triggering the adaptive immune response. While the structure and function of MHC class II have been well characterized in mammalian, limited research has been done on fishes. In this study, we characterized the gene structure and expression of MHC class II α (Lunar-DAA) and II β (Lunar-DAB) of mangrove red snapper (Lutjanus argentimaculatus). Both genes shared, respectively, a high similarity and typical features with other vertebrate MHC class II α and II β. The phylogenetic analysis of the deduced peptides revealed that both Lunar-DAA and Lunar-DAB were located in the teleost subclass. Western blotting analyses indicated that both MHC class II α and II β were expressed ubiquitously in immune-related cells, tissues and organs, and that MHC class II α and II β chains existed mainly as heterodimers. While it was highly expressed in gills, thymus, head kidney (HK), spleen, head kidney macrophage and spleen leucocytes, MHC class II β chain was expressed with a low abundance in skin, intestine, stomach and heart. The highest expression of MHC class II β in thymus confirmed the conclusion that thymus is one of the primary lymphoid organs in fishes. The detection of MHC class II αβ dimers in HK macrophages and spleen leucocytes indicated that HK macrophages and spleen leucocytes play a critical role in the adaptive immunity in fishes. All these results provide valuable information for understanding the structure of MHC class II α and II β and their function in immune responses.

  9. Hepatitis C Virus Attenuates Interferon-Induced MHC Class I Expression and Decreases CD8+ T-Cell Effector Functions

    PubMed Central

    Kang, Wonseok; Sung, Pil Soo; Park, Su-Hyung; Yoon, Sarah; Chang, Dong-Yeop; Kim, Seungtaek; Han, Kwang Hyub; Kim, Ja Kyung; Rehermann, Barbara; Chwae, Yong-Joon; Shin, Eui-Cheol

    2015-01-01

    BACKGROUND & AIMS MHC class I-restricted CD8+ T cells are required for clearance of hepatitis C virus (HCV) infection. MHC class I expression is upregulated by type I and II interferons (IFNs). However, little is known about the effects of HCV infection on IFN-induced expression of MHC class I. METHODS We used the HCV cell culture system (HCVcc) with the genotype 2a Japanese Fulminant Hepatitis-1 strain to investigate IFN-induced expression of MHC class I and its regulatory mechanisms. HCVcc-infected Huh-7.5 cells were analyzed by flow cytometry, metabolic labeling, immunoprecipitation, and immunoblotting analyses. Protein kinase R (PKR) was knocked-down with lentiviruses that express small hairpin (sh)RNAs. The functional effects of MHC class I regulation by HCV were demonstrated in co-culture studies, using HCV-specific CD8+ T cells. RESULTS Although the baseline level of MHC class I was not affected by HCV infection, IFN-induced expression of MHC class I was notably attenuated in HCV-infected cells. This was associated with replicating HCV RNA, not with viral protein. HCV infection reduced IFN-induced synthesis of MHC class I protein and induced phosphorylation of PKR and eIF2α. IFN-induced MHC class I expression was restored by shRNA-mediated knockdown of PKR in HCV-infected cells. Co-culture of HCV-specific CD8+ T cells and HCV-infected cells that expressed HLA-A2 demonstrated that HCV infection reduced the effector functions of HCV-specific CD8+ T cells; these functions were restored by shRNA-mediated knockdown of PKR. CONCLUSIONS IFN-induced expression of MHC class I is attenuated in HCV-infected cells by activation of PKR, which reduces the effector functions of HCV-specific CD8+ T cells. This appears to be an important mechanism by which HCV circumvents antiviral adaptive immune responses. PMID:24486950

  10. Characterization and expression of MHC class II alpha and II beta genes in mangrove red snapper (Lutjanus argentimaculatus).

    PubMed

    Wang, Tianyan; Tan, Shangjin; Cai, Zhonghua

    2015-12-01

    The major histocompatibility complex (MHC) class II plays a key role in adaptive immunity by presenting foreign peptides to CD4(+) T cells and by triggering the adaptive immune response. While the structure and function of MHC class II have been well characterized in mammalian, limited research has been done on fishes. In this study, we characterized the gene structure and expression of MHC class II α (Lunar-DAA) and II β (Lunar-DAB) of mangrove red snapper (Lutjanus argentimaculatus). Both genes shared, respectively, a high similarity and typical features with other vertebrate MHC class II α and II β. The phylogenetic analysis of the deduced peptides revealed that both Lunar-DAA and Lunar-DAB were located in the teleost subclass. Western blotting analyses indicated that both MHC class II α and II β were expressed ubiquitously in immune-related cells, tissues and organs, and that MHC class II α and II β chains existed mainly as heterodimers. While it was highly expressed in gills, thymus, head kidney (HK), spleen, head kidney macrophage and spleen leucocytes, MHC class II β chain was expressed with a low abundance in skin, intestine, stomach and heart. The highest expression of MHC class II β in thymus confirmed the conclusion that thymus is one of the primary lymphoid organs in fishes. The detection of MHC class II αβ dimers in HK macrophages and spleen leucocytes indicated that HK macrophages and spleen leucocytes play a critical role in the adaptive immunity in fishes. All these results provide valuable information for understanding the structure of MHC class II α and II β and their function in immune responses. PMID:26454477

  11. Molecular Dynamics Simulations to Provide Insights into Epitopes Coupled to the Soluble and Membrane-Bound MHC-II Complexes

    PubMed Central

    Bello, Martiniano; Correa-Basurto, Jose

    2013-01-01

    Epitope recognition by major histocompatibility complex II (MHC-II) is essential for the activation of immunological responses to infectious diseases. Several studies have demonstrated that this molecular event takes place in the MHC-II peptide-binding groove constituted by the α and β light chains of the heterodimer. This MHC-II peptide-binding groove has several pockets (P1-P11) involved in peptide recognition and complex stabilization that have been probed through crystallographic experiments and in silico calculations. However, most of these theoretical calculations have been performed without taking into consideration the heavy chains, which could generate misleading information about conformational mobility both in water and in the membrane environment. Therefore, in absence of structural information about the difference in the conformational changes between the peptide-free and peptide-bound states (pMHC-II) when the system is soluble in an aqueous environment or non-covalently bound to a cell membrane, as the physiological environment for MHC-II is. In this study, we explored the mechanistic basis of these MHC-II components using molecular dynamics (MD) simulations in which MHC-II was previously co-crystallized with a small epitope (P7) or coupled by docking procedures to a large (P22) epitope. These MD simulations were performed at 310 K over 100 ns for the water-soluble (MHC-IIw, MHC-II-P7w, and MHC-II-P22w) and 150 ns for the membrane-bound species (MHC-IIm, MHC-II-P7m, and MHC-II-P22m). Our results reveal that despite the different epitope sizes and MD simulation environments, both peptides are stabilized primarily by residues lining P1, P4, and P6-7, and similar noncovalent intermolecular energies were observed for the soluble and membrane-bound complexes. However, there were remarkably differences in the conformational mobility and intramolecular energies upon complex formation, causing some differences with respect to how the two peptides are

  12. Molecular dynamics simulations to provide insights into epitopes coupled to the soluble and membrane-bound MHC-II complexes.

    PubMed

    Bello, Martiniano; Correa-Basurto, Jose

    2013-01-01

    Epitope recognition by major histocompatibility complex II (MHC-II) is essential for the activation of immunological responses to infectious diseases. Several studies have demonstrated that this molecular event takes place in the MHC-II peptide-binding groove constituted by the α and β light chains of the heterodimer. This MHC-II peptide-binding groove has several pockets (P1-P11) involved in peptide recognition and complex stabilization that have been probed through crystallographic experiments and in silico calculations. However, most of these theoretical calculations have been performed without taking into consideration the heavy chains, which could generate misleading information about conformational mobility both in water and in the membrane environment. Therefore, in absence of structural information about the difference in the conformational changes between the peptide-free and peptide-bound states (pMHC-II) when the system is soluble in an aqueous environment or non-covalently bound to a cell membrane, as the physiological environment for MHC-II is. In this study, we explored the mechanistic basis of these MHC-II components using molecular dynamics (MD) simulations in which MHC-II was previously co-crystallized with a small epitope (P7) or coupled by docking procedures to a large (P22) epitope. These MD simulations were performed at 310 K over 100 ns for the water-soluble (MHC-IIw, MHC-II-P(7w), and MHC-II-P(22w)) and 150 ns for the membrane-bound species (MHC-IIm, MHC-II-P(7m), and MHC-II-P(22m)). Our results reveal that despite the different epitope sizes and MD simulation environments, both peptides are stabilized primarily by residues lining P1, P4, and P6-7, and similar noncovalent intermolecular energies were observed for the soluble and membrane-bound complexes. However, there were remarkably differences in the conformational mobility and intramolecular energies upon complex formation, causing some differences with respect to how the two peptides

  13. MHC variability supports dog domestication from a large number of wolves: high diversity in Asia

    PubMed Central

    Niskanen, A K; Hagström, E; Lohi, H; Ruokonen, M; Esparza-Salas, R; Aspi, J; Savolainen, P

    2013-01-01

    The process of dog domestication is still somewhat unresolved. Earlier studies indicate that domestic dogs from all over the world have a common origin in Asia. So far, major histocompatibility complex (MHC) diversity has not been studied in detail in Asian dogs, although high levels of genetic diversity are expected at the domestication locality. We sequenced the second exon of the canine MHC gene DLA–DRB1 from 128 Asian dogs and compared our data with a previously published large data set of MHC alleles, mostly from European dogs. Our results show that Asian dogs have a higher MHC diversity than European dogs. We also estimated that there is only a small probability that new alleles have arisen by mutation since domestication. Based on the assumption that all of the currently known 102 DLA–DRB1 alleles come from the founding wolf population, we simulated the number of founding wolf individuals. Our simulations indicate an effective population size of at least 500 founding wolves, suggesting that the founding wolf population was large or that backcrossing has taken place. PMID:23073392

  14. Allospecific rejection of MHC class I-deficient bone marrow by CD8 T cells.

    PubMed

    Haspot, F; Li, H W; Lucas, C L; Fehr, T; Beyaz, S; Sykes, M

    2014-01-01

    Avoidance of long-term immunosuppression is a desired goal in organ transplantation. Mixed chimerism offers a promising approach to tolerance induction, and we have aimed to develop low-toxicity, nonimmunodepleting approaches to achieve this outcome. In a mouse model achieving fully MHC-mismatched allogeneic bone marrow engraftment with minimal conditioning (3 Gy total body irradiation followed by anti-CD154 and T cell-depleted allogeneic bone marrow cells), CD4 T cells in the recipient are required to promote tolerance of preexisting alloreactive recipient CD8 T cells and thereby permit chimerism induction. We now demonstrate that mice devoid of CD4 T cells and NK cells reject MHC Class I-deficient and Class I/Class II-deficient marrow in a CD8 T cell-dependent manner. This rejection is specific for donor alloantigens, since recipient hematopoiesis is not affected by donor marrow rejection and MHC Class I-deficient bone marrow that is syngeneic to the recipient is not rejected. Recipient CD8 T cells are activated and develop cytotoxicity against MHC Class I-deficient donor cells in association with rejection. These data implicate a novel CD8 T cell-dependent bone marrow rejection pathway, wherein recipient CD8 T cells indirectly activated by donor alloantigens promote direct killing, in a T cell receptor-independent manner, of Class I-deficient donor cells.

  15. IL-10 is necessary and sufficient for autoimmune diabetes in conjunction with NOD MHC homozygosity

    PubMed Central

    1996-01-01

    Contrary to expectations based on in vitro experiments, we previously found that pancreatic IL-10 did not inhibit autoimmune diabetes but accelerated it in an MHC-dependent manner. Therefore, the ability of IL- 10 to overcome the absence of all non-MHC diabetes susceptibility (Idd) alleles was studied in transgenic mice expressing pancreatic IL-10 backcrossed to B10.H2g7 congenic mice, which have no Idd alleles other than NOD MHC (H2g7). IL-10 transgenic backcross 1 (BC1) mice with H2g7/g7 haplotype developed clear-cut insulitis and diabetes, but neither transgenic mice with the H2g/b haplotype nor nontransgenic BC1 mice did so. Further implicating IL-10 in autoimmune diabetes, anti-IL- 10 antibody treatment inhibited the development of insulitis in NOD mice. These results suggest that IL-10 may be necessary and sufficient for producing autoimmune diabetes in conjunction with NOD MHC homozygosity and that some Idd genes may be related to the regulation of IL-10. PMID:8676087

  16. Is Promiscuity Associated with Enhanced Selection on MHC-DQα in Mice (genus Peromyscus)?

    PubMed Central

    MacManes, Matthew D.; Lacey, Eileen A.

    2012-01-01

    Reproductive behavior may play an important role in shaping selection on Major Histocompatibility Complex (MHC) genes. For example, the number of sexual partners that an individual has may affect exposure to sexually transmitted pathogens, with more partners leading to greater exposure and, hence, potentially greater selection for variation at MHC loci. To explore this hypothesis, we examined the strength of selection on exon 2 of the MHC-DQα locus in two species of Peromyscus. While the California mouse (P. californicus) is characterized by lifetime social and genetic monogamy, the deer mouse (P. maniculatus) is socially and genetically promiscuous; consistent with these differences in mating behavior, the diversity of bacteria present within the reproductive tracts of females is significantly greater for P. maniculatus. To test the prediction that more reproductive partners and exposure to a greater range of sexually transmitted pathogens are associated with enhanced diversifying selection on genes responsible for immune function, we compared patterns and levels of diversity at the Class II MHC-DQα locus in sympatric populations of P. maniculatus and P. californicus. Using likelihood based analyses, we show that selection is enhanced in the promiscuous P. maniculatus. This study is the first to compare the strength of selection in wild sympatric rodents with known differences in pathogen milieu. PMID:22649541

  17. Genetic variation of major histocompatibility complex (MHC) in wild Red Junglefowl (Gallus gallus).

    PubMed

    Nguyen-Phuc, Hoa; Fulton, Janet E; Berres, Mark E

    2016-02-01

    The major histocompatibility complex (MHC) is a multi-family gene cluster that encodes proteins with immuno-responsive function. While studies of MHC in domesticated poultry are relatively common, very little is known about this highly polymorphic locus in wild Red Junglefowl (Gallus gallus), the natural progenitor of domestic chickens. We investigated the diversity of MHC within and among four wild Red Junglefowl populations across diversified natural habitats in South Central Vietnam. Based on a SNP panel of 84 sites spanning 210 Kb of the MHC-B locus, we identified 310 unique haplotypes in 398 chromosomes. None of these haplotypes have been described before and we did not observe any of the wild Red Junglefowl haplotypes in domesticated chickens. Analysis of molecular variance (AMOVA) revealed that 94.51% of observed haplotype variation was accounted for at the within individual level. Little genetic variance was apportioned within and among populations, the latter accounting only for 0.83%. We also found evidence of increased recombination, including numerous hotspots, and limited linkage disequilibrium among the 84 SNP sites. Compared to an average haplotype diversity of 3.55% among seventeen lines of domestic chickens, our results suggest extraordinarily high haplotype diversity remains in wild Red Junglefowl and is consistent with a pattern of balancing selection. Wild Red Junglefowl in Vietnam, therefore, represent a rich resource of natural genomic variation independent from artificial selection. PMID:26839415

  18. MHC-derived allopeptide activates TCR-biased CD8+ Tregs and suppresses organ rejection

    PubMed Central

    Picarda, Elodie; Bézie, Séverine; Venturi, Vanessa; Echasserieau, Klara; Mérieau, Emmanuel; Delhumeau, Aurélie; Renaudin, Karine; Brouard, Sophie; Bernardeau, Karine; Anegon, Ignacio; Guillonneau, Carole

    2014-01-01

    In a rat heart allograft model, preventing T cell costimulation with CD40Ig leads to indefinite allograft survival, which is mediated by the induction of CD8+CD45RClo regulatory T cells (CD8+CD40Ig Tregs) interacting with plasmacytoid dendritic cells (pDCs). The role of TCR-MHC-peptide interaction in regulating Treg activity remains a topic of debate. Here, we identified a donor MHC class II–derived peptide (Du51) that is recognized by TCR-biased CD8+CD40Ig Tregs and activating CD8+CD40Ig Tregs in both its phenotype and suppression of antidonor alloreactive T cell responses. We generated a labeled tetramer (MHC-I RT1.Aa/Du51) to localize and quantify Du51-specific T cells within rat cardiac allografts and spleen. RT1.Aa/Du51-specific CD8+CD40Ig Tregs were the most suppressive subset of the total Treg population, were essential for in vivo tolerance induction, and expressed a biased, restricted Vβ11-TCR repertoire in the spleen and the graft. Finally, we demonstrated that treatment of transplant recipients with the Du51 peptide resulted in indefinite prolongation of allograft survival. These results show that CD8+CD40Ig Tregs recognize a dominant donor antigen, resulting in TCR repertoire alterations in the graft and periphery. Furthermore, this allopeptide has strong therapeutic activity and highlights the importance of TCR-peptide-MHC interaction for Treg generation and function. PMID:24789907

  19. Differential scanning fluorimetry based assessments of the thermal and kinetic stability of peptide-MHC complexes.

    PubMed

    Hellman, Lance M; Yin, Liusong; Wang, Yuan; Blevins, Sydney J; Riley, Timothy P; Belden, Orrin S; Spear, Timothy T; Nishimura, Michael I; Stern, Lawrence J; Baker, Brian M

    2016-05-01

    Measurements of thermal stability by circular dichroism (CD) spectroscopy have been widely used to assess the binding of peptides to MHC proteins, particularly within the structural immunology community. Although thermal stability assays offer advantages over other approaches such as IC50 measurements, CD-based stability measurements are hindered by large sample requirements and low throughput. Here we demonstrate that an alternative approach based on differential scanning fluorimetry (DSF) yields results comparable to those based on CD for both class I and class II complexes. As they require much less sample, DSF-based measurements reduce demands on protein production strategies and are amenable for high throughput studies. DSF can thus not only replace CD as a means to assess peptide/MHC thermal stability, but can complement other peptide-MHC binding assays used in screening, epitope discovery, and vaccine design. Due to the physical process probed, DSF can also uncover complexities not observed with other techniques. Lastly, we show that DSF can also be used to assess peptide/MHC kinetic stability, allowing for a single experimental setup to probe both binding equilibria and kinetics. PMID:26906089

  20. MHC class II B diversity in blue tits: a preliminary study

    PubMed Central

    Aguilar, Juan Rivero-de; Schut, Elske; Merino, Santiago; Martínez, Javier; Komdeur, Jan; Westerdahl, Helena

    2013-01-01

    In this study, we partly characterize major histocompatibility complex (MHC) class II B in the blue tit (Cyanistes caeruleus). A total of 22 individuals from three different European locations: Spain, The Netherlands, and Sweden were screened for MHC allelic diversity. The MHC genes were investigated using both PCR-based methods and unamplified genomic DNA with restriction fragment length polymorphism (RFLP) and southern blots. A total of 13 different exon 2 sequences were obtained independently from DNA and/or RNA, thus confirming gene transcription and likely functionality of the genes. Nine out of 13 alleles were found in more than one country, and two alleles appeared in all countries. Positive selection was detected in the region coding for the peptide binding region (PBR). A maximum of three alleles per individual was detected by sequencing and the RFLP pattern consisted of 4–7 fragments, indicating a minimum number of 2–4 loci per individual. A phylogenetic analysis, demonstrated that the blue tit sequences are divergent compared to sequences from other passerines resembling a different MHC lineage than those possessed by most passerines studied to date. PMID:23919136

  1. The MHC and non-random mating in a captive population of Chinook salmon.

    PubMed

    Neff, B D; Garner, S R; Heath, J W; Heath, D D

    2008-08-01

    Detailed analysis of variation in reproductive success can provide an understanding of the selective pressures that drive the evolution of adaptations. Here, we use experimental spawning channels to assess phenotypic and genotypic correlates of reproductive success in Chinook salmon (Oncorhynchus tshawytscha). Groups of 36 fish in three different sex ratios (1:2, 1:1 and 2:1) were allowed to spawn and the offspring were collected after emergence from the gravel. Microsatellite genetic markers were used to assign parentage of each offspring, and the parents were also typed at the major histocompatibility class IIB locus (MHC). We found that large males, and males with brighter coloration and a more green/blue hue on their lateral integument sired more offspring, albeit only body size and brightness had independent effects. There was no similar relationship between these variables and female reproductive success. Furthermore, there was no effect of sex ratio on the strength or significance of any of the correlations. Females mated non-randomly at the MHC, appearing to select mates that produced offspring with greater genetic diversity as measured by amino-acid divergence. Females mated randomly with respect to male genetic relatedness and males mated randomly with respect to both MHC and genetic relatedness. These results indicate that sexual selection favours increased body size and perhaps integument coloration in males as well as increases genetic diversity at the MHC by female mate choice.

  2. Sequence, expression, and polymorphism of the Peromyscus leucopus Mhc class Ib gene, M4.

    PubMed

    Crew, Mark D; Bates, Linda M

    2003-05-01

    The H2 M region harbors about 20 class I genes or gene fragments the function of which are largely obscure. The rat Mhc ( RT1) appears to contain several orthologs of H2 M region genes although orthologs in more distantly related species have yet to be clearly identified. In this report, the sequence of a genomic clone containing a Peromyscus leucopus Mhc ( Pele) class I gene is presented and based on sequence similarity was found to be the Pele ortholog of H2-M4. Unlike H2-M4, which is a pseudogene, PeleM4 appeared to be an intact Mhc class Ib gene. Appropriately splice PeleM4 mRNA transcripts were detected in the liver, lung, and thymus. Polymorphism of PeleM4 was examined by sequencing exon 2 and 3 of the PeleM4 gene from seven different Pele haplotypes and six PeleM4 alleles were identified. These results suggest that the existence of some H2 M region class Ib genes predates the divergence of Peromyscus and Mus genera which occurred 40-60 million years ago and provide an example of unique pathways in the evolution of Mhc class Ib genes.

  3. The first step of peptide selection in antigen presentation by MHC class I molecules

    PubMed Central

    Garstka, Malgorzata A.; Fish, Alexander; Celie, Patrick H. N.; Joosten, Robbie P.; Janssen, George M. C.; Berlin, Ilana; Hoppes, Rieuwert; Stadnik, Magda; Janssen, Lennert; Ovaa, Huib; van Veelen, Peter A.; Perrakis, Anastassis; Neefjes, Jacques

    2015-01-01

    MHC class I molecules present a variable but limited repertoire of antigenic peptides for T-cell recognition. Understanding how peptide selection is achieved requires mechanistic insights into the interactions between the MHC I and candidate peptides. We find that, at first encounter, MHC I H-2Kb considers a wide range of peptides, including those with expanded N termini and unfitting anchor residues. Discrimination occurs in the second step, when noncanonical peptides dissociate with faster exchange rates. This second step exhibits remarkable temperature sensitivity, as illustrated by numerous noncanonical peptides presented by H-2Kb in cells cultured at 26 °C relative to 37 °C. Crystallographic analyses of H-2Kb–peptide complexes suggest that a conformational adaptation of H-2Kb drives the decisive step in peptide selection. We propose that MHC class I molecules consider initially a large peptide pool, subsequently refined by a temperature-sensitive induced-fit mechanism to retain the canonical peptide repertoire. PMID:25605945

  4. MHC variability supports dog domestication from a large number of wolves: high diversity in Asia.

    PubMed

    Niskanen, A K; Hagström, E; Lohi, H; Ruokonen, M; Esparza-Salas, R; Aspi, J; Savolainen, P

    2013-01-01

    The process of dog domestication is still somewhat unresolved. Earlier studies indicate that domestic dogs from all over the world have a common origin in Asia. So far, major histocompatibility complex (MHC) diversity has not been studied in detail in Asian dogs, although high levels of genetic diversity are expected at the domestication locality. We sequenced the second exon of the canine MHC gene DLA-DRB1 from 128 Asian dogs and compared our data with a previously published large data set of MHC alleles, mostly from European dogs. Our results show that Asian dogs have a higher MHC diversity than European dogs. We also estimated that there is only a small probability that new alleles have arisen by mutation since domestication. Based on the assumption that all of the currently known 102 DLA-DRB1 alleles come from the founding wolf population, we simulated the number of founding wolf individuals. Our simulations indicate an effective population size of at least 500 founding wolves, suggesting that the founding wolf population was large or that backcrossing has taken place.

  5. Accurate structure prediction of peptide–MHC complexes for identifying highly immunogenic antigens

    SciTech Connect

    Park, Min-Sun; Park, Sung Yong; Miller, Keith R.; Collins, Edward J.; Lee, Ha Youn

    2013-11-01

    Designing an optimal HIV-1 vaccine faces the challenge of identifying antigens that induce a broad immune capacity. One factor to control the breadth of T cell responses is the surface morphology of a peptide–MHC complex. Here, we present an in silico protocol for predicting peptide–MHC structure. A robust signature of a conformational transition was identified during all-atom molecular dynamics, which results in a model with high accuracy. A large test set was used in constructing our protocol and we went another step further using a blind test with a wild-type peptide and two highly immunogenic mutants, which predicted substantial conformational changes in both mutants. The center residues at position five of the analogs were configured to be accessible to solvent, forming a prominent surface, while the residue of the wild-type peptide was to point laterally toward the side of the binding cleft. We then experimentally determined the structures of the blind test set, using high resolution of X-ray crystallography, which verified predicted conformational changes. Our observation strongly supports a positive association of the surface morphology of a peptide–MHC complex to its immunogenicity. Our study offers the prospect of enhancing immunogenicity of vaccines by identifying MHC binding immunogens.

  6. Lactate induced HIF-1α-PRMT1 cross talk affects MHC I expression in monocytes.

    PubMed

    Gupta, Piyushi; Singh, Ankita; Gowda, Pruthvi; Ghosh, Sadashib; Chatterjee, Arpita; Sen, Ellora

    2016-10-01

    Tumor infiltrating monocytes play a crucial role in tumor immune surveillance. As lactate is an important component of the tumor milieu, we investigated its role in the transcriptional regulation of MHC I which is crucial for mounting effective immune responses against tumors. Lactate elevated MHC class I expression in monocytes. Increase in HLAB expression was concomitant with increase in HIF-1α and decrease in PRMT1 levels. Interestingly, a reciprocal relationship was observed between PRMT1 and HIF-1α. While HIF-1α inhibition decreased lactate induced MHC I, both pharmacological inhibition and siRNA mediated knockdown of PRMT1 upregulated HLAB levels. PRMT1 over-expression rescued lactate mediated increase in MHC I expression. Lactate mediated changes in nucleosomal occupancy on HLAB promoter facilitated a chromatin landscape that favoured decreased recruitment of CREB and PRMT1 on CRE site of HLAB locus. The effect of lactate on the chromatin landscape of HLAB was completely mimicked by PRMT1 inhibitor AMI-1 in terms of nucleosomal occupancy and CREB recruitment. Besides demonstrating the importance of lactate in the transcriptional regulation of HLAB, this study highlights for the first time the (i) existence of HIF-1α-PRMT1 regulatory loop and (ii) role of PRMT1 in modulating chromatin landscape crucial for facilitating HLAB gene expression. PMID:27521225

  7. MHC class II molecules, cathepsins, and La/SSB proteins in lacrimal acinar cell endomembranes.

    PubMed

    Yang, T; Zeng, H; Zhang, J; Okamoto, C T; Warren, D W; Wood, R L; Bachmann, M; Mircheff, A K

    1999-11-01

    Sjögren's syndrome is a chronic autoimmune disease affecting the lacrimal glands and other epithelia. It has been suggested that acinar cells of the lacrimal glands provoke local autoimmune responses, leading to Sjögren's syndrome when they begin expressing major histocompatibility complex (MHC) class II molecules. We used isopycnic centrifugation and phase partitioning to resolve compartments that participate in traffic between the basolateral membranes and the endomembrane system to test the hypothesis that MHC class II molecules enter compartments that contain potential autoantigens, i.e., La/SSB, and enzymes capable of proteolytically processing autoantigen, i.e., cathepsins B and D. A series of compartments identified as secretory vesicle membranes, prelysosomes, and microdomains of the trans-Golgi network involved in traffic to the basolateral membrane, to the secretory vesicles, and to the prelysosomes were all prominent loci of MHC class II molecules, La/SSB, and cathepsins B and D. These observations support the thesis that lacrimal gland acinar cells that have been induced to express MHC class II molecules function as autoantigen processing and presenting cells.

  8. A high throughput MHC II binding assay for quantitative analysis of peptide epitopes.

    PubMed

    Salvat, Regina; Moise, Leonard; Bailey-Kellogg, Chris; Griswold, Karl E

    2014-03-25

    Biochemical assays with recombinant human MHC II molecules can provide rapid, quantitative insights into immunogenic epitope identification, deletion, or design(1,2). Here, a peptide-MHC II binding assay is scaled to 384-well format. The scaled down protocol reduces reagent costs by 75% and is higher throughput than previously described 96-well protocols(1,3-5). Specifically, the experimental design permits robust and reproducible analysis of up to 15 peptides against one MHC II allele per 384-well ELISA plate. Using a single liquid handling robot, this method allows one researcher to analyze approximately ninety test peptides in triplicate over a range of eight concentrations and four MHC II allele types in less than 48 hr. Others working in the fields of protein deimmunization or vaccine design and development may find the protocol to be useful in facilitating their own work. In particular, the step-by-step instructions and the visual format of JoVE should allow other users to quickly and easily establish this methodology in their own labs.

  9. A High Throughput MHC II Binding Assay for Quantitative Analysis of Peptide Epitopes

    PubMed Central

    Salvat, Regina; Moise, Leonard; Bailey-Kellogg, Chris; Griswold, Karl E.

    2014-01-01

    Biochemical assays with recombinant human MHC II molecules can provide rapid, quantitative insights into immunogenic epitope identification, deletion, or design1,2. Here, a peptide-MHC II binding assay is scaled to 384-well format. The scaled down protocol reduces reagent costs by 75% and is higher throughput than previously described 96-well protocols1,3-5. Specifically, the experimental design permits robust and reproducible analysis of up to 15 peptides against one MHC II allele per 384-well ELISA plate. Using a single liquid handling robot, this method allows one researcher to analyze approximately ninety test peptides in triplicate over a range of eight concentrations and four MHC II allele types in less than 48 hr. Others working in the fields of protein deimmunization or vaccine design and development may find the protocol to be useful in facilitating their own work. In particular, the step-by-step instructions and the visual format of JoVE should allow other users to quickly and easily establish this methodology in their own labs. PMID:24686319

  10. Macroautophagy in Endogenous Processing of Self- and Pathogen-Derived Antigens for MHC Class II Presentation

    PubMed Central

    Duraes, Fernanda V.; Niven, Jennifer; Dubrot, Juan; Hugues, Stéphanie; Gannagé, Monique

    2015-01-01

    Although autophagy is a process that has been studied for several years its link with antigen presentation and T cell immunity has only recently emerged. Autophagy, which means “self-eating,” is important to maintain cell homeostasis and refers to a collection of mechanisms that delivers intracellular material for degradation into lysosomes. Among them, macroautophagy pathway has many implications in different biological processes, including innate and adaptive immunity. In particular, macroautophagy can provide a substantial source of intracellular antigens for loading onto MHC class II molecules using the alternative MHC class II pathway. Through autophagosomes, endogenous self-antigens as well as antigens derived from intracellular pathogens can be delivered to MHC class II compartment and presented to CD4+ T cells. The pathway will, therefore, impact both peripheral T cell tolerance and the pathogen specific immune response. This review will describe the contribution of autophagy to intracellular presentation of endogenous self- or pathogen-derived antigens via MHC class II and its consequences on CD4+ T cell responses. PMID:26441964

  11. Donor MHC class II antigen is essential for induction of transplantation tolerance by bone marrow cells.

    PubMed

    Umemura, A; Monaco, A P; Maki, T

    2000-05-01

    Posttransplant infusion of donor bone marrow cells (BMC) induces tolerance to allografts in adult mice, dogs, nonhuman primates, and probably humans. Here we used a mouse skin allograft model and an allogeneic radiation chimera model to examine the role of MHC Ags in tolerance induction. Infusion of MHC class II Ag-deficient (CIID) BMC failed to prolong C57BL/6 (B6) skin grafts in ALS- and rapamycin-treated B10.A mice, whereas wild-type B6 or MHC class I Ag-deficient BMC induced prolongation. Removal of class II Ag-bearing cells from donor BMC markedly reduced the tolerogenic effect compared with untreated BMC, although graft survival was significantly longer in mice given depleted BMC than that in control mice given no BMC. Infusion of CIID BMC into irradiated syngeneic B6 or allogeneic B10.A mice produced normal lymphoid cell reconstitution including CD4+ T cells except for the absence of class II Ag-positive cells. However, irradiated B10.A mice reconstituted with CIID BMC rejected all B6 and a majority of CIID skin grafts despite continued maintenance of high degree chimerism. B10.A mice reconstituted with B6 BMC maintained chimerism and accepted both B6 and CIID skin grafts. Thus, expression of MHC class II Ag on BMC is essential for allograft tolerance induction and peripheral chimerism with cells deficient in class II Ag does not guarantee allograft acceptance. PMID:10779744

  12. An MHC Class I Immune Evasion Gene of Marek's Disease Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s Disease Virus (MDV) is a widespread pathogen of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to MHC class I down-regulation (Virology 282:198–205 (2001)), but the gene(s)involved have not been identified. Here we demonstrate tha...

  13. MHC genes and oxidative stress in sticklebacks: an immuno-ecological approach

    PubMed Central

    Kurtz, Joachim; Wegner, K. Mathias; Kalbe, Martin; Reusch, Thorsten B.H; Schaschl, Helmut; Hasselquist, Dennis; Milinski, Manfred

    2006-01-01

    Individual variation in the susceptibility to infection may result from the varying ability of hosts to specifically recognize different parasite strains. Alternatively, there could be individual host differences in fitness costs of immune defence. Although, these two explanations are not mutually exclusive, they have so far been treated in separate experimental approaches. To analyse potential relationships, we studied body condition and oxidative stress, which may reflect costs of immunity, in three-spined sticklebacks that had been experimentally exposed to three species of naturally occurring parasite. These sticklebacks differed in a trait, which is crucial to specific parasite defence, i.e. individual genetic diversity at major histocompatibility complex (MHC) class IIB loci. Oxidative stress was quantified as tissue acrolein, a technique that has been applied to questions of immuno-ecology for the first time. We measured gene expression at the MHC and other estimates of immune activation. We found that fish with high levels of MHC expression had poor condition and elevated oxidative stress. These results indicate that MHC-based specific immunity is connected with oxidative stress. They could, thus, also be relevant in the broader context of the evolution of sexually selected signals that are based on carotenoids and are, thus supposed to reflect oxidative stress resistance. PMID:16777730

  14. MHC/Peptide-Specific Interaction of the Humoral Immune System: A New Category of Antibodies.

    PubMed

    Held, Gerhard; Luescher, Immanuel F; Neumann, Frank; Papaioannou, Chrysostomos; Schirrmann, Thomas; Sester, Martina; Smola, Sigrun; Pfreundschuh, Michael

    2015-11-01

    Abs bind to unprocessed Ags, whereas cytotoxic CD8(+) T cells recognize peptides derived from endogenously processed Ags presented in the context of class I MHC complexes. We screened, by ELISA, human sera for Abs reacting specifically with the influenza matrix protein (IMP)-derived peptide(58-66) displayed by HLA-A*0201 complexes. Among 653 healthy volunteers, blood donors, and women on delivery, high-titered HLA-A*0201/IMP(58-66) complex-specific IgG Abs were detected in 11 females with a history of pregnancies and in 1 male, all HLA-A*0201(-). These Abs had the same specificity as HLA-A*0201/IMP(58-66)-specific cytotoxic T cells and bound neither to HLA-A*0201 nor the peptide alone. No such Abs were detected in HLA-A*0201(+) volunteers. These Abs were not cross-reactive to other self-MHC class I alleles displaying IMP(58-66), but bound to MHC class I complexes of an HLA nonidentical offspring. HLA-A*0201/IMP(58-66) Abs were also detected in the cord blood of newborns, indicating that HLA-A*0201/IMP(58-66) Abs are produced in HLA-A*0201(-) mothers and enter the fetal blood system. That Abs can bind to peptides derived from endogenous Ags presented by MHC complexes opens new perspectives on interactions between the cellular and humoral immune system. PMID:26416277

  15. Detection, phenotyping, and quantification of antigen-specific T cells using a peptide-MHC dodecamer.

    PubMed

    Huang, Jun; Zeng, Xun; Sigal, Natalia; Lund, Peder J; Su, Laura F; Huang, Huang; Chien, Yueh-hsiu; Davis, Mark M

    2016-03-29

    Here we report a peptide-MHC (pMHC) dodecamer as a "next generation" technology that is a significantly more sensitive and versatile alternative to pMHC tetramers for the detection, isolation, and phenotypic analysis of antigen-specific T cells. In particular, dodecamers are able to detect two- to fivefold more antigen-specific T cells in both human and murine CD4(+)and CD8(+)αβ T-cell compartments compared with the equivalent tetramers. The low-affinity, tetramer-negative, dodecamer-positive T cells showed comparable effector cytokine responses as those of high-affinity, tetramer-positive T cells. Dodecamers are able to detect early stage CD4(+)CD8(+)double-positive thymocytes on which T-cell receptors are 10- to 30-fold less dense than mature T cells. Dodecamers also show utility in the analysis of γδ T cells and in cytometry by time-of-flight applications. This construct has a simple structure with a central scaffold protein linked to four streptavidin molecules, each having three pMHC ligands or other molecules. The dodecamer is straightforward and inexpensive to produce and is compatible with current tetramer technology and commercially available streptavidin conjugates. PMID:26979955

  16. AN MHC class I immune evasion gene of Marek's disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek's disease virus (MDV) is a widespread a-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here...

  17. Characterization of anti-channel catfish MHC class II monoclonal antibodies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study characterizes four monoclonal antibodies (mAb) developed against the major histocompatibility complex (MHC) class II beta chain of the channel catfish, Ictalurus punctatus. Immunoprecipitations using catfish clonal B cells revealed that each of these mAbs immunoselected proteins of appro...

  18. Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules, which are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating cytotoxic lymphocytes (CTLs). The polymorp...

  19. MHC class II DQB diversity in the Japanese black bear, Ursus thibetanus japonicus

    PubMed Central

    2012-01-01

    Background The major histocompatibility complex (MHC) genes are one of the most important genetic systems in the vertebrate immune response. The diversity of MHC genes may directly influence the survival of individuals against infectious disease. However, there has been no investigation of MHC diversity in the Asiatic black bear (Ursus thibetanus). Here, we analyzed 270-bp nucleotide sequences of the entire exon 2 region of the MHC DQB gene by using 188 samples from the Japanese black bear (Ursus thibetanus japonicus) from 12 local populations. Results Among 185 of 188 samples, we identified 44 MHC variants that encoded 31 different amino acid sequences (allotypes) and one putative pseudogene. The phylogenetic analysis suggests that MHC variants detected from the Japanese black bear are derived from the DQB locus. One of the 31 DQB allotypes, Urth-DQB*01, was found to be common to all local populations. Moreover, this allotype was shared between the black bear on the Asian continent and the Japanese black bear, suggesting that Urth-DQB*01 might have been maintained in the ancestral black bear population for at least 300,000 years. Our findings, from calculating the ratio of non-synonymous to synonymous substitutions, indicate that balancing selection has maintained genetic variation of peptide-binding residues at the DQB locus of the Japanese black bear. From examination of genotype frequencies among local populations, we observed a considerably lower level of observed heterozygosity than expected. Conclusions The low level of observed heterozygosity suggests that genetic drift reduced DQB diversity in the Japanese black bear due to a bottleneck event at the population or species level. The decline of DQB diversity might have been accelerated by the loss of rare variants that have been maintained by negative frequency-dependent selection. Nevertheless, DQB diversity of the black bear appears to be relatively high compared with some other endangered mammalian

  20. Selective decreases in T cell receptor V beta expression. Decreased expression of specific V beta families is associated with expression of multiple MHC and non-MHC gene products

    PubMed Central

    1989-01-01

    Previous reports of TCR V beta usage, studying either expression of a single V beta in a wide panel of strains (6, 7, 10, 12, 13), or expression of multiple V beta s in a very limited strain distribution (14, 15), have identified instances of clonal deletion of potentially autoreactive T cells specific for either self E alpha E beta or minor lymphocyte stimulatory (Mls) antigens. The present study has investigated the range of self antigens that can influence V beta usage by evaluating expression of 16 V beta families in 30 strains of mice. It was found that significant decreases in expression occur in at least 8 of the 16 V beta families and that dominant influences on the T cell V beta repertoire are exerted by expression of Mlsa, Mlsc, and MHC gene products. Decreased expressions of V beta 5, -11, -12, and -16 were influenced by MHC gene products. The patterns of decreased expression seen in intra-MHC recombinant strains and strains of different non-MHC background were distinct for V beta 11, -12, and -16, suggesting that different ligands are involved in the deletion of T cells expressing each of these V beta genes. Mice expressing Mlsa show decreased expression of V beta 9 as well as V beta 6. Mlsc mice lacked V beta 3 expression in those strains where the expressed MHC type was compatible with a strongly stimulatory Mlsc phenotype. V beta 7 was strongly influenced by both MHC and non-MHC products that are not yet identified. These results demonstrate that strain-specific decreases of mRNA expression occur in a major portion of the TCR repertoire. Self antigens including Mlsa, Mlsc, and E alpha E beta, as well as additional MHC and non-MHC products, appear to induce these decreases in expression in the process of eliminating self-reactive T cells from the mature T cell pool. PMID:2529341

  1. Magnetic-Activated Cell Sorting of TCR-Engineered T Cells, Using tCD34 as a Gene Marker, but Not Peptide–MHC Multimers, Results in Significant Numbers of Functional CD4+ and CD8+ T Cells

    PubMed Central

    Govers, Coen; Berrevoets, Cor; Treffers-Westerlaken, Elike; Broertjes, Marieke

    2012-01-01

    Abstract T cell-sorting technologies with peptide–MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance the therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability to enrich T cells is lacking. Here, we compared the in vitro properties of primary human T cells gene-engineered with gp100280–288/HLA-A2-specific T cell receptor-αβ (TCRαβ) on magnetic-activated cell sorting (MACS) with various peptide–MHC multimers or an antibody against truncated CD34 (tCD34). With respect to peptide–MHC multimers, we observed that Streptamer®, when compared with pentamers and tetramers, improved T cell yield as well as level and stability of enrichment, of TCR-engineered T cells (>65% of peptide–MHC-binding T cells, stable for at least 6 weeks). In agreement with these findings, Streptamer, the only detachable reagent, revealed significant T cell expansion in the first week after MACS. Sorting TCR and tCD34 gene-engineered T cells with CD34 monoclonal antibody (mAb) resulted in the most significant T cell yield and enrichment of T cells (>95% of tCD34 T cells, stable for at least 6 weeks). Notably, T cells sorted with CD34 mAb, when compared with Streptamer, bound about 2- to 3-fold less peptide–MHC but showed superior antigen-specific upregulated expression of CD107a and production of interferon (IFN)-γ. Multiparametric flow cytometry revealed that CD4+ T cells, uniquely present in CD34 mAb-sorted T cells, contributed to enhanced IFN-γ production. Taken together, we postulate that CD34 mAb-based sorting of gene-marked T cells has benefits toward applications of T cell therapy, especially those that require CD4+ T cells. PMID:22871260

  2. Magnetic-activated cell sorting of TCR-engineered T cells, using tCD34 as a gene marker, but not peptide-MHC multimers, results in significant numbers of functional CD4+ and CD8+ T cells.

    PubMed

    Govers, Coen; Berrevoets, Cor; Treffers-Westerlaken, Elike; Broertjes, Marieke; Debets, Reno

    2012-06-01

    T cell-sorting technologies with peptide-MHC multimers or antibodies against gene markers enable enrichment of antigen-specific T cells and are expected to enhance the therapeutic efficacy of clinical T cell therapy. However, a direct comparison between sorting reagents for their ability to enrich T cells is lacking. Here, we compared the in vitro properties of primary human T cells gene-engineered with gp100(280-288)/HLA-A2-specific T cell receptor-αβ (TCRαβ) on magnetic-activated cell sorting (MACS) with various peptide-MHC multimers or an antibody against truncated CD34 (tCD34). With respect to peptide-MHC multimers, we observed that Streptamer(®), when compared with pentamers and tetramers, improved T cell yield as well as level and stability of enrichment, of TCR-engineered T cells (>65% of peptide-MHC-binding T cells, stable for at least 6 weeks). In agreement with these findings, Streptamer, the only detachable reagent, revealed significant T cell expansion in the first week after MACS. Sorting TCR and tCD34 gene-engineered T cells with CD34 monoclonal antibody (mAb) resulted in the most significant T cell yield and enrichment of T cells (>95% of tCD34 T cells, stable for at least 6 weeks). Notably, T cells sorted with CD34 mAb, when compared with Streptamer, bound about 2- to 3-fold less peptide-MHC but showed superior antigen-specific upregulated expression of CD107a and production of interferon (IFN)-γ. Multiparametric flow cytometry revealed that CD4(+) T cells, uniquely present in CD34 mAb-sorted T cells, contributed to enhanced IFN-γ production. Taken together, we postulate that CD34 mAb-based sorting of gene-marked T cells has benefits toward applications of T cell therapy, especially those that require CD4(+) T cells. PMID:22871260

  3. Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides.

    PubMed

    Jäger, Natalie; Wisniewska, Joanna M; Hiss, Jan A; Freier, Anja; Losch, Florian O; Walden, Peter; Wrede, Paul; Schneider, Gisbert

    2010-01-12

    Ant Colony Optimization (ACO) is a meta-heuristic that utilizes a computational analogue of ant trail pheromones to solve combinatorial optimization problems. The size of the ant colony and the representation of the ants' pheromone trails is unique referring to the given optimization problem. In the present study, we employed ACO to generate novel peptides that stabilize MHC I protein on the plasma membrane of a murine lymphoma cell line. A jury of feedforward neural network classifiers served as fitness function for peptide design by ACO. Bioactive murine MHC I H-2K(b) stabilizing as well as nonstabilizing octapeptides were designed, synthesized and tested. These peptides reveal residue motifs that are relevant for MHC I receptor binding. We demonstrate how the performance of the implemented ACO algorithm depends on the colony size and the size of the search space. The actual peptide design process by ACO constitutes a search path in sequence space that can be visualized as trajectories on a self-organizing map (SOM). By projecting the sequence space on a SOM we visualize the convergence of the different solutions that emerge during the optimization process in sequence space. The SOM representation reveals attractors in sequence space for MHC I binding peptides. The combination of ACO and SOM enables systematic peptide optimization. This technique allows for the rational design of various types of bioactive peptides with minimal experimental effort. Here, we demonstrate its successful application to the design of MHC-I binding and nonbinding peptides which exhibit substantial bioactivity in a cell-based assay.

  4. Reversion of a transcriptionally defective MHC class II-negative human B-cell mutant.

    PubMed Central

    Ombra, M N; Perfetto, C; Autiero, M; Anzisi, A M; Pasquinelli, R; Maffei, A; Del Pozzo, G; Guardiola, J

    1993-01-01

    RJ2.2.5, a mutant derived from the human B-lymphoma cell, Raji, is unable to express the MHC class II genes because of a recessive transcriptional defect attributed to the lack of an activator function. We report the isolation of a RJ2.2.5 revertant, namely AR, in which the expression of the mRNAs encoded by these genes is restored. Comparison of the binding of nuclear extracts or of partially purified nuclear preparations from the wild-type, the mutant and the revertant cells to a conserved MHC class II promoter element, the X-box, showed no alteration in the mobility of the complexes thus formed. However, in extracts from RJ2.2.5, and other MHC class II negative cell lines, such as HeLa, the amount of complex observed was significantly higher than in wild-type Raji cells. Furthermore, the binding activity exhibited by the AR revertant was lower than that of the RJ2.2.5 and higher than that of Raji. The use of specific monoclonal antibodies indicated that in all cases c-Jun and c-Fos or antigenically related proteins were required for binding. An inverse correlation between the level of DNA-protein complex formed and the level of MHC class II gene mRNA expressed in the three cell lines was apparent, suggesting that overexpression of a DNA binding factor forming complexes with class II promoter elements may cause repression of MHC class II transcription. A model which reconciles the previously ascertained recessivity of the phenotype of the mutation carried by RJ2.2.5 with the findings reported here is discussed. Images PMID:8441650

  5. Attractors in Sequence Space: Agent-Based Exploration of MHC I Binding Peptides.

    PubMed

    Jäger, Natalie; Wisniewska, Joanna M; Hiss, Jan A; Freier, Anja; Losch, Florian O; Walden, Peter; Wrede, Paul; Schneider, Gisbert

    2010-01-12

    Ant Colony Optimization (ACO) is a meta-heuristic that utilizes a computational analogue of ant trail pheromones to solve combinatorial optimization problems. The size of the ant colony and the representation of the ants' pheromone trails is unique referring to the given optimization problem. In the present study, we employed ACO to generate novel peptides that stabilize MHC I protein on the plasma membrane of a murine lymphoma cell line. A jury of feedforward neural network classifiers served as fitness function for peptide design by ACO. Bioactive murine MHC I H-2K(b) stabilizing as well as nonstabilizing octapeptides were designed, synthesized and tested. These peptides reveal residue motifs that are relevant for MHC I receptor binding. We demonstrate how the performance of the implemented ACO algorithm depends on the colony size and the size of the search space. The actual peptide design process by ACO constitutes a search path in sequence space that can be visualized as trajectories on a self-organizing map (SOM). By projecting the sequence space on a SOM we visualize the convergence of the different solutions that emerge during the optimization process in sequence space. The SOM representation reveals attractors in sequence space for MHC I binding peptides. The combination of ACO and SOM enables systematic peptide optimization. This technique allows for the rational design of various types of bioactive peptides with minimal experimental effort. Here, we demonstrate its successful application to the design of MHC-I binding and nonbinding peptides which exhibit substantial bioactivity in a cell-based assay. PMID:27463849

  6. Characterization of MHC class IIB for four endangered Australian freshwater fishes obtained from ecologically divergent populations.

    PubMed

    Bracamonte, Seraina E; Smith, Steve; Hammer, Michael; Pavey, Scott A; Sunnucks, Paul; Beheregaray, Luciano B

    2015-10-01

    Genetic diversity is an essential aspect of species viability, and assessments of neutral genetic diversity are regularly implemented in captive breeding and conservation programs. Despite their importance, information from adaptive markers is rarely included in such programs. A promising marker of significance in fitness and adaptive potential is the major histocompatibility complex (MHC), a key component of the adaptive immune system. Populations of Australian freshwater fishes are generally declining in numbers due to human impacts and the introduction of exotic species, a scenario of particular concern for members of the family Percichthyidae, several of which are listed as nationally vulnerable or endangered, and hence subject to management plans, captive breeding, and restoration plans. We used a next-generation sequencing approach to characterize the MHC IIB locus and provide a conservative description of its levels of diversity in four endangered percichthyids: Gadopsis marmoratus, Macquaria australasica, Nannoperca australis, and Nannoperca obscura. Evidence is presented for a duplicated MHC IIB locus, positively selected sites and recombination of MHC alleles. Relatively moderate levels of diversity were detected in the four species, as well as in different ecotypes within each species. Phylogenetic analyses revealed genus specific clustering of alleles and no allele sharing among species. There were also no shared alleles observed between two ecotypes within G. marmoratus and within M. australasica, which might be indicative of ecologically-driven divergence and/or long divergence times. This represents the first characterization and assessment of MHC diversity for Percichthyidae, and also for Australian freshwater fishes in general, providing key genetic resources for a vertebrate group of increasing conservation concern.

  7. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining

    PubMed Central

    2013-01-01

    Background MHC (Major Histocompatibility Complex) is a key player in the immune response of most vertebrates. The computational prediction of whether a given antigenic peptide will bind to a specific MHC allele is important in the development of vaccines for emerging pathogens, the creation of possibilities for controlling immune response, and for the applications of immunotherapy. One of the problems that make this computational prediction difficult is the detection of the binding core region in peptides, coupled with the presence of bulges and loops causing variations in the total sequence length. Most machine learning methods require the sequences to be of the same length to successfully discover the binding motifs, ignoring the length variance in both motif mining and prediction steps. In order to overcome this limitation, we propose the use of time-based motif mining methods that work position-independently. Results The prediction method was tested on a benchmark set of 28 different alleles for MHC class I and 27 different alleles for MHC class II. The obtained results are comparable to the state of the art methods for both MHC classes, surpassing the published results for some alleles. The average prediction AUC values are 0.897 for class I, and 0.858 for class II. Conclusions Temporal motif mining using partial periodic patterns can capture information about the sequences well enough to predict the binding of the peptides and is comparable to state of the art methods in the literature. Unlike neural networks or matrix based predictors, our proposed method does not depend on peptide length and can work with both short and long fragments. This advantage allows better use of the available training data and the prediction of peptides of uncommon lengths. PMID:23368521

  8. The patterns of MHC association in aplastic and non-aplastic paroxysmal nocturnal hemoglobinuria.

    PubMed

    Nowak, Jacek; Mika-Witkowska, Renata; Mendek-Czajkowska, Ewa; Rogatko-Koroś, Marta; Graczyk-Pol, Elżbieta; Pyl, Hanna; Klimczak, Aneta; Wójcik, Małgorzata; Prochorec-Sobieszek, Monika; Maryniak, Renata; Zupańska, Barbara

    2011-06-01

    The deficiency of glycosyl-phosphatidylinositol (GPI)-anchored proteins in plasma membranes of PIG-A gene mutated hematopoietic stem cells (HSCs) is so far insufficient to explain the domination of paroxysmal nocturnal hemoglobinuria (PNH) clone over the normal HSC. We attempted to elucidate possible link between MHC and initial severe aplastic anemia (ISAA/PNH) type and non-aplastic (n/PNH) outcome of PNH. In 50 PNH patients assigned as ISAA/PNH (n = 13), n/PNH (n = 33) or nonassigned (n = 4) and 200 ethnically matched controls we analyzed MHC associations. Our data confirmed strong associations of DRB1*15:01 (RR = 3.51, p = 0.0011) and DQB1*06:02 (RR = 7.09, p = 0.000026) alleles, especially with n/PNH subtype. B*18:01 allele was associated with increased risk of ISAA/PNH subtype (RR = 5.25, p = 0.0028). We conclude that both class II and class I MHC alleles are associated with different subsets of PNH. Clonal selection of PIG-A mutated cells with cognate metabolic block is associated with MHC class II alleles DRB1*15:01 and DQB1*06:02 independent from initial severe AA clone selection. MHC class I molecule B*18:01 can additionally influence the domination of PNH clone in PNH subjects with initial severe aplastic anemia.

  9. Conserved 33-kb haplotype in the MHC class III region regulates chronic arthritis.

    PubMed

    Yau, Anthony C Y; Tuncel, Jonatan; Haag, Sabrina; Norin, Ulrika; Houtman, Miranda; Padyukov, Leonid; Holmdahl, Rikard

    2016-06-28

    Genome-wide association studies have revealed many genetic loci associated with complex autoimmune diseases. In rheumatoid arthritis (RA), the MHC gene HLA-DRB1 is the strongest candidate predicting disease development. It has been suggested that other immune-regulating genes in the MHC contribute to the disease risk, but this contribution has been difficult to show because of the strong linkage disequilibrium within the MHC. We isolated genomic regions in the form of congenic fragments in rats to test whether there are additional susceptibility loci in the MHC. By both congenic mapping in inbred strains and SNP typing in wild rats, we identified a conserved, 33-kb large haplotype Ltab-Ncr3 in the MHC-III region, which regulates the onset, severity, and chronicity of arthritis. The Ltab-Ncr3 haplotype consists of five polymorphic immunoregulatory genes: Lta (lymphotoxin-α), Tnf, Ltb (lymphotoxin-β), Lst1 (leukocyte-specific transcript 1), and Ncr3 (natural cytotoxicity-triggering receptor 3). Significant correlation in the expression of the Ltab-Ncr3 genes suggests that interaction of these genes may be important in keeping these genes clustered together as a conserved haplotype. We studied the arthritis association and the spliceo-transcriptome of four different Ltab-Ncr3 haplotypes and showed that higher Ltb and Ncr3 expression, lower Lst1 expression, and the expression of a shorter splice variant of Lst1 correlate with reduced arthritis severity in rats. Interestingly, patients with mild RA also showed higher NCR3 expression and lower LST1 expression than patients with severe RA. These data demonstrate the importance of a conserved haplotype in the regulation of complex diseases such as arthritis. PMID:27303036

  10. Hypothyroid-mediated changes in adult rat diaphragm muscle contractile properties and MHC isoform expression.

    PubMed

    Gosselin, L E; Zhan, W Z; Sieck, G C

    1996-06-01

    The purpose of the present study was to examine the effect of acute hypothyroidism on myosin heavy chain (MHC) isoform composition and contractile properties in the adult rat diaphragm muscle. Hypothyroidism was induced by the addition of propylthiouracil (0.05%) in the drinking water for a period of 3 wk. MHC isoform composition of control and hypothyroid diaphragm muscles was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In vitro isometric contractile properties of midcostal diaphragm muscle segements were measured at 26 degrees C, whereas the maximal unloaded shortening velocity was measured at 15 degrees C with the "slack test" method. Serum triiodothyronine and thyroxine values were significantly lower in the hypothyroid compared with the control group. A small but significant increase in the percentage of slow MHC isoform in the diaphragm was observed with acute hypothyroidism, whereas the percentage of the fast MHC isoforms (2A, 2X, and 2B) did not significantly differ between groups. Peak twitch force did not differ between groups. However, twitch contraction and half-relaxation times were significantly prolonged in the hypothyroid group compared with control. Maximal specific force was reduced in the hypothyroid compared with the control group, averaging 15.7 and 19.8 N/cm2, respectively (P < 0.05). The maximal unloaded shortening velocity averaged 4.3 and 8.2 muscle lengths/s in the hypothyroid and control groups, respectively (P < 0.05). We conclude that acute hypothyroidism results in alterations in adult diaphragm muscle contractile properties that cannot be attributed solely to changes in MHC isoform composition.

  11. Crystal structure of a complete ternary complex of T-cell receptor, peptide-MHC, and CD4

    SciTech Connect

    Yin, Yiyuan; Wang, Xin Xiang; Mariuzza, Roy A

    2012-07-11

    Adaptive immunity depends on specific recognition by a T-cell receptor (TCR) of an antigenic peptide bound to a major histocompatibility complex (pMHC) molecule on an antigen-presenting cell (APC). In addition, T-cell activation generally requires binding of this same pMHC to a CD4 or CD8 coreceptor. Here, we report the structure of a complete TCR-pMHC-CD4 ternary complex involving a human autoimmune TCR, a myelin-derived self-peptide bound to HLA-DR4, and CD4. The complex resembles a pointed arch in which TCR and CD4 are each tilted ~65° relative to the T-cell membrane. By precluding direct contacts between TCR and CD4, the structure explains how TCR and CD4 on the T cell can simultaneously, yet independently, engage the same pMHC on the APC. The structure, in conjunction with previous mutagenesis data, places TCR-associated CD3εγ and CD3εδ subunits, which transmit activation signals to the T cell, inside the TCR-pMHC-CD4 arch, facing CD4. By establishing anchor points for TCR and CD4 on the T-cell membrane, the complex provides a basis for understanding how the CD4 coreceptor focuses TCR on MHC to guide TCR docking on pMHC during thymic T-cell selection.

  12. Expression of MHC class I receptors confers functional intraclonal heterogeneity to a reactive expansion of gammadelta T cells.

    PubMed

    Lafarge, Xavier; Pitard, Vincent; Ravet, Sophie; Roumanes, David; Halary, Franck; Dromer, Claire; Vivier, Eric; Paul, Pascale; Moreau, Jean-François; Déchanet-Merville, Julie

    2005-06-01

    NK cell receptors for MHC class I molecules (MHC-NKR) can be expressed by T cell subsets. The restricted repertoire and phenotypic characteristics of MHC-NKR(+) T cells indicate that expression of MHC-NKR is acquired upon antigenic challenge and might promote expansion of T cells. Previous studies performed on in vitro generated alphabeta T cell clones concluded that MHC-NKR expression was not a clonal attribute. Here, we examined a massive monoclonal expansion of a non-leukemic gammadelta T cell population found in the peripheral blood of a lung-transplanted patient who suffered from a cytomegalovirus infection. Despite their monoclonality, these T cells displayed a heterogeneous and stable in vivo Ig- and lectin-like MHC-NKR phenotype. Twenty percent of the cells displayed a CD94(+)NKG2A(+) phenotype, and 10% were labeled with an anti-CD158b1/b2/j monoclonal antibody. A CD158b/j(+) gammadelta T cell clone derived in vitro from patient's peripheral blood lymphocytes was shown to express the activating form CD158j (KIR2DS2), which once cross-linked stimulated the clone cytolytic function and costimulated the TCR-induced production of cytokines, independently of the killer-activating receptor-associated protein (KARAP). In conclusion, heterogeneity of MHC-NKR expression confers a functional intraclonal diversity that may participate to induction of specific gammadelta T cell effector functions or proliferation upon pathogen challenge.

  13. Characterization, Polymorphism and Selection of Major Histocompatibility Complex (MHC) DAB Genes in Vulnerable Chinese Egret (Egretta eulophotes)

    PubMed Central

    Wang, Zeng; Zhou, Xiaoping; Lin, Qingxian

    2013-01-01

    The major histocompatibility complex (MHC) is an excellent molecular marker for the studies of evolutionary ecology and conservation genetics because it is a family of highly polymorphic genes that play a key role in vertebrate immune response. In this study, the functional genes of MHC Class II B (DAB) were isolated for the first time in a vulnerable species, the Chinese egret (Egrettaeulophotes). Using a full length DNA and cDNA produced by PCR and RACE methods, four potential MHC DAB loci were characterized in the genome of this egret and all four were expressed in liver and blood. At least four copies of the MHC gene complex were similar to two copies of the minimal essential MHC complex of chicken, but are less complex than the multiple copies expressed in passerine species. In MHC polymorphism, 19 alleles of exon 2 were isolated from 48 individuals using PCR. No stop codons or frameshift mutations were found in any of the coding regions. The signatures of positive selection detected in potential peptide-binding regions by Bayesian analysis, suggesting that all of these genes were functional. These data will provide the fundamental basis for further studies to elucidate the mechanisms and significance of MHC molecular adaptation in vulnerable Chinese egret and other ardeids. PMID:24019955

  14. MHC class II DRB diversity, selection pattern and population structure in a neotropical bat species, Noctilio albiventris

    PubMed Central

    Schad, J; Dechmann, D K N; Voigt, C C; Sommer, S

    2011-01-01

    Genes of the major histocompatibility complex (MHC) have a crucial role in the immune response of vertebrates, alter the individual odour and are involved in shaping mating preferences. Pathogen-mediated selection, sexual selection and maternal–fetal interactions have been proposed as the main drivers of frequently observed high levels of polymorphism in functionally important parts of the MHC. Bats constitute the second largest mammalian order and have recently emerged as important vectors of infectious diseases. In addition, Chiroptera are interesting study subjects in evolutionary ecology in the context of olfactory communication, mate choice and associated fitness benefits. Thus, it is surprising that they belong to the least studied mammalian taxa in terms of their MHC diversity. In this study, we investigated the variability in the functionally important MHC class II gene DRB, evidence for selection and population structure in the group-living lesser bulldog bat, Noctilio albiventris, in Panama. We found a single expressed, polymorphic Noal-DRB gene. The substitution pattern of the nucleotide sequences of the 18 detected alleles provided evidence for positive selection acting above the evolutionary history of the species in shaping MHC diversity. Roosting colonies were not genetically differentiated but females showed lower levels of heterozygosity than males, which might be a sign that the sexes differ in the selection pressures acting on the MHC. This study provides the prerequisites for further investigations of the role of the individual MHC constitution in parasite resistance, olfactory communication and mate choice in N. albiventris and other bats. PMID:21245894

  15. The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface

    PubMed Central

    Unternaehrer, Julia J.; Chow, Amy; Pypaert, Marc; Inaba, Kayo; Mellman, Ira

    2007-01-01

    We have found that MHC class II (MHC II) molecules exhibit a distinctive organization on the dendritic cell (DC) plasma membrane. Both in DC lysates and on the surface of living cells, I-A and I-E molecules engaged in lateral interactions not observed on other antigen-presenting cells such as B blasts. Because DCs and B blasts express MHC II at comparable surface densities, the interaction was not due to simple mass action. Instead, it reflected the selective expression of the tetraspanin CD9 at the DC surface. I-A and I-E molecules coprecipitated with each other and with CD9. The association of heterologous MHC II molecules was abrogated in DCs from CD9−/− mice. Conversely, expression of exogenous CD9 in B cells induced MHC II interactions. CD9 is thus necessary for the association of heterologous MHC II, a specialization that would facilitate the formation of MHC II multimers expected to enhance T cell receptor stimulation by DCs. PMID:17190803

  16. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury.

    PubMed

    Bombeiro, André Luis; Thomé, Rodolfo; Oliveira Nunes, Sérgio Luiz; Monteiro Moreira, Bárbara; Verinaud, Liana; Oliveira, Alexandre Leite Rodrigues de

    2016-01-01

    Major histocompatibility complex class one (MHC-I) antigen-presenting molecules participate in central nervous system (CNS) synaptic plasticity, as does the paired immunoglobulin-like receptor B (PirB), an MHC-I ligand that can inhibit immune-cells and bind to myelin axon growth inhibitors. Based on the dual roles of both molecules in the immune and nervous systems, we evaluated their expression in the central and peripheral nervous system (PNS) following sciatic nerve injury in mice. Increased PirB and MHC-I protein and gene expression is present in the spinal cord one week after nerve transection, PirB being mostly expressed in the neuropile region. In the crushed nerve, MHC-I protein levels increased 2 weeks after lesion (wal) and progressively decreased over the next eight weeks. The same kinetics were observed for infiltrating cytotoxic T lymphocytes (CTLs) but not for PirB expression, which continuously increased. Both MHC-I and PirB were found in macrophages and Schwann cells but rarely in axons. Interestingly, at 8 wal, PirB was mainly restricted to the myelin sheath. Our findings reinforce the participation of MHC-I and PirB in CNS plasticity events. In contrast, opposing expression levels of these molecules were found in the PNS, so that MHC-I and PirB seem to be mostly implicated in antigen presentation to CTLs and axon myelination, respectively. PMID:27551751

  17. MHC-I and PirB Upregulation in the Central and Peripheral Nervous System following Sciatic Nerve Injury

    PubMed Central

    Bombeiro, André Luis; Thomé, Rodolfo; Oliveira Nunes, Sérgio Luiz; Monteiro Moreira, Bárbara; Verinaud, Liana; de Oliveira, Alexandre Leite Rodrigues

    2016-01-01

    Major histocompatibility complex class one (MHC-I) antigen-presenting molecules participate in central nervous system (CNS) synaptic plasticity, as does the paired immunoglobulin-like receptor B (PirB), an MHC-I ligand that can inhibit immune-cells and bind to myelin axon growth inhibitors. Based on the dual roles of both molecules in the immune and nervous systems, we evaluated their expression in the central and peripheral nervous system (PNS) following sciatic nerve injury in mice. Increased PirB and MHC-I protein and gene expression is present in the spinal cord one week after nerve transection, PirB being mostly expressed in the neuropile region. In the crushed nerve, MHC-I protein levels increased 2 weeks after lesion (wal) and progressively decreased over the next eight weeks. The same kinetics were observed for infiltrating cytotoxic T lymphocytes (CTLs) but not for PirB expression, which continuously increased. Both MHC-I and PirB were found in macrophages and Schwann cells but rarely in axons. Interestingly, at 8 wal, PirB was mainly restricted to the myelin sheath. Our findings reinforce the participation of MHC-I and PirB in CNS plasticity events. In contrast, opposing expression levels of these molecules were found in the PNS, so that MHC-I and PirB seem to be mostly implicated in antigen presentation to CTLs and axon myelination, respectively. PMID:27551751

  18. Down-regulation of MHC class I expression in human neuronal stem cells using viral stealth mechanism.

    PubMed

    Lee, Eun Mi; Kim, Jae Young; Cho, Bum Rae; Chung, Woo Kyung; Yoon, Byung-Woo; Kim, Seung U; Lee, Byeong Chun; Hwang, Woo Suk; Moon, Shin-Yong; Lee, Jung Sang; Ahn, Curie

    2005-01-28

    Due to their unique capacity for self-renewal in addition to their ability to differentiate into cells of all neuronal lineages, neuronal stem cells (NSCs) are promising candidates for cell replacement therapy in neuronal injury and neurodegenerative diseases. However, there are few studies on immune rejection, which is one of the main problems facing successful stem cell therapy. In order to determine if human NSC might be rejected after transplantation the MHC expression level was examined in the HB1.F3 cell line, which has previously been shown to exhibit NSC properties. The results showed low expression levels of the MHC class I molecules on the surfaces of these cells. A dramatic increase in the MHC class I expression level was observed when the cells were treated with IFN-gamma, TNF-alpha, and IL-1beta, alone or in combination. The maximum induction of MHC class I protein expression was observed at above 20ng/ml IFN-gamma 48h after the treatment. The apparent additive effects of TNF-alpha and IL-1beta in combination on the maximum induction of MHC class I expression exerted by IFN-gamma treatment were not observed. The MHC class I levels elevated by IFN-gamma were sustained for 72h after withdrawing the IFN-gamma. Therefore, this study introduced human cytomegalovirus (hCMV) US genes, which are known to be able to reduce the MHC class I expression level on the cell surface after infection, into HB1.F3 cells. The cells transfected with the hCMV US2, US3, US6 or US11 genes showed 20-50% reduction in the MHC class I expression level compared with the mock-transfected cells. These results suggest that NSC expresses high levels of the MHC class I proteins, and unless they are modified, might be rejected upon transplantation. In addition, the various viral stealth mechanisms can be exploited for stem cell transplantation.

  19. A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.

    PubMed

    Sgourakis, Nikolaos G; May, Nathan A; Boyd, Lisa F; Ying, Jinfa; Bax, Ad; Margulies, David H

    2015-11-27

    As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the β2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and β2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway. PMID:26463211

  20. A compound heterozygote of novel and recurrent DTDST mutations results in a novel intermediate phenotype of Desbuquois dysplasia, diastrophic dysplasia, and recessive form of multiple epiphyseal dysplasia.

    PubMed

    Miyake, Atsushi; Nishimura, Gen; Futami, Toru; Ohashi, Hirofumi; Chiba, Kazuhiro; Toyama, Yoshiaki; Furuichi, Tatsuya; Ikegawa, Shiro

    2008-01-01

    Diastrophic dysplasia sulfate transporter (DTDST) is required for synthesis of sulfated proteoglycans in cartilage, and its loss-of-function mutations result in recessively inherited chondrodysplasias. The 40 or so DTDST mutations reported to date cause a group of disorders termed the diastrophic dysplasia (DTD) group. The group ranges from the mildest recessive form of multiple epiphyseal dysplasia (r-MED) through the most common DTD to perinatally lethal atelosteogenesis type II and achondrogenesis 1B. Furthermore, the relationship between DTDST mutations, their sulfate transport function, and disease phenotypes has been described. Here we report a girl with DTDST mutations: a compound heterozygote of a novel p.T266I mutation and a recurrent p.DeltaV340 mutation commonly found in severe phenotypes of the DTD group. In infancy, the girl presented with skeletal manifestations reminiscent of Desbuquois dysplasia, another recessively inherited chondrodysplasia, the mutations of which have never been identified. Her phenotype evolved with age into an intermediate phenotype between r-MED and DTD. Considering her clinical phenotypes and known phenotypes of p.DeltaV340, p.T266I was predicted to be responsible for mild phenotypes of the DTD group. Our results further extend the phenotypic spectrum of DTDST mutations, adding Desbuquois dysplasia to the list of differential diagnosis of the DTD group. PMID:18553123

  1. Identification of a compound heterozygote for adenine phosphoribosyltransferase deficiency (APRT*J/APART*Q0) leading to 2,8-dihydroxyadenine urolithiasis.

    PubMed

    Kamatani, N; Kuroshima, S; Yamanaka, H; Nakashe, S; Take, H; Hakoda, M

    1990-10-01

    Homozygous deficiency of a purine salvage enzyme, adenine phosphoribosyltransferase (APRT), causes urolithiasis and renal failure. There are two known types of homozygous APRT deficiencies; type I patients completely lack APRT activity while type II patients only partially lack such activity. All type II patients possess at least one APRT*J allele with a substitution from ATG (Met) to ACG (Thr) at codon 136. Type I patients are considered to possess two alleles (APRT*Q0) both of which code for complete deficiencies. Thus, some patients with type II APRT deficiencies may have a genotype of APRT*J/APRT*Q0. As no individuals with such a genotype have previously been identified, we performed extensive analysis on four members of a family by (1) the T-cell method for the identification of a homozygote, (2) the B-cell method for the identification of heterozygotes, and (3) oligonucleotide hybridization after in vitro amplification of a part of genomic APRT sequence for the identification of APRT*J and non-APRT*J alleles. We report here the first evidence that 2,8-dihydroxyadenine urolithiasis developed in a boy aged 2 years with a genotype of APRT*J/APRT*Q0.

  2. Rehearsal Characteristics of "Superior" Band Directors

    ERIC Educational Resources Information Center

    Juchniewicz, Jay; Kelly, Steven N.; Acklin, Amy I.

    2014-01-01

    The purpose of this study was to investigate the rehearsal characteristics of "superior" middle and high school band directors. A total of 131 respondents from Florida, Kentucky, and North Carolina who received a "superior" rating for 4 out of the past 5 years, completed an open-ended essay question online asking them to…

  3. STATUS OF MYSIS RELICTA IN LAKE SUPERIOR

    EPA Science Inventory

    The status of different components of the lower food web is reported for Lake Superior. Results are preliminary summaries from the Binational collaboration in 2005, which measured the lower food web at the request of the Lake Superior Fisheries Technical Committee and Lake Superi...

  4. Remodelling of the Superior Caval Vein After Angioplasty in an Infant with Superior Caval Vein Syndrome

    SciTech Connect

    Mert, Murat Saltik, Levent; Gunay, Ilhan

    2004-08-15

    An 8-month old girl was presented with superior caval vein syndrome early after cardiac surgery. Angiography showed severe stenosis of the superior caval vein with 50 mmHg pressure gradient. Following balloon angioplasty, the pressure gradient was reduced to 7 mmHg with some residual stenosis of the superior caval vein. When the patient was reevaluated 5 months after the procedure, angiography revealed a normal diameter of the superior caval vein without a pressure gradient.

  5. Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection

    PubMed Central

    English, Luc; Chemali, Magali; Duron, Johanne; Rondeau, Christiane; Laplante, Annie; Gingras, Diane; Alexander, Diane; Leib, David; Norbury, Christopher; Lippé, Roger; Desjardins, Michel

    2013-01-01

    Viral proteins are usually processed by the ‘classical’ major histocompatibility complex (MHC) class I presentation pathway. Here we showed that although macrophages infected with herpes simplex virus type 1 (HSV-1) initially stimulated CD8+ T cells by this pathway, a second pathway involving a vacuolar compartment was triggered later during infection. Morphological and functional analyses indicated that distinct forms of autophagy facilitated the presentation of HSV-1 antigens on MHC class I molecules. One form of autophagy involved a previously unknown type of autophagosome that originated from the nuclear envelope. Whereas interferon-γ stimulated classical MHC class I presentation, fever-like hyperthermia and the pyrogenic cytokine interleukin 1β activated autophagy and the vacuolar processing of viral peptides. Viral peptides in autophagosomes were further processed by the proteasome, which suggests a complex interaction between the vacuolar and MHC class I presentation pathways. PMID:19305394

  6. Distinct Conformations of Ly49 Natural Killer Cell Receptors Mediate MHC Class I Recognition in Trans and Cis

    SciTech Connect

    Back, J.; Malchiodi, E; Cho, S; Scarpellino, L; Schneider, P; Kerzic, M; Mariuzza, R; Held, W

    2009-01-01

    Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors and explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.

  7. How did variable NK-cell receptors and MHC class I ligands influence immunity, reproduction and human evolution?

    PubMed Central

    Parham, Peter; Moffett, Ashley

    2014-01-01

    Preface Natural killer (NK) cells have roles in immunity and reproduction that are controlled by variable receptors that recognize MHC class I molecules. The variable NK cell receptors found in humans are specific to simian primates, where they have progressively co-evolved with MHC class I molecules. The emergence of MHC-C in hominids drove the evolution of a system of MHC-C receptors that is most elaborate in chimpanzees. In contrast, the human system appears to have been subject to different and competing selection pressures that have acted on its immunological and reproductive functions. We suggest that this compromise facilitated development of the bigger brains that enabled archaic and modern humans to migrate out-of-Africa and populate other continents. PMID:23334245

  8. DNA Vaccine that Targets Hemagglutinin to MHC Class II Molecules Rapidly Induces Antibody-Mediated Protection against Influenza

    PubMed Central

    Mjaaland, Siri; Roux, Kenneth H.; Fredriksen, Agnete Brunsvik

    2013-01-01

    New influenza A viruses with pandemic potential periodically emerge due to viral genomic reassortment. In the face of pandemic threats, production of conventional egg-based vaccines is time consuming and of limited capacity. We have developed in this study a novel DNA vaccine in which viral hemagglutinin (HA) is bivalently targeted to MHC class II (MHC II) molecules on APCs. Following DNA vaccination, transfected cells secreted vaccine proteins that bound MHC II on APCs and initiated adaptive immune responses. A single DNA immunization induced within 8 d protective levels of strain-specific Abs and also cross-reactive T cells. During the Mexican flu pandemic, a targeted DNA vaccine (HA from A/California/07/2009) was generated within 3 wk after the HA sequences were published online. These results suggest that MHC II–targeted DNA vaccines could play a role in situations of pandemic threats. The vaccine principle should be extendable to other infectious diseases. PMID:23956431

  9. The MHC class II ligand lymphocyte activation gene-3 is co-distributed with CD8 and CD3-TCR molecules after their engagement by mAb or peptide-MHC class I complexes.

    PubMed

    Hannier, S; Triebel, F

    1999-11-01

    Previous studies indicated that signaling through lymphocyte activation gene-3 (LAG-3), a MHC class II ligand, induced by multivalent anti-receptor antibodies led to unresponsiveness to TCR stimulation. Here, lateral distribution of the LAG-3 molecules and its topological relationship (mutual proximity) to the TCR, CD8, CD4, and MHC class I and II molecules were studied in the plasma membrane of activated human T cells in co-capping experiments and conventional fluorescence microscopy. Following TCR engagement by either TCR-specific mAb or MHC-peptide complex recognition in T-B cell conjugates, LAG-3 was found to be specifically associated with the CD3-TCR complex. Similarly, following CD8 engagement LAG-3 and CD8 were co-distributed on the cell surface while only a low percentage of CD4-capped cells displayed LAG-3 co-caps. In addition, LAG-3 was found to be associated with MHC class II (i.e. DR, DP and DQ) and partially with MHC class I molecules. The supramolecular assemblies described here between LAG-3, CD3, CD8 and MHC class II molecules may result from an organization in raft microdomains, a phenomenon known to regulate early events of T cell activation.

  10. Superior oblique surgery: when and how?

    PubMed Central

    Şekeroğlu, Hande Taylan; Sanac, Ali Sefik; Arslan, Umut; Sener, Emin Cumhur

    2013-01-01

    Background The purpose of this paper is to review different types of superior oblique muscle surgeries, to describe the main areas in clinical practice where superior oblique surgery is required or preferred, and to discuss the preferred types of superior oblique surgery with respect to their clinical outcomes. Methods A consecutive nonrandomized retrospective series of patients who had undergone superior oblique muscle surgery as a single procedure were enrolled in the study. The diagnosis, clinical features, preoperative and postoperative vertical deviations in primary position, type of surgery, complications, and clinical outcomes were reviewed. The primary outcome measures were the type of strabismus and the type of superior oblique muscle surgery. The secondary outcome measure was the results of the surgeries. Results The review identified 40 (20 male, 20 female) patients with a median age of 6 (2–45) years. Nineteen patients (47.5%) had Brown syndrome, eleven (27.5%) had fourth nerve palsy, and ten (25.0%) had horizontal deviations with A pattern. The most commonly performed surgery was superior oblique tenotomy in 29 (72.5%) patients followed by superior oblique tuck in eleven (27.5%) patients. The amount of vertical deviation in the fourth nerve palsy and Brown syndrome groups (P = 0.01 for both) and the amount of A pattern in the A pattern group were significantly reduced postoperatively (P = 0.02). Conclusion Surgery for the superior oblique muscle requires experience and appropriate preoperative evaluation in view of its challenging nature. The main indications are Brown syndrome, fourth nerve palsy, and A pattern deviations. Superior oblique surgery may be effective in terms of pattern collapse and correction of vertical deviations in primary position. PMID:23946644

  11. Developmental effect of the XmnI site on Ggamma-globin gene expression among newborn Hb F-Malta-I [Ggamma117(G19)His-->Arg, CAT-->CGT] heterozygotes and adult beta+ -Thalassemia homozygotes.

    PubMed

    Pulis, Svetlana; Scerri, Christian A; Wismayer, Pierre Schembri; Galdies, Ruth; Wettinger, Stephanie Bezzina; Felice, Alex E

    2007-01-01

    Hb F-Malta-I [Ggamma117(19)His-->Arg, CAT-->CGT] is a stable and benign variant of Hb F found in 1.8% of Maltese newborn. We studied 120 Hb F-Malta-I heterozygotes and four Hb F-Malta-I homozygotes. The mean proportion of Ggamma-F-Malta-I in Hb F was 0.26 +/- 0.03 for the Hb F-Malta-I heterozygotes and 0.58 +/- 0.06 for the Hb F-Malta-I homozygotes. The Hb F-Malta-I allele was shown to occur on a background of the common Mediterranean haplotype Va [+ + - - - - - + + -]. Furthermore, the common Mediterranean haplotypes Va, IIIb [- + + + - + + + + -], I [+ + - - - - - + + +] and II [- + - + + - + + + +] accounted for most (66.2%) of the wild-type alleles among the tested Hb F-Malta-I heterozygotes. Different genotypes at the 5' epsilon HincII, Ggamma and Agamma HindIII, and 3'psibeta HincII sites (but not at the 5' Ggamma XmnI site) were found to be linked to significant variations in the proportion of Ggamma-F-Malta-I and Ggamma-globins in the Hb F of newborn Hb F-Malta-I heterozygotes. Moreover, the 5' Ggamma XmnI site was found to be associated with variations in Hb F and Ggamma-globin levels in a population of adult Maltese beta-thalassemia (thal) homozygotes. This implies that a determinant linked to the XmnI site which effects Ggamma-globin gene expression is active in anemic adults but not in normal infants.

  12. DPA1*02012: A DPA1*0201-related Mhc class II allele in West Africa

    SciTech Connect

    Meyer, C.G.; May, J.; Spauke, D.; Schnittger, L.

    1994-12-31

    DNA techniques such as sequence-specific oligonucleotide probe (SSOP) hybridizations, restriction-fragment length polymorphism (RFLP) analyses, and DNA sequencing have greatly supported the characterization of Mhc class II allelic polymorphism. Here the authors describe a DPA 1 allele which has been identified in two male individuals from Liberia and Benin, West Africa, during a survey study on Mhc class II associations with the different manifestations after infection with Onchocerca volvulus. 4 refs., 1 fig.

  13. Cloning, sequencing, and polymorphism analysis of novel classical MHC class I alleles in northern pig-tailed macaques (Macaca leonina).

    PubMed

    Lian, Xiao-Dong; Zhang, Xi-He; Dai, Zheng-Xi; Zheng, Yong-Tang

    2016-04-01

    The northern pig-tailed macaque (Macaca leonina) has been confirmed to be an independent species from the pig-tailed macaque group of Old World monkey. We have previously reported that the northern pig-tailed macaques were also susceptible to HIV-1. Here, to make this animal a potential HIV/AIDS model and to discover the mechanism of virus control, we attempted to assess the role of major histocompatibility complex (MHC) class I-restricted immune responses to HIV-1 infection, which was associated with viral replication and disease progression. As an initial step, we first cloned and characterized the classical MHC class I gene of northern pig-tailed macaques. In this study, we identified 39 MHC class I alleles including 17 MHC-A and 22 MHC-B alleles. Out of these identified alleles, 30 were novel and 9 were identical to alleles previously reported from other macaque species. The MHC-A and MHC-B loci were both duplicates as rhesus macaques and southern pig-tailed macaques. In addition, we also detected the patterns of positive selection in northern pig-tailed macaques and revealed the existence of balance selection with 20 positive selection sites in the peptide binding region. The analysis of B and F peptide binding pockets in northern and southern pig-tailed macaques and rhesus macaques suggested that they were likely to share a few common peptides to present. Thus, this study provides important MHC immunogenetics information and adds values to northern pig-tailed macaques as a promising HIV/AIDS model.

  14. [Major histocompatibility complex (MHC) in mammals' and its importance for studies of rare species (with Felidae family as an example)].

    PubMed

    Tarasian, K K; Sorokin, P A; Kholodova, M V; Rozhnov, V V

    2014-01-01

    Major histocompatibility complex (MHC) appears to be a suitable tool for solving various tasks of popu- lationgenetics. Information on genetic basis of immunity facilitates understanding of evolutionary his- tory and assessment of current state and prospects of studied population/species survival. On the one hand, MHC variability is maintained through pathogen dependent mechanisms, i.e., directional selection of individuals resistant to diseases, that are present in the environment and balancing selection which gives advantage to those individuals carrying unusual or rare alleles of MHC genes. On the other hand, MHC genes have an influence on reproduction efficiency of individuals. Because of MHC polygeny, its studying requires an application of methods that introduce additional stages between amplification of a certain gene segment and its sequencing. In the article, different tech- niques of allele separation are considered, as well as a simplified version of MHC variability analysis based on the examination of microsatellite loci. Despite the high information value of MHC, it is still not used in zoological studies as often as it deserves. Using as an example predatory mammals of Felidae family which contains quite a few threatened species, we show that a majority of studies on MHC in wild cats is descriptive ones and only few of them deal with genes comparative analysis. The rise of interest to the studies of major histocompatibility complex in non-model species may help not only in solving the fundamental problems of evolution and phylogenetic structure of the family but also in planning the measures for conservation of rare and endangered species exposed to various anthropogenic stresses. PMID:25786311

  15. Cloning, sequencing, and polymorphism analysis of novel classical MHC class I alleles in northern pig-tailed macaques (Macaca leonina).

    PubMed

    Lian, Xiao-Dong; Zhang, Xi-He; Dai, Zheng-Xi; Zheng, Yong-Tang

    2016-04-01

    The northern pig-tailed macaque (Macaca leonina) has been confirmed to be an independent species from the pig-tailed macaque group of Old World monkey. We have previously reported that the northern pig-tailed macaques were also susceptible to HIV-1. Here, to make this animal a potential HIV/AIDS model and to discover the mechanism of virus control, we attempted to assess the role of major histocompatibility complex (MHC) class I-restricted immune responses to HIV-1 infection, which was associated with viral replication and disease progression. As an initial step, we first cloned and characterized the classical MHC class I gene of northern pig-tailed macaques. In this study, we identified 39 MHC class I alleles including 17 MHC-A and 22 MHC-B alleles. Out of these identified alleles, 30 were novel and 9 were identical to alleles previously reported from other macaque species. The MHC-A and MHC-B loci were both duplicates as rhesus macaques and southern pig-tailed macaques. In addition, we also detected the patterns of positive selection in northern pig-tailed macaques and revealed the existence of balance selection with 20 positive selection sites in the peptide binding region. The analysis of B and F peptide binding pockets in northern and southern pig-tailed macaques and rhesus macaques suggested that they were likely to share a few common peptides to present. Thus, this study provides important MHC immunogenetics information and adds values to northern pig-tailed macaques as a promising HIV/AIDS model. PMID:26782049

  16. The Minor MHC Class I Gene UDA of Ducks Is Regulated by Let-7 MicroRNA.

    PubMed

    Chan, Wing Fuk; Parks-Dely, Julie A; Magor, Brad G; Magor, Katharine E

    2016-08-15

    In many nonmammalian vertebrates, the genomic organization of the MHC class I region leads to biased expression of a single classical MHC class I gene coevolving with TAP transporters, whereas class I genes are poorly expressed. This contrasts to the three codominantly expressed classical MHC class I genes in humans and mice. In a sequenced haplotype from White Pekin duck, Anas platyrhynchos, there is one predominantly expressed MHC class I, UAA, although they have five MHC class I genes in the complex, arranged TAP1-TAP2-UAA-UBA-UCA-UDA-UEA The UAA gene, situated proximal to the TAP2 gene, is expressed at levels 10-fold greater than that of another expressed gene, UDA. Three duck MHC class I genes (UBA, UCA, and UEA) are predicted to be partially or completely inactivated by promoter defects, introduction of in-frame stop codon, or the lack of a polyadenylation signal. In this study, we confirm that UBA, UCA, and UEA are indeed inactivated through genetic defects at the promoter, whereas UAA and UDA have functionally equivalent promoters. To examine promoter accessibility, we performed bisulfite sequencing and show that none of the MHC class I promoters are inactivated by methylation. We determine that UDA is differentially regulated through its 3' untranslated region. Namely, expression of UDA is downregulated by let-7 microRNA, whereas the predominantly expressed MHC class I UAA is not. Regulation of UDA by let-7 microRNA suggests that the lower expression level is maintained for its function in immunity. PMID:27430716

  17. Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway.

    PubMed

    Apostolopoulos, V; Pietersz, G A; Gordon, S; Martinez-Pomares, L; McKenzie, I F

    2000-06-01

    Antigens such as MUC1 coupled to oxidized mannan lead to rapid and efficient MHC class I presentation to CD8+ cells and a preferential T1 response; after reduction there is class II presentation and a T2 immune response. We now show that the selective advantage of the oxidized mannan-MUC1 is due to the presence of aldehydes and not Schiff bases, and that oxidized mannan-MUC1 binds to the mannose and not scavenger receptors and is internalized and presented by MHC class I molecules 1,000 times more efficiently than when reduced. After internalization there is rapid access to the class I pathway via endosomes but not lysosomes, proteasomal processing and transport to the endoplasmic reticulum, Golgi apparatus and cell surface. Aldehydes cause rapid entry into the class I pathway, and can therefore direct the subsequent immune response.

  18. Vaccinia Virus A35R Inhibits MHC Class II Antigen Presentation

    PubMed Central

    Rehm, Kristina E.; Connor, Ramsey F.; Jones, Gwendolyn J.B.; Yimbu, Kenneth; Roper, Rachel L.

    2009-01-01

    The Vaccinia virus gene A35R (Copenhagen designation) is highly conserved in mammalian-tropic poxviruses and is an important virulence factor, but its function was unknown. We show herein that A35 does not affect viral infectivity, apoptosis induction, or replication; however, we found that A35 significantly inhibited MHC class II-restricted antigen presentation, immune priming of T lymphocytes, and subsequent chemokine and cytokine synthesis. A35 localized to endosomes and reduced the amount of a model antigenic peptide displayed in the cleft of class II MHC. In addition, A35 decreased VV specific T cell responses in vivo. Thus, this is the first report identifying a function for the A35 protein in virulence as well as the first report identifying a VV gene that inhibits peptide antigen presentation. PMID:19954808

  19. Nonclassical MHC Ib-restricted CD8+ T Cells Recognize Mycobacterium tuberculosis-Derived Protein Antigens and Contribute to Protection Against Infection

    PubMed Central

    Shang, Shaobin; Siddiqui, Sarah; Bian, Yao; Zhao, Jie; Wang, Chyung-Ru

    2016-01-01

    MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or β2m (β2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly β2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules. PMID:27272249

  20. Endothelin receptor B, a candidate gene from human studies at high altitude, improves cardiac tolerance to hypoxia in genetically engineered heterozygote mice.

    PubMed

    Stobdan, Tsering; Zhou, Dan; Ao-Ieong, Eilleen; Ortiz, Daniel; Ronen, Roy; Hartley, Iain; Gan, Zhuohui; McCulloch, Andrew D; Bafna, Vineet; Cabrales, Pedro; Haddad, Gabriel G

    2015-08-18

    To better understand human adaptation to stress, and in particular to hypoxia, we took advantage of one of nature's experiments at high altitude (HA) and studied Ethiopians, a population that is well-adapted to HA hypoxic stress. Using whole-genome sequencing, we discovered that EDNRB (Endothelin receptor type B) is a candidate gene involved in HA adaptation. To test whether EDNRB plays a critical role in hypoxia tolerance and adaptation, we generated EdnrB knockout mice and found that when EdnrB (-/+) heterozygote mice are treated with lower levels of oxygen (O2), they tolerate various levels of hypoxia (even extreme hypoxia, e.g., 5% O2) very well. For example, they maintain ejection fraction, cardiac contractility, and cardiac output in severe hypoxia. Furthermore, O2 delivery to vital organs was significantly higher and blood lactate was lower in EdnrB (-/+) compared with wild type in hypoxia. Tissue hypoxia in brain, heart, and kidney was lower in EdnrB (-/+) mice as well. These data demonstrate that a lower level of EDNRB significantly improves cardiac performance and tissue perfusion under various levels of hypoxia. Transcriptomic profiling of left ventricles revealed three specific genes [natriuretic peptide type A (Nppa), sarcolipin (Sln), and myosin light polypeptide 4 (Myl4)] that were oppositely expressed (q < 0.05) between EdnrB (-/+) and wild type. Functions related to these gene networks were consistent with a better cardiac contractility and performance. We conclude that EDNRB plays a key role in hypoxia tolerance and that a lower level of EDNRB contributes, at least in part, to HA adaptation in humans.

  1. Endothelin receptor B, a candidate gene from human studies at high altitude, improves cardiac tolerance to hypoxia in genetically engineered heterozygote mice

    PubMed Central

    Stobdan, Tsering; Zhou, Dan; Ao-Ieong, Eilleen; Ortiz, Daniel; Ronen, Roy; Hartley, Iain; Gan, Zhuohui; McCulloch, Andrew D.; Bafna, Vineet; Cabrales, Pedro; Haddad, Gabriel G.

    2015-01-01

    To better understand human adaptation to stress, and in particular to hypoxia, we took advantage of one of nature’s experiments at high altitude (HA) and studied Ethiopians, a population that is well-adapted to HA hypoxic stress. Using whole-genome sequencing, we discovered that EDNRB (Endothelin receptor type B) is a candidate gene involved in HA adaptation. To test whether EDNRB plays a critical role in hypoxia tolerance and adaptation, we generated EdnrB knockout mice and found that when EdnrB−/+ heterozygote mice are treated with lower levels of oxygen (O2), they tolerate various levels of hypoxia (even extreme hypoxia, e.g., 5% O2) very well. For example, they maintain ejection fraction, cardiac contractility, and cardiac output in severe hypoxia. Furthermore, O2 delivery to vital organs was significantly higher and blood lactate was lower in EdnrB−/+ compared with wild type in hypoxia. Tissue hypoxia in brain, heart, and kidney was lower in EdnrB−/+ mice as well. These data demonstrate that a lower level of EDNRB significantly improves cardiac performance and tissue perfusion under various levels of hypoxia. Transcriptomic profiling of left ventricles revealed three specific genes [natriuretic peptide type A (Nppa), sarcolipin (Sln), and myosin light polypeptide 4 (Myl4)] that were oppositely expressed (q < 0.05) between EdnrB−/+ and wild type. Functions related to these gene networks were consistent with a better cardiac contractility and performance. We conclude that EDNRB plays a key role in hypoxia tolerance and that a lower level of EDNRB contributes, at least in part, to HA adaptation in humans. PMID:26240367

  2. The Effect of Inbreeding on the Distribution of Compound Heterozygotes: A Lesson from Lipase H Mutations in Autosomal Recessive Woolly Hair/Hypotrichosis

    PubMed Central

    Petukhova, Lynn; Shimomura, Yutaka; Wajid, Muhammad; Gorroochurn, Prakash; Hodge, Susan E.; Christiano, Angela M.

    2009-01-01

    Autozygosity mapping in consanguineous families has proven to be a powerful method for identifying recessive disease genes. Using this technique with whole genome SNP data generated from low density mapping arrays, we previously identified two genes that underlie autosomal recessive woolly hair (ARWH/hypotrichosis; OMIM278150), specifically P2RY5 and Lipase H (LIPH). In the current study, we sought to identify a novel disease locus for ARWH/hypotrichosis by analyzing two large consanguineous families from Pakistan who had initially been excluded for mutations at either of these disease loci by haplotype analysis with microsatellite markers. A genome-wide analysis of 10 members from each of the two families failed to identify significant regions of autozygosity or linkage. Upon genotyping an additional 10 family members in one of the families, parametric linkage analysis identified a region on chromosome 3q27 with evidence for linkage (Z = 2.5). Surprisingly, this region contains the LIPH gene. Microsatellite markers located within the LIPH gene were used for haplotype analysis and demonstrated that not one, but two haplotypes were segregating with the phenotype in each of these families. DNA sequencing identified two distinct LIPH mutations (280_369dup90 and 659_660delTA). Each affected individual (n = 38) was either homozygous for one mutation (n = 7 and 16 respectively), or compound heterozygous (n = 15). A review of the literature identified several reports of compound heterozygotes in consanguineous families. Prompted by this finding, we derived the probability that a patient affected with a recessive disease is carrying two mutations at the disease locus. We suggest that the validity of the IBD assumption may be challenged in large consanguineous families. PMID:19365138

  3. Cell-Extrinsic MHC Class I Molecule Engagement Augments Human NK Cell Education Programmed by Cell-Intrinsic MHC Class I.

    PubMed

    Boudreau, Jeanette E; Liu, Xiao-Rong; Zhao, Zeguo; Zhang, Aaron; Shultz, Leonard D; Greiner, Dale L; Dupont, Bo; Hsu, Katharine C

    2016-08-16

    The effector potential of NK cells is counterbalanced by their sensitivity to inhibition by "self" MHC class I molecules in a process called "education." In humans, interactions between inhibitory killer immunoglobulin-like receptors (KIR) and human MHC (HLA) mediate NK cell education. In HLA-B(∗)27:05(+) transgenic mice and in patients undergoing HLA-mismatched hematopoietic cell transplantation (HCT), NK cells derived from human CD34(+) stem cells were educated by HLA from both donor hematopoietic cells and host stromal cells. Furthermore, mature human KIR3DL1(+) NK cells gained reactivity after adoptive transfer to HLA-B(∗)27:05(+) mice or bone marrow chimeric mice where HLA-B(∗)27:05 was restricted to either the hematopoietic or stromal compartment. Silencing of HLA in primary NK cells diminished NK cell reactivity, while acquisition of HLA from neighboring cells increased NK cell reactivity. Altogether, these findings reveal roles for cell-extrinsic HLA in driving NK cell reactivity upward, and cell-intrinsic HLA in maintaining NK cell education.

  4. Contrasting evolutionary histories of MHC class I and class II loci in grouse—Effects of selection and gene conversion

    USGS Publications Warehouse

    Minias, Piotr; Bateson, Zachary W; Whittingham, Linda A; Johnson, Jeff A.; Oyler-McCance, Sara J.; Dunn, Peter O

    2016-01-01

    Genes of the major histocompatibility complex (MHC) encode receptor molecules that are responsible for recognition of intracellular and extracellular pathogens (class I and class II genes, respectively) in vertebrates. Given the different roles of class I and II MHC genes, one might expect the strength of selection to differ between these two classes. Different selective pressures may also promote different rates of gene conversion at each class. Despite these predictions, surprisingly few studies have looked at differences between class I and II genes in terms of both selection and gene conversion. Here, we investigated the molecular evolution of MHC class I and II genes in five closely related species of prairie grouse (Centrocercus and Tympanuchus) that possess one class I and two class II loci. We found striking differences in the strength of balancing selection acting on MHC class I versus class II genes. More than half of the putative antigen-binding sites (ABS) of class II were under positive or episodic diversifying selection, compared with only 10% at class I. We also found that gene conversion had a stronger role in shaping the evolution of MHC class II than class I. Overall, the combination of strong positive (balancing) selection and frequent gene conversion has maintained higher diversity of MHC class II than class I in prairie grouse. This is one of the first studies clearly demonstrating that macroevolutionary mechanisms can act differently on genes involved in the immune response against intracellular and extracellular pathogens.

  5. A general and efficient approach for NMR studies of peptide dynamics in class I MHC peptide binding grooves.

    PubMed

    Insaidoo, Francis K; Zajicek, Jaroslav; Baker, Brian M

    2009-10-20

    T-Cell receptor recognition of peptides bound by major histocompatibility complex (MHC) proteins initiates a cellular immune response. Dynamics of peptides within MHC binding grooves can influence TCR recognition, yet NMR studies which could address this rigorously have been hindered by the expense of isotopically labeled peptides and the large size of peptide-MHC complexes. Here we describe a methodology for characterizing peptide dynamics within MHC binding grooves via NMR, using a biosynthetic approach for producing labeled peptide. With the Tax(11-19) peptide bound to the human class I MHC HLA-A*0201, we demonstrate that peptide generated in this manner can be well characterized in MHC binding grooves by NMR, providing opportunities to more precisely study the role of peptide dynamics in TCR recognition. Demonstrating the utility of such studies, the data with the Tax(11-19) peptide indicate the presence of slow conformational exchange in the peptide, supporting an "induced-fit" style TCR binding mechanism.

  6. A comparison of variation between a MHC pseudogene and microsatellite loci of the little greenbul (Andropadus virens)

    PubMed Central

    Aguilar, Andres; Smith, Thomas B; Wayne, Robert K

    2005-01-01

    Background We investigated genetic variation of a major histcompatibility complex (MHC) pseudogene (Anvi-DAB1) in the little greenbul (Andropadus virens) from four localities in Cameroon and one in Ivory Coast, West Africa. Previous microsatellite and mitochondrial DNA analyses had revealed little or no genetic differentiation among Cameroon localities but significant differentiation between localities in Cameroon and Ivory Coast. Results Levels of genetic variation, heterozygosity, and allelic diversity were high for the MHC pseudogene in Cameroon. Nucleotide diversity of the MHC pseudogene in Cameroon and Ivory Coast was comparable to levels observed in other avian species that have been studied for variation in nuclear genes. An excess of rare variants for the MHC pseudogene was found in the Cameroon population, but this excess was not statistically significant. Pairwise measures of population differentiation revealed high divergence between Cameroon and Ivory Coast for microsatellites and the MHC locus, although for the latter distance measures were much higher than the comparable microsatellite distances. Conclusion We provide the first ever comparison of variation in a putative MHC pseudogene to variation in neutral loci in a passerine bird. Our results are consistence with the action of neutral processes on the pseudogene and suggest they can provide an independent perspective on demographic history and population substructure. PMID:16159389

  7. Protein kinase inhibitors substantially improve the physical detection of T-cells with peptide-MHC tetramers.

    PubMed

    Lissina, Anna; Ladell, Kristin; Skowera, Ania; Clement, Matthew; Edwards, Emily; Seggewiss, Ruth; van den Berg, Hugo A; Gostick, Emma; Gallagher, Kathleen; Jones, Emma; Melenhorst, J Joseph; Godkin, Andrew J; Peakman, Mark; Price, David A; Sewell, Andrew K; Wooldridge, Linda

    2009-01-01

    Flow cytometry with fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) tetramers has transformed the study of antigen-specific T-cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we demonstrate that the reversible protein kinase inhibitor (PKI) dasatinib improves the staining intensity of human (CD8+ and CD4+) and murine T-cells without concomitant increases in background staining. Dasatinib enhances the capture of cognate pMHC tetramers from solution and produces higher intensity staining at lower pMHC concentrations. Furthermore, dasatinib reduces pMHC tetramer-induced cell death and substantially lowers the T-cell receptor (TCR)/pMHC interaction affinity threshold required for cell staining. Accordingly, dasatinib permits the identification of T-cells with very low affinity TCR/pMHC interactions, such as those that typically predominate in tumour-specific responses and autoimmune conditions that are not amenable to detection by current technology.

  8. NK Cell Responsiveness is Tuned Commensurate with the Number of Inhibitory Receptors for Self MHC Class I: the Rheostat Model

    PubMed Central

    Joncker, Nathalie T.; Fernandez, Nadine C.; Treiner, Emmanuel; Vivier, Eric; Raulet, David H.

    2010-01-01

    Inhibitory receptors that engage self-MHC class I molecules enable NK cells to detect disease-associated loss of MHC class I on surrounding cells. Previous studies showed that some NK cells lack all receptors for self-MHC class I, yet fail to exhibit autoimmunity because they are generally hyporesponsive to stimulation. We asked whether NK cells exist in only two states, responsive and hyporesponsive, corresponding to cells that express or fail to express inhibitory receptors for self-MHC class I. The alternative model is that NK cells vary continuously in their responsiveness, based on variations in the number of different inhibitory and stimulatory receptors they express, which is known to vary. Here we show in the murine system that NK cell responsiveness increases quantitatively with each added self MHC-specific inhibitory receptor. Genetic analysis demonstrated that interactions of each of the receptors with self-MHC class I were necessary to observe augmented responsiveness. These findings suggest that NK cell responsiveness is comparable to a rheostat: it is tuned to an optimal set point depending on the inhibitory and stimulatory interactions encountered in the normal environment, so as to ensure self-tolerance and yet optimize sensitivity to changes in normal cells. PMID:19342631

  9. MHC Class IIB Exon 2 Polymorphism in the Grey Partridge (Perdix perdix) Is Shaped by Selection, Recombination and Gene Conversion

    PubMed Central

    Bryjová, Anna; Albrecht, Tomáš; Bryja, Josef

    2013-01-01

    Among bird species, the most studied major histocompatibility complex (MHC) is the chicken MHC. Although the number of studies on MHC in free-ranging species is increasing, the knowledge on MHC variation in species closely related to chicken is required to understand the peculiarities of bird MHC evolution. Here we describe the variation of MHC class IIB (MHCIIB) exon 2 in a population of the Grey partridge (Perdix perdix), a species of high conservation concern throughout Europe and an emerging galliform model in studies of sexual selection. We found 12 alleles in 108 individuals, but in comparison to other birds surprisingly many sites show signatures of historical positive selection. Individuals displayed between two to four alleles both on genomic and complementary DNA, suggesting the presence of two functional MHCIIB loci. Recombination and gene conversion appear to be involved in generating MHCIIB diversity in the Grey partridge; two recombination breakpoints and several gene conversion events were detected. In phylogenetic analysis of galliform MHCIIB, the Grey partridge alleles do not cluster together, but are scattered through the tree instead. Thus, our results indicate that the Grey partridge MHCIIB is comparable to most other galliforms in terms of copy number and population polymorphism. PMID:23935938

  10. A general and efficient approach for NMR studies of peptide dynamics in class I MHC peptide binding grooves.

    PubMed

    Insaidoo, Francis K; Zajicek, Jaroslav; Baker, Brian M

    2009-10-20

    T-Cell receptor recognition of peptides bound by major histocompatibility complex (MHC) proteins initiates a cellular immune response. Dynamics of peptides within MHC binding grooves can influence TCR recognition, yet NMR studies which could address this rigorously have been hindered by the expense of isotopically labeled peptides and the large size of peptide-MHC complexes. Here we describe a methodology for characterizing peptide dynamics within MHC binding grooves via NMR, using a biosynthetic approach for producing labeled peptide. With the Tax(11-19) peptide bound to the human class I MHC HLA-A*0201, we demonstrate that peptide generated in this manner can be well characterized in MHC binding grooves by NMR, providing opportunities to more precisely study the role of peptide dynamics in TCR recognition. Demonstrating the utility of such studies, the data with the Tax(11-19) peptide indicate the presence of slow conformational exchange in the peptide, supporting an "induced-fit" style TCR binding mechanism. PMID:19772349

  11. Impact of historical founder effects and a recent bottleneck on MHC variability in Commander Arctic foxes (Vulpes lagopus)

    PubMed Central

    Ploshnitsa, Anna I; Goltsman, Mikhail E; Macdonald, David W; Kennedy, Lorna J; Sommer, Simone

    2012-01-01

    Populations of Arctic foxes (Vulpes lagopus) have been isolated on two of the Commander Islands (Bering and Mednyi) from the circumpolar distributed mainland population since the Pleistocene. In 1970–1980, an epizootic outbreak of mange caused a severe population decline on Mednyi Island. Genes of the major histocompatibility complex (MHC) play a primary role in infectious disease resistance. The main objectives of our study were to compare contemporary variation of MHC class II in mainland and island Arctic foxes, and to document the effects of the isolation and the recent bottleneck on MHC polymorphism by analyzing samples from historical and contemporary Arctic foxes. In 184 individuals, we found 25 unique MHC class II DRB and DQB alleles, and identified evidence of balancing selection maintaining allelic lineages over time at both loci. Twenty different MHC alleles were observed in mainland foxes and eight in Bering Island foxes. The historical Mednyi population contained five alleles and all contemporary individuals were monomorphic at both DRB and DQB. Our data indicate that despite positive and diversifying selection leading to elevated rates of amino acid replacement in functionally important antigen-binding sites, below a certain population size, balancing selection may not be strong enough to maintain genetic diversity in functionally important genes. This may have important fitness consequences and might explain the high pathogen susceptibility in some island populations. This is the first study that compares MHC diversity before and after a bottleneck in a wild canid population using DNA from museum samples. PMID:22408734

  12. Targeting tumor-associated antigens to the MHC class I presentation pathway.

    PubMed

    Gross, G; Margalit, A

    2007-06-01

    There is little doubt that cytotoxic T lymphocytes (CTLs) can kill tumor cells in-vivo. However, most CTL-inducing immunization protocols examined so far in cancer patients have yielded only limited clinical benefits, underscoring the urge to improve current approaches for the effective induction of tumor-reactive CTLs. The tumor side of the immunological frontline is armed with large masses, high mutability and an arsenal of immune evasion and suppression mechanisms. Accordingly, the confronting CTLs should come in large numbers, recognize an assortment of MHC class I (MHC-I) bound tumor-associated peptides and be brought into action under effective immunostimulatory conditions. Naïve CTLs are activated to become effector cells in secondary lymphoid organs, following their productive encounter with MHC-I-bound peptides at the surface of dendritic cells (DCs). Therefore, many cancer vaccines under development focus on the optimization of peptide presentation by DCs at this critical stage. The elucidation of discrete steps and the subsequent identification of inherent bottlenecks in the MHC-I antigen presentation pathway have fueled elaborate efforts to enhance vaccine efficacy by the rational targeting of proteins or peptides, formulated into these vaccines, to this pathway. Protein- and gene-based strategies are accordingly devised to deliver tumor-associated peptides to selected cellular compartments, which are essential for the generation of functional CTL ligands. Many of these strategies target the conventional, endogenous route, while others harness the unique pathways that enable DCs to present exogenous antigens, known as cross-presentation. Here we dissect the intricate machinery that produces CTL ligands and examine how knowledge-based cancer vaccines can target the sequence of workstations, biochemical utensils and molecular intermediates comprising this production line.

  13. Antibody-Mediated Rejection of Single Class I MHC-Disparate Cardiac Allografts

    PubMed Central

    Hattori, Yusuke; Bucy, R. Pat; Kubota, Yoshinobu; Baldwin, William M.; Fairchild, Robert L.

    2012-01-01

    Murine CCR5−/− recipients produce high titers of antibody to complete MHC-mismatched heart and renal allografts. To study mechanisms of class I MHC antibody-mediated allograft injury, we tested the rejection of heart allografts transgenically expressing a single class I MHC disparity in wild-type C57BL/6 (H-2b) and B6.CCR5−/− recipients. Donor-specific antibody titers in CCR5−/− recipients were 30-fold higher than in wild-type recipients. B6.Kd allografts survived longer than 60 days in wild-type recipients whereas CCR5−/− recipients rejected all allografts within 14 days. Rejection was accompanied by infiltration of CD8 T cells, neutrophils, and macrophages and C4d deposition in the graft capillaries. B6.Kd allografts were rejected by CD8−/−/CCR5−/−, but not μMT−/−/CCR5−/−, recipients indicating the need for antibody but not CD8 T cells. Grafts retrieved at day 10 from CCR5−/− and CD8−/−/CCR5−/− recipients and from RAG-1−/− allograft recipients injected with anti-Kd antibodies expressed high levels of perforin, myeloperoxidase and CCL5 mRNA. These studies indicate that the continual production of anti-donor class I MHC antibody can mediate allograft rejection, that donor-reactive CD8 T cells synergize with the antibody to contribute to rejection, and that expression of three biomarkers during rejection can occur in the absence of this CD8 T cell activity. PMID:22578247

  14. MHC class II DRB diversity in raccoons (Procyon lotor) reveals associations with raccoon rabies virus (Lyssavirus).

    PubMed

    Srithayakumar, Vythegi; Castillo, Sarrah; Rosatte, Rick C; Kyle, Christopher J

    2011-02-01

    In North America, the raccoon rabies virus (RRV) is an endemic wildlife disease which causes acute encephalopathies and is a strong selective force on raccoons (Procyon lotor), with estimates of ∼85% of the population succumbing to the disease when epizootic. RRV is regarded as a lethal disease if untreated; therefore, no evolutionary response would be expected of raccoon populations. However, variable immune responses to RRV have been observed in raccoons indicating a potential for evolutionary adaptation. Studies of variation within the immunologically important major histocompatibility complex (MHC) have revealed relationships between MHC alleles and diseases in humans and other wildlife species. This enhances our understanding of how hosts and pathogens adapt and co-evolve. In this study, we used RRV as a model system to study host-pathogen interaction in raccoons from a challenge study and from four wild populations that differ in exposure times and viral lineages. We investigated the potential role of Prlo-DRB polymorphism in relation to susceptibility/resistance to RRV in 113 RRV positive and 143 RRV negative raccoons. Six alleles were found to be associated with RRV negative status and five alleles with RRV positive animals. We found variable patterns of MHC associations given the relative number of selective RRV sweeps in the studied regions and correlations between MHC diversity and RRV lineages. The allelic associations established provide insight into how the genetic variation of raccoons may affect the disease outcome and this can be used to examine similar associations between other rabies variants and their hosts.

  15. Interrogating the repertoire: broadening the scope of peptide–MHC multimer analysis

    PubMed Central

    Davis, Mark M.; Altman, John D.; Newell, Evan W.

    2013-01-01

    Labelling antigen-specific T cells with peptide–MHC multimers has provided an invaluable way to monitor T cell-mediated immune responses. A number of recent developments in this technology have made these multimers much easier to make and use in large numbers. Furthermore, enrichment techniques have provided a greatly increased sensitivity that allows the analysis of the naive T cell repertoire directly. Thus, we can expect a flood of new information to emerge in the coming years. PMID:21760610

  16. Epigenetic control of MHC-II: interplay between CIITA and histone-modifying enzymes.

    PubMed

    Zika, Eleni; Ting, Jenny P-Y

    2005-02-01

    Recent advances have shown the crucial role of histone-modifying enzymes in controlling gene activation and repression. This led to the 'histone code' hypothesis, which proposes that combinations of histone modifications work in concert to affect specific gene expression. Mounting evidence suggests that the class II transactivator modulates promoter accessibility by coordinating the recruitment of chromatin modifiers in a time-dependent fashion. MHC-II expression is exquisitely controlled by these highly specific, coordinated and dynamic interactions at the promoter.

  17. Dendritic cell preactivation impairs MHC class II presentation of vaccines and endogenous viral antigens

    PubMed Central

    Young, Louise J.; Wilson, Nicholas S.; Schnorrer, Petra; Mount, Adele; Lundie, Rachel J.; La Gruta, Nicole L.; Crabb, Brendan S.; Belz, Gabrielle T.; Heath, William R.; Villadangos, Jose A.

    2007-01-01

    When dendritic cells (DCs) encounter signals associated with infection or inflammation, they become activated and undergo maturation. Mature DCs are very efficient at presenting antigens captured in association with their activating signal but fail to present subsequently encountered antigens, at least in vitro. Such impairment of MHC class II (MHC II) antigen presentation has generally been thought to be a consequence of down-regulation of endocytosis, so it might be expected that antigens synthesized by the DCs themselves (for instance, viral antigens) would still be presented by mature DCs. Here, we show that DCs matured in vivo could still capture and process soluble antigens, but were unable to present peptides derived from these antigens. Furthermore, presentation of viral antigens synthesized by the DCs themselves was also severely impaired. Indeed, i.v. injection of pathogen mimics, which caused systemic DC activation in vivo, impaired the induction of CD4 T cell responses against subsequently encountered protein antigens. This immunosuppressed state could be reversed by adoptive transfer of DCs loaded exogenously with antigens, demonstrating that impairment of CD4 T cell responses was due to lack of antigen presentation rather than to overt suppression of T cell activation. The biochemical mechanism underlying this phenomenon was the down-regulation of MHC II–peptide complex formation that accompanied DC maturation. These observations have important implications for the design of prophylactic and therapeutic DC vaccines and contribute to the understanding of the mechanisms causing immunosuppression during systemic blood infections. PMID:17978177

  18. Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis.

    PubMed

    Hamo, Ludwig; Stohlman, Stephen A; Otto-Duessel, Maya; Bergmann, Cornelia C

    2007-08-15

    The potential interplay of glial cells with T cells during viral induced inflammation was assessed by comparing major histocompatibility complex molecule upregulation and retention on astrocytes and microglia. Transgenic mice expressing green fluorescent protein under control of the astrocyte-specific glial fibrillary acidic protein promoter were infected with a neurotropic coronavirus to facilitate phenotypic characterization of astrocytes and microglia using flow cytometry. Astrocytes in the adult central nervous system up-regulated class I surface expression, albeit delayed compared with microglia. Class II was barely detectable on astrocytes, in contrast to potent up-regulation on microglia. Maximal MHC expression in both glial cell types correlated with IFN-gamma levels and lymphocyte accumulation. Despite a decline of IFN-gamma concomitant to virus clearance, MHC molecule expression on glia was sustained. These data demonstrate distinct regulation of both class I and class II expression by microglia and astrocytes in vivo following viral induced inflammation. Furthermore, prolonged MHC expression subsequent to viral clearance implies a potential for ongoing presentation.

  19. Polymorphism of two very similar MHC class Ib loci in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Dijkstra, Johannes Martinus; Kiryu, Ikunari; Yoshiura, Yasutoshi; Kumánovics, Attila; Kohara, Masakazu; Hayashi, Nobuhiro; Ototake, Mitsuru

    2006-04-01

    As part of an ongoing elucidation of rainbow trout major histocompatibility complex (MHC) class I, the polymorphism of two MHC class Ib loci was analyzed. These loci, Onmy-UCA and Onmy-UDA, are situated head-to-tail and share more than 89% nucleotide identity in their open reading frames. They share 80% identity with some trout Ia alleles. The deduced amino acid sequences suggest that the UCA and UDA molecules are transported to endosomal compartments and may bind peptides in their binding groove. Our survey revealed seven UCA and eight UDA alleles. Similarity indices overlap when comparing within and between UCA and UDA alleles and some cross-locus motif variation is observed. In most trout both UCA and UDA transcripts were found. However, there probably is functional redundancy, because some trout lacked transcription of one of the two loci. Furthermore, for some UCA and UDA alleles, splicing deficiencies, early stop codons, and upstream start codons were found, which may interfere with efficient protein expression. The present study is the first extensive report on MHC class Ib polymorphism assigned to locus in ectotherm species.

  20. Polymorphisms at MHC class II DRB1 exon 2 locus in Pyrenean chamois (Rupicapra pyrenaica pyrenaica).

    PubMed

    Cavallero, Serena; Marco, Ignasi; Lavín, Santiago; D'Amelio, Stefano; López-Olvera, Jorge R

    2012-07-01

    Chamois (Rupicapra spp.) are mountain ungulates from Southern and Central Europe and the Near East. A newly reported border disease virus (BDV) has affected the easternmost populations of Pyrenean chamois, leading to a dramatic population decrease that may drive to genetic variability loss. The Major Histocompatibility Complex (MHC) is a sensitive marker for genetic variation of populations: polymorphism on the MHC genes is affected both by pathogens and population dynamics and it is ecologically relevant, as depending on host-pathogen relationships and life history features. In the present study MHC class II DRB1 exon 2 variation was investigated in 81 Pyrenean chamois (Rupicapra pyrenaica pyrenaica) belonging to four populations. Haplotype analysis, population genetics statistics and network analysis were carried out, in order to analyze variability, phylogeography and genealogy, and the effects of geography and demographic trend. Twenty-nine haplotypes were identified, 26 of them newly described, with high Gene diversity (Gd). The variability observed in the easternmost populations of Pyrenean chamois showed a higher genetic diversity than that previously reported for other populations of Pyrenean and Cantabrian chamois (Rupicapra pyrenaica parva). The most frequent allele was RupyDRB*15, previously undetected, which seems to play a significant role in genotyping the variability, suggesting a possible effect of positive selection. PMID:22425496

  1. Immunotoxin Against a Donor MHC Class II Molecule Induces Indefinite Survival of Murine Kidney Allografts

    PubMed Central

    Brown, K.; Nowocin, A. K.; Meader, L.; Edwards, L. A.; Smith, R. A.

    2016-01-01

    Rejection of donor organs depends on the trafficking of donor passenger leukocytes to the secondary lymphoid organs of the recipient to elicit an immune response via the direct antigen presentation pathway. Therefore, the depletion of passenger leukocytes may be clinically applicable as a strategy to improve graft survival. Because major histocompatibility complex (MHC) class II+ cells are most efficient at inducing immune responses, selective depletion of this population from donor grafts may dampen the alloimmune response and prolong graft survival. In a fully MHC mismatched mouse kidney allograft model, we describe the synthesis of an immunotoxin, consisting of the F(ab′)2 fragment of a monoclonal antibody against the donor MHC class II molecule I‐Ak conjugated with the plant‐derived ribosomal inactivating protein gelonin. This anti–I‐Ak gelonin immunotoxin depletes I‐Ak expressing cells specifically in vitro and in vivo. When given to recipients of kidney allografts, it resulted in indefinite graft survival with normal graft function, presence of Foxp3+ cells within donor grafts, diminished donor‐specific antibody formation, and delayed rejection of subsequent donor‐type skin grafts. Strategies aimed at the donor arm of the immune system using agents such as immunotoxins may be a useful adjuvant to existing recipient‐orientated immunosuppression. PMID:26799449

  2. Contact sensitizers specifically increase MHC class II expression on murine immature dendritic cells.

    PubMed

    Herouet, C; Cottin, M; LeClaire, J; Enk, A; Rousset, F

    2000-01-01

    Contact sensitivity is a T-cell-mediated immune disease that can occur when low-molecular-weight chemicals penetrate the skin. In vivo topical application of chemical sensitizers results in morphological modification of Langerhans cells (LC). Moreover, within 18 h, LC increase their major histocompatibility complex (MHC) class II antigens expression and migrate to lymph nodes where they present the sensitizer to T lymphocytes. We wanted to determine if such an effect could also be observed in vitro. However, because of the high genetic diversity encountered in humans, assays were performed with dendritic cells (DC) obtained from a Balb/c mouse strain. The capacity of a strong sensitizer, DNBS (2,4-dinitrobenzene sulfonic acid), to modulate the phenotype of bone marrow-derived DC in vitro, was investigated. A specific and marked increase of MHC class II molecules expression was observed within 18 h. To eliminate the use of animals in sensitization studies, the XS52 DC line was tested at an immature stage. A 30-min contact with the strong sensitizers DNBS and oxazolone, or the moderate mercaptobenzothiazole, resulted in upregulation of MHC class II molecules expression, analyzed after 18-h incubation. This effect was not observed with irritants (dimethyl sulfoxide and sodium lauryl sulfate) nor with a neutral molecule (sodium chloride). These data suggested the possibility of developing an in vitro model for the identification of the sensitizing potential of chemicals, using a constant and non animal-consuming material.

  3. Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding

    PubMed Central

    Chappell, Paul E; Meziane, El Kahina; Harrison, Michael; Magiera, Łukasz; Hermann, Clemens; Mears, Laura; Wrobel, Antoni G; Durant, Charlotte; Nielsen, Lise Lotte; Buus, Søren; Ternette, Nicola; Mwangi, William; Butter, Colin; Nair, Venugopal; Ahyee, Trudy; Duggleby, Richard; Madrigal, Alejandro; Roversi, Pietro; Lea, Susan M; Kaufman, Jim

    2015-01-01

    Highly polymorphic major histocompatibility complex (MHC) molecules are at the heart of adaptive immune responses, playing crucial roles in many kinds of disease and in vaccination. We report that breadth of peptide presentation and level of cell surface expression of class I molecules are inversely correlated in both chickens and humans. This relationship correlates with protective responses against infectious pathogens including Marek's disease virus leading to lethal tumours in chickens and human immunodeficiency virus infection progressing to AIDS in humans. We propose that differences in peptide binding repertoire define two groups of MHC class I molecules strategically evolved as generalists and specialists for different modes of pathogen resistance. We suggest that differences in cell surface expression level ensure the development of optimal peripheral T cell responses. The inverse relationship of peptide repertoire and expression is evidently a fundamental property of MHC molecules, with ramifications extending beyond immunology and medicine to evolutionary biology and conservation. DOI: http://dx.doi.org/10.7554/eLife.05345.001 PMID:25860507

  4. Modulation of MHC Binding by Lateral Association of TCR and Coreceptor

    PubMed Central

    Perica, Karlo; Bieler, Joan Glick; Edidin, Michael; Schneck, Jonathan

    2012-01-01

    The structure of a T cell receptor (TCR) and its affinity for cognate antigen are fixed, but T cells regulate binding sensitivity through changes in lateral membrane organization. TCR microclusters formed upon antigen engagement participate in downstream signaling. Microclusters are also found 3–4 days after activation, leading to enhanced antigen binding upon rechallenge. However, others have found an almost complete loss of antigen binding four days after T cell activation, when TCR clusters are present. To resolve these contradictory results, we compared binding of soluble MHC-Ig dimers by transgenic T cells stimulated with a high (100 μM) or low (100 fM) dose of cognate antigen. Cells activated by a high dose of peptide bound sixfold lower amounts of CD8-dependent ligand Kb-SIY than cells activated by a low dose of MHC/peptide. In contrast, both cell populations bound a CD8-independent ligand Ld-QL9 equally well. Consistent with the differences between binding of CD8-dependent and CD8-independent peptide/MHC, Förster resonance energy transfer (FRET) measurements of molecular proximity reported little nanoscale association of TCR with CD8 (16 FRET units) compared to their association on cells stimulated by low antigen dose (62 FRET units). Loss of binding induced by changes in lateral organization of TCR and CD8 may serve as a regulatory mechanism to avoid excessive inflammation and immunopathology in response to aggressive infection. PMID:23199917

  5. Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE

    PubMed Central

    Marín, Nieves; Mecha, Miriam; Espejo, Carmen; Mestre, Leyre; Eixarch, Herena; Montalban, Xavier; Álvarez-Cermeño, José C.; Guaza, Carmen; Villar, Luisa M.

    2014-01-01

    Background and Objectives. Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE), an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. Methods. For EAE induction, female C57BL/6 (susceptible strain) and CD1 (resistant outbred strain showing heterogeneous MHC antigens) mice were immunized with the 35–55 peptide of myelin oligodendrocyte glycoprotein (MOG35−55). We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Results. Upon immunization with MOG35−55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35−55. Accordingly, resistant mice experienced a rise in regulatory B cells (P = 0.001) and, to a lower extent, in regulatory T cells (P = 0.02) compared with C57BL/6 susceptible mice. As a consequence, MOG35−55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P = 0.02) and IL-17 (P = 0.009) and higher serum levels of IL-17 (P = 0.04) than resistant mice. Conclusions. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism. PMID:24868560

  6. The MHC class II cofactor, HLA-DM, interacts with immunoglobulin in B cells

    PubMed Central

    Ayyangar, Sashi; Jiang, Wei; Rajasekaran, Narendiran; Spura, Armin; Hessell, Ann J.; Madec, Anne-Marie; Mellins, Elizabeth D.

    2014-01-01

    B cells internalize extracellular antigen into endosomes using the immunoglobulin (Ig) component of the B cell receptor. In endosomes, antigen-derived peptides are loaded onto MHC class II proteins (MHC-II). How these pathways intersect remains unclear. We find that HLA-DM (DM), a catalyst for MHC-II peptide loading, co-precipitates with Ig in lysates from human tonsillar B cells and B cell lines. The molecules in the Ig/DM complexes have mature glycans, and the complexes co-localize with endosomal markers in intact cells. A larger fraction of Ig precipitates with DM after BCR crosslinking, implying that complexes can form when DM meets endocytosed Ig. In vitro, in the endosomal pH range, soluble HLA-DM (sDM) directly binds the Ig Fab domain, and increases levels of free antigen released from immune complexes. Together, these results argue that DM and Ig intersect in the endocytic pathway of B cells with potential functional consequences. PMID:25098292

  7. Crystal Structure of the Murine Cytomegalovirus MHC-I Homolog m144

    SciTech Connect

    Natarajan,K.; Hicks, A.; Mans, J.; Robinson, H.; Guan, R.; Mariuzza, R.; Margulies, D.

    2006-01-01

    Large DNA viruses of the herpesvirus family produce proteins that mimic host MHC-I molecules as part of their immunoevasive strategy. The m144 glycoprotein, expressed by murine cytomegalovirus, is thought to be an MHC-I homolog whose expression prolongs viral survival in vivo by preventing natural killer cell activation. To explore the structural basis of this m144 function, we have determined the three-dimensional structure of an m144/{beta}2-microglobulin ({beta}2m) complex at 1.9 {angstrom} resolution. This structure reveals the canonical features of MHC-I molecules including readily identifiable {alpha}1, {alpha}2, and {alpha}3 domains. A unique disulfide bond links the {alpha}1 helix to the {beta}-sheet floor, explaining the known thermal stability of m144. Close juxtaposition of the {alpha}1 and {alpha}2 helices and the lack of critical residues that normally contribute to anchoring the peptide N and C termini eliminates peptide binding. A region of 13 amino acid residues, corresponding to the amino-terminal portion of the {alpha}2 helix, is missing in the electron density map, suggesting an area of structural flexibility that may be involved in ligand binding.

  8. Quantum Chemical Analysis of MHC-Peptide Interactions for Vaccine Design

    PubMed Central

    Agudelo, W.A; Patarroyo, M.E

    2010-01-01

    The development of an adequate immune response against pathogens is mediated by molecular interactions between different cell types. Among them, binding of antigenic peptides to the Major Histocompatibility Complex (MHC) molecule expressed on the membrane of antigen presenting cells (APCs), and their subsequent recognition by the T cell receptor have been demonstrated to be crucial for developing an adequate immune response. The present review compiles computational quantum chemistry studies about the electrostatic potential variations induced on the MHC binding region by peptide’s amino acids, carried out with the aim of describing MHC–peptide binding interactions. The global idea is that the electrostatic potential can be represented in terms of a series expansion (charge, dipole, quadrupole, hexadecapole, etc.) whose three first terms provide a good local approximation to the molecular electrostatic ‘landscape’ and to the variations induced on such landscape by targeted modifications on the residues of the antigenic peptide. Studies carried out in four MHC class II human allele molecules, which are the most representative alleles of their corresponding haplotypes, showed that each of these molecules have conserved as well as specific electrostatic characteristics, which can be correlated at a good extent with the peptide binding profiles reported experimentally for these molecules. The information provided by such characteristics would help increase our knowledge about antigen binding and presentation, and could ultimately contribute to developing a logical and rational methodology for designing chemically synthesized, multi-antigenic, subunit-based vaccines, through the application of quantum chemistry methods. PMID:20394575

  9. Predicting peptide binding to MHC pockets via molecular modeling, implicit solvation, and global optimization.

    PubMed

    Schafroth, Heather D; Floudas, Christodoulos A

    2004-02-15

    Development of a computational prediction method based on molecular modeling, global optimization, and implicit solvation has produced accurate structure and relative binding affinity predictions for peptide amino acids binding to five pockets of the MHC molecule HLA-DRB1*0101. Because peptide binding to MHC molecules is essential to many immune responses, development of such a method for understanding and predicting the forces that drive binding is crucial for pharmaceutical design and disease treatment. Underlying the development of this prediction method are two hypotheses. The first is that pockets formed by the peptide binding groove of MHC molecules are independent, separating the prediction of peptide amino acids that bind within individual pockets from those that bind between pockets. The second hypothesis is that the native state of a system composed of an amino acid bound to a protein pocket corresponds to the system's lowest free energy. The prediction method developed from these hypotheses uses atomistic-level modeling, deterministic global optimization, and three methods of implicit solvation: solvent-accessible area, solvent-accessible volume, and Poisson-Boltzmann electrostatics. The method predicts relative binding affinities of peptide amino acids for pockets of HLA-DRB1*0101 by determining computationally an amino acid's global minimum energy conformation. Prediction results from the method are in agreement with X-ray crystallography data and experimental binding assays.

  10. Transcriptional control of MHC class II gene expression during differentiation from B cells to plasma cells.

    PubMed

    Dellabona, P; Latron, F; Maffei, A; Scarpellino, L; Accolla, R S

    1989-04-15

    In this study we investigated the molecular mechanisms responsible for the extinction of the constitutive MHC class II gene expression of human B cells on somatic cell hybridization with murine plasmocytoma cells. We found that this event is due to trans-acting suppressor functions of mouse origin pre-existing in the plasmocytoma cells and acting at transcriptional level. Transcription of the entire family of human class II genes is suppressed, including genes as DO beta for which a distinct regulation of expression in B cells had been previously demonstrated. Suppression appears specific for class II genes because in the hybrids expression of MHC class I genes of mouse is unaffected and of human only partially reduced. Interestingly, also murine invariant chain gene is expressed in both parental plasmocytoma and hybrid cells although at reduced amounts as compared to a murine class II positive B cell line. The class II negative phenotype of hybrid cells and parental plasmocytoma cells is highly stable and unaffected by treatment with protein synthesis inhibitors, suggesting that the transcriptional suppressor function is not mediated by rapid, labile turning-over proteins. Possible mechanisms responsible for transcriptional regulation of MHC class II gene expression during terminal differentiation of B cells to plasma cells are discussed. PMID:2495328

  11. Advanced control improves MHC-VGO unit operation. [Mild HydroCracking-Vacuum Gas Oil

    SciTech Connect

    Richard, L.; Watson, D. ); Danzinger, F.; Tuppinger, D.; Schuster, R.; Wilmsen, W. )

    1995-03-01

    Constraint and multivariable predictive (MPC) controllers were implemented on an FCC preheater (MHC-VGO unit), which runs in mild hydrocracking (MHC) mode. In only a few weeks following commissioning, better control provided an average reduction in steam use of 38%, an average reduction of 22% in DEA use and a 5 to 10% reduction in fuel consumption. OMV's refinery in Schwechat was commissioned in 1960 and is now one of the largest and most complex inland-refineries in Europe with an annual crude oil processing capacity of 10 million metric tons. Every product stream is desulfurized by hydrodesulfurization (HDS) units. As part of a refinery-wide advanced control (ADVC) project which includes 27 units implemented on four process computers and two DCSs, advanced controls were installed on the MHC-VGO unit. The entire project was executed over a period of two and a half years. The paper describes the process, advanced control, the weighted average bed temperature controller, feed maximization control, stripper feed temperature control, stripping steam/feed ratio controller, stripper pressure minimization, H[sub 2]/oil controller, recycle/DEA ratio controller, stripper bottoms level controller, and advanced control benefits.

  12. In the QTL region surrounding porcine MHC, gene order is conserved with human genome.

    PubMed

    Genêt, C; Renard, C; Cabau, C; Rogel-Gaillard, C; Gellin, J; Milan, D

    2001-03-01

    On the porcine genome, the region surrounding the Major Histocompatibility Complex, also called Swine Leukocyte Antigens (SLA), is of particular interest not only owing to itq role in the control of immune response, but also because of its influence on many traits such as growth, fatness, and meat quality. To help in the identification of responsible genes, detailed comparative maps of the MHC region in mammalian species and powerful mapping tools allowing accurate ordering of genes and markers in this region are needed. In this report, we describe the use of the recently developed IMpRH radiation hybrid panel, to construct a higher density radiation hybrid map of swine Sscr 7p-q12, containing 23 additional loci. Our results show that the gene order is conserved between the two MHC-containing regions, even if an inversion is observed above the QTL region in the region containing DEK, SCA1, and EDN1 genes. The framework map produced shows that the IMpRH panel permits the ordering of genes and markers in the three MHC classes and would thus allow accurate localization of ESTs and candidate genes. PMID:11252175

  13. Leiomyosarcoma of the superior vena cava.

    PubMed

    de Chaumont, Arthus; Pierret, Charles; de Kerangal, Xavier; Le Moulec, Sylvestre; Laborde, François

    2014-08-01

    Leiomyosarcoma of the superior vena cava is a very rare tumor and only a few cases have been reported, with various techniques of vascular reconstruction. We describe a new case of leiomyosarcoma of the superior vena cava in a 61-year-old woman with extension to the brachiocephalic arterial trunk. Resection and vascular reconstruction were performed using, respectively, polytetrafluoroethylene and polyethylene terephtalate vascular grafts.

  14. Leiomyosarcoma of the superior vena cava.

    PubMed

    de Chaumont, Arthus; Pierret, Charles; de Kerangal, Xavier; Le Moulec, Sylvestre; Laborde, François

    2014-08-01

    Leiomyosarcoma of the superior vena cava is a very rare tumor and only a few cases have been reported, with various techniques of vascular reconstruction. We describe a new case of leiomyosarcoma of the