Sample records for mhd code nimrod

  1. The impact of collisionality, FLR, and parallel closure effects on instabilities in the tokamak pedestal: Numerical studies with the NIMROD code

    DOE PAGES

    King, J. R.; Pankin, A. Y.; Kruger, S. E.; ...

    2016-06-24

    The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. Lastly, the full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.

  2. The impact of collisionality, FLR, and parallel closure effects on instabilities in the tokamak pedestal: Numerical studies with the NIMROD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. R.; Pankin, A. Y.; Kruger, S. E.

    The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. The full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.

  3. The impact of collisionality, FLR, and parallel closure effects on instabilities in the tokamak pedestal: Numerical studies with the NIMROD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. R.; Pankin, A. Y.; Kruger, S. E.

    The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. Lastly, the full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.

  4. NIMROD modeling of quiescent H-mode: reconstruction considerations and saturation mechanism

    NASA Astrophysics Data System (ADS)

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Kruger, S. E.; Pankin, A. Y.; Snyder, P. B.

    2017-02-01

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-{{n}φ} perturbations ({{n}φ}≃ 1 -5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad-Shafranov equation and extrapolates profiles to include scrape-off-layer currents. Evaluation of the transport from the turbulent-like MHD state leads to a relaxation of the density and temperature profiles.

  5. NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism

    DOE PAGES

    King, Jacob R.; Burrell, Keith H.; Garofalo, Andrea M.; ...

    2016-09-30

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-n Φ perturbations (n Φ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of themore » density and temperature profiles.« less

  6. NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Jacob R.; Burrell, Keith H.; Garofalo, Andrea M.

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-n Φ perturbations (n Φ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of themore » density and temperature profiles.« less

  7. Validation of Extended MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.

    2016-10-01

    Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  8. ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.

    2012-03-01

    We summarize ongoing developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. Data from both codes is then processed by computational geometry packages to construct the RF-induced quasilinear diffusion tensor; moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution as well as the MHD closures. Initial results are shown to correctly capture the physics of magnetic island stabilization; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes.

  9. Validation of MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; den Hartog, D. J.; McCollam, K. J.; Sarff, J. S.; Sovinec, C. R.

    2017-10-01

    Rigorous validation of computational models used in fusion energy sciences over a large parameter space and across multiple magnetic configurations can increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation with plasma current ranging from 60 kA to 500 kA. The resulting Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), ranges from 4 ×104 to 8 ×106 for standard RFP plasmas and provides substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 105 for single-fluid runs, and the magnetic Prandtl number Pm = 1 . Validation metric comparisons are presented, focusing on how normalized magnetic fluctuations at the edge b scale with S. Preliminary results for the dominant n = 6 mode are b S - 0 . 20 +/- 0 . 02 for single-fluid NIMROD, b S - 0 . 25 +/- 0 . 05 for DEBS, and b S - 0 . 20 +/- 0 . 02 for experimental measurements, however there is a significant discrepancy in mode amplitudes. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  10. Modeling of flow-dominated MHD instabilities at WiPPAL using NIMROD

    NASA Astrophysics Data System (ADS)

    Flanagan, K.; McCollam, K. J.; Milhone, J.; Mirnov, V. V.; Nornberg, M. D.; Peterson, E. E.; Siller, R.; Forest, C. B.

    2017-10-01

    Using the NIMROD (non-ideal MHD with rotation - open discussion) code developed at UW-Madison, we model two different flow scenarios to study the onset of MHD instabilities in flow-dominated plasmas in the Big Red Ball (BRB) and the Plasma Couette Experiment (PCX). Both flows rely on volumetric current drive, where a large current is drawn through the plasma across a weak magnetic field, injecting J × B torque across the whole volume. The first scenario uses a vertical applied magnetic field and a mostly radial injected current to create Couette-like flows which may excite the magnetorotational instability (MRI). In the other scenario, a quadrupolar field is applied to create counter-rotating von Karman-like flow that demonstrates a dynamo-like instability. For both scenarios, the differences between Hall and MHD Ohm's laws are explored. The implementation of BRB geometry in NIMROD, details of the observed flows, and instability results are shown. This work was funded by DoE and NSF.

  11. ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.; SWIM Project Team

    2011-10-01

    We present developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. A third code (QLCALC) then interfaces with computational geometry packages to construct the RF-induced quasilinear diffusion tensor from NIMROD/GENRAY data, and the moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution. Initial results are shown to correctly capture the physics of magnetic island stabilization [Jenkins et al., PoP 17, 012502 (2010)]; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes. Funded by USDoE SciDAC.

  12. Stable Spheromaks Sustained by Neutral Beam Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Jayakumar, R; McLean, H S

    It is shown that spheromak equilibria, stable at zero-beta but departing from the Taylor state, could be sustained by non-inductive current drive at acceptable power levels. Stability to both ideal MHD and tearing modes is verified using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive and pressure effects could point the way to improved fusion reactors.

  13. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-07-01

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.

  14. Comparing nonlinear MHD simulations of low-aspect-ratio RFPs to RELAX experiments

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.

    2016-10-01

    Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, with applications in general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we simulate the nonlinear evolution of RFP plasmas similar to those in the RELAX experiment. The experiment's modest Lundquist numbers S (as low as a few times 104) make closely matching MHD simulations tractable given present computing resources. Its low aspect ratio ( 2) motivates a comparison study using cylindrical and toroidal geometries in NIMROD. We present initial results from nonlinear single-fluid runs at S =104 for both geometries and a range of equilibrium parameters, which preliminarily show that the magnetic fluctuations are roughly similar between the two geometries and between simulation and experiment, though there appear to be some qualitative differences in their temporal evolution. Runs at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.

  15. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  16. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX

    DOE PAGES

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2017-05-12

    Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less

  17. Modeling of Resistive Wall Modes in Tokamak and Reversed Field Pinch Configurations of KTX

    NASA Astrophysics Data System (ADS)

    Han, Rui; Zhu, Ping; Bai, Wei; Lan, Tao; Liu, Wandong

    2016-10-01

    Resistive wall mode is believed to be one of the leading causes for macroscopic degradation of plasma confinement in tokamaks and reversed field pinches (RFP). In this study, we evaluate the linear RWM instability of Keda Torus eXperiment (KTX) in both tokamak and RFP configurations. For the tokamak configuration, the extended MHD code NIMROD is employed for calculating the dependence of the RWM growth rate on the position and conductivity of the vacuum wall for a model tokamak equilibrium of KTX in the large aspect-ratio approximation. For the RFP configuration, the standard formulation of dispersion relation for RWM based on the MHD energy principle has been evaluated for a cylindrical α- Θ model of KTX plasma equilibrium, in an effort to investigate the effects of thin wall on the RWM in KTX. Full MHD calculations of RWM in the RFP configuration of KTX using the NIMROD code are also being developed. Supported by National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002, 2015GB101004, 2011GB106000, and 2011GB106003.

  18. Final Report for "Implimentation and Evaluation of Multigrid Linear Solvers into Extended Magnetohydrodynamic Codes for Petascale Computing"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinath Vadlamani; Scott Kruger; Travis Austin

    Extended magnetohydrodynamic (MHD) codes are used to model the large, slow-growing instabilities that are projected to limit the performance of International Thermonuclear Experimental Reactor (ITER). The multiscale nature of the extended MHD equations requires an implicit approach. The current linear solvers needed for the implicit algorithm scale poorly because the resultant matrices are so ill-conditioned. A new solver is needed, especially one that scales to the petascale. The most successful scalable parallel processor solvers to date are multigrid solvers. Applying multigrid techniques to a set of equations whose fundamental modes are dispersive waves is a promising solution to CEMM problems.more » For the Phase 1, we implemented multigrid preconditioners from the HYPRE project of the Center for Applied Scientific Computing at LLNL via PETSc of the DOE SciDAC TOPS for the real matrix systems of the extended MHD code NIMROD which is a one of the primary modeling codes of the OFES-funded Center for Extended Magnetohydrodynamic Modeling (CEMM) SciDAC. We implemented the multigrid solvers on the fusion test problem that allows for real matrix systems with success, and in the process learned about the details of NIMROD data structures and the difficulties of inverting NIMROD operators. The further success of this project will allow for efficient usage of future petascale computers at the National Leadership Facilities: Oak Ridge National Laboratory, Argonne National Laboratory, and National Energy Research Scientific Computing Center. The project will be a collaborative effort between computational plasma physicists and applied mathematicians at Tech-X Corporation, applied mathematicians Front Range Scientific Computations, Inc. (who are collaborators on the HYPRE project), and other computational plasma physicists involved with the CEMM project.« less

  19. First results of coupled IPS/NIMROD/GENRAY simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.

    2010-11-01

    The Integrated Plasma Simulator (IPS) framework, developed by the SWIM Project Team, facilitates self-consistent simulations of complicated plasma behavior via the coupling of various codes modeling different spatial/temporal scales in the plasma. Here, we apply this capability to investigate the stabilization of tearing modes by ECCD. Under IPS control, the NIMROD code (MHD) evolves fluid equations to model bulk plasma behavior, while the GENRAY code (RF) calculates the self-consistent propagation and deposition of RF power in the resulting plasma profiles. GENRAY data is then used to construct moments of the quasilinear diffusion tensor (induced by the RF) which influence the dynamics of momentum/energy evolution in NIMROD's equations. We present initial results from these coupled simulations and demonstrate that they correctly capture the physics of magnetic island stabilization [Jenkins et al, PoP 17, 012502 (2010)] in the low-beta limit. We also discuss the process of code verification in these simulations, demonstrating good agreement between NIMROD and GENRAY predictions for the flux-surface-averaged, RF-induced currents. An overview of ongoing model development (synthetic diagnostics/plasma control systems; neoclassical effects; etc.) is also presented. Funded by US DoE.

  20. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Kim, Charlson C.; Victor, Brian S.; Jarboe, Thomas R.

    2013-08-01

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth di to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification Itor/Iinj and formation time τf demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates Itor/Iinj and exhibits much a longer τf. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.

  1. Stable Spheromaks with Profile Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Jayakumar, R

    A spheromak equilibrium with zero edge current is shown to be stable to both ideal MHD and tearing modes that normally produce Taylor relaxation in gun-injected spheromaks. This stable equilibrium differs from the stable Taylor state in that the current density j falls to zero at the wall. Estimates indicate that this current profile could be sustained by non-inductive current drive at acceptable power levels. Stability is determined using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive could point the way to improved fusion reactors.

  2. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d{sub i} to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeledmore » as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I{sub tor}/I{sub inj}) and formation time τ{sub f} demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I{sub tor}/I{sub inj}) and exhibits much a longer τ{sub f}. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.« less

  3. Progress in theoretical and numerical modeling of RF/MHD coupling using NIMROD

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Schnack, Dalton D.; Hegna, Chris C.; Callen, James D.; Sovinec, Carl R.; Held, Eric D.; Ji, Jeong-Young; Kruger, Scott E.

    2007-11-01

    Preliminary work relevant to the development of a general framework for the self-consistent inclusion of RF effects in fluid codes is presented; specifically, the stabilization of neoclassical and conventional tearing modes by electron cyclotron current drive is considered. For this particular problem, the effects of the RF drive can be formally captured by a quasilinear diffusion operator which enters the fluid equations on the same footing as the collision operator. Furthermore, a Chapman-Enskog-like method can be used to determine the consequent effects of the RF drive on the fluid closures for the parallel heat flow and stress. We summarize our recent research along these lines and discuss issues relevant to its implementation in the NIMROD code.

  4. NIMROD simulations of HIT-SI plasmas

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Jarboe, Thomas; Nelson, Brian; Kim, Charlson

    2011-10-01

    HIT-SI (Steady Inductive Helicity Injected Torus) is a current drive experiment that uses two semi-toroidal helicity injectors driven at 5-15 kHz to generate steady inductive helicity injection (SIHI). All the plasma-facing walls of the experiment are coated with an insulating material to guarantee an inductive discharge. NIMROD is a 3-D extended MHD code that can only model toroidally-uniform geometries. The helicity injectors of the experiment are simulated as flux and voltage boundary conditions with odd toroidal symmetry. A highly resistive, thin edge-layer approximates the insulating walls. The simulations are initial-value calculations that use a zero β resistive MHD (rMHD) model with uniform density. The Prandtl number (Pr = 10), and Lundquist number (S = 5 - 50) closely match the experimental values. rMHD calculations at S ~ 10 show no growth of an n = 0 mode and only a few kA of toroidal current whereas HIT-SI has demonstrated toroidal currents greater than 50 kA with a current amplification of 3. At higher S (>= 20) the simulations exhibit significant n = 0 magnetic energy growth and a current amplification exceeding unity: Itor/Iinj >= 1 . While HIT-SI has shown evidence for separatrix formation, rMHD calculations indicate an entirely stochastic magnetic structure during sustainment. Results will also presented for Hall MHD, anticipated to play a crucial role in the physics of SIHI.

  5. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, B. J.; Kruger, S. E.; Hegna, C. C.

    A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition tomore » instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10{sup 8} and 10{sup 3} for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10{sup 5}, which is much larger than experimentally measured values using T{sub e} values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.« less

  6. Nonlinear simulations with and computational issues for NIMROD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, C R

    The NIMROD (Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion) code development project was commissioned by the US Department of Energy in February, 1996 to provide the fusion research community with a computational tool for studying low-frequency behavior in experiments. Specific problems of interest include the neoclassical evolution of magnetic islands and the nonlinear behavior of tearing modes in the presence of rotation and nonideal walls in tokamaks; they also include topics relevant to innovative confinement concepts such as magnetic turbulence. Besides having physics models appropriate for these phenomena, an additional requirement is the ability to perform the computations in realistic geometries.more » The NIMROD Team is using contemporary management and computational methods to develop a computational tool for investigating low-frequency behavior in plasma fusion experiments. The authors intend to make the code freely available, and are taking steps to make it as easy to learn and use as possible. An example application for NIMROD is the nonlinear toroidal RFP simulation--the first in a series to investigate how toroidal geometry affects MHD activity in RFPs. Finally, the most important issue facing the project is execution time, and they are exploring better matrix solvers and a better parallel decomposition to address this.« less

  7. Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.

    2017-05-01

    The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.

  8. Suppression of runaway electrons with a resonant magnetic perturbation in MST tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Munaretto, Stefano; Chapman, B. E.; Almagri, A. F.; Cornille, B. S.; Dubois, A. M.; Goetz, J. A.; McCollam, K. J.; Sovinec, C. R.

    2016-10-01

    Runaway electrons generated in MST tokamak plasmas are now being probed with resonant magnetic perturbations (RMP's). An RMP with m =3 strongly suppresses the runaway electrons. Initial modeling of these plasmas with NIMROD shows the degradation of flux surfaces with an m =3 RMP, which may account for the runaway electron suppression. These MST tokamak plasmas have Bt =0.14 T, Ip =50kA, and q(a) =2.2, with a bulk electron density and temperature of 5x1017 m-3 and 150 eV. Runaway electrons are detected via x-ray emission. The RMP is produced by a poloidal array of 32 saddle coils at the narrow vertical insulated cut in MST's thick conducting shell. Each RMP has a single m but a broad n spectrum. A sufficiently strong m =3 RMP completely suppresses the runaway electrons, while a comparable m =1 RMP has little effect. The impact of the RMP's on the magnetic topology of these plasmas is being studied with the nonlinear MHD code, NIMROD. With an m =3 RMP, stochasticity is introduced in the outer third of the plasma. No such change is observed with the m =1 RMP. NIMROD also predicts regularly occurring sawtooth oscillations with a period comparable to MHD activity observed in the experiment. Work supported by USDOE.

  9. High-beta extended MHD simulations of stellarators

    NASA Astrophysics Data System (ADS)

    Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.; Roberds, N. A.

    2016-10-01

    The high beta properties of stellarator plasmas are studied using the nonlinear, extended MHD code NIMROD. In this work, we describe recent developments to the semi-implicit operator which allow the code to model 3D plasma evolution with better accuracy and efficiency. The configurations under investigation are an l=2, M=5 torsatron with geometry modeled after the Compact Toroidal Hybrid (CTH) experiment and an l=2, M=10 torsatron capable of having vacuum rotational transform profiles near unity. High-beta plasmas are created using a volumetric heating source and temperature dependent anisotropic thermal conduction and resistivity. To reduce computation expenses, simulations are initialized from stellarator symmetric pseudo-equilibria by turning on symmetry breaking modes at finite beta. The onset of MHD instabilities and nonlinear consequences are monitored as a function of beta as well as the fragility of the magnetic surfaces. Research supported by US DOE under Grant No. DE-FG02-99ER54546.

  10. MHD Simulation of Magnetic Nozzle Plasma with the NIMROD Code: Applications to the VASIMR Advanced Space Propulsion Concept

    NASA Astrophysics Data System (ADS)

    Tarditi, Alfonso G.; Shebalin, John V.

    2002-11-01

    A simulation study with the NIMROD code [1] is being carried on to investigate the efficiency of the thrust generation process and the properties of the plasma detachment in a magnetic nozzle. In the simulation, hot plasma is injected in the magnetic nozzle, modeled as a 2D, axi-symmetric domain. NIMROD has two-fluid, 3D capabilities but the present runs are being conducted within the MHD, 2D approximation. As the plasma travels through the magnetic field, part of its thermal energy is converted into longitudinal kinetic energy, along the axis of the nozzle. The plasma eventually detaches from the magnetic field at a certain distance from the nozzle throat where the kinetic energy becomes larger than the magnetic energy. Preliminary NIMROD 2D runs have been benchmarked with a particle trajectory code showing satisfactory results [2]. Further testing is here reported with the emphasis on the analysis of the diffusion rate across the field lines and of the overall nozzle efficiency. These simulation runs are specifically designed for obtaining comparisons with laboratory measurements of the VASIMR experiment, by looking at the evolution of the radial plasma density and temperature profiles in the nozzle. VASIMR (Variable Specific Impulse Magnetoplasma Rocket, [3]) is an advanced space propulsion concept currently under experimental development at the Advanced Space Propulsion Laboratory, NASA Johnson Space Center. A plasma (typically ionized Hydrogen or Helium) is generated by a RF (Helicon) discharge and heated by an Ion Cyclotron Resonance Heating antenna. The heated plasma is then guided into a magnetic nozzle to convert the thermal plasma energy into effective thrust. The VASIMR system has no electrodes and a solenoidal magnetic field produced by an asymmetric mirror configuration ensures magnetic insulation of the plasma from the material surfaces. By powering the plasma source and the heating antenna at different levels it is possible to vary smoothly of the thrust-to-specific impulse ratio while maintaining maximum power utilization. [1] http://www.nimrodteam.org [2] A. V. Ilin et al., Proc. 40th AIAA Aerospace Sciences Meeting, Reno, NV, Jan. 2002 [3] F. R. Chang-Diaz, Scientific American, p. 90, Nov. 2000

  11. Physicsdesign point for a 1MW fusion neutron source

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Melnik, Paul; Sieck, Paul; Stuber, James; Romero-Talamas, Carlos; O'Bryan, John; Miller, Ronald

    2016-10-01

    We are developing a design point for a spheromak experiment heated by adiabatic compression for use as a compact neutron source. We utilize the CORSICA and NIMROD MHD codes as well as analytic modeling to assess a concept with target parameters R0 =0.5m, Rf =0.17m, T0 =1keV, Tf =8keV, n0 =2e20m-3 and nf = 5e21m-3, with radial convergence of C =R0/Rf =3. We present results from CORSICA showing the placement of coils and passive structure to ensure stability during compression. We specify target parameters for the compression in terms of plasma beta, formation efficiency and energy confinement. We present results simulations of magnetic compression using the NIMROD code to examine the role of rotation on the stability and confinement of the spheromak as it is compressed. Supported by DARPA Grant N66001-14-1-4044 and IAEA CRP on Compact Fusion Neutron Sources.

  12. NIMROD calculations of energetic particle driven toroidal Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Hou, Yawei; Zhu, Ping; Kim, Charlson C.; Hu, Zhaoqing; Zou, Zhihui; Wang, Zhengxiong; Nimrod Team

    2018-01-01

    Toroidal Alfvén eigenmodes (TAEs) are gap modes induced by the toroidicity of tokamak plasmas in the absence of continuum damping. They can be excited by energetic particles (EPs) when the EP drive exceeds other dampings, such as electron and ion Landau damping, and collisional and radiative damping. A TAE benchmark case, which was proposed by the International Tokamak Physics Activity group, is studied in this work. The numerical calculations of linear growth of TAEs driven by EPs in a circular-shaped, large aspect ratio tokamak have been performed using the Hybrid Kinetic-MHD (HK-MHD) model implemented in the NIMROD code. This HK-MHD model couples a δf particle-in-cell representation of EPs with the 3D MHD representation of the bulk plasma through moment closure for the momentum conservation equation. Both the excitation of TAEs and their transition to energetic particle modes (EPMs) have been observed. The influence of EP density, temperature, density gradient, and position of the maximum relative density gradient, on the frequency and the growth rate of TAEs are obtained, which are consistent with those from the eigen-analysis calculations, kinetic-MHD, and gyrokinetic simulations for an initial Maxwellian distribution of EPs. The relative pressure gradient of EP at the radial location of the TAE gap, which represents the drive strength of EPs, can strongly affect the growth rate of TAEs. It is demonstrated that the mode transition due to EP drive variation leads to not only the change of frequency but also the change of the mode structure. This mechanism can be helpful in understanding the nonlinear physics of TAE/EPM, such as frequency chirping.

  13. Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Held, Eric D.

    2015-09-01

    Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.

  14. Implementation of a plasma-neutral model in NIMROD

    NASA Astrophysics Data System (ADS)

    Taheri, S.; Shumlak, U.; King, J. R.

    2016-10-01

    Interaction between plasma fluid and neutral species is of great importance in the edge region of magnetically confined fusion plasmas. The presence of neutrals can have beneficial effects such as fueling burning plasmas and quenching the disruptions in tokamaks, as well as deleterious effects like depositing high energy particles on the vessel wall. The behavior of edge plasmas in magnetically confined systems has been investigated using computational approaches that utilize the fluid description for the plasma and Monte Carlo transport for neutrals. In this research a reacting plasma-neutral model is implemented in NIMROD to study the interaction between plasma and neutral fluids. This model, developed by E. T. Meier and U. Shumlak, combines a single-fluid magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model which accounts for electron-impact ionization, radiative recombination, and resonant charge exchange. Incorporating this model into NIMROD allows the study of the interaction between neutrals and plasma in a variety of plasma science problems. An accelerated plasma moving through a neutral gas background in a coaxial electrode configuration is modeled, and the results are compared with previous calculations from the HiFi code.

  15. Modeling Giant Sawtooth Modes in DIII-D using the NIMROD code

    NASA Astrophysics Data System (ADS)

    Kruger, Scott; Jenkins, Thomas; Held, Eric; King, Jacob; NIMROD Team

    2014-10-01

    Ongoing efforts to model giant sawtooth cycles in DIII-D shot 96043 using NIMROD are summarized. In this discharge, an energetic ion population induced by RF heating modifies the sawtooth stability boundary, supplanting the conventional sawtooth cycle with longer-period giant sawtooth oscillations of much larger amplitude. NIMROD has the unique capability of being able to use both continuum kinetic and particle-in-cell numerical schemes to model the RF-induced hot-particle distribution effects on the sawtooth stability. This capability is used to numerically investigate the role played by the form of the energetic particle distribution, including a possible high-energy tail drawn out by the RF, to study the sawtooth threshold and subsequent nonlinear evolution. Equilibrium reconstructions from the experimental data are used to enable these detailed validation studies. Effects of other parameters on the sawtooth behavior (such as the plasma Lundquist number and hot-particle β-fraction) are also considered. Ultimately, we hope to assess the degree to which NIMROD's extended MHD model correctly simulates the observed linear onset and nonlinear behavior of the giant sawtooth, and to establish its reliability as a predictive modeling tool for these modes. This work was initiated by the late Dr. Dalton Schnack. Equilibria were provided by Dr. A. Turnbull of General Atomics.

  16. Application of electron closures in extended MHD

    NASA Astrophysics Data System (ADS)

    Held, Eric; Adair, Brett; Taylor, Trevor

    2017-10-01

    Rigorous closure of the extended MHD equations in plasma fluid codes includes the effects of electron heat conduction along perturbed magnetic fields and contributions of the electron collisional friction and stress to the extended Ohms law. In this work we discuss application of a continuum numerical solution to the Chapman-Enskog-like electron drift kinetic equation using the NIMROD code. The implementation is a tightly-coupled fluid/kinetic system that carefully addresses time-centering in the advance of the fluid variables with their kinetically-computed closures. Comparisons of spatial accuracy, computational efficiency and required velocity space resolution are presented for applications involving growing magnetic islands in cylindrical and toroidal geometry. The reduction in parallel heat conduction due to particle trapping in toroidal geometry is emphasized. Work supported by DOE under Grant Nos. DE-FC02-08ER54973 and DE-FG02-04ER54746.

  17. Runaway electrons and mitigation studies in MST tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Goetz, J. A.; Chapman, B. E.; Almagri, A. F.; Cornille, B. S.; Dubois, A.; McCollam, K. J.; Munaretto, S.; Sovinec, C. R.

    2016-10-01

    Studies of runaway electrons generated in low-density MST tokamak plasmas are being undertaken. The plasmas have Bt <= 0.14 T, Ip <= 50 kA, q (a) = 2.2 , and an electron density and temperature of about 5 ×1017m-3 and 150 eV. Runaway electrons are detected via x-ray bremsstrahlung emission. The density and electric field thresholds for production and suppression have been previously explored with variations in gas puffing for density control. Runaway electrons are now being probed with resonant magnetic perturbations (RMP's). An m = 3 RMP strongly suppresses the runaway electrons and initial NIMROD modeling shows that this may be due to degradation of flux surfaces. The RMP is produced by a poloidal array of 32 saddle coils at the narrow vertical insulated cut in MST's thick conducting shell, with each RMP having a single m but a broad n spectrum. While a sufficiently strong m = 3 RMP suppresses the runaway electrons, an RMP with m = 1 and comparable amplitude has little effect. The impact of the RMP's on the magnetic topology of these plasmas is being studied with the nonlinear MHD code NIMROD. With an m = 3 RMP, stochasticity is introduced in the outer third of the plasma but no such flux surface degradation is observed with an m = 1 RMP. NIMROD also predicts regularly occurring MHD activity similar to that observed in the experiment. These studies have also been done in q (a) = 2.7 plasmas and analysis and modeling is ongoing. This work supported by USDoE.

  18. Impact of velocity space distribution on hybrid kinetic-magnetohydrodynamic simulation of the (1,1) mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Charlson C.

    2008-07-15

    Numeric studies of the impact of the velocity space distribution on the stabilization of (1,1) internal kink mode and excitation of the fishbone mode are performed with a hybrid kinetic-magnetohydrodynamic model. These simulations demonstrate an extension of the physics capabilities of NIMROD[C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)], a three-dimensional extended magnetohydrodynamic (MHD) code, to include the kinetic effects of an energetic minority ion species. Kinetic effects are captured by a modification of the usual MHD momentum equation to include a pressure tensor calculated from the {delta}f particle-in-cell method [S. E. Parker and W. W. Lee,more » Phys. Fluids B 5, 77 (1993)]. The particles are advanced in the self-consistent NIMROD fields. We outline the implementation and present simulation results of energetic minority ion stabilization of the (1,1) internal kink mode and excitation of the fishbone mode. A benchmark of the linear growth rate and real frequency is shown to agree well with another code. The impact of the details of the velocity space distribution is examined; particularly extending the velocity space cutoff of the simulation particles. Modestly increasing the cutoff strongly impacts the (1,1) mode. Numeric experiments are performed to study the impact of passing versus trapped particles. Observations of these numeric experiments suggest that assumptions of energetic particle effects should be re-examined.« less

  19. C-Mod MHD stability analysis with LHCD

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Fatima; Bhattacharjee, A.; Delgado, L.; Scott, S.; Wilson, J. R.; Wallace, G. M.; Shiraiwa, S.; Mumgaard, R. T.

    2016-10-01

    In lower hybrid current drive (LHCD) experiments on the Alcator C-Mod, sawtooth activity could be suppressed as the safety factor q on axis is raised above unity. However, in some of these experiments, after applying LHCD, the onset of MHD mode activity caused the current drive efficiency to significantly drop. Here, we study the stability of these experiments by performing MHD simulations using the NIMROD code starting with experimental EFIT equilibria. First, consistent with the LHCD experiment with no signature of MHD activity, MHD mode activity was also absent in the simulations. Second, for experiments with MHD mode activity, we find that a core n=1 reconnecting mode with dominate poloidal modes of m=2,3 is unstable. This mode is a resistive current-driven mode as its growth rate scales with a negative power of the Lundquist number in the simulations. In addition, with further enhanced reversed-shear q profile in the simulations, a core double tearing mode is found to be unstable. This work is supported by U.S. DOE cooperative agreement DE-FC02-99ER54512 using the Alcator C-Mod tokamak, a DOE Office of Science user facility.

  20. Modeling ECCD/MHD coupling using NIMROD, GENRAY, and the Integrated Plasma Simulator

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.; Elwasif, W. R.

    2009-11-01

    We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations; specifically, we consider the stabilization of resistive tearing modes in tokamak geometry by electron cyclotron current drive. In the fluid equations, ad hoc models for the RF--induced currents have previously been shown to shrink or altogether suppress the nonlinearly saturated magnetic islands generated by tearing modes; progress toward a self--consistent model is reported. The interfacing of the NIMROD [1] code with the GENRAY/CQL3D [2] codes (which calculate RF propagation and energy/momentum deposition) via the Integrated Plasma Simulator (IPS) framework [3] is explained, RF-induced rational surface motion and the equilibration of RF--induced currents over plasma flux surfaces are investigated, and the efficient reduction of saturated island widths through time modulation and spatial localization of the ECCD is explored. [1] Sovinec et al., JCP 195, 355 (2004) [2]www.compxco.com [3] Both the IPS development and the research presented here are part of the SWIM project. Funded by U.S. DoE.

  1. Modeling of RF/MHD coupling using NIMROD and GENRAY

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.

    2008-11-01

    We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations, specifically considering the stabilization of resistive tearing modes in tokamak (DIII--D--like) geometry by electron cyclotron current drive. Previous investigations [T. G. Jenkins et al., Bull. APS 52, 131 (2007)] have demonstrated that relatively simple (though non--self--consistent) models for the RF--induced currents can be incorporated into the fluid equations, and that these currents can markedly reduce the width of the nonlinearly saturated magnetic islands generated by tearing modes. We report our progress toward the self--consistent modeling of these RF--induced currents. The initial interfacing of the NIMROD* code with the GENRAY/CQL3D** codes (which calculate RF propagation and energy/momentum deposition) is explained, equilibration of RF--induced currents over the plasma flux surfaces is investigated, and initial studies exploring the efficient reduction of saturated island widths through time modulation of the ECCD are presented. Conducted as part of the SWIM*** project; funded by U. S. DoE. *www.nimrodteam.org **www.compxco.com ***www.cswim.org

  2. Modeling of RF/MHD coupling using NIMROD, GENRAY, and the Integrated Plasma Simulator

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.

    2009-05-01

    We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations; specifically considering resistive tearing mode stabilization in tokamak (DIII--D--like) geometry via ECCD. Relatively simple (though non--self--consistent) models for the RF--induced currents are incorporated into the fluid equations, markedly reducing the width of the nonlinearly saturated magnetic islands generated by tearing modes. We report our progress toward the self--consistent modeling of these RF--induced currents. The initial interfacing of the NIMROD* code with the GENRAY/CQL3D** codes (calculating RF propagation and energy/momentum deposition) via the Integrated Plasma Simulator (IPS) framework*** is explained, equilibration of RF--induced currents over the plasma flux surfaces is investigated, and studies exploring the efficient reduction of saturated island widths through time modulation and spatial localization of the ECCD are presented. *[Sovinec et al., JCP 195, 355 (2004)] **[www.compxco.com] ***[This research and the IPS development are both part of the SWIM project. Funded by U.S. DoE.

  3. Theory-based model for the pedestal, edge stability and ELMs in tokamaks

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Brennan, D. P.; Schnack, D. D.; Snyder, P. B.; Voitsekhovitch, I.; Kritz, A. H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G. W.; Pacher, H. D.

    2006-04-01

    An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.

  4. MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries

    NASA Astrophysics Data System (ADS)

    Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas

    2015-11-01

    The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.

  5. NIMROD modeling of poloidal flow damping in tokamaks using kinetic closures

    NASA Astrophysics Data System (ADS)

    Jepson, J. R.; Hegna, C. C.; Held, E. D.

    2017-10-01

    Calculations of poloidal flow damping in a tokamak are undertaken using two different implementations of the ion drift kinetic equation (DKE) in the extended MHD code NIMROD. The first approach is hybrid fluid/kinetic and uses a Chapman Enskog-like (CEL) Ansatz. Closure of the evolving lower-order fluid moment equations for n, V , and T is provided by solutions to the ion CEL-DKE written in the macroscopic flow reference frame. The second implementation solves the DKE using a delta-f approach. Here, the delta-f distribution describes all of the information beyond a static, lowest-order Maxwellian. We compare the efficiency and accuracy of these two approaches for a simple initial value problem that monitors the relaxation of the poloidal flow profile in high- and low-aspect-ratio tokamak geometry. The computation results are compared against analytic predictions of time dependent closures for the parallel viscous force. Supported by DoE Grants DE-FG02-86ER53218 and DE-FG02-04ER54746.

  6. Ideal MHD stability and characteristics of edge localized modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team

    2018-01-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R  =  5.7 m, B T  =  5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a  =  1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R  =  6.6 m, B T  =  6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.

  7. Resistive MHD Simulation of Quasi-Single-Helicity State on KTX

    NASA Astrophysics Data System (ADS)

    Luo, Bing; Zhu, Ping; Li, Hong; Liu, Wandong

    2016-10-01

    The potential formation of quasi-single-helicity (QSH) state on Keda Torus eXperiment (KTX) is evaluated in resistive MHD simulations using the NIMROD code. In this work, we focus on the effects of finite resistivity on the mode structure and characteristics of the dominant linear and nonlinear resistive tearing-mode instability in a finite β, cylindrical reversed field pinch model configuration for KTX. In the typical resistivity regimes of KTX where Lundquist number S =105 , the plasma reaches a steady QSH state after the initial transient phase of multiple helicities. The dominat mode of the QSH state is developed from the dominat linear tearing mode instability. The conditions for and the variations of the formation of QSH states in different resistivity regimes of KTX will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002, 2015GB101004, 2011GB106000, and 2011GB106003.

  8. Resistive MHD modelling of the quasi-single helicity state in the KTX regimes

    NASA Astrophysics Data System (ADS)

    Luo, Bing; Zhu, Ping; Li, Hong; Liu, Wandong; KTX Team

    2018-01-01

    The potential formation of a quasi-single-helicity (QSH) state in the Keda Torus eXperiment (KTX) is investigated in resistive MHD simulations using the NIMROD code. We focus on the effects of finite resistivity on the mode structure and characteristics of the dominant linear and nonlinear resistive tearing-mode in a finite β, cylindrical configuration of a reversed field pinch model for KTX. In the typical resistive regimes of KTX where the Lundquist number S=5 × 104 , the plasma transitions to a steady QSH state after evolving through an initial transient phase with multiple helicities. The dominant mode of the QSH state develops from the dominant linear tearing mode instability. In the lower β regime, the QSH state is intermittent and short in duration; in the higher β regime, the QSH state persists for a longer time and should be more easily observed in experiments.

  9. Nonlinear Modeling of Forced Magnetic Reconnection with Transient Perturbations

    NASA Astrophysics Data System (ADS)

    Beidler, Matthew T.; Callen, James D.; Hegna, Chris C.; Sovinec, Carl R.

    2017-10-01

    Externally applied 3D magnetic fields in tokamaks can penetrate into the plasma and lead to forced magnetic reconnection, and hence magnetic islands, on resonant surfaces. Analytic theory has been reasonably successful in describing many aspects of this paradigm with regard to describing the time asymptotic-steady state. However, understanding the nonlinear evolution into a low-slip, field-penetrated state, especially how MHD events such as sawteeth and ELMs precipitate this transition, is in its early development. We present nonlinear computations employing the extended-MHD code NIMROD, building on previous work by incorporating a temporally varying external perturbation as a simple model for an MHD event that produces resonant magnetic signals. A parametric series of proof-of-principle computations and accompanying analytical theory characterize the transition into a mode-locked state with an emphasis on detailing the temporal evolution properties. Supported by DOE OFES Grants DE-FG02-92ER54139, DE-FG02-86ER53218, and the U.S. DOE FES Postdoctoral Research program administered by ORISE and managed by ORAU under DOE contract DE-SC0014664.

  10. Stabilizing Effect of Resistivity towards ELM-free H-mode Discharge in Lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2016-10-01

    The stabilizing effect of edge resistivity on the edge localized modes (ELMs) has been recently recovered through analyzing NSTX experimental profiles of Lithium-conditioned ELM-free H-mode discharge. Comparative studies of ELM-free and a reference NSTX ELMy-H mode equilibriums have been performed using both resistive and 2-fluid MHD models implemented in the initial value extended MHD code NIMROD. Our results indicate that in addition to the pedestal profile refinement in electron pressure, the inclusion of enhanced resistivity due to the increase in the effective electric charge number Zeff, which is observed after Lithium-conditioning in experiment, is further required to account for the full stabilization of the low- n edge localized modes. Such a stabilization from the enhanced edge resistivity only becomes effective when the two-fluid diamagnetic and finite-Larmor-radius (FLR) effects are considered in the MHD model. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of the Chinese Academy of Sciences.

  11. Validation and Continued Development of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2016-10-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. An implementation of anisotropic viscosity, a feature observed to improve agreement between NIMROD simulations and experiment, will also be presented, along with investigations of flux conserver features and their impact on density control for future SIHI experiments. Work supported by DoE.

  12. Center for Extended Magnetohydrodynamics Modeling - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Scott

    This project funding supported approximately 74 percent of a Ph.D. graduate student, not including costs of travel and supplies. We had a highly successful research project including the development of a second-order implicit electromagnetic kinetic ion hybrid model [Cheng 2013, Sturdevant 2016], direct comparisons with the extended MHD NIMROD code and kinetic simulation [Schnack 2013], modeling of slab tearing modes using the fully kinetic ion hybrid model and finally, modeling global tearing modes in cylindrical geometry using gyrokinetic simulation [Chen 2015, Chen 2016]. We developed an electromagnetic second-order implicit kinetic ion fluid electron hybrid model [Cheng 2013]. As a firstmore » step, we assumed isothermal electrons, but have included drift-kinetic electrons in similar models [Chen 2011]. We used this simulation to study the nonlinear evolution of the tearing mode in slab geometry, including nonlinear evolution and saturation [Cheng 2013]. Later, we compared this model directly to extended MHD calculations using the NIMROD code [Schnack 2013]. In this study, we investigated the ion-temperature-gradient instability with an extended MHD code for the first time and got reasonable agreement with the kinetic calculation in terms of linear frequency, growth rate and mode structure. We then extended this model to include orbit averaging and sub-cycling of the ions and compared directly to gyrokinetic theory [Sturdevant 2016]. This work was highlighted in an Invited Talk at the International Conference on the Numerical Simulation of Plasmas in 2015. The orbit averaging sub-cycling multi-scale algorithm is amenable to hybrid architectures with GPUS or math co-processors. Additionally, our participation in the Center for Extend Magnetohydrodynamics motivated our research on developing the capability for gyrokinetic simulation to model a global tearing mode. We did this in cylindrical geometry where the results could be benchmarked with existing eigenmode calculations. First, we developed a gyrokinetic code capable of simulating long wavelengths using a fluid electron model [Chen 2015]. We benchmarked this code with an eigenmode calculation. Besides having to rewrite the field solver due to the breakdown in the gyrokinetic ordering for long wavelengths, very high radial resolution was required. We developed a technique where we used the solution from the eigenmode solver to specify radial boundary conditions allowing for a very high radial resolution of the inner solution. Using this technique enabled us to use our direct algorithm with gyrokinetic ions and drift kinetic electrons [Chen 2016]. This work was highlighted in an Invited Talk at the American Physical Society - Division of Plasma Physics in 2015.« less

  13. Investigation of flow-induced numerical instability in a mixed semi-implicit, implicit leapfrog time discretization

    NASA Astrophysics Data System (ADS)

    King, Jacob; Kruger, Scott

    2017-10-01

    Flow can impact the stability and nonlinear evolution of range of instabilities (e.g. RWMs, NTMs, sawteeth, locked modes, PBMs, and high-k turbulence) and thus robust numerical algorithms for simulations with flow are essential. Recent simulations of DIII-D QH-mode [King et al., Phys. Plasmas and Nucl. Fus. 2017] with flow have been restricted to smaller time-step sizes than corresponding computations without flow. These computations use a mixed semi-implicit, implicit leapfrog time discretization as implemented in the NIMROD code [Sovinec et al., JCP 2004]. While prior analysis has shown that this algorithm is unconditionally stable with respect to the effect of large flows on the MHD waves in slab geometry [Sovinec et al., JCP 2010], our present Von Neumann stability analysis shows that a flow-induced numerical instability may arise when ad-hoc cylindrical curvature is included. Computations with the NIMROD code in cylindrical geometry with rigid rotation and without free-energy drive from current or pressure gradients qualitatively confirm this analysis. We explore potential methods to circumvent this flow-induced numerical instability such as using a semi-Lagrangian formulation instead of time-centered implicit advection and/or modification to the semi-implicit operator. This work is supported by the DOE Office of Science (Office of Fusion Energy Sciences).

  14. NIMROD Simulations of the HIT-SI and HIT-SI3 Devices

    NASA Astrophysics Data System (ADS)

    Morgan, Kyle; Jarboe, Tom; Hossack, Aaron; Chandra, Rian; Everson, Chris

    2017-10-01

    The Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) experiment uses a set of inductively driven helicity injectors to apply non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. Significant improvements have been made to extended MHD modeling of HIT-SI, with both the resolution of disagreement at high injector frequencies in HIT-SI in addition to successes with the new upgraded HIT-SI3 device. Previous numerical studies of HIT-SI, using a zero-beta eMHD model, focused on operations with a drive frequency of 14.5 kHz, and found reduced agreement with both the magnetic profile and current amplification at higher frequencies (30-70 kHz). HIT-SI3 has three helicity injectors which are able to operate with different mode structures of perturbations through the different relative temporal phasing of the injectors. Simulations that allow for pressure gradients have been performed in the parameter regimes of both devices using the NIMROD code and show improved agreement with experimental results, most notably capturing the observed Shafranov-shift due to increased beta observed at higher finj in HIT-SI and the variety of toroidal perturbation spectra available in HIT-SI3. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02- 96ER54361.

  15. Maximizing MST's inductive capability with a Bp programmable power supply

    NASA Astrophysics Data System (ADS)

    Chapman, B. E.; Holly, D. J.; Jacobson, C. M.; McCollam, K. J.; Morin, J. C.; Sarff, J. S.; Squitieri, A.

    2016-10-01

    A major goal of the MST program is the advancement of inductive control for the development of both the RFP's fusion potential and, synergistically, the predictive capability of fusion science. This entails programmable power supplies (PPS's) for the Bt and Bp circuits. A Bt PPS is already in place, allowing advanced RFP operation and the production of tokamak plasmas, and a Bp PPS prototype is under construction. To explore some of the new capabilities to be provided by the Bp PPS, the existing Bt PPS has been temporarily connected to the Bp circuit. One key result is new-found access to very low Ip (20 kA) and very low Lundquist number, S (104). At this low S, simulation of RFP plasmas with the MHD code NIMROD is readily achievable, and work toward validation of extended MHD models using NIMROD is underway with direct comparisons to these MST plasmas. The full Bp PPS will also provide higher Ip and S than presently possible, allowing MST to produce plasmas with S spanning as much as five orders of magnitude, a dramatic extension of MST's capability. In these initial tests, the PPS has also increased five-fold MST's Ip flattop duration, to about 100 ms. This, coupled with the recently demonstrated PPS ability to drive large-amplitude sinusoidal oscillations in Ip, will allow tests of extended-duration oscillating field current drive, the goal of which is ac sustainment of a quasi-dc plasma current. Work supported by US DOE.

  16. NIMROD Modeling of Sawtooth Modes Using Hot-Particle Closures

    NASA Astrophysics Data System (ADS)

    Kruger, Scott; Jenkins, T. G.; Held, E. D.; King, J. R.

    2015-11-01

    In DIII-D shot 96043, RF heating gives rise to an energetic ion population that alters the sawtooth stability boundary, replacing conventional sawtooth cycles by longer-period, larger-amplitude `giant sawtooth' oscillations. We explore the use of particle-in-cell closures within the NIMROD code to numerically represent the RF-induced hot-particle distribution, and investigate the role of this distribution in determining the altered mode onset threshold and subsequent nonlinear evolution. Equilibrium reconstructions from the experimental data are used to enable these detailed validation studies. Effects of other parameters on the sawtooth behavior, such as the plasma Lundquist number and hot-particle beta-fraction, are also considered. The fast energetic particles present many challenges for the PIC closure. We review new algorithm and performance improvements to address these challenges, and provide a preliminary assessment of the efficacy of the PIC closure versus a continuum model for energetic particle modeling. We also compare our results with those of, and discuss plans for a more complete validation campaign for this discharge. Supported by US Department of Energy via the SciDAC Center for Extended MHD Modeling (CEMM).

  17. NIMROD Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Device (CTH)

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Pandya, M. D.; Hanson, J. D.; Mauer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    Nonlinear MHD simulations of low-q disruptions in the CTH are presented. CTH is a current carrying stellarator that is used to study the effects of 3D shaping. The application of 3D shaping stabilizes low-q disruptions in CTH. The amount of 3D shaping is controlled by adjusting the external rotational transform, and it is characterized by the ratio of the external rotational transform to the total transform: f =ιvac / ι . Disruptions are routinely observed during operation with weak shaping (f < 0.05). The frequency of disruptions decreases with increasing amounts of 3D shaping, and the disruptions are completely suppressed for f > 0.1 . Nonlinear simulations are performed using the NIMROD code to better understand how the shaping suppresses the disruptions. Comparisons of runs with weak (f = 0.04) and strong (f = 0.10) shaping are shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Numbers DE-FG02-03ER54692 and DE-FG02-00ER54610.

  18. Toward a first-principles integrated simulation of tokamak edge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C S; Klasky, Scott A; Cummings, Julian

    2008-01-01

    Performance of the ITER is anticipated to be highly sensitive to the edge plasma condition. The edge pedestal in ITER needs to be predicted from an integrated simulation of the necessary firstprinciples, multi-scale physics codes. The mission of the SciDAC Fusion Simulation Project (FSP) Prototype Center for Plasma Edge Simulation (CPES) is to deliver such a code integration framework by (1) building new kinetic codes XGC0 and XGC1, which can simulate the edge pedestal buildup; (2) using and improving the existing MHD codes ELITE, M3D-OMP, M3D-MPP and NIMROD, for study of large-scale edge instabilities called Edge Localized Modes (ELMs); andmore » (3) integrating the codes into a framework using cutting-edge computer science technology. Collaborative effort among physics, computer science, and applied mathematics within CPES has created the first working version of the End-to-end Framework for Fusion Integrated Simulation (EFFIS), which can be used to study the pedestal-ELM cycles.« less

  19. Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.

    2016-10-01

    The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.

  20. Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carl R. Sovinec

    The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior—not unlike computational weather prediction—to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effectsmore » and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU_DIST software library [http://crd.lbl.gov/~xiaoye/SuperLU/] for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD’s performance by a factor of five in typical large nonlinear simulations, which has been publicized as a success story of SciDAC-fostered collaboration. Furthermore, the SuperLU software does not assume any mathematical symmetry, and its generality provides an important capability for extending the physical model beyond magnetohydrodynamics (MHD). With respect to algorithmic and model development, our most significant accomplishment is the development of a new method for solving plasma models that treat electrons as an independent plasma component. These ‘two-fluid’ models encompass MHD and add temporal and spatial scales that are beyond the response of the ion species. Implementation and testing of a previously published algorithm did not prove successful for NIMROD, and the new algorithm has since been devised, analyzed, and implemented. Two-fluid modeling, an important objective of the original NIMROD project, is now routine in 2D applications. Algorithmic components for 3D modeling are in place and tested; though, further computational work is still needed for efficiency. Other algorithmic work extends the ion-fluid stress tensor to include models for parallel and gyroviscous stresses. In addition, our hot-particle simulation capability received important refinements that permitted completion of a benchmark with the M3D code. A highlight of our applications work is the edge-localized mode (ELM) modeling, which was part of the first-ever computational Performance Target for the DOE Office of Fusion Energy Science, see http://www.science.doe.gov/ofes/performancetargets.shtml. Our efforts allowed MHD simulations to progress late into the nonlinear stage, where energy is conducted to the wall location. They also produced a two-fluid ELM simulation starting from experimental information and demonstrating critical drift effects that are characteristic of two-fluid physics. Another important application is the internal kink mode in a tokamak. Here, the primary purpose of the study has been to benchmark the two main code development lines of CEMM, NIMROD and M3D, on a relevant nonlinear problem. Results from the two codes show repeating nonlinear relaxation events driven by the kink mode over quantitatively comparable timescales. The work has launched a more comprehensive nonlinear benchmarking exercise, where realistic transport effects have an important role.« less

  1. Energy Conservation and Conversion in NIMROD Computations of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Maddox, J. A.; Sovinec, C. R.

    2017-10-01

    Previous work modeling magnetic relaxation during non-inductive start-up at the Pegasus spherical tokamak indicates an order of magnitude gap between measured experimental temperature and simulated temperature in NIMROD. Potential causes of the plasma temperature gap include: insufficient transport modeling, too low modeled injector power input, and numerical loss of energy, as energy is not algorithmically conserved in NIMROD simulations. Simple 2D nonlinear MHD simulations explore numerical energy conservation discrepancies in NIMROD because understanding numerical loss of energy is fundamental to addressing the physical problems of the other potential causes of energy loss. Evolution of these configurations induces magnetic reconnection, which transfers magnetic energy to heat and kinetic energy. The kinetic energy is eventually damped so, magnetic energy loss must correspond to an increase in internal energy. Results in the 2D geometries indicate that numerical energy loss during reconnection depends on the temporal resolution of the dynamics. Work support from U.S. Department of Energy through a subcontract from the Plasma Science and Innovation Center.

  2. Numerical studies and metric development for validation of magnetohydrodynamic models on the HIT-SI experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C., E-mail: hansec@uw.edu; Columbia University, New York, New York 10027; Victor, B.

    We present application of three scalar metrics derived from the Biorthogonal Decomposition (BD) technique to evaluate the level of agreement between macroscopic plasma dynamics in different data sets. BD decomposes large data sets, as produced by distributed diagnostic arrays, into principal mode structures without assumptions on spatial or temporal structure. These metrics have been applied to validation of the Hall-MHD model using experimental data from the Helicity Injected Torus with Steady Inductive helicity injection experiment. Each metric provides a measure of correlation between mode structures extracted from experimental data and simulations for an array of 192 surface-mounted magnetic probes. Numericalmore » validation studies have been performed using the NIMROD code, where the injectors are modeled as boundary conditions on the flux conserver, and the PSI-TET code, where the entire plasma volume is treated. Initial results from a comprehensive validation study of high performance operation with different injector frequencies are presented, illustrating application of the BD method. Using a simplified (constant, uniform density and temperature) Hall-MHD model, simulation results agree with experimental observation for two of the three defined metrics when the injectors are driven with a frequency of 14.5 kHz.« less

  3. Ideal MHD Stability and Characteristics of Edge Localized Modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Zeyu; Chan, Vincent; Xu, Xueqiao; Wang, Xiaogang; Cfetr Physics Team

    2017-10-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario derived from multi-code integrated modeling, with key parameters varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for engineering design. The linear stabilities of low-n and intermediate-n peeling-ballooning modes for CFETR baseline scenario are analyzed. Multi-code benchmarking, including GATO, ELITE, BOUT + + and NIMROD, demonstrated good agreement in predicting instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT + + . Instabilities are found both at the pedestal top and inside the pedestal region, which lead to a mix of grassy and type I ELMs. Pedestal structures extending inward beyond the pedestal top are also varied to study the influence on ELM characteristic. Preliminary results on the dependence of the Type-I ELM divertor heat load scaling on machine size and pedestal pressure will also be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and National Magnetic Confinement Fusion Research Program of China (Grant No. 2014GB110003 and 2014GB107004).

  4. Simulations of plasma dynamo in cylindrical and spherical geometries

    NASA Astrophysics Data System (ADS)

    Khalzov, Ivan; Forest, Cary; Schnack, Dalton; Ebrahimi, Fatima

    2010-11-01

    We have performed the numerical investigation of plasma flow and possibility of dynamo effect in Madison Plasma Couette Experiment (MPCX) and Madison Plasma Dynamo Experiment (MPDX), which are being installed at the University of Wisconsin- Madison. Using the extended MHD code, NIMROD, we have studied several types of plasma flows appropriate for dynamo excitation. Calculations are done for isothermal compressible plasma model including two-fluid effects (Hall term), which is beyond the standard incompressible MHD picture. It is found that for magnetic Reynolds numbers exceeding the critical one the counter-rotating Von Karman flow (in cylinder) and Dudley- James flow (in sphere) result in self-generation of magnetic field. Depending on geometry and plasma parameters this field can either saturate at certain amplitude corresponding to a new stable equilibrium (laminar dynamo) or lead to turbulent dynamo. It is shown that plasma compressibility results in increase of the critical magnetic Reynolds number while two- fluid effects change the level of saturated dynamo field. The work is supported by NSF.

  5. ECCD-induced tearing mode stabilization via active control in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.

    2012-10-01

    Actively controlled electron cyclotron current drive (ECCD) applied within magnetic islands formed by neoclassical tearing modes (NTMs) has been shown to control or suppress these modes. In conjunction with ongoing experimental efforts, the development and verification of integrated numerical models of this mode stabilization process is of paramount importance in determining optimal NTM stabilization strategies for ITER. In the advanced model developed by the SWIM Project, the equations/closures of extended (not reduced) MHD contain new terms arising from 3D (not toroidal or bounce-averaged) RF-induced quasilinear diffusion. The quasilinear operator formulation models the equilibration of driven current within the island using the same extended MHD dynamics which govern the physics of island formation, yielding a more accurate and self-consistent picture of 3D island response to RF drive. Results of computations which model ECRF deposition using ray tracing, assemble the 3D quasilinear operator from ray/profile data, and calculate the resultant forces within the extended MHD code will be presented. We also discuss the efficacy of various numerical active feedback control systems, which gather data from synthetic diagnostics to dynamically trigger and spatially align RF fields.

  6. Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes

    NASA Astrophysics Data System (ADS)

    Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata

    2016-10-01

    Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.

  7. Influence of Thermal Anisotropy on Equilibrium Stellarator Beta Limits

    NASA Astrophysics Data System (ADS)

    Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.

    2017-10-01

    The effect of anisotropic heat conduction on the upper beta limit of stellarator plasmas is studied using the nonlinear, extended MHD code NIMROD. The configuration under investigation is an l=2, M=10 torsatron with vacuum rotational transform near unity. Finite-beta plasmas are created using a volumetric heating source and temperature dependent resistivity; modeled with 22 stellarator symmetric (integer multiples of M) toroidal modes. Extended MHD simulations are then performed to generate steady state solutions that represent 3D equilibria. With increased heating, Shafranov shifts occur, and the associated break up of edge magnetic surfaces limits the achievable beta. Due to the presence of finite parallel heat conduction, pressure profiles can exist in regions of magnetic stochasticity. Here, we present results of independently varying the parallel and perpendicular thermal anisotropy. In particular, simulations show that the attained stored energy is a function of the magnitude of parallel and perpendicular thermal conduction for a given heat source, indicating that equilibrium beta limits are sensitive to anisotropic transport properties. Preliminary studies of MHD stability with non-stellarator symmetric modes, near the highest achievable beta, are also presented. Research supported by US DOE under Grant No. DE-FG02-99ER54546.

  8. Final Report for "Tech-X Corporation work for the SciDAC Center for Simulation of RF Wave Interactions with Magnetohydrodynamics (SWIM)"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins, Thomas G.; Kruger, Scott E.

    Work carried out by Tech-X Corporation for the DoE SciDAC Center for Simulation of RF Wave Interactions with Magnetohydrodynamics (SWIM; U.S. DoE Office of Science Award Number DE-FC02-06ER54899) is summarized and is shown to fulfil the project objectives. The Tech-X portion of the SWIM work focused on the development of analytic and computational approaches to study neoclassical tearing modes and their interaction with injected electron cyclotron current drive. Using formalism developed by Hegna, Callen, and Ramos [Phys. Plasmas 16, 112501 (2009); Phys. Plasmas 17, 082502 (2010); Phys. Plasmas 18, 102506 (2011)], analytic approximations for the RF interaction were derived andmore » the numerical methods needed to implement these interactions in the NIMROD extended MHD code were developed. Using the SWIM IPS framework, NIMROD has successfully coupled to GENRAY, an RF ray tracing code; additionally, a numerical control system to trigger the RF injection, adjustment, and shutdown in response to tearing mode activity has been developed. We discuss these accomplishments, as well as prospects for ongoing future research that this work has enabled (which continue in a limited fashion under the SciDAC Center for Extended Magnetohydrodynamic Modeling (CEMM) project and under a baseline theory grant). Associated conference presentations, published articles, and publications in progress are also listed.« less

  9. Measurements of Two-Fluid Relaxation in the Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Triana, Joseph C.

    Recent measurements and extended MHD simulations expose the importance of two-fluid physics in the relaxation and self-organization of the current and momentum profiles in RFP plasmas. A hallmark of relaxation is that the inductive electric field is not balanced by resistive dissipation, prompting the study of fluctuation-induced emfs in the generalized Ohm's law, E ∥ - etaJ∥ = - ∥ + 1/ne , where the two terms on the right are known as the MHD and Hall dynamo terms, respectively. The Hall emf is measured in the outer half of the MST plasma minor radius using an armored deep-insertion Hall probe. The emf matches previously measurements in the edge ( r/a > 0.8) but in the new region examined (0.6 < r/a < 0.8) it is much larger than E - etaJ, implying the MHD dynamo must also be large and oppositely directed. Recent nonlinear simulations that include two-fluid effects using the extended-MHD NIMROD code show complex radial structure for the emf terms, but the size of the measured Hall emf is much larger than predicted by the simulations. In the two-fluid model, the Hall dynamo couples to the parallel momentum as the mean-field Maxwell stress. The simulations predict relaxation of the parallel flow profiles that is also qualitatively consistent with measurements in MST plasmas.

  10. Two-fluid Magnetic Relaxation in the MST Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Triana, Joseph; Almagri, Af; McCollam, Kj; Sarff, Js; Sovinec, Cr

    2016-10-01

    Recent measurements and extended MHD simulations expose the importance of two-fluid physics in the relaxation and self-organization of the current and momentum profiles in RFP plasmas. A hallmark of relaxation is that the inductive electric field is not balanced by resistive dissipation, prompting the study of fluctuation-induced emfs in the generalized Ohm's law, E- ηJ =- +/ne, the two terms on the right known as the MHD and Hall dynamo terms, respectively. The Hall emf is measured in the outer half of the MST plasma minor radius using an armored deep-insertion probe. The emf matches previous measurements in the edge (r/a>0.8) but in the new region examined (0.8>r/a>0.6) it is much larger than E- ηJ, implying the MHD dynamo must also be large and oppositely directed. Recent nonlinear simulations that include two-fluid effects using the extended-MHD NIMROD code show complex radial structure for the emf terms, but the size of the measured Hall emf is much larger than predicted by the simulations. In the two-fluid model, the Hall dynamo couples to the parallel momentum as the mean-field Maxwell stress. The simulations predict relaxation of the parallel flow profiles that is also qualitatively consistent with measurements in MST plasmas. Work supported by US DoE and NSF.

  11. MHD modeling of DIII-D QH-mode discharges and comparison to observations

    NASA Astrophysics Data System (ADS)

    King, Jacob

    2016-10-01

    MHD modeling of DIII-D QH-mode discharges and comparison to observations Nonlinear NIMROD simulations, initialized from a reconstruction of a DIII-D QH-mode discharge with broadband MHD, saturate into a turbulent state, but do not saturate when flow is not included. This is consistent with the experimental results of the quiescent regime observed on DIII-D with broadband MHD activity [Garofalo et al., PoP (2015) and refs. within]. These ELM-free discharges have the normalized pedestal-plasma confinement necessary for burning-plasma operation on ITER. Relative to QH-mode operation with more coherent MHD activity, operation with broadband MHD tends to occur at higher densities and lower rotation and thus may be more relevant to ITER. The nonlinear NIMROD simulations require highly accurate equilibrium reconstructions. Our equilibrium reconstructions include the scrape-off-layer profiles and the measured toroidal and poloidal rotation profiles. The simulation develops into a saturated turbulent state and the n=1 and 2 modes become dominant through an inverse cascade. Each toroidal mode in the range of n=1-5 is dominant at a different time. The perturbations are advected and sheared apart in the counter-clockwise direction consistent with the direction of the poloidal flow inside the LCFS. Work towards validation through comparison to magnetic coil and Doppler reflectometry measurements is presented. Consistent with experimental observations during QH-mode, the simulated state leads to large particle transport relative to the thermal transport. Analysis shows that the phase of the density and temperature perturbations differ resulting in greater convective particle transport relative to the convective thermal transport. This work supported by the U.S. Department of Energy Office of Science and the SciDAC Center for Extended MHD Modeling under Contract Numbers DE-FC02-06ER54875, DE-FC02-08ER54972 and DE-FC02-04ER54698.

  12. The effects of differential flow between rational surfaces on toroidal resistive MHD modes

    NASA Astrophysics Data System (ADS)

    Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John

    2016-10-01

    Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.

  13. Nonlinear Fluid Model Of 3-D Field Effects In Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Beidler, M. T.

    2017-10-01

    Extended MHD codes (e.g., NIMROD, M3D-C1) are beginning to explore nonlinear effects of small 3-D magnetic fields on tokamak plasmas. To facilitate development of analogous physically understandable reduced models, a fluid-based dynamic nonlinear model of these added 3-D field effects in the base axisymmetric tokamak magnetic field geometry is being developed. The model incorporates kinetic-based closures within an extended MHD framework. Key 3-D field effects models that have been developed include: 1) a comprehensive modified Rutherford equation for the growth of a magnetic island that includes the classical tearing and NTM perturbed bootstrap current drives, externally applied magnetic field and current drives, and classical and neoclassical polarization current effects, and 2) dynamic nonlinear evolution of the plasma toroidal flow (radial electric field) in response to the 3-D fields. An application of this model to RMP ELM suppression precipitated by an ELM crash will be discussed. Supported by Office of Fusion Energy Sciences, Office of Science, Dept. of Energy Grants DE-FG02-86ER53218 and DE-FG02-92ER54139.

  14. Impurity mixing and radiation asymmetry in massive gas injection simulations of DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzo, V. A.

    Simulations of neon massive gas injection into DIII-D are performed with the 3D MHD code NIMROD. The poloidal and toroidal distribution of the impurity source is varied. This report will focus on the effects of the source variation on impurity mixing and radiated power asymmetry. Even toroidally symmetric impurity injection is found to produce asymmetric radiated power due to asymmetric convective heat flux produced by the 1/1 mode. When the gas source is toroidally localized, the phase relationship between the mode and the source location is important, affecting both radiation peaking and impurity mixing. Under certain circumstances, a single, localizedmore » gas jet could produce better radiation symmetry during the disruption thermal quench than evenly distributed impurities.« less

  15. Development and Application of Predictive Tools for MHD Stability Limits in Tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, Dylan; Miller, G. P.

    This is a project to develop and apply analytic and computational tools to answer physics questions relevant to the onset of non-ideal magnetohydrodynamic (MHD) instabilities in toroidal magnetic confinement plasmas. The focused goal of the research is to develop predictive tools for these instabilities, including an inner layer solution algorithm, a resistive wall with control coils, and energetic particle effects. The production phase compares studies of instabilities in such systems using analytic techniques, PEST- III and NIMROD. Two important physics puzzles are targeted as guiding thrusts for the analyses. The first is to form an accurate description of the physicsmore » determining whether the resistive wall mode or a tearing mode will appear first as β is increased at low rotation and low error fields in DIII-D. The second is to understand the physical mechanism behind recent NIMROD results indicating strong damping and stabilization from energetic particle effects on linear resistive modes. The work seeks to develop a highly relevant predictive tool for ITER, advance the theoretical description of this physics in general, and analyze these instabilities in experiments such as ASDEX Upgrade, DIII-D, JET, JT-60U and NTSX. The awardee on this grant is the University of Tulsa. The research efforts are supervised principally by Dr. Brennan. Support is included for two graduate students, and a strong collaboration with Dr. John M. Finn of LANL. The work includes several ongoing collaborations with General Atomics, PPPL, and the NIMROD team, among others.« less

  16. Genes encoding cuticular proteins are components of the Nimrod gene cluster in Drosophila.

    PubMed

    Cinege, Gyöngyi; Zsámboki, János; Vidal-Quadras, Maite; Uv, Anne; Csordás, Gábor; Honti, Viktor; Gábor, Erika; Hegedűs, Zoltán; Varga, Gergely I B; Kovács, Attila L; Juhász, Gábor; Williams, Michael J; Andó, István; Kurucz, Éva

    2017-08-01

    The Nimrod gene cluster, located on the second chromosome of Drosophila melanogaster, is the largest synthenic unit of the Drosophila genome. Nimrod genes show blood cell specific expression and code for phagocytosis receptors that play a major role in fruit fly innate immune functions. We previously identified three homologous genes (vajk-1, vajk-2 and vajk-3) located within the Nimrod cluster, which are unrelated to the Nimrod genes, but are homologous to a fourth gene (vajk-4) located outside the cluster. Here we show that, unlike the Nimrod candidates, the Vajk proteins are expressed in cuticular structures of the late embryo and the late pupa, indicating that they contribute to cuticular barrier functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Numerical simulation of plasma response to externally applied resonant magnetic perturbation on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Bicheng, LI; Zhonghe, JIANG; Jian, LV; Xiang, LI; Bo, RAO; Yonghua, DING

    2018-05-01

    Nonlinear magnetohydrodynamic (MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations (RMPs) are performed with NIMROD (non-ideal MHD with rotation, open discussion). Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology, plasma density and rotation profile. The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling, and finally change density profile by particle transport. At the same time, plasma rotation plays an important role during the entire evolution process.

  18. Extended-MHD Studies of Flow-Profile Effects on Edge Harmonic Oscillations in QH-mode Discharges

    NASA Astrophysics Data System (ADS)

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Jenkins, T. G.; Kruger, S. E.; Snyder, P. B.

    2012-10-01

    It is desirable to have an ITER H-mode regime that is quiescent to edge-localized modes (ELMs). ELMs deposit large, localized, impulsive, surface heat loads that can damage the divertor. One such quiescent regime with edge harmonic oscillations (EHO) is observed on DIII-D, JET, JT-60U, and ASDEX-U [1]. The physical mechanisms of EHO are not fully understood, but linear MHD calculations suggest EHO may be a saturated kink-peeling mode partially driven by flow-profile shear [2]. We present preliminary EHO computations using the extended-MHD NIMROD code. The model incorporates first-order FLR effects and parallel heat flows. Using reconstructed DIII-D profiles from discharges with EHO, we scan the ExB and polodial flow profiles and compute linear stability. The aim is to ascertain the role of the ExB flow shear, as motivated by experimental results [3], and to compare with theoretical predictions where the growth rate is enhanced at intermediate wavenumbers and cut-off at large wavenumbers by diamagnetic effects [4]. Initial nonlinear computations exploring the EHO saturation mechanism are presented.[4pt] [1] Phys. Plasmas, v19, p056117, 2012 (and refs. within).[0pt] [2] Nucl. Fusion, v47, p961, 2007.[0pt] [3] Nucl. Fusion, v51, p083018, 2011.[0pt] [4] Phys. Plasmas v10, p4405, 2003.

  19. PSI-Center Validation Studies

    NASA Astrophysics Data System (ADS)

    Nelson, B. A.; Akcay, C.; Glasser, A. H.; Hansen, C. J.; Jarboe, T. R.; Marklin, G. J.; Milroy, R. D.; Morgan, K. D.; Norgaard, P. C.; Shumlak, U.; Sutherland, D. A.; Victor, B. S.; Sovinec, C. R.; O'Bryan, J. B.; Held, E. D.; Ji, J.-Y.; Lukin, V. S.

    2014-10-01

    The Plasma Science and Innovation Center (PSI-Center - http://www.psicenter.org) supports collaborating validation platform experiments with 3D extended MHD simulations using the NIMROD, HiFi, and PSI-TET codes. Collaborators include the Bellan Plasma Group (Caltech), CTH (Auburn U), HBT-EP (Columbia), HIT-SI (U Wash-UW), LTX (PPPL), MAST (Culham), Pegasus (U Wisc-Madison), SSX (Swarthmore College), TCSU (UW), and ZaP/ZaP-HD (UW). The PSI-Center is exploring application of validation metrics between experimental data and simulations results. Biorthogonal decomposition (BOD) is used to compare experiments with simulations. BOD separates data sets into spatial and temporal structures, giving greater weight to dominant structures. Several BOD metrics are being formulated with the goal of quantitive validation. Results from these simulation and validation studies, as well as an overview of the PSI-Center status will be presented.

  20. Simulation of MST tokamak discharges with resonant magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Cornille, B. S.; Sovinec, C. R.; Chapman, B. E.; Dubois, A.; McCollam, K. J.; Munaretto, S.

    2016-10-01

    Nonlinear MHD modeling of MST tokamak plasmas with an applied resonant magnetic perturbation (RMP) reveals degradation of flux surfaces that may account for the experimentally observed suppression of runaway electrons with the RMP. Runaway electrons are routinely generated in MST tokamak discharges with low plasma density. When an m = 3 RMP is applied these electrons are strongly suppressed, while an m = 1 RMP of comparable amplitude has little effect. The computations are performed using the NIMROD code and use reconstructed equilibrium states of MST tokamak plasmas with q (0) < 1 and q (a) = 2.2 . Linear computations show that the (1 , 1) -kink and (2 , 2) -tearing modes are unstable, and nonlinear simulations produce sawtoothing with a period of approximately 0.5 ms, which is comparable to the period of MHD activity observed experimentally. Adding an m = 3 RMP in the computation degrades flux surfaces in the outer region of the plasma, while no degradation occurs with an m = 1 RMP. The outer flux surface degradation with the m = 3 RMP, combined with the sawtooth-induced distortion of flux surfaces in the core, may account for the observed suppression of runaway electrons. Work supported by DOE Grant DE-FC02-08ER54975.

  1. Comparing magnetic fluctuation dynamics in nonlinear MHD simulations of low-aspect-ratio RFPs to RELAX experiments

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.

    2017-10-01

    We present comparisons of magnetic tearing fluctuation activity between RFP experiments on the low-aspect-ratio RELAX device (R / a 2) and nonlinear simulations of zero-beta, single-fluid MHD using the NIMROD code in both cylindrical and toroidal geometries at a Lundquist number of S =104 , nearly as high as experimental values. Time-average fluctuation amplitudes observed in the simulations are similar to those from the experiments, but more rigorous comparisons versus spectral mode numbers are in progress. We also focus on how the spatiotemporal dynamics of the fluctuations vary with RFP equilibrium parameters. Interestingly, at shallow reversal, cylindrical simulations show a relatively uncoupled spectrum of nearly quiescent modes periodically varying in time, whereas the corresponding toroidal cases show a fully chaotic spectrum of strongly nonlinearly interacting modes. We ascribe this to the geometric m = 1 coupling present in the toroidal but not the cylindrical case. We present initial results from convergence studies with increased spatial resolution for both geometries. Simulations at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.

  2. Nonlinear Plasma Response to Resonant Magnetic Perturbation in Rutherford Regime

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Yan, Xingting; Huang, Wenlong

    2017-10-01

    Recently a common analytic relation for both the locked mode and the nonlinear plasma response in the Rutherford regime has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance equations. The analytic relation predicts the threshold and the island size for the full penetration of resonant magnetic perturbation (RMP). It also rigorously proves a screening effect of the equilibrium toroidal flow. In this work, we test the theory by solving for the nonlinear plasma response to a single-helicity RMP of a circular-shaped limiter tokamak equilibrium with a constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. Time evolution of the parallel flow or ``slip frequency'' profile and its asymptotic approach to steady state obtained from the NIMROD simulations qualitatively agree with the theory predictions. Further comparisons are carried out for the saturated island size, the threshold for full mode penetration, as well as the screening effects of equilibrium toroidal flow in order to understand the physics of nonlinear plasma response in the Rutherford regime. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  3. RMP Enhanced Transport and Rotation Screening in DIII-D Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzo, V; Joseph, I; Moyer, R

    The application of resonant magnetic perturbations (RMP) to DIII-D plasmas at low collisionality has achieved ELM suppression, primarily due to a pedestal density reduction. The mechanism of the enhanced particle transport is investigated in 3D MHD simulations with the NIMROD code. The simulations apply realistic vacuum fields from the DIII-D I-coils, C-coils and measure intrinsic error fields to an EFIT reconstructed DIII-D equilibrium, and allow the plasma to respond to the applied fields while the fields are fixed at the boundary, which lies in the vacuum region. A non-rotating plasma amplifies the resonant components of the applied fields by factorsmore » of 2-5. The poloidal velocity forms E x B convection cells crossing the separatrix, which push particles into the vacuum region and reduce the pedestal density. Low toroidal rotation at the separatrix reduces the resonant field amplitudes, but does not strongly affect the particle pumpout. At higher separatrix rotation, the poloidal E x B velocity is reduced by half, while the enhanced particle transport is entirely eliminated. A high collisionality DIII-D equilibrium with an experimentally measured rotation profile serves as the starting point for a simulation with odd parity I-coil fields that can ultimately be compared with experimental results. All of the NIMROD results are compared with analytic error field theory.« less

  4. Numerical investigation of design and operational parameters on CHI spheromak performance

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamas, C. A.; Woodruff, S.

    2016-10-01

    Nonlinear, extended-MHD computation with the NIMROD code is used to explore magnetic self-organization and performance with respect to externally controllable parameters in spheromaks formed with coaxial helicity injection. The goal of this study is to inform the design and operational parameters of proposed proof-of-principle spheromak experiment. The calculations explore multiple distinct phases of evolution (including adiabatic magnetic compression), which must be explored and optimized separately. Results indicate that modest changes to the design and operation of past experiments, e.g. SSPX [E.B. Hooper et al. PPCF 2012], could have significantly improved the plasma-current injector coupling efficiency and performance, particularly with respect to peak temperature and lifetime. Though we frequently characterize performance relative to SSPX, we are also exploring fundamentally different designs and modes of operation, e.g. flux compression. This work is supported by DAPRA under Grant No. N66001-14-1-4044.

  5. PSI-Center Simulations of Validation Platform Experiments

    NASA Astrophysics Data System (ADS)

    Nelson, B. A.; Akcay, C.; Glasser, A. H.; Hansen, C. J.; Jarboe, T. R.; Marklin, G. J.; Milroy, R. D.; Morgan, K. D.; Norgaard, P. C.; Shumlak, U.; Victor, B. S.; Sovinec, C. R.; O'Bryan, J. B.; Held, E. D.; Ji, J.-Y.; Lukin, V. S.

    2013-10-01

    The Plasma Science and Innovation Center (PSI-Center - http://www.psicenter.org) supports collaborating validation platform experiments with extended MHD simulations. Collaborators include the Bellan Plasma Group (Caltech), CTH (Auburn U), FRX-L (Los Alamos National Laboratory), HIT-SI (U Wash - UW), LTX (PPPL), MAST (Culham), Pegasus (U Wisc-Madison), PHD/ELF (UW/MSNW), SSX (Swarthmore College), TCSU (UW), and ZaP/ZaP-HD (UW). Modifications have been made to the NIMROD, HiFi, and PSI-Tet codes to specifically model these experiments, including mesh generation/refinement, non-local closures, appropriate boundary conditions (external fields, insulating BCs, etc.), and kinetic and neutral particle interactions. The PSI-Center is exploring application of validation metrics between experimental data and simulations results. Biorthogonal decomposition is proving to be a powerful method to compare global temporal and spatial structures for validation. Results from these simulation and validation studies, as well as an overview of the PSI-Center status will be presented.

  6. Numerical study of laminar plasma dynamo in cylindrical and spherical geometries

    NASA Astrophysics Data System (ADS)

    Khalzov, Ivan; Bayliss, Adam; Ebrahimi, Fatima; Forest, Cary; Schnack, Dalton

    2009-05-01

    We have performed the numerical investigation of possibility of laminar dynamo in two new experiments, Plasma Couette and Plasma Dynamo, which have been designed at the University of Wisconsin-Madison. The plasma is confined by a strong multipole magnetic field localized at the boundary of cylindrical (Plasma Couette) or spherical (Plasma Dynamo) chamber. Electrodes positioned between the magnet rings can be biased with arbitrary potentials so that Lorenz force ExB drives any given toroidal velocity profile at the surface. Using the extended MHD code, NIMROD, we have modeled several types of plasma flows appropriate for dynamo excitation. It is found that for high magnetic Reynolds numbers the counter-rotating von Karman flow (in cylinder) and Dudley-James flow (in sphere) can lead to self-generation of non-axisymmetric magnetic field. This field saturates at certain amplitude corresponding to a new stable equilibrium. The structure of this equilibrium is considered.

  7. Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Hanson, J. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.

    2017-10-01

    Resistive MHD simulations of low-q disruptions in the Compact Toroidal Hybrid Device (CTH) are performed using the NIMROD code. CTH is a current-carrying stellarator used to study the effects of 3D shaping on MHD stability. Experimentally, it is observed that the application of 3D vacuum fields allows CTH to operate with edge safety factor less than 2.0. However, these low-q discharges often disrupt after peak current if the applied 3D fields are too weak. Nonlinear simulations are initialized using model VMEC equilibria representative of low-q discharges with weak vacuum transform. Initially a series of symmetry preserving island chains are excited at the q=6/5, 7/5, 8/5, and 9/5 rational surfaces. These island chains act as transport barriers preventing stochastic magnetic fields in the edge from penetrating into the core. As the simulation progresses, predominately m/n=3/2 and 4/3 instabilities are destabilized. As these instabilities grow to large amplitude they destroy the symmetry preserving islands leading to large regions of stochastic fields. A current spike and loss of core thermal confinement occurs when the innermost island chain (6/5) is destroyed. Work Supported by US-DOE Grant #DE-FG02-03ER54692.

  8. Computations of Vertical Displacement Events with Toroidal Asymmetry

    NASA Astrophysics Data System (ADS)

    Sovinec, C. R.; Bunkers, K. J.

    2017-10-01

    Nonlinear numerical MHD modeling with the NIMROD code [https://nimrodteam.org] is being developed to investigate asymmetry during vertical displacement events. We start from idealized up/down symmetric tokamak equilibria with small levels of imposed toroidally asymmetric field errors. Vertical displacement results when removing current from one of the two divertor coils. The Eulerian reference-frame modeling uses temperature-dependent resistivity and anisotropic thermal conduction to distinguish the hot plasma region from surrounding cold, low-density conditions. Diffusion through a resistive wall is slow relative to Alfvenic scales but much faster than resistive plasma diffusion. Loss of the initial edge pressure and current distributions leads to a narrow layer of parallel current, which drives low-n modes that may be related to peeling-dominated ELMs. These modes induce toroidal asymmetry in the conduction current, which connects the simulated plasma to the wall. Work supported by the US DOE through Grant Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.

  9. Simulation of current-filament dynamics and relaxation in the Pegasus Spherical Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Bryan, J. B.; Sovinec, C. R.; Bird, T. M.

    Nonlinear numerical computation is used to investigate the relaxation of non-axisymmetric current-channels from washer-gun plasma sources into 'tokamak-like' plasmas in the Pegasus toroidal experiment [Eidietis et al. J. Fusion Energy 26, 43 (2007)]. Resistive MHD simulations with the NIMROD code [Sovinec et al. Phys. Plasmas 10(5), 1727-1732 (2003)] utilize ohmic heating, temperature-dependent resistivity, and anisotropic, temperature-dependent thermal conduction corrected for regions of low magnetization to reproduce critical transport effects. Adjacent passes of the simulated current-channel attract and generate strong reversed current sheets that suggest magnetic reconnection. With sufficient injected current, adjacent passes merge periodically, releasing axisymmetric current rings from themore » driven channel. The current rings have not been previously observed in helicity injection for spherical tokamaks, and as such, provide a new phenomenological understanding for filament relaxation in Pegasus. After large-scale poloidal-field reversal, a hollow current profile and significant poloidal flux amplification accumulate over many reconnection cycles.« less

  10. Two-Fluid Extensions to the M3D CDX-U Validation Study

    NASA Astrophysics Data System (ADS)

    Breslau, J.; Strauss, H.; Sugiyama, L.

    2005-10-01

    As part of a cross-code verification and validation effort, both the M3D code [1] and the NIMROD code [2] have qualitatively reproduced the nonlinear behavior of a complete sawtooth cycle in the CDX-U tokamak, chosen for the study because its low temperature and small size puts it in a parameter regime easily accessible to both codes. Initial M3D studies on this problem used a resistive MHD model with a large, empirical perpendicular heat transport value and with modest toroidal resolution (24 toroidal planes). The success of this study prompted the pursuit of more quantitatively accurate predictions by the application of more sophisticated physical models and higher numerical resolution. The results of two consequent follow-up studies are presented here. In the first, the toroidal resolution of the original run is doubled to 48 planes. The behavior of the sawtooth in this case is essentially the same as in the lower- resolution study. The sawtooth study has also been repeated using a two-fluid plasma model, with the effects of the &*circ;i term emphasized. The resulting mode rotation, as well as the effects on the reconnection rate (sawtooth crash time), sawtooth period, and overall stability are presented. [1] W. Park, et al., Phys. Plasmas 6, 1796 (1999). [2] C. Sovinec, et al., J. Comp. Phys. 195, 355 (2004).

  11. Overview of HIT-SI3 experiment: Simulations, Diagnostics, and Summary of Current Results

    NASA Astrophysics Data System (ADS)

    Penna, James; Jarboe, Thomas; Nelson, Brian; Hossack, Aaron; Sutherland, Derek; Morgan, Kyle; Hansen, Chris; Benedett, Thomas; Everson, Chris; Victor, Brian

    2016-10-01

    The Helicity Injected Torus - Steady Inductive 3(HIT-SI3)experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI). Three injector units allow for continuous injection of helicity into a copper flux conserver in order to sustain a spheromak. Firing of the injectors with a phase difference allows finite rotation of the plasma to provide a stabilizing effect. Simulations in the MHD code NIMROD and the fluid-model code PSI-TET provide validation and a basis for interpretation of the observed experimental data. Thompson Scattering (TS) and Far Infrared (FIR) Interferometer systems allow temperature and line-averaged density measurements to be taken. An Ion Doppler Spectroscopy (IDS) system allows measurement of the plasma rotation and velocity. HIT-SI3 data has been used for validation of IDCD predictions, in particular the projected impedance of helicity injectors according to the theory. The experimental impedances have been calculated here for the first time for different HIT-SI3 regimes. Such experimental evidence will contribute to the design of future experiments employing IDCD as a current-drive mechanism. Work supported by the D.O.E., Office of Science, Office of Fusion Science.

  12. Equilibrium and Stability Properties of Low Aspect Ratio Mirror Systems: from Neutron Source Design to the Parker Spiral

    NASA Astrophysics Data System (ADS)

    Peterson, Ethan; Anderson, Jay; Clark, Mike; Egedal, Jan; Endrizzi, Douglass; Flanagan, Ken; Harvey, Robert; Lynn, Jacob; Milhone, Jason; Wallace, John; Waleffe, Roger; Mirnov, Vladimir; Forest, Cary

    2017-10-01

    Equilibrium reconstructions of rotating magnetospheres in the lab are computed using a user-friendly extended Grad-Shafranov solver written in Python and various magnetic and kinetic measurements. The stability of these equilibria are investigated using the NIMROD code with two goals: understand the onset of the classic ``wobble'' in the heliospheric current sheet and demonstrating proof-of-principle for a laboratory source of high- β turbulence. Using the same extended Grad-Shafranov solver, equilibria for an axisymmetric, non-paraxial magnetic mirror are used as a design foundation for a high-field magnetic mirror neutron source. These equilibria are numerically shown to be stable to the m=1 flute instability, with higher modes likely stabilized by FLR effects; this provides stability to gross MHD modes in an axisymmetric configuration. Numerical results of RF heating and neutral beam injection (NBI) from the GENRAY/CQL3D code suite show neutron fluxes promising for medical radioisotope production as well as materials testing. Synergistic effects between NBI and high-harmonic fast wave heating show large increases in neutron yield for a modest increase in RF power. work funded by DOE, NSF, NASA.

  13. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  14. MHD and Reconnection Activity During Local Helicity Injection

    NASA Astrophysics Data System (ADS)

    Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Reusch, J. A.; Richner, N. J.

    2016-10-01

    Scaling local helicity injection (LHI) to larger devices requires a validated, predictive model of its current drive mechanism. NIMROD simulations predict the injected helical current streams persist in the edge and periodically reconnect to form axisymmetric current rings that travel into the bulk plasma to grow Ip and poloidal flux. In simulation, these events result in discrete bursts of Alfvénic-frequency MHD activity and jumps in Ip of order ΔIp Iinj , in qualitative agreement with large n = 1 activity found in experiment. Fast imaging prior to tokamak formation supports the instability of, and apparent reconnection between, adjacent helical streams. The bursts exhibit toroidal amplitude asymmetries consistent with a kink structure singly line-tied to the injectors. Internal measurements localize this activity to the injector radial location. Pairwise correlations of poloidal Mirnov coil amplitude and phase match expectations of an edge-localized current stream carrying Iinj. Prior to tokamak formation, reconnection from both adjacent helical windings and co-injected current streams are shown to strongly heat impurity ions. After tokamak formation, strong anomalous ion heating in the plasma edge is attributed to continuous reconnection between colinear streams. The n = 1 bursts occur less frequently as Ip rises, likely caused by increased stream stability as Bv rises and qedge drops. This evidence supports the general NIMROD model of LHI, confirms the persistence and role of the edge current streams, and motivates experiments at higher Iinj and BT. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.

  15. Comparison of kinetic and extended magnetohydrodynamics computational models for the linear ion temperature gradient instability in slab geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, D. D.; Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706; Cheng, J.

    We perform linear stability studies of the ion temperature gradient (ITG) instability in unsheared slab geometry using kinetic and extended magnetohydrodynamics (MHD) models, in the regime k{sub ∥}/k{sub ⊥}≪1. The ITG is a parallel (to B) sound wave that may be destabilized by finite ion Larmor radius (FLR) effects in the presence of a gradient in the equilibrium ion temperature. The ITG is stable in both ideal and resistive MHD; for a given temperature scale length L{sub Ti0}, instability requires that either k{sub ⊥}ρ{sub i} or ρ{sub i}/L{sub Ti0} be sufficiently large. Kinetic models capture FLR effects to all ordersmore » in either parameter. In the extended MHD model, these effects are captured only to lowest order by means of the Braginskii ion gyro-viscous stress tensor and the ion diamagnetic heat flux. We present the linear electrostatic dispersion relations for the ITG for both kinetic Vlasov and extended MHD (two-fluid) models in the local approximation. In the low frequency fluid regime, these reduce to the same cubic equation for the complex eigenvalue ω=ω{sub r}+iγ. An explicit solution is derived for the growth rate and real frequency in this regime. These are found to depend on a single non-dimensional parameter. We also compute the eigenvalues and the eigenfunctions with the extended MHD code NIMROD, and a hybrid kinetic δf code that assumes six-dimensional Vlasov ions and isothermal fluid electrons, as functions of k{sub ⊥}ρ{sub i} and ρ{sub i}/L{sub Ti0} using a spatially dependent equilibrium. These solutions are compared with each other, and with the predictions of the local kinetic and fluid dispersion relations. Kinetic and fluid calculations agree well at and near the marginal stability point, but diverge as k{sub ⊥}ρ{sub i} or ρ{sub i}/L{sub Ti0} increases. There is good qualitative agreement between the models for the shape of the unstable global eigenfunction for L{sub Ti0}/ρ{sub i}=30 and 20. The results quantify how far fluid calculations can be extended accurately into the kinetic regime. We conclude that for the linear ITG problem in slab geometry with unsheared magnetic field when k{sub ∥}/k{sub ⊥}≪1, the extended MHD model may be a reliable physical model for this problem when ρ{sub i}/L{sub Ti0}<10{sup −2} and k{sub ⊥}ρ{sub i}<0.2.« less

  16. Verification of continuum drift kinetic equation solvers in NIMROD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Held, E. D.; Ji, J.-Y.; Kruger, S. E.

    Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speedmore » coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.« less

  17. Measuring viscosity with a resonant magnetic perturbation in the MST RFP

    NASA Astrophysics Data System (ADS)

    Fridström, Richard; Munaretto, Stefano; Frassinetti, Lorenzo; Chapman, Brett; Brunsell, Per; Sarff, John; MST Team

    2016-10-01

    Application of an m = 1 resonant magnetic perturbation (RMP) causes braking and locking of naturally rotating m = 1 tearing modes (TMs) in the MST RFP. The experimental TM dynamics are replicated by a theoretical model including the interaction between the RMP and multiple TMs [Fridström PoP 23, 062504 (2016)]. The viscosity is the only free parameter in the model, and it is chosen such that model TM velocity evolution matches that of the experiment. The model does not depend on the means by which the natural rotation is generated. The chosen value of the viscosity, about 40 m2/s, is consistent with separate measurements in MST using a biased probe to temporarily spin up the plasma. This viscosity is about 100 times larger than the classical prediction, likely due to magnetic stochasticity in the core of these plasmas. Viscosity is a key parameter in visco-resistive MHD codes like NIMROD. The validation of these codes requires measurement of the viscosity over a broad parameter range, which will now be possible with the RMP technique that, unlike the biased probe, is not limited to low-energy-density plasmas. Estimation with the RMP technique of the viscosity in several MST discharges suggests that the viscosity decreases as the electron beta increases. Work supported by USDOE.

  18. MHD modeling of a DIII-D low-torque QH-mode discharge and comparison to observations

    DOE PAGES

    King, Jacob R.; Kruger, S. E.; Burrell, K. H.; ...

    2017-03-07

    Extended-MHD modeling of DIII-D tokamak quiescent H-mode (QH-mode) discharges with nonlinear NIMROD simulations saturates into a turbulent state but does not saturate when the steady-state flow inferred from measurements is not included. This is consistent with the experimental observations of the quiescent regime on DIII-D. The simulation with flow develops into a saturated turbulent state where the n Φ = 1 and 2 toroidal modes become dominant through an inverse cascade. Each mode in the range of n Φ = 1–5 is dominant at a different time. Consistent with experimental observations during QH-mode, the simulated state leads to large particlemore » transport relative to the thermal transport. Analysis shows that the amplitude and phase of the density and temperature perturbations differ resulting in greater fluctuation-induced convective particle transport relative to the convective thermal transport. As a result, comparison to magnetic-coil measurements shows that rotation frequencies differ between the simulation and experiment, which indicates that more sophisticated extended-MHD two-fluid modeling is required.« less

  19. MHD modeling of a DIII-D low-torque QH-mode discharge and comparison to observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Jacob R.; Kruger, S. E.; Burrell, K. H.

    Extended-MHD modeling of DIII-D tokamak quiescent H-mode (QH-mode) discharges with nonlinear NIMROD simulations saturates into a turbulent state but does not saturate when the steady-state flow inferred from measurements is not included. This is consistent with the experimental observations of the quiescent regime on DIII-D. The simulation with flow develops into a saturated turbulent state where the n Φ = 1 and 2 toroidal modes become dominant through an inverse cascade. Each mode in the range of n Φ = 1–5 is dominant at a different time. Consistent with experimental observations during QH-mode, the simulated state leads to large particlemore » transport relative to the thermal transport. Analysis shows that the amplitude and phase of the density and temperature perturbations differ resulting in greater fluctuation-induced convective particle transport relative to the convective thermal transport. As a result, comparison to magnetic-coil measurements shows that rotation frequencies differ between the simulation and experiment, which indicates that more sophisticated extended-MHD two-fluid modeling is required.« less

  20. Analytical and numerical treatment of drift-tearing modes in plasma slab

    NASA Astrophysics Data System (ADS)

    Mirnov, V. V.; Hegna, C. C.; Sovinec, C. R.; Howell, E. C.

    2016-10-01

    Two-fluid corrections to linear tearing modes includes 1) diamagnetic drifts that reduce the growth rate and 2) electron and ion decoupling on short scales that can lead to fast reconnection. We have recently developed an analytical model that includes effects 1) and 2) and important contribution from finite electron parallel thermal conduction. Both the tendencies 1) and 2) are confirmed by an approximate analytic dispersion relation that is derived using a perturbative approach of small ion-sound gyroradius ρs. This approach is only valid at the beginning of the transition from the collisional to semi-collisional regimes. Further analytical and numerical work is performed to cover the full interval of ρs connecting these two limiting cases. Growth rates are computed from analytic theory with a shooting method. They match the resistive MHD regime with the dispersion relations known at asymptotically large ion-sound gyroradius. A comparison between this analytical treatment and linear numerical simulations using the NIMROD code with cold ions and hot electrons in plasma slab is reported. The material is based on work supported by the U.S. DOE and NSF.

  1. Toroidal Alfvénic Eigenmodes Driven by Energetic Particles with Maxwell and Slowing-down Distributions

    NASA Astrophysics Data System (ADS)

    Hou, Yawei; Zhu, Ping; Zou, Zhihui; Kim, Charlson C.; Hu, Zhaoqing; Wang, Zhengxiong

    2016-10-01

    The energetic-particle (EP) driven toroidal Alfvén eigenmodes (TAEs) in a circular-shaped large aspect ratio tokamak are studied using the hybrid kinetic-MHD model in the NIMROD code, where the EPs are advanced using the δf particle-in-cell (PIC) method and their kinetic effects are coupled to the bulk plasma through moment closures. Two initial distributions of EPs, Maxwell and slowing-down, are considered. The influence of EP parameters, including density, temperature and density gradient, on the frequency and the growth rate of TAEs are obtained and benchmarked with theory and gyrokinetic simulations for the Maxwell distribution with good agreement. When the density and temperature of EPs are above certain thresholds, the transition from TAE to energetic particle modes (EPM) occurs and the mode structure also changes. Comparisons between Maxwell and slowing-down distributions in terms of EP-driven TAEs and EPMs will also be presented and discussed. Supported by the National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002 and 2015GB101004, and the Natural Science Foundation of China Grant No. 11205194.

  2. Equilibrium and stability of flow-dominated Plasmas in the Big Red Ball

    NASA Astrophysics Data System (ADS)

    Siller, Robert; Flanagan, Kenneth; Peterson, Ethan; Milhone, Jason; Mirnov, Vladimir; Forest, Cary

    2017-10-01

    The equilibrium and linear stability of flow-dominated plasmas are studied numerically using a spectral techniques to model MRI and dynamo experiments in the Big Red Ball device. The equilibrium code solves for steady-state magnetic fields and plasma flows subject to boundary conditions in a spherical domain. It has been benchmarked with NIMROD (non-ideal MHD with rotation - open discussion), Two different flow scenarios are studied. The first scenario creates a differentially rotating toroidal flow that is peaked at the center. This is done to explore the onset of the magnetorotational instability (MRI) in a spherical geometry. The second scenario creates a counter-rotating von Karman-like flow in the presence of a weak magnetic field. This is done to explore the plasma dynamo instability in the limit of a weak applied field. Both scenarios are numerically modeled as axisymmetric flow to create a steady-state equilibrium solution, the stability and normal modes are studied in the lowest toroidal mode number. The details of the observed flow, and the structure of the fastest growing modes will be shown. DoE, NSF.

  3. Magnetic reconnection process in transient coaxial helicity injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, F.; Hooper, E. B.; Sovinec, C. R.

    The physics of magnetic reconnection and fast flux closure in transient coaxial helicity injection experiments in NSTX is examined using resistive MHD simulations. These simulations have been performed using the NIMROD code with fixed boundary flux (including NSTX poloidal coil currents) in the NSTX experimental geometry. Simulations show that an X point is formed in the injector region, followed by formation of closed flux surfaces within 0.5 ms after the driven injector voltage and injector current begin to rapidly decrease. As the injector voltage is turned off, the field lines tend to untwist in the toroidal direction and magnetic fieldmore » compression exerts a radial J × B force and generates a bi-directional radial E{sub toroidal}×B{sub poloidal} pinch flow to bring oppositely directed field lines closer together to reconnect. At sufficiently low magnetic diffusivity (high Lundquist number), and with a sufficiently narrow injector flux footprint width, the oppositely directed field lines have sufficient time to reconnect (before dissipating), leading to the formation of closed flux surfaces. The reconnection process is shown to have transient Sweet-Parker characteristics.« less

  4. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a qualitatively different way of creating MHD relevant plasmas to look at the physics of magnetic reconnection. We show here an overview of the experiment and initial electrostatic and magnetic probe data. Plasma creation using plasma guns is independent of equilibrium or force balance, so we can scale many relevant parameters. As the magnetic reconnection region between two parallel current channels sweeps down a long plasma column we can generate 3D movies of magnetic reconnection from many repetitive shots. If two current channels were to move because of kink instabilities instead of mutual J x B forces and reconnection effects, each shot would less reproducible. Our data show the kink stability boundary for a single current channel. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  5. Active control of ECCD-induced tearing mode stabilization in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, Scott; Held, Eric

    2013-10-01

    Actively controlled ECCD applied in or near magnetic islands formed by NTMs has been successfully shown to control/suppress these modes, despite uncertainties in island O-point locations (where induced current is most stabilizing) relative to the RF deposition region. Integrated numerical models of the mode stabilization process can resolve these uncertainties and augment experimental efforts to determine optimal ITER NTM stabilization strategies. The advanced SWIM model incorporates RF effects in the equations/closures of extended MHD as 3D (not toroidal or bounce-averaged) quasilinear diffusion coefficients. Equilibration of driven current within the island geometry is modeled using the same extended MHD dynamics governing the physics of island formation, yielding a more accurate/self-consistent picture of island response to RF drive. Additionally, a numerical active feedback control system gathers data from synthetic diagnostics to dynamically trigger & spatially align the RF fields. Computations which model the RF deposition using ray tracing, assemble the 3D QL operator from ray & profile data, calculate the resultant xMHD forces, and dynamically realign the RF to more efficiently stabilize modes are presented; the efficacy of various control strategies is also discussed. Supported by the SciDAC Center for Extended MHD Modeling (CEMM); see also https://cswim.org.

  6. Suppression of high-energy electrons generated in both disrupting and sustained MST tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Pandya, M. D.; Chapman, B. E.; Munaretto, S.; Cornille, B. S.; McCollam, K. J.; Sovinec, C. R.; Dubois, A. M.; Almagri, A. F.; Goetz, J. A.

    2017-10-01

    High-energy electrons appearing during MST tokamak plasma disruptions are rapidly lost from the plasma due apparently to internal MHD activity. Work has just recently begun on generating and diagnosing disruptions in MST tokamak plasmas. Initial measurements show the characteristic drop in central temperature and density preceding a quench of the plasma current. This corresponds to a burst of dominantly n=1 MHD activity, which is accompanied by a short-lived burst of high-energy electrons. The short-lived nature of these electrons is suspected to be due to stochastic transport associated with the increased MHD. Earlier work shows that runaway electrons generated in low density, sustained plasmas are suppressed by a sufficiently large m=3 RMP in plasmas with q(a) <3. RMPs of various poloidal mode number can be generated with an array of saddle coils wound around the vertical insulated gap in MST's thick conducting shell. With an m=3 RMP, the degree of runaway suppression increases with RMP amplitude, while an m=1 RMP has little effect on the runaways. Nonlinear MHD modeling with NIMROD of these MST plasmas indicates increased stochasticity with an m=3 RMP, while no such increase in stochasticity is observed with an m=1 RMP. Work supported by US DOE.

  7. Validation of extended magnetohydrodynamic simulations of the HIT-SI3 experiment using the NIMROD code

    NASA Astrophysics Data System (ADS)

    Morgan, K. D.; Jarboe, T. R.; Hossack, A. C.; Chandra, R. N.; Everson, C. J.

    2017-12-01

    The HIT-SI3 experiment uses a set of inductively driven helicity injectors to apply a non-axisymmetric current drive on the edge of the plasma, driving an axisymmetric spheromak equilibrium in a central confinement volume. These helicity injectors drive a non-axisymmetric perturbation that oscillates in time, with relative temporal phasing of the injectors modifying the mode structure of the applied perturbation. A set of three experimental discharges with different perturbation spectra are modelled using the NIMROD extended magnetohydrodynamics code, and comparisons are made to both magnetic and fluid measurements. These models successfully capture the bulk dynamics of both the perturbation and the equilibrium, though disagreements related to the pressure gradients experimentally measured exist.

  8. Dependency of Tearing Mode Stability on Current and Pressure Profiles in DIII-D Hybrid Discharges

    NASA Astrophysics Data System (ADS)

    Kim, K.; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Y.-S.; SNU/ORAU; ORNL; Atomics, General; SNU; DIII-D Team

    2016-10-01

    Understanding the physics of the onset and evolution of tearing modes (TMs) in tokamak plasmas is important for high- β steady-state operation. Based on DIII-D steady-state hybrid experiments with accurate equilibrium reconstruction and well-measured plasma profiles, the 2/1 tearing mode can be more stable with increasing local current and pressure gradient at rational surface and with lower pressure peaking and plasma inductance. The tearing stability index Δ', estimated by the Rutherford equation with experimental mode growth rate was validated against Δ' calculated by linear eigenvalue solver (PEST3); preliminary comprehensive MHD modeling by NIMROD reproduced the TM onset reasonably well. We present a novel integrated modeling for the purpose of predicting TM onset in experiment by combining a model equilibrium reconstruction using IPS/FASTRAN, linear stability Δ' calculation using PEST3, and fitting formula for critical Δ' from NIMROD. Work supported in part by the US DoE under DE-AC05-06OR23100, DE-AC05-00OR22725, and DEFC02-04ER54698.

  9. MHD modeling of a DIII-D low-torque QH-mode discharge and comparison to observations

    NASA Astrophysics Data System (ADS)

    King, J. R.; Kruger, S. E.; Burrell, K. H.; Chen, X.; Garofalo, A. M.; Groebner, R. J.; Olofsson, K. E. J.; Pankin, A. Y.; Snyder, P. B.

    2017-05-01

    Extended-MHD modeling of DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] quiescent H-mode (QH-mode) discharges with nonlinear NIMROD [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)] simulations saturates into a turbulent state but does not saturate when the steady-state flow inferred from measurements is not included. This is consistent with the experimental observations of the quiescent regime on DIII-D. The simulation with flow develops into a saturated turbulent state where the nϕ=1 and 2 toroidal modes become dominant through an inverse cascade. Each mode in the range of nϕ=1 -5 is dominant at a different time. Consistent with experimental observations during QH-mode, the simulated state leads to large particle transport relative to the thermal transport. Analysis shows that the amplitude and phase of the density and temperature perturbations differ resulting in greater fluctuation-induced convective particle transport relative to the convective thermal transport. Comparison to magnetic-coil measurements shows that rotation frequencies differ between the simulation and experiment, which indicates that more sophisticated extended-MHD two-fluid modeling is required.

  10. Stabilization of numerical interchange in spectral-element magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, C. R.

    In this study, auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order C 0 finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate ofmore » the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during h-refinement and p-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. Lastly, the projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code [C. R. Sovinec, et al., J. Comput. Phys. 195 (2004) 355-386], provided that the projections introduce numerical dissipation.« less

  11. Stabilization of numerical interchange in spectral-element magnetohydrodynamics

    DOE PAGES

    Sovinec, C. R.

    2016-05-10

    In this study, auxiliary numerical projections of the divergence of flow velocity and vorticity parallel to magnetic field are developed and tested for the purpose of suppressing unphysical interchange instability in magnetohydrodynamic simulations. The numerical instability arises with equal-order C 0 finite- and spectral-element expansions of the flow velocity, magnetic field, and pressure and is sensitive to behavior at the limit of resolution. The auxiliary projections are motivated by physical field-line bending, and coercive responses to the projections are added to the flow-velocity equation. Their incomplete expansions are limited to the highest-order orthogonal polynomial in at least one coordinate ofmore » the spectral elements. Cylindrical eigenmode computations show that the projections induce convergence from the stable side with first-order ideal-MHD equations during h-refinement and p-refinement. Hyperbolic and parabolic projections and responses are compared, together with different methods for avoiding magnetic divergence error. Lastly, the projections are also shown to be effective in linear and nonlinear time-dependent computations with the NIMROD code [C. R. Sovinec, et al., J. Comput. Phys. 195 (2004) 355-386], provided that the projections introduce numerical dissipation.« less

  12. Implementation of parallel moment equations in NIMROD

    NASA Astrophysics Data System (ADS)

    Lee, Hankyu Q.; Held, Eric D.; Ji, Jeong-Young

    2017-10-01

    As collisionality is low (the Knudsen number is large) in many plasma applications, kinetic effects become important, particularly in parallel dynamics for magnetized plasmas. Fluid models can capture some kinetic effects when integral parallel closures are adopted. The adiabatic and linear approximations are used in solving general moment equations to obtain the integral closures. In this work, we present an effort to incorporate non-adiabatic (time-dependent) and nonlinear effects into parallel closures. Instead of analytically solving the approximate moment system, we implement exact parallel moment equations in the NIMROD fluid code. The moment code is expected to provide a natural convergence scheme by increasing the number of moments. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.

  13. Global MHD simulation of magnetosphere using HPF

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5% using 56 PEs of Fujitsu VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  14. Shattered Pellet Injection Simulations With NIMROD

    NASA Astrophysics Data System (ADS)

    Kim, Charlson; Parks, Paul; Lao, Lang; Lehnan, Michael; Loarte, Alberto; Izzo, Valerie; Nimrod Team

    2017-10-01

    Shattered Pellet Injection (SPI) will be the Disruption Mitigation System in ITER. SPI propels a cryo-pellet of high-Z and deuterium into a sharp bend of the flight tube, shattering the pellet into a plume of shards. These shards are injected into the plasma to quench it and mitigate forces and heat loads that may damage in-vessel components. We use NIMROD to perform 3-D nonlinear MHD simulations of SPI to study the thermal quench. This work builds upon prior Massive Gas Injection (MGI) studies by Izzo. A Particle-in-Cell (PIC) model is implemented to mimic the shards, providing a discrete moving source. Observations indicate that the quench proceeds in two phases. Initially, the outer plasma is shed via interchange-like instabilities while preserving the core temperature. This results in a steep gradient and triggers the second phase, an external kink-like event that collapses the core. We report on the radiation efficiency and toroidal peaking as well as fueling efficiency and other metrics that assess the efficacy of the SPI system. Work supported by GA ITER Contract ITER/CT/14/4300001108 and US DOE DE-FG02-95ER54309.

  15. Transport and Dynamics in Toroidal Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for themore » magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD result. Computations performed with a non-local kinetic closure for parallel electron thermal conduction that is valid over all collisionality regimes identify thermal diffusivity ratios of {chi}{sub ||}/{chi}{sub {perpendicular}} ~ 10{sup 7} - 10{sup 8} as appropriate when using collisional heat flux modeling for these modes. Adding significant parallel viscosity proves to have little effect. Nonlinear ELM computations solve the resistive MHD model with toroidal resolution 0{<=}n{<=}21, including anisotropic thermal conduction, temperature-dependent resistivity, and number density evolution. The computations are based on a realistic equilibrium with high pedestal temperature from the linear study. When the simulated ELM grows to appreciable amplitude, ribbon-like thermal structures extend from the separatrix to the wall as the spectrum broadens about a peak at n=13. Analysis of the results finds the heat flux on the wall to be very nonuniform with greatest intensity occurring in spots on the top and bottom of the chamber. Net thermal energy loss occurs on a time-scale of 100 {micro}s, and the instantaneous loss rate exceeds 1 GW.« less

  16. First-order finite-Larmor-radius fluid modeling of tearing and relaxation in a plasma pincha)

    NASA Astrophysics Data System (ADS)

    King, J. R.; Sovinec, C. R.; Mirnov, V. V.

    2012-05-01

    Drift and Hall effects on magnetic tearing, island evolution, and relaxation in pinch configurations are investigated using a non-reduced first-order finite-Larmor-radius (FLR) fluid model with the nonideal magnetohydrodynamics (MHD) with rotation, open discussion (NIMROD) code [C.R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)]. An unexpected result with a uniform pressure profile is a drift effect that reduces the growth rate when the ion sound gyroradius (ρs) is smaller than the tearing-layer width. This drift is present only with warm-ion FLR modeling, and analytics show that it arises from ∇B and poloidal curvature represented in the Braginskii gyroviscous stress. Nonlinear single-helicity computations with experimentally relevant ρs values show that the warm-ion gyroviscous effects reduce saturated-island widths. Computations with multiple nonlinearly interacting tearing fluctuations find that m = 1 core-resonant-fluctuation amplitudes are reduced by a factor of two relative to single-fluid modeling by the warm-ion effects. These reduced core-resonant-fluctuation amplitudes compare favorably to edge coil measurements in the Madison Symmetric Torus (MST) reversed-field pinch [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. The computations demonstrate that fluctuations induce both MHD- and Hall-dynamo emfs during relaxation events. The presence of a Hall-dynamo emf implies a fluctuation-induced Maxwell stress, and the simulation results show net transport of parallel momentum. The computed magnitude of force densities from the Maxwell and competing Reynolds stresses, and changes in the parallel flow profile, are qualitatively and semi-quantitatively similar to measurements during relaxation in MST.

  17. First-order finite-Larmor-radius fluid modeling of tearing and relaxation in a plasma pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J. R.; Tech-X Corporation, 5621 Arapahoe Ave., Suite A Boulder, Colorado 80303; Sovinec, C. R.

    Drift and Hall effects on magnetic tearing, island evolution, and relaxation in pinch configurations are investigated using a non-reduced first-order finite-Larmor-radius (FLR) fluid model with the nonideal magnetohydrodynamics (MHD) with rotation, open discussion (NIMROD) code [C.R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)]. An unexpected result with a uniform pressure profile is a drift effect that reduces the growth rate when the ion sound gyroradius ({rho}{sub s}) is smaller than the tearing-layer width. This drift is present only with warm-ion FLR modeling, and analytics show that it arises from {nabla}B and poloidal curvature represented in themore » Braginskii gyroviscous stress. Nonlinear single-helicity computations with experimentally relevant {rho}{sub s} values show that the warm-ion gyroviscous effects reduce saturated-island widths. Computations with multiple nonlinearly interacting tearing fluctuations find that m = 1 core-resonant-fluctuation amplitudes are reduced by a factor of two relative to single-fluid modeling by the warm-ion effects. These reduced core-resonant-fluctuation amplitudes compare favorably to edge coil measurements in the Madison Symmetric Torus (MST) reversed-field pinch [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. The computations demonstrate that fluctuations induce both MHD- and Hall-dynamo emfs during relaxation events. The presence of a Hall-dynamo emf implies a fluctuation-induced Maxwell stress, and the simulation results show net transport of parallel momentum. The computed magnitude of force densities from the Maxwell and competing Reynolds stresses, and changes in the parallel flow profile, are qualitatively and semi-quantitatively similar to measurements during relaxation in MST.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, H.R.

    This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.

  19. Coherent current-carrying filaments during nonlinear reconnecting ELMs and VDEs

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Fatima

    2017-10-01

    We have examined plasmoid-mediated reconnection in a spherical tokamak using global nonlinear three-dimensional resistive MHD simulations with NIMROD. We have shown that physical current sheets/layers develop near the edge as a peeling component of ELMs or during vertical displacement events (associated with the scrape-off layer currents - halo currents), can become unstable to nonaxisymmetric 3-D current-sheet instabilities (peeling- or tearing-like) and nonlinearly form edge coherent current-carrying filaments. Time-evolving edge current sheets with reconnecting nature in NSTX and NSTX-U configurations are identified. In the case of peeling-like edge localized modes, the longstanding problem of quasiperiodic ELMs cycles is explained through the relaxation of edge current via direct numerical calculations of reconnecting emf terms. For the VDEs during disruption, we show that as the plasma is vertically displaced, edge halo current sheet becomes MHD unstable and forms coherent edge current filament structures, which would eventually bleed into the walls. Our model explains some essential asymmetric physics relevant to the experimental observations. Supported by DOE Grants DE-SC0010565, DE-AC02-09CH11466.

  20. Comparison of resistive MHD simulations and experimental CHI discharges in NSTX

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.; Sovinec, C. R.; Raman, R.; Fatima, F.

    2013-10-01

    Resistive MHD simulations using NIMROD simulate CHI discharges for NSTX startup plasmas. Quantitative comparison with experiment ensures that the simulation physics includes a minimal physics set needed to extend the simulations to new experiments, e.g. NSTX-U. Important are time-varying vacuum magnetic field, ohmic heating, thermal transport, impurity radiation, and spatially-varying plasma parameters including density. Equilibria are compared with experimental injector currents, voltages and parameters including toroidal current, photographs of emitted light and measurements of midplane temperature profiles, radiation and surface heating. Initial results demonstrate that adjusting impurity radiation and cross-field transport yields temperatures and injected-current channel widths similar to experiment. These determine the plasma resistance, feeding back to the impedance on the injector power supply. Work performed under the auspices of the U.S. Department of Energy under contracts DE-AC52-07NA27344 at LLNL and DE-AC02-09CH11466 at PPPL, and grants DE-FC02-05ER54813 at PSI Center (U. Wisc.) and DOE-FG02-12ER55115 (at Princeton U.).

  1. Coupling MHD and PIC models in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Daldorff, L.; Toth, G.; Sokolov, I.; Gombosi, T. I.; Lapenta, G.; Brackbill, J. U.; Markidis, S.; Amaya, J.

    2013-12-01

    Even for extended fluid plasma models, like Hall, anisotropic ion pressure and multi fluid MHD, there are still many plasma phenomena that are not well captured. For this reason, we have coupled the Implicit Particle-In-Cell (iPIC3D) code with the BATSRUS global MHD code. The PIC solver is applied in a part of the computational domain, for example, in the vicinity of reconnection sites, and overwrites the MHD solution. On the other hand, the fluid solver provides the boundary conditions for the PIC code. To demonstrate the use of the coupled codes for magnetospheric applications, we perform a 2D magnetosphere simulation, where BATSRUS solves for Hall MHD in the whole domain except for the tail reconnection region, which is handled by iPIC3D.

  2. Global Magnetohydrodynamic Simulation Using High Performance FORTRAN on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    High Performance Fortran (HPF) is one of modern and common techniques to achieve high performance parallel computation. We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5 VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  3. The Physics of Local Helicity Injection Non-Solenoidal Tokamak Startup

    NASA Astrophysics Data System (ADS)

    Redd, A. J.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Jardin, S.

    2013-10-01

    Non-solenoidal startup via Local Helicity Injection (LHI) uses compact current injectors to produce toroidal plasma current Ip up to 170 kA in the PEGASUS Toroidal Experiment, driven by 4-8 kA injector current on timescales of 5-20 milliseconds. Increasing the Ip buildup duration enables experimental demonstration of plasma position control on timescales relevant for high-current startup. LHI-driven discharges exhibit bursty MHD activity, apparently line-tied kinking of LHI-driven field lines, with the bursts correlating with rapid equilibrium changes, sharp Ip rises, and sharp drops in the injector impedance. Preliminary NIMROD results suggest that helical LHI-driven current channels remain coherent, with Ip increases due to reconnection between adjacent helical turns forming axisymmetric plasmoids, and corresponding sharp drops in the bias circuit impedance. The DC injector impedance is consistent with a space charge limit at low bias current and a magnetic limit at high bias current. Internal measurements show the current density profile starts strongly hollow and rapidly fills in during Ip buildup. Simulations of LHI discharges using the Tokamak Simulation Code (TSC) will provide insight into the detailed current drive mechanism and guide experiments on PEFASUS and NSTX-U. Work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  4. Effects of Equilibrium Toroidal Flow on Locked Mode and Plasma Response in a Tokamak

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Huang, Wenlong; Yan, Xingting

    2016-10-01

    It is widely believed that plasma flow plays significant roles in regulating the processes of mode locking and plasma response in a tokamak in presence of external resonant magnetic perturbations (RMPs). Recently a common analytic relation for both locked mode and plasma response has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance. The analytic relation predicts the size of the magnetic island of a locked mode or a static nonlinear plasma response for a given RMP amplitude, and rigorously proves a screening effect of the equilibrium toroidal flow. To test the theory, we solve for the locked mode and the nonlinear plasma response in presence of RMP for a circular-shaped limiter tokamak equilibrium with constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. The comparison between the simulation results and the theory prediction, in terms of the quantitative screening effects of equilibrium toroidal flow, will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  5. High Field Side MHD Activity During Local Helicity Injection

    NASA Astrophysics Data System (ADS)

    Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.

    2017-10-01

    MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.

  6. Parametric study of potential early commercial power plants Task 3-A MHD cost analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.

  7. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    NASA Astrophysics Data System (ADS)

    González, J. J.; Guzmán, F.

    2015-12-01

    In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  8. Sharp Interface Algorithm for Large Density Ratio Incompressible Multiphase Magnetohydrodynamic Flows

    DTIC Science & Technology

    2013-01-01

    experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets for the proposed muon collider...validated through the comparison with experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets...FronTier-MHD code have been performed using experimental and theoretical studies of liquid mercury jets in magnetic fields. Experimental studies of a

  9. Helical flow in RFX-mod tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Piron, L.; Zaniol, B.; Bonfiglio, D.; Carraro, L.; Kirk, A.; Marrelli, L.; Martin, R.; Piron, C.; Piovesan, P.; Zuin, M.

    2017-05-01

    This work presents the first evidence of helical flow in RFX-mod q(a)  <  2 tokamak plasmas. The flow pattern is characterized by the presence of convective cells with m  =  1 and n  =  1 periodicity in the poloidal and toroidal directions, respectively. A similar helical flow deformation has been observed in the same device when operated as a reversed field pinch (RFP). In RFP plasmas, the flow dynamic is tailored by the innermost resonant m  =  1, n  =  7 tearing mode, which sustains the magnetic field configuration through the dynamo mechanism (Bonomo et al 2011 Nucl. Fusion 51 123007). By contrast, in the tokamak experiments presented here, it is strongly correlated with the m  =  1, n  =  1 MHD activity. A helical deformation of the flow pattern, associated with the deformation of the magnetic flux surfaces, is predicted by several codes, such as Specyl (Bonfiglio et al 2005 Phys. Rev. Lett. 94 145001), PIXIE3D (Chacón et al 2008 Phys. Plasmas 15 056103), NIMROD (King et al 2012 Phys. Plasmas 19 055905) and M3D-C1 (Jardin et al 2015 Phys. Rev. Lett. 115 215001). Among them, the 3D fully non-linear PIXIE3D has been used to calculate synthetic flow measurements, using a 2D flow modelling code. Inputs to the code are the PIXIE3D flow maps, the ion emission profiles as calculated by a 1D collisional radiative impurity transport code (Carraro et al 2000 Plasma Phys. Control. Fusion 42 731) and a synthetic diagnostic with the same geometry installed in RFX-mod. Good agreement between the synthetic and the experimental flow behaviour has been obtained, confirming that the flow oscillations observed with the associated convective cells are a signature of helical flow.

  10. Nonlinear External Kink Computing with NIMROD

    NASA Astrophysics Data System (ADS)

    Bunkers, K. J.; Sovinec, C. R.

    2016-10-01

    Vertical displacement events (VDEs) during disruptions often include non-axisymmetric activity, including external kink modes, which are driven unstable as contact with the wall eats into the q-profile. The NIMROD code is being applied to study external-kink-unstable tokamak profiles in toroidal and cylindrical geometries. Simulations with external kinks show the plasma swallowing a vacuum bubble, similar to. NIMROD reproduces external kinks in both geometries, using an outer vacuum region (modeled as a plasma with a large resistivity), but as the boundary between the vacuum and plasma regions becomes more 3D, the resistivity becomes a 3D function, and it becomes more difficult for algebraic solves to converge. To help allow non-axisymmetric, nonlinear VDE calculations to proceed without restrictively small time-steps, several computational algorithms have been tested. Flexible GMRES, using a Fourier and real space representation for the toroidal angle has shown improvements. Off-diagonal preconditioning and a multigrid approach were tested and showed little improvement. A least squares finite element method (LSQFEM) has also helped improve the algebraic solve. This effort is supported by the U.S. Dept. of Energy, Award Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.

  11. Plasma Science and Innovation Center at Washington, Wisconsin, and Utah State: Final Scientific Report for the University of Wisconsin-Madison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sovinec, Carl R.

    The University of Wisconsin-Madison component of the Plasma Science and Innovation Center (PSI Center) contributed to modeling capabilities and algorithmic efficiency of the Non-Ideal Magnetohydrodynamics with Rotation (NIMROD) Code, which is widely used to model macroscopic dynamics of magnetically confined plasma. It also contributed to the understanding of direct-current (DC) injection of electrical current for initiating and sustaining plasma in three spherical torus experiments: the Helicity Injected Torus-II (HIT-II), the Pegasus Toroidal Experiment, and the National Spherical Torus Experiment (NSTX). The effort was funded through the PSI Center's cooperative agreement with the University of Washington and Utah State University overmore » the period of March 1, 2005 - August 31, 2016. In addition to the computational and physics accomplishments, the Wisconsin effort contributed to the professional education of four graduate students and two postdoctoral research associates. The modeling for HIT-II and Pegasus was directly supported by the cooperative agreement, and contributions to the NSTX modeling were in support of work by Dr. Bickford Hooper, who was funded through a separate grant. Our primary contribution to model development is the implementation of detailed closure relations for collisional plasma. Postdoctoral associate Adam Bayliss implemented the temperature-dependent effects of Braginskii's parallel collisional ion viscosity. As a graduate student, John O'Bryan added runtime options for Braginskii's models and Ji's K2 models of thermal conduction with magnetization effects and thermal equilibration. As a postdoctoral associate, O'Bryan added the magnetization effects for ion viscosity. Another area of model development completed through the PSI-Center is the implementation of Chodura's phenomenological resistivity model. Finally, we investigated and tested linear electron parallel viscosity, leveraged by support from the Center for Extended Magnetohydrodynamic Modeling (CEMM). Work on algorithmic efficiency improved NIMROD's element-based computations. We reordered arrays and eliminated a level of looping for computations over the data points that are used for numerical integration over elements. Moreover, the reordering allows fewer and larger communication calls when using distributed-memory parallel computation, thereby avoiding a data starvation problem that limited parallel scaling over NIMROD's Fourier components for the periodic coordinate. Together with improved parallel preconditioning, work that was supported by CEMM, these developments allowed NIMROD's first scaling to over 10,000 processor cores. Another algorithm improvement supported by the PSI Center is nonlinear numerical diffusivities for implicit advection. We also developed the Stitch code to enhance the flexibility of NIMROD's preprocessing. Our simulations of HIT-II considered conditions with and without fluctuation-induced amplification of poloidal flux, but our validation efforts focused on conditions without amplification. A significant finding is that NIMROD reproduces the dependence of net plasma current as the imposed poloidal flux is varied. The modeling of Pegasus startup from localized DC injectors predicted that development of a tokamak-like configuration occurs through a sequence of current-filament merger events. Comparison of experimentally measured and numerically computed cross-power spectra enhance confidence in NIMROD's simulation of magnetic fluctuations; however, energy confinement remains an open area for further research. Our contributions to the NSTX study include adaptation of the helicity-injection boundary conditions from the HIT-II simulations and support for linear analysis and computation of 3D current-driven instabilities.« less

  12. Calculations of key magnetospheric parameters using the isotropic and anisotropic SPSU global MHD code

    NASA Astrophysics Data System (ADS)

    Samsonov, Andrey; Gordeev, Evgeny; Sergeev, Victor

    2017-04-01

    As it was recently suggested (e.g., Gordeev et al., 2015), the global magnetospheric configuration can be characterized by a set of key parameters, such as the magnetopause distance at the subsolar point and on the terminator plane, the magnetic field in the magnetotail lobe and the plasma sheet thermal pressure, the cross polar cap electric potential drop and the total field-aligned current. For given solar wind conditions, the values of these parameters can be obtained from both empirical models and global MHD simulations. We validate the recently developed global MHD code SPSU-16 using the key magnetospheric parameters mentioned above. The code SPSU-16 can calculate both the isotropic and anisotropic MHD equations. In the anisotropic version, we use the modified double-adiabatic equations in which the T⊥/T∥ (the ratio of perpendicular to parallel thermal pressures) has been bounded from above by the mirror and ion-cyclotron thresholds and from below by the firehose threshold. The results of validation for the SPSU-16 code well agree with the previously published results of other global codes. Some key parameters coincide in the isotropic and anisotropic MHD simulations, but some are different.

  13. Evolution of genes and repeats in the Nimrod superfamily.

    PubMed

    Somogyi, Kálmán; Sipos, Botond; Pénzes, Zsolt; Kurucz, Eva; Zsámboki, János; Hultmark, Dan; Andó, István

    2008-11-01

    The recently identified Nimrod superfamily is characterized by the presence of a special type of EGF repeat, the NIM repeat, located right after a typical CCXGY/W amino acid motif. On the basis of structural features, nimrod genes can be divided into three types. The proteins encoded by Draper-type genes have an EMI domain at the N-terminal part and only one copy of the NIM motif, followed by a variable number of EGF-like repeats. The products of Nimrod B-type and Nimrod C-type genes (including the eater gene) have different kinds of N-terminal domains, and lack EGF-like repeats but contain a variable number of NIM repeats. Draper and Nimrod C-type (but not Nimrod B-type) proteins carry a transmembrane domain. Several members of the superfamily were claimed to function as receptors in phagocytosis and/or binding of bacteria, which indicates an important role in the cellular immunity and the elimination of apoptotic cells. In this paper, the evolution of the Nimrod superfamily is studied with various methods on the level of genes and repeats. A hypothesis is presented in which the NIM repeat, along with the EMI domain, emerged by structural reorganizations at the end of an EGF-like repeat chain, suggesting a mechanism for the formation of novel types of repeats. The analyses revealed diverse evolutionary patterns in the sequences containing multiple NIM repeats. Although in the Nimrod B and Nimrod C proteins show characteristics of independent evolution, many internal NIM repeats in Eater sequences seem to have undergone concerted evolution. An analysis of the nimrod genes has been performed using phylogenetic and other methods and an evolutionary scenario of the origin and diversification of the Nimrod superfamily is proposed. Our study presents an intriguing example how the evolution of multigene families may contribute to the complexity of the innate immune response.

  14. Modified NASA-Lewis chemical equilibrium code for MHD applications

    NASA Technical Reports Server (NTRS)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  15. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  16. Model Development for VDE Computations in NIMROD

    NASA Astrophysics Data System (ADS)

    Bunkers, K. J.; Sovinec, C. R.

    2017-10-01

    Vertical displacement events (VDEs) and the disruptions associated with them have potential for causing considerable physical damage to ITER and other tokamak experiments. We report on simulations of generic axisymmetric VDEs and a vertically unstable case from Alcator C-MOD using the NIMROD code. Previous calculations have been done with closures for heat flux and viscous stress. Initial calculations show that halo current width is dependent on temperature boundary conditions, and so transport together with plasma-surface interaction may play a role in determining halo currents in experiments. The behavior of VDEs with Braginskii thermal conductivity and viscosity closures and Spitzer-like resistivity are investigated for both the generic axisymmetric VDE case and the C-MOD case. This effort is supported by the U.S. Dept. of Energy, Award Numbers DE-FG02-06ER54850 and DE-FC02-08ER54975.

  17. MHD code using multi graphical processing units: SMAUG+

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Griffiths, M. K.; Erdélyi, R.

    2018-01-01

    This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 × 1000, 2044 × 2044, 4000 × 4000 and 8000 × 8000 . We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems.

  18. Nonlinear 3D visco-resistive MHD modeling of fusion plasmas: a comparison between numerical codes

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Chacon, L.; Cappello, S.

    2008-11-01

    Fluid plasma models (and, in particular, the MHD model) are extensively used in the theoretical description of laboratory and astrophysical plasmas. We present here a successful benchmark between two nonlinear, three-dimensional, compressible visco-resistive MHD codes. One is the fully implicit, finite volume code PIXIE3D [1,2], which is characterized by many attractive features, notably the generalized curvilinear formulation (which makes the code applicable to different geometries) and the possibility to include in the computation the energy transport equation and the extended MHD version of Ohm's law. In addition, the parallel version of the code features excellent scalability properties. Results from this code, obtained in cylindrical geometry, are compared with those produced by the semi-implicit cylindrical code SpeCyl, which uses finite differences radially, and spectral formulation in the other coordinates [3]. Both single and multi-mode simulations are benchmarked, regarding both reversed field pinch (RFP) and ohmic tokamak magnetic configurations. [1] L. Chacon, Computer Physics Communications 163, 143 (2004). [2] L. Chacon, Phys. Plasmas 15, 056103 (2008). [3] S. Cappello, Plasma Phys. Control. Fusion 46, B313 (2004) & references therein.

  19. Toroidal Rotation and 3D Nonlinear Dynamics in the Peeling-Ballooning Model of ELMs

    NASA Astrophysics Data System (ADS)

    Snyder, P. B.

    2004-11-01

    Maximizing the height of the edge transport barrier (or ``pedestal'') while maintaining acceptably small edge localized modes (ELMs) is a critical issue for tokamak performance. The peeling-ballooning model proposes that intermediate wavelength MHD instabilities are responsible for ELMs and impose constraints on the pedestal. Recent studies of linear peeling-ballooning stability have found encouraging agreement with observations [e.g. 1]. To allow more detailed prediction of mode characteristics, including eventually predictions of the ELM energy loss and its deposition, we consider effects of sheared toroidal rotation, as well as 3D nonlinear dynamics. An eigenmode formulation for toroidal rotation shear is developed and incorporated into the framework of the ELITE stability code [2], resolving the low rotation discontinuity in previous high-n results. Rotation shear is found to impact the structure of peeling-ballooning modes, causing radial narrowing and mode shearing. The calculated mode frequency is found to agree with observed rotation in the edge region in the early stages of the ELM crash. Nonlinear studies with the 3D BOUT and NIMROD codes reveal detailed characteristics of the early evolution of these edge instabilities, including the impact of non-ideal effects. The expected linear growth phase is followed by a fast crash event in which poloidally narrow, filamentary structures propagate radially outward from the pedestal region, closely resembling observed ELM events. Comparisons with ELM observations will be discussed. \\vspace0.25em [1] P.B. Snyder et al., Nucl. Fusion 44, 320 (2004); P.B. Snyder et al., Phys. Plasmas 9, 2037 (2002). [2] H.R. Wilson et al., Phys. Plasmas 9, 1277 (2002).

  20. Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications

    DOE PAGES

    Khodak, Andrei

    2017-08-21

    Here, the analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability intomore » the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.« less

  1. Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodak, Andrei

    Here, the analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability intomore » the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.« less

  2. Poloidal radiation asymmetries during disruption mitigation by massive gas injection on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Eidietis, N. W.

    2016-10-01

    Measurements of poloidal asymmetry in the radiated power during thermal quench (TQ) mitigation by massive gas injection (MGI) on DIII-D show poloidal peaking in the radiated heat flux at the wall generally consistent with 3D resistive MHD modeling, that indicates a large n=1 tearing mode causes these asymmetries. Radiation asymmetries are a concern to ITER because they can cause localized melting of the first wall even if globally the mitigation successfully radiates 100% of the plasma thermal energy. Toroidal radiation asymmetries have been well-studied, but until now the equally important poloidal asymmetries were not well constrained. Radiation emissivity profiles are reconstructed by tomographic inversion of AXUV photodiode arrays, from which the peaking measurements are derived. The poloidal peaking measurements are compared to NIMROD 3D resistive MHD simulations. Qualitatively, the measured and modeled peaking evolve similarly. In both cases, peaking during the TQ changes little with toroidal phase, consistent with predictions of n=1 MHD during the TQ producing the asymmetry. Quantitatively, the measured TQ peaking amplitudes are comparable to but consistently higher than the modeled values. This is a result of the measured radiation exhibiting high emissivity lobes at larger minor radius (and outside the separatrix) than the modeled cases, which may indicate incomplete treatment of the plasma-neutral interaction at the plasma edge in the model. This work, combined with previous measurement and modeling and toroidal radiation asymmetries, provides a basis for constraining localized mitigation radiation heat flux in ITER. Work supported by US DOE under DE-FC02-04ER54698.

  3. Initial Computations of Vertical Displacement Events with NIMROD

    NASA Astrophysics Data System (ADS)

    Bunkers, Kyle; Sovinec, C. R.

    2014-10-01

    Disruptions associated with vertical displacement events (VDEs) have potential for causing considerable physical damage to ITER and other tokamak experiments. We report on initial computations of generic axisymmetric VDEs using the NIMROD code [Sovinec et al., JCP 195, 355 (2004)]. An implicit thin-wall computation has been implemented to couple separate internal and external regions without numerical stability limitations. A simple rectangular cross-section domain generated with the NIMEQ code [Howell and Sovinec, CPC (2014)] modified to use a symmetry condition at the midplane is used to test linear and nonlinear axisymmetric VDE computation. As current in simulated external coils for large- R / a cases is varied, there is a clear n = 0 stability threshold which lies below the decay-index criterion for the current-loop model of a tokamak to model VDEs [Mukhovatov and Shafranov, Nucl. Fusion 11, 605 (1971)]; a scan of wall distance indicates the offset is due to the influence of the conducting wall. Results with a vacuum region surrounding a resistive wall will also be presented. Initial nonlinear computations show large vertical displacement of an intact simulated tokamak. This effort is supported by U.S. Department of Energy Grant DE-FG02-06ER54850.

  4. "Magnetic Reconnection Code: Applications to Sawtooth Oscillations, Error-Field Induced Islands, and the Dynamo Effect" - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Richard

    2007-09-24

    Dr. Fitzpatrick has written an MHD code in order to investigate the interaction of tearing modes with flow and external magnetic perturbations, which has been successfully benchmarked against both linear and nonlinear theory and used to investigate error-field penetration in flowing plasmas. The same code was used to investigate the so-called Taylor problem. He employed the University of Chicago's FLASH code to further investigate the Taylor problem, discovering a new aspect of the problem. Dr. Fitzpatrick has written a 2-D Hall MHD code and used it to investigate the collisionless Taylor problem. Dr. Waelbroeck has performed an investigation of themore » scaling of the error-field penetration threshold in collisionless plasmas. Paul Watson and Dr. Fitzpatrick have written a fully-implicit extended-MHD code using the PETSC framework. Five publications have resulted from this grant work.« less

  5. 3D Resistive MHD Simulations of Formation, Compression, and Acceleration of Compact Tori

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Meyer, Thomas; Stuber, James; Romero-Talamas, Carlos; Brown, Michael; Kaur, Manjit; Schaffner, David

    2017-10-01

    We present results from extended resistive 3D MHD simulations (NIMROD) pertaining to a new formation method for toroidal plasmas using a reconnection region that forms in a radial implosion, and results from the acceleration of CTs along a drift tube that are accelerated by a coil and are allowed to go tilt unstable and form a helical minimum energy state. The new formation method results from a reconnection region that is generated between two magnetic compression coils that are ramped to 320kV in 2 μs. When the compressing field is aligned anti-parallel to a pre-existing CT, a current sheet and reconnection region forms that accelerates plasma radially inwards up to 500km/s which stagnates and directed energy converts to thermal, raising temperatures to 500eV. When field is aligned parallel to the pre-existing CT, the configuration can be accelerated along a drift tube. For certain ratios of magnetic field to density, the CT goes tilt-unstable forming a twisted flux rope, which can also be accelerated and stagnated on an end wall, where temperature and field increases as the plasma compresses. We compare simulation results with adiabatic scaling relations. Work supported by ARPA-E ALPHA program and DARPA.

  6. The CRONOS Code for Astrophysical Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kissmann, R.; Kleimann, J.; Krebl, B.; Wiengarten, T.

    2018-06-01

    We describe the magnetohydrodynamics (MHD) code CRONOS, which has been used in astrophysics and space-physics studies in recent years. CRONOS has been designed to be easily adaptable to the problem in hand, where the user can expand or exchange core modules or add new functionality to the code. This modularity comes about through its implementation using a C++ class structure. The core components of the code include solvers for both hydrodynamical (HD) and MHD problems. These problems are solved on different rectangular grids, which currently support Cartesian, spherical, and cylindrical coordinates. CRONOS uses a finite-volume description with different approximate Riemann solvers that can be chosen at runtime. Here, we describe the implementation of the code with a view toward its ongoing development. We illustrate the code’s potential through several (M)HD test problems and some astrophysical applications.

  7. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2014-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  8. Involvement of the Anopheles gambiae Nimrod gene family in mosquito immune responses.

    PubMed

    Estévez-Lao, Tania Y; Hillyer, Julián F

    2014-01-01

    Insects fight infection using a variety of signaling pathways and immune effector proteins. In Drosophila melanogaster, three members of the Nimrod gene family (draper, nimC1 and eater) bind bacteria, and this binding leads to phagocytosis by hemocytes. The Nimrod gene family has since been identified in other insects, but their function in non-drosophilids remains unknown. The purpose of this study was to identify the members of the Nimrod gene family in the malaria mosquito, Anopheles gambiae, and to assess their role in immunity. We identified and sequenced three members of this gene family, herein named draper, nimrod and eater, which are the orthologs of D. melanogaster draper, nimB2 and eater, respectively. The three genes are preferentially expressed in hemocytes and their peak developmental expression is in pupae and young adults. Infection induces the transcriptional upregulation of all three genes, but the magnitude of this upregulation becomes more attenuated as mosquitoes become older. RNAi-based knockdown of eater, but not draper or nimrod, decreased a mosquito's ability to kill Escherichia coli in the hemocoel. Knockdown of draper, eater, or any combination of Nimrod family genes rendered mosquitoes more likely to die from Staphylococcus epidermidis. Finally, knockdown of Nimrod family genes did not impact mRNA levels of the antimicrobial peptides defensin (def1), cecropin (cecA) or gambicin (gam1), but eater knockdown led to a decrease in mRNA levels of nitric oxide synthase. Together, these data show that members of the A. gambiae Nimrod gene family are positive regulators of the mosquito antibacterial response. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    NASA Astrophysics Data System (ADS)

    González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.

    2015-12-01

    We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  10. Solving free-plasma-boundary problems with the SIESTA MHD code

    NASA Astrophysics Data System (ADS)

    Sanchez, R.; Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Tribaldos, V.; Geiger, J.; Hirshman, S. P.; Cianciosa, M.

    2017-10-01

    SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for 3D magnetic configurations. It is an iterative code that uses the solution obtained by the VMEC code to provide a background coordinate system and an initial guess of the solution. The final solution that SIESTA finds can exhibit magnetic islands and stochastic regions. In its original implementation, SIESTA addressed only fixed-boundary problems. This fixed boundary condition somewhat restricts its possible applications. In this contribution we describe a recent extension of SIESTA that enables it to address free-plasma-boundary situations, opening up the possibility of investigating problems with SIESTA in which the plasma boundary is perturbed either externally or internally. As an illustration, the extended version of SIESTA is applied to a configuration of the W7-X stellarator.

  11. The STD/MHD codes - Comparison of analyses with experiments at AEDC/HPDE, Reynolds Metal Co., and Hercules, Inc. [for MHD generator flows

    NASA Technical Reports Server (NTRS)

    Vetter, A. A.; Maxwell, C. D.; Swean, T. F., Jr.; Demetriades, S. T.; Oliver, D. A.; Bangerter, C. D.

    1981-01-01

    Data from sufficiently well-instrumented, short-duration experiments at AEDC/HPDE, Reynolds Metal Co., and Hercules, Inc., are compared to analyses with multidimensional and time-dependent simulations with the STD/MHD computer codes. These analyses reveal detailed features of major transient events, severe loss mechanisms, and anomalous MHD behavior. In particular, these analyses predicted higher-than-design voltage drops, Hall voltage overshoots, and asymmetric voltage drops before the experimental data were available. The predictions obtained with these analyses are in excellent agreement with the experimental data and the failure predictions are consistent with the experiments. The design of large, high-interaction or advanced MHD experiments will require application of sophisticated, detailed and comprehensive computational procedures in order to account for the critical mechanisms which led to the observed behavior in these experiments.

  12. The Magnetic Reconnection Code: an AMR-based fully implicit simulation suite

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Bhattacharjee, A.; Ng, C.-S.

    2006-12-01

    Extended MHD models, which incorporate two-fluid effects, are promising candidates to enhance understanding of collisionless reconnection phenomena in laboratory, space and astrophysical plasma physics. In this paper, we introduce two simulation codes in the Magnetic Reconnection Code suite which integrate reduced and full extended MHD models. Numerical integration of these models comes with two challenges: Small-scale spatial structures, e.g. thin current sheets, develop and must be well resolved by the code. Adaptive mesh refinement (AMR) is employed to provide high resolution where needed while maintaining good performance. Secondly, the two-fluid effects in extended MHD give rise to dispersive waves, which lead to a very stringent CFL condition for explicit codes, while reconnection happens on a much slower time scale. We use a fully implicit Crank--Nicholson time stepping algorithm. Since no efficient preconditioners are available for our system of equations, we instead use a direct solver to handle the inner linear solves. This requires us to actually compute the Jacobian matrix, which is handled by a code generator that calculates the derivative symbolically and then outputs code to calculate it.

  13. Global magnetosphere simulations using constrained-transport Hall-MHD with CWENO reconstruction

    NASA Astrophysics Data System (ADS)

    Lin, L.; Germaschewski, K.; Maynard, K. M.; Abbott, S.; Bhattacharjee, A.; Raeder, J.

    2013-12-01

    We present a new CWENO (Centrally-Weighted Essentially Non-Oscillatory) reconstruction based MHD solver for the OpenGGCM global magnetosphere code. The solver was built using libMRC, a library for creating efficient parallel PDE solvers on structured grids. The use of libMRC gives us access to its core functionality of providing an automated code generation framework which takes a user provided PDE right hand side in symbolic form to generate an efficient, computer architecture specific, parallel code. libMRC also supports block-structured adaptive mesh refinement and implicit-time stepping through integration with the PETSc library. We validate the new CWENO Hall-MHD solver against existing solvers both in standard test problems as well as in global magnetosphere simulations.

  14. The Nimrod computational workbench: a case study in desktop metacomputing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramson, D.; Sosic, R.; Foster, I.

    The coordinated use of geographically distributed computers, or metacomputing, can in principle provide more accessible and cost- effective supercomputing than conventional high-performance systems. However, we lack evidence that metacomputing systems can be made easily usable, or that there exist large numbers of applications able to exploit metacomputing resources. In this paper, we present work that addresses both these concerns. The basis for this work is a system called Nimrod that provides a desktop problem-solving environment for parametric experiments. We describe how Nimrod has been extended to support the scheduling of computational resources located in a wide-area environment, and report onmore » an experiment in which Nimrod was used to schedule a large parametric study across the Australian Internet. The experiment provided both new scientific results and insights into Nimrod capabilities. We relate the results of this experiment to lessons learned from the I-WAY distributed computing experiment, and draw conclusions as to how Nimrod and I-WAY- like computing environments should be developed to support desktop metacomputing.« less

  15. Helioseismic Constraints on New Solar Models from the MoSEC Code

    NASA Technical Reports Server (NTRS)

    Elliott, J. R.

    1998-01-01

    Evolutionary solar models are computed using a new stellar evolution code, MOSEC (Modular Stellar Evolution Code). This code has been designed with carefully controlled truncation errors in order to achieve a precision which reflects the increasingly accurate determination of solar interior structure by helioseismology. A series of models is constructed to investigate the effects of the choice of equation of state (OPAL or MHD-E, the latter being a version of the MHD equation of state recalculated by the author), the inclusion of helium and heavy-element settling and diffusion, and the inclusion of a simple model of mixing associated with the solar tachocline. The neutrino flux predictions are discussed, while the sound speed of the computed models is compared to that of the sun via the latest inversion of SOI-NMI p-mode frequency data. The comparison between models calculated with the OPAL and MHD-E equations of state is particularly interesting because the MHD-E equation of state includes relativistic effects for the electrons, whereas neither MHD nor OPAL do. This has a significant effect on the sound speed of the computed model, worsening the agreement with the solar sound speed. Using the OPAL equation of state and including the settling and diffusion of helium and heavy elements produces agreement in sound speed with the helioseismic results to within about +.-0.2%; the inclusion of mixing slightly improves the agreement.

  16. Featured Image: Tests of an MHD Code

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Creating the codes that are used to numerically model astrophysical systems takes a lot of work and a lot of testing! A new, publicly available moving-mesh magnetohydrodynamics (MHD) code, DISCO, is designed to model 2D and 3D orbital fluid motion, such as that of astrophysical disks. In a recent article, DISCO creator Paul Duffell (University of California, Berkeley) presents the code and the outcomes from a series of standard tests of DISCOs stability, accuracy, and scalability.From left to right and top to bottom, the test outputs shown above are: a cylindrical Kelvin-Helmholtz flow (showing off DISCOs numerical grid in 2D), a passive scalar in a smooth vortex (can DISCO maintain contact discontinuities?), a global look at the cylindrical Kelvin-Helmholtz flow, a Jupiter-mass planet opening a gap in a viscous disk, an MHD flywheel (a test of DISCOs stability), an MHD explosion revealing shock structures, an MHD rotor (a more challenging version of the explosion), a Flock 3D MRI test (can DISCO study linear growth of the magnetorotational instability in disks?), and a nonlinear 3D MRI test.Check out the gif below for a closer look at each of these images, or follow the link to the original article to see even more!CitationPaul C. Duffell 2016 ApJS 226 2. doi:10.3847/0067-0049/226/1/2

  17. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  18. Multi-Fluid Simulations of a Coupled Ionosphere-Magnetosphere System

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.; Glocer, A.; Toth, G.; Ridley, A. J.; Sokolov, I. V.; de Zeeuw, D. L.

    2008-05-01

    In the last decade we have developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on an extended magnetohydrodynamics model with anisotropic pressures. Ionosheric outflow can be a significant contributor to the plasma population of the magnetosphere during active geomagnetic conditions. This talk will present preliminary results of our simulations when we couple a new field- aligned multi-fluid polar wind code to the Ionosphere Electrodynamics (IE), and Global Magnetosphere (GM) components of the SWMF. We use multi-species and multi-fluid MHD to track the resulting plasma composition in the magnetosphere.

  19. Magnetohydrodynamic modelling of exploding foil initiators

    NASA Astrophysics Data System (ADS)

    Neal, William

    2015-06-01

    Magnetohydrodynamic (MHD) codes are currently being developed, and used, to predict the behaviour of electrically-driven flyer-plates. These codes are of particular interest to the design of exploding foil initiator (EFI) detonators but there is a distinct lack of comparison with high-fidelity experimental data. This study aims to compare a MHD code with a collection of temporally and spatially resolved diagnostics including PDV, dual-axis imaging and streak imaging. The results show the code's excellent representation of the flyer-plate launch and highlight features within the experiment that the model fails to capture.

  20. Conversion of NIMROD simulation results for graphical analysis using VisIt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Talamas, C A

    Software routines developed to prepare NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] results for three-dimensional visualization from simulations of the Sustained Spheromak Physics Experiment (SSPX ) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)] are presented here. The visualization is done by first converting the NIMROD output to a format known as legacy VTK and then loading it to VisIt, a graphical analysis tool that includes three-dimensional rendering and various mathematical operations for large data sets. Sample images obtained from the processing of NIMROD data with VisIt are included.

  1. Effects of Density and Impurity on Edge Localized Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Zhu, Ping

    2017-10-01

    Plasma density and impurity concentration are believed to be two of the key elements governing the edge tokamak plasma conditions. Optimal levels of plasma density and impurity concentration in the edge region have been searched for in order to achieve the desired fusion gain and divertor heat/particle load mitigation. However, how plasma density or impurity would affect the edge pedestal stability may have not been well known. Our recent MHD theory modeling and simulations using the NIMROD code have found novel effects of density and impurity on the dynamics of edge-localized modes (ELMs) in tokamaks. First, previous MHD analyses often predict merely a weak stabilizing effect of toroidal flow on ELMs in experimentally relevant regimes. We find that the stabilizing effects on the high- n ELMs from toroidal flow can be significantly enhanced with the increased edge plasma density. Here n denotes the toroidal mode number. Second, the stabilizing effects of the enhanced edge resistivity due to lithium-conditioning on the low- n ELMs in the high confinement (H-mode) discharges in NSTX have been identified. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may not be sufficient for a complete suppression of the low- n ELMs. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the low- n ELMs. These new effects revealed in our theory analyses may help further understand recent ELM experiments and suggest new control schemes for ELM suppression and mitigation in future experiments. They may also pose additional constraints on the optimal levels of plasma density and impurity concentration in the edge region for H-mode tokamak operation. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.

  2. A numerical code for a three-dimensional magnetospheric MHD equilibrium model

    NASA Technical Reports Server (NTRS)

    Voigt, G.-H.

    1992-01-01

    Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.

  3. Aircraft Survivability: Unmanned Aircraft Systems, Fall 2005

    DTIC Science & Technology

    2005-01-01

    Navy’s P–3C Orion and the Royal Air Force’s MR2 Nimrod, were originally derived from the 1950s- era Lockheed Electra and De Havilland Comet ...missions for its MPA fleet of Nimrods. Derived from the civilian DH–106 Comet 4C airliner, the Royal Air Force (RAF) Nimrod entered ser- vice in 1969

  4. NIMROD simulations of the IPA FRC experiment

    NASA Astrophysics Data System (ADS)

    Milroy, Richard

    2015-11-01

    The IPA experiment created a high temperature plasma by merging and compressing supersonic θ-pinch formed FRCs. The NIMROD code has been used to simulate this process. These calculations include the θ-pinch formation and acceleration of two FRC's using the dynamic formation methodology, and their translation to a central compression chamber where they merge and are magnetically compressed. Transport coefficients have been tuned so simulation results agree well with experimental observation. The inclusion of the Hall term is essential for the FRCs merge quickly, as observed experimentally through the excluded flux profiles. The inclusion of a significant anisotropic viscosity is required for the excluded flux profiles to agree well with the experiment. We plan to extend this validation work using the new ARPA-E funded Venti experiment at Helion Energy in Redmond WA. This will be a very well diagnosed experiment where two FRCs merge (like the IPA experiment) and are then compressed to near-fusion conditions. Preliminary calculations with parameters relevant to this experiment have been made, and some numerical issues identified.

  5. NIMROD Modeling of HIT-SI and HIT-SI3

    NASA Astrophysics Data System (ADS)

    Morgan, Kyle; Jarboe, Tom; Hossack, Aaron

    2016-10-01

    The HIT-SI and HIT-SI3 devices are spheromaks formed and sustained via a set of Steady Inductive Helicity Injectors (SIHI) that are operated in AC. The experiment explores the formation and sustain of stable spheromaks with a variety of perturbation mode structures. The HIT-SI device consisted of two injectors with primarily n = 1 toroidal symmetry while the HIT-SI3 device has three injectors capable of a mixture of n = 1 and n = 2 perturbations or a primarily n = 3 perturbation, depending on the relative phase of the injectors. Using the NIMROD code to model these devices, we are able to validate with experimental results (previously only done on HIT-SI) and examine the interaction between the injectors and the spheromak. Simulations are performed with both finite and zero- β models to gain an understanding of the thermal properties of the device. Additionally, a set of extrapolation simulations has been performed illustrating the spontaneous formation of closed flux surfaces at high current amplification. Work supported by the US DOE.

  6. Computer Simulation of the VASIMR Engine

    NASA Technical Reports Server (NTRS)

    Garrison, David

    2005-01-01

    The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.

  7. A Comprehensive High Performance Predictive Tool for Fusion Liquid Metal Hydromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Peter; Chhabra, Rupanshi; Munipalli, Ramakanth

    In Phase I SBIR project, HyPerComp and Texcel initiated the development of two induction-based MHD codes as a predictive tool for fusion hydro-magnetics. The newly-developed codes overcome the deficiency of other MHD codes based on the quasi static approximation by defining a more general mathematical model that utilizes the induced magnetic field rather than the electric potential as the main electromagnetic variable. The UCLA code is a finite-difference staggered-mesh code that serves as a supplementary tool to the massively-parallel finite-volume code developed by HyPerComp. As there is no suitable experimental data under blanket-relevant conditions for code validation, code-to-code comparisons andmore » comparisons against analytical solutions were successfully performed for three selected test cases: (1) lid-driven MHD flow, (2) flow in a rectangular duct in a transverse magnetic field, and (3) unsteady finite magnetic Reynolds number flow in a rectangular enclosure. The performed tests suggest that the developed codes are accurate and robust. Further work will focus on enhancing the code capabilities towards higher flow parameters and faster computations. At the conclusion of the current Phase-II Project we have completed the preliminary validation efforts in performing unsteady mixed-convection MHD flows (against limited data that is currently available in literature), and demonstrated flow behavior in large 3D channels including important geometrical features. Code enhancements such as periodic boundary conditions, unmatched mesh structures are also ready. As proposed, we have built upon these strengths and explored a much increased range of Grashof numbers and Hartmann numbers under various flow conditions, ranging from flows in a rectangular duct to prototypic blanket modules and liquid metal PFC. Parametric studies, numerical and physical model improvements to expand the scope of simulations, code demonstration, and continued validation activities have also been completed.« less

  8. Resolving the Kinetic Reconnection Length Scale in Global Magnetospheric Simulations with MHD-EPIC

    NASA Astrophysics Data System (ADS)

    Toth, G.; Chen, Y.; Cassak, P.; Jordanova, V.; Peng, B.; Markidis, S.; Gombosi, T. I.

    2016-12-01

    We have recently developed a new modeling capability: the Magnetohydrodynamics with Embedded Particle-in-Cell (MHD-EPIC) algorithm with support from Los Alamos SHIELDS and NSF INSPIRE grants. We have implemented MHD-EPIC into the Space Weather Modeling Framework (SWMF) using the implicit Particle-in-Cell (iPIC3D) and the BATS-R-US extended magnetohydrodynamic codes. The MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. Both BATS-R-US and iPIC3D are massively parallel codes. The MHD-EPIC approach allows global magnetosphere simulations with embedded kinetic simulations. For small magnetospheres, like Ganymede or Mercury, we can easily resolve the ion scales around the reconnection sites. Modeling the Earth magnetosphere is very challenging even with our efficient MHD-EPIC model due to the large separation between the global and ion scales. On the other hand the large separation of scales may be exploited: the solution may not be sensitive to the ion inertial length as long as it is small relative to the global scales. The ion inertial length can be varied by changing the ion mass while keeping the MHD mass density, the velocity, and pressure the same for the initial and boundary conditions. Our two-dimensional MHD-EPIC simulations for the dayside reconnection region show in fact, that the overall solution is not sensitive to ion inertial length. The shape, size and frequency of flux transfer events are very similar for a wide range of ion masses. Our results mean that 3D MHD-EPIC simulations for the Earth and other large magnetospheres can be made computationally affordable by artificially increasing the ion mass: the required grid resolution and time step in the PIC model are proportional to the ion inertial length. Changing the ion mass by a factor of 4, for example, speeds up the PIC code by a factor of 256. In fact, this approach allowed us to perform an hour-long 3D MHD-EPIC simulations for the Earth magnetosphere.

  9. A New Paradigm for British Airpower

    DTIC Science & Technology

    2012-06-01

    airborne C2 and surveillance, SIGINT aircraft and complementary Remotely Piloted Air Systems. - Canceling the updated Nimrod Maritime Reconnaissance (MR...fighters and 6 Nimrod maritime patrol aircraft (http://en.wikipedia.org/wiki/Operation_Telic_order_of_battle ), post-SDSR the UK has 30 Tornado ground...the SDSR reflect these issues. Furthermore, operations in Libya involved aircraft capabilities, Sentinel and Nimrod R1, which will be removed and

  10. Through the Libyan Looking Glass

    DTIC Science & Technology

    2012-05-22

    Treasury, Spending Review 2010 (London: The Stationary Office, October 2010), 57-58. 10   removed wholesale capabilities such as the NIMROD maritime...With the cancellation of the NIMROD programme, the UK no longer maintains a Maritime Patrol Aircraft that can provide maritime early warning for...target indicator aircraft, and the NIMROD R1 Signals Intelligence platform, which flew missions every other day. The “limited” US contribution

  11. Creating Synthetic Coronal Observational Data From MHD Models: The Forward Technique

    NASA Technical Reports Server (NTRS)

    Rachmeler, Laurel A.; Gibson, Sarah E.; Dove, James; Kucera, Therese Ann

    2010-01-01

    We present a generalized forward code for creating simulated corona) observables off the limb from numerical and analytical MHD models. This generalized forward model is capable of creating emission maps in various wavelengths for instruments such as SXT, EIT, EIS, and coronagraphs, as well as spectropolari metric images and line profiles. The inputs to our code can be analytic models (of which four come with the code) or 2.5D and 3D numerical datacubes. We present some examples of the observable data created with our code as well as its functional capabilities. This code is currently available for beta-testing (contact authors), with the ultimate goal of release as a SolarSoft package

  12. Coupled Kinetic-MHD Simulations of Divertor Heat Load with ELM Perturbations

    NASA Astrophysics Data System (ADS)

    Cummings, Julian; Chang, C. S.; Park, Gunyoung; Sugiyama, Linda; Pankin, Alexei; Klasky, Scott; Podhorszki, Norbert; Docan, Ciprian; Parashar, Manish

    2010-11-01

    The effect of Type-I ELM activity on divertor plate heat load is a key component of the DOE OFES Joint Research Target milestones for this year. In this talk, we present simulations of kinetic edge physics, ELM activity, and the associated divertor heat loads in which we couple the discrete guiding-center neoclassical transport code XGC0 with the nonlinear extended MHD code M3D using the End-to-end Framework for Fusion Integrated Simulations, or EFFIS. In these coupled simulations, the kinetic code and the MHD code run concurrently on the same massively parallel platform and periodic data exchanges are performed using a memory-to-memory coupling technology provided by EFFIS. The M3D code models the fast ELM event and sends frequent updates of the magnetic field perturbations and electrostatic potential to XGC0, which in turn tracks particle dynamics under the influence of these perturbations and collects divertor particle and energy flux statistics. We describe here how EFFIS technologies facilitate these coupled simulations and discuss results for DIII-D, NSTX and Alcator C-Mod tokamak discharges.

  13. A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG

    NASA Astrophysics Data System (ADS)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.

    2015-03-01

    Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.

  14. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  15. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makwana, K. D., E-mail: kirit.makwana@gmx.com; Cattaneo, F.; Zhdankin, V.

    Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k{sub ⊥}{sup −1.3}. The kinetic code shows a spectral slope of k{submore » ⊥}{sup −1.5} for smaller simulation domain, and k{sub ⊥}{sup −1.3} for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  16. Performance Evaluation of Satellite Communication Systems Operating in the Q/V/W Bands

    DTIC Science & Technology

    2013-06-30

    cloud liquid water content (blue line = original MODIS data, red line = underlying Gaussian process) and of rainfall ( NIMROD rain rate data) .. 3-22...correlation of rainfall as obtained from an extensive set of rain field collected by the NIMROD weather radar network [Luini and Capsoni, 2012] has been...underlying Gaussian process) Rain ( NIMROD data) Figure 3-21. Decorrelation with distance of the cloud liquid water content (blue line = original

  17. Off-design performance analysis of MHD generator channels

    NASA Technical Reports Server (NTRS)

    Wilson, D. R.; Williams, T. S.

    1980-01-01

    A computer code for performing parametric design point calculations, and evaluating the off-design performance of MHD generators has been developed. The program is capable of analyzing Faraday, Hall, and DCW channels, including the effect of electrical shorting in the gas boundary layers and coal slag layers. Direct integration of the electrode voltage drops is included. The program can be run in either the design or off-design mode. Details of the computer code, together with results of a study of the design and off-design performance of the proposed ETF MHD generator are presented. Design point variations of pre-heat and stoichiometry were analyzed. The off-design study included variations in mass flow rate and oxygen enrichment.

  18. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang

    2007-10-01

    We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.

  19. Vector processing efficiency of plasma MHD codes by use of the FACOM 230-75 APU

    NASA Astrophysics Data System (ADS)

    Matsuura, T.; Tanaka, Y.; Naraoka, K.; Takizuka, T.; Tsunematsu, T.; Tokuda, S.; Azumi, M.; Kurita, G.; Takeda, T.

    1982-06-01

    In the framework of pipelined vector architecture, the efficiency of vector processing is assessed with respect to plasma MHD codes in nuclear fusion research. By using a vector processor, the FACOM 230-75 APU, the limit of the enhancement factor due to parallelism of current vector machines is examined for three numerical codes based on a fluid model. Reasonable speed-up factors of approximately 6,6 and 4 times faster than the highly optimized scalar version are obtained for ERATO (linear stability code), AEOLUS-R1 (nonlinear stability code) and APOLLO (1-1/2D transport code), respectively. Problems of the pipelined vector processors are discussed from the viewpoint of restructuring, optimization and choice of algorithms. In conclusion, the important concept of "concurrency within pipelined parallelism" is emphasized.

  20. LIGKA: A linear gyrokinetic code for the description of background kinetic and fast particle effects on the MHD stability in tokamaks

    NASA Astrophysics Data System (ADS)

    Lauber, Ph.; Günter, S.; Könies, A.; Pinches, S. D.

    2007-09-01

    In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfvén physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU München, 2003; Ph. Lauber, S. Günter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfvén regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfvén eigenmodes (TAEs) and kinetic Alfvén waves (KAWs) with analytical results, ideal MHD codes, drift-kinetic codes and other codes based on kinetic models are reported.

  1. NATO and the Challenges of Austerity

    DTIC Science & Technology

    2012-01-01

    Navy’s participation in operations in Libya in 2011. The The Impact of Defense Cuts on Key NATO Allies 7 elimination of the Nimrod MRA.4 maritime... Nimrod MRA. Mk2. The CSR cuts included the entire fleet of Harrier GR.9 combat aircraft. The Harrier cut has joint implications because the RAF Har- riers...overlap of its replacement. The Boeing RC-135 “Rivet Joint” signals intelligence (SIGINT) aircraft will replace the two remaining Nimrod R.1 platforms

  2. Seizing the Lodgment: Forcible Entry Lessons from Panama and the Falklands

    DTIC Science & Technology

    2016-05-10

    combat power long before the initiation of hostilities. The Army began deployment of additional troops in early 1989 as part of Operation Nimrod ...Dancer, an effort to bolster existing US forces in Panama in response to instability. As part of Nimrod Dancer, the Army deployed an additional brigade...90 1) Task Force Atlantic. 7th Infantry Division elements stationed in Panama as part of Operation Nimrod Dancer. Attacked H-hour targets north of

  3. Sovereignty & Collaboration: Affordable Strategies in Times of Austerity?

    DTIC Science & Technology

    2014-06-01

    completing Initial Officer Training and Basic Flying Training he was posted to RAF Kinloss where he spent 6 years on CXX Squadron as a Nimrod MR2...Early on in my tour it became apparent that there were many differences between the Rivet Joint and the venerable Nimrod R1 that it was replacing...against those delivered late. Furthermore, at least five projects—including the later cancelled Nimrod MRA4 project—experienced delays in excess of

  4. Rescuing Downed Aircrews: The Value of Time

    DTIC Science & Technology

    2015-01-01

    and the recovery efforts, as well as The Nimrod Review, by Charles Haddon, and various news reports.22 In our analysis, we included ten fixed-wing...successfully. No downed personnel were captured by the enemy. Four aircraft accounted for the vast majority of downed personnel. This included one Nimrod MR2...Note: Bar graph on the right includes only those who were not killed immediately. The Nimrod MR2, an RAF asset, was on a routine mission in Helmand

  5. NIMROD: A computational laboratory for studying nonlinear fusion magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Sovinec, C. R.; Gianakon, T. A.; Held, E. D.; Kruger, S. E.; Schnack, D. D.

    2003-05-01

    Nonlinear numerical studies of macroscopic modes in a variety of magnetic fusion experiments are made possible by the flexible high-order accurate spatial representation and semi-implicit time advance in the NIMROD simulation code [A. H. Glasser et al., Plasma Phys. Controlled Fusion 41, A747 (1999)]. Simulation of a resistive magnetohydrodynamics mode in a shaped toroidal tokamak equilibrium demonstrates computation with disparate time scales, simulations of discharge 87009 in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] confirm an analytic scaling for the temporal evolution of an ideal mode subject to plasma-β increasing beyond marginality, and a spherical torus simulation demonstrates nonlinear free-boundary capabilities. A comparison of numerical results on magnetic relaxation finds the n=1 mode and flux amplification in spheromaks to be very closely related to the m=1 dynamo modes and magnetic reversal in reversed-field pinch configurations. Advances in local and nonlocal closure relations developed for modeling kinetic effects in fluid simulation are also described.

  6. NIMROD resistive magnetohydrodynamic simulations of spheromak physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, E. B.; Cohen, B. I.; McLean, H. S.

    The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magnetohydrodynamic simulations with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the sustained spheromak physics experiment [R. D. Wood et al., Nucl. Fusion 45, 1582 (2005)]. The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena andmore » the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results addresses variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.« less

  7. NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, E B; Cohen, B I; McLean, H S

    The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth ofmore » symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.« less

  8. Investigating High Frequency Magnetic Activity During Local Helicity Injection on the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Richner, N. J.; Bongard, M. W.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Reusch, J. A.

    2017-10-01

    Understanding the current drive mechanism(s) of Local Helicity Injection (LHI) is needed for confident scaling to next-step devices. 3D resistive MHD NIMROD simulations ascribe large-scale reconnection events of helical injector current streams as a current drive mechanism. The events generate n = 1 B fluctuations on outboard Mirnov coils, consistent with experiment. New results suggest additional mechanisms are also active during LHI. Reconnection-driven ion heating is better correlated with high frequency activity than the n = 1 bursts. Experiments with inboard injectors can exhibit an abrupt ( 250 μs) transition to a reduced MHD state on outboard Mirnovs where the n = 1 feature vanishes, while still maintaining current growth and/or sustainment. A new insertable magnetics probe was developed to investigate these phenomena. It measures TeXBz up to 3.5 MHz at 15 points over a 14 cm radial extent (ΔR 1 cm). Measurements with this probe are consistent with the outboard Mirnovs when positioned far from the plasma boundary. However, measurements near the plasma edge lack the reduction in broadband power (up to 2 MHz) following the transition. The probe shows power is concentrated at higher frequencies during LHI, with mostly flat B spectra up to 600-800 kHz ( fci) at which there is a resonance-like feature; at higher frequencies, the power decreases. These measurements suggest short-wavelength activity may play a significant role in LHI current drive. Work supported by US DOE Grant DE-FG02-96ER54375.

  9. Research and development studies for MHD/coal power flow train components. Part II. Diagnostics and instrumentation MHD channel combutor. Progres report. [Flow calculations for combustors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, M.H.; Lederman, S.; Sforza, P.

    1980-01-01

    This is Part II of the Technical Progress Report on Tasks II-IV of the subject contract. It deals sequentially with Diagnostics and Instrumentation, the MHD Channel and the Combustor. During this period, a significant effort has gone into establishing a schematic design of a laser diagnostic system which can be applied to the flow-train of the MHD system, and to acquiring, assembling and shaking down a laboratory set-up upon which a prototype can be based. With further reference to the MHD Channel, a model analysis has been initiated of the two-dimensional MHD boundary layer between two electrodes in the limitmore » of small magnetic Reynolds numbers with negligible effect of the flow on the applied magnetic field. An objective of this model study is the assessment of variations in initial conditions on the boundary layer behavior. Finally, the problem of combustion modeling has been studied on an initial basis. The open reports on this subject depict a high degree of empiricism, centering attention on global behavior mainly. A quasi-one-dimensional model code has been set-up to check some of the existing estimates. Also a code for equilibrium combustion has been activated.« less

  10. Solwnd: A 3D Compressible MHD Code for Solar Wind Studies. Version 1.0: Cartesian Coordinates

    NASA Technical Reports Server (NTRS)

    Deane, Anil E.

    1996-01-01

    Solwnd 1.0 is a three-dimensional compressible MHD code written in Fortran for studying the solar wind. Time-dependent boundary conditions are available. The computational algorithm is based on Flux Corrected Transport and the code is based on the existing code of Zalesak and Spicer. The flow considered is that of shear flow with incoming flow that perturbs this base flow. Several test cases corresponding to pressure balanced magnetic structures with velocity shear flow and various inflows including Alfven waves are presented. Version 1.0 of solwnd considers a rectangular Cartesian geometry. Future versions of solwnd will consider a spherical geometry. Some discussions of this issue is presented.

  11. The PLUTO code for astrophysical gasdynamics .

    NASA Astrophysics Data System (ADS)

    Mignone, A.

    Present numerical codes appeal to a consolidated theory based on finite difference and Godunov-type schemes. In this context we have developed a versatile numerical code, PLUTO, suitable for the solution of high-mach number flow in 1, 2 and 3 spatial dimensions and different systems of coordinates. Different hydrodynamic modules and algorithms may be independently selected to properly describe Newtonian, relativistic, MHD, or relativistic MHD fluids. The modular structure exploits a general framework for integrating a system of conservation laws, built on modern Godunov-type shock-capturing schemes. The code is freely distributed under the GNU public license and it is available for download to the astrophysical community at the URL http://plutocode.to.astro.it.

  12. Equilibrium Spline Interface (ESI) for magnetic confinement codes

    NASA Astrophysics Data System (ADS)

    Li, Xujing; Zakharov, Leonid E.

    2017-12-01

    A compact and comprehensive interface between magneto-hydrodynamic (MHD) equilibrium codes and gyro-kinetic, particle orbit, MHD stability, and transport codes is presented. Its irreducible set of equilibrium data consists of three (in the 2-D case with occasionally one extra in the 3-D case) functions of coordinates and four 1-D radial profiles together with their first and mixed derivatives. The C reconstruction routines, accessible also from FORTRAN, allow the calculation of basis functions and their first derivatives at any position inside the plasma and in its vicinity. After this all vector fields and geometric coefficients, required for the above mentioned types of codes, can be calculated using only algebraic operations with no further interpolation or differentiation.

  13. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE PAGES

    Makwana, K. D.; Zhdankin, V.; Li, H.; ...

    2015-04-10

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  14. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makwana, K. D.; Zhdankin, V.; Li, H.

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  15. Center for Extended Magnetohydrodynamics Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos, Jesus

    This researcher participated in the DOE-funded Center for Extended Magnetohydrodynamics Modeling (CEMM), a multi-institutional collaboration led by the Princeton Plasma Physics Laboratory with Dr. Stephen Jardin as the overall Principal Investigator. This project developed advanced simulation tools to study the non-linear macroscopic dynamics of magnetically confined plasmas. The collaborative effort focused on the development of two large numerical simulation codes, M3D-C1 and NIMROD, and their application to a wide variety of problems. Dr. Ramos was responsible for theoretical aspects of the project, deriving consistent sets of model equations applicable to weakly collisional plasmas and devising test problems for verification ofmore » the numerical codes. This activity was funded for twelve years.« less

  16. Investigation of island formation due to RMPs in DIII-D plasmas with the SIESTA resistive MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Hirshman, S. P.; Shafer, M. W.; Seal, S. K.; Canik, J. M.

    2016-04-01

    > The SIESTA magnetohydrodynamic (MHD) equilibrium code has been used to compute a sequence of ideally stable equilibria resulting from numerical variation of the helical resonant magnetic perturbation (RMP) applied to an axisymmetric DIII-D plasma equilibrium. Increasing the perturbation strength at the dominant , resonant surface leads to lower MHD energies and increases in the equilibrium island widths at the (and sidebands) surfaces, in agreement with theoretical expectations. Island overlap at large perturbation strengths leads to stochastic magnetic fields which correlate well with the experimentally inferred field structure. The magnitude and spatial phase (around the dominant rational surfaces) of the resonant (shielding) component of the parallel current are shown to change qualitatively with the magnetic island topology.

  17. Three-dimensional computer simulation of non-reacting jet-gas flow mixing in an MHD second stage combustor

    NASA Astrophysics Data System (ADS)

    Chang, S. L.; Lottes, S. A.; Berry, G. F.

    Argonne National Laboratory is investigating the non-reacting jet-gas mixing patterns in a magnetohydrodynamics (MHD) second stage combustor by using a three-dimensional single-phase hydrodynamics computer program. The computer simulation is intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may improve downstream MHD channel performance. The code is used to examine the three-dimensional effects of the side walls and the distributed jet flows on the non-reacting jet-gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  18. Three Bridge Fryer's Ford Bridge, Nimrod Bridge, and Ward's ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Three Bridge - Fryer's Ford Bridge, Nimrod Bridge, and Ward's Crossing Bridge - Fryer's Ford Bridge, Spanning East Fork of Point Remove Creek at Fryer Bridge Road (CR 67), Solgohachia, Conway County, AR

  19. Reconnection in NIMROD: Model, Predictions, Remedies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, T K; Bulmer, R H; Cohen, B I

    It is shown that in NIMROD the formation of closed current configurations, occurring only after the voltage is turned off, is due to the faster resistive decay of nonsymmetric modes compared to the symmetric projection of the 3D steady state achieved by gun injection. Implementing Spitzer resistivity is required to make a definitive comparison with experiment, using two experimental signatures of the model discussed in the paper. If there are serious disagreements, it is suggested that a phenomenological hyper-resistivity be added to the n = 0 component of Ohm's law, similar to hyper-resistive Corsica models that appear to fit experiments.more » Hyper-resistivity might capture physics at small scale missed by NIMROD. Encouraging results would motivate coupling NIMROD to SPICE with edge physics inspired by UEDGE, as a tool for experimental data analysis.« less

  20. Stabilization of the SIESTA MHD Equilibrium Code Using Rapid Cholesky Factorization

    NASA Astrophysics Data System (ADS)

    Hirshman, S. P.; D'Azevedo, E. A.; Seal, S. K.

    2016-10-01

    The SIESTA MHD equilibrium code solves the discretized nonlinear MHD force F ≡ J X B - ∇p for a 3D plasma which may contain islands and stochastic regions. At each nonlinear evolution step, it solves a set of linearized MHD equations which can be written r ≡ Ax - b = 0, where A is the linearized MHD Hessian matrix. When the solution norm | x| is small enough, the nonlinear force norm will be close to the linearized force norm | r| 0 obtained using preconditioned GMRES. In many cases, this procedure works well and leads to a vanishing nonlinear residual (equilibrium) after several iterations in SIESTA. In some cases, however, | x|>1 results and the SIESTA code has to be restarted to obtain nonlinear convergence. In order to make SIESTA more robust and avoid such restarts, we have implemented a new rapid QR factorization of the Hessian which allows us to rapidly and accurately solve the least-squares problem AT r = 0, subject to the condition | x|<1. This avoids large contributions to the nonlinear force terms and in general makes the convergence sequence of SIESTA much more stable. The innovative rapid QR method is based on a pairwise row factorization of the tri-diagonal Hessian. It provides a complete Cholesky factorization while preserving the memory allocation of A. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  1. MHD thrust vectoring of a rocket engine

    NASA Astrophysics Data System (ADS)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  2. MHD and resonant instabilities in JT-60SA during current ramp-up with off-axis N-NB injection

    NASA Astrophysics Data System (ADS)

    Bierwage, A.; Toma, M.; Shinohara, K.

    2017-12-01

    The excitation of magnetohydrodynamic (MHD) and resonant instabilities and their effect on the plasma profiles during the current ramp-up phase of a beam-driven JT-60SA tokamak plasma is studied using the MHD-PIC hybrid code MEGA. In the simple scenario considered, the plasma is only driven by one negative-ion-based neutral beam, depositing 500 keV deuterons at 5 MW power off-axis at about mid-radius. The beam injection starts half-way in the ramp-up phase. Within 1 s, the beam-driven plasma current and fast ion pressure produce a configuration that is strongly unstable to rapidly growing MHD and resonant modes. Using MEGA, modes with low toroidal mode numbers in the range n = 1-4 are examined in detail and shown to cause substantial changes in the plasma profiles. The necessity to develop reduced models and incorporate the effects of such instabilities in integrated codes used to simulate the evolution of entire plasma discharges is discussed.

  3. Mixing of the Interstellar and Solar Plasmas at the Heliospheric Interface

    DOE PAGES

    Pogorelov, N. V.; Borovikov, S. N.

    2015-10-12

    From the ideal MHD perspective, the heliopause is a tangential discontinuity that separates the solar wind plasma from the local interstellar medium plasma. There are physical processes, however, that make the heliopause permeable. They can be subdivided into kinetic and MHD categories. Kinetic processes occur on small length and time scales, and cannot be resolved with MHD equations. On the other hand, MHD instabilities of the heliopause have much larger scales and can be easily observed by spacecraft. The heliopause may also be a subject of magnetic reconnection. In this paper, we discuss mechanisms of plasma mixing at the heliopausemore » in the context of Voyager 1 observations. Numerical results are obtained with a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. The code can also treat nonthermal ions and turbulence produced by them.« less

  4. Assessment of the MHD capability in the ATHENA code using data from the ALEX facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, P.A.

    1989-03-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility.

  5. Porting a Hall MHD Code to a Graphic Processing Unit

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2011-01-01

    We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.

  6. Study of neoclassical effects on the pedestal structure in ELMy H-mode plasmas

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.; Snyder, P. B.

    2009-11-01

    The neoclassical effects on the H-mode pedestal structure are investigated in this study. First principles' kinetic simulations of the neoclassical pedestal dynamics are combined with the MHD stability conditions for triggering ELM crashes that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [1] is used to produce systematic scans over plasma parameters including plasma current, elongation, and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD stability ELITE code [2]. The scalings of the pedestal width and height are presented as a function of the scanned plasma parameters. Simulations with the XGC0 code, which include coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. Differences in the electron and ion pedestal scalings are investigated. [1] C.S. Chang et al, Phys. Plasmas 11 (2004) 2649. [2] P.B. Snyder et al, Phys. Plasmas, 9 (2002) 2037.

  7. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anninos, Peter; Lau, Cheuk; Bryant, Colton

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performedmore » separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.« less

  8. CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    NASA Astrophysics Data System (ADS)

    Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  9. TRANSITION FROM KINETIC TO MHD BEHAVIOR IN A COLLISIONLESS PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.

    The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag–Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the questionmore » of interest by examining several different indicators of MHD-like behavior.« less

  10. New Developments in Modeling MHD Systems on High Performance Computing Architectures

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D. J.; Bhattacharjee, A.

    2009-04-01

    Modeling the wide range of time and length scales present even in fluid models of plasmas like MHD and X-MHD (Extended MHD including two fluid effects like Hall term, electron inertia, electron pressure gradient) is challenging even on state-of-the-art supercomputers. In the last years, HPC capacity has continued to grow exponentially, but at the expense of making the computer systems more and more difficult to program in order to get maximum performance. In this paper, we will present a new approach to managing the complexity caused by the need to write efficient codes: Separating the numerical description of the problem, in our case a discretized right hand side (r.h.s.), from the actual implementation of efficiently evaluating it. An automatic code generator is used to describe the r.h.s. in a quasi-symbolic form while leaving the translation into efficient and parallelized code to a computer program itself. We implemented this approach for OpenGGCM (Open General Geospace Circulation Model), a model of the Earth's magnetosphere, which was accelerated by a factor of three on regular x86 architecture and a factor of 25 on the Cell BE architecture (commonly known for its deployment in Sony's PlayStation 3).

  11. Magnus: A New Resistive MHD Code with Heat Flow Terms

    NASA Astrophysics Data System (ADS)

    Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-07-01

    We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.

  12. Validation of numerical solvers for liquid metal flow in a complex geometry in the presence of a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad

    2018-04-01

    Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, it{Ha} (it{Ha}^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, it{N} (it{N} is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for it{Ha} up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) it{Ha}=515, it{N}=3.2 and (Case B) it{Ha}=2059, it{N}=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.

  13. The Role of Civil Affairs in Unconventional Warfare

    DTIC Science & Technology

    2012-12-01

    opposition movement. 88 Nimrod Raphaeli,”Understanding Muqtada al-Sadr,” Middle East Quarterly...Corporation, 2012 Raphaeli, Nimrod ,”Understanding Muqtada al-Sadr,” Middle East Quarterly. Fall, Volume XI, Number 4, (2004): 33–42. Accessed September

  14. Test Particle Simulations of Electron Injection by the Bursty Bulk Flows (BBFs) using High Resolution Lyon-Feddor-Mobarry (LFM) Code

    NASA Astrophysics Data System (ADS)

    Eshetu, W. W.; Lyon, J.; Wiltberger, M. J.; Hudson, M. K.

    2017-12-01

    Test particle simulations of electron injection by the bursty bulk flows (BBFs) have been done using a test particle tracer code [1], and the output fields of the Lyon-Feddor-Mobarry global magnetohydro- dynamics (MHD) code[2]. The MHD code was run with high resolu- tion (oct resolution), and with specified solar wind conditions so as to reproduce the observed qualitative picture of the BBFs [3]. Test par- ticles were injected so that they interact with earthward propagating BBFs. The result of the simulation shows that electrons are pushed ahead of the BBFs and accelerated into the inner magnetosphere. Once electrons are in the inner magnetosphere they are further energized by drift resonance with the azimuthal electric field. In addition pitch angle scattering of electrons resulting in the violation conservation of the first adiabatic invariant has been observed. The violation of the first adiabatic invariant occurs as electrons cross a weak magnetic field region with a strong gradient of the field perturbed by the BBFs. References 1. Kress, B. T., Hudson,M. K., Looper, M. D. , Albert, J., Lyon, J. G., and Goodrich, C. C. (2007), Global MHD test particle simulations of ¿ 10 MeV radiation belt electrons during storm sudden commencement, J. Geophys. Res., 112, A09215, doi:10.1029/2006JA012218. Lyon,J. G., Fedder, J. A., and Mobarry, C.M., The Lyon- Fedder-Mobarry (LFM) Global MHD Magnetospheric Simulation Code (2004), J. Atm. And Solar-Terrestrial Phys., 66, Issue 15-16, 1333- 1350,doi:10.1016/j.jastp. Wiltberger, Merkin, M., Lyon, J. G., and Ohtani, S. (2015), High-resolution global magnetohydrodynamic simulation of bursty bulk flows, J. Geophys. Res. Space Physics, 120, 45554566, doi:10.1002/2015JA021080.

  15. Final technical report for DE-SC00012633 AToM (Advanced Tokamak Modeling)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Christopher; Orlov, Dmitri; Izzo, Valerie

    This final report for the AToM project documents contributions from University of California, San Diego researchers over the period of 9/1/2014 – 8/31/2017. The primary focus of these efforts was on performing validation studies of core tokamak transport models using the OMFIT framework, including development of OMFIT workflow scripts. Additional work was performed to develop tools for use of the nonlinear magnetohydrodynamics code NIMROD in OMFIT, and its use in the study of runaway electron dynamics in tokamak disruptions.

  16. Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes.

    PubMed

    Kurucz, Eva; Márkus, Róbert; Zsámboki, János; Folkl-Medzihradszky, Katalin; Darula, Zsuzsanna; Vilmos, Péter; Udvardy, Andor; Krausz, Ildikó; Lukacsovich, Tamás; Gateff, Elisabeth; Zettervall, Carl-Johan; Hultmark, Dan; Andó, István

    2007-04-03

    The hemocytes, the blood cells of Drosophila, participate in the humoral and cellular immune defense reactions against microbes and parasites [1-8]. The plasmatocytes, one class of hemocytes, are phagocytically active and play an important role in immunity and development by removing microorganisms as well as apoptotic cells. On the surface of circulating and sessile plasmatocytes, we have now identified a protein, Nimrod C1 (NimC1), which is involved in the phagocytosis of bacteria. Suppression of NimC1 expression in plasmatocytes inhibited the phagocytosis of Staphylococcus aureus. Conversely, overexpression of NimC1 in S2 cells stimulated the phagocytosis of both S. aureus and Escherichia coli. NimC1 is a 90-100 kDa single-pass transmembrane protein with ten characteristic EGF-like repeats (NIM repeats). The nimC1 gene is part of a cluster of ten related nimrod genes at 34E on chromosome 2, and similar clusters of nimrod-like genes are conserved in other insects such as Anopheles and Apis. The Nimrod proteins are related to other putative phagocytosis receptors such as Eater and Draper from D. melanogaster and CED-1 from C. elegans. Together, they form a superfamily that also includes proteins that are encoded in the human genome.

  17. Extended magnetohydrodynamic simulations of field reversed configuration formation and sustainment with rotating magnetic field current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milroy, R. D.; Kim, C. C.; Sovinec, C. R.

    Three-dimensional simulations of field reversed configuration (FRC) formation and sustainment with rotating magnetic field (RMF) current drive have been performed with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. The Hall term is a zeroth order effect with strong coupling between Fourier components, and recent enhancements to the NIMROD preconditioner allow much larger time steps than was previously possible. Boundary conditions to capture the effects of a finite length RMF antenna have been added, and simulations of FRC formation from a uniform background plasma have been performed with parameters relevant to the translation, confinement,more » and sustainment-upgrade experiment at the University of Washington [H. Y. Guo, A. L. Hoffman, and R. D. Milroy, Phys. Plasmas 14, 112502 (2007)]. The effects of both even-parity and odd-parity antennas have been investigated, and there is no evidence of a disruptive instability for either antenna type. It has been found that RMF effects extend considerably beyond the ends of the antenna, and that a large n=0 B{sub t}heta can develop in the open-field line region, producing a back torque opposing the RMF.« less

  18. NIMROD simulations and physics assessment of possible designs for a next generation Steady Inductive Helicity Injection HIT device

    NASA Astrophysics Data System (ADS)

    Penna, James; Morgan, Kyle; Grubb, Isaac; Jarboe, Thomas

    2017-10-01

    The Helicity Injected Torus - Steady Inductive 3 (HIT-SI3) experiment forms and maintains spheromaks via Steady Inductive Helicity Injection (SIHI) using discrete injectors that inject magnetic helicity via a non-axisymmetric perturbation and drive toroidally symmetric current. Newer designs for larger SIHI-driven spheromaks incorporate a set of injectors connected to a single external manifold to allow more freedom for the toroidal structure of the applied perturbation. Simulations have been carried out using the NIMROD code to assess the effectiveness of various imposed mode structures and injector schema in driving current via Imposed Dynamo Current Drive (IDCD). The results are presented here for varying flux conserver shapes on a device approximately 1.5 times larger than the current HIT-SI3 experiment. The imposed mode structures and spectra of simulated spheromaks are analyzed in order to examine magnetic structure and stability and determine an optimal regime for IDCD sustainment in a large device. The development of scaling laws for manifold operation is also presented, and simulation results are analyzed and assessed as part of the development path for the large scale device.

  19. Physics of Intense Electron Current Sources for Helicity Injection

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Lewicki, B. T.; Perry, J. M.; Redd, A. J.; Winz, G. R.

    2014-10-01

    DC helicity injection (HI) for non-solenoidal ST startup requires sources of current at the tokamak edge. Since the rate of HI scales with injection voltage, understanding of the physics setting injector impedance is necessary for a predictive model of the HI rate and subsequent growth of Ip. In Pegasus, arc plasma sources are used for current injection. They operate immersed in tokamak edge plasma, and are biased at ~1-2 kV with respect to the vessel to draw current densities J ~ 1 kA/cm2 from an arc plasma cathode. Prior to tokamak formation, impedance data manifests two regimes, one at low current (< 1 kA) with I ~V 3 / 2 , and a higher current mode where I ~V 1 / 2 holds. The impedance in the I ~V 3 / 2 regime is consistent with an electrostatic double layer. Current in the I ~V 1 / 2 regime is linear in arc gas fueling rate, suggesting a space-charge limit set by nedge. In the presence of tokamak plasmas, voltage oscillations of the order 100s of volts are measured during MHD relaxation activity. These fluctuations occur at the characteristic frequencies of the n = 1 and n = 0 MHD activity observed on magnetic probes, and are suggestive of dynamic activity found in LHI simulations in NIMROD. Advanced injector design techniques have allowed higher voltage operation. These include staged shielding to prevent external arcing, and shaped cathodes, which minimize the onset and material damage due to cathode spot formation. Work supported by US DOE Grant DE-FG02-96ER54375.

  20. Investigation of island formation due to RMPs in DIII-D plasmas with the SIESTA resistive MHD equilibrium code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirshman, S. P.; Shafer, M. W.; Seal, S. K.

    The SIESTA magnetohydrodynamic (MHD) equilibrium code has been used to compute a sequence of ideally stable equilibria resulting from numerical variation of the helical resonant magnetic perturbation (RMP) applied to an axisymmetric DIII-D plasma equilibrium. Increasing the perturbation strength at the dominant m=2, n=-1 , resonant surface leads to lower MHD energies and increases in the equilibrium island widths at the m=2 (and sidebands) surfaces, in agreement with theoretical expectations. Island overlap at large perturbation strengths leads to stochastic magnetic fields which correlate well with the experimentally inferred field structure. The magnitude and spatial phase (around the dominant rational surfaces)more » of the resonant (shielding) component of the parallel current are shown to change qualitatively with the magnetic island topology.« less

  1. Numerical Simulations of Free Surface Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema

    2003-11-01

    We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.

  2. Investigation of island formation due to RMPs in DIII-D plasmas with the SIESTA resistive MHD equilibrium code

    DOE PAGES

    Hirshman, S. P.; Shafer, M. W.; Seal, S. K.; ...

    2016-03-03

    The SIESTA magnetohydrodynamic (MHD) equilibrium code has been used to compute a sequence of ideally stable equilibria resulting from numerical variation of the helical resonant magnetic perturbation (RMP) applied to an axisymmetric DIII-D plasma equilibrium. Increasing the perturbation strength at the dominant m=2, n=-1 , resonant surface leads to lower MHD energies and increases in the equilibrium island widths at the m=2 (and sidebands) surfaces, in agreement with theoretical expectations. Island overlap at large perturbation strengths leads to stochastic magnetic fields which correlate well with the experimentally inferred field structure. The magnitude and spatial phase (around the dominant rational surfaces)more » of the resonant (shielding) component of the parallel current are shown to change qualitatively with the magnetic island topology.« less

  3. Modeling of Feedback Stabilization of External MHD Modes in Toroidal Geometry

    NASA Astrophysics Data System (ADS)

    Chu, M. S.; Chance, M. S.; Okabayashi, M.

    2000-10-01

    The intelligent shell feedback scheme(C.M. Bishop, Plasma Phys. Contr. Nucl. Fusion 31), 1179 (1989). seeks to utilize external coils to suppress the unstable MHD modes slowed down by the resistive shell. We present a new formulation and numerical results of the interaction between the plasma and its outside vacuum region, with complete plasma response and the inclusion of a resistive vessel in general toroidal geometry. This is achieved by using the Green's function technique, which is a generalization of that previously used for the VACUUM(M.S. Chance, Phys. Plasmas 4), 2161 (1997). code and coupled with the ideal MHD code GATO. The effectiveness of different realizations of the intelligent shell concept is gauged by their ability to minimize the available free energy to drive the MHD mode. Computations indicate poloidal coverage of 30% of the total resistive wall surface area and 6 or 7 segments of ``intelligent coil'' arrays superimposed on the resistive wall will allow recovery of up to 90% the effectiveness of the ideal shell in stabilizing the ideal external kink.

  4. Resistive Wall Modes Identification and Control in RFX-mod low qedge tokamak discharges

    NASA Astrophysics Data System (ADS)

    Baruzzo, Matteo; Bolzonella, Tommaso; Cavazzana, Roberto; Marchiori, Giuseppe; Marrelli, Lionello; Martin, Piero; Paccagnella, Roberto; Piovesan, Paolo; Piron, Lidia; Soppelsa, Anton; Zanca, Paolo; in, Yongkyoon; Liu, Yueqiang; Okabayashi, Michio; Takechi, Manabu; Villone, Fabio

    2011-10-01

    In this work the MHD stability of RFX mode tokamak discharges with qedge < 3 will be studied. The target plasma scenario is characterized by a plasma current 100kA

  5. EXTRAPOLATION OF THE SOLAR CORONAL MAGNETIC FIELD FROM SDO/HMI MAGNETOGRAM BY A CESE-MHD-NLFFF CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Chaowei; Feng Xueshang, E-mail: cwjiang@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn

    Due to the absence of direct measurement, the magnetic field in the solar corona is usually extrapolated from the photosphere in a numerical way. At the moment, the nonlinear force-free field (NLFFF) model dominates the physical models for field extrapolation in the low corona. Recently, we have developed a new NLFFF model with MHD relaxation to reconstruct the coronal magnetic field. This method is based on CESE-MHD model with the conservation-element/solution-element (CESE) spacetime scheme. In this paper, we report the application of the CESE-MHD-NLFFF code to Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) data with magnetograms sampled for two activemore » regions (ARs), NOAA AR 11158 and 11283, both of which were very non-potential, producing X-class flares and eruptions. The raw magnetograms are preprocessed to remove the force and then inputted into the extrapolation code. Qualitative comparison of the results with the SDO/AIA images shows that our code can reconstruct magnetic field lines resembling the EUV-observed coronal loops. Most important structures of the ARs are reproduced excellently, like the highly sheared field lines that suspend filaments in AR 11158 and twisted flux rope which corresponds to a sigmoid in AR 11283. Quantitative assessment of the results shows that the force-free constraint is fulfilled very well in the strong-field regions but apparently not that well in the weak-field regions because of data noise and numerical errors in the small currents.« less

  6. A numerical study of neutral-plasma interaction in magnetically confined plasmas

    NASA Astrophysics Data System (ADS)

    Taheri, S.; Shumlak, U.; King, J. R.

    2017-10-01

    Interactions between plasma and neutral species can have a large effect on the dynamic behavior of magnetically confined plasma devices, such as the edge region of tokamaks and the plasma formation of Z-pinches. The presence of neutrals can affect the stability of the pinch and change the dynamics of the pinch collapse, and they can lead to deposition of high energy particles on the first wall. However, plasma-neutral interactions can also have beneficial effects such as quenching the disruptions in tokamaks. In this research a reacting plasma-neutral model, which combines a magnetohydrodynamic (MHD) plasma model with a gas dynamic neutral fluid model, is used to study the interaction between plasma and neutral gas. Incorporating this model into NIMROD allows the study of electron-impact ionization, radiative recombination, and resonant charge-exchange in plasma-neutral systems. An accelerated plasma moving through a neutral gas background is modeled in both a parallel plate and a coaxial electrode configuration to explore the effect of neutral gas in pinch-like devices. This work is supported by a Grant from US DOE.

  7. On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo

    2017-06-01

    We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfvén waves, and the tearing mode (TM) instability using the MHD code Aenus. By comparing the simulation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of TMs, we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast magnetosonic speed and wavelength are the characteristic velocity and length, respectively, ofmore » the aforementioned (relatively simple) systems. We also determine the dependence of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results, we infer the numerical resolution (as a function of the spatial reconstruction method) required to properly resolve the growth and saturation level of the magnetic field amplified by the magnetorotational instability in the post-collapsed core of massive stars. Our results show that it is most advantageous to resort to ultra-high-order methods (e.g., the ninth-order monotonicity-preserving method) to tackle this problem properly, in particular, in three-dimensional simulations.« less

  8. Simulation of Alfvén eigenmode bursts using a hybrid code for nonlinear magnetohydrodynamics and energetic particles

    NASA Astrophysics Data System (ADS)

    Todo, Y.; Berk, H. L.; Breizman, B. N.

    2012-03-01

    A hybrid simulation code for nonlinear magnetohydrodynamics (MHD) and energetic-particle dynamics has been extended to simulate recurrent bursts of Alfvén eigenmodes by implementing the energetic-particle source, collisions and losses. The Alfvén eigenmode bursts with synchronization of multiple modes and beam ion losses at each burst are successfully simulated with nonlinear MHD effects for the physics condition similar to a reduced simulation for a TFTR experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874, Todo et al 2003 Phys. Plasmas 10 2888). It is demonstrated with a comparison between nonlinear MHD and linear MHD simulation results that the nonlinear MHD effects significantly reduce both the saturation amplitude of the Alfvén eigenmodes and the beam ion losses. Two types of time evolution are found depending on the MHD dissipation coefficients, namely viscosity, resistivity and diffusivity. The Alfvén eigenmode bursts take place for higher dissipation coefficients with roughly 10% drop in stored beam energy and the maximum amplitude of the dominant magnetic fluctuation harmonic δBm/n/B ~ 5 × 10-3 at the mode peak location inside the plasma. Quadratic dependence of beam ion loss rate on magnetic fluctuation amplitude is found for the bursting evolution in the nonlinear MHD simulation. For lower dissipation coefficients, the amplitude of the Alfvén eigenmodes is at steady levels δBm/n/B ~ 2 × 10-3 and the beam ion losses take place continuously. The beam ion pressure profiles are similar among the different dissipation coefficients, and the stored beam energy is higher for higher dissipation coefficients.

  9. A conserved gene cluster as a putative functional unit in insect innate immunity.

    PubMed

    Somogyi, Kálmán; Sipos, Botond; Pénzes, Zsolt; Andó, István

    2010-11-05

    The Nimrod gene superfamily is an important component of the innate immune response. The majority of its member genes are located in close proximity within the Drosophila melanogaster genome and they lie in a larger conserved cluster ("Nimrod cluster"), made up of non-related groups (families, superfamilies) of genes. This cluster has been a part of the Arthropod genomes for about 300-350 million years. The available data suggest that the Nimrod cluster is a functional module of the insect innate immune response. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Simulating the interaction of the heliosphere with the local interstellar medium: MHD results from a finite volume approach, first bidimensional results

    NASA Technical Reports Server (NTRS)

    Chanteur, G.; Khanfir, R.

    1995-01-01

    We have designed a full compressible MHD code working on unstructured meshes in order to be able to compute accurately sharp structures embedded in large scale simulations. The code is based on a finite volume method making use of a kinetic flux splitting. A bidimensional version of the code has been used to simulate the interaction of a moving interstellar medium, magnetized or unmagnetized with a rotating and magnetized heliopspheric plasma source. Being aware that these computations are not realistic due to the restriction to two dimensions, we present it to demonstrate the ability of this new code to handle this problem. An axisymetric version, now under development, will be operational in a few months. Ultimately we plan to run a full 3d version.

  11. The Philippine-American war: A Model for Declaring Victory in Iraq.

    DTIC Science & Technology

    2011-05-19

    107 Nimrod Raphaeli, "Understanding Muqtada al-Sadr." The Middle East Quarterly (Fall 2004): 33-42. These goals were...34 The Washington Quarterly, January 2009: 43-59. Raphaeli, Nimrod . "Understanding Muqtada al-Sadr." The Middle East Quarterly, Fall 2004: 33-42

  12. The Athena Astrophysical MHD Code in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Skinner, M. A.; Ostriker, E. C.

    2011-10-01

    We have developed a method for implementing cylindrical coordinates in the Athena MHD code (Skinner & Ostriker 2010). The extension has been designed to alter the existing Cartesian-coordinates code (Stone et al. 2008) as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport, a central feature of the Athena algorithm, while making use of previously implemented code modules such as the eigensystems and Riemann solvers. Angular-momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and constrained transport updates. Finally, we have developed a test suite of standard and novel problems in one-, two-, and three-dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the web.

  13. Assessment of the MHD capability in the ATHENA code using data from the ALEX (Argonne Liquid Metal Experiment) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, P.A.

    1988-10-28

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility. 13 refs., 4more » figs., 2 tabs.« less

  14. MHD Code Optimizations and Jets in Dense Gaseous Halos

    NASA Astrophysics Data System (ADS)

    Gaibler, Volker; Vigelius, Matthias; Krause, Martin; Camenzind, Max

    We have further optimized and extended the 3D-MHD-code NIRVANA. The magnetized part runs in parallel, reaching 19 Gflops per SX-6 node, and has a passively advected particle population. In addition, the code is MPI-parallel now - on top of the shared memory parallelization. On a 512^3 grid, we reach 561 Gflops with 32 nodes on the SX-8. Also, we have successfully used FLASH on the Opteron cluster. Scientific results are preliminary so far. We report one computation of highly resolved cocoon turbulence. While we find some similarities to earlier 2D work by us and others, we note a strange reluctancy of cold material to enter the low density cocoon, which has to be investigated further.

  15. Alfvén ionization in an MHD-gas interactions code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, A. D.; Diver, D. A.

    A numerical model of partially ionized plasmas is developed in order to capture their evolving ionization fractions as a result of Alfvén ionization (AI). The mechanism of, and the parameter regime necessary for, AI is discussed and an expression for the AI rate based on fluid parameters, from a gas-MHD model, is derived. This AI term is added to an existing MHD-gas interactions' code, and the result is a linear, 2D, two-fluid model that includes momentum transfer between charged and neutral species as well as an ionization rate that depends on the velocity fields of both fluids. The dynamics ofmore » waves propagating through such a partially ionized plasma are investigated, and it is found that AI has a significant influence on the fluid dynamics as well as both the local and global ionization fraction.« less

  16. Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems

    DOE PAGES

    Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul; ...

    2017-08-28

    Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less

  17. Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul

    Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less

  18. Numerical simulation of runaway electrons: 3-D effects on synchrotron radiation and impurity-based runaway current dissipation

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Carbajal, L.; Spong, D.; Izzo, V.

    2018-05-01

    Numerical simulations of runaway electrons (REs) with a particular emphasis on orbit dependent effects in 3-D magnetic fields are presented. The simulations were performed using the recently developed Kinetic Orbit Runaway electron Code (KORC) that computes the full-orbit relativistic dynamics in prescribed electric and magnetic fields including radiation damping and collisions. The two main problems of interest are synchrotron radiation and impurity-based RE dissipation. Synchrotron radiation is studied in axisymmetric fields and in 3-D magnetic configurations exhibiting magnetic islands and stochasticity. For passing particles in axisymmetric fields, neglecting orbit effects might underestimate or overestimate the total radiation power depending on the direction of the radial shift of the drift orbits. For trapped particles, the spatial distribution of synchrotron radiation exhibits localized "hot" spots at the tips of the banana orbits. In general, the radiation power per particle for trapped particles is higher than the power emitted by passing particles. The spatial distribution of synchrotron radiation in stochastic magnetic fields, obtained using the MHD code NIMROD, is strongly influenced by the presence of magnetic islands. 3-D magnetic fields also introduce a toroidal dependence on the synchrotron spectra, and neglecting orbit effects underestimates the total radiation power. In the presence of magnetic islands, the radiation damping of trapped particles is larger than the radiation damping of passing particles. Results modeling synchrotron emission by RE in DIII-D quiescent plasmas are also presented. The computation uses EFIT reconstructed magnetic fields and RE energy distributions fitted to the experimental measurements. Qualitative agreement is observed between the numerical simulations and the experiments for simplified RE pitch angle distributions. However, it is noted that to achieve quantitative agreement, it is necessary to use pitch angle distributions that depart from simplified 2-D Fokker-Planck equilibria. Finally, using the guiding center orbit model (KORC-GC), a preliminary study of pellet mitigated discharges in DIII-D is presented. The dependence of RE energy decay and current dissipation on initial energy and ionization levels of neon impurities is studied. The computed decay rates are within the range of experimental observations.

  19. Numerical simulation of the kinetic effects in the solar wind

    NASA Astrophysics Data System (ADS)

    Sokolov, I.; Toth, G.; Gombosi, T. I.

    2017-12-01

    Global numerical simulations of the solar wind are usually based on the ideal or resistive MagnetoHydroDynamics (MHD) equations. Within a framework of MHD the electric field is assumed to vanish in the co-moving frame of reference (ideal MHD) or to obey a simple and non-physical scalar Ohm's law (resistive MHD). The Maxwellian distribution functions are assumed, the electron and ion temperatures may be different. Non-disversive MHD waves can be present in this numerical model. The averaged equations for MHD turbulence may be included as well as the energy and momentum exchange between the turbulent and regular motion. With the use of explicit numerical scheme, the time step is controlled by the MHD wave propagtion time across the numerical cell (the CFL condition) More refined approach includes the Hall effect vie the generalized Ohm's law. The Lorentz force acting on light electrons is assumed to vanish, which gives the expression for local electric field in terms of the total electric current, the ion current as well as the electron pressure gradient and magnetic field. The waves (whistlers, ion-cyclotron waves etc) aquire dispersion and the short-wavelength perturbations propagate with elevated speed thus strengthening the CFL condition. If the grid size is sufficiently small to resolve ion skindepth scale, then the timestep is much shorter than the ion gyration period. The next natural step is to use hybrid code to resolve the ion kinetic effects. The hybrid numerical scheme employs the same generalized Ohm's law as Hall MHD and suffers from the same constraint on the time step while solving evolution of the electromagnetic field. The important distiction, however, is that by sloving particle motion for ions we can achieve more detailed description of the kinetic effect without significant degrade in the computational efficiency, because the time-step is sufficient to resolve the particle gyration. We present the fisrt numerical results from coupled BATS-R-US+ALTOR code as applied to kinetic simulations of the solar wind.

  20. Genetic Essentialism, Neuroessentialism, and Stigma: Commentary on Dar-Nimrod and Heine (2011)

    ERIC Educational Resources Information Center

    Haslam, Nick

    2011-01-01

    Dar-Nimrod and Heine (2011) presented a masterfully broad review of the implications of genetic essentialism for understandings of human diversity. This commentary clarifies the reasons that essentialist thinking has problematic social consequences and links genetic forms of essentialism to those invoking neural essences. The mounting evidence…

  1. Planning Without History or Cultural Perspective

    DTIC Science & Technology

    2015-05-21

    8217, News.Bbc.Co.Uk, last modified 2015, accessed January 20, 2015, http://news.bbc.co.uk/2/hi/middle_east/3557446.stm. 119 Nimrod Raphaeli, “Understanding...pubs/monographs/2008/RAND_MG595.3.pdf. Raphaeli, Nimrod . “Understanding Muqtada al-Sadr.” Middle East Quarterly (Fall 2004): 33-42. Rathmell, Andrew

  2. Wrestling the Hydra: Exploiting Organizational Evolution in Terrorist Groups

    DTIC Science & Technology

    2013-05-02

    Nimrod Raphaeli, “Understanding Muqtada al-Sadr,” Middle East Quarterly, Volume XI: Number 4, Fall 2004. 33- 42, http://www.meforum.org/655/understanding...Post, Jerrold M. The Mind of the Terrorist. (New York: Palgrave McMillan 2007). Raphaeli, Nimrod . “Understanding Muqtada al-Sadr.” Middle East

  3. Multi-physics simulations of space weather

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Toth, Gabor; Sokolov, Igor; de Zeeuw, Darren; van der Holst, Bart; Cohen, Ofer; Glocer, Alex; Manchester, Ward, IV; Ridley, Aaron

    Presently magnetohydrodynamic (MHD) models represent the "workhorse" technology for simulating the space environment from the solar corona to the ionosphere. While these models are very successful in describing many important phenomena, they are based on a low-order moment approximation of the phase-space distribution function. In the last decade our group at the Center for Space Environment Modeling (CSEM) has developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on extended magnetohydrodynamics with anisotropic pressures. This talk will show the effects of added physics and compare space weather simulation results to "standard" ideal MHD.

  4. Comparison of Two Coronal Magnetic Field Models to Reconstruct a Sigmoidal Solar Active Region with Coronal Loops

    NASA Astrophysics Data System (ADS)

    Duan, Aiying; Jiang, Chaowei; Hu, Qiang; Zhang, Huai; Gary, G. Allen; Wu, S. T.; Cao, Jinbin

    2017-06-01

    Magnetic field extrapolation is an important tool to study the three-dimensional (3D) solar coronal magnetic field, which is difficult to directly measure. Various analytic models and numerical codes exist, but their results often drastically differ. Thus, a critical comparison of the modeled magnetic field lines with the observed coronal loops is strongly required to establish the credibility of the model. Here we compare two different non-potential extrapolation codes, a nonlinear force-free field code (CESE-MHD-NLFFF) and a non-force-free field (NFFF) code, in modeling a solar active region (AR) that has a sigmoidal configuration just before a major flare erupted from the region. A 2D coronal-loop tracing and fitting method is employed to study the 3D misalignment angles between the extrapolated magnetic field lines and the EUV loops as imaged by SDO/AIA. It is found that the CESE-MHD-NLFFF code with preprocessed magnetogram performs the best, outputting a field that matches the coronal loops in the AR core imaged in AIA 94 Å with a misalignment angle of ˜10°. This suggests that the CESE-MHD-NLFFF code, even without using the information of the coronal loops in constraining the magnetic field, performs as good as some coronal-loop forward-fitting models. For the loops as imaged by AIA 171 Å in the outskirts of the AR, all the codes including the potential field give comparable results of the mean misalignment angle (˜30°). Thus, further improvement of the codes is needed for a better reconstruction of the long loops enveloping the core region.

  5. PIXIE3D: A Parallel, Implicit, eXtended MHD 3D Code

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2006-10-01

    We report on the development of PIXIE3D, a 3D parallel, fully implicit Newton-Krylov extended MHD code in general curvilinear geometry. PIXIE3D employs a second-order, finite-volume-based spatial discretization that satisfies remarkable properties such as being conservative, solenoidal in the magnetic field to machine precision, non-dissipative, and linearly and nonlinearly stable in the absence of physical dissipation. PIXIE3D employs fully-implicit Newton-Krylov methods for the time advance. Currently, second-order implicit schemes such as Crank-Nicolson and BDF2 (2^nd order backward differentiation formula) are available. PIXIE3D is fully parallel (employs PETSc for parallelism), and exhibits excellent parallel scalability. A parallel, scalable, MG preconditioning strategy, based on physics-based preconditioning ideas, has been developed for resistive MHD, and is currently being extended to Hall MHD. In this poster, we will report on progress in the algorithmic formulation for extended MHD, as well as the the serial and parallel performance of PIXIE3D in a variety of problems and geometries. L. Chac'on, Comput. Phys. Comm., 163 (3), 143-171 (2004) L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002); J. Comput. Phys., 188 (2), 573-592 (2003) L. Chac'on, 32nd EPS Conf. Plasma Physics, Tarragona, Spain, 2005 L. Chac'on et al., 33rd EPS Conf. Plasma Physics, Rome, Italy, 2006

  6. Quasi-static MHD processes in earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes

    1988-01-01

    An attempt is made to use the MHD equilibrium theory to describe the global magnetic field configuration of earth's magnetosphere and its time evolution under the influence of magnetospheric convection. To circumvent the difficulties inherent in today's MHD codes, use is made of a restriction to slowly time-dependent convection processes with convective velocities well below the typical Alfven speed. This restriction leads to a quasi-static MHD theory. The two-dimensional theory is outlined, and it is shown how sequences of two-dimensional equilibria evolve into a steady state configuration that is likely to become tearing mode unstable. It is then concluded that magnetospheric substorms occur periodically in earth's magnetosphere, thus being an integral part of the entire convection cycle.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, D.D.; Lottati, I.; Mikic, Z.

    The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.

  8. America’s Access to Space: Assuring Future Affordability

    DTIC Science & Technology

    2010-12-01

    System (AWACS) and the British Nimrod Airborne Early Warning system in the late 1970s. The results illustrate the risk of relying on a “purely state... Nimrod was considered by many to be a superior system compared to the Boeing AWACS, but lost the contract because of its inability to incorporate

  9. Service-oriented Reasoning Architecture for Resource-Task Assignment in Sensor Networks

    DTIC Science & Technology

    2011-04-01

    www.csd.abdn.ac.uk/research/ita/sam/downloads/ontology/ISTAR.owl Sensing Resource Platform Sensors SR4 Nimrod MR2 LDRFCamera, SARCamera, TVCamera SR5 WASP...resources in the theatre. This is because according to the knowledge available to the ISTAR reasoner service, a ‘ Nimrod ’ could perform high altitude

  10. Situation Desperate: U.S. Army Engineer Disaster Relief Operations, Origins to 1950

    DTIC Science & Technology

    2011-01-01

    distress signal, Captains Nimrod Long and George Thomas of the sea-going dredges Cumberland and Savannah responded immedi- ately. They closed on the...Long, Nimrod , 78 Lorain tornado (1924), 143–44, 143 Lord, Herbert, 125–27 Los Angeles Engineer District, 186, 187 Los Angeles River f lood (1938), 185

  11. Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model

    NASA Astrophysics Data System (ADS)

    Baraka, Suleiman

    2016-06-01

    In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.

  12. Capabilities of Fully Parallelized MHD Stability Code MARS

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2016-10-01

    Results of full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. Parallel version of MARS, named PMARS, has been recently developed at FAR-TECH. Parallelized MARS is an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, implemented in MARS. Parallelization of the code included parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse vector iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the MARS algorithm using parallel libraries and procedures. Parallelized MARS is capable of calculating eigenmodes with significantly increased spatial resolution: up to 5,000 adapted radial grid points with up to 500 poloidal harmonics. Such resolution is sufficient for simulation of kink, tearing and peeling-ballooning instabilities with physically relevant parameters. Work is supported by the U.S. DOE SBIR program.

  13. Overview of Compact Toroidal Hybrid research program progress and plans

    NASA Astrophysics Data System (ADS)

    Maurer, David; Ennis, David; Hanson, James; Hartwell, Gregory; Herfindal, Jeffrey; Knowlton, Stephen; Ma, Xingxing; Pandya, Mihir; Roberds, Nicholas; Ross, Kevin; Traverso, Peter

    2016-10-01

    disruptive behavior on the level of applied 3D magnetic shaping; (2) test and advance the V3FIT reconstruction code and NIMROD modeling of CTH; and (3) study the implementation of an island divertor. Progress towards these goals and other developments are summarized. The disruptive density limit exceeds the Greenwald limit as the vacuum transform is increased, but a threshold for avoidance is not observed. Low- q disruptions, with 1.1 < q (a) <2.0, cease to occur if the vacuum transform is raised above 0.07. Application of vacuum transform can reduce and eliminate the vertical drift of elongated discharges that would otherwise be vertically unstable. Reconstructions using external magnetics give accurate estimates for quantities near the plasma boundary, and internal diagnostics have been implemented to extend the range of accuracy into the plasma core. Sawtooth behavior has been reproducibly modified with external transform and NIMROD is used to model these observations and reproduces experimental trends. An island divertor design has begun with connection length studies to model energy deposition on divertor plates located in an edge 1/3 island as well as the study of a non-resonant divertor configuration. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  14. Plasmoids formation in a laboratory and large-volume flux closure during simulations of Coaxial Helicity Injection in NSTX-U

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Fatima

    2016-10-01

    In NSTX-U, transient Coaxial Helicity Injection (CHI) is the primary method for current generation without reliance on the solenoid. A CHI discharge is generated by driving current along open field lines (the injector flux) that connect the inner and outer divertor plates on NSTX/NSTX-U, and has generated over 200 kA of toroidal current on closed flux surfaces in NSTX. Extrapolation of the concept to larger devices requires an improved understanding of the physics of flux closure and the governing parameters that maximizes the fraction of injected flux that is converted to useful closed flux. Here, through comprehensive resistive MHD NIMROD simulations conducted for the NSTX and NSTX-U geometries, two new major findings will be reported. First, formation of an elongated Sweet-Parker current sheet and a transition to plasmoid instability has for the first time been demonstrated by realistic global simulations. This is the first observation of plasmoid instability in a laboratory device configuration predicted by realistic MHD simulations and then supported by experimental camera images from NSTX. Second, simulations have now, for the first time, been able to show large fraction conversion of injected open flux to closed flux in the NSTX-U geometry. Consistent with the experiment, simulations also show that reconnection could occur at every stage of the helicity injection phase. The influence of 3D effects, and the parameter range that supports these important new findings is now being studied to understand the impact of toroidal magnetic field and the electron temperature, both of which are projected to increase in larger ST devices. Work supported by DOE DE-SC0010565.

  15. Alfvénic wave packets collision in a kinetic plasma

    NASA Astrophysics Data System (ADS)

    Pezzi, Oreste; Parashar, Tulasi N.; Servidio, Sergio; Valentini, Francesco; Malara, Francesco; Matthaeus, William H.; Veltri, Pierluigi

    2016-04-01

    The problem of two colliding and counter-propagating Alfvénic wave packets has been investigated in detail since the late Seventies. In particular Moffatt [1] and Parker [2] showed that, in the framework of the incompressible magnetohydrodynamics (MHD), nonlinear interactions can develop only during the overlapping of the two packets. Here we describe a similar problem in the framework of the kinetic physics. The collision of two quasi-Alfvénic packets has been analyzed by means of MHD, Hall-MHD and kinetic simulations performed with two different hybrid codes: a PIC code [3] and a Vlasov-Maxwell code [4]. Due to the huge computational cost, only a 2D-3V phase space is allowed (two dimensions in the physical space, three dimensions in the velocity space). Preliminary results suggest that, as well as in the MHD case, the most relevant nonlinear effects occur during the overlapping of the two packets. For both the PIC and Vlasov cases, strong temperature anisotropies are present during the evolution of the wave packets. Moreover, due to the absence of numerical noise, Vlasov simulations show that the collision of the counter-propagating solitary waves produces a significant beam in the velocity distribution functions [5], which, instead, cannot be appreciated in PIC simulations. We remark that, beyond the interest of studying a well-known MHD problem in the realm of the kinetic physics, our results allows also to compare different numerical codes. [1] H.K. Moffatt, Field generation in electrically conducting fluids (Cambridge University Press, 1978). [2] E.N. Parker, Cosmical magnetic fields: their origin and their activity (Oxford University Press, 1979). [3] T.N. Parashar, M.A. Shay, P.A. Cassak and W.H. Matthaeus, Physics of Plasmas 16, 032310 (2009). [4] F. Valentini, P. Trávníček, F. Califano, P. Hellinger & A. Mangeney, Journal of Computational Physics 225, 753-770 (2007). [5] J. He, C. Tu, E. Marsch, C.H. Chen, L. Wang, Z. Pei, L. Zhang, C.S. Salem and S.D. Bale, The Astrophysical Journal Letters 813, L30 (2015).

  16. Collisions of two Alfvénic wave packets in a kinetic plasma

    NASA Astrophysics Data System (ADS)

    Pezzi, O.; Servidio, S.; Valentini, F.; Parashar, T.; Malara, F.; Matthaeus, W. H.; Veltri, P.

    2016-12-01

    The problem of two colliding and counter-propagating Alfvénic wave packets has been investigated in detail since the late Seventies. In particular Moffatt [1] and Parker [2] showed that, in the framework of the incompressible magnetohydrodynamics (MHD), nonlinear interactions can develop only during the overlapping of the two packets. Here we describe a similar problem in the framework of the kinetic physics. The collision of two quasi-Alfvénic packets has been analyzed by means of MHD, Hall-MHD and kinetic simulations performed with two different hybrid codes: a PIC code [3] and a Vlasov-Maxwell code [4]. Due to the huge computational cost, only a 2D-3V phase space is allowed (two dimensions in the physical space, three dimensions in the velocity space). Preliminary results suggest that, as well as in the MHD case, the most relevant nonlinear effects occur during the overlapping of the two packets. For both the PIC and Vlasov cases, strong temperature anisotropies are present during the evolution of the wave packets. Moreover, due to the absence of numerical noise, Vlasov simulations show that the collision of the counter-propagating solitary waves produces a significant beam in the velocity distribution functions [5], which, instead, cannot be appreciated in PIC simulations. We remark that, beyond the interest of studying a well-known MHD problem in the realm of the kinetic physics, our results allows also to compare different numerical codes. [1] H.K. Moffatt, Field generation in electrically conducting fluids (Cambridge University Press, 1978). [2] E.N. Parker, Cosmical magnetic fields: their origin and their activity (Oxford University Press, 1979). [3] T.N. Parashar, M.A. Shay, P.A. Cassak and W.H. Matthaeus, Physics of Plasmas 16, 032310 (2009). [4] F. Valentini, P. Trávníček, F. Califano, P. Hellinger & A. Mangeney, Journal of Computational Physics 225, 753-770 (2007). [5] J. He, C. Tu, E. Marsch, C.H. Chen, L. Wang, Z. Pei, L. Zhang, C.S. Salem and S.D. Bale, The Astrophysical Journal Letters 813, L30 (2015).

  17. MHD Advanced Power Train Phase I, Final Report, Volume 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. R. Jones

    This appendix provides additional data in support of the MHD/Steam Power Plant Analyses reported in report Volume 5. The data is in the form of 3PA/SUMARY computer code printouts. The order of presentation in all four cases is as follows: (1) Overall Performance; (2) Component/Subsystem Information; (3) Plant Cost Accounts Summary; and (4) Plant Costing Details and Cost of Electricity.

  18. Implementation of the full viscoresistive magnetohydrodynamic equations in a nonlinear finite element code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haverkort, J.W.; Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven; Blank, H.J. de

    Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity. The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite element discretization of the full MHD equations. Amore » rigorous and generally applicable solution is proposed here. Useful analytical test cases are devised to verify the correct implementation of the momentum and induction equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown to be associated with our use of a magnetic vector potential to describe the magnetic field. Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code. The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The results are compared with predictions from the reduced MHD model. Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method without the need to add any physical dissipation.« less

  19. Geospace simulations on the Cell BE processor

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D.

    2008-12-01

    OpenGGCM (Open Geospace General circulation Model) is an established numerical code that simulates the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is limited by computational constraints on grid resolution. We investigate porting of the MHD solver to the Cell BE architecture, a novel inhomogeneous multicore architecture capable of up to 230 GFlops per processor. Realizing this high performance on the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallel approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the vector/SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We obtained excellent performance numbers, a speed-up of a factor of 25 compared to just using the main processor, while still keeping the numerical implementation details of the code maintainable.

  20. Accelerating 3D Hall MHD Magnetosphere Simulations with Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Bard, C.; Dorelli, J.

    2017-12-01

    The resolution required to simulate planetary magnetospheres with Hall magnetohydrodynamics result in program sizes approaching several hundred million grid cells. These would take years to run on a single computational core and require hundreds or thousands of computational cores to complete in a reasonable time. However, this requires access to the largest supercomputers. Graphics processing units (GPUs) provide a viable alternative: one GPU can do the work of roughly 100 cores, bringing Hall MHD simulations of Ganymede within reach of modest GPU clusters ( 8 GPUs). We report our progress in developing a GPU-accelerated, three-dimensional Hall magnetohydrodynamic code and present Hall MHD simulation results for both Ganymede (run on 8 GPUs) and Mercury (56 GPUs). We benchmark our Ganymede simulation with previous results for the Galileo G8 flyby, namely that adding the Hall term to ideal MHD simulations changes the global convection pattern within the magnetosphere. Additionally, we present new results for the G1 flyby as well as initial results from Hall MHD simulations of Mercury and compare them with the corresponding ideal MHD runs.

  1. DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.

    2016-09-01

    This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.

  2. DISCO: A 3D MOVING-MESH MAGNETOHYDRODYNAMICS CODE DESIGNED FOR THE STUDY OF ASTROPHYSICAL DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffell, Paul C., E-mail: duffell@berkeley.edu

    2016-09-01

    This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide varietymore » of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.« less

  3. Multi-dimensional computer simulation of MHD combustor hydrodynamics

    NASA Astrophysics Data System (ADS)

    Berry, G. F.; Chang, S. L.; Lottes, S. A.; Rimkus, W. A.

    1991-04-01

    Argonne National Laboratory is investigating the nonreacting jet gas mixing patterns in an MHD second stage combustor by using a 2-D multiphase hydrodynamics computer program and a 3-D single phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A 2-D steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross stream gas flow. A 3-D code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  4. Genetics and Human Agency: Comment on Dar-Nimrod and Heine (2011)

    ERIC Educational Resources Information Center

    Turkheimer, Eric

    2011-01-01

    Dar-Nimrod and Heine (2011) decried genetic essentialism without denying the importance of genetics in the genesis of human behavior, and although I agree on both counts, a deeper issue remains unaddressed: how should we adjust our cognitions about our own behavior in light of genetic influence, or is it perhaps not necessary to take genetics into…

  5. Neutron diffraction study of aqueous Laponite suspensions at the NIMROD diffractometer.

    PubMed

    Tudisca, V; Bruni, F; Scoppola, E; Angelini, R; Ruzicka, B; Zulian, L; Soper, A K; Ricci, M A

    2014-09-01

    The process of dynamical arrest, leading to formation of different arrested states such as glasses and gels, along with the closely related process of aging, is central for both basic research and technology. Here we report on a study of the time-dependent structural evolution of two aqueous Laponite clay suspensions at different weight concentrations. Neutron diffraction experiments have been performed with the near and intermediate range order diffractometer (NIMROD) that allows studies of the structure of liquids and disordered materials over a continuous length scale ranging from 1 to 300 Å, i.e., from the atomistic to the mesoscopic scales. NIMROD is presently a unique diffractometer, bridging the length scales traditionally investigated by small angle neutron scattering or small angle x-ray scattering with that accessible by traditional diffractometers for liquids. Interestingly, we have unveiled a signature of aging of both suspensions in the length scale region of NIMROD. This phenomenon, ascribed to sporadic contacts between Laponite platelets at long times, has been observed with the sample arrested as gel or as repulsive glass. Moreover, water molecules within the layers closest to Laponite platelets surface show orientational and translational order, which maps into the crystalline structure of Laponite.

  6. A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars

    2016-11-01

    We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.

  7. Advances in simulation of wave interactions with extended MHD phenomena

    NASA Astrophysics Data System (ADS)

    Batchelor, D.; Abla, G.; D'Azevedo, E.; Bateman, G.; Bernholdt, D. E.; Berry, L.; Bonoli, P.; Bramley, R.; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, W.; Foley, S.; Fu, G.; Harvey, R.; Jaeger, E.; Jardin, S.; Jenkins, T.; Keyes, D.; Klasky, S.; Kruger, S.; Ku, L.; Lynch, V.; McCune, D.; Ramos, J.; Schissel, D.; Schnack, D.; Wright, J.

    2009-07-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  8. High beta and second stability region transport and stability analysis: Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, M.H.; Phillips, M.W.

    1995-03-01

    This report summarizes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the 12 month period starting March 1, 1994. Progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. The development of codes to calculate the significant effects of highly anisotropic pressure distributions is discussed along with results from this model.

  9. Three-dimensional global MHD modeling of a coronal mass ejection interacting with the solar wind

    NASA Astrophysics Data System (ADS)

    An, J.; Inoue, S.; Magara, T.; Lee, H.; Kang, J.; Hayashi, K.; Tanaka, T.; Den, M.

    2013-12-01

    We developed a three-dimensional (3D) magnetohydrodynamic (MHD) code to reproduce the structure of the solar wind, the propagation of a coronal mass ejection (CME), and the interaction between them. This MHD code is based on the finite volume method and total diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in the spherical coordinate system (Tanaka 1995). In this study, we constructed a model of the solar wind driven by the physical values at 50 solar radii obtained from the MHD tomographic method (Hayashi et al. 2003) where an interplanetary scintillation (IPS) observational data is used. By comparing the result to the observational data obtained from the near-Earth OMNI dataset, we confirmed that our simulation reproduces the velocity, temperature and density profiles obtained from the near-Earth OMNI dataset. We then insert a spheromak-type CME (Kataoka et al. 2009) into our solar-wind model and investigate the propagation process of the CME interacting with the solar wind. In particular, we discuss how the magnetic twist accumulated in a CME affects the CME-solar wind interaction.

  10. MHD Turbulence, div B = 0 and Lattice Boltzmann Simulations

    NASA Astrophysics Data System (ADS)

    Phillips, Nate; Keating, Brian; Vahala, George; Vahala, Linda

    2006-10-01

    The question of div B = 0 in MHD simulations is a crucial issue. Here we consider lattice Boltzmann simulations for MHD (LB-MHD). One introduces a scalar distribution function for the velocity field and a vector distribution function for the magnetic field. This asymmetry is due to the different symmetries in the tensors arising in the time evolution of these fields. The simple algorithm of streaming and local collisional relaxation is ideally parallelized and vectorized -- leading to the best sustained performance/PE of any code run on the Earth Simulator. By reformulating the BGK collision term, a simple implicit algorithm can be immediately transformed into an explicit algorithm that permits simulations at quite low viscosity and resistivity. However the div B is not an imposed constraint. Currently we are examining a new formulations of LB-MHD that impose the div B constraint -- either through an entropic like formulation or by introducing forcing terms into the momentum equations and permitting simpler forms of relaxation distributions.

  11. Magnetohydrodynamic Modeling of the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond

    2005-01-01

    Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.

  12. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.

    2016-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with ohmic heating and minimal external magnetization, (2) predictive capability in toroidal confinement physics, and (3) basic plasma physics is summarized. Validation of key plasma models is a program priority. Programmable power supplies (PPS) are being developed to maximize inductive capability. Well-controlled flattops with current as low as 0.02 MA are produced with an existing PPS, and Ip <= 0.8 MA is anticipated with a second PPS under construction. The Lundquist number spans S =10(4 - 9) for 0.02-0.8 MA, allowing nonlinear MHD validation using NIMROD and DEBS at low S to be connected to highest S experiments. The PPS also enables MST tokamak operation for studying transients and runaway electron suppression with RMPs. Gyrokinetic modeling with GENE predicts unstable TEM in improved-confinement plasmas. Fluctuations are measured with TEM properties including a density-gradient threshold larger than for tokamak plasmas. Probe measurements hint that drift waves are also excited via the turbulent cascade in standard RFP plasmas. Turbulent energization of an electron tail occurs during sawtooth reconnection. New diagnostics are being developed to measure the energetic ion profile and transport from EP instabilities with NBI. Supported by US DoE and NSF.

  13. Development of the STPX Spheromak System

    NASA Astrophysics Data System (ADS)

    Williams, R. L.; Clark, J.; Weatherford, C. A.

    2015-11-01

    The progress made in starting up the STPX Spheromak system, which is now installed at the Florida A&M University, is reviewed. Experimental, computational and theoretical activities are underway. The control system for firing the magnetized coaxial plasma gun and for collecting data from the diagnostic probes, based on LabView, is being tested and adapted. Preliminary results of testing the installed magnetic field probes, Langmuir triple probes, cylindrical ion probes, and optical diagnostics will be discussed. Progress in modeling this spheromak using simulation codes, such as NIMROD, will be discussed. Progress in investigating the use of algebraic topology to describe this spheromak will be reported.

  14. Magnetosphere simulations with a high-performance 3D AMR MHD Code

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Dezeeuw, Darren; Groth, Clinton; Powell, Kenneth; Song, Paul

    1998-11-01

    BATS-R-US is a high-performance 3D AMR MHD code for space physics applications running on massively parallel supercomputers. In BATS-R-US the electromagnetic and fluid equations are solved with a high-resolution upwind numerical scheme in a tightly coupled manner. The code is very robust and it is capable of spanning a wide range of plasma parameters (such as β, acoustic and Alfvénic Mach numbers). Our code is highly scalable: it achieved a sustained performance of 233 GFLOPS on a Cray T3E-1200 supercomputer with 1024 PEs. This talk reports results from the BATS-R-US code for the GGCM (Geospace General Circularculation Model) Phase 1 Standard Model Suite. This model suite contains 10 different steady-state configurations: 5 IMF clock angles (north, south, and three equally spaced angles in- between) with 2 IMF field strengths for each angle (5 nT and 10 nT). The other parameters are: solar wind speed =400 km/sec; solar wind number density = 5 protons/cc; Hall conductance = 0; Pedersen conductance = 5 S; parallel conductivity = ∞.

  15. CrossTalk: The Journal of Defense Software Engineering. Volume 23, Number 5, September/October 2010

    DTIC Science & Technology

    2010-10-01

    paper/static -analysis-when-why-how>. 12. Haddon-Cave, Charles. The Nimrod Review: An Independent Review into the Broader Issues Surrounding the Loss...of the RAF Nimrod MR2 Aircraft XV230 in Afghanistan in 2006: Report. London: TSO. 28 Oct. 2009 <http://ethics. tamu.edu/guest/XV230/1025%5B 1%5D.pdf

  16. PIXIE3D: A Parallel, Implicit, eXtended MHD 3D Code.

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Knoll, D. A.

    2004-11-01

    We report on the development of PIXIE3D, a 3D parallel, fully implicit Newton-Krylov extended primitive-variable MHD code in general curvilinear geometry. PIXIE3D employs a second-order, finite-volume-based spatial discretization that satisfies remarkable properties such as being conservative, solenoidal in the magnetic field, non-dissipative, and stable in the absence of physical dissipation.(L. Chacón , phComput. Phys. Comm.) submitted (2004) PIXIE3D employs fully-implicit Newton-Krylov methods for the time advance. Currently, first and second-order implicit schemes are available, although higher-order temporal implicit schemes can be effortlessly implemented within the Newton-Krylov framework. A successful, scalable, MG physics-based preconditioning strategy, similar in concept to previous 2D MHD efforts,(L. Chacón et al., phJ. Comput. Phys). 178 (1), 15- 36 (2002); phJ. Comput. Phys., 188 (2), 573-592 (2003) has been developed. We are currently in the process of parallelizing the code using the PETSc library, and a Newton-Krylov-Schwarz approach for the parallel treatment of the preconditioner. In this poster, we will report on both the serial and parallel performance of PIXIE3D, focusing primarily on scalability and CPU speedup vs. an explicit approach.

  17. MHD stability analysis and global mode identification preparing for high beta operation in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Jiang, Y.; Ahn, J. H.; Han, H. S.; Bak, J. G.; Park, B. H.; Jeon, Y. M.; Kim, J.; Hahn, S. H.; Lee, J. H.; Ko, J. S.; in, Y. K.; Yoon, S. W.; Oh, Y. K.; Wang, Z.; Glasser, A. H.

    2017-10-01

    H-mode plasma operation in KSTAR has surpassed the computed n = 1 ideal no-wall stability limit in discharges exceeding several seconds in duration. The achieved high normalized beta plasmas are presently limited by resistive tearing instabilities rather than global kink/ballooning or RWMs. The ideal and resistive stability of these plasmas is examined by using different physics models. The observed m/ n = 2/1 tearing stability is computed by using the M3D-C1 code, and by the resistive DCON code. The global MHD stability modified by kinetic effects is examined using the MISK code. Results from the analysis explain the stabilization of the plasma above the ideal MHD no-wall limit. Equilibrium reconstructions used include the measured kinetic profiles and MSE data. In preparation for plasma operation at higher beta utilizing the planned second NBI system, three sets of 3D magnetic field sensors have been installed and will be used for RWM active feedback control. To accurately determine the dominant n-component produced by low frequency unstable RWMs, an algorithm has been developed that includes magnetic sensor compensation of the prompt applied field and the field from the induced current on the passive conductors. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-SC0016614.

  18. Soluble transition metals cause the pro-inflammatory effects of welding fumes in vitro.

    PubMed

    McNeilly, Jane D; Heal, Mathew R; Beverland, Iain J; Howe, Alan; Gibson, Mark D; Hibbs, Leon R; MacNee, William; Donaldson, Ken

    2004-04-01

    Epidemiological studies have consistently reported a higher incidence of respiratory illnesses such as bronchitis, metal fume fever (MFF), and chronic pneumonitis among welders exposed to high concentrations of metal-enriched welding fumes. Here, we studied the molecular toxicology of three different metal-rich welding fumes: NIMROD 182, NIMROD c276, and COBSTEL 6. Fume toxicity in vitro was determined by exposing human type II alveolar epithelial cell line (A549) to whole welding fume, a soluble extract of fume or the "washed" particulate. All whole fumes were significantly toxic to A549 cells at doses >63 microg ml(-1) (TD 50; 42, 25, and 12 microg ml(-1), respectively). NIMROD c276 and COBSTEL 6 fumes increased levels of IL-8 mRNA and protein at 6 h and protein at 24 h, as did the soluble fraction alone, whereas metal chelation of the soluble fraction using chelex beads attenuated the effect. The soluble fraction of all three fumes caused a rapid depletion in intracellular glutathione following 2-h exposure with a rebound increase by 24 h. In addition, both nickel based fumes, NIMROD 182 and NIMROD c276, induced significant reactive oxygen species (ROS) production in A549 cells after 2 h as determined by DCFH fluorescence. ICP analysis confirmed that transition metal concentrations were similar in the whole and soluble fractions of each fume (dominated by Cr), but significantly less in both the washed particles and chelated fractions. These results support the hypothesis that the enhanced pro-inflammatory responses of welding fume particulates are mediated by soluble transition metal components via an oxidative stress mechanism.

  19. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  20. Fast Magnetotail Reconnection: Challenge to Global MHD Modeling

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; de Zeeuw, D.; Gombosi, T.

    2005-05-01

    Representation of fast magnetotail reconnection rates during substorm onset is one of the major challenges to global MHD modeling. Our previous comparative study of collisionless magnetic reconnection in GEM Challenge geometry demonstrated that the reconnection rate is controlled by ion nongyrotropic behavior near the reconnection site and that it can be described in terms of nongyrotropic corrections to the magnetic induction equation. To further test the approach we performed MHD simulations with nongyrotropic corrections of forced reconnection for the Newton Challenge setup. As a next step we employ the global MHD code BATSRUS and test different methods to model fast magnetotail reconnection rates by introducing non-ideal corrections to the induction equation in terms of nongyrotropic corrections, spatially localized resistivity, or current dependent resistivity. The BATSRUS adaptive grid structure allows to perform global simulations with spatial resolution near the reconnection site comparable with spatial resolution of local MHD simulations for the Newton Challenge. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at the Community Coordinated Modeling Center.

  1. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE PAGES

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    2018-03-26

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  2. Magnetohydrodynamics with GAMER

    NASA Astrophysics Data System (ADS)

    Zhang, Ui-Han; Schive, Hsi-Yu; Chiueh, Tzihong

    2018-06-01

    GAMER, a parallel Graphic-processing-unit-accelerated Adaptive-MEsh-Refinement (AMR) hydrodynamic code, has been extended to support magnetohydrodynamics (MHD) with both the corner-transport-upwind and MUSCL-Hancock schemes and the constraint transport technique. The divergent preserving operator for AMR has been applied to reinforce the divergence-free constraint on the magnetic field. GAMER-MHD has fully exploited the concurrent executions between the graphic process unit (GPU) MHD solver and other central processing unit computation pertinent to AMR. We perform various standard tests to demonstrate that GAMER-MHD is both second-order accurate and robust, producing results as accurate as those given by high-resolution uniform-grid runs. We also explore a new 3D MHD test, where the magnetic field assumes the Arnold–Beltrami–Childress configuration, temporarily becomes turbulent with current sheets, and finally settles to a lowest-energy equilibrium state. This 3D problem is adopted for the performance test of GAMER-MHD. The single-GPU performance reaches 1.2 × 108 and 5.5 × 107 cell updates per second for the single- and double-precision calculations, respectively, on Tesla P100. We also demonstrate a parallel efficiency of ∼70% for both weak and strong scaling using 1024 XK nodes on the Blue Waters supercomputers.

  3. Two-fluid 2.5D code for simulations of small scale magnetic fields in the lower solar atmosphere

    NASA Astrophysics Data System (ADS)

    Piantschitsch, Isabell; Amerstorfer, Ute; Thalmann, Julia Katharina; Hanslmeier, Arnold; Lemmerer, Birgit

    2015-08-01

    Our aim is to investigate magnetic reconnection as a result of the time evolution of magnetic flux tubes in the solar chromosphere. A new numerical two-fluid code was developed, which will perform a 2.5D simulation of the dynamics from the upper convection zone up to the transition region. The code is based on the Total Variation Diminishing Lax-Friedrichs method and includes the effects of ion-neutral collisions, ionisation/recombination, thermal/resistive diffusivity as well as collisional/resistive heating. What is innovative about our newly developed code is the inclusion of a two-fluid model in combination with the use of analytically constructed vertically open magnetic flux tubes, which are used as initial conditions for our simulation. First magnetohydrodynamic (MHD) tests have already shown good agreement with known results of numerical MHD test problems like e.g. the Orszag-Tang vortex test, the Current Sheet test or the Spherical Blast Wave test. Furthermore, the single-fluid approach will also be applied to the initial conditions, in order to compare the different rates of magnetic reconnection in both codes, the two-fluid code and the single-fluid one.

  4. Induction of numerical chromosomal aberrations during DNA synthesis using the fungicides nimrod and rubigan-4 in root tips of Vicia faba L.

    PubMed

    Shahin, S A; el-Amoodi, K H

    1991-11-01

    The 2 fungicides nimrod and rubigan-4 were tested for genotoxicity using Vicia faba root tips as the biological test system. Treating lateral roots with different concentrations of each fungicide for different periods showed that both fungicides were able to produce numerical but not structural chromosomal aberrations. The percentage of total aberrations in root tips exposed to nimrod reached 54.39% at 250 ppm for 4 h, and 64.69% in root tips exposed to rubigan-4 at 250 ppm for 6 h. The types of numerical chromosomal aberrations produced by both fungicides included: binucleate cells, c-metaphases, sticky chromosomes, polyploid cells, and laggards. Recovery experiments for 24, 48, and 96 h showed no significant differences between the percentage of total aberrations in treated and control groups.

  5. An MHD Dynamo Experiment.

    NASA Astrophysics Data System (ADS)

    O'Connell, R.; Forest, C. B.; Plard, F.; Kendrick, R.; Lovell, T.; Thomas, M.; Bonazza, R.; Jensen, T.; Politzer, P.; Gerritsen, W.; McDowell, M.

    1997-11-01

    A MHD experiment is being constructed which will have the possibility of showing dynamo action: the self--generation of currents from fluid motion. The design allows sufficient experimental flexibility and diagnostic access to study a variety of issues central to dynamo theory, including mean--field electrodynamics and saturation (backreaction physics). Initially, helical flows required for dynamo action will be driven by propellers embedded in liquid sodium. The flow fields will first be measured using laser doppler velocimetry in a water experiment with an identical fluid Reynolds number. The magnetic field evolution will then be predicted using a MHD code, replacing the water with sodium; if growing magnetic fields are found, the experiment will be repeated with sodium.

  6. The Air War in Libya: Implications for the US, NATO, and the Future Role of Airpower

    DTIC Science & Technology

    2012-04-23

    Nimrod and Sentinel, which comprise two of the three parts of the ISTAR (intelligence, surveillance, target acquisition and reconnaissance) cross-cueing...Hercules C4/C5 YES NO YES YES YES Nimrod R1 YES YES YES YES YES Sentinel R1 YES YES YES YES YES E-3D YES YES YES YES YES Tornado GR4 NO NO YES YES YES

  7. Ideal MHD stability of double transport barrier plasmas in DIII-D

    NASA Astrophysics Data System (ADS)

    Li, G. Q.; Wang, S. J.; Lao, L. L.; Turnbull, A. D.; Chu, M. S.; Brennan, D. P.; Groebner, R. J.; Zhao, L.

    2008-01-01

    The ideal MHD stability for double transport barrier (DTB or DB) plasmas with varying edge and internal barrier width and height was investigated, using the ideal MHD stability code GATO. A moderate ratio of edge transport barriers (ETB) height to internal transport barriers (ITBs) height is found to be beneficial to MHD stability and the βN is limited by global low n instabilities. For moderate ITB width DB plasmas, if the ETB is weak, the stability is limited by n = 1 (n is the toroidal mode number) global mode; whereas if the ETB is strong it is limited by intermediate-n edge peeling-ballooning modes. Broadening the ITB can improve stability if the ITB half width wi lsim 0.3. For very broad ITB width plasmas the stability is limited by stability to a low n (n > 1) global mode.

  8. Modeling of Nonlinear Beat Signals of TAE's

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-03-01

    Experiments on Alcator C-Mod reveal Toroidal Alfven Eigenmodes (TAE) together with signals at various beat frequencies, including those at twice the mode frequency. The beat frequencies are sidebands driven by quadratic nonlinear terms in the MHD equations. These nonlinear sidebands have not yet been quantified by any existing codes. We extend the AEGIS code to capture nonlinear effects by treating the nonlinear terms as a driving source in the linear MHD solver. Our goal is to compute the spatial structure of the sidebands for realistic geometry and q-profile, which can be directly compared with experiment in order to interpret the phase contrast imaging diagnostic measurements and to enable the quantitative determination of the Alfven wave amplitude in the plasma core

  9. Evolutionary Models of Cold, Magnetized, Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Gammie, Charles F.; Ostriker, Eve; Stone, James M.

    2004-01-01

    We modeled the long-term and small-scale evolution of molecular clouds using direct 2D and 3D magnetohydrodynamic (MHD) simulations. This work followed up on previous research by our group under auspices of the ATP in which we studied the energetics of turbulent, magnetized clouds and their internal structure on intermediate scales. Our new work focused on both global and smallscale aspects of the evolution of turbulent, magnetized clouds, and in particular studied the response of turbulent proto-cloud material to passage through the Galactic spiral potential, and the dynamical collapse of turbulent, magnetized (supercritical) clouds into fragments to initiate the formation of a stellar cluster. Technical advances under this program include developing an adaptive-mesh MHD code as a successor to ZEUS (ATHENA) in order to follow cloud fragmentation, developing a shearing-sheet MHD code which includes self-gravity and externally-imposed gravity to follow the evolution of clouds in the Galactic potential, and developing radiative transfer models to evaluate the internal ionization of clumpy clouds exposed to external photoionizing UV and CR radiation. Gammie's work at UIUC focused on the radiative transfer aspects of this program.

  10. Nonlinear Two Fluid and Kinetic ELM Simulations

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.; Sugiyama, L.; Chang, C. S.; Ku, S.; Hientzsch, B.; Breslau, J.; Park, W.; Samtaney, R.; Adams, M.; Jardin, S.

    2006-04-01

    Simulations of ELMs using dissipative MHD, two fluid MHD, and neoclassical kinetic physics models are being carried out using the M3D code [1]. Resistive MHD simulations of nonlinear edge pressure and current driven instabilities have been performed, initialized with realistic DIIID equilibria. Simulations show the saturation of the modes and relaxation of equilbrium profiles. Linear simulations including two fluid effects show the stabilization of toroidal mode number n = 10 modes, when the Hall parameter H, the ratio of ion skin depth to major radius, exceeds a threshhold. Nonlinear simulations are being done including gyroviscous stabilization. Kinetic effects are incorporated by coupling with the XGC code [2], which is able to simulate the edge plasma density and pressure pedestal buildup. These profiles are being used to initialize M3D simulations of an ELM crash and pedestal relaxation. The goal is to simulate an ELM cycle. [1] Park, W., Belova, E.V., Fu, G.Y., Tang, X.Z., Strauss, H.R., Sugiyama, L.E., Phys. Plas. 6, 1796 (1999).[2] Chang, C.S., Ku, S., and Weitzner, H., Phys. Plas. 11, 2649 (2004)

  11. Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations

    NASA Astrophysics Data System (ADS)

    Abbott, Stephen; Germaschewski, Kai

    2014-10-01

    Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.

  12. Particle tracing modeling of ion fluxes at geosynchronous orbit

    DOE PAGES

    Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.; ...

    2017-10-31

    The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less

  13. Particle tracing modeling of ion fluxes at geosynchronous orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.

    The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less

  14. Nonlinearly driven harmonics of Alfvén modes

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Breizman, B. N.; Zheng, L. J.; Berk, H. L.

    2014-01-01

    In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.

  15. Results from the OH-PT model: a Kinetic-MHD Model of the Outer Heliosphere within SWMF

    NASA Astrophysics Data System (ADS)

    Michael, A.; Opher, M.; Tenishev, V.; Borovikov, D.; Toth, G.

    2017-12-01

    We present an update of the OH-PT model, a kinetic-MHD model of the outer heliosphere. The OH-PT model couples the Outer Heliosphere (OH) and Particle Tracker (PT) components within the Space Weather Modeling Framework (SWMF). The OH component utilizes the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) MHD code, a highly parallel, 3D, and block-adaptive solver. As a stand-alone model, the OH component solves the ideal MHD equations for the plasma and a separate set of Euler's equations for the different populations of neutral atoms. The neutrals and plasma in the outer heliosphere are coupled through charge-exchange. While this provides an accurate solution for the plasma, it is an inaccurate description of the neutrals. The charge-exchange mean free path is on the order of the size of the heliosphere; therefore the neutrals cannot be described as a fluid. The PT component is based on the Adaptive Mesh Particle Simulator (AMPS) model, a 3D, direct simulation Monte Carlo model that solves the Boltzmann equation for the motion and interaction of multi-species plasma and is used to model the neutral distribution functions throughout the domain. The charge-exchange process occurs within AMPS, which handles each event on a particle-by-particle basis and calculates the resulting source terms to the MHD equations. The OH-PT model combines the MHD solution for the plasma with the kinetic solution for the neutrals to form a self-consistent model of the heliosphere. In this work, we present verification and validation of the model as well as demonstrate the codes capabilities. Furthermore we provide a comparison of the OH-PT model to our multi-fluid approximation and detail the differences between the models in both the plasma solution and neutral distribution functions.

  16. GRADSPMHD: A parallel MHD code based on the SPH formalism

    NASA Astrophysics Data System (ADS)

    Vanaverbeke, S.; Keppens, R.; Poedts, S.

    2014-03-01

    We present GRADSPMHD, a completely Lagrangian parallel magnetohydrodynamics code based on the SPH formalism. The implementation of the equations of SPMHD in the “GRAD-h” formalism assembles known results, including the derivation of the discretized MHD equations from a variational principle, the inclusion of time-dependent artificial viscosity, resistivity and conductivity terms, as well as the inclusion of a mixed hyperbolic/parabolic correction scheme for satisfying the ∇ṡB→ constraint on the magnetic field. The code uses a tree-based formalism for neighbor finding and can optionally use the tree code for computing the self-gravity of the plasma. The structure of the code closely follows the framework of our parallel GRADSPH FORTRAN 90 code which we added previously to the CPC program library. We demonstrate the capabilities of GRADSPMHD by running 1, 2, and 3 dimensional standard benchmark tests and we find good agreement with previous work done by other researchers. The code is also applied to the problem of simulating the magnetorotational instability in 2.5D shearing box tests as well as in global simulations of magnetized accretion disks. We find good agreement with available results on this subject in the literature. Finally, we discuss the performance of the code on a parallel supercomputer with distributed memory architecture. Catalogue identifier: AERP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 620503 No. of bytes in distributed program, including test data, etc.: 19837671 Distribution format: tar.gz Programming language: FORTRAN 90/MPI. Computer: HPC cluster. Operating system: Unix. Has the code been vectorized or parallelized?: Yes, parallelized using MPI. RAM: ˜30 MB for a Sedov test including 15625 particles on a single CPU. Classification: 12. Nature of problem: Evolution of a plasma in the ideal MHD approximation. Solution method: The equations of magnetohydrodynamics are solved using the SPH method. Running time: The test provided takes approximately 20 min using 4 processors.

  17. Particle Identification in the NIMROD-ISiS Detector Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuenschel, S.; Hagel, K.; May, L. W.

    Interest in the influence of the neutron-to-proton (N/Z) ratio on multifragmenting nuclei has demanded an improvement in the capabilities of multi-detector arrays as well as the companion analysis methods. The particle identification method used in the NIMROD-ISiS 4{pi} array is described. Performance of the detectors and the analysis method are presented for the reaction of {sup 86}Kr+{sup 64}Ni at 35 MeV/u.

  18. High-throughput cardiac science on the Grid.

    PubMed

    Abramson, David; Bernabeu, Miguel O; Bethwaite, Blair; Burrage, Kevin; Corrias, Alberto; Enticott, Colin; Garic, Slavisa; Gavaghan, David; Peachey, Tom; Pitt-Francis, J; Pueyo, E; Rodriguez, Blanca; Sher, Anna; Tan, Jefferson

    2010-08-28

    Cardiac electrophysiology is a mature discipline, with the first model of a cardiac cell action potential having been developed in 1962. Current models range from single ion channels, through very complex models of individual cardiac cells, to geometrically and anatomically detailed models of the electrical activity in whole ventricles. A critical issue for model developers is how to choose parameters that allow the model to faithfully reproduce observed physiological effects without over-fitting. In this paper, we discuss the use of a parametric modelling toolkit, called Nimrod, that makes it possible both to explore model behaviour as parameters are changed and also to tune parameters by optimizing model output. Importantly, Nimrod leverages computers on the Grid, accelerating experiments by using available high-performance platforms. We illustrate the use of Nimrod with two case studies, one at the cardiac tissue level and one at the cellular level.

  19. Computational Astrophysical Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Norman, M. L.

    1994-05-01

    Cosmic magnetic fields have intrigued and vexed astrophysicists seeking to understand their complex dynamics in a wide variety of astronomical settings. Magnetic fields are believed to play an important role in regulating star formation in molecular clouds, providing an effective viscosity in accretion disks, accelerating astrophysical jets, and influencing the large scale structure of the ISM of disk galaxies. Radio observations of supernova remnants and extragalactic radio jets prove that magnetic fields are are fundamentally linked to astrophysical particle acceleration. Magnetic fields exist on cosmological scales as shown by the existence of radio halos in clusters of galaxies. Theoretical investigation of these and other phenomena require numerical simulations due to the inherent complexity of MHD, but until now neither the computer power nor the numerical algorithms existed to mount a serious attack on the most important problems. That has now changed. Advances in parallel computing and numerical algorithms now permit the simulation of fully nonlinear, time-dependent astrophysical MHD in 2D and 3D. In this talk, I will describe the ZEUS codes for astrophysical MHD developed at the Laboratory for Computational Astrophysics (LCA) at the University of Illinois. These codes are now available to the national community. The numerical algorithms and test suite used to validate them are briefly discussed. Several applications of ZEUS to topics listed above are presented. An extension of ZEUS to model ambipolar diffusion in weakly ionized plasmas is illustrated. I discuss how continuing exponential growth in computer power and new numerical algorithms under development will allow us to tackle two grand challenges: compressible MHD turbulence and relativistic MHD. This work is partially supported by grants NSF AST-9201113 and NASA NAG 5-2493.

  20. Feedback and Control of Linear and Nonlinear Global MHD Modes in Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Finn, J. M.; Chacon, L.

    2002-11-01

    We present studies of feedback applied to resistive wall modes in the presence of plasma rotation. The main tool used is a Newton-Krylov nonlinear reduced resistive MHD code with completely implicit time stepping[1]. The effects of proportional and derivative gain and toroidal phase shift are investigated. In addition to studying the complete stabilization of the resistive wall mode, we present results on controlling the amplitude of nonlinear modes locked to the wall but propagating slowly; we also show results on reducing the hysteresis in the locking-unlocking bifurcation diagram. [1] L. Chacon, D. A. Knoll and J. M. Finn, "An implicit, nonlinear reduced resistive MHD solver", J. Comp. Phys. v. 178, pp 15-36 (2002).

  1. Simulations of initial MHD experiments on the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    O'Connell, R.; Forest, C. B.; Goldwin, J. M.; Kendrick, R. D.; Canary, H. W.; Nornberg, M. D.; Jaun, A.

    1999-11-01

    Initial experiments for a liquid metal MHD device have been modelled using measurements from geometrically similar water experiments. In the low B limit the water flows are the same as sodium flows. Two codes have been written to predict 1) linear stability of the system and 2) the response of the system to an externally applied vertical magnetic field, using measured velocity profiles. Predictions are made for a first set of MHD experiments, including: a) demonstration of the distortion and amplification of externally applied magnetic fields by sheared flows, b) demonstration of the β-effect by measurement of the turbulent conductivity, c) demonstration of a turbulent α effect and d) characterization of magnetic eigenmodes.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldyrev, Stanislav; Perez, Jean Carlos

    The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracymore » the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the experiment.« less

  3. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    DOE PAGES

    Seyler, C. E.; Martin, M. R.

    2011-01-14

    In this study, it is shown that the two-fluid model under a generalized Ohm’s law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm’s law determines the current density to a system where Ohm’s law determines the electric field. This resultmore » is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.« less

  4. Nonlinear three-dimensional verification of the SPECYL and PIXIE3D magnetohydrodynamics codes for fusion plasmas

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Chacón, L.; Cappello, S.

    2010-08-01

    With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacón, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code in cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.

  5. Nonlinear three-dimensional verification of the SPECYL and PIXIE3D magnetohydrodynamics codes for fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfiglio, Daniele; Chacon, Luis; Cappello, Susanna

    2010-01-01

    With the increasing impact of scientific discovery via advanced computation, there is presently a strong emphasis on ensuring the mathematical correctness of computational simulation tools. Such endeavor, termed verification, is now at the center of most serious code development efforts. In this study, we address a cross-benchmark nonlinear verification study between two three-dimensional magnetohydrodynamics (3D MHD) codes for fluid modeling of fusion plasmas, SPECYL [S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [L. Chacon, Phys. Plasmas 15, 056103 (2008)], in their common limit of application: the simple viscoresistive cylindrical approximation. SPECYL is a serial code inmore » cylindrical geometry that features a spectral formulation in space and a semi-implicit temporal advance, and has been used extensively to date for reversed-field pinch studies. PIXIE3D is a massively parallel code in arbitrary curvilinear geometry that features a conservative, solenoidal finite-volume discretization in space, and a fully implicit temporal advance. The present study is, in our view, a first mandatory step in assessing the potential of any numerical 3D MHD code for fluid modeling of fusion plasmas. Excellent agreement is demonstrated over a wide range of parameters for several fusion-relevant cases in both two- and three-dimensional geometries.« less

  6. Parabolized Navier-Stokes Code for Computing Magneto-Hydrodynamic Flowfields

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B. (Technical Monitor); Tannehill, J. C.

    2003-01-01

    This report consists of two published papers, 'Computation of Magnetohydrodynamic Flows Using an Iterative PNS Algorithm' and 'Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm'.

  7. Hybrid parallelization of the XTOR-2F code for the simulation of two-fluid MHD instabilities in tokamaks

    NASA Astrophysics Data System (ADS)

    Marx, Alain; Lütjens, Hinrich

    2017-03-01

    A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.

  8. The influence of the Hall term on the development of magnetized laser-produced plasma jets

    NASA Astrophysics Data System (ADS)

    Hamlin, N. D.; Seyler, C. E.; Khiar, B.

    2018-04-01

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGON and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. This points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.

  9. Global MHD modeling of an ICME focused on the physics involved in an ICME interacting with a solar wind

    NASA Astrophysics Data System (ADS)

    An, Jun-Mo; Magara, Tetsuya; Inoue, Satoshi; Hayashi, Keiji; Tanaka, Takashi

    2015-04-01

    We developed a three-dimensional (3D) magnetohydrodynamic (MHD) code to investigate the structure of a solar wind, the properties of a coronal mass ejection (CME) and the interaction between them. This MHD code is based on the finite volume method incorporating total variation diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in a spherical coordinate system (Tanaka 1994). In this model, we first apply an MHD tomographic method (Hayashi et al. 2003) to interplanetary scintillation (IPS) observational data and derive a solar wind from the physical values obtained at 50 solar radii away from the Sun. By comparing the properties of this solar wind to observational data obtained near the Earth orbit, we confirmed that our model captures the velocity, temperature and density profiles of a solar wind near the Earth orbit. We then insert a spheromak-type CME (Kataoka et al. 2009) into the solar wind to reproduce an actual CME event occurred on 29 September 2013. This has been done by introducing a time-dependent boundary condition to the inner boundary of our simulation domain (50rs < r < 300rs). On the basis of a comparison between the properties of a simulated CME and observations near the Earth, we discuss the physics involved in an ICME interacting with a solar wind.

  10. Radial Diffusion study of the 1 June 2013 CME event using MHD simulations.

    NASA Astrophysics Data System (ADS)

    Patel, M.; Hudson, M.; Wiltberger, M. J.; Li, Z.; Boyd, A. J.

    2016-12-01

    The June 1, 2013 storm was a CME-shock driven geomagnetic storm (Dst = -119 nT) that caused a dropout affecting all radiation belt electron energies measured by the Energetic Particle, Composition and Thermal Plasma Suite (ECT) instrument on Van Allen Probes at higher L-shells following dynamic pressure enhancement in the solar wind. Lower energies (up to about 700 keV) were enhanced by the storm while MeV electrons were depleted throughout the belt. We focus on depletion through radial diffusion caused by the enhanced ULF wave activity due to the CME-shock. This study utilities the Lyon-Fedder-Mobarry (LFM) model, a 3D global magnetospheric simulation code based on the ideal MHD equations, coupled with the Magnetosphere Ionosphere Coupler (MIX) and Rice Convection Model (RCM). The MHD electric and magnetic fields with equations described by Fei et al. [JGR, 2006] are used to calculate radial diffusion coefficients (DLL). These DLL values are input into a radial diffusion code to recreate the dropouts observed by the Van Allen Probes. The importance of understanding the complex role that ULF waves play in radial transport and the effects of CME-driven storms on the relativistic energy electrons in the radiation belts can be accomplished using MHD simulations to obtain diffusion coefficients, initial phase space density and the outer boundary condition from the ECT instrument suite and a radial diffusion model to reproduce observed fluxes which compare favorably with Van Allen Probes ECT measurements.

  11. The build-up of energetic electrons triggering electron cyclotron emission bursts due to a magnetohydrodynamic mode at the edge of tokamaks

    DOE PAGES

    Li, Erzhong; Austin, Max E.; White, R. B.; ...

    2017-08-21

    Intense bursts of electron cyclotron emission (ECE) triggered by magnetohydrodynamic (MHD) instabilities such as edge localized modes (ELMs) have been observed on many tokamaks. On the DIII-D tokamak, it is found that an MHD mode is observed to trigger the ECE bursts in the low collisionality regime at the plasma edge. ORBIT-code simulations have shown that energetic electrons build up due to an interaction between barely trapped electrons with an MHD mode (f = 50 kHz for current case). The energetic tail of the electron distribution function develops a bump within several microseconds for this collisionless case. This behavior dependsmore » on the competition between the perturbing MHD mode and slowing down and pitch angle scattering due to collisions. As a result, for typical DIII-D parameters, the calculated ECE radiation transport predicted by ORBIT is in excellent agreement with ECE measurements, clarifying the electron dynamics of the ECE bursts for the first time.« less

  12. Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie; Bohm, Marvin

    2018-07-01

    The paper presents two contributions in the context of the numerical simulation of magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics (MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a way that the resulting model is consistent with the second law of thermodynamics. As a byproduct of these derivations, we show that not all of the commonly used divergence cleaning extensions of the ideal MHD equations are thermodynamically consistent. Secondly, we present a numerical scheme obtained by constructing a specific finite volume discretization that is consistent with the discrete thermodynamic entropy. It includes a mechanism to control the discrete divergence error of the magnetic field by construction and is Galilean invariant. We implement the new high-order MHD solver in the adaptive mesh refinement code FLASH where we compare the divergence cleaning efficiency to the constrained transport solver available in FLASH (unsplit staggered mesh scheme).

  13. An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.

    1994-01-01

    An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.

  14. Self-Consistent and Time-Dependent Solar Wind Models

    NASA Technical Reports Server (NTRS)

    Ong, K. K.; Musielak, Z. E.; Rosner, R.; Suess, S. T.; Sulkanen, M. E.

    1997-01-01

    We describe the first results from a self-consistent study of Alfven waves for the time-dependent, single-fluid magnetohydrodynamic (MHD) solar wind equations, using a modified version of the ZEUS MHD code. The wind models we examine are radially symmetrical and magnetized; the initial outflow is described by the standard Parker wind solution. Our study focuses on the effects of Alfven waves on the outflow and is based on solving the full set of the ideal nonlinear MHD equations. In contrast to previous studies, no assumptions regarding wave linearity, wave damping, and wave-flow interaction are made; thus, the models naturally account for the back-reaction of the wind on the waves, as well as for the nonlinear interaction between different types of MHD waves. Our results clearly demonstrate when momentum deposition by Alfven waves in the solar wind can be sufficient to explain the origin of fast streams in solar coronal holes; we discuss the range of wave amplitudes required to obtained such fast stream solutions.

  15. Manual of downburst identification for Project NIMROD. [atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1978-01-01

    Aerial photography, Doppler radar, and satellite infrared imagery are used in the two year National Intensive Meteorological Research on Downburst (NIMROD) project to provide large area mapping of strong downdrafts that induce an outward burst of damaging winds over or near the earth. Topics discussed include scales of thunderstorm outflow; aerial photographs of downburst damage; microbursts and aviation hazards; radar echo characteristics; infrared imagery from GOES/SMS; and downburts-tornado relationships. Color maps of downbursts and tornadoes are included.

  16. Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei

    I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal instability has many important implications for understanding the observations of both X-ray binaries and Active Galactic Nuclei (AGNs). However, direct comparisons between observations and the simulations require global radiation MHD simulations, which will be the main focus of my future work.

  17. User's manual for the FLORA equilibrium and stability code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freis, R.P.; Cohen, B.I.

    1985-04-01

    This document provides a user's guide to the content and use of the two-dimensional axisymmetric equilibrium and stability code FLORA. FLORA addresses the low-frequency MHD stability of long-thin axisymmetric tandem mirror systems with finite pressure and finite-larmor-radius effects. FLORA solves an initial-value problem for interchange, rotational, and ballooning stability.

  18. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  19. Overview of MST Research

    NASA Astrophysics Data System (ADS)

    Chapman, B. E.

    2017-10-01

    MST progress in advancing the RFP for (1) fusion plasma confinement with ohmic heating and minimal external magnetization, (2) predictive capability in toroidal confinement physics, and (3) basic plasma physics is summarized. Validation of key plasma models is a program priority, which is enhanced by programmable power supplies (PPS) to maximize inductive capability. The existing PPS enables access to very low plasma current, down to Ip =0.02 MA. This greatly expands the Lundquist number range S =104 -108 and allows nonlinear, 3D MHD computation using NIMROD and DEBS with dimensionless parameters that overlap those of MST plasmas. A new, second PPS will allow simultaneous PPS control of the Bp and Bt circuits. The PPS also enables MST tokamak operation, thus far focused on disruptions and RMP suppression of runaway electrons. Gyrokinetic modeling with GENE predicts unstable TEM in improved-confinement RFP plasmas. Measured fluctuations have TEM properties including a density-gradient threshold larger than for tokamak plasmas. Turbulent energization of an electron tail occurs during sawtooth reconnection. Probe measurements hint that drift waves are also excited via the turbulent cascade in standard RFP plasmas. Exploration of basic plasma science frontiers in MST RFP and tokamak plasmas is proposed as part of WiPPL, a basic science user facility. Work supported by USDoE.

  20. Advanced MHD Algorithm for Solar and Space Science: lst Year Semi Annual Progress Report

    NASA Technical Reports Server (NTRS)

    Schnack, Dalton D.; Lionello, Roberto

    2003-01-01

    We report progress for the development of MH4D for the first and second quarters of FY2004, December 29, 2002 - June 6, 2003. The present version of MH4D can now solve the full viscous and resistive MHD equations using either an explicit or a semi-implicit time advancement algorithm. In this report we describe progress in the following areas. During the two last quarters we have presented poster at the EGS-AGU-EUG Joint Assembly in Nice, France, April 6-11, 2003, and a poster at the 2003 International Sherwood Theory Conference in Corpus Christi, Texas, April 28-30 2003. In the area of code development, we have implemented the MHD equations and the semi-implicit algorithm. The new features have been tested.

  1. QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LAO,LL; SNYDER,PB; LEONARD,AW

    2003-03-01

    A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES. Several testable features of the working model of edge localized modes (ELMs) as intermediate toroidal mode number peeling-ballooning modes are evaluated quantitatively using DIII-D and JT-60U experimental data and the ELITE MHD stability code. These include the hypothesis that ELM sizes are related to the radial widths of the unstable MHD modes, the unstable modes have a strong ballooning character localized in the outboard bad curvature region, and ELM size generally becomes smaller at high edge collisionality. ELMs are triggered when the growth rates of the unstable MHD modes becomemore » significantly large. These testable features are consistent with many ELM observations in DIII-D and JT-60U discharges.« less

  2. MHD simulation of transition process from the magneto-rotational instability to magnetic turbulence by using a high-order MHD simulation scheme

    NASA Astrophysics Data System (ADS)

    Hirai, K.; Katoh, Y.; Terada, N.; Kawai, S.

    2016-12-01

    In accretion disks, magneto-rotational instability (MRI; Balbus & Hawley, 1991) makes the disk gas in the magnetic turbulent state and drives efficient mass accretion into a central star. MRI drives turbulence through the evolution of the parasitic instability (PI; Goodman & Xu, 1994), which is related to both Kelvin-Helmholtz (K-H) instability and magnetic reconnection. The wave number vector of PI is strongly affected by both magnetic diffusivity and fluid viscosity (Pessah, 2010). This fact makes MHD simulation of MRI difficult, because we need to employ the numerical diffusivity for treating discontinuities in compressible MHD simulation schemes. Therefore, it is necessary to use an MHD scheme that has both high-order accuracy so as to resolve MRI driven turbulence and small numerical diffusivity enough to treat discontinuities. We have originally developed an MHD code by employing the scheme proposed by Kawai (2013). This scheme focuses on resolving turbulence accurately by using a high-order compact difference scheme (Lele, 1992), and meanwhile, the scheme treats discontinuities by using the localized artificial diffusivity method (Kawai, 2013). Our code also employs the pipeline algorithm (Matsuura & Kato, 2007) for MPI parallelization without diminishing the accuracy of the compact difference scheme. We carry out a 3-dimensional ideal MHD simulation with a net vertical magnetic field in the local shearing box disk model. We use 256x256x128 grids. Simulation results show that the spatially averaged turbulent stress induced by MRI linearly grows until around 2.8 orbital periods, and decreases after the saturation. We confirm the strong enhancement of the K-H mode PI at a timing just before the saturation, identified by the enhancement of its anisotropic wavenumber spectra in the 2-dimensional wavenumber space. The wave number of the maximum growth of PI reproduced in the simulation result is larger than the linear analysis. This discrepancy is explained by the simulation result that a shear flow created by MRI locally becomes thinner and faster due to interactions between antiparallel vortices induced by K-H mode PI, and this structure induces small scale waves which break the shear flow itself. We report the results of the simulation, and discuss how the saturation amplitude of MRI is determined.

  3. Verification of the ideal magnetohydrodynamic response at rational surfaces in the VMEC code

    DOE PAGES

    Lazerson, Samuel A.; Loizu, Joaquim; Hirshman, Steven; ...

    2016-01-13

    The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces which possess magnetic transform (ι) which is resonant with spectral values of the perturbed boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered. This equilibrium possess a rational surface with safety factor q = 2 at a normalized flux value of 0.5. A small resonant boundary perturbation is introduced, excitingmore » a response at the resonant rational surface. The code is found to capture the plasma response as predicted by a newly developed analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational transform (ι=1/q). The VMEC code satisfactorily reproduces these theoretical results without the necessity of an explicit transform discontinuity (Δι) at the rational surface. It is found that the response across the rational surfaces depends upon both radial grid resolution and local shear (dι/dΦ, where ι is the rotational transform and Φ the enclosed toroidal flux). Calculations of an implicit Δι suggest that it does not arise due to numerical artifacts (attributed to radial finite differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory (minimum values of Δι). Scans of the rotational transform profile indicate that for experimentally relevant levels of transform shear the response becomes increasing localised. Furthermore, careful examination of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this shielding response is present, suggesting the phenomena is not limited to this verification exercise.« less

  4. Local properties of magnetic reconnection in nonlinear resistive- and extended-magnetohydrodynamic toroidal simulations of the sawtooth crash

    DOE PAGES

    Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; ...

    2016-12-15

    We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C 1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m, n) = (1, 1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibitmore » a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. Furthermore, this study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beidler, M. T.; Cassak, P. A.; Jardin, S. C.

    We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C 1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m, n) = (1, 1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibitmore » a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. Furthermore, this study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.« less

  6. Cloning and characterization of the SERK1 gene in triploid Pingyi Tiancha [Malus hupehensis (Pamp.) Rehd. var. pingyiensis Jiang] and a tetraploid hybrid strain.

    PubMed

    Zhang, L J; Dong, W X; Guo, S M; Wang, Y X; Wang, A D; Lu, X J

    2015-11-19

    This study aims to explore the roles of somatic embryogenesis receptor-like kinase (SERK) in Malus hupehensis (Pingyi Tiancha). The full-length sequences of SERK1 in triploid Pingyi Tiancha (3n) and a tetraploid hybrid strain 33# (4n) were cloned, sequenced, and designated as MhSERK1 and MhdSERK1, respectively. Multiple alignments of amino acid sequences were conducted to identify similarity between MhSERK1 and MhdSERK1 and SERK sequences in other species, and a neighbor-joining phylogenetic tree was constructed to elucidate their phylogenetic relations. Expression levels of MhSERK1 and MhdSERK1 in different tissues and developmental stages were investigated using quantitative real-time PCR. The coding sequence lengths of MhSERK1 and MhdSERK1 were 1899 bp (encoding 632 amino acids) and 1881 bp (encoding 626 amino acids), respectively. Sequence analysis demonstrated that MhSERK1 and MhdSERK1 display high similarity to SERKs in other species, with a conserved intron/exon structure that is unique to members of the SERK family. Additionally, the phylogenetic tree showed that MhSERK1 and MhdSERK1 clustered with orange CitSERK (93%). Furthermore, MhSERK1 and MhdSERK1 were mainly expressed in the reproductive organs, in particular the ovary. Their expression levels were highest in young flowers and they differed among different tissues and organs. Our results suggest that MhSERK1 and MhdSERK1 are related to plant reproduction, and that MhSERK1 is related to apomixis in triploid Pingyi Tiancha.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru; Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru

    In the MHD tokamak plasma theory, the plasma pressure is usually assumed to be isotropic. However, plasma heating by neutral beam injection and RF heating can lead to a strong anisotropy of plasma parameters and rotation of the plasma. The development of MHD equilibrium theory taking into account the plasma inertia and anisotropic pressure began a long time ago, but until now it has not been consistently applied in computational codes for engineering calculations of the plasma equilibrium and evolution in tokamak. This paper contains a detailed derivation of the axisymmetric plasma equilibrium equation in the most general form (withmore » arbitrary rotation and anisotropic pressure) and description of the specialized version of the SPIDER code. The original method of calculation of the equilibrium with an anisotropic pressure and a prescribed rotational transform profile is proposed. Examples of calculations and discussion of the results are also presented.« less

  8. EXTENSION OF THE MURAM RADIATIVE MHD CODE FOR CORONAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempel, M., E-mail: rempel@ucar.edu

    2017-01-01

    We present a new version of the MURaM radiative magnetohydrodynamics (MHD) code that allows for simulations spanning from the upper convection zone into the solar corona. We implement the relevant coronal physics in terms of optically thin radiative loss, field aligned heat conduction, and an equilibrium ionization equation of state. We artificially limit the coronal Alfvén and heat conduction speeds to computationally manageable values using an approximation to semi-relativistic MHD with an artificially reduced speed of light (Boris correction). We present example solutions ranging from quiet to active Sun in order to verify the validity of our approach. We quantifymore » the role of numerical diffusivity for the effective coronal heating. We find that the (numerical) magnetic Prandtl number determines the ratio of resistive to viscous heating and that owing to the very large magnetic Prandtl number of the solar corona, heating is expected to happen predominantly through viscous dissipation. We find that reasonable solutions can be obtained with values of the reduced speed of light just marginally larger than the maximum sound speed. Overall this leads to a fully explicit code that can compute the time evolution of the solar corona in response to photospheric driving using numerical time steps not much smaller than 0.1 s. Numerical simulations of the coronal response to flux emergence covering a time span of a few days are well within reach using this approach.« less

  9. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; Park, G. Y.; Snyder, P. B.; Chang, C. S.

    2017-06-01

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] is used in carrying out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. Simulations with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. However, the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.

  10. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    DOE PAGES

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; ...

    2017-06-08

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.« less

  11. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.« less

  12. Final report for Utah State's SciDAC CEMM contribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Eric Held

    2008-05-13

    This document represents a summary of work carried out at Utah State University in conjunction with the Center for Extended Magnetohyrodynamic Modeling (CEMM). The principal investigator, Dr. Eric Held, was aided in this work by two former graduate students, Drs. John James and Michael Addae-Kagyah, who completed their PhD's while being partially funded by CEMM monies. In addtion, Dr. Jeong-Young Ji, a postdoctoral researcher and Mukta Sharma, a graduate student were supported. The work associated with this grant focused on developing an efficient, hybrid fluid/kinetic model for fusion plasmas. Specifically, expressions for the parallel heat fluxes and stresses in magnetizedmore » plasmas were implemented and exercised in the NIMROD plasma fluid code.« less

  13. Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations

    NASA Astrophysics Data System (ADS)

    Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team

    2017-10-01

    Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.

  14. A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jeffrey

    2006-04-01

    Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical andmore » physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less

  15. Characterization of open-cycle coal-fired MHD generators. Quarterly technical summary report No. 6, October 1--December 31, 1977. [PACKAGE code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, C.E.; Yousefian, V.; Wormhoudt, J.

    1978-01-30

    Research has included theoretical modeling of important plasma chemical effects such as: conductivity reductions due to condensed slag/electron interactions; conductivity and generator efficiency reductions due to the formation of slag-related negative ion species; and the loss of alkali seed due to chemical combination with condensed slag. A summary of the major conclusions in each of these areas is presented. A major output of the modeling effort has been the development of an MHD plasma chemistry core flow model. This model has been formulated into a computer program designated the PACKAGE code (Plasma Analysis, Chemical Kinetics, And Generator Efficiency). The PACKAGEmore » code is designed to calculate the effect of coal rank, ash percentage, ash composition, air preheat temperatures, equivalence ratio, and various generator channel parameters on the overall efficiency of open-cycle, coal-fired MHD generators. A complete description of the PACKAGE code and a preliminary version of the PACKAGE user's manual are included. A laboratory measurements program involving direct, mass spectrometric sampling of the positive and negative ions formed in a one atmosphere coal combustion plasma was also completed during the contract's initial phase. The relative ion concentrations formed in a plasma due to the methane augmented combustion of pulverized Montana Rosebud coal with potassium carbonate seed and preheated air are summarized. Positive ions measured include K/sup +/, KO/sup +/, Na/sup +/, Rb/sup +/, Cs/sup +/, and CsO/sup +/, while negative ions identified include PO/sub 3//sup -/, PO/sub 2//sup -/, BO/sub 2//sup -/, OH/sup -/, SH/sup -/, and probably HCrO/sub 3/, HMoO/sub 4//sup -/, and HWO/sub 3//sup -/. Comparison of the measurements with PACKAGE code predictions are presented. Preliminary design considerations for a mass spectrometric sampling probe capable of characterizing coal combustion plasmas from full scale combustors and flow trains are presented and discussed.« less

  16. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE PAGES

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    2018-04-29

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  17. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  18. Calculation of continuum damping of Alfvén eigenmodes in tokamak and stellarator equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowden, G. W.; Hole, M. J.; Könies, A.

    2015-09-15

    In an ideal magnetohydrodynamic (MHD) plasma, shear Alfvén eigenmodes may experience dissipationless damping due to resonant interaction with the shear Alfvén continuum. This continuum damping can make a significant contribution to the overall growth/decay rate of shear Alfvén eigenmodes, with consequent implications for fast ion transport. One method for calculating continuum damping is to solve the MHD eigenvalue problem over a suitable contour in the complex plane, thereby satisfying the causality condition. Such an approach can be implemented in three-dimensional ideal MHD codes which use the Galerkin method. Analytic functions can be fitted to numerical data for equilibrium quantities inmore » order to determine the value of these quantities along the complex contour. This approach requires less resolution than the established technique of calculating damping as resistivity vanishes and is thus more computationally efficient. The complex contour method has been applied to the three-dimensional finite element ideal MHD Code for Kinetic Alfvén waves. In this paper, we discuss the application of the complex contour technique to calculate the continuum damping of global modes in tokamak as well as torsatron, W7-X and H-1NF stellarator cases. To the authors' knowledge, these stellarator calculations represent the first calculation of continuum damping for eigenmodes in fully three-dimensional equilibria. The continuum damping of global modes in W7-X and H-1NF stellarator configurations investigated is found to depend sensitively on coupling to numerous poloidal and toroidal harmonics.« less

  19. Analytical investigation of critical phenomena in MHD power generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-07-31

    Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the US U-25 Experiment, are analyzed. Also analyzed are the performance of a NASA-specified 500 MW(th) flow train and computations concerning critica issues for the scale-up of MHD Generators. The HPDE is characterized by computational simulations of both the nominal conditions and the conditions during the experimental runs. The steady-state performance is discussed along with the Hall voltage overshoots during the start-up and shutdown transients. The results of simulations of the HPDE runs with codes from the Q3D and TRANSIENT code families are compared tomore » the experimental results. The results of the simulations are in good agreement with the experimental data. Additional critica phenomena analyzed in the AEDC/HPDE are the optimal load schedules, parametric variations, the parametric dependence of the electrode voltage drops, the boundary layer behavior, near electrode phenomena with finite electrode segmentation, and current distribution in the end regions. The US U-25 experiment is characterized by computational simulations of the nominal operating conditions. The steady-state performance for the nominal design of the US U-25 experiment is analyzed, as is the dependence of performance on the mass flow rate. A NASA-specified 500 MW(th) MHD flow train is characterized for computer simulation and the electrical, transport, and thermodynamic properties at the inlet plane are analyzed. Issues for the scale-up of MHD power trains are discussed. The AEDC/HPDE performance is analyzed to compare these experimental results to scale-up rules.« less

  20. On MHD rotational transport, instabilities and dynamo action in stellar radiation zones

    NASA Astrophysics Data System (ADS)

    Mathis, Stéphane; Brun, A.-S.; Zahn, J.-P.

    2009-04-01

    Magnetic field and their related dynamical effects are thought to be important in stellar radiation zones. For instance, it has been suggested that a dynamo, sustained by a m = 1 MHD instability of toroidal magnetic fields (discovered by Tayler in 1973), could lead to a strong transport of angular momentum and of chemicals in such stable regions. We wish here to recall the different magnetic transport processes present in radiative zone and show how the dynamo can operate by recalling the conditions required to close the dynamo loop (BPol → BTor → BPol). Helped by high-resolution 3D MHD simulations using the ASH code in the solar case, we confirm the existence of the m = 1 instability, study its non-linear saturation, but we do not detect, up to a magnetic Reylnods number of 105, any dynamo action.

  1. A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Wu, Fuyuan; Ramis, Rafael; Li, Zhenghong

    2018-03-01

    A new algorithm to model resistive magnetohydrodynamics (MHD) in Z-pinches has been developed. Two-dimensional axisymmetric geometry with azimuthal magnetic field Bθ is considered. Discretization is carried out using unstructured meshes made up of arbitrarily connected polygons. The algorithm is fully conservative for mass, momentum, and energy. Matter energy and magnetic energy are managed separately. The diffusion of magnetic field is solved using a derivative of the Symmetric-Semi-Implicit scheme, Livne et al. (1985) [23], where unconditional stability is obtained without needing to solve large sparse systems of equations. This MHD package has been integrated into the radiation-hydrodynamics code MULTI-2D, Ramis et al. (2009) [20], that includes hydrodynamics, laser energy deposition, heat conduction, and radiation transport. This setup allows to simulate Z-pinch configurations relevant for Inertial Confinement Fusion.

  2. Modeling TAE Response To Nonlinear Drives

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin

    2012-10-01

    Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.

  3. MHD work related to a self-cooled Pb-17Li blanket with poloidal-radial-toroidal ducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimann, J.; Barleon, L.; Buehler, L.

    1994-12-31

    For self cooled liquid metal blankets MHD pressure drop and velocity distributions are considered as critical issues. This paper summarizes MHD work performed for a DEMO-relevant Pb-17Li blanket which uses essential characteristics of a previous ANL design: The coolant flows downwards in the rear poloidal ducts, turns by 180{degrees} at the blanket bottom and is distributed from the ascending poloidal ducts into short radial channels which feed the toroidal First Wall coolant ducts (aligned with the main magnetic field direction). The flow through the subsequent radial channels is collected again in poloidal channels and the coolant leaves the blanket segmentmore » at the top. The blanket design is based on the use of flow channel inserts (FCIs) (which means electrically thin conducting walls for MHD) for all ducts except for the toroidal FW coolant channels. MHD related issues were defined and estimations of corresponding pressure drops were performed. Previous experimental work included a proof of principle of FCIs and a detailed experiment with a single {open_quotes}poloidal{sm_bullet}toroidal{sm_bullet}poloidal{close_quotes} duct (cooperation with ANL). In parallel, a numerical code based on the Core Flow Approximation (CFA) was developed to predict pressure drop and velocity distributions for arbitrary single duct geometries.« less

  4. GPU Particle Tracking and MHD Simulations with Greatly Enhanced Computational Speed

    NASA Astrophysics Data System (ADS)

    Ziemba, T.; O'Donnell, D.; Carscadden, J.; Cash, M.; Winglee, R.; Harnett, E.

    2008-12-01

    GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for less cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU, and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. 3-D particle tracking and MHD codes have been developed using NVIDIA's CUDA and have demonstrated speed up of nearly a factor of 20 over equivalent CPU versions of the codes. Such a speed up enables new applications to develop, including real time running of radiation belt simulations and real time running of global magnetospheric simulations, both of which could provide important space weather prediction tools.

  5. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  6. Continued Development and Validation of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2015-11-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks; determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and provide an intermediate step between theory and future experiments. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (~ 36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. Results from verification of the PSI-TET extended MHD model using the GEM magnetic reconnection challenge will also be presented along with investigation of injector configurations for future SIHI experiments using Taylor state equilibrium calculations. Work supported by DoE.

  7. A Computational Study of a Circular Interface Richtmyer-Meshkov Instability in MHD

    NASA Astrophysics Data System (ADS)

    Maxon, William; Black, Wolfgang; Denissen, Nicholas; McFarland, Jacob; Los Alamos National Laboratory Collaboration; University of Missouri Shock Tube Laboratory Team

    2017-11-01

    The Richtmyer-Meshkov instability (RMI) is a hydrodynamic instability that appears in several high energy density applications such as inertial confinement fusion (ICF). In ICF, as the thermonuclear fuel is being compressed it begins to mix due to fluid instabilities including the RMI. This mixing greatly decreases the energy output. The RMI occurs when two fluids of different densities are impulsively accelerated and the pressure and density gradients are misaligned. In magnetohydrodynamics (MHD), the RMI may be suppressed by introducing a magnetic field in an electrically conducting fluid, such as a plasma. This suppression has been studied as a possible mechanism for improving confinement in ICF targets. In this study,ideal MHD simulations are performed with a circular interface impulsively accelerated by a shock wave in the presence of a magnetic field. These simulations are executed with the research code FLAG, a multiphysics, arbitrary Lagrangian/Eulerian, hydrocode developed and utilized at Los Alamos National Laboratory. The simulation results will be assessed both quantitatively and qualitatively to examine the stabilization mechanism. These simulations will guide ongoing MHD experiments at the University of Missouri Shock Tube Facility.

  8. The numerical modelling of MHD astrophysical flows with chemistry

    NASA Astrophysics Data System (ADS)

    Kulikov, I.; Chernykh, I.; Protasov, V.

    2017-10-01

    The new code for numerical simulation of magnetic hydrodynamical astrophysical flows with consideration of chemical reactions is given in the paper. At the heart of the code - the new original low-dissipation numerical method based on a combination of operator splitting approach and piecewise-parabolic method on the local stencil. The chemodynamics of the hydrogen while the turbulent formation of molecular clouds is modeled.

  9. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, R.F.; Fowler, T.K.; Bulmer, R.

    2005-01-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma.At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employedmore » a low-beta code written especially to analyze the beam injection/stabilization process,and a new code SYMTRAN (by Hua and Fowler)that solves the coupled radial and axial particle and energy transport in a K-S T-M. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values.The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma.Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging.Our studies have confirmed the viability of the K-S T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution.In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M.« less

  10. Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post, R F; Fowler, T K; Bulmer, R

    2004-07-15

    The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies havemore » employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M« less

  11. Constrained-transport Magnetohydrodynamics with Adaptive Mesh Refinement in CHARM

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Martin, Daniel F.

    2011-07-01

    We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.

  12. Poloidal structure of the plasma response to n = 1 Resonant Magnetic Perturbations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Marrelli, L.; Bettini, P.; Piovesan, P.; Terranova, D.; Giannone, L.; Igochine, V.; Maraschek, M.; Suttrop, W.; Teschke, M.; Liu, Y. Q.; Ryan, D.; Eurofusion Mst1 Team; ASDEX Upgrade Team

    2017-10-01

    The hybrid scenario, a candidate for high-beta steady-state tokamak operations, becomes highly sensitive to 3D magnetic field near the no-wall limit. A predictive understanding of the plasma response to 3D fields near ideal MHD limits in terms of validated MHD stability codes is therefore important in order to safely operate future devices. Slowly rotating (5 - 10 Hz) n = 1 external magnetic fields have been applied in hybrid discharges in ASDEX Upgrade for an experimental characterization: the global n = 1 kink response has been measured by means of SXR and complete poloidal arrays of bθ probes located at different toroidal angles and compared to predictions of MHD codes such as MARS-F and V3FIT-VMEC. A Least-Squares Spectral Analysis approach has been developed together with a Monte Carlo technique to extract the small plasma response and its confidence interval from the noisy magnetic signals. MARS-F correctly reproduces the poloidal structure of the n = 1 measurements: for example, the dependence of the dominant poloidal mode number at the plasma edge from q95 is the same as in the experiment. Similar comparisons with V3FIT-VMEC and will be presented. See author list of ``H. Meyer et al. 2017 Nucl. Fusion 57 102014''.

  13. Eater and draper are involved in the periostial haemocyte immune response in the mosquito Anopheles gambiae.

    PubMed

    Sigle, L T; Hillyer, J F

    2018-03-09

    Haemocytes respond to infection by phagocytosing pathogens, producing the enzymes that drive the phenoloxidase-based melanization cascade, secreting lytic factors, and producing other humoral proteins. A subset of haemocytes, called periostial haemocytes, aggregate on the surface of the heart of mosquitoes and kill pathogens in areas of high haemolymph flow. Periostial haemocytes are always present, but an infection induces the recruitment of additional haemocytes to these regions. Here, we tested whether members of the Nimrod gene family are involved in the periostial immune response of the African malaria mosquito, Anopheles gambiae. Using organismal manipulations, RNA interference (RNAi) and microscopy, we show that, following an infection with Escherichia coli, nimrod - the orthologue of Drosophila NimB2 - is not involved in periostial responses. At 4 h postinfection, however, RNAi-based knockdown of draper results in a marginal increase in the number of periostial haemocytes and a doubling of E. coli accumulation at the periostial regions. Finally, at 24 h postinfection, knockdown of eater decreases the number of periostial haemocytes and decreases the phagocytosis of E. coli on the surface of the heart. Phagocytosis of bacteria is more prevalent in the periostial regions of the mid abdominal segments, and knockdown of draper, nimrod or eater does not alter this distribution. Finally, knockdown of Nimrod family genes did not have a meaningful effect on the accumulation of melanin at the periostial regions. This study identifies roles for eater and draper in the functional integration of the mosquito immune and circulatory systems. © 2018 The Royal Entomological Society.

  14. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  15. The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in Drosophila melanogaster

    PubMed Central

    Bretscher, Andrew J.; Honti, Viktor; Binggeli, Olivier; Burri, Olivier; Poidevin, Mickael; Kurucz, Éva; Zsámboki, János; Andó, István; Lemaitre, Bruno

    2015-01-01

    ABSTRACT Eater is an EGF-like repeat transmembrane receptor of the Nimrod family and is expressed in Drosophila hemocytes. Eater was initially identified for its role in phagocytosis of both Gram-positive and Gram-negative bacteria. We have deleted eater and show that it appears to be required for efficient phagocytosis of Gram-positive but not Gram-negative bacteria. However, the most striking phenotype of eater deficient larvae is the near absence of sessile hemocytes, both plasmatocyte and crystal cell types. The eater deletion is the first loss of function mutation identified that causes absence of the sessile hemocyte state. Our study shows that Eater is required cell-autonomously in plasmatocytes for sessility. However, the presence of crystal cells in the sessile compartment requires Eater in plasmatocytes. We also show that eater deficient hemocytes exhibit a cell adhesion defect. Collectively, our data uncovers a new requirement of Eater in enabling hemocyte attachment at the sessile compartment and points to a possible role of Nimrod family members in hemocyte adhesion. PMID:25681394

  16. The Nimrod transmembrane receptor Eater is required for hemocyte attachment to the sessile compartment in Drosophila melanogaster.

    PubMed

    Bretscher, Andrew J; Honti, Viktor; Binggeli, Olivier; Burri, Olivier; Poidevin, Mickael; Kurucz, Éva; Zsámboki, János; Andó, István; Lemaitre, Bruno

    2015-02-13

    Eater is an EGF-like repeat transmembrane receptor of the Nimrod family and is expressed in Drosophila hemocytes. Eater was initially identified for its role in phagocytosis of both Gram-positive and Gram-negative bacteria. We have deleted eater and show that it appears to be required for efficient phagocytosis of Gram-positive but not Gram-negative bacteria. However, the most striking phenotype of eater deficient larvae is the near absence of sessile hemocytes, both plasmatocyte and crystal cell types. The eater deletion is the first loss of function mutation identified that causes absence of the sessile hemocyte state. Our study shows that Eater is required cell-autonomously in plasmatocytes for sessility. However, the presence of crystal cells in the sessile compartment requires Eater in plasmatocytes. We also show that eater deficient hemocytes exhibit a cell adhesion defect. Collectively, our data uncovers a new requirement of Eater in enabling hemocyte attachment at the sessile compartment and points to a possible role of Nimrod family members in hemocyte adhesion. © 2015. Published by The Company of Biologists Ltd.

  17. An MHD simulation of By-dependent magnetospheric convection and field-aligned currents during northward IMF

    NASA Technical Reports Server (NTRS)

    Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.

    1985-01-01

    A three-dimensional MHD simulation code is used to model the magnetospheric configuration when the IMF has both a northward B(z) component and a B(y) component in the east-west direction. Projections of the plasma pressure, the field-aligned velocity, the field-aligned vorticity, and the field-aligned current along the magnetic field lines into the northern ionosphere are shown and discussed. Cross-sectional patterns of these parameters are shown. The results demonstrate that the B(y) component of the IMF strongly influences the plasma sheet configuration and the magnetospheric convection pattern.

  18. MHD Simulation of the HIT-SI Experiment

    NASA Astrophysics Data System (ADS)

    Marklin, George

    2003-10-01

    The Helicity Injected Torus (HIT) experiment at the University of Washington has been reconfigured into a high beta spheromak with steady state AC current drive [1]. Helicity is injected by two half torus Reversed Field Pinches (RFP's) connected to the ends of the cylindrically symmetric flux conserver, rotated by 90 degrees from each other. The RFP's are driven with sinusoidally varying voltage and flux. Each side has its voltage and flux in phase, but is 90 degrees out of phase from the other side. The helicity injection rate, which is proportional to the voltage times the flux, goes like sin(wt)^2 on one side and cos(wt)^2 on the other, making the total injection rate constant in time. The complex multiply connected 3-dimensional geometry of this device make it difficult to simulate with existing codes that typically use a structured mesh. This poster will describe a new 3D MHD simulation code and a new 3D Taylor state code which both use an unstructured finite element mesh. The mesh is generated from a CAD-like description of an arbitrary arrangement of 3D geometrical objects. Taylor states in the HIT-SI geometry will be shown for different combinations of fluxes in the two injectors. MHD simulation results will be shown starting from a Taylor state with uniform density and temperature and continuing through several cycles of time dependent helicity injection. Field line tracing plots will show the quality of the flux surfaces at various stages in the injection cycle. [1] T. R. Jarboe, Fusion Technology, vol. 36, p. 85, 1999

  19. Numerical analysis of real gas MHD flow on two-dimensional self-field MPD thrusters

    NASA Astrophysics Data System (ADS)

    Xisto, Carlos M.; Páscoa, José C.; Oliveira, Paulo J.

    2015-07-01

    A self-field magnetoplasmadynamic (MPD) thruster is a low-thrust electric propulsion space-system that enables the usage of magnetohydrodynamic (MHD) principles for accelerating a plasma flow towards high speed exhaust velocities. It can produce an high specific impulse, making it suitable for long duration interplanetary space missions. In this paper numerical results obtained with a new code, which is being developed at C-MAST (Centre for Mechanical and Aerospace Technologies), for a two-dimensional self-field MPD thruster are presented. The numerical model is based on the macroscopic MHD equations for compressible and electrically resistive flow and is able to predict the two most important thrust mechanisms that are associated with this kind of propulsion system, namely the thermal thrust and the electromagnetic thrust. Moreover, due to the range of very high temperatures that could occur during the operation of the MPD, it also includes a real gas model for argon.

  20. High fidelity studies of exploding foil initiator bridges, Part 3: ALEGRA MHD simulations

    NASA Astrophysics Data System (ADS)

    Neal, William; Garasi, Christopher

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, and predict a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this third paper of a three part study, the experimental results presented in part 2 are compared against 3-dimensional MHD simulations. This improved experimental capability, along with advanced simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.

  1. Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghaie, S.

    2008-01-01

    Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.

  2. MHD simulation of plasma compression experiments

    NASA Astrophysics Data System (ADS)

    Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter

    2017-10-01

    General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.

  3. Damping Rate Measurements of Medium n Alfv'en Eigenmodes in JET

    NASA Astrophysics Data System (ADS)

    Klein, Alexander; Testa, Duccio; Snipes, Joseph; Fasoli, Ambrogio; Carfantan, Hervé

    2007-11-01

    Alfv'en Eigenmodes (AE's) with mode numbers 5 < n < 20 are expected to be unstable in burning tokamaks and may lead to loss of fast particle confinement. The active MHD spectroscopy program at JET has already provided a wealth of information about low n (n <= 2) AE's in the past decade, but a recently installed array of four antennas is capable of driving higher mode numbered (n < 100, 30 < f < 350 kHz) perturbations. In the latest JET campaign, the damping rates for several types of AE's were measured parasitically in a wide range of tokamak scenarios. We review the active MHD diagnostic and present the first measurements of medium-n AE stability on JET, then describe future plans for the active MHD spectroscopy project. The data analysis involves a novel method for resolving multiple AE's that exist at identical frequencies, which uses techniques based on the SparSpec code.

  4. Kinetic effects on turbulence driven by the magnetorotational instability in black hole accretion

    NASA Astrophysics Data System (ADS)

    Sharma, Prateek

    Many astrophysical objects (e.g., spiral galaxies, the solar system, Saturn's rings, and luminous disks around compact objects) occur in the form of a disk. One of the important astrophysical problems is to understand how rotationally supported disks lose angular momentum, and accrete towards the bottom of the gravitational potential, converting gravitational energy into thermal (and radiation) energy. The magnetorotational instability (MRI), an instability causing turbulent transport in ionized accretion disks, is studied in the kinetic regime. Kinetic effects are important because radiatively inefficient accretion flows (RIAFs), like the one around the supermassive black hole in the center of our Galaxy, are collisionless. The ion Larmor radius is tiny compared to the scale of MHD turbulence so that the drift kinetic equation (DKE), obtained by averaging the Vlasov equation over the fast gyromotion, is appropriate for evolving the distribution function. The kinetic MHD formalism, based on the moments of the DKE, is used for linear and nonlinear studies. A Landau fluid closure for parallel heat flux, which models kinetic effects like collisionless damping, is used to close the moment hierarchy. We show, that the kinetic MHD and drift kinetic formalisms give the same set of linear modes for a Keplerian disk. The BGK collision operator is used to study the transition of the MRI from kinetic to the MHD regime. The ZEUS MHD code is modified to include the key kinetic MHD terms: anisotropy, pressure tensor and anisotropic thermal conduction. The modified code is used to simulate the collisionless MRI in a local shearing box. As magnetic field is amplified by the MRI, pressure anisotropy ( p [perpendicular] > p || ) is created because of the adiabatic invariance (m 0( p [perpendicular] / B ). Larmor radius scale instabilities---mirror, ion-cyclotron, and firehose---are excited even at small pressure anisotropies (D p/p ~ 1/b). Pressure isotropization due to pitch angle scattering by these instabilities is included as a subgrid model. A key result of the kinetic MHD simulations is that the anisotropy stress can be as large as the Maxwell stress. It is shown, with the help of simple tests, that the centered differencing of anisotropic thermal conduction can cause the heat to flow from lower to higher temperatures, giving negative temperatures in regions with large temperature gradients. A new method, based on limiting the transverse temperature gradient, allows heat to flow only from higher to lower temperatures. Several tests and convergence studies are presented to compare the different methods.

  5. 3D Equilibrium Effects Due to RMP Application on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Lazerson, E. Lazarus, S. Hudson, N. Pablant and D. Gates

    2012-06-20

    The mitigation and suppression of edge localized modes (ELMs) through application of resonant magnetic perturbations (RMPs) in Tokamak plasmas is a well documented phenomenon [1]. Vacuum calculations suggest the formation of edge islands and stochastic regions when RMPs are applied to the axisymmetric equilibria. Self-consistent calculations of the plasma equilibrium with the VMEC [2] and SPEC [3] codes have been performed for an up-down symmetric shot (142603) in DIII-D. In these codes, a self-consistent calculation of the plasma response due to the RMP coils is calculated. The VMEC code globally enforces the constraints of ideal MHD; consequently, a continuously nestedmore » family of flux surfaces is enforced throughout the plasma domain. This approach necessarily precludes the observation of islands or field-line chaos. The SPEC code relaxes the constraints of ideal MHD locally, and allows for islands and field line chaos at or near the rational surfaces. Equilibria with finite pressure gradients are approximated by a set of discrete "ideal-interfaces" at the most irrational flux surfaces and where the strongest pressure gradients are observed. Both the VMEC and SPEC calculations are initialized from EFIT reconstructions of the plasma that are consistent with the experimental pressure and current profiles. A 3D reconstruction using the STELLOPT code, which fits VMEC equilibria to experimental measurements, has also been performed. Comparisons between the equilibria generated by the 3D codes and between STELLOPT and EFIT are presented.« less

  6. 3D Equilibrium Effects Due to RMP Application on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazerson, S.; Lazarus, E.; Hudson, S.

    2012-06-20

    The mitigation and suppression of edge localized modes (ELMs) through application of resonant magnetic perturbations (RMPs) in Tokamak plasmas is a well documented phenomenon. Vacuum calculations suggest the formation of edge islands and stochastic regions when RMPs are applied to the axisymmetric equilibria. Self-consistent calculations of the plasma equilibrium with the VMEC and SPEC codes have been performed for an up-down symmetric shot in DIII-D. In these codes, a self-consistent calculation of the plasma response due to the RMP coils is calculated. The VMEC code globally enforces the constraints of ideal MHD; consequently, a continuously nested family of flux surfacesmore » is enforced throughout the plasma domain. This approach necessarily precludes the observation of islands or field-line chaos. The SPEC code relaxes the constraints of ideal MHD locally, and allows for islands and field line chaos at or near the rational surfaces. Equilibria with finite pressure gradients are approximated by a set of discrete "ideal-interfaces" at the most irrational flux surfaces and where the strongest pressure gradients are observed. Both the VMEC and SPEC calculations are initialized from EFIT reconstructions of the plasma that are consistent with the experimental pressure and current profiles. A 3D reconstruction using the STELLOPT code, which fits VMEC equilibria to experimental measurements, has also been performed. Comparisons between the equilibria generated by the 3D codes and between STELLOPT and EFIT are presented.« less

  7. High energy density Z-pinch plasmas using flow stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shumlak, U., E-mail: shumlak@uw.edu; Golingo, R. P., E-mail: shumlak@uw.edu; Nelson, B. A., E-mail: shumlak@uw.edu

    The ZaP Flow Z-Pinch research project[1] at the University of Washington investigates the effect of sheared flows on MHD instabilities. Axially flowing Z-pinch plasmas are produced that are 100 cm long with a 1 cm radius. The plasma remains quiescent for many radial Alfvén times and axial flow times. The quiescent periods are characterized by low magnetic mode activity measured at several locations along the plasma column and by stationary visible plasma emission. Plasma evolution is modeled with high-resolution simulation codes – Mach2, WARPX, NIMROD, and HiFi. Plasma flow profiles are experimentally measured with a multi-chord ion Doppler spectrometer. Amore » sheared flow profile is observed to be coincident with the quiescent period, and is consistent with classical plasma viscosity. Equilibrium is determined by diagnostic measurements: interferometry for density; spectroscopy for ion temperature, plasma flow, and density[2]; Thomson scattering for electron temperature; Zeeman splitting for internal magnetic field measurements[3]; and fast framing photography for global structure. Wall stabilization has been investigated computationally and experimentally by removing 70% of the surrounding conducting wall to demonstrate no change in stability behavior.[4] Experimental evidence suggests that the plasma lifetime is only limited by plasma supply and current waveform. The flow Z-pinch concept provides an approach to achieve high energy density plasmas,[5] which are large, easy to diagnose, and persist for extended durations. A new experiment, ZaP-HD, has been built to investigate this approach by separating the flow Z-pinch formation from the radial compression using a triaxial-electrode configuration. This innovation allows more detailed investigations of the sheared flow stabilizing effect, and it allows compression to much higher densities than previously achieved on ZaP by reducing the linear density and increasing the pinch current. Experimental results and scaling analyses will be presented. In addition to studying fundamental plasma science and high energy density physics, the ZaP and ZaP-HD experiments can be applied to laboratory astrophysics.« less

  8. Verification of long wavelength electromagnetic modes with a gyrokinetic-fluid hybrid model in the XGC code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, Robert; Lang, Jianying; Chang, C. S.

    As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons. Here, two representative long wavelength modes, shear Alfven waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries.

  9. Verification of long wavelength electromagnetic modes with a gyrokinetic-fluid hybrid model in the XGC code

    DOE PAGES

    Hager, Robert; Lang, Jianying; Chang, C. S.; ...

    2017-05-24

    As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons. Here, two representative long wavelength modes, shear Alfven waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries.

  10. Exact Magnetic Diffusion Solutions for Magnetohydrodynamic Code Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D S

    In this paper, the authors present several new exact analytic space and time dependent solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to verify several different elements of an MHD implementation: magnetic diffusion, external circuit time integration, current and voltage energy sources, spatially dependent conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D simulation results from the Ares code.

  11. Calculation of Eddy Currents In the CTH Vacuum Vessel and Coil Frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Zolfaghari, A. Brooks, A. Michaels, J. Hanson, and G. Hartwell

    2012-09-25

    Knowledge of eddy currents in the vacuum vessel walls and nearby conducting support structures can significantly contribute to the accuracy of Magnetohydrodynamics (MHD) equilibrium reconstruction in toroidal plasmas. Moreover, the magnetic fields produced by the eddy currents could generate error fields that may give rise to islands at rational surfaces or cause field lines to become chaotic. In the Compact Toroidal Hybrid (CTH) device (R0 = 0.75 m, a = 0.29 m, B ≤ 0.7 T), the primary driver of the eddy currents during the plasma discharge is the changing flux of the ohmic heating transformer. Electromagnetic simulations are usedmore » to calculate eddy current paths and profile in the vacuum vessel and in the coil frame pieces with known time dependent currents in the ohmic heating coils. MAXWELL and SPARK codes were used for the Electromagnetic modeling and simulation. MAXWELL code was used for detailed 3D finite-element analysis of the eddy currents in the structures. SPARK code was used to calculate the eddy currents in the structures as modeled with shell/surface elements, with each element representing a current loop. In both cases current filaments representing the eddy currents were prepared for input into VMEC code for MHD equilibrium reconstruction of the plasma discharge. __________________________________________________« less

  12. Data-driven Modeling of the Solar Corona by a New Three-dimensional Path-conservative Osher-Solomon MHD Model

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Li, Caixia; Xiang, Changqing; Zhang, Man; Li, HuiChao; Wei, Fengsi

    2017-11-01

    A second-order path-conservative scheme with a Godunov-type finite-volume method has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in three-dimensional spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependent dissipation matrix. For simplicity, the straight line segment path is used, and the path integral is evaluated in a fully numerical way by a high-order numerical Gauss-Legendre quadrature. Besides its very close similarity to Godunov type, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable, and complete, in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the path-conservative scheme is realized for the generalized Lagrange multiplier and the extended generalized Lagrange multiplier formulation of solar wind MHD systems. This new model that is second order in space and time is written in the FORTRAN language with Message Passing Interface parallelization and validated in modeling the time-dependent large-scale structure of the solar corona, driven continuously by Global Oscillation Network Group data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from 2009 October 9 to 2009 December 29 show its capability of producing a structured solar corona in agreement with solar coronal observations.

  13. Data-Driven Modeling of Solar Corona by a New 3d Path-Conservative Osher-Solomon MHD Odel

    NASA Astrophysics Data System (ADS)

    Feng, X. S.; Li, C.

    2017-12-01

    A second-order path-conservative scheme with Godunov-type finite volume method (FVM) has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in 3D spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependentdissipation matrix. For simplicity, the straight line segment path is used and the path-integral is evaluated in a fully numerical way by high-order numerical Gauss-Legendre quadrature. Besides its closest similarity to Godunov, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable and complete in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the pathconservative scheme is realized for the generalized Lagrange multiplier (GLM) and the extended generalized Lagrange multiplier (EGLM) formulation of solar wind MHD systems. This new model of second-order in space and time is written in FORTRAN language with Message Passing Interface (MPI) parallelization, and validated in modeling time-dependent large-scale structure of solar corona, driven continuously by the Global Oscillation Network Group (GONG) data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from October 9th, 2009 to December 29th, 2009 , & Year 2008 to show its capability of producing structured solar wind in agreement with the observations.

  14. Numerical analysis on the cutting and finishing efficiency of MRAFF process

    NASA Astrophysics Data System (ADS)

    Lih, F. L.

    2016-03-01

    The aim of the present research is to conduct a numerical study of the characteristic of a two-phase magnetorheological fluid with different operation conditions by the finite volume method called SIMPLE with an add-on MHD code.

  15. Advancing High Current Startup via Localized Helicity Injection in the PEGASUS Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Hinson, E. T.; Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.

    2013-10-01

    Non-solenoidal startup via local helicity injection (LHI) and poloidal field induction is used to produce Ip = 0 . 17 MA tokamak discharges. Impurity contamination has been reduced to negligible levels by use of conical frustum cathode geometry and local scraper limiters. Attainable currents are governed by global limits of helicity and energy balance, and Taylor relaxation. A simple lumped parameter model based on these limits is used to project discharge evolution, and indicates that attaining 1 MA in NSTX-U will require LHI-driven effective loop voltages to dominate contributions from dLp / dt . This regime contrasts with results to date and will be tested at 0.3 MA in PEGASUS with a new integrated multi-injector array. Injector impedance characteristics are consistent with magnetically-limited regimes observed in higher-power foilless diodes. Bursts of MHD are measured on time scales of order ~ 100 μ s, and correlate with rapid equilibrium changes, discrete rises in Ip, redistribution of the toroidal current, ion heating (Ti ~ 1 keV), transient drops in injector voltage, and apparent n = 1 line-tied kink activity at the injector. NIMROD simulations of high-field-side HI discharges in PEGASUS are in qualitative agreement, suggesting Ip buildup results from inward propagating toroidal current loops created by intermittent reconnection of injected current streams. Work supported by US DOE Grant DE-FG02-96ER54375.

  16. Extended MHD Effects in High Energy Density Experiments

    NASA Astrophysics Data System (ADS)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation results. Collaborator: Nathaniel D. Hamlin, School of Electrical and Computer Engineering, Cornell University, Ithaca, New York.

  17. CISM: Modeling the Sun-Earth Connection

    NASA Astrophysics Data System (ADS)

    Hughes, W. J.; Team, T. C.

    2003-12-01

    The Center for Integrated SpaceWeather Modeling (CISM), an NSF Science and Technology Center that is a consortium of ten institutions headed by Boston University, has as its primary goal the development of a series of ever improving versions of a comprehensive physics-based simulation model that describes the space environment from the Sun to the Earth. CISM will do this by coupling existing models of components of the system. In this paper we review our progress to date and summarize our plans. We discuss results of initial coupling of MHD models of the corona and solar wind, and of a global magnetospheric MHD model with a global ionosphere/thermosphere model, a radiation belt model, and a ring current particle model. Coupling the SAIC coronal MHD model and the U Colorado/SEC solar wind MHD codes allows us to track CMEs from the base of the corona to 1 AU. The results show how shocks form and develop in the heliosphere, and how the CME flattens into a pancake shape by the time it reaches earth. Coupling the Lyon/Fedder/Mobarry global MHD model with the Rice Convection Model and the NCAR TIE-GCM/TING model allows full dynamic coupling between the magnetosphere, the ionosphere/thermosphere, and the hot plasma in the inner magnetosphere. Including the Dartmouth radiation belt model shows how the radiation belts evolve in a realistic magnetosphere.

  18. An Iterative Interplanetary Scintillation (IPS) Analysis Using Time-dependent 3-D MHD Models as Kernels

    NASA Astrophysics Data System (ADS)

    Jackson, B. V.; Yu, H. S.; Hick, P. P.; Buffington, A.; Odstrcil, D.; Kim, T. K.; Pogorelov, N. V.; Tokumaru, M.; Bisi, M. M.; Kim, J.; Yun, J.

    2017-12-01

    The University of California, San Diego has developed an iterative remote-sensing time-dependent three-dimensional (3-D) reconstruction technique which provides volumetric maps of density, velocity, and magnetic field. We have applied this technique in near real time for over 15 years with a kinematic model approximation to fit data from ground-based interplanetary scintillation (IPS) observations. Our modeling concept extends volumetric data from an inner boundary placed above the Alfvén surface out to the inner heliosphere. We now use this technique to drive 3-D MHD models at their inner boundary and generate output 3-D data files that are fit to remotely-sensed observations (in this case IPS observations), and iterated. These analyses are also iteratively fit to in-situ spacecraft measurements near Earth. To facilitate this process, we have developed a traceback from input 3-D MHD volumes to yield an updated boundary in density, temperature, and velocity, which also includes magnetic-field components. Here we will show examples of this analysis using the ENLIL 3D-MHD and the University of Alabama Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) heliospheric codes. These examples help refine poorly-known 3-D MHD variables (i.e., density, temperature), and parameters (gamma) by fitting heliospheric remotely-sensed data between the region near the solar surface and in-situ measurements near Earth.

  19. Alternative modeling methods for plasma-based Rf ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. Inmore » particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.« less

  20. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.

  1. Minerva: Cylindrical coordinate extension for Athena

    NASA Astrophysics Data System (ADS)

    Skinner, M. Aaron; Ostriker, Eve C.

    2013-02-01

    Minerva is a cylindrical coordinate extension of the Athena astrophysical MHD code of Stone, Gardiner, Teuben, and Hawley. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully.

  2. Proceedings of the STRESS Data Review Meeting, 29-30 November 1977

    DTIC Science & Technology

    1978-06-01

    INSULATORS MAGNETOMETER BEACON ANTENNA fe?^ S-BAND ANTENNA- -DC PROBE SENSING ELEMENT PLASMA FREQUENCY PROBE MONOPOLE -GUARD ELECTRODE PLASMA...have demonstrated, using calculational results from MICE and MRHYDE (MHD computer codes), that the gradient-drift instability is the one primarily

  3. Study of Second Stability for Global ITG Modes in MHD-stable Equilibria

    NASA Astrophysics Data System (ADS)

    Fivaz, Mathieu; Sauter, Olivier; Appert, Kurt; Tran, Trach-Minh; Vaclavik, Jan

    1997-11-01

    We study finite pressure effects on the Ion Temperature Gradient (ITG) instabilities; these modes are stabilized when the magnetic field gradient is reversed at high β [1]. This second stability regime for ITG modes is studied in details with a global linear gyrokinetic Particle-In-Cell code which takes the full toroidal MHD equilibrium data from the equilibrium solver CHEASE [2]. Both the trapped-ion and the toroidal ITG regimes are explored. In contrast to second stability for MHD ballooning modes, low magnetic shear and high values of the safety factor do not facilitate strongly the access to the second-stable ITG regime. The consequences for anomalous ion heat transport in tokamaks are explored. We use the results to find optimized configurations that are stable to ideal MHD modes for both the long (kink) and short (ballooning) wavelengths and where the ITG modes are stable or have very low growth rates; such configurations might present very low level of anomalous transport. [1] M. Fivaz, T.M. Tran, K. Appert, J. Vaclavik and S. E. Parker, Phys. Rev. Lett. 78, 1997, p. 3471 [2] H. Lütjens, A. Bondeson and O. Sauter, Comput. Phys. Commun. 97, 1996, p. 219

  4. A Comparison of Spectral Element and Finite Difference Methods Using Statically Refined Nonconforming Grids for the MHD Island Coalescence Instability Problem

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Bhattacharjee, A.

    2009-04-01

    A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (\\ci) in two dimensions. \\ci is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.

  5. Non-ideal magnetohydrodynamics on a moving mesh

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker

    2018-05-01

    In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.

  6. Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Lebiga, O.; Santos-Lima, R.; Yan, H.

    2018-05-01

    The transport of cosmic rays (CRs) is crucial for the understanding of almost all high-energy phenomena. Both pre-existing large-scale magnetohydrodynamic (MHD) turbulence and locally generated turbulence through plasma instabilities are important for the CR propagation in astrophysical media. The potential role of the resonant instability triggered by CR pressure anisotropy to regulate the parallel spatial diffusion of low-energy CRs (≲100 GeV) in the interstellar and intracluster medium of galaxies has been shown in previous theoretical works. This work aims to study the gyroresonance instability via direct numerical simulations, in order to access quantitatively the wave-particle scattering rates. For this, we employ a 1D PIC-MHD code to follow the growth and saturation of the gyroresonance instability. We extract from the simulations the pitch-angle diffusion coefficient Dμμ produced by the instability during the linear and saturation phases, and a very good agreement (within a factor of 3) is found with the values predicted by the quasi-linear theory (QLT). Our results support the applicability of the QLT for modelling the scattering of low-energy CRs by the gyroresonance instability in the complex interplay between this instability and the large-scale MHD turbulence.

  7. Modeling of 3D magnetic equilibrium effects on edge turbulence stability during RMP ELM suppression in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.

    Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less

  8. Study of the Transition from MRI to Magnetic Turbulence via Parasitic Instability by a High-order MHD Simulation Code

    NASA Astrophysics Data System (ADS)

    Hirai, Kenichiro; Katoh, Yuto; Terada, Naoki; Kawai, Soshi

    2018-02-01

    Magnetic turbulence in accretion disks under ideal magnetohydrodynamic (MHD) conditions is expected to be driven by the magneto-rotational instability (MRI) followed by secondary parasitic instabilities. We develop a three-dimensional ideal MHD code that can accurately resolve turbulent structures, and carry out simulations with a net vertical magnetic field in a local shearing box disk model to investigate the role of parasitic instabilities in the formation process of magnetic turbulence. Our simulations reveal that a highly anisotropic Kelvin–Helmholtz (K–H) mode parasitic instability evolves just before the first peak in turbulent stress and then breaks large-scale shear flows created by MRI. The wavenumber of the enhanced parasitic instability is larger than the theoretical estimate, because the shear flow layers sometimes become thinner than those assumed in the linear analysis. We also find that interaction between antiparallel vortices caused by the K–H mode parasitic instability induces small-scale waves that break the shear flows. On the other hand, at repeated peaks in the nonlinear phase, anisotropic wavenumber spectra are observed only in the small wavenumber region and isotropic waves dominate at large wavenumbers unlike for the first peak. Restructured channel flows due to MRI at the peaks in nonlinear phase seem to be collapsed by the advection of small-scale shear structures into the restructured flow and resultant mixing.

  9. Modeling of 3D magnetic equilibrium effects on edge turbulence stability during RMP ELM suppression in tokamaks

    DOE PAGES

    Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.; ...

    2017-07-28

    Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazerson, Samuel A.; Loizu, Joaquim; Hirshman, Steven

    The VMEC nonlinear ideal MHD equilibrium code [S. P. Hirshman and J. C. Whitson, Phys. Fluids 26, 3553 (1983)] is compared against analytic linear ideal MHD theory in a screw-pinch-like configuration. The focus of such analysis is to verify the ideal MHD response at magnetic surfaces which possess magnetic transform (ι) which is resonant with spectral values of the perturbed boundary harmonics. A large aspect ratio circular cross section zero-beta equilibrium is considered. This equilibrium possess a rational surface with safety factor q = 2 at a normalized flux value of 0.5. A small resonant boundary perturbation is introduced, excitingmore » a response at the resonant rational surface. The code is found to capture the plasma response as predicted by a newly developed analytic theory that ensures the existence of nested flux surfaces by allowing for a jump in rotational transform (ι=1/q). The VMEC code satisfactorily reproduces these theoretical results without the necessity of an explicit transform discontinuity (Δι) at the rational surface. It is found that the response across the rational surfaces depends upon both radial grid resolution and local shear (dι/dΦ, where ι is the rotational transform and Φ the enclosed toroidal flux). Calculations of an implicit Δι suggest that it does not arise due to numerical artifacts (attributed to radial finite differences in VMEC) or existence conditions for flux surfaces as predicted by linear theory (minimum values of Δι). Scans of the rotational transform profile indicate that for experimentally relevant levels of transform shear the response becomes increasing localised. Furthermore, careful examination of a large experimental tokamak equilibrium, with applied resonant fields, indicates that this shielding response is present, suggesting the phenomena is not limited to this verification exercise.« less

  11. Nonlinear 3D MHD verification study: SpeCyl and PIXIE3D codes for RFP and Tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Cappello, S.; Chacon, L.

    2010-11-01

    A strong emphasis is presently placed in the fusion community on reaching predictive capability of computational models. An essential requirement of such endeavor is the process of assessing the mathematical correctness of computational tools, termed verification [1]. We present here a successful nonlinear cross-benchmark verification study between the 3D nonlinear MHD codes SpeCyl [2] and PIXIE3D [3]. Excellent quantitative agreement is obtained in both 2D and 3D nonlinear visco-resistive dynamics for reversed-field pinch (RFP) and tokamak configurations [4]. RFP dynamics, in particular, lends itself as an ideal non trivial test-bed for 3D nonlinear verification. Perspectives for future application of the fully-implicit parallel code PIXIE3D to RFP physics, in particular to address open issues on RFP helical self-organization, will be provided. [4pt] [1] M. Greenwald, Phys. Plasmas 17, 058101 (2010) [0pt] [2] S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996) [0pt] [3] L. Chac'on, Phys. Plasmas 15, 056103 (2008) [0pt] [4] D. Bonfiglio, L. Chac'on and S. Cappello, Phys. Plasmas 17 (2010)

  12. Discovery and characterization of two Nimrod superfamily members in Anopheles gambiae.

    PubMed

    Midega, Janet; Blight, Joshua; Lombardo, Fabrizio; Povelones, Michael; Kafatos, Fotis; Christophides, George K

    2013-12-01

    Anti-bacterial proteins in mosquitoes are known to play an important modulatory role on immune responses to infections with human pathogens including malaria parasites. In this study we characterized two members of the Anopheles gambiae Nimrod superfamily, namely AgNimB2 and AgEater. We confirm that current annotation of the An. gambiae genome incorrectly identifies AgNimB2 and AgEater as a single gene, AGAP009762. Through in silico and experimental approaches, it has been shown that AgNimB2 is a secreted protein that mediates phagocytosis of Staphylococcus aureus but not of Escherichia coli bacteria. We also reveal that this function does not involve a direct interaction of AgNimB2 with S. aureus. Therefore, AgNimB2 may act downstream of complement-like pathway activation, first requiring bacterial opsonization. In addition, it has been shown that AgNimB2 has an anti-Plasmodium effect. Conversely, AgEater is a membrane-bound protein that either functions redundantly or is dispensable for phagocytosis of E. coli or S. aureus. Our study provides insights into the role of members of the complex Nimrod superfamily in An. gambiae, the most important African vector of human malaria.

  13. Discovery and characterization of two Nimrod superfamily members in Anopheles gambiae

    PubMed Central

    Midega, Janet; Blight, Joshua; Lombardo, Fabrizio; Povelones, Michael; Kafatos, Fotis; Christophides, George K

    2013-01-01

    Anti-bacterial proteins in mosquitoes are known to play an important modulatory role on immune responses to infections with human pathogens including malaria parasites. In this study we characterized two members of the Anopheles gambiae Nimrod superfamily, namely AgNimB2 and AgEater. We confirm that current annotation of the An. gambiae genome incorrectly identifies AgNimB2 and AgEater as a single gene, AGAP009762. Through in silico and experimental approaches, it has been shown that AgNimB2 is a secreted protein that mediates phagocytosis of Staphylococcus aureus but not of Escherichia coli bacteria. We also reveal that this function does not involve a direct interaction of AgNimB2 with S. aureus. Therefore, AgNimB2 may act downstream of complement-like pathway activation, first requiring bacterial opsonization. In addition, it has been shown that AgNimB2 has an anti-Plasmodium effect. Conversely, AgEater is a membrane-bound protein that either functions redundantly or is dispensable for phagocytosis of E. coli or S. aureus. Our study provides insights into the role of members of the complex Nimrod superfamily in An. gambiae, the most important African vector of human malaria. PMID:24428830

  14. Inclusion of pressure and flow in a new 3D MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Raburn, Daniel; Fukuyama, Atsushi

    2012-10-01

    Flow and nonsymmetric effects can play a large role in plasma equilibria and energy confinement. A concept for such a 3D equilibrium code was developed and presented in 2011. The code is called the Kyoto ITerative Equilibrium Solver (KITES) [1], and the concept is based largely on the PIES code [2]. More recently, the work-in-progress KITES code was used to calculate force-free equilibria. Here, progress and results on the inclusion of pressure and flow in the code are presented. [4pt] [1] Daniel Raburn and Atsushi Fukuyama, Plasma and Fusion Research: Regular Articles, 7:240381 (2012).[0pt] [2] H. S. Greenside, A. H. Reiman, and A. Salas, J. Comput. Phys, 81(1):102-136 (1989).

  15. Impact of the plasma response in three-dimensional edge plasma transport modelling for RMP ELM control scenarios at ITER

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver

    2014-10-01

    The constrains used in magneto-hydrodynamic (MHD) modeling of the plasma response to external resonant magnetic perturbation (RMP) fields have a profound impact on the three-dimensional (3-D) shape of the plasma boundary induced by RMP fields. In this contribution, the consequences of the plasma response on the actual 3D boundary structure and transport during RMP application at ITER are investigated. The 3D fluid plasma and kinetic neutral transport code EMC3-Eirene is used for edge transport modeling. Plasma response modeling is conducted with the M3D-C1 code using a single fluid, non-linear and a two fluid, linear MHD constrain. These approaches are compared to results with an ideal MHD like plasma response. A 3D plasma boundary is formed for all cases consisting of magnetic finger structures at the X-point intersecting the divertor surface in a helical footprint pattern. The width of the helical footprint pattern is largely reduced compared to vacuum magnetic fields when using the ideal MHD like screening model. This yields increasing peak heat fluxes in contrast to a beneficial heat flux spreading seen with vacuum fields. The particle pump out as well as loss of thermal energy is reduced by a factor of two compared to vacuum fields. In contrast, the impact of the plasma response obtained from both MHD constrains in M3D-C1 is nearly negligible at the plasma boundary and only a small modification of the magnetic footprint topology is detected. Accordingly, heat and particle fluxes on the target plates as well as the edge transport characteristics are comparable to the vacuum solution. This span of modeling results with different plasma response models highlights the importance of thoroughly validating both, plasma response and 3D edge transport models for a robust extrapolation towards ITER. Supported by ITER Grant IO/CT/11/4300000497 and F4E Grant GRT-055 (PMS-PE) and by Start-Up Funds of the University of Wisconsin - Madison.

  16. Experiments and numerical modeling of fast flowing liquid metal thin films under spatially varying magnetic field conditions

    NASA Astrophysics Data System (ADS)

    Narula, Manmeet Singh

    Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the MHD interaction of fast flowing liquid metal films under various divertor relevant magnetic field configurations through numerical modeling exercises.

  17. 3D-MHD Simulations of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Bayliss, R. A.; Forest, C. B.; Wright, J. C.; O'Connell, R.

    2003-10-01

    Growth, saturation and turbulent evolution of the Madison dynamo experiment is investigated numerically using a 3-D pseudo-spectral simulation of the MHD equations; results of the simulations are used to predict behavior of the experiment. The code solves the self-consistent full evolution of the magnetic and velocity fields. The code uses a spectral representation via spherical harmonic basis functions of the vector fields in longitude and latitude, and fourth order finite differences in the radial direction. The magnetic field evolution has been benchmarked against the laminar kinematic dynamo predicted by M.L. Dudley and R.W. James [Proc. R. Soc. Lond. A 425. 407-429 (1989)]. Initial results indicate that saturation of the magnetic field occurs so that the resulting perturbed backreaction of the induced magnetic field changes the velocity field such that it would no longer be linearly unstable, suggesting non-linear terms are necessary for explaining the resulting state. Saturation and self-excitation depend in detail upon the magnetic Prandtl number.

  18. An MHD Code for the Study of Magnetic Structures in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Allred, J. C.; MacNeice, P. J.

    2015-01-01

    We have developed a 2.5D MHD code designed to study how the solar wind influences the evolution of transient events in the solar corona and inner heliosphere. The code includes thermal conduction, coronal heating and radiative cooling. Thermal conduction is assumed to be magnetic field-aligned in the inner corona and transitions to a collisionless formulation in the outer corona. We have developed a stable method to handle field-aligned conduction around magnetic null points. The inner boundary is placed in the upper transition region, and the mass flux across the boundary is determined from 1D field-aligned characteristics and a 'radiative energy balance' condition. The 2.5D nature of this code makes it ideal for parameter studies not yet possible with 3D codes. We have made this code publicly available as a tool for the community. To this end we have developed a graphical interface to aid in the selection of appropriate options and a graphical interface that can process and visualize the data produced by the simulation. As an example, we show a simulation of a dipole field stretched into a helmet streamer by the solar wind. Plasmoids periodically erupt from the streamer, and we perform a parameter study of how the frequency and location of these eruptions changed in response to different levels of coronal heating. As a further example, we show the solar wind stretching a compact multi-polar flux system. This flux system will be used to study breakout coronal mass ejections in the presence of the solar wind.

  19. Development of the PARVMEC Code for Rapid Analysis of 3D MHD Equilibrium

    NASA Astrophysics Data System (ADS)

    Seal, Sudip; Hirshman, Steven; Cianciosa, Mark; Wingen, Andreas; Unterberg, Ezekiel; Wilcox, Robert; ORNL Collaboration

    2015-11-01

    The VMEC three-dimensional (3D) MHD equilibrium has been used extensively for designing stellarator experiments and analyzing experimental data in such strongly 3D systems. Recent applications of VMEC include 2D systems such as tokamaks (in particular, the D3D experiment), where application of very small (delB/B ~ 10-3) 3D resonant magnetic field perturbations render the underlying assumption of axisymmetry invalid. In order to facilitate the rapid analysis of such equilibria (for example, for reconstruction purposes), we have undertaken the task of parallelizing the VMEC code (PARVMEC) to produce a scalable and temporally rapidly convergent equilibrium code for use on parallel distributed memory platforms. The parallelization task naturally splits into three distinct parts 1) radial surfaces in the fixed-boundary part of the calculation; 2) two 2D angular meshes needed to compute the Green's function integrals over the plasma boundary for the free-boundary part of the code; and 3) block tridiagonal matrix needed to compute the full (3D) pre-conditioner near the final equilibrium state. Preliminary results show that scalability is achieved for tasks 1 and 3, with task 2 still nearing completion. The impact of this work on the rapid reconstruction of D3D plasmas using PARVMEC in the V3FIT code will be discussed. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  20. A unified radiative magnetohydrodynamics code for lightning-like discharge simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Xiong, Run

    2014-03-15

    A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs fluxmore » splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.« less

  1. Numerical simulation of surface wave dynamics of liquid metal MHD flow on an inclined plane in a magnetic field with spatial variation

    NASA Astrophysics Data System (ADS)

    Gao, Donghong

    Interest in utilizing liquid metal film flows to protect the plasma-facing solid structures places increasing demand on understanding the magnetohydrodynamics (MHD) of such flows in a magnetic field with spatial variation. The field gradient effect is studied by a two-dimensional (2D) model in Cartesian coordinates. The thin film flow down an inclined plane in spanwise (z-direction) magnetic field with constant streamwise gradient and applied current is analyzed. The solution to the equilibrium flow shows forcefully the M-shaped velocity profile and dependence of side layer thickness on Ha-1/2 whose definition is based on field gradient. The major part of the dissertation is the numerical simulation of free surface film flows and understanding the results. The VOF method is employed to track the free surface, and the CSF model is combined with VOF method to account for surface dynamics condition. The code is validated with respect to Navier-Stokes solver and MHD implementation by computations of ordinary wavy films, MHD flat films and a colleague proposed film flow. The comparisons are performed against respective experimental, theoretical or numerical solutions, and the results are well matched with them. It is found for the ordinary water falling films, at low frequency and high flowrate, the small forcing disturbance at inlet flowrate develops into big roll waves preceded by small capillary bow waves; at high frequency and low Re, it develops into nearly sinusoidal waves with small amplitude and without fore-running capillary waves. The MHD surface instability is investigated for two kinds of film flows in constant streamwise field gradient: one with spatial disturbance and without surface tension, the other with inlet forcing disturbance and with surface tension. At no surface tension condition, the finite amplitude disturbance is rapidly amplified and degrades to irregular shape. With surface tension to maintain smooth interface, finite amplitude regular waves can be established only on near inlet region and they decay to nearly zero amplitude ripple on the far downstream region. At both film conditions, the wave traveling velocity is reduced by the MHD drag from field gradient. The code is also used to explore the exit-pipe and first wall conceptual designs for fusion reactor being proposed in the APEX program. It is seen that the field gradient restrains and lifts up the flow to the whole channel in the exit-pipe high field gradient condition, but an applied streamwise current can propel the flow through the gradient region. The Sn jet flow with high inertia is able to overcome the inverted gravity and MHD induction to form the desired protection liquid layer on top of the first wall.

  2. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    NASA Astrophysics Data System (ADS)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  3. A Radiation Transfer Solver for Athena Using Short Characteristics

    NASA Astrophysics Data System (ADS)

    Davis, Shane W.; Stone, James M.; Jiang, Yan-Fei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  4. Enhanced understanding of the MHD dynamics and ELM control experiments in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Hyeon K.

    2013-10-01

    In KSTAR, H-mode discharges have been achieved reliably at toroidal fields from 1.4 to 3.5 T with a heating power of ~ 5 MW. Using real-time plasma shape control the flattop time in H-mode has been extended to over ~ 16 s at 600 kA in the 2012 campaign and the extended plasma operation boundary has surpassed the n = 1 no-wall limit with βN /li up to 4.1. In order to achieve a high beta steady state operation in KSTAR, establishment of predictive MHD simulation and first-principle-based control of the harmful MHD are the first steps. Visualization of MHD dynamics via a 2-D Electron Cyclotron Emission Imaging (ECEI) has significantly enhanced the level of understanding of the MHD dynamics. Following the first 2-D ELM measurements in H-mode plasmas in KSTAR the measured 2-D ELM images were compared with synthetic images from the BOUT + + code. The physics of ELMs is characterized based on a wide range of measured mode numbers (n, m) local magnetic shear and pressure gradients. The observed ELM dynamics during control experiments have been enlightening and consistent with the stability models. Near the q ~ 2 surface, the island width and Δ' of the m = 2 tearing mode have been verified through the modified Rutherford model based on the 2-D images. With the aid of a second (toroidally separated) ECEI system installed in the 2012 KSTAR campaign, a 3-D reconstruction of the MHD instabilities has allowed further validation of the computed magnetic field pitch angles, rotation speeds, and toroidal asymmetries of the MHDs Work supported by NRF of Korea under contract No. 20120005920 and the U.S. DoE under contract No. DE-FG-02-99ER54531.

  5. Numerical Simulation of Coronal Waves Interacting with Coronal Holes. III. Dependence on Initial Amplitude of the Incoming Wave

    NASA Astrophysics Data System (ADS)

    Piantschitsch, Isabell; Vršnak, Bojan; Hanslmeier, Arnold; Lemmerer, Birgit; Veronig, Astrid; Hernandez-Perez, Aaron; Čalogović, Jaša

    2018-06-01

    We performed 2.5D magnetohydrodynamic (MHD) simulations showing the propagation of fast-mode MHD waves of different initial amplitudes and their interaction with a coronal hole (CH), using our newly developed numerical code. We find that this interaction results in, first, the formation of reflected, traversing, and transmitted waves (collectively, secondary waves) and, second, in the appearance of stationary features at the CH boundary. Moreover, we observe a density depletion that is moving in the opposite direction of the incoming wave. We find a correlation between the initial amplitude of the incoming wave and the amplitudes of the secondary waves as well as the peak values of the stationary features. Additionally, we compare the phase speed of the secondary waves and the lifetime of the stationary features to observations. Both effects obtained in the simulation, the evolution of secondary waves, as well as the formation of stationary fronts at the CH boundary, strongly support the theory that coronal waves are fast-mode MHD waves.

  6. Surface currents on the plasma-vacuum interface in MHD equilibria

    NASA Astrophysics Data System (ADS)

    Hanson, James D.

    2016-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the plasma-vacuum interface. While this current may be small in MHD equilibrium, this current may be readily computed in terms of a magnetic potential in both the interior and exterior regions. Examples of the surface current for VMEC equilibria will be shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DE-FG02-03ER54692.

  7. Toroidal Simulations of Sawteeth with Diamagnetic Effects

    NASA Astrophysics Data System (ADS)

    Beidler, Matthew; Cassak, Paul; Jardin, Stephen

    2014-10-01

    The sawtooth crash in tokamaks limits the core temperature, adversely impacts confinement, and seeds disruptions. Adequate knowledge of the physics governing the sawtooth crash and a predictive capability of its ramifications has been elusive, including an understanding of incomplete reconnection, i.e., why sawteeth often cease prematurely before processing all available magnetic flux. There is an indication that diamagnetic suppression could play an important role in this phenomenon. While computational tools to study toroidal plasmas have existed for some time, extended-MHD physics have only recently been integrated. Interestingly, incomplete reconnection has been observed in simulations when diamagnetic effects are present. In the current study, we employ the three-dimensional, extended-MHD code M3D-C1 to study the sawtooth crash in a toroidal geometry. In particular, we describe how magnetic reconnection at the q = 1 rational surface evolves when self-consistently increasing diamagnetic effects are present. We also explore how the termination of reconnection may lead to core-relaxing ideal-MHD instabilities.

  8. Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D

    DOE PAGES

    King, Josh D.; Strait, Edward J.; Lazerson, Samuel A.; ...

    2015-07-01

    DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. Moreover, these tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. We determine scans of the applied poloidal spectrum and edge safety factors which confirm thatmore » low-pressure, n = 1 non-axisymmetric tokamak equilibria are a single, dominant, stable eigenmode. But, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.« less

  9. Genetic essentialism, neuroessentialism, and stigma: commentary on Dar-Nimrod and Heine (2011).

    PubMed

    Haslam, Nick

    2011-09-01

    Dar-Nimrod and Heine (2011) presented a masterfully broad review of the implications of genetic essentialism for understandings of human diversity. This commentary clarifies the reasons that essentialist thinking has problematic social consequences and links genetic forms of essentialism to those invoking neural essences. The mounting evidence that these forms of essentialist thinking contribute to the stigma of mental disorder is reviewed. Genetic and neuroessentialisms influence media portrayals of scientific research and distort how they are interpreted by laypeople. The common thread of these essentialisms is their tendency to deepen social divisions and promote forms of social segregation. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  10. Proceedings of the 14th International Conference on the Numerical Simulation of Plasmas

    NASA Astrophysics Data System (ADS)

    Partial Contents are as follows: Numerical Simulations of the Vlasov-Maxwell Equations by Coupled Particle-Finite Element Methods on Unstructured Meshes; Electromagnetic PIC Simulations Using Finite Elements on Unstructured Grids; Modelling Travelling Wave Output Structures with the Particle-in-Cell Code CONDOR; SST--A Single-Slice Particle Simulation Code; Graphical Display and Animation of Data Produced by Electromagnetic, Particle-in-Cell Codes; A Post-Processor for the PEST Code; Gray Scale Rendering of Beam Profile Data; A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers; 3-D Electromagnetic PIC Simulation on the NRL Connection Machine; Plasma PIC Simulations on MIMD Computers; Vlasov-Maxwell Algorithm for Electromagnetic Plasma Simulation on Distributed Architectures; MHD Boundary Layer Calculation Using the Vortex Method; and Eulerian Codes for Plasma Simulations.

  11. Comparison of Magnetospheric Magnetic Field Variations at Quasi-Zenith Orbit Based on Michibiki Observation and REPPU Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Nagatsuma, T.; Den, M.; Nakamizo, A.; Matsumoto, H.; Tanaka, T.

    2017-12-01

    We are developing a numerical simulator for future space weather forecast using magnetosphere-ionosphere coupling global MHD simulation called REPPU (REProduce Plasma Universe) code. We investigate the validity of the MHD simulation result as compared with observation. In this study we simulate some events including both quiet and disturbed geomagnetic conditions using OMNIWeb solar wind data. The simulation results are compared with magnetic field observations from Michibiki satellite, which is on the quasi-zenith orbit (QZO). In quiet geomagnetic condition, magnetic field variations at QZO obtained from simulation results have good consistency as compared correspondence with those from Michibiki observation. In disturbed geomagnetic condition in which the Dst < -20 nT, however, V component of magnetic field variations from simulation results tend to deviate from observations especially at the night side. We consider that this deviation during disturbed geomagnetic condition might be due to tail and/or ring current enhancement which is already suggested by many other MHD simulation studies as compared with the magnetic field observation at geosynchronous orbit. In this presentation, we will discuss the cause of this discrepancy in more detail with studying the relationship between the magnetic field deviation and some parameters such as Dst and solar wind.

  12. SAC: Sheffield Advanced Code

    NASA Astrophysics Data System (ADS)

    Griffiths, Mike; Fedun, Viktor; Mumford, Stuart; Gent, Frederick

    2013-06-01

    The Sheffield Advanced Code (SAC) is a fully non-linear MHD code designed for simulations of linear and non-linear wave propagation in gravitationally strongly stratified magnetized plasma. It was developed primarily for the forward modelling of helioseismological processes and for the coupling processes in the solar interior, photosphere, and corona; it is built on the well-known VAC platform that allows robust simulation of the macroscopic processes in gravitationally stratified (non-)magnetized plasmas. The code has no limitations of simulation length in time imposed by complications originating from the upper boundary, nor does it require implementation of special procedures to treat the upper boundaries. SAC inherited its modular structure from VAC, thereby allowing modification to easily add new physics.

  13. Verification of long wavelength electromagnetic modes with a gyrokinetic-fluid hybrid model in the XGC code

    PubMed Central

    Lang, Jianying; Ku, S.; Chen, Y.; Parker, S. E.; Adams, M. F.

    2017-01-01

    As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons analogous to Chen and Parker [Phys. Plasmas 8, 441 (2001)]. Two representative long wavelength modes, shear Alfvén waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries. PMID:29104419

  14. Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.

    2015-12-01

    Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.

  15. Lower hybrid current drive in experiments for transport barriers at high βN of JET (Joint European Torus)

    NASA Astrophysics Data System (ADS)

    Cesario, R. C.; Castaldo, C.; Fonseca, A.; De Angelis, R.; Parail, V.; Smeulders, P.; Beurskens, M.; Brix, M.; Calabrò, G.; De Vries, P.; Mailloux, J.; Pericoli, V.; Ravera, G.; Zagorski, R.

    2007-09-01

    LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas (δ≈0.4) at high βN (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B0 = 2.3 T, IP = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.

  16. One-dimensional MHD simulations of MTF systems with compact toroid targets and spherical liners

    NASA Astrophysics Data System (ADS)

    Khalzov, Ivan; Zindler, Ryan; Barsky, Sandra; Delage, Michael; Laberge, Michel

    2017-10-01

    One-dimensional (1D) MHD code is developed in General Fusion (GF) for coupled plasma-liner simulations in magnetized target fusion (MTF) systems. The main goal of these simulations is to search for optimal parameters of MTF reactor, in which spherical liquid metal liner compresses compact toroid plasma. The code uses Lagrangian description for both liner and plasma. The liner is represented as a set of spherical shells with fixed masses while plasma is discretized as a set of nested tori with circular cross sections and fixed number of particles between them. All physical fields are 1D functions of either spherical (liner) or small toroidal (plasma) radius. Motion of liner and plasma shells is calculated self-consistently based on applied forces and equations of state. Magnetic field is determined by 1D profiles of poloidal and toroidal fluxes - they are advected with shells and diffuse according to local resistivity, this also accounts for flux leakage into the liner. Different plasma transport models are implemented, this allows for comparison with ongoing GF experiments. Fusion power calculation is included into the code. We performed a series of parameter scans in order to establish the underlying dependencies of the MTF system and find the optimal reactor design point.

  17. Simulations of toroidal Alfvén eigenmode excited by fast ions on the Experimental Advanced Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Pei, Youbin; Xiang, Nong; Shen, Wei; Hu, Youjun; Todo, Y.; Zhou, Deng; Huang, Juan

    2018-05-01

    Kinetic-MagnetoHydroDynamic (MHD) hybrid simulations are carried out to study fast ion driven toroidal Alfvén eigenmodes (TAEs) on the Experimental Advanced Superconducting Tokamak (EAST). The first part of this article presents the linear benchmark between two kinetic-MHD codes, namely MEGA and M3D-K, based on a realistic EAST equilibrium. Parameter scans show that the frequency and the growth rate of the TAE given by the two codes agree with each other. The second part of this article discusses the resonance interaction between the TAE and fast ions simulated by the MEGA code. The results show that the TAE exchanges energy with the co-current passing particles with the parallel velocity |v∥ | ≈VA 0/3 or |v∥ | ≈VA 0/5 , where VA 0 is the Alfvén speed on the magnetic axis. The TAE destabilized by the counter-current passing ions is also analyzed and found to have a much smaller growth rate than the co-current ions driven TAE. One of the reasons for this is found to be that the overlapping region of the TAE spatial location and the counter-current ion orbits is narrow, and thus the wave-particle energy exchange is not efficient.

  18. Measurements of confined alphas and tritons in the MHD quiescent core of TFTR plasmas using the pellet charge exchange diagnostic

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Budny, R. V.; Mansfield, D. K.; Redi, M. H.; Roquemore, A. L.; Fisher, R. K.; Duong, H. H.; McChesney, J. M.; Parks, P. B.; Petrov, M. P.; Gorelenkov, N. N.

    1996-10-01

    The energy distributions and radial density profiles of the fast confined trapped alpha particles in DT experiments on TFTR are being measured in the energy range 0.5 - 3.5 MeV using the pellet charge exchange (PCX) diagnostic. A brief description of the measurement technique which involves active neutral particle analysis using the ablation cloud surrounding an injected impurity pellet as the neutralizer is presented. This paper focuses on alpha and triton measurements in the core of MHD quiescent TFTR discharges where the expected classical slowing-down and pitch angle scattering effects are not complicated by stochastic ripple diffusion and sawtooth activity. In particular, the first measurement of the alpha slowing-down distribution up to the birth energy, obtained using boron pellet injection, is presented. The measurements are compared with predictions using either the TRANSP Monte Carlo code and/or a Fokker - Planck Post-TRANSP processor code, which assumes that the alphas and tritons are well confined and slow down classically. Both the shape of the measured alpha and triton energy distributions and their density ratios are in good agreement with the code calculations. We can conclude that the PCX measurements are consistent with classical thermalization of the fusion-generated alphas and tritons.

  19. A new free and open source tool for space plasma modeling.

    NASA Astrophysics Data System (ADS)

    Honkonen, I. J.

    2014-12-01

    I will present a new distributed memory parallel, free and open source computational model for studying space plasma. The model is written in C++ with emphasis on good software development practices and code readability without sacrificing serial or parallel performance. As such the model could be especially useful for education, for learning both (magneto)hydrodynamics (MHD) and computational model development. By using latest features of the C++ standard (2011) it has been possible to develop a very modular program which improves not only the readability of code but also the testability of the model and decreases the effort required to make changes to various parts of the program. Major parts of the model, functionality not directly related to (M)HD, have been outsourced to other freely available libraries which has reduced the development time of the model significantly. I will present an overview of the code architecture as well as details of different parts of the model and will show examples of using the model including preparing input files and plotting results. A multitude of 1-, 2- and 3-dimensional test cases are included in the software distribution and the results of, for example, Kelvin-Helmholtz, bow shock, blast wave and reconnection tests, will be presented.

  20. Higher-Order Advection-Based Remap of Magnetic Fields in an Arbitrary Lagrangian-Eulerian Code

    NASA Astrophysics Data System (ADS)

    Cornille, Brian; White, Dan

    2017-10-01

    We will present methods formulated for the Eulerian advection stage of an arbitrary Lagrangian-Eulerian code for the new addition of magnetohydrodynamic (MHD) effects. The various physical fields are advanced in time using a Lagrangian formulation of the system. When this Lagrangian motion produces substantial distortion of the mesh, it can be difficult or impossible to progress the simulation forward. This is overcome by relaxation of the mesh while the physical fields are frozen. The code has already successfully been extended to include evolution of magnetic field diffusion during the Lagrangian motion stage. This magnetic field is discretized using an H(div) compatible finite element basis. The advantage of this basis is that the divergence-free constraint of magnetic fields is maintained exactly during the Lagrangian motion evolution. Our goal is to preserve this property during Eulerian advection as well. We will demonstrate this property and the importance of MHD effects in several numerical experiments. In pulsed-power experiments magnetic fields may be imposed or spontaneously generated. When these magnetic fields are present, the evolution of the experiment may differ from a comparable configuration without magnetic fields. Prepared by LLNL under Contract DE-AC52-07NA27344. Supported by DOE CSGF under Grant Number DE-FG02-97ER25308.

  1. Modeling MHD Equilibrium and Dynamics with Non-Axisymmetric Resistive Walls in LTX and HBT-EP

    NASA Astrophysics Data System (ADS)

    Hansen, C.; Levesque, J.; Boyle, D. P.; Hughes, P.

    2017-10-01

    In experimental magnetized plasmas, currents in the first wall, vacuum vessel, and other conducting structures can have a strong influence on plasma shape and dynamics. These effects are complicated by the 3D nature of these structures, which dictate available current paths. Results from simulations to study the effect of external currents on plasmas in two different experiments will be presented: 1) The arbitrary geometry, 3D extended MHD code PSI-Tet is applied to study linear and non-linear plasma dynamics in the High Beta Tokamak (HBT-EP) focusing on toroidal asymmetries in the adjustable conducting wall. 2) Equilibrium reconstructions of the Lithium Tokamak eXperiment (LTX) in the presence of non-axisymmetric eddy currents. An axisymmetric model is used to reconstruct the plasma equilibrium, using the PSI-Tri code, along with a set of fixed 3D eddy current distributions in the first wall and vacuum vessel [C. Hansen et al., PoP Apr. 2017]. Simulations of detailed experimental geometries are enabled by use of the PSI-Tet code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-Tet and PSI-Tri will also be presented. This work supported by US DOE contract DE-SC0016256.

  2. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas [Modeling of fast neutral-beam-generated ion effects on MHD spectroscopic observations of RWM stability in DIII-D plasmas

    DOE PAGES

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...

    2015-02-03

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β N limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β N, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma tomore » an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β N levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β N.« less

  3. Light element production in the big bang and the synthesis of heavy elements in 3D MHD jets from core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Winteler, Christian

    2014-02-01

    In this dissertation we present the main features of a new nuclear reaction network evolution code. This new code allows nucleosynthesis calculations for large numbers of nuclides. The main results in this dissertation are all obtained using this new code. The strength of standard big bang nucleosynthesis is, that all primordial abundances are determined by only one free parameter, the baryon-to-photon ratio η. We perform self consistent nucleosynthesis calculations for the latest WMAP value η = (6.16±0.15)×10^-10 . We predict primordial light element abundances: D/H = (2.84 ± 0.23)×10^-5, 3He/H = (1.07 ± 0.09)×10^-5, Yp = 0.2490±0.0005 and 7Li/H = (4.57 ± 0.55)×10^-10, in agreement with current observations and other predictions. We investigate the influence of the main production rate on the 6 Li abundance, but find no significant increase of the predicted value, which is known to be orders of magnitude lower than the observed. The r-process is responsible for the formation of about half of the elements heavier than iron in our solar system. This neutron capture process requires explosive environments with large neutron densities. The exact astrophysical site where the r-process occurs has not yet been identified. We explore jets from magnetorotational core collapse supernovae (MHD jets) as possible r-process site. In a parametric study, assuming adiabatic expansion, we find good agreement with solar system abundances for a superposition of components with different electron fraction (Ye ), ranging from Ye = 0.1 to Ye = 0.3. Fission is found to be important only for Ye ≤ 0.17. The first postprocessing calculations with data from 3D MHD core collapse supernova simulations are performed for two different simulations. Calculations are based on two different methods to extract data from the simulation: tracer particles and a two dimensional, mass weighted histogram. Both results yield almost identical results. We find that both simulations can reproduce the global solar r-process abundance pattern. The ejected mass is found to be in agreement with galactic chemical evolution for a rare event rate of one MHD jet every hundredth to thousandth supernova.

  4. Two Way Coupling RAM-SCB to the Space Weather Modeling Framework

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Jordanova, V. K.; Zaharia, S. G.; Toth, G.

    2010-12-01

    The Ring current Atmosphere interaction Model with Self-Consistently calculated 3D Magnetic field (RAM-SCB) has been used to successfully study inner magnetosphere dynamics during different solar wind and magnetosphere conditions. Recently, one way coupling of RAM-SCB with the Space Weather Modeling Framework (SWMF) has been achieved to replace all data or empirical inputs with those obtained through first-principles-based codes: magnetic field and plasma flux outer boundary conditions are provided by the Block Adaptive Tree Solar wind Roe-type Upwind Scheme (BATS-R-US) MHD code, convection electric field is provided by the Ridley Ionosphere Model (RIM), and ion composition is provided by the Polar Wind Outflow Model (PWOM) combined with a multi-species MHD approach. These advances, though creating a powerful inner magnetosphere virtual laboratory, neglect the important mechanisms through which the ring current feeds back into the whole system, primarily the stretching of the magnetic field lines and shielding of the convection electric field through strong region two Field Aligned Currents (FACs). In turn, changing the magnetosphere in this way changes the evolution of the ring current. To address this shortcoming, the coupling has been expanded to include feedback from RAM-SCB to the other coupled codes: region two FACs are returned to the RIM while total plasma pressure is used to nudge the MHD solution towards the RAM-SCB values. The impacts of the two way coupling are evaluated on three levels: the global magnetospheric level, focusing on the impact on the ionosphere and the shape of the magnetosphere, the regional level, examining the impact on the development of the ring current in terms of energy density, anisotropy, and plasma distribution, and the local level to compare the new results to in-situ measurements of magnetic and electric field and plasma. The results will also be compared to past simulations using the one way coupling and no coupling whatsoever. This work is the first to fully couple an anisotropic kinetic ring current code with a self-consistently calculated magnetic field to a set of global models.

  5. A Global Magnetohydrodynamic Model of Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Sharber, James (Technical Monitor)

    2001-01-01

    The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5R(sub J). The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by C(sub max)(Delta)t/(Delta)x less than 1 where C(sub max) is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is C(sub w) and the flow speed is C(sub f), C(sub max) = C(sub w) + C(sub f). Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a new MHD model that will be able to compute solutions in the wide parameter regime of the Jovian magnetosphere.

  6. Developing a compact toroid injector in the ThermoElectric driven Liquid metal plasma facing Structures device

    NASA Astrophysics Data System (ADS)

    Christenson, Michael; Szott, Matthew; Kalathiparambil, Kishor; Sovinec, Carl; Ruzic, David

    2016-10-01

    The ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) device at the University of Illinois is a theta-pinched, plasma-material interaction test stand used to simulate extreme events in the edge and divertor regions of a tokamak plasma. Previous measurements of the electron and ion temperatures have shown that the isotropic heat load on target ranges between 0.1 and 0.2 MJ m-2 over a pulse lasting 0.2 ms. While this compares well to the heat loads from Type 1 ELMs in larger toroidal devices, it is still much less than the energy deposition from Type 1 ELMs expected in ITER, which are in excess of 1 MJ m-2. To this end, a compact toroid (CT) injector has been proposed as a modification to the existing TELS device. By using an externally applied bias field to force reconnection at the muzzle of the coaxial plasma accelerator source that drives ionization, NIMROD MHD simulations have shown a peak magnetic flux of 3.5 mWb is reached 0.025 ms into the pulse - more than sufficient to form a CT. Early calorimetry and magnetic field measurements indicate that a new plasma structure has been formed in the magnetized coaxial plasma source. This work presents the current results of CT generation with respect to the bias field strength as well as the coaxial source geometry. DOE OFES DE-SC0008587, DE-SC0008658, DE-FG02-99ER54515.

  7. Genetics and human agency: comment on Dar-Nimrod and Heine (2011).

    PubMed

    Turkheimer, Eric

    2011-09-01

    Dar-Nimrod and Heine (2011) decried genetic essentialism without denying the importance of genetics in the genesis of human behavior, and although I agree on both counts, a deeper issue remains unaddressed: how should we adjust our cognitions about our own behavior in light of genetic influence, or is it perhaps not necessary to take genetics into account at all? I suggest that the genetics of behavior does have important implications for how we understand ourselves, the differences among us, and the ethical implications of our actions, but that the usual metric for these considerations, the heritability coefficient, is not the correct one. I propose an alternative. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  8. Analytical and numerical treatment of resistive drift instability in a plasma slab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirnov, V. V., E-mail: vvmirnov@wisc.edu; Sauppe, J. P.; Hegna, C. C.

    An analytic approach combining the effect of equilibrium diamagnetic flows and the finite ionsound gyroradius associated with electron−ion decoupling and kinetic Alfvén wave dispersion is derived to study resistive drift instabilities in a plasma slab. Linear numerical computations using the NIMROD code are performed with cold ions and hot electrons in a plasma slab with a doubly periodic box bounded by two perfectly conducting walls. A linearly unstable resistive drift mode is observed in computations with a growth rate that is consistent with the analytic dispersion relation. The resistive drift mode is expected to be suppressed by magnetic shear inmore » unbounded domains, but the mode is observed in numerical computations with and without magnetic shear. In the slab model, the finite slab thickness and the perfectly conducting boundary conditions are likely to account for the lack of suppression.« less

  9. Numerical modeling of the thin shallow solar dynamo

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Jarboe, T. R.

    2017-10-01

    Nonlinear, numerical computation with the NIMROD code is used to explore and validate the thin shallow solar dynamo model [T.R. Jarboe et al. 2017], which explains the observed global temporal evolution (e.g. magnetic field reversal) and local surface structures (e.g. sunspots) of the sun. The key feature of this model is the presence and magnetic self-organization of global magnetic structures (GMS) lying just below the surface of the sun, which resemble 1D radial Taylor states of size comparable to the supergranule convection cells. First, we seek to validate the thin shallow solar dynamo model by reproducing the 11 year timescale for reversal of the solar magnetic field. Then, we seek to model formation of GMS from convection zone turbulence. Our computations simulate a slab covering a radial depth 3Mm and include differential rotation and gravity. Density, temperature, and resistivity profiles are taken from the Christensen-Dalsgaard model.

  10. A search for outflows from X-ray bright points in coronal holes

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.; Waldron, W. L.

    1986-01-01

    Properties of X-ray bright points using two of the instruments on Solar Maximum Mission were investigated. The mass outflows from magnetic regions were modeled using a two dimensional MHD code. It was concluded that mass can be detected from X-ray bright points provided that the magnetic topology is favorable.

  11. A General Computational Approach for Magnetohydrodynamic Flows Using the CFX Code: Buoyant Flow Through a Vertical Square Channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Piazza, Ivan; Buehler, Leo

    2000-09-15

    The buoyancy-driven magnetoconvection in the cross section of an infinitely long vertical square duct is investigated numerically using the CFX code package. The implementation of a magnetohydrodynamic (MHD) problem in CFX is discussed, with particular reference to the Lorentz forces and the electric potential boundary conditions for arbitrary electrical conductivity of the walls. The method proposed is general and applies to arbitrary geometries with an arbitrary orientation of the magnetic field. Results for fully developed flow under various thermal boundary conditions are compared with asymptotic analytical solutions. The comparison shows that the asymptotic analysis is confirmed for highly conducting wallsmore » as high velocity jets occur at the side walls. For weakly conducting walls, the side layers become more conducting than the side walls, and strong electric currents flow within these layers parallel to the magnetic field. As a consequence, the velocity jets are suppressed, and the core solution is only corrected by the viscous forces near the wall. The implementation of MHD in CFX is achieved.« less

  12. Dynamics of Magnetopause Reconnection in Response to Variable Solar Wind Conditions

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Richard, R. L.; Escoubet, C. P.; Pitout, F.

    2017-12-01

    Quantifying the dynamics of magnetopause reconnection in response to variable solar wind driving is essential to advancing our predictive understanding of the interaction of the solar wind/IMF with the magnetosphere. To this end we have carried out numerical studies that combine global magnetohydrodynamic (MHD) and Large-Scale Kinetic (LSK) simulations to identify and understand the effects of solar wind/IMF variations. The use of the low dissipation, high resolution UCLA MHD code incorporating a non-linear local resistivity allows the representation of the global configuration of the dayside magnetosphere while the use of LSK ion test particle codes with distributed particle detectors allows us to compare the simulation results with spacecraft observations such as ion dispersion signatures observed by the Cluster spacecraft. We present the results of simulations that focus on the impacts of relatively simple solar wind discontinuities on the magnetopause and examine how the recent history of the interaction of the magnetospheric boundary with solar wind discontinuities can modify the dynamics of magnetopause reconnection in response to the solar wind input.

  13. Anisotropic diffusion in mesh-free numerical magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2017-04-01

    We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent 'eddy diffusion'. We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV). We show that the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behaviour even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator and introduces a flux-limited Riemann problem between particles.

  14. Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper

    NASA Astrophysics Data System (ADS)

    Cochrane, K. R.; Lemke, R. W.; Riford, Z.; Carpenter, J. H.

    2016-03-01

    The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materials experiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic (MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolates those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this paper, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/-1%.

  15. Magnetically launched flyer plate technique for probing electrical conductivity of compressed copper

    DOE PAGES

    Cochrane, Kyle R.; Lemke, Raymond W.; Riford, Z.; ...

    2016-03-11

    The electrical conductivity of materials under extremes of temperature and pressure is of crucial importance for a wide variety of phenomena, including planetary modeling, inertial confinement fusion, and pulsed power based dynamic materialsexperiments. There is a dearth of experimental techniques and data for highly compressed materials, even at known states such as along the principal isentrope and Hugoniot, where many pulsed power experiments occur. We present a method for developing, calibrating, and validating material conductivity models as used in magnetohydrodynamic(MHD) simulations. The difficulty in calibrating a conductivity model is in knowing where the model should be modified. Our method isolatesmore » those regions that will have an impact. It also quantitatively prioritizes which regions will have the most beneficial impact. Finally, it tracks the quantitative improvements to the conductivity model during each incremental adjustment. In this study, we use an experiment on Sandia National Laboratories Z-machine to isentropically launch multiple flyer plates and, with the MHD code ALEGRA and the optimization code DAKOTA, calibrated the conductivity such that we matched an experimental figure of merit to +/–1%.« less

  16. Rotational Shear Effects on Edge Harmonic Oscillations in DIII-D Quiescent H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, Wm.; Tobias, B. J.; Yan, Z.

    2015-11-01

    In quiescent H-mode (QH) regime, the edge harmonic oscillations (EHO) play an important role in avoiding the transient ELM power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n <= 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-I and MIR diagnostics, as well as the kink/peeling mode properties of the ideal MHD code ELITE. The numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the toroidal rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that the low-n EHO can be destabilized in principle with rotation in both directions. These modeling results are consistent with experimental observations of the EHO and support the proposed theory of the EHO as a rotational shear driven kink/peeling mode.

  17. Investigation of the High, Finite n Ballooning Mode Limit for Compact Quasi-Axially Symmetric Stellarators

    NASA Astrophysics Data System (ADS)

    Redi, Martha; Canik, John; Fredrickson, E.; Fu, G.; Nuehrenberg, C.; Boozer, A. H.

    2000-10-01

    The standard ballooning-mode beta limit comes from an infinite-n, radially local, ideal magnetohydrodynamic (MHD) calculation. Finite-n ballooning modes have been observed in tokamak plasmas [1]. Investigations of optimized quasiaxially symmetric stellarators with three dimensional, global, ideal MHD codes have recently shown good stability for the external kink, ``vertical" and infinite-n ballooning modes [2,3]. However, infinite-n ballooning stability may be too restrictive, due to its sensitivity to features in the local shear and curvature. The CAS3D [4] code is being used to compare the stability of the high-n ballooning modes to the infinite-n calculations from TERPSICHORE [5]. [1] E. Fredrickson, et al. Phys. Plas. 3 (1996) 2620. [2] G. Fu, Phys. Plas. 7 (2000)1079; Phys. Plas. 7 (2000) 1809. M. Redi, et al. Phys. Plas 7 (2000)1911. [3] A. Reiman, et al., Plas. Phys. Cont. Fus. 41 (1999) B273. [4] C. Nuehrenberg, Phys. Plas. 6 (1999) 275. C. Nuehrenberg, Phys. Plas. 3 (1996) 2401. C. Schwab, Phys. Fluids B5 (1993) 3195. [5] W. A. Cooper, Phys. Plas. 3 (1996) 275.

  18. Integrated Modeling of Time Evolving 3D Kinetic MHD Equilibria and NTV Torque

    NASA Astrophysics Data System (ADS)

    Logan, N. C.; Park, J.-K.; Grierson, B. A.; Haskey, S. R.; Nazikian, R.; Cui, L.; Smith, S. P.; Meneghini, O.

    2016-10-01

    New analysis tools and integrated modeling of plasma dynamics developed in the OMFIT framework are used to study kinetic MHD equilibria evolution on the transport time scale. The experimentally observed profile dynamics following the application of 3D error fields are described using a new OMFITprofiles workflow that directly addresses the need for rapid and comprehensive analysis of dynamic equilibria for next-step theory validation. The workflow treats all diagnostic data as fundamentally time dependent, provides physics-based manipulations such as ELM phase data selection, and is consistent across multiple machines - including DIII-D and NSTX-U. The seamless integration of tokamak data and simulation is demonstrated by using the self-consistent kinetic EFIT equilibria and profiles as input into 2D particle, momentum and energy transport calculations using TRANSP as well as 3D kinetic MHD equilibrium stability and neoclassical transport modeling using General Perturbed Equilibrium Code (GPEC). The result is a smooth kinetic stability and NTV torque evolution over transport time scales. Work supported by DE-AC02-09CH11466.

  19. Surface currents on the plasma-vacuum interface in MHD equilibria

    NASA Astrophysics Data System (ADS)

    Hanson, James

    2017-10-01

    The VMEC non-axisymmetric MHD equilibrium code can compute free-boundary equilibria. Since VMEC assumes that magnetic fields within the plasma form closed and nested flux surfaces, the plasma-vacuum interface is a flux surface, and the total magnetic field there has no normal component. VMEC imposes this condition of zero normal field using the potential formulation of Merkel, and solves a Neumann problem for the magnetic potential in the exterior region. This boundary condition necessarily admits the possibility of a surface current on the interface. While this surface current may be small in MHD equilibrium, it is readily computed in terms of the magnetic potentials in both the interior and exterior regions, evaluated on the surface. If only the external magnetic potential is known (as in VMEC), then the surface current can be computed from the discontinuity of the tangential field across the interface. Examples of the surface current for VMEC equilibria will be shown for a zero-pressure stellarator equilibrium. Field-line following of the vacuum magnetic field shows magnetic islands within the plasma region.

  20. NIMROD Simulations of Spheromak Formation, Magnetic Reconnection and Energy Confinement in SSPX

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.; Sovinec, C. R.

    2005-10-01

    The SSPX spheromak is formed and driven by a coaxial electrostatic gun that injects current and magnetic flux. Magnetic fluctuations are associated with the conversion of toroidal to poloidal magnetic flux during formation. After formation, fluctuations that break axisymmetry degrade magnetic surfaces, and are anti-correlated with the core temperature and energy confinement time. We report NIMROD simulations extending earlier work^1 supporting the SSPX experiment through predictions of performance and providing insight. The simulations are in fairly good agreement with features observed in SSPX and underscore the importance of current profile control in mitigating magnetic fluctuation amplitudes and improving confinement. The simulations yield insight into magnetic reconnection and the relationship of fluctuations to field line stochasticity. We have added external circuit equations for the new 32 module capacitor bank in SSPX that will add flexibility in shaping the injector current pulses and substantially increase the injected currents and the magnetic energy. New NIMROD simulations of SSPX lead to higher temperature plasmas than in previous simulations. *Work supported by U.S. DOE, under Contr. No. W-7405-ENG-48 at U. Cal. LLNL and under grant FG02-01ER54661 at U. Wisc Madison. ^1C. R. Sovinec, B. I. Cohen, et al., Phys. Rev. Lett. 94, 035003 (2005); B. I. Cohen, E. B. Hooper, et al., Phys. Plasmas 12, 056106 (2005).

  1. Interaction of external n = 1 magnetic fields with the sawtooth instability in low- q RFX-mod and DIII-D tokamaks

    DOE PAGES

    Piron, C.; Martin, P.; Bonfiglio, D.; ...

    2016-08-11

    External n = 1 magnetic fields are applied in RFX-mod and DIII-D low safety factor Tokamak plasmas to investigate their interaction with the internal MHD dynamics and in particular with the sawtooth instability. In these experiments the applied magnetic fields cause a reduction of both the sawtooth amplitude and period, leading to an overall stabilizing effect on the oscillations. In RFX-mod sawteeth eventually disappear and are replaced by a stationary m = 1, n = 1 helical equilibrium without an increase in disruptivity. However toroidal rotation is significantly reduced in these plasmas, thus it is likely that the sawtooth mitigationmore » in these experiments is due to the combination of the helically deformed core and the reduced rotation. The former effect is qualitatively well reproduced by nonlinear MHD simulations performed with the PIXIE3D code. The results obtained in these RFX-mod experiments motivated similar ones in DIII-D L-mode diverted Tokamak plasmas at low q 95. These experiments succeeded in reproducing the sawtooth mitigation with the approach developed in RFX-mod. In DIII-D this effect is correlated with a clear increase of the n = 1 plasma response, that indicates an enhancement of the coupling to the marginally stable n = 1 external kink, as simulations with the linear MHD code IPEC suggest. A significant rotation braking in the plasma core is also observed in DIII-D. Finally, numerical calculations of the neoclassical toroidal viscosity (NTV) carried out with PENT identify this torque as a possible contributor for this effect.« less

  2. Dynamo action and magnetic activity during the pre-main sequence: Influence of rotation and structural changes

    NASA Astrophysics Data System (ADS)

    Emeriau-Viard, Constance; Brun, Allan Sacha

    2017-10-01

    During the PMS, structure and rotation rate of stars evolve significantly. We wish to assess the consequences of these drastic changes on stellar dynamo, internal magnetic field topology and activity level by mean of HPC simulations with the ASH code. To answer this question, we develop 3D MHD simulations that represent specific stages of stellar evolution along the PMS. We choose five different models characterized by the radius of their radiative zone following an evolutionary track, from 1 Myr to 50 Myr, computed by a 1D stellar evolution code. We introduce a seed magnetic field in the youngest model and then we spread it through all simulations. First of all, we study the consequences that the increase of rotation rate and the change of geometry of the convective zone have on the dynamo field that exists in the convective envelop. The magnetic energy increases, the topology of the magnetic field becomes more complex and the axisymmetric magnetic field becomes less predominant as the star ages. The computation of the fully convective MHD model shows that a strong dynamo develops with a ratio of magnetic to kinetic energy reaching equipartition and even super-equipartition states in the faster rotating cases. Magnetic fields resulting from our MHD simulations possess a mixed poloidal-toroidal topology with no obvious dominant component. We also study the relaxation of the vestige dynamo magnetic field within the radiative core and found that it satisfies stability criteria. Hence it does not experience a global reconfiguration and instead slowly relaxes by retaining its mixed poloidal-toroidal topology.

  3. Microphysics of Waves and Instabilities in the Solar Wind and their Macro Manifestations in the Corona and Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Gurman, Joseph (Technical Monitor); Habbal, Shadia Rifai

    2004-01-01

    Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored (1) the role of proton temperature anisotropy in the expansion of the solar wind, (2) the role of plasma parameters at the coronal base in the formation of high speed solar wind streams at mid-latitudes, and (3) the heating of coronal loops.

  4. Approach to ignition of tokamak reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigmar, D.J.

    1981-02-01

    Recent transport modeling results for JET, INTOR, and ETF are reviewed and analyzed with respect to existing uncertainties in the underlying physics, the self-consistency of the very large numerical codes, and the margin for ignition. The codes show ignition to occur in ETF/INTOR-sized machines if empirical scaling can be extrapolated to ion temperatures (and beta values) much higher than those presently achieved, if there is no significant impurity accumulation over the first 7 s, and if the known ideal and resistive MHD instabilities remain controllable for the evolving plasma profiles during ignition startup.

  5. Spheromak reactor-design study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Les, J.M.

    1981-06-30

    A general overview of spheromak reactor characteristics, such as MHD stability, start up, and plasma geometry is presented. In addition, comparisons are made between spheromaks, tokamaks and field reversed mirrors. The computer code Sphero is also discussed. Sphero is a zero dimensional time independent transport code that uses particle confinement times and profile parameters as input since they are not known with certainty at the present time. More specifically, Sphero numerically solves a given set of transport equations whose solutions include such variables as fuel ion (deuterium and tritium) density, electron density, alpha particle density and ion, electron temperatures.

  6. A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Shane W.; Stone, James M.; Jiang Yanfei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiationmore » MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.« less

  7. Geospace simulations using modern accelerator processor technology

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D. J.

    2009-12-01

    OpenGGCM (Open Geospace General Circulation Model) is a well-established numerical code simulating the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is currently limited by computational constraints on grid resolution. OpenGGCM has been ported to make use of the added computational powerof modern accelerator based processor architectures, in particular the Cell processor. The Cell architecture is a novel inhomogeneous multicore architecture capable of achieving up to 230 GFLops on a single chip. The University of New Hampshire recently acquired a PowerXCell 8i based computing cluster, and here we will report initial performance results of OpenGGCM. Realizing the high theoretical performance of the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallelization approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We use a modern technique, automatic code generation, which shields the application programmer from having to deal with all of the implementation details just described, keeping the code much more easily maintainable. Our preliminary results indicate excellent performance, a speed-up of a factor of 30 compared to the unoptimized version.

  8. Simulation of Shear Alfvén Waves in LAPD using the BOUT++ code

    NASA Astrophysics Data System (ADS)

    Wei, Di; Friedman, B.; Carter, T. A.; Umansky, M. V.

    2011-10-01

    The linear and nonlinear physics of shear Alfvén waves is investigated using the 3D Braginskii fluid code BOUT++. The code has been verified against analytical calculations for the dispersion of kinetic and inertial Alfvén waves. Various mechanisms for forcing Alfvén waves in the code are explored, including introducing localized current sources similar to physical antennas used in experiments. Using this foundation, the code is used to model nonlinear interactions among shear Alfvén waves in a cylindrical magnetized plasma, such as that found in the Large Plasma Device (LAPD) at UCLA. In the future this investigation will allow for examination of the nonlinear interactions between shear Alfvén waves in both laboratory and space plasmas in order to compare to predictions of MHD turbulence.

  9. Connection between plasma response and resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression in DIII-D [Connection between plasma response and RMP ELM suppression in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.

    Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling–ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMsmore » to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. As a result, kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.« less

  10. Connection between plasma response and resonant magnetic perturbation (RMP) edge localized mode (ELM) suppression in DIII-D [Connection between plasma response and RMP ELM suppression in DIII-D

    DOE PAGES

    Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.; ...

    2015-09-03

    Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling–ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMsmore » to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. As a result, kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.« less

  11. Sun-to-Earth MHD Simulation of the 2000 July 14 “Bastille Day” Eruption

    NASA Astrophysics Data System (ADS)

    Török, Tibor; Downs, Cooper; Linker, Jon A.; Lionello, R.; Titov, Viacheslav S.; Mikić, Zoran; Riley, Pete; Caplan, Ronald M.; Wijaya, Janvier

    2018-03-01

    Solar eruptions are the main driver of space-weather disturbances at Earth. Extreme events are of particular interest, not only because of the scientific challenges they pose, but also because of their possible societal consequences. Here we present a magnetohydrodynamic (MHD) simulation of the 2000 July 14 “Bastille Day” eruption, which produced a very strong geomagnetic storm. After constructing a “thermodynamic” MHD model of the corona and solar wind, we insert a magnetically stable flux rope along the polarity inversion line of the eruption’s source region and initiate the eruption by boundary flows. More than 1033 erg of magnetic energy is released in the eruption within a few minutes, driving a flare, an extreme-ultraviolet wave, and a coronal mass ejection (CME) that travels in the outer corona at ≈1500 km s‑1, close to the observed speed. We then propagate the CME to Earth, using a heliospheric MHD code. Our simulation thus provides the opportunity to test how well in situ observations of extreme events are matched if the eruption is initiated from a stable magnetic equilibrium state. We find that the flux-rope center is very similar in character to the observed magnetic cloud, but arrives ≈8.5 hr later and ≈15° too far to the north, with field strengths that are too weak by a factor of ≈1.6. The front of the flux rope is highly distorted, exhibiting localized magnetic field concentrations as it passes 1 au. We discuss these properties with regard to the development of space-weather predictions based on MHD simulations of solar eruptions.

  12. SUN-TO-EARTH MHD SIMULATION OF THE 14 JULY 2000 "BASTILLE DAY" ERUPTION.

    PubMed

    Török, Tibor; Downs, Cooper; Linker, Jon A; Lionello, R; Titov, Viacheslav S; Mikić, Zoran; Riley, Pete; Caplan, Ronald M; Wijaya, Janvier

    2018-03-20

    Solar eruptions are the main driver of space-weather disturbances at the Earth. Extreme events are of particular interest, not only because of the scientific challenges they pose, but also because of their possible societal consequences. Here we present a magnetohydrodynamic (MHD) simulation of the 14 July 2000 "Bastille Day" eruption, which produced a very strong geomagnetic storm. After constructing a "thermodynamic" MHD model of the corona and solar wind, we insert a magnetically stable flux rope along the polarity inversion line of the eruption's source region and initiate the eruption by boundary flows. More than 10 33 ergs of magnetic energy are released in the eruption within a few minutes, driving a flare, an EUV wave, and a coronal mass ejection (CME) that travels in the outer corona at ≈1500 km s -1 , close to the observed speed. We then propagate the CME to Earth, using a heliospheric MHD code. Our simulation thus provides the opportunity to test how well in situ observations of extreme events are matched if the eruption is initiated from a stable magnetic-equilibrium state. We find that the flux-rope center is very similar in character to the observed magnetic cloud, but arrives ≈8.5 hours later and ≈ 15° too far to the North, with field strengths that are too weak by a factor of ≈ 1.6. The front of the flux rope is highly distorted, exhibiting localized magnetic-field concentrations as it passes 1 AU. We discuss these properties with regard to the development of space-weather predictions based on MHD simulations of solar eruptions.

  13. Signatures of Nonlinear Waves in Coronal Plumes and Holes

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    1999-01-01

    In recent Ultraviolet Coronagraph Spectrometer/Solar and Heliospheric Observatory (UVCS/SOHO) White Light Channel (WLC) observations we found quasi-periodic variations in the polarized brightness (pB) in the polar coronal holes at heliocentric distances of 1.9-2.45 solar radii. The motivation for the observation is the 2.5D Magnetohydrodynamics (MHD) model of solar wind acceleration by nonlinear waves, that predicts compressive fluctuations in coronal holes. To help identify the waves observed with the UVCS/WLC we model the propagation and dissipation of slow magnetosonic waves in polar plumes using 1D MHD code in spherical geometry, We find that the slow waves nonlinearly steepen in the gravitationally stratified plumes. The nonlinear steepening of the waves leads to enhanced dissipation due to compressive viscosity at the wave-fronts.

  14. A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Bard, Christopher M.; Dorelli, John C.

    2014-02-01

    We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of ≈126 for a 10242 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.

  15. Overview of FAR-TECH's magnetic fusion energy research

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Bogatu, I. N.; Galkin, S. A.; Spencer, J. Andrew; Svidzinski, V. A.; Zhao, L.

    2017-10-01

    FAR-TECH, Inc. has been working on magnetic fusion energy research over two-decades. During the years, we have developed unique approaches to help understanding the physics, and resolving issues in magnetic fusion energy. The specific areas of work have been in modeling RF waves in plasmas, MHD modeling and mode-identification, and nano-particle plasma jet and its application to disruption mitigation. Our research highlights in recent years will be presented with examples, specifically, developments of FullWave (Full Wave RF code), PMARS (Parallelized MARS code), and HEM (Hybrid ElectroMagnetic code). In addition, nano-particle plasma-jet (NPPJ) and its application for disruption mitigation will be presented. Work is supported by the U.S. DOE SBIR program.

  16. Dense Plasma Focus Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Li, Shengtai; Jungman, Gerard

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  17. Reversed Field Pinch helical self-organization studies with the volume preserving field line tracing code NEMATO

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Veranda, M.; Cappello, S.; Chacon, L.; Escande, D. F.; Piovesan, P.

    2009-11-01

    The existence of a Reversed Field Pinch (RFP) dynamo as a (laminar) helical self-organization was anticipated by MHD numerical studies [1]. High current operation in RFX-mod experiment shows such a helical self-organization: strong internal electron transport barriers (ITB) appear and magnetic chaos healing is diagnosed when Single Helical Axis (SHAx) regimes are achieved [2]. We present results of the field line tracing code NEMATO [3] applied to study the magnetic topology resulting from 3D MHD simulations, with the aim of clarifying the conditions for chaos healing in SHAx states. First tests confirm the basic picture: the magnetic chaos due to island overlap is significantly reduced after the expulsion of the dominant mode separatrix. The possible synergy with the presence of magnetic and/or flow shear at the SHAx ITB will also be discussed [4].[4pt] [1] S. Cappello, Plasma Phys. Control. Fusion (2004) & references therein [0pt] [2] R. Lorenzini et al., Nature Phys. (2009) [0pt] [3] J. M. Finn and L. Chacon, Phys. Plasmas (2005) [0pt] [4] M.E. Puiatti et al invited presentation EPS 2009 conference, submitted to Plasma Phys. Control. Fusion

  18. Impact of Type II Spicules into the Corona

    NASA Astrophysics Data System (ADS)

    Martinez-Sykora, Juan; De Pontieu, Bart; Carlsson, Mats; Hansteen, Viggo H.; Pereira, Tiago M. D.

    2017-08-01

    In the lower solar atmosphere, the chromosphere is permeated by jets, in which plasma is propelled at speeds of 50-150 km/s into the Sun’s atmosphere or corona. Although these spicules may play a role in heating the million-degree corona and are associated with Alfvén waves that help drive the solar wind, their generation remains mysterious. We implemented in the radiative MHD Bifrost code the effects of partial ionization using the generalized Ohm’s law. This code also solves the full MHD equations with non-grey and non-LTE radiative transfer and thermal conduction along magnetic field lines. The ion-neutral collision frequency is computed using recent studies that improved the estimation of the cross sections under chromospheric conditions (Vranjes & Krstic 2013). Self-consistently driven jets (spicules type II) in magnetohydrodynamic simulations occur ubiquitously when magnetic tension is confined and transported upwards through interactions between ions and neutrals, and impulsively released to drive flows, heat plasma, generate Alfvén waves, and may play an important role in maintaining the substructure of loop fans. This mechanism explains how spicular plasma can be heated to millions of degrees and how Alfvén waves are generated in the chromosphere.

  19. 3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field

    NASA Astrophysics Data System (ADS)

    Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.

    1999-11-01

    The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.

  20. Approach to Integrate Global-Sun Models of Magnetic Flux Emergence and Transport for Space Weather Studies

    NASA Technical Reports Server (NTRS)

    Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.; hide

    2013-01-01

    The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan will be summarized on the development of a Flux Emergence Prediction Tool (FEPT) in which helioseismology-derived data and vector magnetic maps are assimilated into CMES that couples the dynamics of magnetic flux from the deep interior to the corona.

  1. NIMROD: a program for inference via a normal approximation of the posterior in models with random effects based on ordinary differential equations.

    PubMed

    Prague, Mélanie; Commenges, Daniel; Guedj, Jérémie; Drylewicz, Julia; Thiébaut, Rodolphe

    2013-08-01

    Models based on ordinary differential equations (ODE) are widespread tools for describing dynamical systems. In biomedical sciences, data from each subject can be sparse making difficult to precisely estimate individual parameters by standard non-linear regression but information can often be gained from between-subjects variability. This makes natural the use of mixed-effects models to estimate population parameters. Although the maximum likelihood approach is a valuable option, identifiability issues favour Bayesian approaches which can incorporate prior knowledge in a flexible way. However, the combination of difficulties coming from the ODE system and from the presence of random effects raises a major numerical challenge. Computations can be simplified by making a normal approximation of the posterior to find the maximum of the posterior distribution (MAP). Here we present the NIMROD program (normal approximation inference in models with random effects based on ordinary differential equations) devoted to the MAP estimation in ODE models. We describe the specific implemented features such as convergence criteria and an approximation of the leave-one-out cross-validation to assess the model quality of fit. In pharmacokinetics models, first, we evaluate the properties of this algorithm and compare it with FOCE and MCMC algorithms in simulations. Then, we illustrate NIMROD use on Amprenavir pharmacokinetics data from the PUZZLE clinical trial in HIV infected patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Assessment of Proton Deflectometry for Exploding Wire Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, Farhat Nadeem

    2013-09-25

    This project provides the first demonstration of the application of proton deflectometry for the diagnosis of electromagnetic field topology and current-carrying regions in Z-pinch plasma experiments. Over the course of this project several milestones were achieved. High-energy proton beam generation was demonstrated on the short-pulse high-intensity Leopard laser, (10 Joules in ~350 femtoseconds, and the proton beam generation was shown to be reproducible. Next, protons were used to probe the electromagnetic field structure of short circuit loads in order to benchmark the two numerical codes, the resistive-magnetohydrodynamics (MHD) code, Gorgon, and the hybrid particle-in-cell code, LSP for the interpretation ofmore » results. Lastly, the proton deflectometry technique was used to map the magnetic field structure of pulsed-power-driven plasma loads including wires and supersonic jets formed with metallic foils. Good agreement between the modeling and experiments has been obtained. The demonstrated technique holds great promise to significantly improve the understanding of current flow and electromagnetic field topology in pulsed power driven high energy density plasmas. Proton probing with a high intensity laser was for the first time implemented in the presence of the harsh debris and x-ray producing z-pinch environment driven by a mega-ampere-scale pulsed-power machine. The intellectual merit of the program was that it investigated strongly driven MHD systems and the influence of magnetic field topology on plasma evolution in pulsed power driven plasmas. The experimental program involved intense field-matter interaction in the generation of the proton probe, as well as the generation of plasma subjected to 1 MegaGauss scale magnetic fields. The computational aspect included two well-documented codes, in combination for the first time to provide accurate interpretation of the experimental results. The broader impact included the support of 2 graduate students, one at UCSD and one at NTF, who were exposed to both the experimental physics work, the MHD and PIC modeling of the system. A first generation college undergraduate student was employed to assist in experiments and data analysis throughout the project. Data resulting from the research program were broadly disseminated by publication in scientific journals, and presentation at international and national conferences and workshops.« less

  3. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  4. Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D

    DOE PAGES

    Liu, Feng; Huijsmans, G. T. A.; Loarte, A.; ...

    2015-09-04

    In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this article, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wallmore » boundary conditions have been carried out with 3-D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIIID and that the kink-peeling modes saturate non-linearly leading to a 3-D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. Finally, the effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.« less

  5. Coupling of PIES 3-D Equilibrium Code and NIFS Bootstrap Code with Applications to the Computation of Stellarator Equilibria

    NASA Astrophysics Data System (ADS)

    Monticello, D. A.; Reiman, A. H.; Watanabe, K. Y.; Nakajima, N.; Okamoto, M.

    1997-11-01

    The existence of bootstrap currents in both tokamaks and stellarators was confirmed, experimentally, more than ten years ago. Such currents can have significant effects on the equilibrium and stability of these MHD devices. In addition, stellarators, with the notable exception of W7-X, are predicted to have such large bootstrap currents that reliable equilibrium calculations require the self-consistent evaluation of bootstrap currents. Modeling of discharges which contain islands requires an algorithm that does not assume good surfaces. Only one of the two 3-D equilibrium codes that exist, PIES( Reiman, A. H., Greenside, H. S., Compt. Phys. Commun. 43), (1986)., can easily be modified to handle bootstrap current. Here we report on the coupling of the PIES 3-D equilibrium code and NIFS bootstrap code(Watanabe, K., et al., Nuclear Fusion 35) (1995), 335.

  6. Preliminary study of the CRRES magnetospheric barium releases

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Bernhardt, P. A.; Lyon, J. G.

    1992-01-01

    Preliminary theoretical and computational analyses of the Combined Release and Radiation Effects Satellite (CRRES) magnetospheric barium releases are presented. The focus of the studies is on the evolution of the diamagnetic cavity which is formed by the barium ions as they expand outward, and on the structuring of the density and magnetic field during the expansion phase of the releases. Two sets of simulation studies are discussed. The first set is based upon a 2D ideal MHD code and provides estimates of the time and length scales associated with the formation and collapse of the diamagnetic cavity. The second set uses a nonideal MHD code; specifically, the Hall term is included. This additional term is critical to the dynamics of sub-Alfvenic plasma expansions, such as the CRRES barium releases, because it leads to instability of the expanding plasma. Detailed simulations of the G4 and G10 releases were performed. In both cases the expanding plasma rapidly structured: the G4 release structured at time t less than about 3 s and developed scale sizes of about 1-2 km, while the G10 release structured at time t less than about 22 s and developed scale sizes of about 10-15 km. It is also found that the diamagnetic cavity size is reduced from those obtained from the ideal MHD results because of the structure. On the other hand, the structuring allows the formation of plasma blobs which appear to free stream across the magnetic field; thus, the barium plasma can propagate to larger distances traverse to the magnetic field than the case where no structuring occurs. Finally, a new normal mode of the system was discovered which may be excited at the leading edge of the expanding barium plasma.

  7. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less

  8. Interaction of external n  =  1 magnetic fields with the sawtooth instability in low-q RFX-mod and DIII-D tokamaks

    NASA Astrophysics Data System (ADS)

    Piron, C.; Martin, P.; Bonfiglio, D.; Hanson, J.; Logan, N. C.; Paz-Soldan, C.; Piovesan, P.; Turco, F.; Bialek, J.; Franz, P.; Jackson, G.; Lanctot, M. J.; Navratil, G. A.; Okabayashi, M.; Strait, E.; Terranova, D.; Turnbull, A.

    2016-10-01

    External n  =  1 magnetic fields are applied in RFX-mod and DIII-D low safety factor Tokamak plasmas to investigate their interaction with the internal MHD dynamics and in particular with the sawtooth instability. In these experiments the applied magnetic fields cause a reduction of both the sawtooth amplitude and period, leading to an overall stabilizing effect on the oscillations. In RFX-mod sawteeth eventually disappear and are replaced by a stationary m  =  1, n  =  1 helical equilibrium without an increase in disruptivity. However toroidal rotation is significantly reduced in these plasmas, thus it is likely that the sawtooth mitigation in these experiments is due to the combination of the helically deformed core and the reduced rotation. The former effect is qualitatively well reproduced by nonlinear MHD simulations performed with the PIXIE3D code. The results obtained in these RFX-mod experiments motivated similar ones in DIII-D L-mode diverted Tokamak plasmas at low q 95. These experiments succeeded in reproducing the sawtooth mitigation with the approach developed in RFX-mod. In DIII-D this effect is correlated with a clear increase of the n  =  1 plasma response, that indicates an enhancement of the coupling to the marginally stable n  =  1 external kink, as simulations with the linear MHD code IPEC suggest. A significant rotation braking in the plasma core is also observed in DIII-D. Numerical calculations of the neoclassical toroidal viscosity (NTV) carried out with PENT identify this torque as a possible contributor for this effect.

  9. Equilibrium 𝛽-limits in classical stellarators

    NASA Astrophysics Data System (ADS)

    Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.

    2017-12-01

    A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.

  10. Nonlinear asymmetric tearing mode evolution in cylindrical geometry

    DOE PAGES

    Teng, Qian; Ferraro, N.; Gates, David A.; ...

    2016-10-27

    The growth of a tearing mode is described by reduced MHD equations. For a cylindrical equilibrium, tearing mode growth is governed by the modified Rutherford equation, i.e., the nonlinear Δ'(w). For a low beta plasma without external heating, Δ'(w) can be approximately described by two terms, Δ' ql(w), Δ'A(w). In this work, we present a simple method to calculate the quasilinear stability index Δ'ql rigorously, for poloidal mode number m ≥ 2. Δ' ql is derived by solving the outer equation through the Frobenius method. Δ'ql is composed of four terms proportional to: constant Δ' 0, w, wlnw, and w2.more » Δ' A is proportional to the asymmetry of island that is roughly proportional to w. The sum of Δ' ql and Δ' A is consistent with the more accurate expression calculated perturbatively. The reduced MHD equations are also solved numerically through a 3D MHD code M3D-C1. The analytical expression of the perturbed helical flux and the saturated island width agree with the simulation results. Lastly, it is also confirmed by the simulation that the Δ' A has to be considered in calculating island saturation.« less

  11. Magnetic Compression Experiment at General Fusion with Simulation Results

    NASA Astrophysics Data System (ADS)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  12. Real-time global MHD simulation of the solar wind interaction with the earth’s magnetosphere

    NASA Astrophysics Data System (ADS)

    Shimazu, H.; Kitamura, K.; Tanaka, T.; Fujita, S.; Nakamura, M. S.; Obara, T.

    2008-11-01

    We have developed a real-time global MHD (magnetohydrodynamics) simulation of the solar wind interaction with the earth’s magnetosphere. By adopting the real-time solar wind parameters and interplanetary magnetic field (IMF) observed routinely by the ACE (Advanced Composition Explorer) spacecraft, responses of the magnetosphere are calculated with MHD code. The simulation is carried out routinely on the super computer system at National Institute of Information and Communications Technology (NICT), Japan. The visualized images of the magnetic field lines around the earth, pressure distribution on the meridian plane, and the conductivity of the polar ionosphere, can be referred to on the web site (http://www2.nict.go.jp/y/y223/simulation/realtime/). The results show that various magnetospheric activities are almost reproduced qualitatively. They also give us information how geomagnetic disturbances develop in the magnetosphere in relation with the ionosphere. From the viewpoint of space weather, the real-time simulation helps us to understand the whole image in the current condition of the magnetosphere. To evaluate the simulation results, we compare the AE indices derived from the simulation and observations. The simulation and observation agree well for quiet days and isolated substorm cases in general.

  13. Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments

    NASA Astrophysics Data System (ADS)

    Chang, Zuoyang

    1996-11-01

    Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K.-L. Wong and S. Zweben, Princeton Plasma Physics Lab. Department of Physics, University of California, Irvine, CA 92717 ^*Work supported by the U.S. Department of Energy DoE Contract No. DE-AC02-76CH03073.

  14. The Biermann catastrophe of numerical MHD

    NASA Astrophysics Data System (ADS)

    Graziani, C.; Tzeferacos, P.; Lee, D.; Lamb, D. Q.; Weide, K.; Fatenejad, M.; Miller, J.

    2016-05-01

    The Biermann Battery effect is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel physical effect a resistive magnetic precursor in which Biermann-generated field in the shock “leaks” resistively upstream. The effect appears to be potentially observable in experiments at laser facilities.

  15. The Richtmyer-Meshkov Instability on a Circular Interface in Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Black, Wolfgang; Maxon, W. Curtis; Denissen, Nicholas; McFarland, Jacob

    2017-11-01

    Hydrodynamic instabilities (HI) are ubiquitous in high energy density (HED) applications such as astrophysics, thermonuclear weapons, and inertial fusion. In these systems, fluid mixing is encouraged by the HI which can reduce the energy yield and eventually drive the system to equilibrium. The Richtmyer-Meshkov (RM) instability is one such HI and is created when a perturbed interface between a density gradient is impulsively accelerated. The physics can be complicated one step further by the inclusion of Magnetohydrodynamics (MHD), where HED systems experience the effects of magnetic and electric fields. These systems provide unique challenges and as such can be used to validate hydrodynamic codes capable of predicting HI. The work presented here will outline efforts to study the RMI in MHD for a circular interface utilizing the hydrocode FLAG, developed at Los Alamos National Laboratory.

  16. A Simple GPU-Accelerated Two-Dimensional MUSCL-Hancock Solver for Ideal Magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Bard, Christopher; Dorelli, John C.

    2013-01-01

    We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of approx. = 126 for a sq 1024 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.

  17. Analysis of Island Formation Due to RMPs in D3D Plasmas Using SIESTA

    NASA Astrophysics Data System (ADS)

    Hirshman, Steven; Shafer, Morgan; Seal, Sudip; Canik, John

    2015-11-01

    By varying the initial helical perturbation amplitude of Resonant Magnetic Perturbations (RMPs) applied to a Doublet III-D (DIII-D) plasma, a variety of meta-stable equilibrium are scanned using the SIESTA MHD equilibrium code. It is found that increasing the perturbation strength at the dominant m =2 resonant surface leads to lower MHD energies and significant increases in the equilibrium island widths at the m =2 (and sidebands) surfaces. Island overlap eventually leads to stochastic magnetic fields which correlate well with the experimentally inferred field line structure. The magnitude and spatial phase (around associated rational surfaces) of resonant (shielding) components of the parallel current is shown to be correlated with the magnetic island topology. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  18. Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.

    2016-01-01

    We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R approx. 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.

  19. Microphysics of Waves and Instabilities in the Solar Wind and Their Macro Manifestations in the Corona and Interplanetary Space

    NASA Technical Reports Server (NTRS)

    Habbal, Shadia Rifai

    2005-01-01

    Investigations of the physical processes responsible for coronal heating and the acceleration of the solar wind were pursued with the use of our recently developed 2D MHD solar wind code and our 1D multifluid code. In particular, we explored: (1) the role of proton temperature anisotropy in the expansion of the solar (2) the role of plasma parameters at the coronal base in the formation of high (3) a three-fluid model of the slow solar wind (4) the heating of coronal loops (5) a newly developed hybrid code for the study of ion cyclotron resonance in wind, speed solar wind streams at mid-latitudes, the solar wind.

  20. Magnetic chaos healing in the helical reversed-field pinch: indications from the volume-preserving field line tracing code NEMATO

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Veranda, M.; Cappello, S.; Chacón, L.; Spizzo, G.

    2010-11-01

    The emergence of a self-organized reversed-field pinch (RFP) helical regime, first shown by 3D MHD numerical simulations, has been highlighted in the RFX-mod experiment at high current operation (IP above 1 MA). In fact, a quasi-stationary helical configuration spontaneously appears, characterized by strong internal electron transport barriers. In such regime electron temperature and density become, to a very good approximation, functions of the helical flux coordinate related to the dominant helical magnetic component. In addition, this regime is diagnosed to be associated with the topological transition to a single-helical-axis (SHAx) state, achieved after the expulsion of the separatrix of the dominant mode's magnetic island. The SHAx state is theoretically predicted to be resilient to the magnetic chaos induced by secondary modes. In this paper, we present initial results of the volume-preserving field line tracing code NEMATO [Finn J M and Chacón L 2005 Phys. Plasmas 12 054503] applied to study the magnetic topology resulting from 3D MHD simulations of the RFP. First, a successful 2D verification test of the code is shown, then, initial application to a systematic study of chaos healing in the helical RFP is discussed. The separatrix disappearance is confirmed to play an essential role for chaos healing. The triggering effect of a reversed magnetic shear for the formation of ordered surfaces within magnetic chaos is also diagnosed.

  1. Magnetic chaos healing in hte helical reversed-field pinch: indications from the volume-preserving field line tracing code NEMATO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfiglio, Daniele; Veranda, M.; Cappello, Susanna

    2010-01-01

    The emergence of a self-organized reversed-field pinch (RFP) helical regime, first shown by 3D MHD numerical simulations, has been highlighted in the RFX-mod experiment at high current operation (IP above 1 MA). In fact, a quasi-stationary helical configuration spontaneously appears, characterized by strong internal electron transport barriers. In such regime electron temperature and density become, to a very good approximation, functions of the helical flux coordinate related to the dominant helical magnetic component. In addition, this regime is diagnosed to be associated with the topological transition to a single-helical-axis (SHAx) state, achieved after the expulsion of the separatrix of themore » dominant mode's magnetic island. The SHAx state is theoretically predicted to be resilient to the magnetic chaos induced by secondary modes. In this paper, we present initial results of the volume-preserving field line tracing code nemato [Finn J M and Chacon L 2005 Phys. Plasmas 12 054503] applied to study the magnetic topology resulting from 3D MHD simulations of the RFP. First, a successful 2D verification test of the code is shown, then, initial application to a systematic study of chaos healing in the helical RFP is discussed. The separatrix disappearance is confirmed to play an essential role for chaos healing. The triggering effect of a reversed magnetic shear for the formation of ordered surfaces within magnetic chaos is also diagnosed.« less

  2. The external kink mode in diverted tokamaks

    NASA Astrophysics Data System (ADS)

    Turnbull, A. D.; Hanson, J. M.; Turco, F.; Ferraro, N. M.; Lanctot, M. J.; Lao, L. L.; Strait, E. J.; Piovesan, P.; Martin, P.

    2016-06-01

    > . The resistive kink behaves much like the ideal kink with predominantly kink or interchange parity and no real sign of a tearing component. However, the growth rates scale with a fractional power of the resistivity near the surface. The results have a direct bearing on the conventional edge cutoff procedures used in most ideal MHD codes, as well as implications for ITER and for future reactor options.

  3. The STPX Spheromak System: Recent Measurements and Observations

    NASA Astrophysics Data System (ADS)

    Williams, R. L.; Clark, J.; Richardson, M.; Williams, R. E.

    2016-10-01

    We present results of recent measurements made to characterize the plasma formed in the STPX* Spheromak plasma device installed at the Florida A. and M University. The toroidal plasma is formed using a pulsed cylindrical gun discharge and, when fully operational, is designed to approach a density of 1021 /m3 and electron temperatures in the range of 100-350 eV. The diagnostic devices used for these recent measurements include Langmuir probes, electrostatic triple probes, optical spectrometers, CCD detectors, laser probes and magnetic field coils. These probes have been tested using both a static and the pulsed discharges created in the device, and we report the latest measurements. The voltage and current profiles of the pulsed discharge as well as the pulsed magnetic field coils are discussed. Progress in modeling this spheromak using NIMROD and other simulation codes will be discussed. Our recent results of an ongoing study of the topology of magnetic helicity are presented in a separate poster. Spheromak Turbulent Physics Experiment.

  4. Numerical investigation of design and operation parameters on CHI spheromak performance

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamás, C. R.; Woodruff, S.

    2017-10-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization in spheromaks formed with coaxial helicity injection, particularly with regard to how externally controllable parameters affect the resulting spheromak performance. The overall goal of our study is to inform the design and operational parameters of a future proof-of-principle spheromak experiment. Our calculations start from vacuum magnetic fields and model multiple distinct phases of evolution. Results indicate that modest changes to the design and operation of past experiments, e.g. SSPX [E.B. Hooper et al. PPCF 2012], could have significantly improved the plasma-current injector coupling efficiency and performance, particularly with respect to peak temperature and lifetime. While we frequently characterize performance relative to SSPX, our conclusions extrapolate to fundamentally different experimental designs. We also explore adiabatic magnetic compression of spheromaks, which may allow for a small-scale, high-performance and high-yield pulsed neutron source. This work is supported by DAPRA under Grant No. N66001-14-1-4044.

  5. Validation of Numerical Two-Fluid and Kinetic Plasma Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel Barnes

    This was a four year grant commencing October 1, 2003 and finishing September 30, 2007. The funding was primarily used to support the work of the Principal Investigator, who collaborated with Profs. Scott Parker and John Cary at U. Colorado, and with two students, N. Xiang and J. Cheng also of U. Colorado. The technical accomplishments of this grant can be found in the publications listed in the final Section here. The main accomplishments of the grant work were: (1) Development and implementation of time-implicit two-fluid simulation methods in collaboration with the NIMROD team; and (2) Development and testing ofmore » a new time-implicit delta-f, energy-conserving method The basic two-fluid method, with many improvements is used in present NIMROD calculations. The energy-conserving delta-f method is under continuing development under contract between Coronado Consulting, a New Mexico sole proprietorship and the Oak Ridge National Laboratory.« less

  6. NIMROD: The Near and InterMediate Range Order Diffractometer of the ISIS second target station.

    PubMed

    Bowron, D T; Soper, A K; Jones, K; Ansell, S; Birch, S; Norris, J; Perrott, L; Riedel, D; Rhodes, N J; Wakefield, S R; Botti, A; Ricci, M-A; Grazzi, F; Zoppi, M

    2010-03-01

    NIMROD is the Near and InterMediate Range Order Diffractometer of the ISIS second target station. Its design is optimized for structural studies of disordered materials and liquids on a continuous length scale that extends from the atomic, upward of 30 nm, while maintaining subatomic distance resolution. This capability is achieved by matching a low and wider angle array of high efficiency neutron scintillation detectors to the broad band-pass radiation delivered by a hybrid liquid water and liquid hydrogen neutron moderator assembly. The capabilities of the instrument bridge the gap between conventional small angle neutron scattering and wide angle diffraction through the use of a common calibration procedure for the entire length scale. This allows the instrument to obtain information on nanoscale systems and processes that are quantitatively linked to the local atomic and molecular order of the materials under investigation.

  7. Effects of miso- and mesoscale obstructions on PAM winds obtained during project NIMROD. [Portable Automated Mesonet

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Wakimoto, R. M.

    1982-01-01

    Data from 27 PAM (Portable Automated Mesonet) stations, operational as a phase of project NIMROD (Northern Illinois Meteorological Research on Downburst), are presented. It was found that PAM-measured winds are influenced by the mesoscale obstruction of the Chicago metropolitan area, as well as by the misoscale obstruction of identified trees and buildings. The mesoscale obstruction was estimated within the range of near zero to 50%, increasing toward the city limits, while the misoscale obstruction was estimated as being as large as 58% near obstructing trees which were empirically calculated to cause a wind speed deficit 50-80 times their height. Despite a statistical analysis based on one-million PAM winds, wind speed and stability transmission factors could not be accurately calculated; thus, in order to calculate the airflow free from obstacle, PAM-measured winds must be corrected.

  8. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  9. Modeling the Sun-Earth Connection

    NASA Astrophysics Data System (ADS)

    Hughes, W. J.

    2003-04-01

    Space weather is caused by a series of interconnected events, beginning at the Sun and ending in the near-Earth space environment. Our ability to predict conditions and events in space depends on our understanding of these connections, and more importantly, our ability to predict details, such as the orientation of the magnetic field within a CME that is on its way to Earth. One approach to both improved understanding and prediction is through the use of models, particularly computer simulation models. Although models of the space environment are not yet good enough for this approach to be quantitative, things are changing. Models of components of the system the magnetosphere or the Sun’s corona, for example are now approaching a point where the biggest uncertainties in the model results are due to uncertainties in boundary conditions or in interactions with neighboring regions. Thus the time is ripe for the models to be joined into one large model that can deal with the complex couplings between the components of the system. In this talk we will review efforts to do this being undertaken by the new NSF Science and Technology Center, the Center for Integrated Space Weather Modeling, a consortium of ten institutions headed by Boston University. We will discuss results of initial efforts to couple MHD models of the corona and solar wind, and to couple a global magnetospheric MHD model with a global ionosphere/thermosphere model and a ring current particle model. Coupling the SAIC coronal MHD model and the U Colorado/SEC solar wind MHD codes allows us to track CMEs from the base of the corona to 1 AU. The results show how shocks form and develop in the heliosphere, and how the CME flattens into a pancake shape by the time it reaches earth. Coupling the Lyon/Fedder/Mobarry global MHD model with the Rice Convection Model and the NCAR TIE-GCM/TING model allows full dynamic coupling between the magnetosphere, the ionosphere/thermosphere, and the hot plasma in the inner magnetosphere.

  10. Parallel equilibrium current effect on existence of reversed shear Alfvén eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Hua-sheng, E-mail: huashengxie@gmail.com; Xiao, Yong, E-mail: yxiao@zju.edu.cn

    2015-02-15

    A new fast global eigenvalue code, where the terms are segregated according to their physics contents, is developed to study Alfvén modes in tokamak plasmas, particularly, the reversed shear Alfvén eigenmode (RSAE). Numerical calculations show that the parallel equilibrium current corresponding to the kink term is strongly unfavorable for the existence of the RSAE. An improved criterion for the RSAE existence is given for with and without the parallel equilibrium current. In the limits of ideal magnetohydrodynamics (MHD) and zero-pressure, the toroidicity effect is the main possible favorable factor for the existence of the RSAE, which is however usually small.more » This suggests that it is necessary to include additional physics such as kinetic term in the MHD model to overcome the strong unfavorable effect of the parallel current in order to enable the existence of RSAE.« less

  11. Propagation and damping of Alfvén waves in low solar atmosphere

    NASA Astrophysics Data System (ADS)

    Ryu, Chang-Mo; Huynh, Cong Tuan

    2017-10-01

    Propagation and damping of Alfvén waves in the inner solar corona are studied using a 2D magnetohydrodynamics (MHD) simulation code with realistic density and temperature profiles in a uniform background magnetic field. A linear wave is launched by ascribing a sinusoidal fluid motion at about 1000 km from the surface of the Sun, which is shown to generate Alfvénic wave motions along the height. The 2D MHD simulation shows that for B0 ≈ 3 G, Alfvén waves of about 10-2 Hz with an infinite horizontal length-scale can penetrate into the corona, transferring about 90 per cent their energies. This raises the possibility that the wave can be dissipated by various physical processes. The results show that the propagating wave can effectively damp via viscosity in the lower region of the corona, if a horizontal scale of granular size is incorporated.

  12. Global Three-dimensional Simulation of the Solar Wind-Magnetosphere Interaction Using a Two-way Coupled Magnetohydrodynamics with Embedded Particle-in-Cell Model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Toth, G.; Cassak, P.; Jia, X.; Gombosi, T. I.; Slavin, J. A.; Welling, D. T.; Markidis, S.; Peng, I. B.; Jordanova, V. K.; Henderson, M. G.

    2017-12-01

    We perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the interaction between the solar wind and Earth's magnetosphere. In this global simulation with magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC), both the dayside magnetopause reconnection region and the magnetotail reconnection region are covered with a kinetic particle-in-cell code iPIC3D, which is two-way coupled with the global MHD model BATS-R-US. We will describe the dayside reconnection related phenomena, such as the lower hybrid drift instability (LHDI) and the evolution of the flux transfer events (FTEs) along the magnetopause, and compare the simulation results with observations. We will also discuss the response of the magnetotail to the southward IMF. The onset of the tail reconnection and the properties of the magnetotail flux ropes will be discussed.

  13. Chirping and Sudden Excitation of Energetic-Particle-Driven Geodesic Acoustic Modes in a Large Helical Device Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro

    2018-04-01

    Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.

  14. Validation and Continued Development of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2017-10-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. An extended MHD model has shown good agreement with experimental data at 14 kHz injector operation. Efforts to extend the existing validation to a range of higher frequencies (36, 53, 68 kHz) using the PSI-Tet 3D extended MHD code will be presented, along with simulations of potential combinations of flux conserver features and helicity injector configurations and their impact on current drive performance, density control, and temperature for future SIHI experiments. Work supported by USDoE.

  15. A numerical study on bow shocks around the lightning return stroke channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qiang, E-mail: cq0405@126.com; Chen, Bin, E-mail: emcchen@163.com; Yi, Yun

    2015-03-15

    Bow shock structures are important to various hydrodynamics and magnetohydrodynamics (MHD) phenomena in geophysics and astrophysics. The formation and propagation of bow shocks around the lightning return stroke channel are investigated based on the self-similar motion theory and simulated with a two-dimensional Eulerian finite volume resistive radiation MHD code. In this framework, as verification of theoretical models, the evolving structures of many quantities, such as the plasma density, temperature, pressure, shock velocity, and magnetic field, can be obtained, which present all the characteristics of bow shocks in the lightning return stroke processes. The evolution characteristics and the configuration of themore » curved return stroke channels, e.g., the non-ideal effects and the scaling laws, are discussed in detail. The results may have applications for some observed features of the return stroke channels and other phenomena in the lightning discharge plasmas.« less

  16. Chirping and Sudden Excitation of Energetic-Particle-Driven Geodesic Acoustic Modes in a Large Helical Device Experiment.

    PubMed

    Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro

    2018-04-27

    Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.

  17. Some Aspects of Advanced Tokamak Modeling in DIII-D

    NASA Astrophysics Data System (ADS)

    St John, H. E.; Petty, C. C.; Murakami, M.; Kinsey, J. E.

    2000-10-01

    We extend previous work(M. Murakami, et al., General Atomics Report GA-A23310 (1999).) done on time dependent DIII-D advanced tokamak simulations by introducing theoretical confinement models rather than relying on power balance derived transport coefficients. We explore using NBCD and off axis ECCD together with a self-consistent aligned bootstrap current, driven by the internal transport barrier dynamics generated with the GLF23 confinement model, to shape the hollow current profile and to maintain MHD stable conditions. Our theoretical modeling approach uses measured DIII-D initial conditions to start off the simulations in a smooth consistent manner. This mitigates the troublesome long lived perturbations in the ohmic current profile that is normally caused by inconsistent initial data. To achieve this goal our simulation uses a sequence of time dependent eqdsks generated autonomously by the EFIT MHD equilibrium code in analyzing experimental data to supply the history for the simulation.

  18. Tearing mode dynamics and sawtooth oscillation in Hall-MHD

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Zhang, Wei; Wang, Sheng

    2017-10-01

    Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.

  19. Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.

    In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less

  20. Progress in development of HEDP capabilities in FLASH's Unsplit Staggered Mesh MHD solver

    NASA Astrophysics Data System (ADS)

    Lee, D.; Xia, G.; Daley, C.; Dubey, A.; Gopal, S.; Graziani, C.; Lamb, D.; Weide, K.

    2011-11-01

    FLASH is a publicly available astrophysical community code designed to solve highly compressible multi-physics reactive flows. We are adding capabilities to FLASH that will make it an open science code for the academic HEDP community. Among many important numerical requirements, we consider the following features to be important components necessary to meet our goals for FLASH as an HEDP open toolset. First, we are developing computationally efficient time-stepping integration methods that overcome the stiffness that arises in the equations describing a physical problem when there are disparate time scales. To this end, we are adding two different time-stepping schemes to FLASH that relax the time step limit when diffusive effects are present: an explicit super-time-stepping algorithm (Alexiades et al. in Com. Num. Mech. Eng. 12:31-42, 1996) and a Jacobian-Free Newton-Krylov implicit formulation. These two methods will be integrated into a robust, efficient, and high-order accurate Unsplit Staggered Mesh MHD (USM) solver (Lee and Deane in J. Comput. Phys. 227, 2009). Second, we have implemented an anisotropic Spitzer-Braginskii conductivity model to treat thermal heat conduction along magnetic field lines. Finally, we are implementing the Biermann Battery term to account for spontaneous generation of magnetic fields in the presence of non-parallel temperature and density gradients.

Top