Science.gov

Sample records for mhd generator aerl mark vii

  1. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  2. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  3. Supersonic MHD generator system

    SciTech Connect

    Rahman, M.A.

    1983-11-29

    An improved MHD electrical power generating system of the type having a MHD topping cycle and a steam generating bottoming cycle is disclosed. The system typically includes a combustion system, a conventional MHD generator and a first diffuser radiant boiler. The improvement comprises a first supersonic MHD generator and ramjet engine configuration operatively connected in series with each other and with the conventional MHD generator. The first supersonic MHD generator and ramjet engine configuration increase the power output and improve the operating efficiency of the electrical generating system. A diffuser system is also disclosed which is in fluid communication with the supersonic MHD generator and the ramjet engine for collecting bypass plasma gas to be used for heating a second radiant boiler adapted for powering a steam turbine generator.

  4. MHD-generator-component development. Quarterly report, July 1980-September 1980

    SciTech Connect

    1980-12-01

    The overall objectives of this program are twofold: to contribute, by appropriate systematic experimental and analytical investigations, to the engineering database necessary for the design and construction of MHD generators at CDIF-scale (50 MW/sub th/) and baseload scale (2000 MW/sub th/), and to design and fabricate specific hardware items to be tested at the CDIF site in Butte, Montana. The overall program consists of a series of inter-related tasks, described as follows: (1) perform experimental investigations related to MHD channel design and performance by testing existing channel hardware and by fabricating and testing new channel hardware; (2) perform experimental investigations related to MHD channel perform and lifetime, with the principal aim of systematically obtaining data on the prototype electrodes for the coal-fired, subsonic, long-duration CDIF Generator 1B3; (3) perform testing on channel loading and control utilizing the supersonic Reference Channel No. 4 and other appropriate channels and/or test modules, at magnetic fields to 4 T; (4) provide for facility operation and maintenance of the Mk VI and Mk VII test bays; (5) design and fabricate the following items of CDIF hardware: CDIF Generator 1B2, CDIF Generator 1B3, CDIF 1B Ash Injection Combustor (AIC), CDIF Generator 1A2, and diagonal current control and load consolidation for the 1A2, 1B2 and 1B3 generators; and (4) compare the performance and durability characteristics of coal-fired versus (Mk VI-type) AIC-fired supersonic channels, using existing facilities at the AERL Haverhill site. Progress is described. (WHK)

  5. Explosive MHD Generators

    NASA Astrophysics Data System (ADS)

    Lebedev, E. F.; Ostashev, V. E.; Fortov, V. E.

    2004-11-01

    Explosive driven MHD generators (EMHD) occupy an intermediate position between destroyed Explosive Flux Compression Generators and solid-propellant- pulsed MHD generators. Studies revealed the negative consequences of destroying a plasma liner through Rayleigh-Taylor instability. The real efficiency of conversion of condensed HE charge chemical energy reaches ~10% if the magnetic field in a MHD channel is approximately 8-10 T. Accommodation of 20-30 linear MHD channels into a toroidal magnet seems to be optimal for EMHD generator design. This device may operate repeatedly with a frequency of up to 6.5×103pps.

  6. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  7. MHD generator electrode development

    NASA Astrophysics Data System (ADS)

    Retallick, F. D.; Dietrick, D. L.; Lloyd, I.; Rossing, B. R.; Smith, R.

    1981-08-01

    Metallurgical and engineering understanding of cold metallic electrode alternatives to the continued use of platinum as an anode clad material is discussed. The results of evaluating materials for MHD electrodes through use of a laboratory electrochemical and arc test are presented. Results for standard available materials as well as for some specially fabricated ones are presented. The development of a high temperature (11000 C to 14000 C) electrochemical test is outlined. Initial operation of the Westinghouse Electrode Systems Test Facility (WESTF), since major modification to include a magnet, is reported for a test section designed to operate as a small scale MHD generator and for test sections designed for the purpose of materials test evaluation in the operating MHD plasma environment.

  8. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  9. Solar driven liquid metal MHD power generator

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Hohl, F.

    1983-06-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  10. Explosively-driven magnetohydrodynamic (MHD) generator studies

    SciTech Connect

    Agee, F.J.; Lehr, F.M.; Vigil, M.; Kaye, R.; Gaudet, J.; Shiffler, D.

    1995-08-01

    Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.

  11. Design Study: Rocket Based MHD Generator

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  12. Performance of Combustion Disk MHD Generators.

    NASA Astrophysics Data System (ADS)

    Jenkins, Marion Karl

    of Hall fields were investigated using external voltage augmentation, and electric fields of 9 KV/m were observed in the channel with no evidence of breakdown. The analytical work consisted of the development of a two-dimensional computer program to predict boundary layer phenomena in disk generators, including the effects of turbulence, variable gas properties and MHD interaction. The numerical results show the effect of the variable MHD body force across the insulating wall boundary layer, giving rise to boundary layer velocities higher than those in the core. This leads to greater skin friction and heat transfer losses than what would be predicted with a quasi -one dimensional model. Calculations carried out for baseload -sized generators show the expected dependence of boundary layer behavior on channel operating conditions such as wall temperature, swirl, magnetic field strength and channel loading.

  13. Performance optimization of an MHD generator with physical constraints

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Seikel, G. R.; Smith, J. M.

    1979-01-01

    A method to optimize the Faraday MHD generator performance under a prescribed set of electrical and magnet constraints is described. The results of generator performance calculations using this technique are presented for a very large MHD/steam plant. The differences between the maximum power and maximum net power generators are described. The sensitivity of the generator performance to the various operational parameters are presented.

  14. Power generation tests of the improved shaped B-field-type MHD generator

    NASA Astrophysics Data System (ADS)

    Kayukawa, N.

    1985-08-01

    Ozawa and Kayukawa (1975) have proposed the design of an MHD generator employing the Shaped B-Field Configuration ('SFC'), in which the applied magnetic field is greatly diminished near the electrode walls by keeping the core magnetic field at approximately the same level as the conventional MHD generator. Attention is presently given to the experimental results obtained for an SFC MHD generator incorporating an improved magnetic field design, under shock tube operating conditions. These results are compared with those for a previous SFC MHD device and a conventional MHD generator with uniform B-field configuration.

  15. Eighth international conference on MHD electrical power generation. Volume 4

    SciTech Connect

    Not Available

    1983-01-01

    The VIIIth International Conference on MHD Electrical Power Generation was convened at the initiative of the International Liaison Group on MHD Electrical Power Generation by the USSR Academy of Sciences (Institute of High Temperature) and under the sponsorship of: UNESCO; Council for Mutual Economic Assistance (COMECON); Energoinvest (Yugoslavia), Control Data Corporation (USA); and Bhabha Atomic Research Centre (India). The proceedings of the VIIIth International Conference on MHD Electrical Power Generation contain the results of most recent R and D work aimed at practical realization of this advanced method of electrical power generation. The papers presented to the Conference deal with heat-generating schemes and cycles, conceptual and detail designs of MHD power plants, including that of the first commercial 500-MW power generating unit presently under construction in the USSR. Research results obtained in pilot and experimental facilities in the USSR, USA, Poland, Japan, Netherlands and other countries are described. Volume 4 was concerned with Materials, Combined-Cycle, Liquid-Metal MHD, and Closed-Cycle Disk-Type MHD Generator. This DOE report contains full translations in English of all the papers in Volume 4. These have been entered individually into EDB and ERA. (LTN)

  16. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  17. MHD generator component development. Quarterly report, July 1983-September 1983

    SciTech Connect

    Not Available

    1983-11-01

    The overall objectives of this program are two-fold: (1) To contribute, by appropriate systematic experimental and analytical investigations, to the engineering data base necessary for the design and construction of MHD generators at CDIF-scale (50 MW/sub th/) and baseload scale (2000 MW/sub th/). (2) To design and fabricate specific hardware items to be tested at the CDIF site in Butte, Montana. The program consists of a series of related tasks: (1) MHD channel design and performance; (2) MHD channel construction and lifetime; (3) MHD channel loading and control; (4) facility operation; (5) CDIF related hardware; and (6) high interaction tests of a supersonic channel. Progress is reported. (WHK)

  18. Performance evaluations of MHD generator tests at CDIF

    NASA Astrophysics Data System (ADS)

    Daniel, V. W.; Lineberry, J. T.; Wu, Y. C. L.

    1992-01-01

    Experimental data from CDIF coal-fired MHD generator test 90-DIAG-3 are analyzed. The results of two independent studies are presented and compared. Both studies impose experimental data upon modeling to derive information on plasma properties and electrical loss mechanisms. The first technique applies routine electrical data to special solutions of the MHD electrical equations to determine gross electrophysical properties and nonuniformity parameters of the generator medium (plasma plus slag) over one pitch control volumes along the length of the MHD channel. The second technique pits a predictive 1D MHD generator model against input experimental Hall voltage data. The generator model solves for the MHD plasmadynamic and electrical processes required to fit the experimental voltage distribution to determine plasma properties with wall and electrical losses. Among the parameters that are estimated by these methods are conductivity, Hall parameter, interelectrode resistances, and the plasma nonuniformity factors (e.g., G). The magnitude of leakage current (slag or otherwise) can also inferred from these analyses.

  19. Performance enhancement of explosive-driven MHD generators

    SciTech Connect

    Smith, I.R.; Senior, P.; Stewardson, H.R.; Vadher, V.V. . Dept. of Electronic and Electrical Engineering); Novac, B.M. )

    1994-11-01

    The change in the circuit inductance of a pulsed MHD generator as the plasma sheet travels along the electrodes acts to increase the voltage produced in the generator. The paper explains how unconventional electrode arrangements enable this effect to be significantly magnified, thereby bringing about a considerable increase in the output that can be obtained.

  20. Eighth international conference on MHD electrical power generation. Volume 3

    SciTech Connect

    Not Available

    1983-01-01

    The VIIIth International Conference on MHD Electrical Power Generation was convened at the initiative of the International Liaison Group on MHD Electrical Power Generation by the USSR Academy of Sciences (Institute of High Temperatures) and under the sponsorship of: UNESCO; Council for Mutual Economic Assistance (COMECON); Energoinvest (Yugoslavia); Control Data Corporation (USA); and the Bhabha Atomic Research Centre (India). Considerable emphasis is placed in the Conference proceedings on the problems of testing, designing and mathematical modeling of MHD channels, as well as on the studies into MHD flows, heat transfer, properties and physical processes in plasma, electrode phenomena and diagnostics. The various MHD components are described from the standpoint of their development, namely, compressors, air preheaters, systems for seed injection and recovery, combustors, cooling systems, steam generators, superconducting magnets, loading systems etc. Problems related to high-temperature materials, operation of the equipment under conditions of slagging, and suppression of nitrogen and sulfur oxides are discussed. All but one of the papers have been entered into EDB; one had been entered previously from other sources.

  1. MHD marking using the MSE polarimeter optics in ILW JET plasmas.

    PubMed

    Reyes Cortes, S; Alper, B; Alves, D; Baruzzo, M; Bernardo, J; Buratti, P; Coelho, R; Challis, C; Chapman, I; Hawkes, N; Hender, T C; Hobirk, J; Joffrin, E

    2016-11-01

    In this communication we propose a novel diagnostic technique, which uses the collection optics of the JET Motional Stark Effect (MSE) diagnostic, to perform polarimetry marking of observed MHD in high temperature plasma regimes. To introduce the technique, first we will present measurements of the coherence between MSE polarimeter, electron cyclotron emission, and Mirnov coil signals aiming to show the feasibility of the method. The next step consists of measuring the amplitude fluctuation of the raw MSE polarimeter signals, for each MSE channel, following carefully the MHD frequency on Mirnov coil data spectrograms. A variety of experimental examples in JET ITER-Like Wall (ILW) plasmas are presented, providing an adequate picture and interpretation for the MSE optics polarimeter technique.

  2. MHD marking using the MSE polarimeter optics in ILW JET plasmas

    NASA Astrophysics Data System (ADS)

    Reyes Cortes, S.; Alper, B.; Alves, D.; Baruzzo, M.; Bernardo, J.; Buratti, P.; Coelho, R.; Challis, C.; Chapman, I.; Hawkes, N.; Hender, T. C.; Hobirk, J.; Joffrin, E.

    2016-11-01

    In this communication we propose a novel diagnostic technique, which uses the collection optics of the JET Motional Stark Effect (MSE) diagnostic, to perform polarimetry marking of observed MHD in high temperature plasma regimes. To introduce the technique, first we will present measurements of the coherence between MSE polarimeter, electron cyclotron emission, and Mirnov coil signals aiming to show the feasibility of the method. The next step consists of measuring the amplitude fluctuation of the raw MSE polarimeter signals, for each MSE channel, following carefully the MHD frequency on Mirnov coil data spectrograms. A variety of experimental examples in JET ITER-Like Wall (ILW) plasmas are presented, providing an adequate picture and interpretation for the MSE optics polarimeter technique.

  3. Characterization of open-cycle coal-fired MHD generators

    NASA Astrophysics Data System (ADS)

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.

    1980-09-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort is detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.

  4. Three-dimensional analysis of MHD generators and diffusers

    SciTech Connect

    Vanka, S P; Ahluwalia, R K; Doss, E D

    1982-03-01

    The three-dimensional flow and heat transfer phenomena in MHD channels and diffusers are analyzed by solving the governing partial differential equations for flow and electrical fields. The equation set consists of the mass continuity equation, the three momentum equations, the equations for enthalpy, turbulence kinetic energy and its dissipation rate, and the Maxwell equations. This set of coupled equations is solved by the use of a finite-difference calculation procedure. The turbulence is represented by a two-equation model of turbulence in which partial differential equations are solved for the turbulence kinetic energy and its dissipation rate. Calculations have been performed for Faraday and diagonally-connected channels. Specifically, the AEDC (Faraday) and the UTSI (diagonal) channels have been analyzed, and the results are compared with experimental data. The agreement is fairly good for all the measured quantities. The effects of channel loading on the three-dimensional flow characteristics of Faraday and diagonally-connected generators have been also analyzed. A simple argument is presented to show qualitatively the role of MHD body forces in generating axial vorticity and hence secondary flows in the cross-stream. Calculations have also been made to study the flow evolution in MHD diffusers. The calculations show that the velocity overshoots and secondary flows decay along the diffusers length. Plots of velocity, skin friction and pressure recovery are presented to illustrate the flow development in MHD diffusers.

  5. Solar-Driven Liquid-Metal MHD Generator

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  6. Solar-Driven Liquid-Metal MHD Generator

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  7. RANDOM PULSE GENERATOR PRODUCING FIDUCIAL MARKS

    DOEpatents

    Nielsen, W.F.

    1960-02-01

    The apparatus for automatically applying a fiducial marking, having a nonrepetitive pattern, to a plurality of simultaneously made records comprises, in series, a bypass filter, a trigger circuit, and a pulse generator, with printing means connected to and controlled by the pulse generator for simultaneously making the visible fiducial marks on a plurality of simultaneously produced records.

  8. Current distribution and nonuniformity effects in MHD disk generators

    NASA Astrophysics Data System (ADS)

    Roseman, D. F.

    1982-08-01

    Current distribution and nonuniformity effects in combustion driven MHD disk generators were studied. The importance of these phenomena to baseload power generation was investigated. The peg wall construction allowed current and voltage distributions to be measured. The channel was operated with plasma temperatures up to 2750 K and magnetic field strengths up to 5.5 Tesla. The magnitudes of the currents and voltages were reduced by significant loss mechanisms, primarily electrode losses and current leakage through the wall caused by potassium seed penetration of the castable ceramic between the pegs. A simple circuit model accounting for these losses was developed to be compared with analytical calculations. Under normal uniform electrical loading the distributions measured in the channel were uniform as expected. Nonuniform electrical loading was used to produce and measure effects on the current distribution that occur only in the presence of high magnetic fields as required for MHD power generation.

  9. Space-based laser-driven MHD generator: Feasibility study

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1986-01-01

    The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.

  10. CME generated MHD shocks: creation, evolution and impact

    NASA Astrophysics Data System (ADS)

    Poedts, S.; van der Holst, B.; Chattopadhyay, I.; Shergelashvili, D.; Banerjee, D.; Deconinck, H.

    2003-04-01

    The shocks in the solar corona caused by fast Coronal Mass Ejections (CMEs) are studied in the framework of computational magnetohydrodynamics (MHD). Such MHD shocks can have a complicated structure including secondary shock fronts, overcompressive and compound shocks, etc. Numerical simulations show that CME shocks (generated in the lower corona) can have such a complex structure. The evolution of these CME shocks is followed during their propagation through the solar wind and, in particular, though the critical points in the wind. Complex IP events involving two CME shocks colliding to each other, as often observed, are also investigated. Finally, an analysis based on a parameter study of the impact of the resulting IP magnetic clouds on the Earth's bow shock involving 3D MHD simulations is presented and discussed. In addition, time accurate MHD simulations show how the magnetic reconnection at the Earth's bow shock is affected dramatically by the magnetic cloud impact. The CME shocks are important for `space weather' because they can easily be observed in radio wavelengths. This makes it possible to track the position of the CMEs/magnetic clouds and, hence, to follow their propagation through the corona. The topology of the shock at the Earth's magnetosphere at the impact of a magnetic cloud is important for the `geo-effectiveness' of the magnetic storms.

  11. International Conference on MHD Electrical Power Generation, 7th, Massachusetts Institute of Technology, Cambridge, MA, June 16-20, 1980, Proceedings. Volumes 1, 2 & 3

    NASA Astrophysics Data System (ADS)

    Dawson, A. M.; Overlan, D.

    The first volume of this conference on magnetohydrodynamics (MHD) for electrical power generation covers: (1) MHD pilot plants; (2) MHD generator experiments and modeling; (3) the performance of various MHD generator types; (4) MHD channel design considerations; (5) MHD channel materials considerations; (6) MHD system components, heat recovery and emissions; and (7) MHD oxidizers and inverters. The second volume deals with (8) MHD system magnets and combustors; (9) MHD field, flow and chemical processes; (10) MHD fluid dynamics; (11) MHD electrical power plant design; (12) current transfer and diagnostics; and (13) MHD power plant systems considerations.

  12. MHD generator of electrical energy working on the gasification products of lignites

    NASA Astrophysics Data System (ADS)

    Derevianko, V. A.; Slavin, V. S.; Sokolov, V. S.

    1981-03-01

    An investigation is presented of an MHD generator of electrical energy fueled by gasification products of lignite coals using the T-layer effect which eliminates caustic additives. A quasi-one-dimensional theory of linear MHD processes is constructed on the basis of MHD equations; a design of an industrial generator is discussed.

  13. High-magnetic-field MHD-generator program

    NASA Astrophysics Data System (ADS)

    Kruger, C. H.; Eustis, R. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Nakamura, T.

    1981-04-01

    Channel phenomena which are important at high magnetic fields are investigated. Nonuniformity effects, boundary layers, hall field breakdown, the effects of electrode configuration and current concentrations, and studies of steady state combustion disk and linear channels in a 6 Tesla magnet of small dimensions were studied. A multi-channel fiber optics diagnostic system is described. A one dimensional model to describe the performance of a non-ideal MHD generator was developed. A two dimensional MHD computer code was developed which predicts the dependence on electrode and insulator dimensions of the onset of interelectrode Hall field breakdown. Calculations of the effects of nonuniformities on the flow and electrical behavior of baseload-sized disk generators were performed.

  14. Off-design performance analysis of MHD generator channels

    NASA Astrophysics Data System (ADS)

    Wilson, D. R.; Williams, T. S.

    1980-01-01

    A computer code for performing parametric design point calculations, and evaluating the off-design performance of MHD generators has been developed. The program is capable of analyzing Faraday, Hall, and DCW channels, including the effect of electrical shorting in the gas boundary layers and coal slag layers. Direct integration of the electrode voltage drops is included. The program can be run in either the design or off-design mode. Details of the computer code, together with results of a study of the design and off-design performance of the proposed ETF MHD generator are presented. Design point variations of pre-heat and stoichiometry were analyzed. The off-design study included variations in mass flow rate and oxygen enrichment.

  15. MHD generator with improved network coupling electrodes to a load

    DOEpatents

    Rosa, Richard J.

    1977-01-01

    An MHD generator has a plurality of segmented electrodes extending longitudinally of a duct, whereby progressively increasing high DC voltages are derived from a set of cathode electrodes and progressively increasing low DC voltages are derived from a set of anode electrodes. First and second load terminals are respectively connected to the cathode and anode electrodes by separate coupling networks, each of which includes a number of SCR's and a number of diode rectifiers.

  16. Liquid-metal-piston MHD generator

    NASA Technical Reports Server (NTRS)

    Palmer, J. P.

    1969-01-01

    Magnetohydrodynamic generator uses a slug or piston of liquid potassium as the working fluid. An expanding vapor of the metal is allowed to reciprocate the liquid-metal-piston through a magnetic field and the expansion energy is converted directly into electrical energy.

  17. Plasma plume MHD power generator and method

    DOEpatents

    Hammer, James H.

    1993-01-01

    Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

  18. Transpiration cooled electrodes and insulators for MHD generators

    DOEpatents

    Hoover, Jr., Delmer Q.

    1981-01-01

    Systems for cooling the inner duct walls in a magnetohydrodynamic (MHD) generator. The inner face components, adjacent the plasma, are formed of a porous material known as a transpiration material. Selected cooling gases are transpired through the duct walls, including electrically insulating and electrode segments, and into the plasma. A wide variety of structural materials and coolant gases at selected temperatures and pressures can be utilized and the gases can be drawn from the generation system compressor, the surrounding environment, and combustion and seed treatment products otherwise discharged, among many other sources. The conduits conducting the cooling gas are electrically insulated through low pressure bushings and connectors so as to electrically isolate the generator duct from the ground.

  19. Effects of water molecules of Ar-Cs MHD disk generator operated with strong MHD interaction

    SciTech Connect

    Ishikawa, M.; Kosugi, A.; Inui, Y.; Kabashima, S.

    1998-07-01

    Effects of water molecule impurity are studied on performance of a disk type MHD generator operated with Ar-Cs weakly ionized plasma. To reveal phenomena for a wide range of operation conditions, time-dependent one-dimensional analyses are carried out, where an up-wind, second order Chakravarthy TVD scheme is applied for the gasdynamics, while a Galerkin FEM is used for the electrodynamics. A simplified model is used for the water molecule impurity, where total effects of nonelastic collision between electrons and water molecules are estimated by the collision loss factor of electrons and also the electron momentum-transfer collision frequency is taken into account. The collision loss factor of electrons and the electron momentum-transfer collision frequency are taken from references, and the loss factor is assumed to be 700 independently of the electron temperature. On the Fuji-1 facilities at Tokyo Institute Technology, Japan, series of experiment A4105 were carried out with the Disk F-4 generator. Ar was heated with the heat-exchanger heated by the natural gas-air combustion and the metal cesium was used as the seeding material, while SCM maintained the magnetic field of 4.7 T at the center of disk and the very strong MHD interaction was realized. The thermal input was about 3 MW, the electrical output was about 500 kW with the enthalpy extraction ratio of about 17%. The numerical analyses have shown that the water molecule enhances the ionization instability at the low voltage loading because of insufficient Joule heating for electrons. The generator performance is degraded and the strong MHD interaction between the unstable plasma and the flow field induces slow and fast moving shock waves, leading to the very complicated flow field. The fast and slow moving shocks collide with each other, merge into a sharp shock moving downward, and then the shock front moves back slightly to maintain the pressure balance, collides again with another weak moving shock, and

  20. Design of closed-cycle MHD generator with nonequilibrium ionization and system

    NASA Technical Reports Server (NTRS)

    Voshall, R. E.; Wright, R. J.; Liebermann, R. W.

    1977-01-01

    A method is developed to include the nonequilibrium ionization process in the MHD generator duct design equations, and these equations are coupled to the thermodynamic conditions of the closed cycle system. This is used to relate MHD generator size, configuration and gas conditions to the overall thermodynamic efficiency of the system. The system studied consists of an MHD loop (Ar + Cs or He + Cs) topping a steam bottoming plant.

  1. Numerical Study of Plasma-Fluid Behavior and Generation Characteristics of the Closed Loop MHD Electrical Power Generator

    NASA Astrophysics Data System (ADS)

    Ohno, Jun; Liberati, Alessandro; Murakami, Tomoyuki; Okuno, Yoshihiro

    Time dependent r-z two-dimensional numerical simulations with LES technique have been carried out in order to clarify the plasma fluid behavior and power generation characteristics of the disk MHD generator under the rated operation conditions demonstrated in the closed loop experimental facility at Tokyo Tech. The generator currently installed could suffer from the non-uniform and low electrical conductivity, and the boundary layer separation even under the rated operation conditions. The large amount of generated electric power is consumed in the boundary layer separation region, which reduces a net output power. Reducing the back pressure and improving the inlet plasma conditions surely provide the higher generator performance. The influence of 90 degree bend downstream duct on the generator performance is found to be not marked.

  2. CFFF testing of ceramic elements for MHD generators

    SciTech Connect

    Lineberry, J.T.; Christiansen, P.J.

    1994-12-31

    In September 1992, the POC test LMF5-J was concluded at the CFFF in accordance with the objectives as set for the western coal POC test program. During this activity, a {open_quotes}piggyback{close_quotes} type test was conducted for the Busek Company in partial fulfillment of a DOE Phase II SBIR. A near prototypical design, generator module that was designed and constructed by the Busek Co. was installed in the LMF upstream test train of the CFFF for this test. The module incorporated AlN{sub 2} (ceramic) sidebar elements. The objective of the SBIR Phase II was to evaluate the integrity of this material subject to long duration operation under typical coal-fired MHD generator conditions. A summary of the LMF5-J test at the CFFF and activities and test results relevant to the SBIR Phase II related to the Busek SBIR project are provided.

  3. Assessment of disk MHD generators for a base load powerplant

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.; Retallick, F. D.; Lu, C. L.; Stella, M.; Teare, J. D.; Loubsky, W. J.; Louis, J. F.; Misra, B.

    1981-01-01

    Results from a study of the disk MHD generator are presented. Both open and closed cycle disk systems were investigated. Costing of the open cycle disk components (nozzle, channel, diffuser, radiant boiler, magnet and power management) was done. However, no detailed costing was done for the closed cycle systems. Preliminary plant design for the open cycle systems was also completed. Based on the system study results, an economic assessment of the open cycle systems is presented. Costs of the open cycle disk conponents are less than comparable linear generator components. Also, costs of electricity for the open cycle disk systems are competitive with comparable linear systems. Advantages of the disk design simplicity are considered. Improvements in the channel availability or a reduction in the channel lifetime requirement are possible as a result of the disk design.

  4. Two-dimensional MHD generator model. [GEN code

    SciTech Connect

    Geyer, H. K.; Ahluwalia, R. K.; Doss, E. D.

    1980-09-01

    A steady state, two-dimensional MHD generator code, GEN, is presented. The code solves the equations of conservation of mass, momentum, and energy, using a Von Mises transformation and a local linearization of the equations. By splitting the source terms into a part proportional to the axial pressure gradient and a part independent of the gradient, the pressure distribution along the channel is easily obtained to satisfy various criteria. Thus, the code can run effectively in both design modes, where the channel geometry is determined, and analysis modes, where the geometry is previously known. The code also employs a mixing length concept for turbulent flows, Cebeci and Chang's wall roughness model, and an extension of that model to the effective thermal diffusities. Results on code validation, as well as comparisons of skin friction and Stanton number calculations with experimental results, are presented.

  5. Electrode materials for coal-fired MHD generators

    NASA Astrophysics Data System (ADS)

    Perkins, R. A.

    1980-10-01

    Metallic materials are evaluated as electrodes for coal fired MHD generators. A laboratory test that simulates the electrochemical and corrosive environment was developed and used to characterize electrode behavior in a diffuse current flow (nonarcing) mode of operation. High current density requires that an electron transport mechanism of current flow be maintained. With inert, stable electrodes, anode polarization occurs and ionic conduction prevails, limiting current to low values. The nature of this behavior and approaches to overcoming anodic polarization are studied as a function of electrode material, slag composition, and temperature. By operating at high temperatures and with controlled slag chemistries to produce a very fluid slag, depolarization may be achieved by mechanical mixing. Interrupted current flow are required to aid in breaking down anodic polarization.

  6. Feasibility of the inflow disk generator for open-cycle MHD power generation

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Lear, W. E.; Eustis, R. H.

    1981-01-01

    A feasibility study of the inflow disk MHD generator for baseload applications was performed. Each design element, i.e., the combustor, the inlet flow path, the generator channel, the diffuser and the magnet, was studied in detail in order to provide a comprehensive assessment of the inflow disk generator. Based on these results, the performance of the inflow disk generator was calculated for two different thermal inputs: 1250 MW(th) and 2500 MW(th). It was shown that the performance of the inflow disk generator is similar to that of the diagonal generator within the uncertainty of the analysis.

  7. Coupled generator and combustor performance calculations for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Dellinger, T. C.; Hnat, J. G.; Marston, C. H.

    1979-01-01

    A parametric study of the performance of the MHD generator and combustor components of potential early commercial open-cycle MHD/steam power plants is presented. Consideration is given to the effects of air heater system concept, MHD combustor type, coal type, thermal input power, oxygen enrichment of the combustion, subsonic and supersonic generator flow and magnetic field strength on coupled generator and combustor performance. The best performance is found to be attained with a 3000 F, indirectly fired air heater, no oxygen enrichment, Illinois no. 6 coal, a two-stage cyclone combustor with 85% slag rejection, a subsonic generator, and a magnetic field configuration yielding a constant transverse electric field of 4 kV/m. Results indicate that optimum net MHD generator power is generally compressor-power-limited rather than electric-stress-limited, with optimum net power a relatively weak function of operating pressure.

  8. Computer controlled MHD power consolidation and pulse generation system

    SciTech Connect

    Johnson, R.; Marcotte, K.; Donnelly, M.

    1990-01-01

    The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

  9. MHD generators as pulse power sources for arc-driven railguns

    SciTech Connect

    Esposito, N.; Raugi, M.; Tellini, A.

    1995-01-01

    In this paper the performances of an electromagnetic launch system constituted by an arc driven railgun powered by a MHD generator are investigated. A small bore plasma driven railgun for fusion fuel pellet injection is examined considering as pulse power source a MHD generator having characteristics taken from operating devices. The analysis of the railgun and generator has been carried out by means of a lumped parameter equivalent network model that takes into account drag force and ablation effects and allowing the evaluation of the main electrical and thermodynamic quantity distributions of the plasma arc.

  10. Fundamental Studies On Development Of MHD (Magnetohydrodynamic) Generator Implement On Wave Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.

    2016-02-01

    As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.

  11. Slag condensation kinetics in the channel of an MHD generator: Explosive condensation

    SciTech Connect

    Zhukhovitskii, D.I.; Khrapak, A.G.; Yakubov, I.T.

    1983-09-01

    A study has been made of the bulk condensation of the inorganic part of combustion products in the channel of an MHD generator. An analytic solution has been obtained to the equations describing the process. A physical interpretation is given for the various stages. It is known that the condensation consists of several slightly overlapping stages. First there is the explosive formation of nuclei, which then grow rapidly, and a quasistationary stage of condensation sets in. A calculation is performed for particular conditions in an MHD generator.

  12. Closed cycle MHD generator with nonuniform gas-plasma flow driving recombinated plasma clots

    SciTech Connect

    Slavin, V.S.; Danilov, V.V.; Sokolov, V.S.

    1996-12-31

    A new concept of a closed cycle MHD generator without alkali seed has been suggested. The essence of it is the phenomenon of frozen conductivity for recombined plasma which appears for noble gas at T{sub e} > 4,000 K. At the inlet of the MHD channel in supersonic flow of noble gas (He or Ar) the plasma clots with electron density about 10{sup 15} cm{sup {minus}3} are formed by pulsed intense electron beam with energy about 300 keV. Gas flow drives these clots in a cross magnetic field along the MHD channel which has electrodes connected with the load by Faraday scheme. The gas flow pushes plasma layers and produces electric power at the expense of enthalpy extraction. The numerical simulation has shown that a supersonic gas flow, containing about 4 plasma layers in the MHD channel simultaneously, is braked without shock waves creation. This type of the MHD generator can provide more than 30% enthalpy extraction ratio and about 80% isentropic efficiency. The advantages of the new concept are the following: (a) possibility of working at higher pressure and lower temperature, (b) operation with alkali seed.

  13. Steam-generator replacement sets new marks

    SciTech Connect

    Beck, R.L.

    1995-04-01

    This article describes how, in one of the most successful steam-generator replacement experiences at PWRs worldwide, the V C Summer retrofit exceeded plant goals for critical-path duration, radiation, exposure, and radwaste generation. Intensive planning and teamwork, combined with the firm support of station management and the use of mockups to prepare the work crews for activity in a radiological environment, were key factors in the record performance achieved by South Carolina Electric and Gas Co (SCE and G) in replacing three steam generators at V C Summer nuclear station. The 97-day, two-hour breaker-to-breaker replacement outage -- including an eight-day delay for repair of leak in a small-bore seal-injection line of a reactor coolant pump (unrelated to the replacement activities) -- surpassed the project goal by over one day. Moreover, the outage was only 13 hours shy of the world record held by Virginia Power Co`s North Anna Unit 1.

  14. Mark 6 16-Gbps Next-Generation VLBI Data System

    NASA Astrophysics Data System (ADS)

    Whitney, Alan R.; Cappallo, Roger J.; Ruszczyk, Chester A.; SooHoo, Jason; Crew, Geoffrey B.

    2014-12-01

    The Mark 6 VLBI data system has been developed as a next-generation disk-based VLBI data system capable of supporting the goals of VLBI2010 and other very-high-data-rate VLBI applications, with a maximum sustained recording rate of 16 Gbps. Based on COTS data hardware and open-source software, the Mark 6 is designed to transition easily from the widely used Mark 5 system. Its features include a `scatter/gather' gather algorithm to ensure that data recording is not slowed by one or more slow or bad disks. The first field demonstration of a 16 Gbps/station VLBI experiment using Mark 6 in 2012 is reported. Existing Mark 5 systems are upgradeable to Mark 6, and existing Mark 5 SATA modules are upgradeable for compatibility with Mark 6.

  15. Possible uses for Phillips Laboratory MHD generator. Final report, 1 October 1994-30 August 1995

    SciTech Connect

    Turchi, P.J.

    1995-08-01

    There is interest in electromagnetic energy sources for applications to directed energy weapons. Candidates include portable conventional rotating machinery electric generators, magnetic flux compression generators (aka explosive generators, magnetocumulative generators or MCGs) based on explosive action, and magnetohydrodynamic (MHD) generators using chemical energy of explosives or rocket propellants. For portable high energy MHD generators, US technology base appeared to need rescue. The US has received a MHD device in the PAMlR-3U, developed in the former Soviet Union. The present discussion considers uses of this generator for programs on high-power microwave systems and other directed energy concepts. Future applications will be limited by development and funding of specific technical needs. A useful next step would be detailed design of a system to charge high-voltage pulsers. This design should include comparison of single-pulse switching to achieve high-voltage from an inductive storage coil (energy storage option) vs repetitive switching at low voltage, followed by custom built transformers (direct drive option).

  16. Method of generating electricity using an endothermic coal gasifier and MHD generator

    DOEpatents

    Marchant, David D.; Lytle, John M.

    1982-01-01

    A system and method of generating electrical power wherein a mixture of carbonaceous material and water is heated to initiate and sustain the endothermic reaction of carbon and water thereby providing a gasified stream containing carbon monoxide, hydrogen and nitrogen and waste streams of hydrogen sulfide and ash. The gasified stream and an ionizing seed material and pressurized air from a preheater go to a burner for producing ionized combustion gases having a temperature of about 5000.degree. to about 6000.degree. F. which are accelerated to a velocity of about 1000 meters per second and passed through an MHD generator to generate DC power and thereafter through a diffuser to reduce the velocity. The gases from the diffuser go to an afterburner and from there in heat exchange relationship with the gasifier to provide heat to sustain the endothermic reaction of carbon and water and with the preheater to preheat the air prior to combustion with the gasified stream. Energy from the afterburner can also be used to energize other parts of the system.

  17. Mark 6 Next-Generation VLBI Data System

    NASA Astrophysics Data System (ADS)

    Whitney, A.; Lapsley, D.

    2012-12-01

    The Mark 6 VLBI data system is being developed by MIT Haystack Observatory as a next-generation disk-based VLBI data system capable of supporting the goals of VLBI2010, with a maximum sustained recording rate of 16 Gbps writing to an array of 32 magnetic disks. The Mark 6 is based on COTS hardware and open-source code and is being designed to transition easily from the widely used Mark 5 system. A successful 16 Gbps per station VLBI demonstration experiment was conducted with Mark 6 in late 2011 as a proof-of-concept. Haystack Observatory is collaborating with the NASA/GSFC High-End Network Computing Group in the selection of high-performance COTS hardware platforms and with Conduant Corporation in the development of a high-performance disk module for Mark 6. Existing Mark 5 systems will be upgradable to Mark 6, and existing Mark 5 SATA modules will be upgradeable for compatibility with Mark 6. The Mark 6 system is projected to be available to the VLBI community in late 2012.

  18. Numerical Study of an AC MHD Generation with Double-side Exciting Winding

    NASA Astrophysics Data System (ADS)

    Intani, Pattana; Buttapeng, Chainarong; Sasaki, Toru; Kikuchi, Takashi; Harada, Nobuhiro

    This paper studies physical phenomena, performance and optimal operating point of an AC MHD generator under the slip value by using a numerical simulation. The double-side exciting winding of the generator is considered. Its structure consists of a channel, an insulator and stators. Channel type is a flat rectangular and the liquid flows along the channel as a conductor. Channel wall acted as an insulator separates metal fluid and stator coils. The top and bottom stator winding of the generator is connected to polyphase system. Under this condition, it can produce a magnetic field by means of time harmonic function in the same direction of the metal fluid. An interaction between traveling wave and metal fluid is explained by finite element method under Maxwell's equation and Ohm law. The distribution of magnetic vector potential and magnetic flux density throughout channel is evidently shown in xy-plane. Power flow in AC MHD generator is evaluated by slip value. The optimal operating point of an AC MHD generator performance is reported by active power 0.99kW, reactive power 50kVAR, mechanical power 1.58kW, power dissipation 0.59kW and electrical efficiency 62.5%.

  19. Stability of non-equilibrium MHD disk generators

    NASA Astrophysics Data System (ADS)

    Louis, Jean F.; Lin, Bor-Chyuan

    1988-01-01

    The stability of the nonequilibrium radial disk generator is studied. The theoretical model confirms the instability of the generator when it operates in a mixed mode with the inlet relaxation region absorbing energy and the downstream section producing power. It is also shown that the radial disk generator can be stabilized either by leaving a short inlet section open-circuited or by boosting the magnetic field over the same length. Both solutions result in a significant increase of power output.

  20. Coal-fired MHD combustor development project: Phase IIIB. First quarterly technical progress report, 13 January-30 April 1982

    SciTech Connect

    1982-05-20

    The first quarterly technical progress report of the Coal-Fired MHD Combustor Development Project (Phase IIIB) presents the accomplishments during the period 13 January to 30 April, 1982. The scope of work covered by this quarterly report relates to those tasks associated with preparing the TRW 20 MW/sub t/ MHD coal combustor for delivery to AERL for integrated power tests and the work associated with the preliminary design of a 50 MW/sub t/ coal-fired combustor. Progress during this reporting period is described. All new 20 MW/sub t/ hardware was designed and fabricated. Interface coordination meetings were conducted with AERL and DOE. Interface control drawings were completed and a 20 MW/sub t/ coal combustion User's manual was delivered to AERL. The User's manual contained a shipping plan, a crew training plan, an assembly manual, interface documentation and recommended operating procedures. Facility/combustor set-up was completed and the pre-delivery 20 MW/sub t/ coal combustor qualification test series was completed. The 50 MW/sub t/ coal-fired MHD combustor preliminary designs were finalized and the DOE preliminary design review (PDR) was successfully completed.

  1. Design study of superconducting magnets for a combustion magnetohydrodynamic (MHD) generator

    NASA Technical Reports Server (NTRS)

    Thome, R. J.; Ayers, J. W.

    1977-01-01

    Design trade off studies for 13 different superconducting magnet systems were carried out. Based on these results, preliminary design characteristics were prepared for several superconducting magnet systems suitable for use with a combustion driven MHD generator. Each magnet generates a field level of 8 T in a volume 1.524 m (60 in.) long with a cross section 0.254 m x 0.254 m (10 in. x 10 in.) at the inlet and 0.406 m x .406 m (16 in. x 16 in.) at the outlet. The first design involves a racetrack coil geometry intended for operation at 4.2 K; the second design uses a racetrack geometry at 2.0 K; and the third design utilizes a rectangular saddle geometry at 4.2 K. Each case was oriented differently in terms of MHD channel axis and main field direction relative to gravity in order to evaluate fabrication ease. All cases were designed such that the system could be disassembled to allow for alteration of field gradient in the MHD channel by changing the angle between coils. Preliminary design characteristics and assembly drawings were generated for each case.

  2. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Frank, J.; Sol, H.

    1999-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state or in hydrostatic equilibrium) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics and jet generation.

  3. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.

    2001-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.

  4. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.

    2000-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics and jet generation.

  5. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Koide, Shinji; Shibata, Kazunari; Kudoh, Takashiro; Sol, Helene; Hughes, John

    2002-04-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J × B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.

  6. Geosynchronous Electron Fluxes and Chorus Generation During an MHD Substorm

    NASA Astrophysics Data System (ADS)

    Woodroffe, J. R.; Jordanova, V.; Henderson, M. G.; Welling, D. T.; Vernon, L.

    2015-12-01

    We present results from a numerical study of electron dynamics and whistler generation during an idealized substorm simulated using the Space Weather Modeling Framework. The time-dependent electric and magnetic fields from this simulated substorm are used to drive a new backwards particle tracing model, and the results from this model are used to identify the regions responsible for populating geosynchronous orbit during and after the substorm. Liouville mapping is then used to obtain electron fluxes at geosynchronous orbit as well as to assess the development of anisotropy during the earthward propagation of the electron injection.

  7. Computer Controlled MHD Power Consolidation and Pulse Generation System

    DTIC Science & Technology

    1990-08-01

    applying the PASC technology to the diagonal generator connection. 3.2.1 Modeling the PASC Process Using EMTP 15 3.2.2 Discussion of Results 15...Controller 32 3.5.8 The Digital Controller 33 3.5.9 The Continuous Fourier Transform 34 3.5.10 Hardware Interface With The Existing System 35 3.5.11...Basic Assumptions Used In The Power-to weight 42 Ratio Calculation 3.6.2 Design of the PASC Transformer 43 3.6.3 Final Design Transformer Loss

  8. Generation of Alfvén wave energy during magnetic reconnection in Hall MHD

    NASA Astrophysics Data System (ADS)

    Li, Lingjie; Ma, Zhiwei; Wang, Licheng

    2017-10-01

    The effect of the reconnection rate on the generation of Alfvén wave energy is systematically investigated using Hall magnetohydrodynamics (MHD). It is well known that a decrease in magnetic energy is proportional to the reconnection rate. It is found that an instantaneous increase in Alfvén wave energy in unit Alfvén time is the square dependence on the reconnection rate. The converted Alfvén wave energy is strongly enhanced due to the large increase in the reconnection rate in Hall MHD. For solar-terrestrial plasmas, the maximum converted Alfvén wave energy in unit Alfvén time with the Hall effect can be over 50 times higher than that without the Hall effect during magnetic reconnection.

  9. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Frank, J.; Sol, H.

    1999-05-01

    Koide et al have investigated the dynamics of an accretion disk initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state or in hydrostatic equilibrium) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code on a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics. 3-D RMHD simulations wil be also performed to investigate the dynamics of a jet with a helical mangetic field in it.

  10. Self-consistent stationary MHD shear flows in the solar atmosphere as electric field generators

    NASA Astrophysics Data System (ADS)

    Nickeler, D. H.; Karlický, M.; Wiegelmann, T.; Kraus, M.

    2014-09-01

    Context. Magnetic fields and flows in coronal structures, for example, in gradual phases in flares, can be described by 2D and 3D magnetohydrostatic (MHS) and steady magnetohydrodynamic (MHD) equilibria. Aims: Within a physically simplified, but exact mathematical model, we study the electric currents and corresponding electric fields generated by shear flows. Methods: Starting from exact and analytically calculated magnetic potential fields, we solved the nonlinear MHD equations self-consistently. By applying a magnetic shear flow and assuming a nonideal MHD environment, we calculated an electric field via Faraday's law. The formal solution for the electromagnetic field allowed us to compute an expression of an effective resistivity similar to the collisionless Speiser resistivity. Results: We find that the electric field can be highly spatially structured, or in other words, filamented. The electric field component parallel to the magnetic field is the dominant component and is high where the resistivity has a maximum. The electric field is a potential field, therefore, the highest energy gain of the particles can be directly derived from the corresponding voltage. In our example of a coronal post-flare scenario we obtain electron energies of tens of keV, which are on the same order of magnitude as found observationally. This energy serves as a source for heating and acceleration of particles.

  11. High magnetic field MHD generator program. Final report, July 1, 1976-December 31, 1979

    SciTech Connect

    Eustis, R. H.; Kruger, C. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Nakamura, T.

    1980-04-01

    A theoretical and experimental program was undertaken to investigate MHD channel phenomena which are important at high magnetic fields. The areas studied were inhomogeneity effects, boundary layers, Hall field breakdown and electrode configuration and current concentrations. In addition, a program was undertaken to study steady-state combustion disk and linear channels in an existing 6 Tesla magnet of small dimensions. The structure of the inhomogeneities in the Stanford M-2 was characterized and compared with theoretical results from a linearized perturbation analysis. General agreement was obtained and the analysis was used to compute stability regions for large size generators. The Faraday electrical connection was found to be more stable than the Hall or diagonal wall connections. Boundary layer profile measurements were compared with theoretical calculations with good agreement. Extrapolation of the calculations to pilot scale MHD channels indicates that Hartmann effects are important in the analysis of the sidewall, and Joule heating is important in calculating heat transfer and voltage drops for the electrode wall. Hall field breakdown was shown to occur both in the plasma and through the interelectrode insulator with the insulator breakdown threshold voltage lower than the plasma value. The threshold voltage was shown to depend on the interelectrode gap but was relatively independent of plasma conditions. Experiments were performed at 5.5 Tesla with both disk and linear MHD channels.

  12. ORNL Resolved Resonance Covariance Generation for ENDF/B-VII.1

    SciTech Connect

    Leal, L.; Guber, K.; Wiarda, D.; Arbanas, G.; Derrien, H.; Sayer, R.; Larson, N.; Dunn, M.

    2012-12-15

    Resonance-parameter covariance matrix (RPCM) evaluations in the resolved resonance regionwere done at the Oak Ridge National Laboratory (ORNL) for the chromium isotopes, titanium isotopes, {sup 19}F, {sup 58}Ni, {sup 60}Ni, {sup 35}Cl, {sup 37}Cl, {sup 39}K, {sup 41}K, {sup 55}Mn, {sup 233}U, {sup 235}U, {sup 238}U, and {sup 239}Pu using the computer code SAMMY. The retroactive approach of the code SAMMY was used to generate the RPCMs for {sup 233}U. For {sup 235}U, the approach used for covariance generation was similar to the retroactive approach with the distinction that real experimental data were used as opposed to data generated from the resonance parameters. RPCMs for {sup 238}U and {sup 239}Pu were generated together with the resonance parameter evaluations. The RPCMs were then converted in the ENDF format using the FILE32 representation. Alternatively, for computer storage reasons, the FILE32 was converted in the FILE33 cross section covariance matrix (CSCM). Both representations were processed using the computer code PUFF-IV. This paper describes the procedures used to generate the RPCM and CSCM in the resonance region for ENDF/B-VII.1. The impact of data uncertainty in nuclear reactor benchmark calculations is also presented.

  13. ORNL Resolved Resonance Covariance Generation for ENDF/B-VII.1

    SciTech Connect

    Leal, Luiz C.; Guber, Klaus H.; Wiarda, Dorothea; Arbanas, Goran; Derrien, Herve; Sayer, Royce O.; Larson, Nancy M.; Dunn, Michael E.

    2012-12-01

    Resonance-parameter covariance matrix (RPCM) evaluations in the resolved resonance regionwere done at the Oak Ridge National Laboratory (ORNL) for the chromium isotopes, titanium isotopes, 19F, 58Ni, 60Ni, 35Cl, 37Cl, 39K, 41K, 55Mn, 233U, 235U, 238U, and 239Pu using the computer code SAMMY. The retroactive approach of the code SAMMY was used to generate the RPCMs for 233U. For 235U, the approach used for covariance generation was similar to the retroactive approach with the distinction that real experimental data were used as opposed to data generated from the resonance parameters. RPCMs for 238U and 239Pu were generated together with the resonance parameter evaluations. The RPCMs were then converted in the ENDF format using the FILE32 representation. Alternatively, for computer storage reasons, the FILE32 was converted in the FILE33 cross section covariance matrix (CSCM). Both representations were processed using the computer code PUFF-IV. This paper describes the procedures used to generate the RPCM and CSCM in the resonance region for ENDF/B-VII.1. The impact of data uncertainty in nuclear reactor benchmark calculations is also presented.

  14. The study of turbulence in MHD flow generated by rotating and traveling magnetic fields

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, Ilya; Pavlinov, Alexander; Golbraikh, Ephim; Frick, Peter; Kapusta, Arkadii; Mikhailovich, Boris

    2015-05-01

    We consider a problem of spectral analysis of signals from electromagnetic sensors operating in a turbulent MHD flow generated by rotating and traveling magnetic fields, which create a strong electromagnetic noise. Using a wavelet-based technique for cross-correlation signal analysis and filtration, we show that at frequencies lower than the frequency of the applied magnetic field, the spectral properties of the velocity field can be clearly seen in spite of the fact that the measured fields are much weaker than the driving rotating (or traveling) magnetic field. On the basis of the proposed method, spectra of turbulent velocity fields, measured in the experiment, were studied.

  15. Fault analysis of mid-channel power takeoff in DCW MHD generators

    NASA Astrophysics Data System (ADS)

    Ishikawa, M.; Wu, Y. C. L.; Scott, M. H.

    1982-06-01

    Analysis is presented of the effect of loading faults on the mid-channel power takeoff of a diagonal-conducting-wall MHD generator in special loading schemes. Two-dimensional calculations indicate that an open-circuit condition in the upstream load circuit results in a large current density at the power takeoff anode and drives a shorting current over the interframe insulators at the cathode side. A short-circuit condition in the upstream load circuit results in a large current density at the power takeoff cathode and a shorting current over the interframe insulators at the anode side.

  16. Key contributions in MHD power generation. Quarterly technical progress report, September 1, 1979-November 30, 1979

    SciTech Connect

    Louis, J F

    1980-03-01

    Separate entries were made in the data base for the four tasks which include: (1) investigation of electrical behavior in the vicinity of electrode and insulating walls; (2) studies of critical performance issues in the development of combustion disk generators; (3) development and testing of electrode modules, including studies of insulator properties; and (4) determination of coal combustion kinetics and ash behavior relevant to two-stage MHD combustors, and investigation of the mixing and flow aerodynamics of a high swirl geometry second stage. (WHK)

  17. Operation of a railgun accelerator for solid projectiles powered from an explosive MHD generator

    SciTech Connect

    Shvetsov, G.A.; Bashkatov, Y.L.; Orgov, A.V.; Stadnichenko, I.A.; Titov, V.M.

    1984-11-01

    These authors investigate the possibility of using an explosive MHD generator whose electrodes consist of the rails of a railgun accelerator so that the projectile is anitially accelerated by the action of electromagnetic forces and then, once the gas-cumulative jets reach the body, it can be subjected to additional acceleration by the gas flow moving at a high rate of speed. They conclude that the proposed compounded electrodynamic and gasdynamic acceleration scheme holds promise for achieving velocities in the 5-10 km/sec range.

  18. Coupled optimization of the channel and magnet coil configuration for a 200 MWe coal-fired MHD generator

    SciTech Connect

    Nishimura, Ryo; Aoki, Yoshiaki; Kayukawa, Naoyuki

    1993-12-31

    This paper discusses the effect of the cross-sectional shape of the magnet coil upon the reduction of the MHD channel length. The optimization for the cross-sectional shape of a magnet coil including an MHD channel is carried out for a 200 MWe coal fired supersonic Faraday-type MHD generator. It is shown that the channel and the coil length can be shortened more than 30% by the optimization of the coil shape in comparison with the case of the crescent shaped coil producing a uniform magnetic field, where the enthalpy extraction is effectively kept unchanged. Also, it is estimated that the capital cost for a stand alone commercial MHD/steam combined plant can be decreased more than 6% by this coil shape optimization.

  19. Mark.

    ERIC Educational Resources Information Center

    Lipman, Matthew; Smith, Theresa L., Ed.

    Mark is the central character in this story designed to help adolescents formulate a philosophy of values. The story is well suited for use in high school social studies courses and/or in philosophy or guidance units. Mark's thoughts and actions are reported as he interacts with his family, friends, acquaintances, and individuals of authority…

  20. Analysis of Fluctuations in a Combustion-Driven Open-Cycle MHD Generator.

    NASA Astrophysics Data System (ADS)

    Skorska, Malgorzata Bozena

    Fluctuations present in MHD generators may cause significant degradation in the generated power. The fluctuations may result from three sources. First, the mass flow rates of the components' input to the combustor vary. Second, the combustor initiates its own variations which are functions of the combustor geometry and injection techniques. Third, the generator action, i.e., flow of plasma in a magnetic field, introduces variations in the plasma variables. The purpose of the study is to investigate the fluctuations of MHD output signals, which may either arise from the combustor fluctuations propagating into a conducting channel, or are inherent in the generator dynamics. The analysis of fluctuations is based on the analytical and empirical models. Both models assume that stochastic processes take place within the MHD plasma, and both models yield results in the form of autocorrelation, crosscorrelation, and power spectral density functions of the system variables. The study showed that fluctuations, whose frequencies exceed 200 Hz, in the plasma density, velocity, pressure, current and voltage variables are acoustic in nature, and are caused by longitudinal standing waves present in the generator. The analysis proved that Hall generators develop fluctuations mainly in the range 700 Hz to 2000 Hz, whereas Faraday and DCW generators are favorable for the low frequency fluctuations. Parametric study of the plasma disclosed that stronger magnetic fields and larger Hall parameters increase the frequency range of fluctuations. Changes in plasma specific heat ratio or in inlet steady-state parameters may increase or decrease the intensities of some odd harmonics of the standing waves. The fluctuations that originate in the combustion chamber also affect the plasma variables. A white noise character of these fluctuations guarantees a fairly uniform distribution of energy in the fluctuations of the plasma variables in the frequency range up to 200 Hz. Future research in

  1. FLASH MHD simulations of experiments that study shock-generated magnetic fields

    NASA Astrophysics Data System (ADS)

    Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Graziani, C.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.

    2015-12-01

    We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH.

  2. Transient Phenomena of Disk MHD Generator due to Change of Load Resistance

    NASA Astrophysics Data System (ADS)

    Koka, Hidetoshi; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    Results of experimental study on transient phenomena of the closed cycle disk MHD generator are described in this paper. The transient phenomena were caused by a step-like change of load resistance during a test time of the shock-tube driven disk MHD generator. The load resistance was changed by using an IGBT (Insulated Gate Bipolar Transistor) installed in a load circuit. When the load resistance was changed from 0.096Ω to 2.5Ω, an overshoot of the Hall output voltage and of the Hall electric field was observed, and a large fluctuation of static pressure was also observed. At the same time, a spike-like increase of cesium recombination continuum and line spectrum appeared just after the load change. Results of the quasi-one dimensional numerical simulation have indicated that the observed overshoot was caused by the following phenomena: 1) a steep reduction of the Hall current and a steep increase in both the Faraday current and the electrical conductivity, and 2) a slow reduction of gas velocity due to the enhanced retarding force. Furthermore, the measured spike-like increase of radiation intensity was ascribed to an increase of electron temperature and electron number density by a steep increase of Joule heating.

  3. Four-piston double-duct liquid metal MHD engine and AC generator

    SciTech Connect

    Haaland, C.M.

    1995-12-31

    Operating principles, features and applications of the Liquid Metal (LM) engine are presented. This engine combines a free-piston internal combustion engine with an MHD AC power generator. Liquid metal (LM) oscillates back-and-forth in two separate channels, driven by free pistons coupled magnetically to pistons driven by internal combustion. One of the principal breakthroughs is the concept of using double ducts in a Hartmann configuration for MHD production of alternating current. The LM flows in opposing directions in the two adjacent Hartmann ducts, thus eliminating magnetic-induced instabilities, eliminating vibration, and providing an ideal setup for attaching an output transformer on one side provide to provide useful ranges of current and voltage. Because LM is used, the length of the piston stroke can be easily varied over a large range, thus making possible an engine that, changes size, according to variation in output load requirements. Increasing the stroke length results in increased compression ratio, which requires computer controlled modification of the fuel injection mixture. Higher fuel efficiencies will result, whether the engine is idling or operating at maximum power. Because of viscous dissipation losses in the LM, this engine will be more efficient for larger engines. Applications include any power generation where variable load is required, such as stationary electric generators for remote towns and cities, temporary military encampments, and mobile primary power generators for off-road and on-road automotive equipment, including caterpillars, cars, military vehicles, trucks, and trains. The advantages for automotive propulsion will be described in comparisons with current and developmental vehicles using internal combustion engines. Because the LM-engine generates electricity, an LM-engine vehicle is readily adaptable to hybrid concepts. An R&D program will be outlined for bringing the concept of the LM engine to commercial application.

  4. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Obložinský, P.; Herman, M.; Greene, N. M.; McKnight, R. D.; Smith, D. L.; Young, P. G.; MacFarlane, R. E.; Hale, G. M.; Frankle, S. C.; Kahler, A. C.; Kawano, T.; Little, R. C.; Madland, D. G.; Moller, P.; Mosteller, R. D.; Page, P. R.; Talou, P.; Trellue, H.; White, M. C.; Wilson, W. B.; Arcilla, R.; Dunford, C. L.; Mughabghab, S. F.; Pritychenko, B.; Rochman, D.; Sonzogni, A. A.; Lubitz, C. R.; Trumbull, T. H.; Weinman, J. P.; Brown, D. A.; Cullen, D. E.; Heinrichs, D. P.; McNabb, D. P.; Derrien, H.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Carlson, A. D.; Block, R. C.; Briggs, J. B.; Cheng, E. T.; Huria, H. C.; Zerkle, M. L.; Kozier, K. S.; Courcelle, A.; Pronyaev, V.; van der Marck, S. C.

    2006-12-01

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes, based on experimental data and theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, 6Li, 10B, Au and for 235,238U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced evaluations up to 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; (10) New methods for uncertainties and covariances, together with covariance evaluations for some sample cases; and (11) New actinide fission energy deposition. The paper provides an overview of this library, consisting of 14 sublibraries in the same ENDF-6 format as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched uranium thermal assemblies is removed; (b) The 238U and 208Pb reflector biases in fast systems are largely removed; (c) ENDF/B-VI.8 good

  5. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology

    SciTech Connect

    Chadwick, M B; Oblozinsky, P; Herman, M; Greene, N M; McKnight, R D; Smith, D L; Young, P G; MacFarlane, R E; Hale, G M; Haight, R C; Frankle, S; Kahler, A C; Kawano, T; Little, R C; Madland, D G; Moller, P; Mosteller, R; Page, P; Talou, P; Trellue, H; White, M; Wilson, W B; Arcilla, R; Dunford, C L; Mughabghab, S F; Pritychenko, B; Rochman, D; Sonzogni, A A; Lubitz, C; Trumbull, T H; Weinman, J; Brown, D; Cullen, D E; Heinrichs, D; McNabb, D; Derrien, H; Dunn, M; Larson, N M; Leal, L C; Carlson, A D; Block, R C; Briggs, B; Cheng, E; Huria, H; Kozier, K; Courcelle, A; Pronyaev, V; der Marck, S

    2006-10-02

    We describe the next generation general purpose Evaluated Nuclear Data File, ENDF/B-VII.0, of recommended nuclear data for advanced nuclear science and technology applications. The library, released by the U.S. Cross Section Evaluation Working Group (CSEWG) in December 2006, contains data primarily for reactions with incident neutrons, protons, and photons on almost 400 isotopes. The new evaluations are based on both experimental data and nuclear reaction theory predictions. The principal advances over the previous ENDF/B-VI library are the following: (1) New cross sections for U, Pu, Th, Np and Am actinide isotopes, with improved performance in integral validation criticality and neutron transmission benchmark tests; (2) More precise standard cross sections for neutron reactions on H, {sup 6}Li, {sup 10}B, Au and for {sup 235,238}U fission, developed by a collaboration with the IAEA and the OECD/NEA Working Party on Evaluation Cooperation (WPEC); (3) Improved thermal neutron scattering; (4) An extensive set of neutron cross sections on fission products developed through a WPEC collaboration; (5) A large suite of photonuclear reactions; (6) Extension of many neutron- and proton-induced reactions up to an energy of 150 MeV; (7) Many new light nucleus neutron and proton reactions; (8) Post-fission beta-delayed photon decay spectra; (9) New radioactive decay data; and (10) New methods developed to provide uncertainties and covariances, together with covariance evaluations for some sample cases. The paper provides an overview of this library, consisting of 14 sublibraries in the same, ENDF-6 format, as the earlier ENDF/B-VI library. We describe each of the 14 sublibraries, focusing on neutron reactions. Extensive validation, using radiation transport codes to simulate measured critical assemblies, show major improvements: (a) The long-standing underprediction of low enriched U thermal assemblies is removed; (b) The {sup 238}U, {sup 208}Pb, and {sup 9}Be reflector

  6. Integration of MHD load models with circuit representations the Z generator.

    SciTech Connect

    Jennings, Christopher A.; Ampleford, David J.; Jones, Brent Manley; McBride, Ryan D.; Bailey, James E.; Jones, Michael C.; Gomez, Matthew Robert.; Cuneo, Michael Edward; Nakhleh, Charles; Stygar, William A.; Savage, Mark Edward; Wagoner, Timothy C.; Moore, James K.

    2013-03-01

    MHD models of imploding loads fielded on the Z accelerator are typically driven by reduced or simplified circuit representations of the generator. The performance of many of the imploding loads is critically dependent on the current and power delivered to them, so may be strongly influenced by the generators response to their implosion. Current losses diagnosed in the transmission lines approaching the load are further known to limit the energy delivery, while exhibiting some load dependence. Through comparing the convolute performance of a wide variety of short pulse Z loads we parameterize a convolute loss resistance applicable between different experiments. We incorporate this, and other current loss terms into a transmission line representation of the Z vacuum section. We then apply this model to study the current delivery to a wide variety of wire array and MagLif style liner loads.

  7. The generation and damping of propagating MHD kink waves in the solar atmosphere

    SciTech Connect

    Morton, R. J.; Verth, G.; Erdélyi, R.; Hillier, A. E-mail: g.verth@sheffield.ac.uk

    2014-03-20

    The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.

  8. An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator

    SciTech Connect

    Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.

  9. Design and calculated performance and cost of the ECAS Phase II open cycle MHD power generation system

    NASA Technical Reports Server (NTRS)

    Harris, L. P.

    1977-01-01

    A 2000 MWe MHD/steam plant for central station applications has been designed and costed as part of the Energy Conversion Alternatives Study (ECAS). This plant is fueled by Illinois No. 6 coal, rejects heat through mechanical draft wet cooling towers, and includes coal processing equipment, seed reprocessing, electrical inversion of the MHD generator output and emission controls to current EPA standards. It yields an estimated overall efficiency of 0.483 (7066 Btu/kWe-hr), a capital cost of $718 per kWe (1975 dollars), and a cost of electricity at 65% capacity factor of 32 mills per kWe-hr. If the assumed life and reliability could be achieved with these performance parameters, the MHD system should prove attractive.

  10. Virtual Tool Mark Generation for Efficient Striation Analysis

    SciTech Connect

    Ekstrand, Laura; Zhang, Song; Grieve, Taylor; Chumbley, L Scott; Kreiser, M James

    2014-02-16

    This study introduces a tool mark analysis approach based upon 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. An open-source 3D graphics software package is utilized to simulate the marking process as the projection of the tip's geometry in the direction of tool travel. The edge of this projection becomes a virtual tool mark that is compared to cross-sections of the marked plate geometry using the statistical likelihood algorithm introduced by Chumbley et al. In a study with both sides of six screwdriver tips and 34 corresponding marks, the method distinguished known matches from known nonmatches with zero false-positive matches and two false-negative matches. For matches, it could predict the correct marking angle within ±5–10°. Individual comparisons could be made in seconds on a desktop computer, suggesting that the method could save time for examiners.

  11. Virtual tool mark generation for efficient striation analysis.

    PubMed

    Ekstrand, Laura; Zhang, Song; Grieve, Taylor; Chumbley, L Scott; Kreiser, M James

    2014-07-01

    This study introduces a tool mark analysis approach based upon 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. An open-source 3D graphics software package is utilized to simulate the marking process as the projection of the tip's geometry in the direction of tool travel. The edge of this projection becomes a virtual tool mark that is compared to cross-sections of the marked plate geometry using the statistical likelihood algorithm introduced by Chumbley et al. In a study with both sides of six screwdriver tips and 34 corresponding marks, the method distinguished known matches from known nonmatches with zero false-positive matches and two false-negative matches. For matches, it could predict the correct marking angle within ±5-10°. Individual comparisons could be made in seconds on a desktop computer, suggesting that the method could save time for examiners.

  12. Results of closed cycle MHD power generation test with a helium-cesium working fluid

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1977-01-01

    The cross sectional dimensions of the MHD channel in the NASA Lewis closed loop facility were reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 160,000 n/M2, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/M. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/M were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/M3 were obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those previously reported for the M = 0.2 channel.

  13. Results of closed cycle MHD power generation tests with a helium-cesium working fluid

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1977-01-01

    The cross-sectional dimensions of the MHD channel in the NASA Lewis closed loop facility have been reduced to 3.8 x 11.4 cm. Tests were run in this channel using a helium-cesium working fluid at stagnation pressures of 1.6 x 10 to the 5th N/sq m, stagnation temperatures of 2000-2060 K and an entrance Mach number of 0.36. In these tests Faraday open circuit voltages of 200 V were measured which correspond to a Faraday field of 1750 V/m. Power generation tests were run for different groups of electrode configurations and channel lengths. Hall fields up to 1450 V/m were generated. Power extraction per electrode of 183 W and power densities of 1.7 MW/cu m have been obtained. A total power output of 2 kW was generated for tests with 14 electrodes. The power densities obtained in this channel represent a factor of 3 improvement over those reported for the m = 0.2 channel at the last EAM Symposium.

  14. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1991-04-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. Two phenomena that can effect the analysis of slag leakage current have been investigated and found significant. These are: (1) transverse current along the slag layer in the insulator walls of an MHD duct, and (2) electrode surface voltage drops. Both tend to reduce the value inferred for average plasma conductivity and increase the value inferred for axial leakage current. These two effects in combination are potentially capable of explaining the high leakage inferred. Corrosion on the water side of metal MHD duct wall elements has been examined in CDIF and Mark 7 generators. It appears to be controllable by adjusting the pH of the water and/or by controlling the dissolved oxygen content.

  15. Comparison of Performances of Scramjet-Driven Experimental DCW-MHD Generators with Different Cross-Section

    NASA Astrophysics Data System (ADS)

    Niwa, Naoyuki; Takahashi, Toru; Fujino, Takayasu; Ishikawa, Motoo

    The purpose of this study is to examine the influence of shape of cross-section of scramjet engine driven experimental DCW-MHD generator on generator performance by three-dimensional numerical analyses. We have designed the MHD generators with symmetric square and circular cross-section, based on the experimental MHD generator with asymmetric square cross-section. Under the optimum load condition, the electric power output becomes 26.6kW for the asymmetric square cross-section, 24.6kW for the symmetric square cross-section, and 22.4kW for the circular cross-section. The highest output is obtained for the experimental generator with asymmetric square cross-section. The difference of electric power output is induced by the difference of flow velocity and boundary layer thickness. For the generator with asymmetric square cross-section, the average flow velocity becomes the highest and the boundary layer becomes the thinnest. The compression wave is generated depending on the channel shape. The difference of flow velocity and boundary layer thickness is induced by the superposition of compression wave.

  16. Experimental results of the UTSI coal-fired MHD generator and investigations of various power take-off schemes

    NASA Astrophysics Data System (ADS)

    Galanga, F. L.; Lineberry, J. T.; Wu, Y. C. L.; Scott, M. H.; Baucum, W. E.; Clemons, R. W.

    1981-01-01

    Tests were conducted at the University of Tennessee Space Institute, Energy Conversion Division, in support of technology development of coal-fired MHD generator systems. The primary objectives of the test series were to evaluate the overall electrical performance of the 60 deg DCW generator with vitiation heated oxidizer, to study the thermal behavior of capped versus solid frame electrodes, and to investigate various power take-off schemes. Results from the above-mentioned areas of investigation are presented and discussed.

  17. US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 3. Tests in the U-25B facility: MHD generator tests No. 4 and 5

    SciTech Connect

    Picologlou, B F; Batenin, V M

    1980-07-01

    A description of the modifications made to improve the plasma parameters of the U-25B Facility is presented. The oxygen enrichment system was modified to allow oxygen enrichment of up to 50% (by volume) ahead of the preheaters. Optimum design and operating conditions of the seed injection system were defined as a result of experimental investigations. An account of the extensive diagnostic studies performed and a description of the measurement techniques and of the new submillimeter laser interferometer are given. The performance of the MHD generator is analyzed for different operating modes. Studies of fluctuations and nonuniformities, current take-off distributions, local electrical analysis, overall heat transfer history of the MHD channel, and an extensive parametric study of the generator are presented. A detailed account of the complete disassembly and inspection of channel No. 1 after more than 100 hours of operation with the combustor, and of the condition of its various elements is also given.

  18. Mark 6: A Next-Generation VLBI Data System

    NASA Astrophysics Data System (ADS)

    Whitney, A. R.; Lapsley, D. E.; Taveniku, M.

    2011-07-01

    A new real-time high-data-rate disk-array system based on entirely commercial-off-the-shelf hardware components is being evaluated for possible use as a next-generation VLBI data system. The system, developed by XCube Communications of Nashua, NH, USA was originally developed for the automotive industry for testing/evaluation of autonomous driving systems that require continuous capture of an array of video cameras and automotive sensors at ~8Gbps from multiple 10GigE data links and other data sources. In order to sustain the required recording data rate, the system is designed to account for slow and/or failed disks by shifting the load to other disks as necessary in order to maintain the target data rate. The system is based on a Linux OS with some modifications to memory management and drivers in order to guarantee the timely movement of data, and the hardware/software combination is highly tuned to achieve the target data rate; data are stored in standard Linux files. A kit is also being designed that will allow existing Mark 5 disk modules to be modified to be used with the XCube system (though PATA disks will need to be replaced by SATA disks). Demonstrations of the system at Haystack Observatory and NRAO Socorro have proved very encouraging; some modest software upgrades/revisions are being made by XCube in order to meet VLBI-specific requirements. The system is easily expandable, with sustained 16 Gbps likely to be supported before end CY2011.

  19. US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 4. Tests in the U-25B facility: MHD generator tests No. 6 and 7

    SciTech Connect

    Picologlou, B F; Batenin, V M

    1981-01-01

    A description of the main results obtained during Tests No. 6 and 7 at the U-25B Facility using the new channel No. 2 is presented. The purpose of these tests was to operate the MHD generator at its design parameters. Described here are new plasma diagnostic devices: a traversing dual electrical probe for determining distribution of electron concentrations, and a traversing probe that includes a pitot tube for measuring total and static pressure, and a light detector for measuring plasma luminescence. Data are presented on heat flux distribution along the channel, the first data of this type obtained for an MHD facility of such size. Results are given of experimental studies of plasma characteristics, gasdynamic, thermal, and electrical MHD channel performance, and temporal and spatial nonuniformities. Typical modes of operation are analyzed by means of local electrical analyses. Computer models are used to obtain predictions for both localized and overall generator characteristics. These theoretical predictions agree closely with the results of the local analyses, as well as with measurements of the overall gasdynamic and electrical characteristics of the generator.

  20. AERL Baseball Team

    NASA Image and Video Library

    1943-10-21

    The NACA’s Aircraft Engine Research Laboratory’s baseball team photographed with director Raymond Sharp. The Exchange, which operated the non-profit cafeteria, sponsored several sports teams that participated in local leagues. The laboratory also had several intramural sports leagues. The baseball team, seen here in 1943, was suspended shortly thereafter as many of its members entered the military during World War II. The team was reconstituted after the war and became somewhat successful in the Class A Westlake League. After winning the championship in 1949 and 1950, the team was placed in the more advanced Middleberg League where they struggled.

  1. MHD generator electrode development. Quarterly report, October-December 31, 1980

    SciTech Connect

    Sadler, J W; Cadoff, L H; Dietrick, D L

    1981-01-01

    This program is directed towards the engineering development of cold metallic electrodes which are alternatives to the use of platinum as an anode clad material for MHD generators. Results of continuing laboratory screening tests are presented. Improvements in the anode arc test methodology and test setup, which have resulted in improved reproducibility as well as test simplification, are discussed. Laboratory electrochemical corrosion testing has been initiated using aqueous and molten salts as the aggressive constituent in the electrolyte. Initial results from these tests are reported. On the basis of these test results, electrochemical corrosion tests using a molten salt are preferred. As a result of ongoing laboratory screening tests, acceptance criteria, which are interim in nature and are likely to change based on future test results have been defined for the anode arc and electrochemical corrosion tests. Reflecting the initial laboratory test results, a listing of candidate advanced alloys which should demonstrate improved corrosion resistance has been defined. Upon completion of WESTF modifications, facility checkout and activation operations have been initiated. Progress, as well as those difficulties which have been encountered, in completing WESTF activation is reported. Detailed engineering and test planning activities in support of WESTF tests are reported.

  2. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task I

    SciTech Connect

    Not Available

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal-fired, closed-cycle MHD power generation are reported. This volume contains the following appendices: (A) user's manual for 2-dimensional MHD generator code (2DEM); (B) performance estimates for a nominal 30 MW argon segmented heater; (C) the feedwater cooled Brayton cycle; (D) application of CCMHD in an industrial cogeneration environment; (E) preliminary design for shell and tube primary heat exchanger; and (F) plant efficiency as a function of output power for open and closed cycle MHD power plants. (WHK)

  3. Structural properties of resonant electric and magnetic fields correlation with X-ray generation and MHD activity in tokamak

    NASA Astrophysics Data System (ADS)

    Salar Elahi, A.; Ghoranneviss, M.

    In this research we have investigated on a Runaway electron generation in IR-T1 tokamak. For this purpose we used the hard X-ray spectroscopy and magnetic diagnostic. Hard X-ray emission produces due to collision of the Runaway electrons with the plasma particles or tokamak limiters. Runaway electrons in tokamaks can cause serious damage to the first wall of the reactor and decrease its life time. Also, hard X-ray emission generated from high energy Runaway electrons lead to the plasma energy loss. Therefore, suggesting methods to minimize Runaway electrons in tokamaks are very important. Applying external resonant field is one of the methods for controlling the Magnetohydrodynamic (MHD) activity. Present study attempts to investigate the effects of limiter biasing and Resonant Helical magnetic Field (RHF) on the generation of Runaway electrons. For this purpose, plasma parameters such as plasma current, MHD oscillation, loop voltage, emitted hard X-ray intensity, Hα impurity, safety factor in the presence and absence of external fields, were measured. Frequency activity was investigated with FFT analysis. The results show that applying resonant fields can control the MHD activity, and then hard X-ray emitted from the Runaway electrons.

  4. In vitro effects of recombinant activated factor VII on thrombin generation and coagulation following inhibition of platelet procoagulant activity by prasugrel.

    PubMed

    Mazzeffi, Michael; Szlam, Fania; Jakubowski, Joseph A; Tanaka, Kenichi A; Sugidachi, Atsuhiro; Levy, Jerrold H

    2013-07-01

    Prasugrel is a thienopyridyl P2Y12 antagonist with potent antiplatelet effects. At present, little is known about its effects on thrombin generation or what strategies may emergently reverse its anticoagulant effects. In the current study we evaluated whether recombinant activated factor VII may reverse prasugrel induced effects and increase thrombin generation in an in vitro model. The effect of prasugrel active metabolite, PAM (R-138727), was evaluated on platelet aggregation, thrombin generation, and rotational thromboelastometry parameters using blood from 20 healthy volunteers. Additionally, we evaluated the effects of adenosine diphosphate (ADP) and recombinant activated factor VII on restoring these parameters towards baseline values. PAM reduced maximum platelet aggregation and led to platelet disaggregation. It also decreased peak thrombin, increased lag time, and increased time to peak thrombin. Treatment with recombinant activated factor VII restored all three parameters of thrombin generation towards baseline. ADP decreased lag time and time to peak thrombin, but had no effect on peak thrombin. When recombinant activated factor VII and ADP were combined they had a greater effect on thrombin parameters than either drug alone. PAM also increased thromboelastometric clotting time and clot formation time, but had no effect on maximum clot firmness. Treatment with either recombinant activated factor VII or ADP restored these values towards baseline. Recombinant activated factor VII restores thrombin generation in the presence of PAM. In patients taking prasugrel with life-threatening refractory bleeding it has the potential to be a useful therapeutic approach. Additional clinical studies are needed to validate our findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Hall effects on MHD flow of heat generating/absorbing fluid through porous medium in a rotating parallel plate channel

    NASA Astrophysics Data System (ADS)

    Swarnalathamma, B. V.; Krishna, M. Veera

    2017-07-01

    We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.

  6. The energy associated with MHD waves generation in the solar wind plasma

    NASA Technical Reports Server (NTRS)

    delaTorre, A.

    1995-01-01

    Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.

  7. The energy associated with MHD waves generation in the solar wind plasma

    NASA Technical Reports Server (NTRS)

    delaTorre, A.

    1995-01-01

    Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.

  8. COMBINE7.0 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2008-09-01

    COMBINE7.0 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.0 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 finegroup cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko selfshielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those selfshielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.0 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a onedimensional, discrete

  9. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2009-08-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B-3 or B-1 approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. The fine group cross sections in the thermal energy range are replaced by those self-shielded with the Amouyal/Benoist/Horowitz method in the three region geometry when this option is requested. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constant may be output in any of several standard formats including ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional, discrete

  10. Generator coordinate method and nuclear collective motions (VII): the preservation of symmetry properties

    SciTech Connect

    XU Gong-ou

    1985-01-01

    In order to preserve all the symmetry properties for the effective collective Hamiltonian obtained with the generator coordinate method, it is necessary for the trial wave function to have proper transformation properties. The generator coordinates should then transform in the same way as the represented collective operators. Also, the center-of-mass motion should be independent of the internal motion in conformity with the invariance of the nuclear Hamiltonian with respect to space rotation and Galilean transformation.

  11. Analysis of entropy generation for double diffusive MHD convection in a square cavity with isothermal hollow cylinder

    NASA Astrophysics Data System (ADS)

    Mojumder, Satyajit; Saha, Sourav; Saha, Sumon

    2016-07-01

    Entropy optimization is a major concern for designing modern thermal management system. In the present work, entropy analysis in a square cavity with an isothermal hollow cylinder at the center is carried out for magneto-hydrodynamic (MHD) double diffusive convection. Galerkin weighted residuals method of finite element formulation is adopted for the numerical solution. Entropies due to fluid flow, heat, and mass transfer are computed for wide range of Hartmann (0 ≤ Ha ≤ 50) and Lewis numbers (1 ≤ Le ≤ 15), and buoyancy ratios (-5 ≤ N ≤ 5) at constant Rayleigh and Prandtl numbers. It is found that the influence of buoyancy ratio is prominent on entropy generation, which also depends on both Lewis and Hartmann numbers. The ratio N = -1 shows minimum entropy generation for any combination of Lewis and Hartman numbers. Visualization of isentropic contours and the variation of total entropy with the governing parameters provide remarkable evidences of entropy optimization.

  12. COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program

    SciTech Connect

    Woo Y. Yoon; David W. Nigg

    2011-09-01

    COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B3 or B1 zero-dimensional approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constants may be output in any of several standard formats including INL format, ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional (1-D) discrete-ordinate transport code, is incorporated into COMBINE7.1. As an option, the 167 fine-group constants generated by zero-dimensional COMBINE portion in the program can be

  13. Closed cycle MHD generator with nonuniform gas-plasma flow driving recombinated plasma clots formed by high-energy electron beams

    SciTech Connect

    Danilov, V.V.; Laptev, S.S.; Slavin, V.S.

    1996-12-31

    A new concept of a closed cycle MHD generator without alkali seed has been suggested. The essence of it is the use of the high-energy electron beams technology for a nonuniform gas-plasma flow in MHD channel creation. At the inlet of MHD channel in supersonic flow of noble gas (He) the plasma clots with a density about 10{sup 15} cm{sup {minus}3} are formed by pulsed intense electron beams with energy about 100 keV. Gas flow drives these clots in a cross magnetic field along the MHD channel which has electrodes connected with a load by Faraday`s scheme. Because the nonuniform gas-plasma flow has not the conductivity in the Hall`s EMF direction a Faraday`s current can flow only through the narrow plasma layers. The energy dissipation and Joule`s heating in MHD channel support the nonequilibrium conductivity in these plasma layers. a gas flow pushes current layers and produces electric power at the expense of enthalpy extraction. The key element is a question of plasma layers stability in MHD channel. The most dangerous instability is the overheating instability. it is shown that taking into account the phenomenon of frozen conductivity for recombinated plasma which appears for noble gas at T{sub e} > 4,000 K the regime with {partial_derivative}{sigma}/{partial_derivative}T{sub e} < 0 can be realized. Due to the fulfillment of this condition the overheating instability is effectively suppressed. The numerical simulation has shown that a supersonic gas flow, containing about 4 current layers in MHD channel simultaneously, is braked without shock waves creation. Current layers provide no less than 30% enthalpy extraction and about 80% isentropic efficiency.

  14. Entropy Generation with nonlinear heat and Mass transfer on MHD Boundary Layer over a Moving Surface using SLM

    NASA Astrophysics Data System (ADS)

    Bhatti, M. M.; Rashidi, M. M.; Pop, I.

    2017-03-01

    In this article, entropy generation with combined effects of thermal radiation and chemical reaction on MHD boundary layer over a moving surface has been investigated. The governing flow comprises of linear momentum equation, energy, and concentration equations which are modified with the help of similarity variables. The reduced resulting nonlinear coupled ordinary differential equations are solved with the help of Successive linearization method (SLM) and Chebyshev spectral collocation method. The impact of all the physical parameters is demonstrated numerically and graphically. A detailed analysis have been given for all the pertinent parameters such as Hartmann number, porosity parameter, Prandtl number, radiation parameter, suction/injection parameter, moving parameter, Brinkmann number, Reynolds number, chemical reaction parameter and Schmidt number on velocity, temperature, concentration and entropy profile as well as the Skin friction coefficient, Nusselt number and Sherwood number are also conducted. The numerical comparison has also been given to the existing published literature.

  15. Unsteady Flow of Radiating and Chemically Reacting MHD Micropolar Fluid in Slip-Flow Regime with Heat Generation

    NASA Astrophysics Data System (ADS)

    Abo-Dahab, S. M.; Mohamed, R. A.

    2013-11-01

    An analytical study of the problem of unsteady free convection with thermal radiation and heat generation on MHD micropolar fluid flow through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime has been presented. The Rosseland diffusion approximation is used to describe the radiation heat flux in the energy equation. The homogeneous chemical reaction of first order is accounted for in the mass diffusion equation. A uniform magnetic field acts perpendicular on the porous surface absorbing micropolar fluid with a suction velocity varying with time. A perturbation technique is applied to obtain the expressions for the velocity, microrotation, temperature, and concentration distributions. Expressions for the skin-friction, Nusselt number, and Sherwood number are also obtained. The results are discussed graphically for different values of the parameters entered into the equations of the problem.

  16. Characterization of open-cycle coal-fired MHD generators. 14th/15th quarterly technical progress report, February 1-July 31, 1980

    SciTech Connect

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.

    1980-09-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort as detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.

  17. Characterization of open-cycle coal-fired MHD generators. 16th quarterly technical progress report, December 16, 1980-March 31, 1981

    SciTech Connect

    Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Dvore, D.; Freedman, A.; Stanton, A.; Stewart, G.

    1981-05-01

    The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort is reported. In addition, studies related to understanding arcing and corrosion phenomena in the vicinity of an anode are reported.

  18. Periodic Wnt1 expression in response to ecdysteroid generates twin-spot markings on caterpillars.

    PubMed

    Yamaguchi, Junichi; Banno, Yutaka; Mita, Kazuei; Yamamoto, Kimiko; Ando, Toshiya; Fujiwara, Haruhiko

    2013-01-01

    Among various pigmentation patterns on caterpillars, sequential spot markings are often observed and used for aposematic colouration. In contrast to adult wings, caterpillar cuticle markings are repeatedly generated at each moult, but little is known about how the patterns are formed and maintained periodically. Here we focus on a silkworm mutant, multi lunar (L), with twin-spot markings on sequential segments. Positional cloning of L and expression analyses reveal that cis-regulatory change in Wnt1 is responsible for the spot patterning. The periodical upregulation of Wnt1 in response to ecdysteroid is detected only in epidermis within spot marking area. We verify by transgenic expression that the ectopic Wnt1 induces the additional pigmentation. Furthermore, the association of Wnt1 expression with spot markings is observed in the wild Bombyx species and swallowtail butterfly Papilio machaon. Taken together, we anticipate that periodic Wnt1 expression may contribute to natural variations of spot patterning on caterpillar cuticle.

  19. Thrombin generation by activated factor VII on platelet activated by different agonists. Extending the cell-based model of hemostasis

    PubMed Central

    Altman, Raul; Scazziota, Alejandra Silvia; Herrera, Maria de Lourdes; Gonzalez, Claudio

    2006-01-01

    Background Platelet activation is crucial in normal hemostasis. Using a clotting system free of external tissue factor, we investigated whether activated Factor VII in combination with platelet agonists increased thrombin generation (TG) in vitro. Methods and results TG was quantified by time parameters: lag time (LT) and time to peak (TTP), and by amount of TG: peak of TG (PTG) and area under thrombin formation curve after 35 minutes (AUC→35min) in plasma from 29 healthy volunteers using the calibrated automated thrombography (CAT) technique. TG parameters were measured at basal conditions and after platelet stimulation by sodium arachidonate (AA), ADP, and collagen (Col). In addition, the effects of recombinant activated FVII (rFVIIa) alone or combined with the other platelet agonists on TG parameters were investigated. We found that LT and TTP were significantly decreased (p < 0.05) and PTG and AUC→35min were significantly increased (p < 0.05) in platelet rich plasma activated with AA, ADP, Col, and rFVIIa compared to non-activated platelet rich plasma from normal subjects (p = 0.01). Furthermore platelet rich plasma activated by the combined effects of rFVIIa plus AA, ADP or Col had significantly reduced LT and TTP and increased AUC→35min (but not PTG) when compared to platelet rich plasma activated with agonists in the absence of rFVIIa. Conclusion Platelets activated by AA, ADP, Col or rFVIIa triggered TG. This effect was increased by combining rFVIIa with other agonists. Our intrinsic coagulation system produced a burst in TG independent of external tissue factor activity an apparent hemostatic effect with little thrombotic capacity. Thus we suggest a modification in the cell-based model of hemostasis. PMID:16630353

  20. On statistical inference for the random set generated Cox process with set-marking.

    PubMed

    Penttinen, Antti; Niemi, Aki

    2007-04-01

    Cox point process is a process class for hierarchical modelling of systems of non-interacting points in Rd under environmental heterogeneity which is modelled through a random intensity function. In this work a class of Cox processes is suggested where the random intensity is generated by a random closed set. Such heterogeneity appears for example in forestry where silvicultural treatments like harvesting and site-preparation create geometrical patterns for tree density variation in two different phases. In this paper the second order property, important both in data analysis and in the context of spatial sampling, is derived. The usefulness of the random set generated Cox process is highly increased, if for each point it is observed whether it is included in the random set or not. This additional information is easy and economical to obtain in many cases and is hence of practical value; it leads to marks for the points. The resulting random set marked Cox process is a marked point process where the marks are intensity-dependent. The problem with set-marking is that the marks are not a representative sample from the random set. This paper derives the second order property of the random set marked Cox process and suggests a practical estimation method for area fraction and covariance of the random set and for the point densities within and outside the random set. A simulated example and a forestry example are given.

  1. Generation of the V4.2m5 and AMPX and MPACT 51 and 252-Group Libraries with ENDF/B-VII.0 and VII.1

    SciTech Connect

    Kim, Kang Seog

    2016-12-12

    The evaluated nuclear data file (ENDF)/B-7.0 v4.1m3 MPACT 47-group library has been used as a main library for the Consortium for Advanced Simulation of Light Water Reactors (CASL) neutronics simulator in simulating pressurized water reactor (PWR) problems. Recent analysis for the high void boiling water reactor (BWR) fuels and burnt fuels indicates that the 47-group library introduces relatively large reactivity bias. Since the 47- group structure does not match with the SCALE 6.2 252-group boundaries, the CASL Virtual Environment for Reactor Applications Core Simulator (VERA-CS) MPACT library must be maintained independently, which causes quality assurance concerns. In order to address this issue, a new 51-group structure has been proposed based on the MPACT 47- g and SCALE 252-g structures. In addition, the new CASL library will include a 19-group structure for gamma production and interaction cross section data based on the SCALE 19- group structure. New AMPX and MPACT 51-group libraries have been developed with the ENDF/B-7.0 and 7.1 evaluated nuclear data. The 19-group gamma data also have been generated for future use, but they are only available on the AMPX 51-g library. In addition, ENDF/B-7.0 and 7.1 MPACT 252-g libraries have been generated for verification purposes. Various benchmark calculations have been performed to verify and validate the newly developed libraries.

  2. MHD boundary layer radiative, heat generating and chemical reacting flow past a wedge moving in a nanofluid.

    PubMed

    Khan, Md Shakhaoath; Karim, Ifsana; Islam, Md Sirajul; Wahiduzzaman, Mohammad

    2014-01-01

    The present study analyzed numerically magneto-hydrodynamics (MHD) laminar boundary layer flow past a wedge with the influence of thermal radiation, heat generation and chemical reaction. This model used for the momentum, temperature and concentration fields. The principal governing equations is based on the velocity uw (x) in a nanofluid and with a parallel free stream velocity ue (x) and surface temperature and concentration. Similarity transformations are used to transform the governing nonlinear boundary layer equations for momentum, thermal energy and concentration to a system of nonlinear ordinary coupled differential equations with fitting boundary conditions. The transmuted model is shown to be controlled by a number of thermo-physical parameters, viz. the magnetic parameter, thermal convective parameter, mass convective parameter, radiation-conduction parameter, heat generation parameter, Prandtl number, Lewis number, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter and pressure gradient parameter. Numerical elucidations are obtained with the legendary Nactsheim-Swigert shooting technique together with Runge-Kutta six order iteration schemes. Comparisons with previously published work are accomplished and proven an excellent agreement.

  3. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    The MHD channel in the NASA Lewis Research Center was redesigned and used in closed cycle power generation experiments with a helium-cesium working fluid. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. Improvements in Hall voltage isolation and seed vaporization techniques have resulted in significant improvements in performance. Typical values obtained with helium are Faraday open circuit voltage 141 V (92% of uBh) at a magnetic field strength of 1.7 T, power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes. Power densities of 0.6 MW/cu m and Hall fields of about 1100 V/m were obtained in the tests with 17 electrodes, representing a factor of 18 improvement over previously reported results. The V-I curves and current distribution data indicate that while near ideal equilibrium performance is obtained under some conditions, no nonequilibrium power has been generated to date.

  4. MHD boundary layer radiative, heat generating and chemical reacting flow past a wedge moving in a nanofluid

    NASA Astrophysics Data System (ADS)

    Khan, Md Shakhaoath; Karim, Ifsana; Islam, Md Sirajul; Wahiduzzaman, Mohammad

    2014-07-01

    The present study analyzed numerically magneto-hydrodynamics (MHD) laminar boundary layer flow past a wedge with the influence of thermal radiation, heat generation and chemical reaction. This model used for the momentum, temperature and concentration fields. The principal governing equations is based on the velocity u w (x) in a nanofluid and with a parallel free stream velocity u e (x) and surface temperature and concentration. Similarity transformations are used to transform the governing nonlinear boundary layer equations for momentum, thermal energy and concentration to a system of nonlinear ordinary coupled differential equations with fitting boundary conditions. The transmuted model is shown to be controlled by a number of thermo-physical parameters, viz. the magnetic parameter, thermal convective parameter, mass convective parameter, radiation-conduction parameter, heat generation parameter, Prandtl number, Lewis number, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter and pressure gradient parameter. Numerical elucidations are obtained with the legendary Nactsheim-Swigert shooting technique together with Runge-Kutta six order iteration schemes. Comparisons with previously published work are accomplished and proven an excellent agreement.

  5. MHD Spectroscopy

    SciTech Connect

    Heeter, R F; Fasoli, A; Testa, D; Sharapov, S; Berk, H L; Breizman, B; Gondhalekar, A; Mantsinen, M

    2004-03-23

    Experiments are conducted on the JET tokamak to assess the diagnostic potential of MHD active and passive spectroscopy, for the plasma bulk and its suprathermal components, using Alfv{acute e}n Eigenmodes (AEs) excited by external antennas and by energetic particles. The measurements of AE frequencies and mode numbers give information on the bulk plasma. Improved equilibrium reconstruction, in particular in terms of radial profiles of density and safety factor, is possible from the comparison between the antenna driven spectrum and that calculated theoretically. Details of the time evolution of the non-monotonic safety factor profile in advanced scenarios can be reconstructed from the frequency of ICRH-driven energetic particle modes. The plasma effective mass can be inferred from the resonant frequency of externally driven AEs in discharges with similar equilibrium profiles. The stability thresholds and the nonlinear development of the instabilities can give clues on energy and spatial distribution of the fast particle population. The presence of unstable AEs provides lower limits in the energy of ICRH generated fast ion tails. Fast ion pressure gradients and their evolution can be inferred from the stability of AEs at different plasma radial positions. Finally, the details of the AE spectrum in the nonlinear stage can be used to obtain information about the fast particle velocity space diffusion.

  6. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  7. Analyses on the Ionization Instability of Non-Equilibrium Seeded Plasma in an MHD Generator

    NASA Astrophysics Data System (ADS)

    Le, Chi Kien

    2016-06-01

    Recently, closed cycle magnetohydrodynamic power generation system research has been focused on improving the isentropic efficiency and the enthalpy extraction ratio. By reducing the cross-section area ratio of the disk magnetohydrodynamic generator, it is believed that a high isentropic efficiency can be achieved with the same enthalpy extraction. In this study, the result relating to a plasma state which takes into account the ionization instability of non-equilibrium seeded plasma is added to the theoretical prediction of the relationship between enthalpy extraction and isentropic efficiency. As a result, the electron temperature which reaches the seed complete ionization state without the growth of ionization instability can be realized at a relatively high seed fraction condition. However, the upper limit of the power generation performance is suggested to remain lower than the value expected in the low seed fraction condition. It is also suggested that a higher power generation performance may be obtained by implementing the electron temperature range which reaches the seed complete ionization state at a low seed fraction.

  8. Numerical investigation of entropy generation in unsteady MHD generalized Couette flow with variable electrical conductivity.

    PubMed

    Chinyoka, T; Makinde, O D

    2013-01-01

    The thermodynamic second law analysis is utilized to investigate the inherent irreversibility in an unsteady hydromagnetic generalized Couette flow with variable electrical conductivity in the presence of induced electric field. Based on some simplified assumption, the model nonlinear governing equations are obtained and solved numerically using semidiscretization finite difference techniques. Effects of various thermophysical parameters on the fluid velocity, temperature, current density, skin friction, the Nusselt number, entropy generation number, and the Bejan number are presented graphically and discussed quantitatively.

  9. Numerical Investigation of Entropy Generation in Unsteady MHD Generalized Couette Flow with Variable Electrical Conductivity

    PubMed Central

    Chinyoka, T.; Makinde, O. D.

    2013-01-01

    The thermodynamic second law analysis is utilized to investigate the inherent irreversibility in an unsteady hydromagnetic generalized Couette flow with variable electrical conductivity in the presence of induced electric field. Based on some simplified assumption, the model nonlinear governing equations are obtained and solved numerically using semidiscretization finite difference techniques. Effects of various thermophysical parameters on the fluid velocity, temperature, current density, skin friction, the Nusselt number, entropy generation number, and the Bejan number are presented graphically and discussed quantitatively. PMID:23956691

  10. Visualization analysis of tiger-striped flow mark generation phenomena in injection molding

    NASA Astrophysics Data System (ADS)

    Owada, Shigeru; Yokoi, Hidetoshi

    2016-03-01

    The generation mechanism of tiger-striped flow marks of polypropylene (PP)/rubber/talc blends in injection molding was investigated by dynamic visualization analysis in a glass-inserted mold. The analysis revealed that the behavior of the melt flow front correlates with the flow mark generation. The cloudy part in the tiger-striped flow marks corresponded to the low transcription rate area of the melt diverging near the cavity wall, while the glossy part corresponded to the high transcription rate area of the melt converging toward the cavity wall side. The melt temperature at the high transcription rate area was slightly lower than that at the low transcription rate area. These phenomena resulted due to the difference in the temperature of the melt front that was caused by the asymmetric fountain flow. These results suggest the followings; At the moment when the melt is broken near the one side of cavity wall due to piling the extensional strains up to a certain level, the melt spurts out near the broken side. It results in generating asymmetric fountain flow temporarily to relax the extensional front surface, which moves toward the opposite side to form the high transcription area.

  11. Non-planar MHD model for solar flare-generated disturbances in the heliospheric equatorial plane

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Dryer, M.; Han, S. M.

    1983-01-01

    An analysis, with a representative (canonical) example of solar-flare-generated equatorial disturbances, is made for the temporal and spatial changes in the solar wind plasma and magnetic field environment between the sun and 1 AU. The goal is to search for first-order global consequences rather than to make a parametric study. The analysis treats all three plasma velocity and magnetic field components in any convenient heliospheric plane of symmetry. The representative disturbance is examined for the canonical case in which the temporal and spatial changes in a homogeneous solar wind caused by a solar-flare-generated shock wave are described. All plasma and field parameters at three radial locations are examined. These are the central meridian and 33 deg W and 90 deg W of the flare's central meridian. It is found that the incorporation of a small meridional magnetic field in the ambient magnetic spiral field has negligible effect on the results. The magnetic field exhibits strong kinking within the interplanetary shocked flow, even reversed polarity that, coupled with low temperature and low density, suggests a plausible explanation for magnetic clouds' with accompanying double-streaming of electrons observed at directions approximately 90 deg to the heliocentric radius.

  12. Next generation phage display by use of pVII and pIX as display scaffolds.

    PubMed

    Løset, Geir Åge; Sandlie, Inger

    2012-09-01

    Phage display technology has evolved to become an extremely versatile and powerful platform for protein engineering. The robustness of the phage particle, its ease of handling and its ability to tolerate a range of different capsid fusions are key features that explain the dominance of phage display in combinatorial engineering. Implementation of new technology is likely to ensure the continuation of its success, but has also revealed important short comings inherent to current phage display systems. This is in particular related to the biology of the two most popular display capsids, namely pIII and pVIII. Recent findings using two alternative capsids, pVII and pIX, located to the phage tip opposite that of pIII, suggest how they may be exploited to alleviate or circumvent many of these short comings. This review addresses important aspects of the current phage display standard and then discusses the use of pVII and pIX. These may both complement current systems and be used as alternative scaffolds for display and selection to further improve phage display as the ultimate combinatorial engineering platform. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Polar Cap Potential Saturation during the Bastille Day Storm using Next Generation Magnetosphere-Ionosphere Coupling Global MHD Simulation

    NASA Astrophysics Data System (ADS)

    Kubota, Y.; Nagatsuma, T.; Den, M.; Tanaka, T.; Fujita, S.

    2015-12-01

    We are developing a real-time numerical simulator for the solar-wind-magnetosphere-ionosphere coupling system using next generation magnetosphere-ionosphere coupling global MHD simulation called REPPU (REProduce Plasma Universe) code. The feature of simulation has an advanced robustness to strong solar wind case because a triangular grid is used, which is able to calculate in the uniform accuracy over the whole region. Therefore we can simulate extreme event such as the Bastille day storm. The resolution is 7682 grids in the horizontal direction and 240 grids in the radial direction. The inner boundary of the simulation box is set at 2.6 Re. We investigate the reproduction of the magnetosphere-ionosphere coupling simulation in strong solar wind case. Therefore we compared the simulation results with the observation of the Bastille day storm event (2000/7/15), in which the solar wind velocity is above 1000 km/s and the value of Bz reached -60 nT. Especially, we focus the cross polar cap potential (CPCP) saturation and time variation because the CPCP represents the value of magnetospheric - ionospheric convection strength via region 1 current. The CPCP depends on solar wind electric field, dynamic pressure and ionospheric conductivity [Siscoe et al., 2002; Kivelson et al., 2008]. The model of Kivelson et al. [2008] shows a good reproduction to the CPCP variation. However their study assumes that the ionospheric conductivity is constant. The conductivity in our simulation of the Bastille day event is varied by the auroral activity. In this lecture, we discuss the effect of both the auroral conductance and solar EUV-driven conductance to CPCP saturation.

  14. Simulating forensic casework scenarios in experimental studies: The generation of footwear marks in blood.

    PubMed

    McElhone, Rachel L; Meakin, Georgina E; French, James C; Alexander, Tracy; Morgan, Ruth M

    2016-07-01

    A study was designed to investigate the effects of external variables, including blood type, flooring surface, footwear tread depth and blood dryness, on the appearance of blood-based footwear marks, with particular reference to simulating a specific casework scenario. Results showed that footwear marks left in human blood tended to be of greater quality than those in equine blood, highlighting a potential issue in applying data generated with equine blood to human bloodstains in casework. Footwear tread effects were also dependent on blood type, but the type of flooring surface did not affect the appearance of the mark. Under some conditions, as the blood dried, the amount of detail retained from footwear contact decreased. These results provide the beginnings of an empirical evidence base to allow a more accurate interpretation of blood-based footwear marks in forensic casework. When applied to a disputed bloodstain in a specific case, these results also demonstrate the importance of such experiments in narrowing the range of explanations possible in the interpretation of forensic evidence.

  15. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    SciTech Connect

    Samim Anghaie

    2002-08-13

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the core

  16. Sialon Electrodes and Insulators for MHD Device

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1984-01-01

    Rectangular magnetohydrodynamic (MHD) channel structure for electrical power generation designed using pure sialon ceramic for insulating portion of structure and metal-bearing sialon cermet for conducting portion.

  17. Magnetohydrodynamics (MHD) program evaluation

    SciTech Connect

    Not Available

    1983-05-01

    Conclusions and Recommendations: (1) Progress has been made in performance testing of virtually every critical MHD component and subsystem, except for seed regeneration. (2) No insurmountable technical barriers have been identified; however, the component tests have for the most part been of short duration and, in most instances, were conducted under simulated coal-fired conditions. Long duration, coal-fired integrated tests of the MHD power train and of the HRSR subsystem are required to demonstrate system operability and durability. (3) It would appear most appropriate that the first series of complete power train and HRSR tests be conducted at the 50 MW/sub t/ level. The major objectives of these tests should be to verify predicted performance and to show system operability and durability for a period of at least 2000 hours. (4) Assuming successful 50 MW/sub t/ duration tests, a 150 MW/sub t/ completely integrated (topping and bottoming cycles) utility demonstration test is then suggested (3:1 scale-up). (5) The final development step would involve the fabrication of a commercial size plant at a power level of 500 MW/sub t/ or greater. (6) The ultimate adoption of MHD as a means for electric power generation will not be solely determined by its technical performance; the economic climate and projections at the time the technology is mature will strongly influence utility decisions. (7) Estimated capital costs of early commercial MHD plants seem to range from 10% to 30% greater than those for PCF plants with scrubbers. However, because of the higher inherent efficiency of MHD relative to PCF plants (50% vs 35%), the cost of electric power (COE) from an MHD system can nevertheless be competitive for an appropriately broad range of economic scenarios. (8) Finally, it is recognized that a major investment will be necessary to bring the technology to a state of commercial readiness.

  18. Male germline transmits fetal alcohol epigenetic marks for multiple generations: a review.

    PubMed

    Sarkar, Dipak K

    2016-01-01

    Alcohol exposure during fetal and early postnatal development can lead to an increased incidence of later life adult-onset diseases. Examples include central nervous system dysfunction, depression, anxiety, hyperactivity, and an inability to deal with stressful situations, increased infection and cancer. Direct effects of alcohol leading to developmental abnormalities often involve epigenetic modifications of genes that regulate cellular functions. Epigenetic marks carried over from the parents are known to undergo molecular programming events that happen early in embryonic development by a wave of DNA demethylation, which leaves the embryo with a fresh genomic composition. The proopiomelanocortin (Pomc) gene controls neuroendocrine-immune functions and is imprinted by fetal alcohol exposure. Recently, this gene has been shown to be hypermethylated through three generations. Additionally, the alcohol epigenetic marks on the Pomc gene are maintained in the male but not in the female germline during this transgenerational transmission. These data suggest that the male-specific chromosome might be involved in transmitting alcohol epigenetic marks through multiple generations.

  19. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1992-08-01

    The problems connected with gas side corrosion for the design of the 1A4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. The results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.

  20. Corrosion and arc erosion in MHD channels

    SciTech Connect

    Rosa, R.J. . Dept. of Mechanical Engineering); Pollina, R.J. . Dept. of Mechanical Engineering EG and G Energy Measurements, Inc., Las Vegas, NV )

    1992-08-01

    The problems connected with gas side corrosion for the design of the lA4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. the results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.

  1. MHD channel performance for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Swallom, D. W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.

  2. MHD channel performance for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Swallom, D. W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.

  3. MHD channel development, part 3

    NASA Astrophysics Data System (ADS)

    1989-12-01

    This is the final report of work performed by Avco Research Laboratory, Inc. for the U.S. Department of Energy, Pittsburgh Energy Technology Center. The overall objectives of this program were: to contribute, by appropriate systematic experimental and analytical investigations, to the engineering data base necessary for the design and construction of MHD generators at the 50 MW(sub th) and ultimately at commercial sizes; and to design and fabricate specific hardware items to be tested at a site to be specified by DOE. Section 3.0, MHD Channel Design and Performance, reports experimental and analytical investigations related to MHD channel design and performance.

  4. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  5. Arbitrary continuous nano-marks generated by multifocal spot arrays for controllable laser printing

    NASA Astrophysics Data System (ADS)

    Wen, Jing; Feng, Hui; Liu, Shiliang; Zhang, Dawei

    2017-04-01

    Phase-only modulations derived from the Debye approximation of the Richards–Wolf vectorial integral are used to produce a multifocal spot array. An analytical solution, which controls the position of each focal spot, can generate phase modulation images which are loaded into spatial light modulators. The calculated field distributions and the experimental images of the spot array on the back aperture of the objective are both demonstrated and validated. By overlapping the discrete focal points, continuous nano-structures of arbitrary marks can be achieved conveniently and easily. The above-proposed approach offers opportunities for flexible laser printing and creative micro-manipulation in the future.

  6. Congenital deficiency of factor VII.

    PubMed

    Sikka, M; Gomber, S; Madan, N; Rusia, U; Sharma, S

    1996-01-01

    A case of congenital factor VII deficiency in a five-year-old child is reported. The patient, born of a non-consanguineous marriage, presented with repeated bouts of epistaxis since childhood. The prothrombin time (PT) was markedly prolonged with a normal bleeding time (BT), partial thromboplastin time with Kaolin (PTTK) and platelet count. The patient has been on follow up for the last four years and is doing apparently well.

  7. Factor VII deficiency

    MedlinePlus

    ... if one or more of these factors are missing or are not functioning like they should. Factor VII is one such coagulation factor. Factor VII deficiency runs in families (inherited) and is very rare. Both parents must ...

  8. Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species

    NASA Astrophysics Data System (ADS)

    Sheikh, Mariam; Abbas, Zaheer

    2015-12-01

    The effects of chemical reaction and heat generation/absorption on MHD flow over an oscillatory stretching surface in a viscous fluid have been studied in the presence of thermophoresis. The porous plate is oscillated back and forth in its own plane and suction/injection is also taking into account. The similarity solution of the developed non-linear governing partial differential equations is constructed in the form of series using homotopy analysis method. The convergence of the obtained series solutions is discussed in the whole domain (0 ≤ η ≤ ∞) . A parametric study of the all governing parameters is accomplished and the physical results are shown graphically.

  9. Non-linear heat and mass transfer in a MHD Homann nanofluid flow through a porous medium with chemical reaction, heat generation and uniform inflow

    NASA Astrophysics Data System (ADS)

    EL-Dabe, N. T.; Attia, H. A.; Essawy, M. A. I.; Ramadan, A. A.; Abdel-Hamid, A. H.

    2016-11-01

    The steady MHD axisymmetric flow of an incompressible viscous electrically conducting nanofluid impinging on a permeable plate is investigated with heat and mass transfer. An external uniform magnetic field as well as a uniform inflow, in the presence of either suction or injection, are applied normal to the plate. The effects of heat (generation/absorption) and chemical reaction have been accentuated. This study indicates the incorporated influence of both the thermophoresis phenomenon and the Brownian behavior. Numerical solutions for the governing non-linear momentum, energy and nanoparticle equations have been obtained. The rates of heat and mass transfer are presented and discussed.

  10. MHD Energy Bypass Scramjet Engine

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)

    2001-01-01

    Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several

  11. Evaluation of technical feasibility of closed-cycle non-equilibrium MHD power generation with direct coal firing. Final report, Task 1

    SciTech Connect

    Not Available

    1981-11-01

    Program accomplishments in a continuing effort to demonstrate the feasibility of direct coal fired, closed cycle, magnetohydrodynamic power generation are detailed. These accomplishments relate to all system aspects of a CCMHD power generation system including coal combustion, heat transfer to the MHD working fluid, MHD power generation, heat and cesium seed recovery and overall systems analysis. Direct coal firing of the combined cycle has been under laboratory development in the form of a high slag rejection, regeneratively air cooled cyclone coal combustor concept, originated within this program. A hot bottom ceramic regenerative heat exchanger system was assembled and test fired with coal for the purposes of evaluating the catalytic effect of alumina on NO/sub x/ emission reduction and operability of the refractory dome support system. Design, procurement, fabrication and partial installation of a heat and seed recovery flow apparatus was accomplished and was based on a stream tube model of the full scale system using full scale temperatures, tube sizes, rates of temperature change and tube geometry. Systems analysis capability was substantially upgraded by the incorporation of a revised systems code, with emphasis on ease of operator interaction as well as separability of component subroutines. The updated code was used in the development of a new plant configuration, the Feedwater Cooled (FCB) Brayton Cycle, which is superior to the CCMHD/Steam cycle both in performance and cost. (WHK)

  12. MHD channel development, part 4

    NASA Astrophysics Data System (ADS)

    1989-12-01

    This is the final report of work performed by Avco Research Laboratory, Inc. for the U.S. Department of Energy, Pittsburgh Energy Technology Center. The overall objectives of this program were: to contribute, by appropriate systematic experimental and analytical investigations, to the engineering data base necessary for the design and construction of MHD generators at the 50 MW(sub th) and ultimately at commercial sizes; and to design and fabricate specific hardware items to be tested at a site to be specified by DOE. The program consisted of a series of related tasks, which are described in subsequent sections of this report. Section 4.0, MHD Channel Construction and Lifetime, reports experimental investigations related to MHD channel reliability and lifetime, where the principal aim is to improve the constructability, maintainability, and reliability of coal-fired, long-duration MHD channels.

  13. Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark?

    PubMed

    Seifermann, Marco; Epe, Bernd

    2017-06-01

    The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mutagenic DNA modification generated by endogenous or exogenous reactive oxygen species (ROS), has distinct roles in the regulation of both transcription and signal transduction. Thus, the activation of transcription by the estrogen receptor, NF-κB, MYC and other transcription factors was shown to depend on the presence of 8-oxoG in the promoter regions and its recognition by the DNA repair glycosylase OGG1. The lysine-specific histone demethylase LSD1, which produces H2O2 as a by-product, was indentified as a local generator of 8-oxoG in some of these cases. In addition, a complex of OGG1 with the excised free substrate base was demonstrated to act as a guanine nucleotide exchange factor (GEF) for small GTPases such as Ras, Rac and Rho, thus stimulating signal transduction. The various findings and intriguing novel mechanisms suggested will be described and compared in this review. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A comparative study between xerographic, computer-assisted overlay generation and animated-superimposition methods in bite mark analyses.

    PubMed

    Tai, Meng Wei; Chong, Zhen Feng; Asif, Muhammad Khan; Rahmat, Rabiah A; Nambiar, Phrabhakaran

    2016-09-01

    This study was to compare the suitability and precision of xerographic and computer-assisted methods for bite mark investigations. Eleven subjects were asked to bite on their forearm and the bite marks were photographically recorded. Alginate impressions of the subjects' dentition were taken and their casts were made using dental stone. The overlays generated by xerographic method were obtained by photocopying the subjects' casts and the incisal edge outlines were then transferred on a transparent sheet. The bite mark images were imported into Adobe Photoshop® software and printed to life-size. The bite mark analyses using xerographically generated overlays were done by comparing an overlay to the corresponding printed bite mark images manually. In computer-assisted method, the subjects' casts were scanned into Adobe Photoshop®. The bite mark analyses using computer-assisted overlay generation were done by matching an overlay and the corresponding bite mark images digitally using Adobe Photoshop®. Another comparison method was superimposing the cast images with corresponding bite mark images employing the Adobe Photoshop® CS6 and GIF-Animator©. A score with a range of 0-3 was given during analysis to each precision-determining criterion and the score was increased with better matching. The Kruskal Wallis H test showed significant difference between the three sets of data (H=18.761, p<0.05). In conclusion, bite mark analysis using the computer-assisted animated-superimposition method was the most accurate, followed by the computer-assisted overlay generation and lastly the xerographic method. The superior precision contributed by digital method is discernible despite the human skin being a poor recording medium of bite marks.

  15. MHD turbulent processes

    NASA Technical Reports Server (NTRS)

    Montgomery, David

    1988-01-01

    Three areas of study in MHD turbulence are considered. These are the turbulent relaxation of the toroidal Z pinch, density fluctuations in MHD fluids, and MHD cellular automata. A Boolean computer game that updates a cellular representation in parallel and that has macroscopic averages converging to solutions of the two-dimensional MHD equations is discussed.

  16. Three-dimensional, time-dependent, MHD model of a solar flare-generated interplanetary shock wave

    NASA Technical Reports Server (NTRS)

    Dryer, M.; Wu, S. T.; Han, S. M.

    1986-01-01

    A three-dimensional time-dependent MHD model of the propagation of an interplanetary shock wave into an ambient three-dimensional heliospheric solar wind is initialized with a peak velocity of 1000 km/s at the center of a right circular cone of 18 deg included angle at 18 solar radii. Differences from a previous 2-1/2 simulation (Wu et al., 1983; Gislason et al., 1984; Dryer et al., 1984) include diminuation of the solar peak velocity and concentration of the peak density at each radius. The IMF magnitude starts with high-latitude peaks, and helical-like IMF rotation is noted due to a large-amplitude nonlinear Alfven wave in the shocked plasma.

  17. Viscous Dissipation and Thermal Radiation effects in MHD flow of Jeffrey Nanofluid through Impermeable Surface with Heat Generation/Absorption

    NASA Astrophysics Data System (ADS)

    Sharma, Kalpna; Gupta, Sumit

    2017-06-01

    This paper investigates steady two dimensional flow of an incompressible magnetohydrodynamic (MHD) boundary layer flow and heat transfer of nanofluid over an impermeable surface in presence of thermal radiation and viscous dissipation. By using similarity transformation, the arising governing equations of momentum, energy and nanoparticle concentration are transformed into coupled nonlinear ordinary differential equations, which are than solved by homotopy analysis method (HAM). The effect of different physical parameters, namely, Prandtl number Pr, Eckert number Ec, Magnetic parameter M, Brownian motion parameter Nb, Thermophoresis parameter Nt, Lewis parameter Le and Radiation parameter Rd on the velocity, temperature and concentration profiles along with the Nusselt number and skin friction coefficient are discussed graphically and in tabular form in details. The present results are also compared with existing limiting solutions.

  18. Virtual tool mark generation for efficient striation analysis in forensic science

    SciTech Connect

    Ekstrand, Laura

    2012-01-01

    In 2009, a National Academy of Sciences report called for investigation into the scienti c basis behind tool mark comparisons (National Academy of Sciences, 2009). Answering this call, Chumbley et al. (2010) attempted to prove or disprove the hypothesis that tool marks are unique to a single tool. They developed a statistical algorithm that could, in most cases, discern matching and non-matching tool marks made at di erent angles by sequentially numbered screwdriver tips. Moreover, in the cases where the algorithm misinterpreted a pair of marks, an experienced forensics examiner could discern the correct outcome. While this research served to con rm the basic assumptions behind tool mark analysis, it also suggested that statistical analysis software could help to reduce the examiner's workload. This led to a new tool mark analysis approach, introduced in this thesis, that relies on 3D scans of screwdriver tip and marked plate surfaces at the micrometer scale from an optical microscope. These scans are carefully cleaned to remove noise from the data acquisition process and assigned a coordinate system that mathematically de nes angles and twists in a natural way. The marking process is then simulated by using a 3D graphics software package to impart rotations to the tip and take the projection of the tip's geometry in the direction of tool travel. The edge of this projection, retrieved from the 3D graphics software, becomes a virtual tool mark. Using this method, virtual marks are made at increments of 5 and compared to a scan of the evidence mark. The previously developed statistical package from Chumbley et al. (2010) performs the comparison, comparing the similarity of the geometry of both marks to the similarity that would occur due to random chance. The resulting statistical measure of the likelihood of the match informs the examiner of the angle of the best matching virtual mark, allowing the examiner to focus his/her mark analysis on a smaller range of angles

  19. Simultaneous effects of heat generation/absorption and thermal radiation in magnetohydrodynamics (MHD) flow of Maxwell nanofluid towards a stretched surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Qayyum, Sajid; Shehzad, Sabir Ali; Alsaedi, Ahmed

    Mathematical analysis of magnetohydrodynamic (MHD) three-dimensional nonlinear convective flow of Maxwell nanofluid towards a stretching surface is made in this article. Characteristics of heat transfer are examined under thermal radiation, heat generation/absorption and prescribed heat flux condition. Nanofluid model includes Brownian motion and thermophoresis. Dimensional nonlinear expressions of momentum, energy and concentration are converted into dimensionless systems by invoking suitable similarity variables. A well-known homotopic technique is implemented for dimensionless expressions. Impact of different quantities on velocities, temperature and concentration are scrutinized graphically and discussed in detail. The expressions of Nusselt and Sherwood numbers are calculated and addressed comprehensively. It is also seen that thermal radiation parameter enhances the temperature field and heat transfer rate.

  20. Closed cycle MHD power generation experiments using a helium-cesium working fluid in the NASA Lewis Facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.

    1976-01-01

    A MHD channel, which was previously operated for over 500 hours of thermal operation, ten thermal cycles, and 200 cesium injection tests, was removed from the facility and redesigned. The cross sectional dimensions of the channel were reduced to 5 by 16.5 cm to allow operation over a variety of conditions. The redesigned channel has been operated for well over 300 hours, 10 thermal cycles, and 150 cesium injection tests with no problems. Experiments have been run at temperatures of 1900-2100 K and Mach numbers from 0.3 to 0.55 in argon and 0.2 in helium. The best results to date have been obtained in the helium tests. Power outputs of 2.2 kw for tests with 28 electrodes and 2.1 kw for tests with 17 electrodes were realized. Power densities of 0.6 MW/cu m and Hall fields of about 1,100 V/m were obtained in the tests with 17 electrodes.

  1. A highly sensitive thrombin generation assay for assessment of recombinant activated factor VII therapy in haemophilia patients with an inhibitor.

    PubMed

    Livnat, Tami; Martinowitz, Uri; Zivelin, Ariella; Rima, Dardik; Kenet, Gili

    2011-04-01

    Bypass agents are the common treatment for haemophilia patients who develop inhibitory antibodies. Laboratory assessment of the efficacy of bypassing agent therapy is a challenge. In the present work we modified the conditions triggering thrombin generation (TG) assay in order to find the most sensitive assay for detection of rFVIIa and its analogue NN1731 in haemophilic plasma. TG was measured in samples of normal plasma, plasma of haemophilia patient with inhibitors, as well as haemophilia induced plasma. Recalcification-induced TG was compared to tissue factor (TF) -induced TG in the presence and absence of rFVIIa and NN1731. Recalcification-induced TG (without TF) in haemophilic plasma yielded baseline flat curves, with increased TG as a consequence of spiking the plasma rFVIIa. Using our system, we observed both dose-dependence and time-dependence of rFVIIa effect on TG. Elevated concentrations of TF mask the difference between rFVIIa-treated and non-treated haemophilic plasma. NN1731 yielded normalisation of recalcification-induced TG curves (without TF) which may reflect high potency. In conclusion, we suggest that triggering TG by recalcification-only may be the most sensitive assay for determining the impact of bypassing agents in haemophilic plasma, and may serve as a caution surrogate safety marker in future studies.

  2. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas

    SciTech Connect

    Turco, F. Hanson, J. M.; Navratil, G. A.; Turnbull, A. D.

    2015-02-15

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β{sub N} limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β{sub N}, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)], which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ∼13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β{sub N} levels (∼90% of the ideal no-wall limit). The toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β{sub N}.

  3. Exploiting automatically generated databases of traffic signs and road markings for contextual co-occurrence analysis

    NASA Astrophysics Data System (ADS)

    Hazelhoff, Lykele; Creusen, Ivo M.; Woudsma, Thomas; de With, Peter H. N.

    2015-11-01

    Combined databases of road markings and traffic signs provide a complete and full description of the present traffic legislation and instructions. Such databases contribute to efficient signage maintenance, improve navigation, and benefit autonomous driving vehicles. A system is presented for the automated creation of such combined databases, which additionally investigates the benefit of this combination for automated contextual placement analysis. This analysis involves verification of the co-occurrence of traffic signs and road markings to retrieve a list of potentially incorrectly signaled (and thus potentially unsafe) road situations. This co-occurrence verification is specifically explored for both pedestrian crossings and yield situations. Evaluations on 420 km of road have shown that individual detection of traffic signs and road markings denoting these road situations can be performed with accuracies of 98% and 85%, respectively. Combining both approaches shows that over 95% of the pedestrian crossings and give-way situations can be identified. An exploration toward additional co-occurrence analysis of signs and markings shows that inconsistently signaled situations can successfully be extracted, such that specific safety actions can be directed toward cases lacking signs or markings, while most consistently signaled situations can be omitted from this analysis.

  4. Homosexuals and Title VII

    ERIC Educational Resources Information Center

    Rivera, Juan R.; Galvan, Richard J.

    1975-01-01

    A method of dealing with the problems of discrimination against homosexuals in private employment through the application of Title VII of the Civil Rights Act of 1964 is discussed. The scope of the paper is limited to male homosexuals. (LBH)

  5. Fokker D.VII

    NASA Technical Reports Server (NTRS)

    1923-01-01

    Fokker D.VII: The Fokker D.VII was one of the best fighter aircraft of World War I, and was the only weapon used by the Central Powers specifically mentioned in the Versailles Treaty. The Central Powers surrendered 142 at the close of the war, and the Fokker company sold even more to the U. S. Air Service. Several were flown at Langley Field, but this one was the sole example operated by the NACA.

  6. Corrosion and arc erosion in MHD channels. Final report

    SciTech Connect

    Rosa, R.J.; Pollina, R.J. |

    1992-08-01

    The problems connected with gas side corrosion for the design of the lA4 (POC) channel hardware are explored and results of gas side wear rate tests in the Textron Mark VII facility are presented. It is shown that the proposed designs meet a 2000 hour lifetime criterion based upon these materials tests. Improvement in cathode lifetime is demonstrated with lower voltage intercathode gaps. The corrosion of these materials is discussed and it is shown how lifetimes are dependent upon gap voltage and average metal temperature. The importance of uniformity of slagging to the durability of the anode wall is demonstrated. The wear mechanism of the anodes in the MHD channel is analyzed. In addition to gas-side corrosion, the results of specific water corrosion tests of sidewall materials are discussed. All of the tests reported here were carried out to confirm the gas-side performance and the manufacturability of anode and sidewall designs and to address questions posed about the durability of tungsten-copper on the waterside. the results of water corrosion tests of the tungsten copper alloy sidewall material are presented to show that with proper control of waterside pH and, if necessary, dissolved oxygen, one can obtain reliable performance with no degradation of heat transfer with this material. The final choice of materials was determined primarily by the outcome of these tests and also by the question of the manufacturability of the prospective designs.

  7. Theoretical and Experimental Research of Capabilities of MHD Technology to Control Gas Flow with Non-Equilibrium Ionization

    DTIC Science & Technology

    2007-11-02

    experimental research of capabilities of using of MHD technology to control gas flow with non-equilibrium ionization. Cold gas flows will be considered, where...and MHD generator will be developed. Requirements to ionizer, MHD generator and flow parameters at which self- sustained operational mode of ionizer and...MHD generator is realized will be formulated. Possibilities of using of MHD control in gas-dynamical systems will be considered. Traditional use of

  8. Generation mechanisms for magnetosphere-ionosphere current systems deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling processes

    SciTech Connect

    Tanaka, T.

    1995-07-01

    Mechanisms that generate the field-aligned current (FAC) systems in the magnetosphere-ionosphere coupling scheme by virtue of the solar wind-magnetosphere interaction are investigated with a three-dimensional magnetohydrodynamic (MHD) simulation. As a simulation scheme, the finite volume total variation diminishing (TVD) scheme on an unstructured grid system is employed for precise calculations of the ionospheric region. In the ionosphere, the divergence of the Pederson and Hall currents is matched with FAC, mainly assuming uniform conductivity. The present calculation reproduces the traditional region 1 and 2 currents in the polar ionosphere, for both the northward and southward interplanetary magnetic fields (IMFs). The calculated magnitude of the region 1 current becomes large on the dayside, in agreement with observational results. For the northward IMF, NBZ currents that dominate the entire polar cap are obtained, with a maximum on the dayside. This current is totally absent in the southward IMF result. Corresponding to the FACs, the northward IMF results in multicell convection in the polar ionosphere, and the southward IMF results in two-cell convection. On the evening side, the calculated region 1 currents flow almost along the field lines away from the Earth toward the magnetospheric low-latitude boundary layer (LLBL), then flow up the magnetopause across the field lines to high latitudes.

  9. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    NASA Astrophysics Data System (ADS)

    Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.

  10. A three-dimensional MHD simulation of the interaction of the solar wind with the earth's magnetosphere - The generation of field-aligned currents

    NASA Technical Reports Server (NTRS)

    Ogino, T.

    1986-01-01

    The time-dependent interaction of the solar wind with the earth's magnetosphere is simulated using a three-dimensional MHD model. The bow shock, magnetopause, magnetotail, and plasma sheet of the magnetosphere and Birkeland field-aligned currents that are dependent on the polarity of the z component of the IMF are produced. Twin convection cells and a dawn to dusk electric potential of 30-100 kV are detected at the equator in the magnetosphere. Four types of field-aligned currents are observed: region 1, region 2, dayside magnetopause currents in the dayside cusp region, and the dayside cusp currents for southward IMF. Region 1 and 2 field-aligned currents generated for all IMF conditions are 0.6-1.0 x 10 to the 6th A and 0.15-0.61 x 10 to the 6th A, respectively. The relationship between region 1 currents and field-aligned vorticity, and region 2 currents and pressure gradients are studied. The simulated data are compared with a theoretical analysis of the field-aligned currents and good correlation is observed.

  11. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  12. TID Test Results for 4th Generation iPad(TradeMark)

    NASA Technical Reports Server (NTRS)

    Guertin, S. M.; Allen, G. R.; McClure, S. S.; LaBel, K. A.

    2013-01-01

    TID testing of 4th generation iPads is reported. Of iPad subsystems, results indicate that the charging circuitry and display drivers fail at lowest TID levels. Details of construction are investigated for additional testing of components.

  13. Production of MHD fluid

    DOEpatents

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel

    1976-08-24

    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

  14. Triple Therapy with First Generation Protease Inhibitors for Hepatitis C Markedly Impairs Function of Neutrophil Granulocytes.

    PubMed

    Spindelboeck, Walter; Horvath, Angela; Tawdrous, Monika; Schmerböck, Bianca; Zettel, Gabriele; Posch, Andreas; Streit, Andrea; Jurse, Petra; Lemesch, Sandra; Horn, Martin; Wuensch, Gerit; Stiegler, Philipp; Stauber, Rudolf E; Leber, Bettina; Stadlbauer, Vanessa

    2016-01-01

    First-generation HCV protease inhibitors represent a milestone in antiviral therapy for chronic hepatitis C infection (CHC), but substantially increased rates of viral clearance are offset by increased rates of infection and infection-associated deaths, especially of patients with advanced liver disease. We aimed to assess whether first generation protease inhibitors interfere with neutrophil function. We included 108 consecutive, retrospective CHC patients and 44 consecutive, prospective CHC patients who were treated with peginterferon and ribavirin with or without protease inhibitors according to the guidelines in the period of November 2012 to June 2015. 33 healthy volunteers served as controls. Infection data were evaluated in all patients. Neutrophil phagocytosis, oxidative burst, elastase and diamine oxidase levels during 12 weeks of triple (n = 23) or dual therapy (n = 21) were studied in the prospective part. In the retro- and prospective cohorts patients experiencing clinically relevant infections were significantly more frequent during protease inhibitor therapy (31% and 26%) than during therapy with peginterferon and ribavirin (13% and 0%). Neutrophil phagocytosis decreased to 40% of baseline with addition of protease inhibitors to P/R but recovered 6 months after end of treatment. Protease inhibitors also seemed to reduce serum elastase levels but did not impact on gut permeability. Impaired neutrophil function during triple therapy with first generation HCV protease inhibitors may explain the high infection rate associated to these treatments and be of relevance for treatment success and patient survival.

  15. Metal/gas MHD conversion

    NASA Astrophysics Data System (ADS)

    Thibault, J. P.; Joussellin, F.; Alemany, A.; Dupas, A.

    1982-09-01

    Operation features, theory, performance, and possible spatial applications of metal/gas MHD electrical generators are described. The working principle comprises an MHD channel, surrounded by a magnet, filled with a molten, highly conductive metal into which gas is pumped. The heat of the metal expands the gas, forcing a flow through the magnetic field crossing the channel, thus creating an electrical current conducted by the metal. The gas and metal are separated by a centrifugal device and both are redirected into the channel, forming thereby a double closed circuit when the heat of the molten metal is returned to the flow. Necessary characteristics for the gas such as a fairly low vaporization temperature and nonmiscibility with the metal, are outlined, and a space system using Li-Cs or Z-K as the heat carrier kept molten by a parabolic dish system is sketched. Equations governing the fluid mechanics, thermodynamics, and the electrical generation are defined. The construction of a prototype MHD generator using a tin-water flow operating at 250 C, a temperature suitable for coupling to solar heat sources, is outlined, noting expected efficiencies of 20-30 percent.

  16. Dual solutions of radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption

    NASA Astrophysics Data System (ADS)

    Naramgari, Sandeep; Sulochana, C.

    2016-01-01

    In this study, we analyzed the heat and mass transfer in thermophoretic radiative hydromagnetic nanofluid flow over an exponentially stretching porous sheet embedded in porous medium with internal heat generation/absorption, viscous dissipation and suction/injection effects. The governing partial differential equations of the flow are converted into nonlinear coupled ordinary differential equations by using similarity transformation. Runge-Kutta-based shooting technique is employed to yield the numerical solutions for the model. The effect of non-dimensional parameters on velocity, temperature and concentration profiles are discussed and presented through graphs. The physical quantities of interest local skin friction coefficient, Nusselt and Sherwood numbers are calculated and presented through tables.

  17. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas [Modeling of fast neutral-beam-generated ion effects on MHD spectroscopic observations of RWM stability in DIII-D plasmas

    DOE PAGES

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...

    2015-02-03

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall βN limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing βN, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externallymore » applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest βN levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high βN.« less

  18. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas [Modeling of fast neutral-beam-generated ion effects on MHD spectroscopic observations of RWM stability in DIII-D plasmas

    SciTech Connect

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; Navratil, Gerald A.

    2015-02-03

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall βN limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing βN, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest βN levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high βN.

  19. Preface: STATPHYS-Kolkata VII

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Jayanta Kumar; Chakrabarti, Bikas K.; Inoue, Jun-Ichi; Sen, Parongama

    2011-04-01

    In the past two decades, a series of international conferences on Statistical Physics, going by the name Statphys Kolkata, have been organized in Kolkata (previously Calcutta) at roughly three-year intervals, the first one being held in 1992-93. The seventh of this series, Statphys Kolkata VII (http://www.saha.ac.in/cmp/stat.vii/index.php) was held from 26-30 November 2010. This meeting was organized as part of the Silver Jubilee Celebration of the Satyendra Nath Bose National Centre for Basic Sciences, Kolkata, in collaboration with the Saha Institute of Nuclear Physics, Kolkata. In Statphys Kolkata VII, a few topics of current interest such as Collective behavior and emergent phenomena, Systems far from equilibrium, Soft matter, and Quantum critical phenomena were given special emphasis, while various other issues of Statistical Physics were also addressed. We were happy to note that the conference attracted a large number of participants, and the talk and poster sessions generated a lot of discussions, arguments and collaborations. The articles appearing in this proceedings are based on the invited talks and selected poster presentations. We would like to thank the Journal of Physics Conference Series, IOP, for publishing the proceedings of the conference, and the referees for their prompt and active support. The proceedings of the earlier Statphys Kolkata conferences have appeared in Physica A, vol 384 (2007); Physica A, vol 346 (2005); Physica A, vol 318 (2003); Physica A, vol 270 (1999); Physica A, vol 224 (1996); and Physica A, vol 186 (1992). We would like to take this opportunity to thank all the members of the organizing committee (especially Dr Anjan Kumar Chandra for extensive all-round help), and acknowledge the Centre for Applied Mathematics and Computational Science (CAMCS, Saha Institute of Nuclear Physics, Kolkata) and Satyendra Nath Bose National Centre for Basic Sciences, Kolkata, for their financial support. Jayanta Kumar Bhattacharjee, Bikas K

  20. Internal friction between fluid particles of MHD tangent hyperbolic fluid with heat generation: Using coefficients improved by Cash and Karp

    NASA Astrophysics Data System (ADS)

    Salahuddin, T.; Khan, Imad; Malik, M. Y.; Khan, Mair; Hussain, Arif; Awais, Muhammad

    2017-05-01

    The present work examines the internal resistance between fluid particles of tangent hyperbolic fluid flow due to a non-linear stretching sheet with heat generation. Using similarity transformations, the governing system of partial differential equations is transformed into a coupled non-linear ordinary differential system with variable coefficients. Unlike the current analytical works on the flow problems in the literature, the main concern here is to numerically work out and find the solution by using Runge-Kutta-Fehlberg coefficients improved by Cash and Karp (Naseer et al., Alexandria Eng. J. 53, 747 (2014)). To determine the relevant physical features of numerous mechanisms acting on the deliberated problem, it is sufficient to have the velocity profile and temperature field and also the drag force and heat transfer rate all as given in the current paper.

  1. Heat line analysis for MHD mixed convection flow of nanofluid within a driven cavity containing heat generating block

    NASA Astrophysics Data System (ADS)

    Parvin, Salma; Siddiqua, Ayesha

    2016-07-01

    Mixed convective flow and heat transfer characteristics of nanofluid inside a double lid driven cavity with a square heat generating block is analyzed numerically based on heat line approach. The water- alumina nanofluid is chosen as the operational fluid through the enclosure. The governing partial differential equations with proper boundary conditions are solved by Finite Element Method using Galerkin's weighted residual scheme. Calculations are performed for different solid volume fraction (χ) of nanoparticles 0 ≤ χ ≤ 0.15. Results are shown in terms of stream lines, isothermal lines, heat lines, average Nusselt number, average velocity and average temperature. An enhancement in heat transfer rate is observed with the increase of nanoparticles volume fraction.

  2. Slow shock and rotational discontinuity in MHD and Hall MHD models with anisotropic pressure

    NASA Astrophysics Data System (ADS)

    Hau, L.-N.; Wang, B.-J.

    2016-07-01

    Pressure anisotropy may modify the characteristics of magnetohydrodynamic (MHD) waves, in particular, the slow mode wave and the corresponding shocks and discontinuities. In this study the formation of slow shocks (SSs) in anisotropic plasmas is examined by solving the gyrotropic MHD and Hall MHD equations numerically for one-dimensional Riemann problem. The MHD shocks and discontinuities are generated by imposing a finite normal magnetic field on the Harris type current sheet with a guide magnetic By component. It is shown that anomalous SSs moving faster than the intermediate wave or with positive density-magnetic field correlation may be generated in gyrotropic MHD and Hall MHD models. Moreover, for some parameter values SSs may exhibit upstream wave trains with right-handed polarization in contrast with the earlier prediction that SSs shall possess downstream left-hand polarized wave trains based on the isotropic Hall MHD theory. For the cases of By ≠ 0, SSs with increased density and decreased magnetic field followed by noncoplanar intermediate mode or rotational discontinuity (RD)-like structures similar to the compound SS-RD structures observed in space plasma environments may possibly form in symmetric and asymmetric current layers. The Walén relation of these anomalous RDs without the correction of pressure anisotropy may significantly be violated.

  3. MHD control in burning plasmas MHD control in burning plasmas

    NASA Astrophysics Data System (ADS)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge

  4. MHD heat and seed recovery technology project

    SciTech Connect

    Petrick, M.; Johnson, T. R.

    1980-08-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The work is being done in close cooperation with the Heat Recovery-Seed Recovery facility, which will be a 20-MW pilot plant of the MHD steam bottoming system. The primary effort of the HSR Technology Project is directed toward experimental investigations of critical issues, such as 1) NO/sub x/ behavior in the radiant boiler and secondary combustor; 2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed slag separation; 3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; 4) formation, growth, and deposition of seed-slag particles, 5) character of the combustion gas effluents, and 6) the corrosion and erosion of ceramic and metallic materials of construction. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, identification of ceramic and metallic materials for service in the MHD-steam plant, and evaluation of seed regeneration processes. Progress is reported.

  5. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  6. The importance of residues 195-206 of human blood clotting factor VII in the interaction of factor VII with tissue factor

    SciTech Connect

    Wildgoose, P.; Kisiel, W.; Kazim, A.L. )

    1990-09-01

    Previous studies indicated that human and bovine factor VII exhibit 71% amino acid sequence identity. In the present study, competition binding experiments revealed that the interaction of human factor VII with cell-surface human tissue factor was not inhibited by 100-fold molar excess of bovine factor VII. This finding indicated that bovine and human factor VII are not structurally homologous in the region(s) where human factor VII interacts with human tissue factor. On this premise, the authors synthesized three peptides corresponding to regions of human factor VII that exhibited marked structural dissimilarity to bovine factor VII; these regions of dissimilarity included residues 195-206, 263-274, and 314-326. Peptide 195-206 inhibited the interaction of factor VII with cell-surface tissue factor and the activation of factor X by a complex of factor VIIa and tissue factor half-maximally at concentrations of 1-2 mM. A structurally rearranged form of peptide 195-206 containing an aspartimide residue inhibited these reactions half-maximally at concentrations of 250-300 {mu}M. In contrast, neither peptide 263-274 nor peptide 314-326, at 2 mM concentration, significantly affected either factor VIIa interaction with tissue factor or factor VIIa-mediated activation of factor X. The data provide presumptive evidence that residues 195-206 of human factor VII are involved in the interaction of human factor VII with the extracellular domain of human tissue factor apoprotein.

  7. Pathogenesis of lumbar spine disease in mucopolysaccharidosis VII.

    PubMed

    Smith, Lachlan J; Baldo, Guilherme; Wu, Susan; Liu, Yuli; Whyte, Michael P; Giugliani, Roberto; Elliott, Dawn M; Haskins, Mark E; Ponder, Katherine P

    2012-09-01

    Mucopolysaccharidosis type VII (MPS VII) is characterized by deficient β-glucuronidase (GUSB) activity, which leads to accumulation of chondroitin, heparan and dermatan sulfate glycosaminoglycans (GAGs), and multisystemic disease. MPS VII patients can develop kypho-scoliotic deformity and spinal cord compression due to disease of intervertebral disks, vertebral bodies, and associated tissues. We have previously demonstrated in MPS VII dogs that intervertebral disks degenerate, vertebral bodies have irregular surfaces, and vertebral body epiphyses have reduced calcification, but the pathophysiological mechanisms underlying these changes are unclear. We hypothesized that some of these manifestations could be due to upregulation of destructive proteases, possibly via the binding of GAGs to Toll-like receptor 4 (TLR4), as has been proposed for other tissues in MPS models. In this study, the annulus fibrosus of the intervertebral disk of 6-month-old MPS VII dogs had cathepsin B and K activities that were 117- and 2-fold normal, respectively, which were associated with elevations in mRNA levels for these cathepsins as well as TLR4. The epiphyses of MPS VII dogs had a marked elevation in mRNA for the cartilage-associated gene collagen II, consistent with a developmental delay in the conversion of the cartilage to bone in this region. The spine obtained at autopsy from a young man with MPS VII exhibited similar increased cartilage in the vertebral bodies adjacent to the end plates, disorganization of the intervertebral disks, and irregular vertebral end plate morphology. These data suggest that the pathogenesis of destructive changes in the spine in MPS VII may involve upregulation of cathepsins. Inhibition of destructive proteases, such as cathepsins, might reduce spine disease in patients with MPS VII or related disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. High-bandwidth generation of duobinary and alternate-mark-inversion modulation formats using SOA-based signal processing.

    PubMed

    Dailey, James M; Power, Mark J; Webb, Roderick P; Manning, Robert J

    2011-12-19

    We report on the novel all-optical generation of duobinary (DB) and alternate-mark-inversion (AMI) modulation formats at 42.6 Gb/s from an input on-off keyed signal. The modulation converter consists of two semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer gates. A detailed SOA model numerically confirms the operational principles and experimental data shows successful AMI and DB conversion at 42.6 Gb/s. We also predict that the operational bandwidth can be extended beyond 40 Gb/s by utilizing a new pattern-effect suppression scheme, and demonstrate dramatic reductions in patterning up to 160 Gb/s. We show an increasing trade-off between pattern-effect reduction and mean output power with increasing bitrate.

  9. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M. , Dallas, TX ); Barnes, P.R. ); Meliopoulos, A.P.S. . Dept. of Electrical Engineering)

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  10. Magnetohydrodynamic electromagnetic pulse (MHD-EMP) interaction with power transmission and distribution systems

    SciTech Connect

    Tesche, F.M.; Barnes, P.R.; Meliopoulos, A.P.S.

    1992-02-01

    This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.

  11. MHD Flow Control

    DTIC Science & Technology

    2006-09-01

    tested is a model to simulate the hypersonic intake configuration. The corresponding photo is presented in Fig. 49. 75 i I I I I I I Figure 49. The third... hypersonic air stream within the propulsion system inlet. The extra benefit of this proposed Project is the experimental facility to be used for experimental...plasma aerodynamics, and in particular, MHD control of external and internal flows. The MHD control of the external hypersonic flow over the simplest

  12. MHD energy fluxes for late type dwarfs

    NASA Technical Reports Server (NTRS)

    Rosner, R.; Musielak, Z. E.

    1987-01-01

    The efficiency of MHD wave generation by turbulent motions in stratified stellar atmospheres with embedded uniform magnetic fields is calculated. In contradiction with previous results, it is shown that there is no significant increase in the efficiency of wave generation because of the presence of magnetic fields, at least within the theory's limits of applicability. It is shown that MHD energy fluxes for late-type stars are less than those obtained for acoustic waves in a magnetic-field-free atmosphere, and do not vary enough for a given spectral type in order to explain observed UV and X-ray fluxes. Thus, the results show that MHD energy fluxes obtained if stellar surface magnetic fields are uniform cannot explain the observed stellar coronal emissions.

  13. Differential role of the Ca2+ sensor synaptotagmin VII in macrophages and dendritic cells

    PubMed Central

    Becker, Steven M.; Delamarre, Lélia; Mellman, Ira; Andrews, Norma W.

    2016-01-01

    Synaptotagmin VII (Syt VII) is a Ca2+ sensing molecule that regulates lysosomal exocytosis in several cell types. In macrophages (MØ), Syt VII is required for efficient uptake of large particle loads, by promoting the delivery of lysosomal membrane to phagocytic cups. Here we compare the phagocytic capacity of bone marrow-derived MØs and dendritic cells (DC), and show that the requirement for Syt VII correlates with the unique ability of MØs for continuous phagocytosis. In contrast to MØs, Syt VII+/+ and Syt VII−/− immature DCs show similar levels of initial phagocytosis, followed by a marked decrease in particle uptake. [Ca2+]i chelation and PI-3 kinase inhibition reduce particle uptake by MØs, but are markedly less inhibitory in DCs. Thus, immature DCs appear to lack the Syt VII, Ca2+ and PI-3 kinase-dependent forms of phagocytosis that are present in MØs. Interestingly, expression of Syt VII is up-regulated during LPS-induced DC maturation, a stimulus that also induces Syt VII translocation from intracellular compartments to the plasma membrane. Syt VII−/− DCs show a delayed translocation of MHC class II to the cell surface during maturation, consistent with the possibility that Syt VII facilitates exocytosis and/or surface retention of molecules critical for antigen presentation. PMID:19157638

  14. Seniority Rights and Title VII.

    ERIC Educational Resources Information Center

    McCarthy, Martha M.

    This chapter provides an analysis of seniority rights under Title VII of the Civil Rights Act of 1964, which bars discrimination in employment. Two legal theories have arisen in assessing Title VII claims: discriminatory treatment, in which the burden of proof of discriminatory intent lies with the plaintiff, and discriminatory impact of neutral…

  15. Pathogenesis of mitral valve disease in mucopolysaccharidosis VII dogs.

    PubMed

    Bigg, Paul W; Baldo, Guilherme; Sleeper, Meg M; O'Donnell, Patricia A; Bai, Hanqing; Rokkam, Venkata R P; Liu, Yuli; Wu, Susan; Giugliani, Roberto; Casal, Margret L; Haskins, Mark E; Ponder, Katherine P

    2013-11-01

    Mucopolysaccharidosis VII (MPS VII) is due to the deficient activity of β-glucuronidase (GUSB) and results in the accumulation of glycosaminoglycans (GAGs) in lysosomes and multisystemic disease with cardiovascular manifestations. The goal here was to determine the pathogenesis of mitral valve (MV) disease in MPS VII dogs. Untreated MPS VII dogs had a marked reduction in the histochemical signal for structurally-intact collagen in the MV at 6 months of age, when mitral regurgitation had developed. Electron microscopy demonstrated that collagen fibrils were of normal diameter, but failed to align into large parallel arrays. mRNA analysis demonstrated a modest reduction in the expression of genes that encode collagen or collagen-associated proteins such as the proteoglycan decorin which helps collagen fibrils assemble, and a marked increase for genes that encode proteases such as cathepsins. Indeed, enzyme activity for cathepsin B (CtsB) was 19-fold normal. MPS VII dogs that received neonatal intravenous injection of a gamma retroviral vector had an improved signal for structurally-intact collagen, and reduced CtsB activity relative to that seen in untreated MPS VII dogs. We conclude that MR in untreated MPS VII dogs was likely due to abnormalities in MV collagen structure. This could be due to upregulation of enzymes that degrade collagen or collagen-associated proteins, to the accumulation of GAGs that compete with proteoglycans such as decorin for binding to collagen, or to other causes. Further delineation of the etiology of abnormal collagen structure may lead to treatments that improve biomechanical properties of the MV and other tissues. © 2013.

  16. Pathogenesis of Mitral Valve Disease in Mucopolysaccharidosis VII Dogs

    PubMed Central

    Bigg, Paul W.; Baldo, Guilherme; Sleeper, Meg M.; O'Donnell, Patricia A.; Bai, Hanqing; Rokkam, Venkata R.P.; Liu, Yuli; Wu, Susan; Giugliani, Roberto; Casal, Margret L.; Haskins, Mark E.; Ponder, Katherine P.

    2013-01-01

    Mucopolysaccharidosis VII (MPS VII) is due to deficient activity of β-glucuronidase (GUSB) and results in the accumulation of glycosaminoglycans (GAGs) in lysosomes and multisystemic disease with cardiavascular manifestations. The goal here was to determine the pathogenesis of mitral valve (MV) disease in MPS VII dogs. Untreated MPS VII dogs had a marked reduction in the histochemical signal for structurally-intact collagen in the MV at 6 months of age, when mitral regurgitation had developed. Electron microscopy demonstrated that collagen fibrils were of normal diameter, but failed to align into large parallel arrays. mRNA analysis demonstrated a modest reduction in the expression of genes that encode collagen or collagen-associated proteins such as the proteoglycan decorin which helps collagen fibrils assemble, and a marked increase for genes that encode proteases such as cathepsins. Indeed, enzyme activity for cathepsin B (CtsB) was 19-fold normal. MPS VII dogs that received neonatal intravenous injection of a gamma retroviral vector had an improved signal for structurally-intact collagen, and reduced CtsB activity relative to that seen in untreated MPS VII dogs. We conclude that MR in untreated MPS VII dogs was likely due to abnormalities in MV collagen structure. This could be due to upregulation of enzymes that degrade collagen or collagen-associated proteins, to the accumulation of GAGs that compete with proteoglycans such as decorin for binding to collagen, or to other causes. Further delineation of the etiology of abnormal collagen structure may lead to treatments that improve biomechanical properties of the MV and other tissues. PMID:23856419

  17. Antibody-enhanced dengue disease generates a marked CNS inflammatory response in the black-tufted marmoset Callithrix penicillata.

    PubMed

    Vasconcelos, Barbara Cristina Baldez; Vieira, Juliana Almeida; Silva, Geane Oliveira; Fernandes, Taiany Nogueira; Rocha, Luciano Chaves; Viana, André Pereira; Serique, Cássio Diego Sá; Filho, Carlos Santos; Bringel, Raissa Aires Ribeiro; Teixeira, Francisco Fernando Dacier Lobato; Ferreira, Milene Silveira; Casseb, Samir Mansour Moraes; Carvalho, Valéria Lima; de Melo, Karla Fabiane Lopes; de Castro, Paulo Henrique Gomes; Araújo, Sanderson Corrêa; Diniz, José Antonio Picanço; Demachki, Samia; Anaissi, Ana Karyssa Mendes; Sosthenes, Marcia Consentino Kronka; Vasconcelos, Pedro Fernando da Costa; Anthony, Daniel Clive; Diniz, Cristovam Wanderley Picanço; Diniz, Daniel Guerreiro

    2016-02-01

    Severe dengue disease is often associated with long-term neurological impairments, but it is unclear what mechanisms are associated with neurological sequelae. Previously, we demonstrated antibody-enhanced dengue disease (ADE) dengue in an immunocompetent mouse model with a dengue virus 2 (DENV2) antibody injection followed by DENV3 virus infection. Here we migrated this ADE model to Callithrix penicillata. To mimic human multiple infections of endemic zones where abundant vectors and multiple serotypes co-exist, three animals received weekly subcutaneous injections of DENV3 (genotype III)-infected supernatant of C6/36 cell cultures, followed 24 h later by anti-DENV2 antibody for 12 weeks. There were six control animals, two of which received weekly anti-DENV2 antibodies, and four further animals received no injections. After multiple infections, brain, liver, and spleen samples were collected and tissue was immunolabeled for DENV3 antigens, ionized calcium binding adapter molecule 1, Ki-67, TNFα. There were marked morphological changes in the microglial population of ADE monkeys characterized by more highly ramified microglial processes, higher numbers of trees and larger surface areas. These changes were associated with intense TNFα-positive immunolabeling. It is unclear why ADE should generate such microglial activation given that IgG does not cross the blood-brain barrier, but this study reveals that in ADE dengue therapy targeting the CNS host response is likely to be important.

  18. The development of MHD energy conversion methods in the USSR

    NASA Astrophysics Data System (ADS)

    Kirillin, V. A.; Sheindlin, A. E.

    1981-12-01

    It is noted that the development of magnetohydrodynamic (MHD) power conversion systems has evolved to the point where it is possible to commercially introduce MHD power plants into industry. Even with the present level of technology, the sharp increase in thermal efficiency of these plants by as much as 50-60% results in fuel economies of 20-35% and in reductions in generation costs of 6-7%. A description is given of an MHD power plant and its various aggregates. Also given are a review of the state of the art of MHD technology and an outline of the Soviet program for its commercial exploitation. The design of MHD electrical power plants, the interrelation between various aggregates, and the problems arising from nonstandard equipment are discussed.

  19. MHD simulations: Corotating Interaction Regions

    NASA Astrophysics Data System (ADS)

    Wiengarten, T.; Kleimann, J.; Fichtner, H.; Kühl, P.; Heber, B.; Kissmann, R.

    2013-12-01

    Corotating Interaction Regions (CIRs) form in the solar wind when parcels of fast-speed wind interact with slow-speed wind due to the rotation of the Sun. The resulting buildup of pressure generates disturbances that, with increasing time (or distance from the Sun), may develop into a so-called forward-reverse shock-pair. During solar-quiet times CIRs can be the dominant force shaping large-scale structures in the heliosphere. Studying CIRs is therefore important because the associated shocks are capable of e.g. accelerating energetic particles or deflecting cosmic rays. The global structure of CIRs can be modeled with an MHD approach that gives the plasma quantities needed to model the transport of particles in the heliosphere (with e.g. stochastic differential equations (SDEs)). Our MHD code CRONOS employs a semi-discrete finite volume scheme with adaptive time-stepping Runge-Kutta integration. The solenoidality of the magnetic field is ensured via constrained transport and the code supports Cartesian, Cylindrical and Spherical coordinates (including coordinate singularities) with the option for non-equidistant grids. The code runs in parallel (MPI) and supports the HDF5 output data format. Here, we show results from 3D-MHD simulations with our code CRONOS for a) analytic boundary conditions where results can be compared to those obtained with a different code and b) boundary conditions derived with the Wang-Sheeley-Arge model from observational data (WSO), which are compared to spacecraft observations. Comparison with Pizzo (1982) for analytic boundary conditions Comparison with STEREO A for Carrington Rotation 2060

  20. [Incidence of factor VII and C3 in vascular anastomosis].

    PubMed

    Skóra, Jan; Janczak, Dariusz; Korta, Krzysztof; Pupka, Artur; Ruciński, Artur; Szyber, Piotr; Pawłowski, Stanisław; Milnerowicz, Artur; Stepiński, Piotr

    2004-06-01

    In order to study pathogenesis of vascular prosthesis healing process the following experiment was designed. 16 dogs underwent implantation of unilateral straight aorto-femoral teflon (PTFE, polytetrafluoroethylene) by-pass. After 6 months all dogs were killed, dissected and vascular prostheses with margin of adjacent aorta and femoral artery were collected for further study. Areas of proximal and distal anastomosis were examined immunohistochemically. Presence of coagulation factor VII, and C3 complement factor were studied. The obtained results were analyzed statistically by means of t-Student test. Factor VII as well C3 were found in areas of both proximal and distal anastomosis. Concentration of all two substances in proximal and distal anastomosis was compared. No statistically valid differences in factor VII concentration in proximal and distal anastomosis were found, whereas amounts of C3 factor as well as degree of extracellular matrix infiltration were markedly higher in distal anastomosis.

  1. MHD Simulations: Corotating Interaction Regions

    NASA Astrophysics Data System (ADS)

    Wiengarten, T.; Kleimann, J.; Fichtner, H.; Kissmann, R.

    2014-09-01

    Corotating Interaction Regions (CIRs) form in the solar wind when parcels of fast-speed wind interact with slow-speed wind due to the rotation of the Sun. The resulting buildup of pressure generates disturbances that, with increasing time (or distance from the Sun), may develop into a so-called forward-reverse shock pair. During solar-quiet times CIRs can be the dominant force shaping large-scale structures in the heliosphere. Studying CIRs is therefore important because the associated shocks are capable of e.g. accelerating energetic particles or deflecting cosmic rays. The global structure of CIRs can be modeled with an MHD approach that gives the plasma quantities needed to model the transport of particles in the heliosphere with e.g. stochastic differential equations. Here, we show results from 3D-MHD simulations with our code CRONOS for a) analytic boundary conditions where results can be compared to those obtained with a different code and b) boundary conditions derived with the Wang-Sheeley-Arge model from observational data (WSO), which are compared to spacecraft observations.

  2. MHD performance demonstration experiment, FY 1974 to FY 1984

    NASA Astrophysics Data System (ADS)

    Whitehead, G. L.; Christensen, L. S.; Felderman, R. J.

    1984-06-01

    A national program for the development of commercial, open-cycle, magnetohydrodynamic (MHD) power generation is described. The emphasis of that national program was, and is, on establishing the engineering feasibilty of using coal to fuel the MHD power system. In order to establish feasibility it was necessary to experimentally demonstrate that an MHD generator system simulating a commercial-sized device can convert 16 to 18% of the available thermal energy into electric power at an isentropic efficiency of 60 to 70%. A presidential decree encouraged any government agency which might possess an organic MHD capability to assist ERDA in formulating and executing the national program. Since the largest MHD facility in the United States was located at the Arnold Engineering Development Center (AEDC), it was selected to be the national program element to demonstrate performance. As a result, the AEDC has been under contract since December 1973 (first to ERDA, later to its successor, the department of Energy, DOE) to modify existing equipment and to design, fabricate, and install new hardware to perform the MHD Performance Demonstration Experiment. The MHD facility is described and all results achieved to date are summarized.

  3. Intelsat VII planning and evolution

    NASA Astrophysics Data System (ADS)

    Nadkarni, P.; Neyret, P.; Allnutt, J.; Chidambaram, T.

    This paper describes the evolution of the Intelsat VII concept from among a number of spacecraft concepts considered in the planning process. The considerations of greatest importance in this evolution are examined, including the compatibility with small earth stations, available digital services and circuit multiplication techniques, schedule considerations, launch vehicle considerations, and operational flexibility. The roles of demand analysis and of architecture selection in the development of the Intelsat VII concept are addressed.

  4. Fuel conservation and pollution control by MHD

    NASA Astrophysics Data System (ADS)

    Messerle, H. K.; Campbell, B.

    1980-06-01

    MHD generators, which directly convert thermal energy in a fluid into electricity, promise a more effective use of fuel for bulk power production than conventional steam plants, bettering efficiency by over 50% and reducing the generating cost by 20%. Using a Rankine steam cycle, overall power plant efficiency can increase from 33% to 50%, while fuel requirements can be reduced by one third and thermal pollution by one half. Since overall fuel consumption would drop, atmospheric pollution would be decreased, and coal consumption could be diverted to areas where oil is presently being used. The MHD generator structure and operation are discussed, and its general system requirements are explained. A table of energy use and an efficiency graph are provided for comparison purposes. Work is currently being done on a 2 MW open cycle MHD generator at the University of Sydney, Australia, and computer studies are in progress to evaluate the Faraday generator performance for the experimental 2 MW facility and larger power generators with segmented sets of electrodes.

  5. Numerical Simulation of Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) Concepts for Advanced Propulsion Systems

    DTIC Science & Technology

    2012-02-28

    with MHD acceleration of the airstream for thrust enhancement and control. The range of alternative MHD-augmented propulsion configurations that...electrical power can be applied to accelerate the air slug, generating thrust (Figure 1b). The procedure can then be repeated at each cycle. (a...bypass channel takes place. Another alternative configuration by which MHD can be used to augment thrust generated by a PDRE is one in which energy

  6. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  7. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed-cycle MHD results obtained in a recent study of various advanced energy-conversion power systems. The direct coal-fired MHD topping-steam bottoming cycle was established as the current choice for central station power generation. Emphasis is placed on the background assumptions and the conclusions that can be drawn from the closed-cycle MHD analysis. It is concluded that closed-cycle MHD has efficiencies comparable to that of open-cycle MHD. Its cost will possibly be slightly higher than that of the open-cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower-cost electricity than conventional steam power plants. Suggestions for further work in closed-cycle MHD components and systems are made.

  8. Proceedings of the workshop on nonlinear MHD and extended MHD

    SciTech Connect

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  9. In-situ MHD energy conversion for fusion. [R

    SciTech Connect

    Campbell, R.B.; Logan, B.G.; Hoffman, M.A.

    1986-06-01

    An advanced concept, in-situ MHD conversion, is described for converting fusion energy to electricity. Considerable cost savings can be realized because of the conversion of thermal energy to electricity achieved in the blanket by means of magnetohydrodynamic (MHD) generators. The external disk generator, also described, is another application of the MHD idea, which may have certain advantages over the in-situ scheme for advanced-fuel tokamaks. The feature that makes these schemes fusion-specific is the novel use of the electro-magnetic radiation naturally emitted by the plasma. The synchrotron radiation can be used either to heat the nonequilibrium MHD plasma, or possibly improve its stability. A Rankine cycle with cesium-seeded mercury as a working fluid is used in either case. Performance predictions by a quasi-one-dimensional model are presented. An experiment to determine the effect of microwave radiation on channel performance is planned.

  10. BUGJEFF311.BOLIB (JEFF-3.1.1) and BUGENDF70.BOLIB (ENDF/B-VII.0) - Generation Methodology and Preliminary Testing of two ENEA-Bologna Group Cross Section Libraries for LWR Shielding and Pressure Vessel Dosimetry

    NASA Astrophysics Data System (ADS)

    Pescarini, Massimo; Sinitsa, Valentin; Orsi, Roberto; Frisoni, Manuela

    2016-02-01

    Two broad-group coupled neutron/photon working cross section libraries in FIDO-ANISN format, dedicated to LWR shielding and pressure vessel dosimetry applications, were generated following the methodology recommended by the US ANSI/ANS-6.1.2-1999 (R2009) standard. These libraries, named BUGJEFF311.BOLIB and BUGENDF70.BOLIB, are respectively based on JEFF-3.1.1 and ENDF/B-VII.0 nuclear data and adopt the same broad-group energy structure (47 n + 20 γ) of the ORNL BUGLE-96 similar library. They were respectively obtained from the ENEA-Bologna VITJEFF311.BOLIB and VITENDF70.BOLIB libraries in AMPX format for nuclear fission applications through problem-dependent cross section collapsing with the ENEA-Bologna 2007 revision of the ORNL SCAMPI nuclear data processing system. Both previous libraries are based on the Bondarenko self-shielding factor method and have the same AMPX format and fine-group energy structure (199 n + 42 γ) as the ORNL VITAMIN-B6 similar library from which BUGLE-96 was obtained at ORNL. A synthesis of a preliminary validation of the cited BUGLE-type libraries, performed through 3D fixed source transport calculations with the ORNL TORT-3.2 SN code, is included. The calculations were dedicated to the PCA-Replica 12/13 and VENUS-3 engineering neutron shielding benchmark experiments, specifically conceived to test the accuracy of nuclear data and transport codes in LWR shielding and radiation damage analyses.

  11. MHD-to-PIC transition for modeling of conduction and opening in a plasma opening switch

    NASA Astrophysics Data System (ADS)

    Schumer, J. W.

    2001-06-01

    The plasma opening switch (POS) is a critical element of some inductive-energy-storage pulsed-power generators. Detailed understanding of plasma redistribution and thinning during the POS conduction phase can be gained through magnetohydrodynamic fluid (MHD) simulations. As space-charge separation and kinetic effects become important late in the conduction phase (beginning of the opening phase), MHD methods become invalid and particle-in-cell (PIC) methods should be used. In this article, the applicability of MHD techniques is extended into PIC-like regimes by including non-ideal MHD phenomena such as the Hall effect and resistivity. The feasibility of the PIC technique is likewise extended into high-density, low-temperature MHD-like regimes by using a novel numerical cooling algorithm. At an appropriate time, an MHD-to-PIC transition must be accomplished in order to accurately simulate the POS opening phase. The mechanics for converting MHD (MACH2) output into PIC (MAGIC2d) input are introduced, as are the transition criteria determining when to perform this conversion. To establish these transition criteria, side-by-side MHD and PIC simulations are presented and compared. These separate simulations are then complemented by a proof-of-principle MHD-to-PIC transition, thereby demonstrating this MHD-to-PIC technique as a potentially viable tool for the simulation of POS plasmas. Practical limitations of the MHD-to-PIC transition method and applicability of the transition criteria to hybrid fluid-kinetic simulations are discussed.

  12. Nuclear MHD Converter

    DTIC Science & Technology

    2007-11-02

    model the Power Conversion Unit (gas reactor + nozzle and MHD channel), and the cross sections derived from Task 1.. The configuration extends ...8 1.1 Project Objectives 8 1.2 Report Organization 9 Tables and Figures 10 2 PROJECT DESCRIPTION 11 3 REFLECTOR MODELING 13 3.1 Symbols...outlet. This conclusion remains true even if the effect of dissociation and attachment are included in the numerical model . Furthermore, a

  13. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  14. An experimental studies with disk MHD channels on argon plazma

    SciTech Connect

    Koneev, S.M.A.; Kovalev, L.K.; Larionoff, A.E.; Poltavets, V.N.

    1994-12-31

    The most interesting works carried out over the past few years in the field of MHD generating electric power are the ones studying disk MHD channels. The results published give a hope to overcome one of the MHD generator essential disadvantages - relatively low effectiveness of converting heat power into electric one. In some works performed by different authors and at different plants the coefficients of energy conversion achieving 20% have been obtained and there is a hint of the future possible increase of up to 40%. In the majority of experimental studies non-equilibrium ionized inertial gases (Ar, He) with alkali metal (Cs, K) were used as a working medium, the operating temperature being 1800-2000 K. The present paper is dedicated to an experimental test rig-with-a-disk-MHD-channel development for operating on thermally ionized Ar with the temperature of up to 9000 K and pressure 10 up to 10 Pa. For heating a working medium an electric arc in a special plazmotron is used. As the experiments on linear MHD channels have shown, along the whole working area the plasma is non-equilibrium with a substantial break off of an electron temperature providing conductivity of more then 100 Sm/m. The aim of creation this test rig is in simulating the processes of the working medium flow and electric energy generation in disk MHD channels. An important research element is calculation techniques debugging and acquiring experience of development and carrying out disk MHD generator studies for the following experimental full-scale MHD plants with a disk channel to be created.

  15. Conceptual design of the MHD Engineering Test Facility

    NASA Astrophysics Data System (ADS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  16. MHD channel development, part 2

    NASA Astrophysics Data System (ADS)

    1989-12-01

    This is the final report of work performed by Avco Research Laboratory, Inc. for the U.S. Department of Energy, Pittsburgh Energy Technology Center. The overall objectives of this program were: to contribute, by appropriate systematic experimental and analytical investigations, to the engineering data base necessary for the design and construction of MHD generators at the 50 MW(sub th) and ultimately at commercial sizes; and to design and fabricate specific hardware items to be tested at a site to be specified by DOE. The program consisted of a series of related tasks, which are described in subsequent sections of this report. Section 2.0 summarizes the important results of the entire program.

  17. Analytical investigation of critical MHD phenomena

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Development and analysis of schemes for suppression of the startup overvoltage transient in the AEDC High Performance Demonstration Experiment (HPDE), analysis of performance enhancement due to electrode voltage drop reduction by use of pyrolytic graphites in the HPDE, prediction of optimal loading schemes for the HPDE, prediction of PHDE performance with a diagonal electrical connection, and predictions of the likelihood and effects of axial current leakage between adjacent electrodes in the HPDE are reviewed. Simulations of tests at the AEDC/HPDE with STD Research Corporation multidimensional and time dependent computer codes provided additional validation for the computer codes and shed light on physical mechanisms which govern performance and durability of MHD power generators. The magnetoaerothermal effect was predicted by STD Research Corporation to have a significant effect on the HPDE/MHD generator performance at high interaction.

  18. Differential regulation and impact of fucosyltransferase VII and core 2 β1,6-N-acetyl-glycosaminyltransferase for generation of E-selectin and P-selectin ligands in murine CD4+ T cells.

    PubMed

    Schroeter, Micha F; Ratsch, Boris A; Lehmann, Jeanette; Baumgrass, Ria; Hamann, Alf; Syrbe, Uta

    2012-12-01

    Ligands for E-selectin and P-selectin (E-lig and P-lig) are induced on CD4+ T cells upon differentiation into effector T cells. Glycosyltransferases, especially α 1,3-fucosyltransferase VII (FucT-VII) and core 2 β1,6-N-acetyl-glycosaminyltransferase I (C2GlcNAcT-I), are critical for their synthesis. We here analysed the signals that control the expression of E-lig, P-lig and mRNA coding for FucT-VII and C2GlcNAcT-I. In line with previous reports, we found that P-lig expression correlates with the regulation of C2GlcNAcT-I, whereas E-lig expression can occur at low levels of C2GlcNAcT-I mRNA but requires high FucT-VII mRNA expression. Interestingly, the two enzymes are regulated by different signals. Activation-induced C2GlcNAcT-I up-regulation under permissive (T helper type 1) conditions was strongly reduced by cyclosporin A (CsA), suggesting the involvement of T-cell receptor-dependent, calcineurin/NFAT-dependent signals in combination with interleukin-12 (IL-12) -mediated signals in the regulation of C2GlcNAcT-I. In contrast, expression of FucT-VII mRNA was not significantly inhibited by CsA. Interleukin-4 inhibited the expression of FucT-VII but IL-2 and IL-7 were found to support induction of FucT-VII and E-lig. E-selectin, P-selectin and their ligands initially appeared to have rather overlapping functions. These findings however, unravel striking differences in the regulation of E-lig and P-lig expression, dictated by the dominance of FucT-VII and C2GlcNAcT-I, respectively, and their dependency on signals from either promiscuous or homeostatic cytokines (FucT-VII) or a strong T-cell receptor signal in combination with inflammatory cytokines in case of C2GlcNAcT-I.

  19. Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip

    NASA Astrophysics Data System (ADS)

    Chamkha, A. J.; Rashad, A. M.; Mansour, M. A.; Armaghani, T.; Ghalambaz, M.

    2017-05-01

    In this work, the effects of the presence of a heat sink and a heat source and their lengths and locations and the entropy generation on MHD mixed convection flow and heat transfer in a porous enclosure filled with a Cu-water nanofluid in the presence of partial slip effect are investigated numerically. Both the lid driven vertical walls of the cavity are thermally insulated and are moving with constant and equal speeds in their own plane and the effect of partial slip is imposed on these walls. A segment of the bottom wall is considered as a heat source meanwhile a heat sink is placed on the upper wall of cavity. There are heated and cold parts placed on the bottom and upper walls, respectively, while the remaining parts are thermally insulated. Entropy generation and local heat transfer according to different values of the governing parameters are presented in detail. It is found that the addition of nanoparticles decreases the convective heat transfer inside the porous cavity at all ranges of the heat sink and source lengths. The results for the effects of the magnetic field show that the average Nusselt number decreases considerably upon the enhancement of the Hartmann number. Also, adding nanoparticles to a pure fluid leads to increasing the entropy generation for all values of D for λl=-λr = 1 .

  20. Generation of higher-order atomic dipole squeezing in a high-Q micromaser cavity. (VII). Entangled two-mode coherent states

    NASA Astrophysics Data System (ADS)

    Xie, Rui-Hua; Rao, Qin

    2002-12-01

    In our preceding paper V, we investigated the generation of higher-order atomic dipole squeezing (HOADS) in a nondegenerate two-photon Jaynes-Cummings model (NTPJCM) in the presence of Stark shift. In this paper, we continue to study HOADS in this model but focus on the specific cases that the radiation field is initially prepared in a two-mode entangled state (e.g., two-mode squeezed vacuum state, two-mode Perelomov and Barut-Girardello coherent states). It is found that increasing the fixed difference in the photon numbers of the two-mode entangled states of the radiation field could decrease the squeeze duration and shorten the squeeze period, and the detuning may lead to much effective HOADS by properly adjusting certain value. In general, the Stark shift has a destructive effect on HOADS, but the combined effect of the detuning and Stark shift could increase the squeeze duration and lead to regular and periodical HOADS pattern. The influence of atomic coherence on HOADS is also examined in detail.

  1. Generation and evaluation of a recombinant genotype VII Newcastle disease virus expressing VP3 protein of Goose parvovirus as a bivalent vaccine in goslings.

    PubMed

    Wang, Jianzhong; Cong, Yanlong; Yin, Renfu; Feng, Na; Yang, Songtao; Xia, Xianzhu; Xiao, Yueqiang; Wang, Wenxiu; Liu, Xiufan; Hu, Shunlin; Ding, Chan; Yu, Shengqing; Wang, Chunfeng; Ding, Zhuang

    2015-05-04

    Newcastle disease virus (NDV) and Goose parvovirus (GPV) are considered to be two of the most important and widespread viruses infecting geese. In this study, we generated a recombinant rmNA-VP3, expressing GPV VP3 using a modified goose-origin NDV NA-1 by changing the multi-basic cleavage site motif RRQKR↓F of the F protein to the dibasic motif GRQGR↓L as that of the avirulent strain LaSota as a vaccine vector. Expression of the VP3 protein in rmNA-VP3 infected cells was detected by immunofluorescence and Western blot assay. The genetic stability was examined by serially passaging 10 times in 10-day-old embryonated SPF chicken eggs. Goslings were inoculated with rmNA-VP3 showed no apparent signs of disease and developed a strong GPV and NDV neutralizing antibodies response. This is the first study demonstrating that recombinant NDV has the potential to serve as bivalent live vaccine against Goose parvovirus and Newcastle disease virus infection in birds.

  2. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  3. Output from MHD Models

    NASA Astrophysics Data System (ADS)

    Vlahakis, Nektarios

    2010-03-01

    Outflows emanating from the environment of stellar or galactic objects are a widespread phenomenon in astrophysics. Their morphology ranges from nearly spherically symmetric winds to highly collimated jets. In some cases, e.g., in jets associated with young stellar objects, the bulk outflow speeds are nonrelativistic, while in others, e.g., in jets associated with active galactic nuclei or gamma-ray bursts, it can even be highly relativistic. The main driving mechanism of collimated outflows is likely related to magnetic fields. These fields are able to tap the rotational energy of the compact object or disk, accelerate, and collimate matter ejecta. To zeroth order these outflows can be described by the highly intractable theory of magnetohydrodynamics (MHD). Even in systems where the assumptions of zero resistivity (ideal MHD), steady state, axisymmetry, one fluid description, and polytropic equation of state are applicable, the problem remains difficult. In this case the problem reduces to only two equations, corresponding to the two components of the momentum equation along the flow and in the direction perpendicular to the magnetic field (transfield direction). The latter equation is the most difficult to solve, but also the most important. It answers the question on the degree of the collimation, but also crucially affects the solution of the first, the acceleration efficiency and the bulk velocity of the flow. The first and second parts of this chapter refer to nonrelativistic and relativistic flows, respectively. These Parts can be read independently. In each one, the governing equations are presented and discussed, focusing on the case of flows that are magnetically dominated near the central source. The general characteristics of the solutions in relation to the acceleration and collimation mechanisms are analyzed. As specific examples of exact solutions of the full system of the MHD equations that satisfy all the analyzed general characteristics, self

  4. MHD Program Plan, FY 1992

    NASA Astrophysics Data System (ADS)

    1991-10-01

    The current MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. Essential elements of the current program include the following: (1) develop technical and environmental data for the integrated MHD topping cycle system through POC testing (1,000 hours); (2) develop technical and environmental data for the integrated MHD bottoming cycle sub system through POC testing (4,000 hours); (3) design, construct, and operate a seed regeneration POC facility (SRPF) capable of processing spent seed materials from the MHD bottoming cycle; (4) prepare conceptual designs for a site specific MHD retrofit plant; and (5) continue system studies and supporting research necessary for system testing. The current MHD program continues to be directed toward coal fired power plant applications, both stand-alone and retrofit. Development of a plant should enhance the attractiveness of MHD for applications other than electrical power. MHD may find application in electrical energy intensive industries and in the defense sector.

  5. The relationship between the monitored performance of tutors and students at PBL tutorials and the marked hypotheses generated by students in a hybrid curriculum.

    PubMed

    Addae, Jonas I; Sahu, Pradeep; Sa, Bidyadhar

    2017-01-01

    There have been a number of published studies examining the link between the effectiveness of the problem-based learning (PBL) process and students' performance in examinations. In a hybrid PBL/lectures curriculum, the results of such studies are of limited use because of the difficulty in dissociating the knowledge gained at lectures from that gained through PBL-related activities. Hence, the objectives of this study were: (1) to develop an instrument to measure the performance of tutors and students at PBL tutorials, and (2) to explore the contribution of such performances to the marks attained by students from the hypotheses generated at PBL tutorials. A monitoring instrument for assessing the performances of non-expert tutors and students at tutorials was developed and validated using principal component analysis and reliability analysis. Also, a rubric was formulated to enable a content expert to assign marks to the quality of hypotheses generated. The monitoring instrument was found to be valid and reliable. There was a significant correlation between the performance of tutors at tutorials and hypotheses marks. In contrast, there was no significant correlation between the performance of students and hypotheses marks. The monitoring instrument is a useful tool for improving the PBL process, especially where the medical programme depends on non-expert PBL tutors. In addition to ensuring good PBL processes, it is important that students achieve the desired output at PBL tutorials by producing hypotheses that help them understand the basic sciences underlying the clinical cases. The latter is achieved by the use of an open-ended rubric by a subject expert to assign marks to the hypotheses, a method that also provides additional motivation to students to develop relevant and detailed hypotheses.

  6. The relationship between the monitored performance of tutors and students at PBL tutorials and the marked hypotheses generated by students in a hybrid curriculum

    PubMed Central

    Addae, Jonas I.; Sahu, Pradeep; Sa, Bidyadhar

    2017-01-01

    ABSTRACT Introduction: There have been a number of published studies examining the link between the effectiveness of the problem-based learning (PBL) process and students’ performance in examinations. In a hybrid PBL/lectures curriculum, the results of such studies are of limited use because of the difficulty in dissociating the knowledge gained at lectures from that gained through PBL-related activities. Hence, the objectives of this study were: (1) to develop an instrument to measure the performance of tutors and students at PBL tutorials, and (2) to explore the contribution of such performances to the marks attained by students from the hypotheses generated at PBL tutorials. Methods: A monitoring instrument for assessing the performances of non-expert tutors and students at tutorials was developed and validated using principal component analysis and reliability analysis. Also, a rubric was formulated to enable a content expert to assign marks to the quality of hypotheses generated. Results: The monitoring instrument was found to be valid and reliable. There was a significant correlation between the performance of tutors at tutorials and hypotheses marks. In contrast, there was no significant correlation between the performance of students and hypotheses marks. Discussion: The monitoring instrument is a useful tool for improving the PBL process, especially where the medical programme depends on non-expert PBL tutors. In addition to ensuring good PBL processes, it is important that students achieve the desired output at PBL tutorials by producing hypotheses that help them understand the basic sciences underlying the clinical cases. The latter is achieved by the use of an open-ended rubric by a subject expert to assign marks to the hypotheses, a method that also provides additional motivation to students to develop relevant and detailed hypotheses. PMID:28178915

  7. Stretch Marks

    MedlinePlus

    ... like during puberty), that person may get fine lines on the body called stretch marks. Stretch marks happen when the skin is pulled by rapid growth or stretching. Although the skin is usually fairly elastic, when it's overstretched, the normal production of collagen (the major protein that makes up ...

  8. Cometary MHD and chemistry

    NASA Technical Reports Server (NTRS)

    Wegmann, R.; Schmidt, H. U.; Huebner, W. F.; Boice, D. C.

    1987-01-01

    An MHD and chemical comet-coma model was developed, applying the computer program of Huebner (1985) for the detailed chemical evolution of a spherically expanding coma and the program of Schmidt and Wegman (1982) and Wegman (1987) for the MHD flow of plasma and magnetic field in a comet to the Giotto-mission data on the ion abundances measured by the HIS ion mass spectrometer. The physics and chemistry of the coma are modeled in great detail, including photoprocesses, gas-phase chemical kinetics, energy balance with a separate electron temperature, multifluid hydrodynamics with a transition to free molecular flow, fast-streaming atomic and molecular hydrogen, counter and cross streaming of the ionized species relative to the neutral species in the coma-solar wind interaction region with momentum exchange by elastic collisions, mass-loading through ion pick-up, and Lorentz forces of the advected magnetic field. The results, both inside and outside of the contact surface, are discussed and compared with the relevant HIS ion mass spectra.

  9. Annular MHD Physics for Turbojet Energy Bypass

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  10. Results from a large-scale MHD propulsion experiment

    NASA Astrophysics Data System (ADS)

    Petrick, M.; Libera, J.; Bouillard, J. X.; Pierson, E. S.; Hill, D.

    Magnetohydrodynamic (MHD) thrusters have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnetic (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2 T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (greater than 6-T) practical MHD propulsion systems appear possible. The feasibility of attaining the requisite higher magnetic fields has increased markedly because of rapid advances in building high-field superconducting magnets and the recent evolution of high-temperature superconductors.

  11. Marking Time

    ERIC Educational Resources Information Center

    Foster, Colin

    2011-01-01

    Teachers say that they would gladly teach a day in the classroom if at the end of the day they could leave and have no marking. There is a common staffroom perception that mathematics teachers have it easy when it comes to marking. In arts subjects, setting an essay can be a fairly straightforward matter--a one-line question may suffice--but…

  12. Marking Time

    ERIC Educational Resources Information Center

    Foster, Colin

    2011-01-01

    Teachers say that they would gladly teach a day in the classroom if at the end of the day they could leave and have no marking. There is a common staffroom perception that mathematics teachers have it easy when it comes to marking. In arts subjects, setting an essay can be a fairly straightforward matter--a one-line question may suffice--but…

  13. System study of an MHD/gas turbine combined-cycle baseload power plant

    NASA Astrophysics Data System (ADS)

    Annen, K. D.

    1981-08-01

    The magnetohydrodynamics (MHD) gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that that the thermal and economic performance of the systems could be accurately determined. Three cases of MHD gas turbine systems were studied, with Case I being similar to a MHD steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The results show that the MHD gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD steam system which has a cooling tower heat load of 720 MN, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD gas turbine systems. Case III results show that an oxygen enriched MHD gas turbine system may be attractive for early commercial applications in dry regions of the country.

  14. High Power Pulsed Plasma MHD Experiments.

    DTIC Science & Technology

    1982-09-30

    VV 410 0 ’-4 U - $4 V-4’ (rD~~lrtU) rzO3 vlqu A are calculated using the Rogov formulation (Reference 6) and a modified Debye - Huckel equation-of...agrees well with the modified Debye - Huckel equation-of- state at the lower density conditions encountered in the MHD generator. We have devoted...the generator. A de- * tailed description of the theory and operation of these diagnostics is available in References 3 and 5. Attempts were made to

  15. NASA Lewis Research Center combustion MHD experiment

    NASA Astrophysics Data System (ADS)

    Smith, J. M.

    The MHD power generation experiments were conducted in a high field strength cryomagnet which was adapted from an existing facility. In its original construction, it consisted of 12 high purity aluminum coils pool cooled in a bath of liquid neon. In this configuration, a peak field of 15 tesla was produced. For the present experiments, the center four coils were removed and a 23 cm diameter transverse warm bore tube was inserted to allow the placement of the MHD experiment between the remaining eight coils. In this configuration, a peak field of 6 tesla should be obtainable. The time duration of the experiment is limited by the neon supply which allows on the order of 1 minute of total operating time followed by an 18-hour reliquefaction period. As a result, the experiments are run in a pulsed mode. The run duration for the data presented here was 5 sec. The magnetic field profile along the MHD duct is shown. Since the working fluid is in essence superheated steam, it is easily water quenched at the exit of the diffuser and the components are designed vacuum tight so that the exhaust pipe and demister an be pumped down to simulate the vacuum of outer space.

  16. MHD turbulent mixing layers

    SciTech Connect

    Esquivel, A.; Lazarian, A.; Benjamin, R.A.; Cho, J.; Leitner, S.N.

    2005-09-28

    Turbulent mixing layers have been proposed to explain observations of line ratios of highly ionized elements in the interstellar medium. We present preliminary results of numerical simulations of turbulent mixing layers in a magnetized medium. We developed a MHD code with radiative cooling. The magnetic field is expected to be a controlling factor by suppressing instabilities that lead to the turbulent mixing. Our results suggest that the difference in turbulent mixing in the unmagnetized case as compared to the case of a weak magnetic field, {beta} = Pgas/Pmag {approx} 10, is insignificant. With a more thorough exploration of parameter space, this work will provide more reliable diagnostics of turbulent mixing layers than those available today.

  17. Metal-ammonia MHD - A compact high-power marine propulsion engine

    NASA Astrophysics Data System (ADS)

    Johnson, Martin R.

    1990-07-01

    Metal-ammonia plasmas are electrically conductive, condensible fluids capable of unprecedented power densities in MHD power generation. This paper discusses the physical and chemical properties of MA plasmas, and presents a model for MHD duct performance predicting 100 MW power output from a 4 meter long duct. Problems of plasma stability are discussed.

  18. In vivo studies of the role of factor VII in hemostasis.

    PubMed

    Giles, A R; Tinlin, S; Brosseau, L; Hoogendoorn, H

    1985-05-01

    The effect of both congenital and acquired factor VII deficiency on the cuticle bleeding time (CBT) was evaluated in dogs. The CBT has been previously documented to be a sensitive indicator of factor VIII:C deficiency in hemophilic dogs. Serial CBT determinations were made on normal dogs treated with high-dose warfarin. At 48 hours post-treatment, the CBT was normal, although the factor VII level was less than 1%, whereas the levels of factors II, IX, and X were 44%, 25%, and 17%, respectively. At 120 hours the CBT became abnormal when all vitamin K-dependent clotting factors had dropped to less than 18%. Administration of a plasma concentrate of factors II, IX, and X corrected the CBT, despite the factor VII level remaining at less than 1%. Similar studies in a congenitally factor VII-deficient dog (factor VII less than 2%) confirmed that this deficiency state was not associated with an abnormality of the CBT. Administration of heparin to both normal and factor VII-deficient animals was associated with prolongation of the CBT, but the heparin dose required in the normal animals was substantially higher than in the factor VII-deficient animals. These data do not suggest that factor VII/VIIa has an exclusive role in generating factor Xa, either directly or indirectly, by way of factor IXa generation, in vivo. However, the increase in heparin sensitivity of the factor VII-deficient animals does suggest that factor VII/VIIa may, in some circumstances, present a significant alternative pathway of factor X activation, although the activation pathway involved cannot be determined from the studies performed.

  19. Caesium cis-tetrachloridodioxidorhenate(VII).

    PubMed

    Hołyńska, Małgorzata; Lis, Tadeusz

    2008-02-01

    The title crystal structure, Cs[ReCl(4)O(2)], consists of cis-tetrachloridodioxidorhenate(VII) anions and caesium cations. The distorted octahedral anion has nearly C(2v) symmetry, with a cis arrangement of the oxide ligands. The Re-Cl bond lengths for the Cl atoms trans to the oxide ligands are affected by the trans influence of the Re-O bonds and are longer than for the Cl atoms cis to the oxide ligands [average of 2.472 (2) A versus average of 2.322 (2) A, respectively]. There are ten Cl atoms from six cis-tetrachloridodioxidorhenate(VII) anions in the neighbourhood of the caesium cation.

  20. Conceptual design analysis of an MHD power conversion system for droplet-vapor core reactors. Final report

    SciTech Connect

    Anghaie, S.; Saraph, G.

    1995-12-31

    A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses.

  1. Digitally Marking RSA Moduli

    SciTech Connect

    Johnston, A.M.

    2000-10-09

    The moduli used in RSA (see [5]) can be generated by many different sources. The generator of that modulus (assuming a single entity generates the modulus) knows its factorization. They would have the ability to forge signatures or break any system based on this moduli. If a moduli and the RSA parameters associated with it were generated by a reputable source, the system would have higher value than if the parameters were generated by an unknown entity. So for tracking, security, confidence and financial reasons it would be beneficial to know who the generator of the RSA modulus was. This is where digital marking comes in. An RSA modulus ia digitally marked, or digitally trade marked, if the generator and other identifying features of the modulus (such as its intended user, the version number, etc.) can be identified and possibly verified by the modulus itself. The basic concept of digitally marking an RSA modulus would be to fix the upper bits of the modulus to this tag. Thus anyone who sees the public modulus can tell who generated the modulus and who the generator believes the intended user/owner of the modulus is.

  2. MHD conversion of solar energy. [space electric power system

    NASA Technical Reports Server (NTRS)

    Lau, C. V.; Decher, R.

    1978-01-01

    Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.

  3. Uneasy marks.

    PubMed

    Rublee, D

    1998-05-05

    Germany earned a reputation as a European nirvana, marked by a booming job market and generous health and social programs. Now, thanks to the high costs of rebuilding the former East Germany and other factors, national health programs face cutbacks. But just about everyone has a stake in guarding the status quo.

  4. Effect of Hall Current and Chemical Reaction on MHD Flow Along an Accelerated Porous Flat Plate with Internal Heat Absorption/Generation

    NASA Astrophysics Data System (ADS)

    Kar, M.; Sahoo, S. N.; Dash, G. C.

    2014-05-01

    The effect of the Hall current on unsteady free convection of an electrically conducting incompressible viscous fluid past an accelerated vertical porous plate with internal heat absorption/generation in the presence of various species (H2, CO2, H2O, and NH3) undergoing a first-order chemical reaction in a uniform transverse magnetic field is studied. The role of pertinent parameters characterizing the flow field is discussed. The governing equations are solved using the Hhn(x) functions. It is revealed that heat generation coupled with injection results in a backflow rise. A linearly varying velocity of the plate causes a sudden rise or fall of the velocity in the vicinity of the plate, whereas an asymptotically varying velocity leads to a uniform fall. The presence of chemical reaction increases the secondary velocity by 40%.

  5. The impact of three dimensional MHD instabilities on the generation of warm dense matter using a MA-class linear transformer driver

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.; Seyler, C. E.

    2017-09-01

    Warm dense matter is difficult to generate since it corresponds to a state of matter which pressure is order of magnitude larger than can be handled by natural materials. A diamond anvil can be used to pressurize matter up to one Gbar, this matter is at high density but at room temperature. High power lasers and heavy ion beams can generate warm dense matter on time scales where measuring quasi-static transport coefficients such as viscosity or heat conduction proves difficult since both experimental techniques relies on inertial confinement. We present here a third method to generate warm dense matter. It uses a pulsed-power driver which current rise time is substantially shortened by using a plasma opening switch, limiting the development of electrothermal instabilities. The switch relies on the implosion of a gas puff Z-pinch which carries most of the discharge current until the pinch reaches the sample. After that, the sample is compressed until it reaches the warm dense matter regime. Three-dimensional magnetohydrodynamics computations show that if the density of the gas is low enough no detectable instabilities (e.g. kinks and sausages modes) impede the remainder of the implosion.

  6. Three-dimensional fluid and electrodynamic modeling for MHD DCW channels

    NASA Astrophysics Data System (ADS)

    Liu, B. L.; Lineberry, J. T.; Schmidt, H. J.

    1983-01-01

    A three dimensional, numerical solution for modeling diagonal conducting wall (DCW) magnetohydrodynamic (MHD) generators is developed and discussed. Cross plane gasdynamic and electrodynamic profiles are computed considering coupled MHD flow and electrical phenomena. A turbulent transport model based on the mixing length theory is used to deal with wall roughness generated turbulence effects. The infinitely fine electrode segmentation formulation is applied to simplify the governing electrical equations. Calculations show the development of distorted temperature and velocity profiles under influence of magnetohydrodynamic interaction. Since both sidewall and electrode wall boundary losses are treated, the results furnish a realistic representation of MHD generator behavior.

  7. MHD mixed convection and entropy generation of water-alumina nanofluid flow in a double lid driven cavity with discrete heating

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Mehmood, K.; Sagheer, M.

    2016-12-01

    In the present study, entropy generation due to mixed convection in a partially heated square double lid driven cavity filled with Al2O3 -water nanofluid under the influence of inclined magnetic field is numerically investigated. At the lower wall of the cavity two heat sources are fixed, with the condition that the remaining part of the bottom wall is kept insulated. Top wall and vertically moving walls are maintained at constant cold temperature. Buoyant force is responsible for the flow along with the two moving vertical walls. Governing equations are discretized in space using LBB-stable finite element pair Q2 / P1disc which lead to 3rd and 2nd order accuracy in the L2-norm for the velocity/temperature and pressure, respectively and the fully implicit Crank-Nicolson scheme of 2nd order accuracy is utilized for the temporal discretization. The discretized systems of nonlinear equations are treated by using the Newton method and the associated linear subproblems are solved by means of Guassian elimination method. Numerical results are presented and analyzed by means of streamlines, isotherms, tables and some useful plots. Impacts of emerging parameters on the flow, in specific ranges such as Reynolds number (1 ≤ Re ≤ 100) , Richardson number (1 ≤ Ri ≤ 50) , Hartman number (0 ≤ Ha ≤ 100) , solid volume fraction (0 ≤ ϕ ≤ 0.2) as well as the angles of inclined magnetic field (0 ° ≤ γ ≤ 90 °) are investigated and the findings are exactly of the same order as that of the previously performed analysis. Calculation of average Nusselt number, entropy generation due to heat transfer, fluid friction and magnetic field, total entropy generation, Bejan number and kinetic energy are the main focus of our study.

  8. Three-dimensional MHD simulation of the interaction of the solar wind with the earth's magnetosphere: The generation of field-aligned currents

    SciTech Connect

    Ogino, T.

    1986-06-01

    A global computer simulation of the interaction of the solar wind with the earth's magnetosphere was executed by using a three-dimensional magnetohydrodynamic model. As a result, we were able to reproduce quasi-steady-state magnetospheric configurations and a Birkeland field-aligned current system which depend on the polarity of the z-italic component of the interplanetary magnetic field (IMF). Twin convection cells and a dawn to dusk electric potential of 30--100 kV appeared at the equator in the magnetosphere. Four types of field-aligned currents were observed. Region 1 and 2 field-aligned currents generated for all IMF conditions were 0.6--1.0 x 10/sup 6/ A and 0.15--0.61 x 10/sup 6/ A, respectively, in the total current. Region 1 currents at high latitudes are generated from the field-aligned vorticity at the flanks through a viscous interaction and are strengthened by a twisting of open magnetic field lines in the tail region for southward IMF. On the other hand, the low-latitude region 2 currents probably are generated mainly from the inner pressure gradient of the plasma sheet. The region 1 current obtained from the simulation was in good agreement with an estimate from our theoretical analysis of the localized Alfve-acute-accentn mode. The other two types of field-aligned currents are the dayside magnetopause currents in the dayside cusp region, which increase for northward IMF, and the dayside cusp currents for southward IMF. The cusp currents are associated with a twisting of open magnetic field lines in the magnetopause region.

  9. Instability of periodic MHD shear flows

    SciTech Connect

    Zaqarashvili, T.V.; Oliver, R.; Ballester, J.L.; Belvedere, G.

    2004-11-12

    The stability of periodic MHD shear flows generated by an external transversal periodic force in magnetized plasma is studied. It is shown that the temporal behaviour of magnetosonic wave spatial Fourier harmonics in such flows is governed by Mathieu equation. Consequently the harmonics with the half frequency of the shear flows grow exponentially in time. Therefore the periodic shear motions are unstable to the perturbations of compressible magnetosonic waves. The motions represent the kinetic part of the transversal oscillation in magnetized plasma. Therefore due to the instability of periodic shear motions, the transversal oscillations may quickly be damped, so transferring their energy to compressible magnetosonic perturbations.

  10. Transport in EHD flows distinct from HD and MHD flows

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    2003-04-01

    vortex line merging of two vortex trails in HD flows and magnetic reconnection in MHD flows. As for energy transport and heat transfer, EHD flows dissipate energy due to electric viscosity and electromagnetic radiation in addition to dissipation due to fluid viscosity and thermal conduction (HD) and magnetic viscosity (MHD). Accordingly, EHD flows produce electric or electromagnetic noise, while HD flows sonic noise and MHD flows magnetic or electromagnetic noise. EHD helical turbulence is capable for large-scale EHD vortex generation by its self-organization, while HD helical turbulence is for large-scale HD vortex generation and MHD helical turbulence for large-scale magnetic field generation. Basically, EHD flows are closely related to dusty plasma, ionization and discharge physics.

  11. MHD-EMP protection guidelines

    NASA Astrophysics Data System (ADS)

    Barnes, P. R.; Vance, E. F.

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  12. MHD-EMP protection guidelines

    SciTech Connect

    Barnes, P.R.; Vance, E.F.

    1992-01-01

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohyrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. The geomagnetic disturbance interacts with the soil to induced current and horizontal electric gradients in the earth. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after the exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  13. Flow Matching Results of an MHD Energy Bypass System on a Supersonic Turbojet Engine Using the Numerical Propulsion System Simulation (NPSS) Environment

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2011-01-01

    Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.

  14. Operational analysis of open-cycle MHD

    NASA Astrophysics Data System (ADS)

    Lippert, T. E.; McCutchan, D. A.

    1980-07-01

    Open cycle magnetohydrodynamic (OCMHD) conceptual power plant designs are studied in the context of a utility system to form a better basis for understanding their design, design requirements, and market possibilities. Based on assumed or projected plant costs and performance characteristics, assumed economics and escalation factors, and one coal supply and delivery scenario, overall and regional OCMHD utility market possibilities are reviewed. Additionally, for one hypothetical utility system a generation expansion plan is developed that includes OCMHD as a baseload power generating station. The impact on generation system economics and operation of alternating selected MHD plant cost and performance characteristics is reviewed. Baseload plant availability is shown as an important plant design consideration, and a general methodology and data base is developed to assess the impact on design and cost of various reliability decisions. An overall plant availability goal is set and the required availabilities of various MHD high technology components are derived to meet the plant goal. The approach is then extended to projecting channel life goals for various plant design configurations and assumptions.

  15. Electrical conductivity of ice VII

    PubMed Central

    Okada, Taku; Iitaka, Toshiaki; Yagi, Takehiko; Aoki, Katsutoshi

    2014-01-01

    It was discovered that a peak appears near a pressure of Pc = 10 GPa in the electrical conductivity of ice VII as measured through impedance spectroscopy in a diamond anvil cell (DAC) during the process of compression from 2 GPa to 40 GPa at room temperature. The activation energy for the conductivity measured in the cooling/heating process between 278 K and 303 K reached a minimum near Pc. Theoretical modelling and molecular dynamics simulations suggest that the origin of this unique peak is the transition of the major charge carriers from the rotational defects to the ionic defects. PMID:25047728

  16. Entropy generation for an axisymmetric MHD flow under thermal non-equilibrium in porous micro duct using a modified lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Rabhi, Raja; Amami, Bayssain; Dhahri, Hacen; Mhimid, Abdallah

    2016-12-01

    The present paper centered on a numerical investigation of irreversibility within a porous micro duct subjected to an external oriented magnetic field. At the wall, slip velocity and temperature jump are used as types of boundary conditions. The flow is described by Darcy-Brinkman-Forchheimer model. The Local Thermal Non Equilibrium (LTNE) is adopted including viscous dissipation effects into the energy equation of fluid phase. The study has been carried out for slip-flow regime for wide range of Knudsen numbers, 10-3 ≤ Kn ≤ 10-1 . The obtained governing system equations are solved using the modified Lattice Boltzmann Method (LBM). Efforts are focused on identifying the influence of magnetic field on the entropy generation and Bejan number with a change of various parameters such as Knudsen, Eckert, Biot, Darcy numbers and thermal conductivity ratio. The obtained results show that the irreversibility and the contribution of heat transfer irreversibility and fluid flow irreversibility are strongly affected by the presence of magnetic field.

  17. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  18. Perturbed Stability Analysis of External Ideal MHD Modes

    NASA Astrophysics Data System (ADS)

    Comer, K. J.; Callen, J. D.; Hegna, C. C.; Garstka, G. D.; Turnbull, A. D.; Garofalo, A. M.; Cowley, S. C.

    2002-11-01

    Traditionally, numerical parameter scans are performed to study the effects of equilibrium shaping and profiles on long wavelength ideal MHD instabilities. Previously, we introduced a new perturbative technique to more efficiently explore these dependencies: changes in delta-W due to small equilibrium variations are found using a perturbation of the energy principle rather than with an eigenvalue-solver instability code. With this approach, the stability properties of similar equilibria can be efficiently explored without generating complete numerical results for every set of parameters (which is time-intensive for accurate representations of several configurations). Here, we apply this approach to toroidal geometry using GATO (an ideal MHD stability code) and experimental equilibria. In particular, we explore ideal MHD stability of external kink modes in the spherical tokamak Pegasus and resistive wall modes in DIII-D.

  19. MHD of Aircraft Re-entry: Limits and Perspectives

    SciTech Connect

    Seller, G.; Capitelli, M.; Longo, S.; Armenise, I.; Bruno, D.

    2005-05-16

    In the present work, starting from classical MHD scheme, based on Maxwell equations, Euler fluid dynamic equations and generalised Ohm law, a critical study of fluid dynamics, electromagnetism, chemical and physical behaviour of plasma is carried out, and then a aircraft re-entry MHD numerical scheme is implemented. This scheme is used for MHD calculations in different conditions, in the range of low magnetic force and intermediate electrical conductivity. Initial imposed magnetic fields are uniform, but also some cases with coil generated magnetic fields are considered. Calculations of magnetic field and induced currents are extended also inside the blunt body. Results show interesting physical and electromagnetic effects. Comparison with other methods shows possible development in keeping into account other physical and chemical effects.

  20. MHD of Aircraft Re-entry: Limits and Perspectives

    NASA Astrophysics Data System (ADS)

    Seller, G.; Capitelli, M.; Longo, S.; Armenise, I.; Bruno, D.

    2005-05-01

    In the present work, starting from classical MHD scheme, based on Maxwell equations, Euler fluid dynamic equations and generalised Ohm law, a critical study of fluid dynamics, electromagnetism, chemical and physical behaviour of plasma is carried out, and then a aircraft re-entry MHD numerical scheme is implemented. This scheme is used for MHD calculations in different conditions, in the range of low magnetic force and intermediate electrical conductivity. Initial imposed magnetic fields are uniform, but also some cases with coil generated magnetic fields are considered. Calculations of magnetic field and induced currents are extended also inside the blunt body. Results show interesting physical and electromagnetic effects. Comparison with other methods shows possible development in keeping into account other physical and chemical effects.

  1. Using Coronal Hole Maps to Constrain MHD Models

    NASA Astrophysics Data System (ADS)

    Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran

    2017-08-01

    In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.

  2. MHD mixed convection and entropy generation of nanofluid filled lid driven cavity under the influence of inclined magnetic fields imposed to its upper and lower diagonal triangular domains

    NASA Astrophysics Data System (ADS)

    Selimefendigil, Fatih; Öztop, Hakan F.; Chamkha, Ali J.

    2016-05-01

    In this study, mixed convection of CuO-water nanofluid filled lid driven cavity having its upper and lower triangular domains under the influence of inclined magnetic fields is numerically investigated. The top horizontal wall of the cavity is moving with constant speed of uw with +x direction while no-slip boundary conditions are imposed on the other walls of the cavity. The top wall of the cavity is maintained at constant cold temperature of Tc while the bottom wall is at hot temperature of Th and on the other walls of the cavity are assumed to be adiabatic. The governing equations are solved by using Galerkin weighted residual finite element formulation. Entropy generation is produced by using formulation and integrated with calculated velocities and temperatures. The numerical investigation is performed for a range of parameters: Richardson number (between 0.01 and 100), Hartmann number (between 0 and 50), inclination angle of magnetic field (between 0° and 90°) and solid volume fraction of the nanofluid (between 0 and 0.05). Different combinations of Hartmann numbers and inclination angles of the magnetic fields are imposed in the upper and lower triangular domains of the square cavity. It is observed that the local and averaged heat transfer deteriorates when the Richardson number, Hartmann number of the triangular domains increase. When the Hartmann number and magnetic angle of the upper triangle are increased, more deterioration of the averaged transfer is obtained when compared to lower triangular domain. Local and averaged heat transfer increase as the solid volume fraction of the nanoparticles increases and adding nanoparticles is more effective for the local enhancement of the heat transfer when the heat transfer rate is high and convection is not damped with lowering the Hartmann number. Second law analysis of the system for different combinations of flow parameters is also performed.

  3. A high performance spectral code for nonlinear MHD stability

    SciTech Connect

    Taylor, M.

    1992-09-01

    A new spectral code, NSTAB, has been developed to do nonlinear stability and equilibrium calculations for the magnetohydrodynamic (MHD) equations in three dimensional toroidal geometries. The code has the resolution to test nonlinear stability by calculating bifurcated equilibria directly. These equilibria consist of weak solutions with current sheets near rational surfaces and other less localized modes. Bifurcated equilibria with a pronounced current sheet where the rotational transform crosses unity are calculated for the International Thermonuclear Experimental Reactor (ITER). Bifurcated solutions with broader resonances are found for the LHD stellarator currently being built in Japan and an optimized configuration like the Wendelstein VII-X proposed for construction in Germany. The code is able to handle the many harmonics required to capture the high mode number of these instabilities. NSTAB builds on the highly successful BETAS code, which applies the spectral method to a flux coordinate formulation of the variational principle associated with the MHD equilibrium equations. However, a new residue condition for the location of the magnetic axis has been developed and implemented. This condition is based on the weak formulation of the equations and imposes no constraints on the inner flux surfaces.

  4. LEA Title VII Program Evaluations. Panel Presentations.

    ERIC Educational Resources Information Center

    Balu, Raj

    These panel presentations focus on LEA Title VII Program Evaluations. Raj Balu, an administrator of bilingual programs in Chicago presents information regarding the bilingual education program in the Chicago public schools, as well as information on Title VII programs and what kind of evaluation is being done. Jesus Salazar, who is currently…

  5. Parametric study of potential early commercial MHD power plants. Task 3: Parameter variation of plant size

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    Plants with a nominal output of 200 and 500 MWe and conforming to the same design configuration as the Task II plant were investigated. This information is intended to permit an assessment of the competitiveness of first generation MHD/steam plants with conventional steam plants over the range of 200 to 1000 MWe. The results show that net plant efficiency of the MHD plant is significantly higher than a conventional steam plant of corresponding size. The cost of electricity is also less for the MHD plant over the entire plant size range. As expected, the cost differential is higher for the larger plant and decreases with plant size. Even at the 200 MWe capacity, however, the differential in COE between the MHD plant and the conventional plant is sufficient attractive to warrant serious consideration. Escalating fuel costs will enhance the competitive position of MHD plants because they can utilize the fuel more efficiently than conventional steam plants.

  6. Kelvin-Helmholtz Unstable Magnetotail Flow Channels: Deceleration and Radiation of MHD Waves

    NASA Astrophysics Data System (ADS)

    Turkakin, H.; Mann, I. R.; Rankin, R.

    2014-12-01

    The Kelvin-Helmholtz instability (KHI) of magnetotail flow channels associated with burstybulk flows (BBFs) is investigated. MHD oscillations of the channel in both kink and sausage modes areinvestigated for KHI, and both the primary and secondary KHIs are found that drive MHD waves. Theseinstabilities are likely to be important for flow channel braking where the KHI removes energy from the flow.At flow speeds above the peak growth rate, the MHD modes excited by KHI develop from surface modesinto propagating modes leading to the radiation of MHD waves from the flow channel. The coupling ofBBF-driven shear flow instabilities to MHD waves presented here represents a new paradigm to explain BBFexcitation of tail flapping. Our model can also explain, for the first time, the generation mechanism for theobservations of waves propagating toward both flanks and emitted from BBF channels in the magnetotail.

  7. An Experimental MHD Dynamo

    SciTech Connect

    Forest, C. B.

    2002-11-15

    The project is designed to understand current and magnetic field generation in plasmas and other magnetohydrodynamic systems. The experiments will investigate the generation of a dynamo using liquid Na.

  8. Magnetohydrodynamic (MHD) channel corner seal

    DOEpatents

    Spurrier, Francis R.

    1980-01-01

    A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.

  9. Problems in nonlinear resistive MHD

    SciTech Connect

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.

    1998-12-31

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.

  10. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed cycle MHD results obtained in a recent study of various advanced energy conversion (ECAS) power systems. The study was part of the first phase of this ECAS study. Since this was the first opportunity to evaluate the coal fired closed cycle MHD system, a number of iterations were required to partially optimize the system. The present paper deals with the latter part of the study in which the direct coal fired, MHD topping-steam bottoming cycle was established as the current choice for central station power generation. The emphasis of the paper is on the background assumptions and the conclusions that can be drawn from the closed cycle MHD analysis. The author concludes that closed cycle MHD has efficiencies comparable to that of open cycle MHD and that both systems are considerably more efficient than the other system studies in Phase 1 of the GE ECAS. Its cost will possibly be slightly higher than that of the open cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower cost electricity than conventional steam power plants. Suggestions for further work in closed cycle MHD components and systems is made.

  11. System studies of coal fired-closed cycle MHD for central station power plants

    NASA Technical Reports Server (NTRS)

    Zauderer, B.

    1976-01-01

    This paper presents a discussion of the closed cycle MHD results obtained in a recent study of various advanced energy conversion (ECAS) power systems. The study was part of the first phase of this ECAS study. Since this was the first opportunity to evaluate the coal fired closed cycle MHD system, a number of iterations were required to partially optimize the system. The present paper deals with the latter part of the study in which the direct coal fired, MHD topping-steam bottoming cycle was established as the current choice for central station power generation. The emphasis of the paper is on the background assumptions and the conclusions that can be drawn from the closed cycle MHD analysis. The author concludes that closed cycle MHD has efficiencies comparable to that of open cycle MHD and that both systems are considerably more efficient than the other system studies in Phase 1 of the GE ECAS. Its cost will possibly be slightly higher than that of the open cycle MHD system. Also, with reasonable fuel escalation assumptions, both systems can produce lower cost electricity than conventional steam power plants. Suggestions for further work in closed cycle MHD components and systems is made.

  12. Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients.

    PubMed

    Woodley, David T; Cogan, Jon; Hou, Yingping; Lyu, Chao; Marinkovich, M Peter; Keene, Douglas; Chen, Mei

    2017-08-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable disease caused by mutations in the gene encoding type VII collagen, the major component of anchoring fibrils (AF). We previously demonstrated that gentamicin produced functional type VII collagen in RDEB cells harboring nonsense mutations. Herein, we determined whether topical or intradermal gentamicin administration induces type VII collagen and AFs in RDEB patients. A double-blind, placebo-controlled pilot trial assessed safety and efficacy of topical and intradermal gentamicin in 5 RDEB patients with nonsense mutations. The topical arm tested 0.1% gentamicin ointment or placebo application 3 times daily at 2 open erosion sites for 2 weeks. The intradermal arm tested daily intradermal injection of gentamicin solution (8 mg) or placebo into 2 intact skin sites for 2 days in 4 of 5 patients. Primary outcomes were induction of type VII collagen and AFs at the test sites and safety assessment. A secondary outcome assessed wound closure of topically treated erosions. Both topical and intradermal gentamicin administration induced type VII collagen and AFs at the dermal-epidermal junction of treatment sites. Newly created type VII collagen varied from 20% to 165% of that expressed in normal human skin and persisted for 3 months. Topical gentamicin corrected dermal-epidermal separation, improved wound closure, and reduced blister formation. There were no untoward side effects from gentamicin treatments. Type VII collagen induction did not generate anti-type VII collagen autoantibodies in patients' blood or skin. Topical and intradermal gentamicin suppresses nonsense mutations and induces type VII collagen and AFs in RDEB patients. Gentamicin therapy may provide a readily available treatment for RDEB patients with nonsense mutations. ClinicalTrials.gov NCT02698735. Epidermolysis Bullosa Research Partnership, Epidermolysis Bullosa Medical Research Foundation, NIH, and VA Merit Award.

  13. Aircraft vortex marking program

    NASA Technical Reports Server (NTRS)

    Pompa, M. F.

    1979-01-01

    A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.

  14. Little Jiffy, Mark IV

    ERIC Educational Resources Information Center

    Kaiser, Henry F.; Rice, John

    1974-01-01

    In this paper three changes and one new development for the method of exploratory factor analysis (a second generation Little Jiffy) developed by Kaiser are described. Following this short description a step-by-step computer algorithm of the revised method, dubbed Little Jiffy, Mark IV is presented. (MP)

  15. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1991-10-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.

  16. MHD-EMP protection guidelines

    SciTech Connect

    Barnes, P.R.; Vance, E.F.

    1992-03-01

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth`s magnetic field and result in a strong magnetohyrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. The geomagnetic disturbance interacts with the soil to induced current and horizontal electric gradients in the earth. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after the exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it`s global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  17. Technical support for open-cycle MHD program. Progress report, January-June 1979

    SciTech Connect

    Bomkamp, D. H.

    1980-07-01

    The support program for open-cycle MHD at the Argonne National Laboratory consists of developing the analytical tools needed for investigation of the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and, also, on the integration of these analytical models into a model of the entire power-producing system. The present project activities include modeling of the combustor, generator, seed deposition, and formation and decomposition of NO. Parametric studies were performed to evaluate the performance of the U-25B generator and to support the design of the US U-25B generator. Refinements and improvements to the MHD systems code and executive program are described.

  18. Demonstration of the extrinsic coagulation pathway in teleostei: Identification of zebrafish coagulation factor VII

    PubMed Central

    Sheehan, John; Templer, Michael; Gregory, Michael; Hanumanthaiah, Ravikumar; Troyer, Dean; Phan, Thao; Thankavel, Bharath; Jagadeeswaran, Pudur

    2001-01-01

    It is not known whether the mammalian mechanism of coagulation initiation is conserved in fish. Identification of factor VII is critical in providing evidence for such a mechanism. A cDNA was cloned from a zebrafish (teleost) library that predicted a protein with sequence similarity to human factor VII. Factor VII was shown to be present in zebrafish blood and liver by Western blot analysis and immunohistochemistry. Immunodepletion of factor VII from zebrafish plasma selectively inhibited thromboplastin-triggered thrombin generation. Heterologous expression of zebrafish factor VII demonstrated a secreted protein (50 kDa) that reconstituted thromboplastin-triggered thrombin generation in immunodepleted zebrafish plasma. These results suggest conservation of the extrinsic coagulation pathway between zebrafish and humans and add credence to the zebrafish as a model for mammalian hemostasis. The structure of zebrafish factor VIIa predicted by homology modeling was consistent with the overall three-dimensional structure of human factor VIIa. However, amino acid disparities were found in the epidermal growth factor-2/serine protease regions that are present in the human tissue factor–factor VIIa contact surface, suggesting a structural basis for the species specificity of this interaction. In addition, zebrafish factor VII demonstrates that the Gla-EGF-EGF-SP domain structure, which is common to coagulation factors VII, IX, X, and protein C, was present before the radiation of the teleosts from the tetrapods. Identification of zebrafish factor VII significantly narrows the evolutionary window for development of the vertebrate coagulation cascade and provides insight into the structural basis for species specificity in the tissue factor–factor VIIa interaction. PMID:11459993

  19. Multimegawatt NEP with vapor core reactor MHD

    NASA Astrophysics Data System (ADS)

    Smith, Blair; Knight, Travis; Anghaie, Samim

    2002-01-01

    Efforts at the Innovative Nuclear Space Power and Propulsion Institute have assessed the feasibility of combining gaseous or vapor core reactors with magnetohydrodynamic power generators to provide extremely high quality, high density, and low specific mass electrical power for space applications. Innovative shielding strategies are employed to maintain an effective but relatively low mass shield, which is the most dominating part of multi-megawatt space power systems. The fission driven magnetohydrodynamic generator produces tens of kilowatt DC power at specific mass of less than 0.5 kg/kW for the total power system. The MHD output with minor conditioning is coupled to magnetoplasmadynamic thruster to achieve an overall NEP system specific mass of less than 1.0 kg/kW for power levels above 20 MWe. Few other concepts would allow comparable ensuing payload savings and flexible mission abort options for manned flights to Mars for example. .

  20. System study of an MHD/gas turbine combined-cycle baseload power plant. HTGL report No. 134

    SciTech Connect

    Annen, K.D.

    1981-08-01

    The MHD/gas turbine combined-cycle system has been designed specifically for applications where the availability of cooling water is very limited. The base case systems which were studied consisted of an MHD plant with a gas turbine bottoming plant, and required no cooling water. The gas turbine plant uses only air as its working fluid and receives its energy input from the MHD exhaust gases by means of metal tube heat exchangers. In addition to the base case systems, vapor cycle variation systems were considered which included the addition of a vapor cycle bottoming plant to improve the thermal efficiency. These systems required a small amount of cooling water. The MHD/gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that the thermal and economic performance of the system could be accurately determined. Three cases of MHD/gas turbine systems were studied, with Case I being similar to an MHD/steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The systems are nominally 800 MW/sub e/ to 1000 MW/sub e/ in size. The results show that the MHD/gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD/steam system which has a cooling tower heat load of 720 MW, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD/gas turbine systems. Case III results show that an oxygen enriched MHD/gas turbine system may be attractive for early commercial applications in dry regions of the country.

  1. Dynamo beyond the regimed of MHD theory

    SciTech Connect

    Raskolnikov, I.; Mattor, N.

    1996-12-31

    Conservation of magnetic helicity K = {integral} dVA {circ} B, requires Ohm`s law to be valid, which can be rather restrictive. More generally, in fluid theory each charged species has its own helicity, where q{sub {alpha}} m{sub {alpha}}, and v{sub {alpha}} are the charge, mass and velocity of species a. The K{sub {alpha}} are conserved in the limit where {del}n{sub {alpha}} x {del}T{sub {alpha}} = 0; if this term does not vanish, then K{sub {alpha}} can be generated. For a neutral two-species plasma with low electron mass and a{Omega}{sub i} > v{sub i} (where a is a characteristic lengthscale of the magnetic field), it can be shown that K{sub e} conservation reduces to the the usual MHD conservation of K, and the difference K{sub i} - K{sub e} reduces to the usual conservation of cross helicity, {integral} dVv{sub i} {circ} B. This suggests that MHD dynamo theory can be generalized to any regime where fluid theory is valid. With K{sub e} {approx_equal} K for small m{sub e}, then the presence of {del}n{sub e} x {del}T{sub e} {ne} 0 can generate K, which can then generate large scale magnetic fields, as in the usual dynamo theory. Cross helicity can also be generated if {del}n{sub e} x {del}T{sub e} {ne} 0, which also affects the cascade dynamics.

  2. Initial Flow Matching Results of MHD Energy Bypass on a Supersonic Turbojet Engine Using the Numerical Propulsion System Simulation (NPSS) Environment

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2010-01-01

    Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.

  3. 19 CFR Annex Vii to Part 351 - Antidumping Investigations Timeline

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Antidumping Investigations Timeline VII Annex VII to Part 351 Customs Duties INTERNATIONAL TRADE ADMINISTRATION, DEPARTMENT OF COMMERCE ANTIDUMPING AND COUNTERVAILING DUTIES Pt. 351, Annex VII Annex VII to Part 351—Antidumping Investigations Timeline ER19MY97.001 ...

  4. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection.

    PubMed

    Marshall, Nikki B; Vong, Allen M; Devarajan, Priyadharshini; Brauner, Matthew D; Kuang, Yi; Nayar, Ribhu; Schutten, Elizabeth A; Castonguay, Catherine H; Berg, Leslie J; Nutt, Stephen L; Swain, Susan L

    2017-02-01

    CD4 T cells can differentiate into multiple effector subsets, including ThCTL that mediate MHC class II-restricted cytotoxicity. Although CD4 T cell-mediated cytotoxicity has been reported in multiple viral infections, their characteristics and the factors regulating their generation are unclear, in part due to a lack of a signature marker. We show in this article that, in mice, NKG2C/E identifies the ThCTL that develop in the lung during influenza A virus infection. ThCTL express the NKG2X/CD94 complex, in particular the NKG2C/E isoforms. NKG2C/E(+) ThCTL are part of the lung CD4 effector population, and they mediate influenza A virus-specific cytotoxic activity. The phenotype of NKG2C/E(+) ThCTL indicates they are highly activated effectors expressing high levels of binding to P-selectin, T-bet, and Blimp-1, and that more of them secrete IFN-γ and readily degranulate than non-ThCTL. ThCTL also express more cytotoxicity-associated genes including perforin and granzymes, and fewer genes associated with recirculation and memory. They are found only at the site of infection and not in other peripheral sites. These data suggest ThCTL are marked by the expression of NKG2C/E and represent a unique CD4 effector population specialized for cytotoxicity.

  5. MHD Turbulence and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much

  6. 49 CFR 178.703 - Marking of IBCs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... registered with the Associate Administrator. (vii) The stacking test load in kilograms (kg). For IBCs not... mass in kilograms (kg) marked above the symbol must not exceed the load imposed during the design test...) X—for IBCs meeting Packing Group I, II and III tests; (B) Y—for IBCs meeting Packing Group II...

  7. Performance calculations for 1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.

    1981-01-01

    The effects of MHD generator operating conditions and constraints on the performance of MHD/steam power plants are investigated. Power plants using high temperature combustion air preheat (2500 F) and plants using intermediate temperature preheat (1100 F) with oxygen enrichment are considered. Variations of these two types of power plants are compared on the basis of fixed total electrical output (1000 MWe). Results are presented to show the effects of generator plant length and level of oxygen enrichment on the plant thermodynamic efficiency and on the required generator mass flow rate. Factors affecting the optimum levels of oxygen enrichment are analyzed. It is shown that oxygen enrichment can reduce magnet stored energy requirement.

  8. Magnetic levitation and MHD propulsion

    NASA Astrophysics Data System (ADS)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  9. Genetics Home Reference: factor VII deficiency

    MedlinePlus

    ... MedlinePlus Encyclopedia: Factor VII Deficiency World Federation of Hemophilia: Treatment Options General Information from MedlinePlus (5 links) ... Patient Support and Advocacy Resources (5 links) Canadian Hemophilia Society Foundation for Women and Girls with Blood ...

  10. PREFACE: VII Mexican School on Gravitation and Mathematical Physics

    NASA Astrophysics Data System (ADS)

    Alcubierre Moya, Miguel; García Compeán, Héctor Hugo; Ureña López, Luis Arturo

    2007-07-01

    The present collection of papers was presented during the VII Mexican School on Gravitation and Mathematical Physics, which was held in Playa del Carmen, Quintana Roo, México, from 26 November to 2 December 2006. The Mexican School on Gravitation and Mathematical Physics, sponsored by the Mexican Physical Society, started in 1994 with the purpose of discussing and exchanging current ideas in gravitational physics. Each school has been devoted to a particular subject, and on previous occasions these subjects have covered topics such as supergravity, branes, black holes, the early Universe, observational cosmology, and quantum gravity. At the dawn of the XXI Century, General Relativity has finally become a standard tool in our understanding of numerous astrophysical phenomena. At the same time, the new generation of large interferometric gravitational wave detectors that are just beginning operation holds the promise of finally allowing the detection of gravitational waves and opening a new window on the Universe. However, because of the complexity of the Einstein field equations, the modelling of realistic astrophysical systems and gravitational wave sources can only be done using numerical simulations. Because of this, we have dedicated our VII School to the topic of relativistic astrophysics and numerical relativity. As in all our previous Schools, international leaders in the field were invited to give courses and plenary lectures. The school was complemented with more specialized talks presented in parallel sessions, some of which are included in these proceedings. All the contributions in this volume have been refereed, and they represent a sample of the courses, invited talks and contributed talks presented during our VII School. Our deep gratitude goes to all those who contributed to these proceedings, and to making our VII Mexican School a great success. Miguel Alcubierre Moya, Héctor Hugo García Compeán and Luis Arturo Ureña López Editors

  11. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  12. Electrical characteristics of a seawater MHD thruster. Final report

    SciTech Connect

    Tempelmeyer, K.E.

    1990-06-01

    There is renewed interest in the application of the magnetohydrodynamic (MHD) propulsion concept to marine propulsion. However, there is almost no experimental information concerning the major physical processes which will occur in a seawater MHD propulsion unit, such as (1) the seawater electrolysis process at operational conditions needed for ship propulsion, (2) the effects of bubble formation on the performance of a seawater thruster and (3) the effectiveness of the MHD interaction in seawater. Small scale tests of an MHD type channel but without an applied magnetic field have been carried out to provide information about the first two of these areas (1) seawater electrolysis and (2) the effect of the H2 bubbles generated during the electrolysis of seawater. Current/voltage characteristics were obtained with different electrode materials for current densities up to 0.3 amp/sq cm. The effect of bubble formation on the channel current has been assessed over a range of operating conditions. Long-duration tests to 100 hrs have been made to provide information on electrode durability and long-term operational problems.

  13. Performance characteristics of an MHD (Magnetohydrodynamic) pilot plant electrostatic precipitator

    NASA Astrophysics Data System (ADS)

    Lindner, J. S.; Jang, P. R.; Okhuysen, W. P.; Holt, J. K.

    In magnetohydrodynamic (MHD) power generation, a seed material, normally K2CO3, is added to enhance the conductivity of the coal-fired gas stream. The plasma is passed through a magnetic field and electricity is produced by the Hall effect. Future large scale MHD facilities are expected to be more efficient than conventional coal-fired power plants not only because of the dc electricity produced but also from increased heat recovery owing to the large (3000 K) combustion temperatures employed. There is; however, a finite cost for the seed material and the resulting K2SO4 particles (SO2 emissions are minimized by combination with seed potassium) must be collected, converted back to K2CO3 or KCO2H, and recycled back to the combustor. The performance characteristics of the MHD electrostatic precipitator (ESP) are therefore, of interest. We describe Mie scattering and electric field measurements on an MHD pilot scale ESP located at the Coal Fire Flow Facility (CFFF) at the University of Tennessee Space Institute. Results are reported for the determination of near-real-time collection efficiencies, the variation of the ESP performance with seed percentage, and initial studies on the extent of particle re-entrainment.

  14. Integral Constraints and MHD Stability

    NASA Astrophysics Data System (ADS)

    Jensen, T. H.

    2003-10-01

    Determining stability of a plasma in MHD equilibrium, energetically isolated by a conducting wall, requires an assumption on what governs the dynamics of the plasma. One example is the assumption that the plasma obeys ideal MHD, leading to the well known ``δ W" criteria [I. Bernstein, et al., Proc. Roy. Soc. London A244, 17 (1958)]. A radically different approach was used by Taylor [J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986)] in assuming that the dynamics of the plasma is restricted only by the requirement that helicity, an integral constant associated with the plasma, is conserved. The relevancy of Taylor's assumption is supported by the agreement between resulting theoretical results and experimental observations. Another integral constraint involves the canonical angular momentum of the plasma particles. One consequence of using this constraint is that tokamak plasmas have no poloidal current in agreement with some current hole tokamak observations [T.H. Jensen, Phys. Lett. A 305, 183 (2002)].

  15. 40 CFR 262.32 - Marking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.32 Marking. (a) Before transporting or offering hazardous waste for transportation off-site, a generator must mark each package of... transportation off-site, a generator must mark each container of 119 gallons or less used in such transportation...

  16. 40 CFR 262.32 - Marking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.32 Marking. (a) Before transporting or offering hazardous waste for transportation off-site, a generator must mark each package of... transportation off-site, a generator must mark each container of 119 gallons or less used in such transportation...

  17. 40 CFR 262.32 - Marking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.32 Marking. (a) Before transporting or offering hazardous waste for transportation off-site, a generator must mark each package of... transportation off-site, a generator must mark each container of 119 gallons or less used in such transportation...

  18. 40 CFR 262.32 - Marking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.32 Marking. (a) Before transporting or offering hazardous waste for transportation off-site, a generator must mark each package of... transportation off-site, a generator must mark each container of 119 gallons or less used in such transportation...

  19. 40 CFR 262.32 - Marking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Pre-Transport Requirements § 262.32 Marking. (a) Before transporting or offering hazardous waste for transportation off-site, a generator must mark each package of... transportation off-site, a generator must mark each container of 119 gallons or less used in such transportation...

  20. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    NASA Technical Reports Server (NTRS)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  1. The Biermann catastrophe of numerical MHD

    NASA Astrophysics Data System (ADS)

    Graziani, C.; Tzeferacos, P.; Lee, D.; Lamb, D. Q.; Weide, K.; Fatenejad, M.; Miller, J.

    2016-05-01

    The Biermann Battery effect is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel physical effect a resistive magnetic precursor in which Biermann-generated field in the shock “leaks” resistively upstream. The effect appears to be potentially observable in experiments at laser facilities.

  2. A base substitution in the exon of a collagen gene causes alternative splicing and generates a structurally abnormal polypeptide in a patient with Ehlers-Danlos syndrome type VII.

    PubMed Central

    Weil, D; D'Alessio, M; Ramirez, F; de Wet, W; Cole, W G; Chan, D; Bateman, J F

    1989-01-01

    An unusual splicing mutation has been characterized in the pro alpha 1(I) collagen gene of a sporadic case of Ehlers-Danlos Syndrome Type VII. Cloning of primer extended cDNA in conjunction with R-looping experiments established that nearly half of the pro alpha 1(I) collagen gene transcripts are abnormally spliced, for they lack exon 6 sequences. Analysis of cloned genomic fragments revealed that one of the proband's alleles displays the substitution of an A for a G in the last nucleotide of exon 6. The change converts the normal Met (ATG) codon to Ile (ATA) and, in addition, obliterates a NcoI restriction site. The latter event was exploited to demonstrate the de novo nature of the mutation since DNA from the unaffected parents was fully digested with the enzyme, after in vitro amplification by the polymerase chain reaction. Further confirmation of the missplicing was obtained by transient expression into animal cells of allelic minigene constructs. Finally, Western blot analysis of cyanogen bromide cleaved collagen and nucleotide sequencing of appropriately selected cDNA clones demonstrated the production of relatively low amounts of correctly spliced molecules harboring the Ile substitution, as well. Images PMID:2767050

  3. Vorticity equation for MHD fast waves in geospace environment

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Lundin, R.; Lui, A. T. Y.

    1993-01-01

    The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.

  4. Vorticity equation for MHD fast waves in geospace environment

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Lundin, R.; Lui, A. T. Y.

    1993-01-01

    The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.

  5. Topical application of recombinant activated factor VII during cesarean delivery for placenta previa.

    PubMed

    Schjoldager, Birgit T B G; Mikkelsen, Emmeli; Lykke, Malene R; Præst, Jørgen; Hvas, Anne-Mette; Heslet, Lars; Secher, Niels J; Salvig, Jannie D; Uldbjerg, Niels

    2017-06-01

    During cesarean delivery in patients with placenta previa, hemorrhaging after removal of the placenta is often challenging. In this condition, the extraordinarily high concentration of tissue factor at the placenta site may constitute a principle of treatment as it activates coagulation very effectively. The presumption, however, is that tissue factor is bound to activated factor VII. We hypothesized that topical application of recombinant activated factor VII at the placenta site reduces bleeding without affecting intravascular coagulation. We included 5 cases with planned cesarean delivery for placenta previa. After removal of the placenta, the surgeon applied a swab soaked in recombinant activated factor VII containing saline (1 mg in 246 mL) to the placenta site for 2 minutes; this treatment was repeated once if the bleeding did not decrease sufficiently. We documented the treatment on video recordings and measured blood loss. Furthermore, we determined hemoglobin concentration, platelet count, international normalized ratio, activated partial thrombin time, fibrinogen (functional), factor VII:clot, and thrombin generation in peripheral blood prior to and 15 minutes after removal of the placenta. We also tested these blood coagulation variables in 5 women with cesarean delivery planned for other reasons. Mann-Whitney test was used for unpaired data. In all 5 cases, the uterotomy was closed under practically dry conditions and the median blood loss was 490 (range 300-800) mL. There were no adverse effects of recombinant activated factor VII and we did not measure factor VII to enter the circulation. Neither did we observe changes in thrombin generation, fibrinogen, activated partial thrombin time, international normalized ratio, and platelet count in the peripheral circulation (all P values >.20). This study indicates that in patients with placenta previa, topical recombinant activated factor VII may diminish bleeding from the placenta site without initiation

  6. U. S. and Soviet MHD Technology: A Comparative Overview

    DTIC Science & Technology

    1974-01-01

    has been to emphasize gasification and liquefaction of coal rather than its use in other types of electric- power generation. The plasma MHD...very simply constructed low-pollution electric power plants of improved conver- sion efficiencies, using plentiful high-sulfur coal , for capital...considerably improved conversion efficiencies, using plentiful high- sulfur coal , at capital costs comparable to those of conventional turbine

  7. NaK-nitrogen liquid metal MHD converter tests at 30 kw

    NASA Technical Reports Server (NTRS)

    Cerini, D. J.

    1974-01-01

    The feasibility of electrical power generation with an ambient temperature liquid-metal MHD separator cycle is demonstrated by tests in which a NaK-nitrogen LM-MHD converter was operated at nozzle inlet pressures ranging from 100 to 165 N/sq cm, NaK flow rates from 46 to 72 kg/sec, and nitrogen flow rates from 2.4 to 3.8 kg/sec. The generator was operated as an eight-phase linear induction generator, with two of the eight phases providing magnetic field compensation to minimized electrical end losses at the generator channel inlet and exit.

  8. Enhanced Born charges in III-VII, IV-VII2 , and V-VII3 compounds

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua; Singh, David J.

    2010-07-01

    We report electronic-structure and lattice dynamics calculations on selected III-VII, IV-VII2 , and V-VII3 compounds. The common characteristic of these largely ionic compounds is that their outmost cation- s states are fully occupied and thus the conduction-band states are derived from the more spatially extended cation- p states, resulting in significant cross-band-gap hybridization, which enhances Born effective charges substantially. The large Born charges cause large splitting between longitudinal and transverse optic phonon modes and large static dielectric constants resulting mostly from the lattice contribution. This can lead to effective screening of defects and impurities that would otherwise be strong carrier traps and recombination centers and may therefore have positive effects on the carrier transport properties in radiation detectors based on these soft-lattice halides.

  9. Adenovirus core protein VII down-regulates the DNA damage response on the host genome.

    PubMed

    Avgousti, Daphne C; Della Fera, Ashley N; Otter, Clayton J; Herrmann, Christin; Pancholi, Neha J; Weitzman, Matthew D

    2017-08-09

    Viral manipulation of cellular proteins allows viruses to suppress host defenses and generate infectious progeny. Due to the linear double-stranded DNA nature of the adenovirus genome, the cellular DNA damage response (DDR) is considered a barrier for successful infection. The adenovirus genome is packaged with protein VII, a viral-encoded histone-like core protein that is suggested to protect incoming viral genomes from detection by cellular DNA damage machinery. We showed that protein VII localizes to host chromatin during infection, leading us to hypothesize that protein VII may affect DNA damage responses on the cellular genome. Here, we show that protein VII at cellular chromatin results in a significant decrease in accumulation of phosphorylated H2AX (γH2AX) following irradiation, indicating that protein VII inhibits DDR signaling. The oncoprotein SET was recently suggested to modulate the DDR by affecting access of repair proteins to chromatin. Since protein VII binds SET, we investigated a role for SET in DDR inhibition by protein VII. We show that knockdown of SET partially rescues the protein VII-induced decrease in γH2AX accumulation on the host genome, suggesting that SET is required for inhibition. Finally, we show that knockdown of SET also allows ATM to localize to incoming viral genomes bound by protein VII during infection with a mutant lacking early region E4. Together, our data suggest that the protein VII-SET interaction contributes to DDR evasion by adenovirus. Our results provide an additional example of a strategy used by adenovirus to manipulate the host DDR and show how viruses can modify cellular processes through manipulation of host chromatin.IMPORTANCE The DNA damage response (DDR) is a cellular network crucial for maintaining genome integrity. DNA viruses replicating in the nucleus challenge the resident genome and must overcome cellular responses, including the DDR. Adenoviruses are prevalent human pathogens that can cause a

  10. Heating of solar and stellar chromospheres and coronae by MHD waves

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    The two general classes of models that deal with the required heating of stellar chromospheres and coronae assume that outer stellar atmospheres are heated by hydrodynamic or by magnetohydrodynamic (MHD) waves and that these waves are generated by turbulent motions in the stellar convection zones. This paper considers the types of MHD waves and the source of these waves in stars like sun, the efficiency of the generation of MHD waves, and the manner of propagation and energy dissipation of MHD waves. It is shown that the basic criteria for the validity of any theory of MHD wave heating must account for the mean level of heating observed in stellar chromospheres and coronae, and for the range of radiative losses observed for a given spectral type. It is also required that the MHD wave heating theory accounts for the existence of inhomogeneities in stellar atmospheres. The results obtained indicate that magnetic tube waves might supply enough energy for the chromospheric and coronal heating and might also account for the observed range of variations of stellar radiative losses for a given spectral type.

  11. Ceramic component for MHD electrode

    DOEpatents

    Marchant, David D.; Bates, Junior L.

    1981-01-01

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf.sub.x In.sub.y A.sub.z O.sub.2 where x=0.1 to 0.4, y=0.3 to 0.6, z=0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  12. Ceramic components for MHD electrode

    DOEpatents

    Marchant, D.D.

    A ceramic component which exhibits electrical conductivity down to near room temperatures has the formula: Hf/sub x/In/sub y/A/sub z/O/sub 2/ where x = 0.1 to 0.4, y = 0.3 to 0.6, z = 0.1 to 0.4 and A is a lanthanide rare earth or yttrium. The component is suitable for use in the fabrication of MHD electrodes or as the current leadout portion of a composite electrode with other ceramic components.

  13. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-07-01

    This eighteenth quarterly technical progress report of the MHD Integrated Topping cycle Project presents the accomplishments during the period November 1, 1991 to January 31, 1992. The precombustor is fully assembled. Manufacturing of all slagging stage components has been completed. All cooling panels were welded in place and the panel/shell gap was filled with RTV. Final combustor assembly is in progress. The low pressure cooling subsystem (LPCS) was delivered to the CDIF. Second stage brazing issues were resolved. The construction of the two anode power cabinets was completed.

  14. Global MHD model of the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Wu, C. C.

    1983-01-01

    A global MHD model of the earth's magnetosphere is defined. An introduction to numerical methods for solving the MHD equations is given with emphasis on the shock-capturing technique. Finally, results concerning the shape of the magnetosphere and the plasma flows inside the magnetosphere are presented.

  15. Compendium of MHD-related terminology

    NASA Astrophysics Data System (ADS)

    Hart, A. T.; Lofftus, D. A.; Rudberg, D. A.; Green, R. A.

    The magnetohydrodynamic (MHD) researchers in the United States have joined together in the past few years to prove the viability of the technology. As new designs for hardware methods of operation, approaches for data analysis, and levels of understanding have been attained, a set of MHD-unique terminology has been developed but not always documented. A glossary of terminology unique to the study of MHD was compiled for SEAM 27 to provide an information source for workers in this field and to assist those interested in the commercial potential of MHD in reading and understanding technical articles on the subject. The terminology defined was primarily related to the U.S. proof-of-concept program of MHD development and eventual retrofitting of a coal fired plant with MHD equipment. Basic theoretical terms as well as terminology related to the commercialization of MHD were presented. Emphasis was placed on terms related to commercialization and those related to currently active areas of study. This paper builds on the SEAM 27 contribution. Areas of concentration in this paper are retrofit/power plant terminology, advanced measurement technology applicable to MHD, research sites.

  16. Workshop on Feedback Stabilization of MHD Stabilities

    SciTech Connect

    McGuire, K.; Kugel, H.; La Haye, R.; Mauel, M.; Nevins, W.; Prager, S.

    1996-12-31

    The feedback stabilization of MHD instabilities is an area of research that is critical for improving the performance and economic attractiveness of magnetic confinement devices. A Workshop dedicated to feedback stabilization of MHD instabilities was held from December 11-13, 1996 at the Princeton Plasma Physics Laboratory, Princeton NJ, USA. The resulting presentations, conclusions, and recommendations are summarized.

  17. Role of lysine and tryptophan residues in the biological activity of toxin VII (Ts gamma) from the scorpion Tityus serrulatus.

    PubMed

    Hassani, O; Mansuelle, P; Cestèle, S; Bourdeaux, M; Rochat, H; Sampieri, F

    1999-02-01

    Toxin VII (TsVII), also known as Ts gamma, is the most potent neurotoxin in the venom of the Brazilian scorpion Tityus serrulatus. It has been purified to homogeneity using a new fast and efficient method. Chemical modification of TsVII with the tryptophan-specific reagent o-nitrophenylsulfenyl chloride yielded three modified derivatives (residues Trp39, Trp50 and Trp54). Acetylation of TsVII mostly generated the monoacetylated Lys12 derivative. No side reactions were detected, as indicated by endoproteinase Lys-C peptide mapping, Edman degradation and electrospray mass spectrometry. Circular dichroism and fluorimetric measurements showed that none of the chemical modifications altered the overall structure of the derivatives. The acetylation of Lys12 or the sulfenylation of Trp39 or Trp54 led to a loss of both toxicity in mice and apparent binding affinity for rat brain and cockroach synaptosomal preparations. Sulfenylation of Trp50, however, moderately affected the toxicity of TsVII in mice and had almost no effect on its binding properties. A 3-dimensional model of TsVII was constructed by homology modeling. It suggests that the most reactive residues (Lys12 and Trp39 and Trp54) are all important in the functional disruption of neuronal sodium channels by TsVII, and are close to each other in the hydrophobic conserved region.

  18. α(1,3) Fucosyltransferases IV and VII are essential for the initial recruitment of basophils in chronic allergic inflammation.

    PubMed

    Saeki, Kazumi; Satoh, Takahiro; Yokozeki, Hiroo

    2013-09-01

    Basophils act as initiator cells for the development of IgE-mediated chronic allergic inflammation (IgE-CAI). However, detailed mechanisms of initial recruitment of basophils into the skin have yet to be clarified. Selectins mediate leukocyte capture and rolling on the vascular endothelium for extravasation. Counter-receptor activity of selectins is regulated by α(1, 3) fucosyltransferases (FTs) IV and VII. To clarify the contribution of selectin ligands regulated by FTs for initial basophil recruitment, IgE-CAI was induced in mice deficient in FT-IV and/or FT-VII genes. Although FT-IV(-/-) and FT-VII(-/-) mice exhibited comparable skin responses to wild-type mice, the FT-IV(-/-)/FT-VII(-/-) mice showed significantly impaired inflammation. Although the transfer of basophils to FcRγ(-/-) mice induced IgE-CAI, this induction was completely absent when basophils from FT-IV(-/-)/FT-VII(-/-) mice were transferred. L-selectin, but not P- and E-selectin, blocking Abs inhibited skin inflammation in vivo. P-selectin glycoprotein-1 (PSGL-1) antibody also ameliorated skin inflammation, and basophils were bound to L-selectin in a PSGL-1-dependent manner, which was regulated by FT-IV/VII. Functional PSGL-1 generated by basophil FT-IV/VII and its subsequent binding to L-selectin could be one of the essential steps required for initial basophil recruitment and the development of IgE-CAI in mice.

  19. Mechanism of Shortened Bones in Mucopolysaccharidosis VII

    PubMed Central

    Metcalf, Jason A.; Zhang, Yanming; Hilton, Matthew J.; Long, Fanxin; Ponder, Katherine P.

    2009-01-01

    Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease in which deficiency in β-glucuronidase results in glycosaminoglycan (GAG) accumulation in and around cells, causing shortened long bones through mechanisms that remain largely unclear. We demonstrate here that MPS VII mice accumulate massive amounts of the GAG chondroitin-4-sulfate (C4S) in their growth plates, the cartilaginous region near the ends of long bones responsible for growth. MPS VII mice also have only 60% of the normal number of chondrocytes in the growth plate and 55% of normal chondrocyte proliferation at 3 weeks of age. We hypothesized that this reduction in proliferation was due to C4S-mediated overactivation of fibroblast growth factor receptor 3 (FGFR3). However, MPS VII mice that were FGFR3-deficient still had shortened bones, suggesting that FGFR3 is not required for the bone defect. Further study revealed that MPS VII growth plates had reduced tyrosine phosphorylation of STAT3, a pro-proliferative transcription factor. This was accompanied by a decrease in expression of leukemia inhibitory factor (LIF) and other interleukin 6 family cytokines, and a reduction in phosphorylated tyrosine kinase 2 (TYK2), Janus kinase 1 (JAK1), and JAK2, known activators of STAT3 phosphorylation. Intriguingly, loss of function mutations in LIF and its receptor leads to shortened bones. This suggests that accumulation of C4S in the growth plate leads to reduced expression of LIF and reduced STAT3-tyrosine phosphorylation, which results in reduced chondrocyte proliferation and ultimately shortened bones. PMID:19375967

  20. Mechanism of shortened bones in mucopolysaccharidosis VII.

    PubMed

    Metcalf, Jason A; Zhang, Yanming; Hilton, Matthew J; Long, Fanxin; Ponder, Katherine P

    2009-07-01

    Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease in which deficiency in beta-glucuronidase results in glycosaminoglycan (GAG) accumulation in and around cells, causing shortened long bones through mechanisms that remain largely unclear. We demonstrate here that MPS VII mice accumulate massive amounts of the GAG chondroitin-4-sulfate (C4S) in their growth plates, the cartilaginous region near the ends of long bones responsible for growth. MPS VII mice also have only 60% of the normal number of chondrocytes in the growth plate and 55% of normal chondrocyte proliferation at 3weeks of age. We hypothesized that this reduction in proliferation was due to C4S-mediated overactivation of fibroblast growth factor receptor 3 (FGFR3). However, MPS VII mice that were FGFR3-deficient still had shortened bones, suggesting that FGFR3 is not required for the bone defect. Further study revealed that MPS VII growth plates had reduced tyrosine phosphorylation of STAT3, a pro-proliferative transcription factor. This was accompanied by a decrease in expression of leukemia inhibitory factor (LIF) and other interleukin 6 family cytokines, and a reduction in phosphorylated tyrosine kinase 2 (TYK2), Janus kinase 1 (JAK1), and JAK2, known activators of STAT3 phosphorylation. Intriguingly, loss of function mutations in LIF and its receptor leads to shortened bones. This suggests that accumulation of C4S in the growth plate leads to reduced expression of LIF and reduced STAT3 tyrosine phosphorylation, which results in reduced chondrocyte proliferation and ultimately shortened bones.

  1. An MHD model of the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Wu, C. C.

    1985-01-01

    It is pointed out that the earth's magnetosphere arises from the interaction of the solar wind with the earth's geomagnetic field. A global magnetohydrodynamics (MHD) model of the earth's magnetosphere has drawn much attention in recent years. In this model, MHD equations are used to describe the solar wind interaction with the magnetosphere. In the present paper, some numerical aspects of the model are considered. Attention is given to the ideal MHD equations, an equation of state for the plasma, the model as an initial- and boundary-value problem, the shock capturing technique, computational requirements and techniques for global MHD modeling, a three-dimensional mesh system employed in the global MHD model, and some computational results.

  2. Efficiently Finding Trends in Macroscopic MHD Stability Using Perturbed Equilibria

    NASA Astrophysics Data System (ADS)

    Comer, K. J.; Callen, J. D.; Hegna, C. C.; Turnbull, A. D.; Cowley, S. C.

    2001-10-01

    The effects of equilibrium shaping and profiles on long wavelength ideal MHD instabilities in toroidal plasmas are traditionally studied using numerical parameter scans. Previously, we introduced a new perturbative technique to explore these dependencies: assuming small equilibrium variations, new stability properties are found using a perturbation of the energy principle rather than with a traditional stability code. With this approach, stability dependencies can be efficiently examined without numerically generating complete MHD stability results for every set of parameters (which can be time-intensive for accurate representations of several configurations). Here, we briefly expand on previous successful perturbed stability analyses for screw pinch equilibria by discussing cases where the approach fails. Next, we extend the approach to toroidal geometry using the GATO and TOQ codes, and present cases that both validate the approach and suggest caution in its application.

  3. Feasibility of MHD submarine propulsion

    SciTech Connect

    Doss, E.D. ); Sikes, W.C. )

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

  4. MHD (Magnetohydrodynamics) recovery and regeneration

    SciTech Connect

    McIlroy, R. A.; Probert, P. B.; Lahoda, E. J.; Swift, W. M.; Jackson, D. M.; Prasad, J.; Martin, J.; Rogers, C.; Ho, K. K.; Senary, M. K.; Lee, S.; Westinghouse Electric Corp., Pittsburgh, PA; Argonne National Lab., IL; Tennessee Univ., Tullahoma, TN . Space Inst.; Hudson Engineering; Babcock and Wilcox Co., Alliance, OH . Re

    1988-10-01

    A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.

  5. Blister-inducing antibodies target multiple epitopes on collagen VII in mice

    PubMed Central

    Csorba, Kinga; Chiriac, Mircea Teodor; Florea, Florina; Ghinia, Miruna Georgiana; Licarete, Emilia; Rados, Andreea; Sas, Alexandra; Vuta, Vlad; Sitaru, Cassian

    2014-01-01

    Epidermolysis bullosa acquisita (EBA) is an autoimmune subepidermal blistering disease of mucous membranes and the skin caused by autoantibodies against collagen VII. In silico and wet laboratory epitope mapping studies revealed numerous distinct epitopes recognized by EBA patients' autoantibodies within the non-collagenous (NC)1 and NC2 domains of collagen VII. However, the distribution of pathogenic epitopes on collagen VII has not yet been described. In this study, we therefore performed an in vivo functional epitope mapping of pathogenic autoantibodies in experimental EBA. Animals (n = 10/group) immunized against fragments of the NC1 and NC2 domains of collagen VII or injected with antibodies generated against the same fragments developed to different extent experimental EBA. Our results demonstrate that antibodies targeting multiple, distinct epitopes distributed over the entire NC1, but not NC2 domain of collagen VII induce blistering skin disease in vivo. Our present findings have crucial implications for the development of antigen-specific B- and T cell-targeted therapies in EBA. PMID:25091020

  6. Non-MHD effects in the nonlinear development of the MHD-scale Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Umeda, Takayuki; Wada, Yasutaka

    2017-07-01

    The nonlinear evolution of the Rayleigh-Taylor instability (RTI) at a density shear layer transverse to magnetic field in a collisionless plasma is investigated by means of a fully kinetic Vlasov simulation with two spatial and two velocity dimensions. The primary RTI in the MHD regime develops symmetrically in a coordinate axis parallel to gravity as seen in the previous MHD simulations. The primary RTI in the Hall-MHD regime develops asymmetrically in a coordinate axis parallel to gravity. A compressible flow is formed at the secondary density shear layer by the Hall effect, which generates a strong scalar pressure gradient of ions. A Hall electric field due to the diamagnetic current results in the asymmetric flow at the tip of the finger structure. In the primary RTI with the ion gyro kinetic effect, secondary RTI with a wavelength shorter than the wavelength of the primary RTI is generated at the saturation stage of the primary RTI. A seed perturbation for the secondary RTI is excited by another secondary instability due to the coupling between the electron stress tensor and the Hall electric field. The heat flux term plays an important role in the time development of the total pressure. On the other hand, the contribution of the ion stress tensor is small in both the electric current and the total pressure.

  7. ORNL Resonance Evaluation for ENDF/B-VII.1

    SciTech Connect

    Leal, Luiz C; Guber, Klaus H; Wiarda, Dorothea; Arbanas, Goran; Dunn, Michael E

    2012-01-01

    Cross-section evaluations in the resonance region are performed at Oak Ridge National Laboratory (ORNL) with the computer code SAMMY based on formalisms derived from the R-matrix theory. Resonance parameters (RPs) obtained in the evaluation, combined with resonance formalism, replicate a regression of the experimental data. The RPs are also used to generate cross-section data for neutron transport calculations in analyses of nuclear reactor design and nuclear criticality safety. In addition to generating RPs, the evaluation also generates the resonance parameter covariance (RPC) data. Several ORNL resonance evaluations, including RPs and RPCs, were incorporated in the recently released US-evaluated nuclear data library, ENDF/B-VII.1. A brief summary of the RPs and RPCs evaluated at ORNL is given.

  8. Methods for Processing ENDF/B-VII with NJOY

    SciTech Connect

    MacFarlane, R.E.; Kahler, A.C.

    2010-12-15

    The NJOY Nuclear Data Processing System is widely used to convert evaluations in the Evaluated Nuclear Data Files (ENDF) format into forms useful for practical applications such as fission and fusion reactor analysis, stockpile stewardship calculations, criticality safety, radiation shielding, nuclear waste management, nuclear medicine procedures, and more. This paper provides a description of the system's capabilities, summary descriptions of the methods used, and information on how to use the code to process the modern evaluated nuclear data files from ENDF/B-VII. It begins with the generation of pointwise libraries, including reaction and resonance reconstruction, Doppler broadening, radiation heating and damage, thermal scattering data, unresolved resonance data, and gas production. It then reviews the production of libraries for the continuous-energy Monte Carlo code MCNP, multigroup neutron, photon, and particle cross sections and matrices, and photon interaction data. The generation of uncertainty information for ENDF data is discussed, including new capabilities for calculating covariances of resonance data, angular distributions, energy distributions, and radioactive nuclide production. NJOY's ability to prepare thermal scattering data evaluations for bound moderators (which was used during the preparation of the ENDF/B-VII library) is described. The strong plotting capabilities of NJOY are summarized. Many examples of black and white and color Postscript plots are included throughout the paper. The capabilities of NJOY to output multigroup data in several different formats to suit various applications is reviewed. Finally, a section is included that summarizes the history of the development of the NJOY system over the last 37 years.

  9. Methods for Processing ENDF/B-VII with NJOY

    NASA Astrophysics Data System (ADS)

    MacFarlane, R. E.; Kahler, A. C.

    2010-12-01

    The NJOY Nuclear Data Processing System is widely used to convert evaluations in the Evaluated Nuclear Data Files (ENDF) format into forms useful for practical applications such as fission and fusion reactor analysis, stockpile stewardship calculations, criticality safety, radiation shielding, nuclear waste management, nuclear medicine procedures, and more. This paper provides a description of the system's capabilities, summary descriptions of the methods used, and information on how to use the code to process the modern evaluated nuclear data files from ENDF/B-VII. It begins with the generation of pointwise libraries, including reaction and resonance reconstruction, Doppler broadening, radiation heating and damage, thermal scattering data, unresolved resonance data, and gas production. It then reviews the production of libraries for the continuous-energy Monte Carlo code MCNP, multigroup neutron, photon, and particle cross sections and matrices, and photon interaction data. The generation of uncertainty information for ENDF data is discussed, including new capabilities for calculating covariances of resonance data, angular distributions, energy distributions, and radioactive nuclide production. NJOY's ability to prepare thermal scattering data evaluations for bound moderators (which was used during the preparation of the ENDF/B-VII library) is described. The strong plotting capabilities of NJOY are summarized. Many examples of black&white and color Postscript plots are included throughout the paper. The capabilities of NJOY to output multigroup data in several different formats to suit various applications is reviewed. Finally, a section is included that summarizes the history of the development of the NJOY system over the last 37 years.

  10. 40 CFR Appendix Vii to Part 600 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false VII Appendix VII to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Appendix VII to Part 600 ...

  11. 77 FR 64400 - Order of Succession for HUD Region VII

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... URBAN DEVELOPMENT Order of Succession for HUD Region VII AGENCY: Office of Field Policy and Management... Succession for the Kansas City Regional Office and its Field Offices (Region VII). This Order of Succession supersedes all previous Orders of Succession for HUD Region VII. DATES: Effective Date: October 9, 2012....

  12. 29 CFR 1601.93 - Opinions-title VII.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false Opinions-title VII. 1601.93 Section 1601.93 Labor Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION PROCEDURAL REGULATIONS Title VII Interpretations and Opinions by the Commission § 1601.93 Opinions—title VII. Only the following may be relied upon as a “written...

  13. 29 CFR 1601.93 - Opinions-title VII.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Opinions-title VII. 1601.93 Section 1601.93 Labor Regulations Relating to Labor (Continued) EQUAL EMPLOYMENT OPPORTUNITY COMMISSION PROCEDURAL REGULATIONS Title VII Interpretations and Opinions by the Commission § 1601.93 Opinions—title VII. Only the following may be relied upon as a “written...

  14. 40 CFR Appendix Vii to Part 600 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false VII Appendix VII to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Appendix VII to Part 600...

  15. 40 CFR Appendix Vii to Part 600 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false VII Appendix VII to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Appendix VII to Part 600...

  16. Conceptual design of a coal-fired MHD retrofit. Final technical report

    SciTech Connect

    1994-06-01

    Coal-fired magnetohydrodynamics (MHD) technology is ready for its next level of development - an integrated demonstration at a commercial scale. The development and testing of MHD has shown its potential to be the most efficient, least costly, and cleanest way to burn coal. Test results have verified a greater than 99% removal of sulphur with a potential for greater than 60% efficiency. This development and testing, primarily funded by the U.S. Department of Energy (DOE), has progressed through the completion of its proof-of-concept (POC) phase at the 50 MWt Component Development and Integration Facility (CDIF) and 28 MWt Coal Fired Flow Facility (CFFF), thereby, providing the basis for demonstration and further commercial development and application of the technology. The conceptual design of a retrofit coal-fired MHD generating plant was originally completed by the MHD Development Corporation (MDC) under this Contract, DE-AC22-87PC79669. Thereafter, this concept was updated and changed to a stand-alone MHD demonstration facility and submitted by MDC to DOE in response to the fifth round of solicitations for Clean Coal Technology. Although not selected, that activity represents the major interest in commercialization by the developing industry and the type of demonstration that would be eventually necessary. This report updates the original executive summary of the conceptual design by incorporating the results of the POC program as well as MDC`s proposed Billings MHD Demonstration Project (BMDP) and outlines the steps necessary for commercialization.

  17. Emission line spectra of S VII ? S XIV in the 20 ? 75 ? wavelength region

    SciTech Connect

    Lepson, J K; Beiersdorfer, P; Behar, E; Kahn, S M

    2004-08-06

    As part of a larger project to complete a comprehensive catalogue of astrophysically relevant emission lines in support of new-generation X-ray observatories using the Lawrence Livermore electron beam ion traps EBIT-I and EBIT-II, the authors present observations of sulfur lines in the soft X-ray and extreme ultraviolet regions. The database includes wavelength measurements with standard errors, relative intensities, and line assignments for 127 transitions of S VII through S XIV between 20 and 75 {angstrom}. The experimental data are complemented with a full set of calculations using the Hebrew University Lawrence Livermore Atomic Code (HULLAC). A comparison of the laboratory data with Chandra measurements of Procyon allows them to identify S VII-S XI lines.

  18. Chapter 3: MHD stability, operational limits and disruptions

    NASA Astrophysics Data System (ADS)

    Hender, T. C.; Wesley, J. C.; Bialek, J.; Bondeson, A.; Boozer, A. H.; Buttery, R. J.; Garofalo, A.; Goodman, T. P.; Granetz, R. S.; Gribov, Y.; Gruber, O.; Gryaznevich, M.; Giruzzi, G.; Günter, S.; Hayashi, N.; Helander, P.; Hegna, C. C.; Howell, D. F.; Humphreys, D. A.; Huysmans, G. T. A.; Hyatt, A. W.; Isayama, A.; Jardin, S. C.; Kawano, Y.; Kellman, A.; Kessel, C.; Koslowski, H. R.; La Haye, R. J.; Lazzaro, E.; Liu, Y. Q.; Lukash, V.; Manickam, J.; Medvedev, S.; Mertens, V.; Mirnov, S. V.; Nakamura, Y.; Navratil, G.; Okabayashi, M.; Ozeki, T.; Paccagnella, R.; Pautasso, G.; Porcelli, F.; Pustovitov, V. D.; Riccardo, V.; Sato, M.; Sauter, O.; Schaffer, M. J.; Shimada, M.; Sonato, P.; Strait, E. J.; Sugihara, M.; Takechi, M.; Turnbull, A. D.; Westerhof, E.; Whyte, D. G.; Yoshino, R.; Zohm, H.; ITPA MHD, the; Disruption; Magnetic Control Topical Group

    2007-06-01

    Progress in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed. Recent theoretical and experimental research has made important advances in both understanding and control of MHD stability in tokamak plasmas. Sawteeth are anticipated in the ITER baseline ELMy H-mode scenario, but the tools exist to avoid or control them through localized current drive or fast ion generation. Active control of other MHD instabilities will most likely be also required in ITER. Extrapolation from existing experiments indicates that stabilization of neoclassical tearing modes by highly localized feedback-controlled current drive should be possible in ITER. Resistive wall modes are a key issue for advanced scenarios, but again, existing experiments indicate that these modes can be stabilized by a combination of plasma rotation and direct feedback control with non-axisymmetric coils. Reduction of error fields is a requirement for avoiding non-rotating magnetic island formation and for maintaining plasma rotation to help stabilize resistive wall modes. Recent experiments have shown the feasibility of reducing error fields to an acceptable level by means of non-axisymmetric coils, possibly controlled by feedback. The MHD stability limits associated with advanced scenarios are becoming well understood theoretically, and can be extended by tailoring of the pressure and current density profiles as well as by other techniques mentioned here. There have been significant advances also in the control of disruptions, most notably by injection of massive quantities of gas, leading to reduced halo current fractions and a larger fraction of the total thermal and magnetic energy dissipated by radiation. These advances in disruption control are supported by the development of means to predict impending disruption, most notably using neural networks. In addition to these advances in means to control or

  19. Very low activated factor VII and reduced factor VII antigen in familial abetalipoproteinaemia.

    PubMed

    Miller, G J; Mitropoulos, K A; Nanjee, M N; Howarth, D J; Martin, J C; Esnouf, M P; Reeves, B E; Miller, N E; Cooper, J A

    1998-08-01

    Abetalipoproteinaemia is a rare disorder of apolipoprotein B metabolism associated with extremely low plasma concentrations of triglyceride. To discover whether the general positive association between factor VII and triglyceride levels extends to this condition, 5 patients were compared with 18 controls. All patients had a triglyceride below 100 micromol/l. Plasma unesterified fatty acid concentration was normal. Although factor IX activity was only slightly reduced (mean 88% standard) and factor IX antigen was normal, mean activated factor VII in patients was strikingly reduced to 34% of that in controls, a level similar to that found in haemophilia B. The patients' mean factor VII activity and factor VII antigen were also significantly reduced to 54% and 63% of those in controls, respectively. Mean factor XI activity and tissue factor pathway inhibitor activity were reduced in patients to 70% and 75% of control values respectively, while factor XII, factor XI antigen, factor X, prothrombin and protein C were normal.

  20. Leveraging Information Technology. Track VII: Outstanding Applications.

    ERIC Educational Resources Information Center

    CAUSE, Boulder, CO.

    Eight papers from the 1987 CAUSE conference's Track VII, Outstanding Applications, are presented. They include: "Image Databases in the University" (Reid Kaplan and Gordon Mathieson); "Using Information Technology for Travel Management at the University of Michigan" (Robert E. Russell and John C. Hufziger); "On-Line Access…

  1. Intravenous pamidronate in osteogenesis imperfecta type VII.

    PubMed

    Cheung, Moira S; Glorieux, Francis H; Rauch, Frank

    2009-03-01

    Cyclical intravenous treatment with pamidronate is widely used to treat osteogenesis imperfecta (OI) types I, III, and IV, which are due to dominant mutations affecting collagen type I alpha chains. There is no information about the effects of pamidronate in children with OI type VII, an autosomal-recessive form of OI caused by a mutation in the cartilage-associated protein gene. In this retrospective single-center study, we compared the effects of pamidronate in four girls with OI type VII (age range 3.9-12.7 years) to those in eight girls with OI types caused by collagen type I mutations who were matched for age and disease severity. During 3 years of pamidronate therapy, lumbar spine areal bone mineral density increased and lumbar vertebral bodies improved in shape in patients with OI type VII. Other outcomes such as fracture rates and mobility scores did not show statistically significant changes in this small study cohort. There were no significant side effects noted during the time of follow-up. Thus, intravenous treatment with pamidronate seems to be safe and of some benefit in patients with OI type VII.

  2. Magnetic flux ropes in 3-dimensional MHD simulations

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha

    1990-01-01

    The interaction of the solar wind and the earth's magnetosphere is presently simulated by a 3D, time-dependent, global MHD method in order to model the magnetopause and magnetotail generation of magnetic flux ropes. It is noted that strongly twisted and localized magnetic flux tubes simular to magnetic flux ropes appear at the subpolar magnetopause when the IMF has a large azimuthal component, as well as a southward component. Plasmoids are generated in the magnetotail after the formation of a near-earth magnetic neutral line; the magnetic field lines have a helical structure that is connected from dawn to dusk.

  3. Magnetic flux ropes in 3-dimensional MHD simulations

    NASA Technical Reports Server (NTRS)

    Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha

    1990-01-01

    The interaction of the solar wind and the earth's magnetosphere is presently simulated by a 3D, time-dependent, global MHD method in order to model the magnetopause and magnetotail generation of magnetic flux ropes. It is noted that strongly twisted and localized magnetic flux tubes simular to magnetic flux ropes appear at the subpolar magnetopause when the IMF has a large azimuthal component, as well as a southward component. Plasmoids are generated in the magnetotail after the formation of a near-earth magnetic neutral line; the magnetic field lines have a helical structure that is connected from dawn to dusk.

  4. MHD Technology Transfer, Integration and Review Committee

    SciTech Connect

    Not Available

    1989-10-01

    As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

  5. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  6. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  7. Particle acceleration in MHD turbulence

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey

    2017-05-01

    MHD Turbulence describes dynamics of astrophysical plasmas on large scale. It is characterized by energy transfer between different scales and the exchange of energy with nonthermal population - typically cosmic rays. Recent progress in theory regarding almost all basic regimes of turbulence - from the dynamo to the decaying case and the asymptotic scaling laws, allowed us to proceed with more observationally motivated questions. One of them is why almost all strongly magnetized environments are indeed observable, e.g. why such environments are infused with high-energy particles, their distributions stretching to energies orders of magnitude higher than thermal. It turns out that there are generic mechanisms of acceleration in turbulence, both second and first order in v/c, the latter was somehow unnoticed. These generic mechanisms may explain the ubiquity of non-thermal tails in various magnetized astrophysical environments, e.g. solar chromosphere, pulsar magnetospheres, jets from supermassive black holes, gamma-ray bursts, etc.

  8. Cosmological AMR MHD with Enzo

    SciTech Connect

    Xu, Hao; Li, Hui; Li, Shengtai

    2009-01-01

    In this work, we present EnzoMHD, the extension of the cosmological code Enzoto include magnetic fields. We use the hyperbolic solver of Li et al. (2008) for the computation of interface fluxes. We use constrained transport methods of Balsara & Spicer (1999) and Gardiner & Stone (2005) to advance the induction equation, the reconstruction technique of Balsara (2001) to extend the Adaptive Mesh Refinement of Berger & Colella (1989) already used in Enzo, though formulated in a slightly different way for ease of implementation. This combination of methods preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non cosmologjcal tests problems to demonstrate the quality of solution resulting from this combination of solvers.

  9. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-07-01

    This seventeenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period August 1, 1991 to October 31, 1991. Manufacturing of the prototypical combustor pressure shell has been completed including leak, proof, and assembly fit checking. Manufacturing of forty-five cooling panels was also completed including leak, proof, and flow testing. All precombustor internal components (combustion can baffle and swirl box) were received and checked, and integration of the components was initiated. A decision was made regarding the primary and backup designs for the 1A4 channel. The assembly of the channel related prototypical hardware continued. The cathode wall electrical wiring is now complete. The mechanical design of the diffuser has been completed.

  10. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-02-01

    A summary of the work is excerpted here. Final design of an MHD channel for the ITC program POC test has been completed. The channel was designed to be capable of 1.5 MW {sub e} power output and a lifetime of 2000 hours. Emphasis was placed upon durability and reliability. Hence, specific measures were taken to design against channel damage due to electric faults. The life-limiting issues associated with electrochemical corrosion and erosion of gas-side surfaces were addressed by the use of various materials with proven wear characteristics in a coal-fired MHD channel environment. Pitting of prototypical sidewall coupons was observed in the CDIF workhorse testing. The most likely cause of the observed pitting, water leaks resulting from cooling water tube braze failures, has been remedied. New brazing procedures and isolation of the sidebar gas-side material from water contact will prevent sidebar pitting in the prototypical channel. Water-side corrosion tests reported in this quarterly report include the latest results of tungsten-copper elements at controlled pH, heat flux and voltage levels. In the combustion subsystem, efforts continued to focus on understanding and improving the current levels of slag recovery and seed utilization achieved by the combustor. Analytical support was also provided in the areas of slag rejection system operation, precombustor operation, and oil burner design modification. Channel data analysis activities continued in support of prototypical coupon testing at the CDIF. Analyses are presented on channel wall slagging behavior and sidewall voltage distributions.

  11. Pulse Detonation Rocket MHD Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  12. Extended MHD Modeling of Tearing-Driven Magnetic Relaxation

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua

    2016-10-01

    Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from < J × B > / ne can counter the MHD effect from - < V × B > in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at

  13. Specific Mass Estimates for A Vapor Core Reactor With MHD

    SciTech Connect

    Knight, Travis; Smith, Blair; Anghaie, Samim

    2002-07-01

    This study investigated the development of a system concept for space power generation and nuclear electric propulsion based on a vapor core reactor (VCR) with magnetohydrodynamic (MHD) power conversion system, coupled to a magnetoplasma-dynamic (MPD) thruster. The VCR is a liquid-vapor core reactor concept operating with metallic uranium or uranium tetrafluoride (UF{sub 4}) vapor as the fissioning fuel and alkali metals or their fluorides as working fluid in a closed Rankine cycle with MHD energy conversion. Gaseous and liquid-vapor core reactors can potentially provide the highest reactor and cycle temperature among all existing or proposed fission reactor designs. This unique feature makes this reactor concept a very natural and attractive candidate for very high power (10 to 1000 MWe) and low specific mass (0.4 to 5 kg/kWe) nuclear electric propulsion (NEP) applications since the MHD output could be coupled with minimal power conditioning to MPD thrusters or other types of thruster for producing thrust at very high specific impulse (I{sub sp} 1500 to 10,000 s). The exceptional specific mass performance of an optimized VCRMHD- NEP system could lead to a dramatic reduction in the cost and duration of manned or robotic interplanetary as well as interstellar missions. The VCR-MHD-NEP system could enable very efficient Mars cargo transfers or short (<8 month) Mars round trips with less initial mass in low Earth orbit (IMLEO). The system could also enable highly efficient lunar cargo transfer and rapid missions to other destinations throughout the solar system. (authors)

  14. MHD-EMP analysis and protection. Technical report. [MHD-EMP (magnetohydrodynamic-electromagnetic pulse)

    SciTech Connect

    Barnes, P.R.; Tesche, F.M.; McConnell, B.W.; Vance, E.F.

    1993-09-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic-electromagnetic pulse (MHD-EMP). MHD-EMP is similar to solar geomagnetic storms in its global and low frequency (less than 1 Hz) nature except that it can be more intense with a shorter duration. It will induce quasi-dc currents in long lines. The MHD-EMP induced currents may cause large voltage fluctuations and severe harmonic distortion in commercial electric power systems. Several MHD-EMP coupling models for predicting the induced current on a wide variety of conducting structures are described, various simulation concepts are summarized, and the results from several MHD-EMP tests are presented. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building, and the commercial power harmonics and voltage swings must be addressed. It is found that facilities can be protected against MHD-EMP by using methods which are consistent with standard engineering practices. MHD-EMP Interaction Analysis, Power Line Model, MHD-EMP Protection Guidelines, Transformer Test.

  15. Open Boundary Conditions for Dissipative MHD

    SciTech Connect

    Meier, E T

    2011-11-10

    In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or 'open' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD.

  16. MHD Instabilities in Simple Plasma Configuration

    DTIC Science & Technology

    1984-01-01

    cause the field lines to break and reconnect. . This work is divided into two parts. Chapters " describe linear theory and Chapters -XV- describe the...details in any non- linear theory can rapidly mushroom out of all proportion. For this reason much work in nonlinear MHD theory is done by numerical...99 IX. INSTABILITIES IN A TOROIDAL PLASMA ........................ 125 X. QUASI- LINEAR THEORY OF MHD INSTABILITIES ........... 133

  17. Applying MHD Results to a Scramjet Vehicle

    DTIC Science & Technology

    2007-02-12

    1194, Reno, NV, January 2005. 10. Rosa, R.J., "Magnetohydrodynamic Energy Conversion", Hemisphere Publishing Corp., New York, 1968, Revised Printing ...Introduction and Background Projects Analytical and experimental studies of both electrohydrodynamic (EHD) and magnetohydrodynamic (MHD) application to...Institute, Tullahoma, TN, June 1981. 26. Vendell, E.W., "Free- Jet Electrical Conductivity Profiles of a Seeded MHD Combustion Plasma", 15"’ Symposium

  18. The Biermann Catastrophe in Numerical MHD

    NASA Astrophysics Data System (ADS)

    Graziani, Carlo; Tzeferacos, Petros; Lee, Dongwook; Weide, Klaus; Lamb, Donald; Fatenejad, Milad; Miller, Joshua

    2014-10-01

    The Biermann Battery (BB) effect is widely invoked as a mechanism to generate cosmic magnetic fields from unmagnetized plasmas. The BB effect, which relies on large, non-aligned gradients of electron density and pressure, is expected to function most efficiently at shocks, where such gradients are largest. Simulations of cosmic magnetogenesis have accordingly relied on shocks to enhance the BB effect. What went unnoticed until recently is the fact that straightforward algorithmic implementations of the BB effect in MHD codes break down precisely at hydrodynamic discontinuities such as shocks - where the BB effect is of greatest interest - yielding results that fail to converge with resolution. We discuss this breakdown, show its origin, and present an alternative algorithm that gives finite and convergent results. We demonstrate convergence using an implementation of the algorithm within the FLASH code, and verify that the algorithm yields physically sensible results at shocks. We discuss novel - and physically observable - effects that attend the BB effect at shocks. This work was supported in part at the University of Chicago by DOE NNSA ASC.

  19. Magnetohydrodynamic generator of electrical energy using gasification products of lignite coal

    NASA Astrophysics Data System (ADS)

    Derevianko, V. A.; Slavin, V. S.; Sokolov, V. S.

    1980-10-01

    An investigation is presented of an MHD generator of electrical energy fueled by gasification products of lignite coals using the T-layer effect which eliminates caustic additives. A quasi-one-dimensional theory of linear MHD processes is constructed on the basis of MHD equations; a design of an industrial generator is discussed.

  20. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents

    PubMed Central

    Sestak, Vit; Stariat, Jan; Cermanova, Jolana; Potuckova, Eliska; Chladek, Jaroslav; Roh, Jaroslav; Bures, Jan; Jansova, Hana; Prusa, Petr; Sterba, Martin; Micuda, Stanislav; Simunek, Tomas; Kalinowski, Danuta S.; Richardson, Des R.; Kovarikova, Petra

    2015-01-01

    Di(2-pyridyl)ketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di(2-pyridyl)ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) are novel, highly potent and selective anti-tumor and anti-metastatic drugs. Despite their structural similarity, these agents differ in their efficacy and toxicity in-vivo. Considering this, a comparison of their pharmacokinetic and pharmaco/toxico-dynamic properties was conducted to reveal if these factors are involved in their differential activity. Both compounds were administered to Wistar rats intravenously (2 mg/kg) and their metabolism and disposition were studied using UHPLC-MS/MS. The cytotoxicity of both thiosemicarbazones and their metabolites was also examined using MCF-7, HL-60 and HCT116 tumor cells and 3T3 fibroblasts and H9c2 cardiac myoblasts. Their intracellular iron-binding ability was characterized by the Calcein-AM assay and their iron mobilization efficacy was evaluated. In contrast to DpC, Dp44mT undergoes rapid demethylation in-vivo, which may be related to its markedly faster elimination (T1/2 = 1.7 h for Dp44mT vs. 10.7 h for DpC) and lower exposure. Incubation of these compounds with cancer cells or cardiac myoblasts did not result in any significant metabolism in-vitro. The metabolism of Dp44mT in-vivo resulted in decreased anti-cancer activity and toxicity. In conclusion, marked differences in the pharmacology of Dp44mT and DpC were observed and highlight the favorable pharmacokinetics of DpC for cancer treatment. PMID:26623727

  1. Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents.

    PubMed

    Sestak, Vit; Stariat, Jan; Cermanova, Jolana; Potuckova, Eliska; Chladek, Jaroslav; Roh, Jaroslav; Bures, Jan; Jansova, Hana; Prusa, Petr; Sterba, Martin; Micuda, Stanislav; Simunek, Tomas; Kalinowski, Danuta S; Richardson, Des R; Kovarikova, Petra

    2015-12-15

    Di(2-pyridyl)ketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di(2-pyridyl)ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) are novel, highly potent and selective anti-tumor and anti-metastatic drugs. Despite their structural similarity, these agents differ in their efficacy and toxicity in-vivo. Considering this, a comparison of their pharmacokinetic and pharmaco/toxico-dynamic properties was conducted to reveal if these factors are involved in their differential activity. Both compounds were administered to Wistar rats intravenously (2 mg/kg) and their metabolism and disposition were studied using UHPLC-MS/MS. The cytotoxicity of both thiosemicarbazones and their metabolites was also examined using MCF-7, HL-60 and HCT116 tumor cells and 3T3 fibroblasts and H9c2 cardiac myoblasts. Their intracellular iron-binding ability was characterized by the Calcein-AM assay and their iron mobilization efficacy was evaluated. In contrast to DpC, Dp44mT undergoes rapid demethylation in-vivo, which may be related to its markedly faster elimination (T1/2 = 1.7 h for Dp44mT vs. 10.7 h for DpC) and lower exposure. Incubation of these compounds with cancer cells or cardiac myoblasts did not result in any significant metabolism in-vitro. The metabolism of Dp44mT in-vivo resulted in decreased anti-cancer activity and toxicity. In conclusion, marked differences in the pharmacology of Dp44mT and DpC were observed and highlight the favorable pharmacokinetics of DpC for cancer treatment.

  2. Intelsat VII communications capabilities and performance

    NASA Astrophysics Data System (ADS)

    Abdel-Nabi, T.; Koh, E.; Kennedy, D.

    This paper describes the general characteristics of the Intelsat VII communications payload and analyzes the suitability of its design for digital transmission, for efficient incorporation of small earth stations into the Intelsat network, and for a relatively straightforward transition from the current Intelsat VA/VI configuration. An overview is presented of the comunications performance of the Intelsat VII satellite for the more important Intelsat digital and analog services, and earth stations standards. Specifically, the advantages, in terms of performance and capabilities, of the improved transponder linearity characteristics associated with the C-Band SSPA's and the K(u)-Band linearized TWTA's are addressed. The enhanced ability of this spacecraft to provide bandwidth where required from several possible orbital locations is discussed.

  3. CASMO5 JENDL-4.0 and ENDF/B-VII.1beta4 libraries

    SciTech Connect

    Rhodes, J.; Gheorghiu, N.; Ferrer, R.

    2012-07-01

    This paper details the generation of neutron data libraries for the CASMO5 lattice physics code based on the recently released JENDL-4.0 and ENDF/B-VII.1beta4 nuclear data evaluations. This data represents state-of-the-art nuclear data for late-2011. The key features of the new evaluations are briefly described along with the procedure for processing of this data into CASMO5, 586-energy group neutron data libraries. Finally some CASMO5 results for standard UO{sub 2} and MOX critical experiments for the two new libraries and the current ENDF/B-VII.0 CASMO5 library are presented including the B and W 1810 series, DIMPLE S06A, S06B, TCA reflector criticals with iron plates and the PNL-30-35 MOX criticals. The results show that CASMO5 with the new libraries is performing well for these criticals with a very slight edge in results to the JENDL-4.0 nuclear data evaluation over the ENDF/B-VII.1beta4 evaluation. Work is currently underway to generate a CASMO5 library based on the final ENDF/B-VII.R1 evaluation released Dec. 22, 2011. (authors)

  4. Clinical response to persistent, low-level beta-glucuronidase expression in the murine model of mucopolysaccharidosis type VII.

    PubMed

    Donsante, A; Levy, B; Vogler, C; Sands, M S

    2007-04-01

    Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by beta-glucuronidase (GUSB) deficiency. This disease exhibits a broad spectrum of clinical signs including skeletal dysplasia, retinal degeneration, cognitive deficits and hearing impairment. Sustained, high-level expression of GUSB significantly improves the clinical course of the disease in the murine model of MPS VII. Low levels of enzyme expression (1-5% of normal) can significantly reduce the biochemical and histopathological manifestations of MPS VII. However, it has not been clear from previous studies whether persistent, low levels of circulating GUSB lead to significant improvements in the clinical presentation of this disease. We generated a rAAV2 vector that mediates persistent, low-level GUSB expression in the liver. Liver and serum levels of GUSB were maintained at approximately 5% and approximately 2.5% of normal, respectively, while other tissue ranged from background levels to 0.9%. This level of activity significantly reduced the secondary elevations of alpha-galactosidase and the levels of glycosaminoglycans in multiple tissues. Interestingly, this level of GUSB was also sufficient to reduce lysosomal storage in neurons in the brain. Although there were small but statistically significant improvements in retinal function, auditory function, skeletal dysplasia, and reproduction in rAAV-treated MPS VII mice, the clinical deficits were still profound and there was no improvement in lifespan. These data suggest that circulating levels of GUSB greater than 2.5% will be required to achieve substantial clinical improvements in MPS VII.

  5. Generation of CD4+ blastoid T cells showing marked upregulation of CD4, class I and II MHC, and IL2 receptor molecules is required for the expression of potent encephalitogenicity.

    PubMed

    Kira, J; Itoyama, Y; Goto, I

    1989-10-15

    The relationship between surface molecule expression and encephalitogenicity of myelin basic protein (BP)-sensitized cells induced by three different sensitization protocols was studied using adoptive transfer in Lewis rats. (i) In BP/CFA sensitization, CD4+ blastoid T cells showing marked upregulation of CD4, class I and II MHC, and IL2 receptor molecules, but not CD5, CD8, or CD45, were generated after culture with BP. In this case, BP-cultured cells were strongly encephalitogenic in the recipients. (ii) In the case of BP/IFA sensitization, CD4+ T cells showed no remarkable change of cell size or surface molecule expression after culture with BP and were weakly encephalitogenic in the recipients. Vigorous proliferation of the cells induced by addition of recombinant IL2 to the culture with BP neither enhanced the encephalitogenicity nor produced CD4+ blastoid T cells showing marked upregulation of CD4, class I and II MHC, and IL2 receptor molecules. (iii) The sequentially transferred naive T cells showed no remarkable change of cell size or surface molecule expression, even after a second culture with BP, and were the least encephalitogenic. These data suggest that the generation of CD4+ blastoid T cells showing marked upregulation of CD4, class I and II MHC, and IL2 receptor molecules but not vigorous proliferation correlates closely with the potent encephalitogenicity in vivo.

  6. Comparative analysis of CCMHD power plants. [Closed Cycle MHD

    NASA Technical Reports Server (NTRS)

    Alyea, F. N.; Marston, C. H.; Mantri, V. B.; Geisendorfer, B. G.; Doss, H.

    1981-01-01

    A study of Closed Cycle MHD (CCMHD) power generation systems has been conducted which emphasizes both advances in component conceptual design and overall system performance. New design data are presented for the high temperature, regenerative argon heaters (HTRH) and the heat recovery/seed recovery (HRSR) subsystem. Contamination of the argon by flue gas adsorbed in the HTRH is examined and a model for estimation of contamination effects in operating systems is developed. System performance and cost data have been developed for the standard CCMHD/steam cycle as powered by both direct fired cyclone combustors and selected coal gasifiers. In addition, a new CCMHD thermodynamic cycle has been identified.

  7. Employing analogies for ducted MHD waves in dense coronal structures

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.

    1988-01-01

    Analogies of fast MHD waves propagating along a dense coronal structure are exploited to examine how the size and shape of the inhomogeneity affect the properties of the Love- and Pekeris-type waves. The profile's shape determines the dispersive nature of the waves. Excited impulsively, magnetic Love and Pekeris waves give rise to quasi-periodic oscillations with a duration and time scale that depend on the cross-sectional area and strength of the inhomogeneity. More diffuse coronal inhomogeneities support impulsively generated periodic oscillations, with the quasi-periodic signature being absent.

  8. Anisotropy of MHD Turbulence at Low Magnetic Reynolds Number

    NASA Technical Reports Server (NTRS)

    Zikanov, O.; Vorobev, A.; Thess, A.; Davidson, P. A.; Knaepen, B.

    2004-01-01

    Turbulent fluctuations in MHD flows are known to become dimensionally anisotropic under the action of a sufficiently strong magnetic field. We consider the technologically relevant case of low magnetic Reynolds number and apply the method of DNS of forced flow in a periodic box to generate velocity fields. The analysis based on different anisotropy characteristics shows that the dimensional anisotropy is virtually scale-independent. We also find that, except for the case of very strong magnetic field, the flow is componentally isotropic. Its kinetic energy is practically uniformly distributed among the velocity components.

  9. Decreased MCM2-6 in Drosophila S2 Cells Does Not Generate Significant DNA Damage or Cause a Marked Increase in Sensitivity to Replication Interference

    PubMed Central

    Crevel, Isabelle; Crevel, Gilles; Gostan, Thierry; de Renty, Christelle; Coulon, Vincent; Cotterill, Sue

    2011-01-01

    A reduction in the level of some MCM proteins in human cancer cells (MCM5 in U20S cells or MCM3 in Hela cells) causes a rapid increase in the level of DNA damage under normal conditions of cell proliferation and a loss of viability when the cells are subjected to replication interference. Here we show that Drosophila S2 cells do not appear to show the same degree of sensitivity to MCM2-6 reduction. Under normal cell growth conditions a reduction of >95% in the levels of MCM3, 5, and 6 causes no significant short term alteration in the parameters of DNA replication or increase in DNA damage. MCM depleted cells challenged with HU do show a decrease in the density of replication forks compared to cells with normal levels of MCM proteins, but this produces no consistent change in the levels of DNA damage observed. In contrast a comparable reduction of MCM7 levels has marked effects on viability, replication parameters and DNA damage in the absence of HU treatment. PMID:22102875

  10. MHD equilibria with diamagnetic effects

    NASA Astrophysics Data System (ADS)

    Tessarotto, M.; Zorat, R.; Johnson, J. L.; White, R. B.

    1997-11-01

    An outstanding issue in magnetic confinement is the establishment of MHD equilibria with enhanced flow shear profiles for which turbulence (and transport) may be locally effectively suppressed or at least substantially reduced with respect to standard weak turbulence models. Strong flows develop in the presence of equilibrium E× B-drifts produced by a strong radial electric field, as well as due to diamagnetic contributions produced by steep equilibrium radial profiles of number density, temperature and the flow velocity itself. In the framework of a kinetic description, this generally requires the construction of guiding-center variables correct to second order in the relevant expansion parameter. For this purpose, the Lagrangian approach developed recently by Tessarotto et al. [1] is adopted. In this paper the conditions of existence of such equilibria are analyzed and their basic physical properties are investigated in detail. 1 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.

  11. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-02-01

    This fourteenth quarterly technical progress report of the MHD Integrated Topping Cycle Project presents the accomplishments during the period November 1, 1990 to January 31, 1991. Testing of the High Pressure Cooling Subsystem electrical isolator was completed. The PEEK material successfully passed the high temperature, high pressure duration tests (50 hours). The Combustion Subsystem drawings were CADAM released. The procurement process is in progress. An equipment specification and RFP were prepared for the new Low Pressure Cooling System (LPCS) and released for quotation. Work has been conducted on confirmation tests leading to final gas-side designs and studies to assist in channel fabrication.The final cathode gas-side design and the proposed gas-side designs of the anode and sidewall are presented. Anode confirmation tests and related analyses of anode wear mechanisms used in the selection of the proposed anode design are presented. Sidewall confirmation tests, which were used to select the proposed gas-side design, were conducted. The design for the full scale CDIF system was completed. A test program was initiated to investigate the practicality of using Avco current controls for current consolidation in the power takeoff (PTO) regions and to determine the cause of past current consolidation failures. Another important activity was the installation of 1A4-style coupons in the 1A1 channel. A description of the coupons and their location with 1A1 channel is presented herein.

  12. MHD waveguides in space plasma

    SciTech Connect

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2010-07-15

    The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, {omega}) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.

  13. ENDF/B-VII.1 versus ENDF/B-VII.0: What's Different?

    SciTech Connect

    Cullen, D E

    2012-03-20

    Recently the new ENDF/B-VII.1 library was released; this completely replaces the earlier ENDF/B-VII.0 library. One of the first questions we ask about a new library is: What's Different? Here I attempt to at least partially answer this question. I present results in both tabulated form (so you can quickly determine if any evaluations of interest to you have changed), and graphic form (so that you can see how much evaluations have changed and in what energy ranges). For the table I have compared what I refer to as the ENDF neutron data, namely MF=1 through 6. Here I did a character-by-character comparison of the same sections (MF/MT) that appear I both ENDF/B-VII.0 and VII.1; here I found differences in 170 evaluations. For the plots I have only compared the total cross sections for all evaluations that are common to both libraries, and I found that of the 423 evaluations in ENDF/B-VII.1, 120 of these have total cross sections that differ by 1% or more from the evaluation of the same isotope in ENDF/B-VII.0. This should be considered only a preliminary comparison; obviously there can be more subtle important differences that do not effect of total cross sections. Here I present plots comparing the total cross section of these 120 isotopes. The plots are only broad overviews of the total cross sections over their entire energy range. If you have interest in more detailed plots for specific evaluations, you can download the evaluations [1,2] and the PREPRO [3] codes I used to prepare and view the data. This is all I needed to do my comparisons, and is all you should need to do any more detailed comparisons to meet your individual needs.

  14. MHD heat and seed recovery technology project. Eighth quarterly report, October-December 1979

    SciTech Connect

    Petrick, M.; Johnson, T. R.

    1980-08-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The work is being done in close cooperation with the Heat Recovery-Seed Recovery facilities, which will be 20-MW prototypes of the MHD steam bottoming system. The primary effort of the HSR Technology Project is directed toward experimental investigations of critical issues, such as (1) NO/sub x/ behavior in the radiant boiler and secondary combustor; (2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed-slag separation; (3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; (4) formation, growth, and deposition of the seed-slag particles; (5) character of the combustion gas effluents; and (6) the corrosion and erosion of ceramic and metallic materials of construction. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system. Activities are reported.

  15. MHD heat and seed recovery technology project. Ninth quarterly report, January-March 1980

    SciTech Connect

    Petrick, Michael; Johnson, Terry R.

    1980-05-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The primary effort of the HSR Technology Project at Argonne is directed toward experimental investigations of critical problem areas, such as (1) NO/sub x/ behavior in the radiant boiler and secondary combustor; (2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed-slag separation; (3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; (4) formation, growth, and deposition of seed-slag particles; and (5) character of the combustion gas effluents. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, identification of ceramic and metallic materials for service in the MHD-steam plant, and evaluation of seed regeneration processes. Progress is described.

  16. Estimating a planetary magnetic field with time-dependent global MHD simulations using an adjoint approach

    NASA Astrophysics Data System (ADS)

    Nabert, Christian; Othmer, Carsten; Glassmeier, Karl-Heinz

    2017-05-01

    The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD) simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms) magnetosheath data to estimate Earth's dipole moment.

  17. A numerical code for a three-dimensional magnetospheric MHD equilibrium model

    NASA Technical Reports Server (NTRS)

    Voigt, G.-H.

    1992-01-01

    Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.

  18. MHD simulations of DC helicity injection for current drive in tokamaks

    SciTech Connect

    Sovinec, C.R.; Prager, S.C.

    1994-12-01

    MHD computations of DC helicity injection in tokamak-like configurations show current drive with no ``loop voltage`` in a resistive, pressureless plasma. The self-consistently generated current profiles are unstable to resistive modes that partially relax the profile through the MHD dynamo mechanism. The current driven by the fluctuations leads to closed contours of average poloidal flux. However, the 1% fluctuation level is large enough to produce a region of stochastic magnetic field. A limited Lundquist number (S) scan from 2.5 {times} 10{sup 3} to 4 {times} 10{sup 4} indicates that both the fluctuation level and relaxation increase with S.

  19. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  20. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1990-07-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. The work performed to date in the analysis of channel gas side materials has served to identify and clarify the respective environments to which the various materials are subjected and identified a performance ranking of materials. For high voltage intercathode gaps, which show the most severe wear, the materials rank in the order from best to worst: W, Mo, 90WCu, 97W2Fe1Ni, 75WCu, and Cr. We have shown data which indicates that lifetime is sensitive to gap voltage. Therefore for conditions under which iron oxide addition maintains low voltage intercathode gaps 75WCu becomes an excellent cathode material.

  1. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    NASA Astrophysics Data System (ADS)

    González, J. J.; Guzmán, F.

    2015-12-01

    In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  2. MHD forced convection flow adjacent to a non-isothermal wedge

    SciTech Connect

    Yih, K.A.

    1999-08-01

    The problem of magnetohydrodynamic (MHD) incompressible viscous flow has many important engineering applications in devices such as MHD power generator and the cooling of reactors. In this analysis, the effects of viscous dissipation and stress work on the MHD forced convection adjacent to a non-isothermal wedge is numerically analyzed. These partial differential equations are transformed into the nonsimilar boundary layer equations and solved by the Keller box method. Numerical results for the local friction coefficient and the local Nusselt number are presented for the pressure gradient parameter m, the magnetic parameter {xi}, the Prandtl number Pr, and the Eckert number Ec. In general, increasing the pressure gradient parameter m or the magnetic parameter {xi} or the Prandtl number Pr or decreasing the Eckert number EC increases the local Nusselt number.

  3. Test particle acceleration in a numerical MHD experiment of an anemone jet

    NASA Astrophysics Data System (ADS)

    Rosdahl, K. J.; Galsgaard, K.

    2010-02-01

    Aims: To use a 3D numerical MHD experiment representing magnetic flux emerging into an open field region as a background field for tracing charged particles. The interaction between the two flux systems generates a localised current sheet where MHD reconnection takes place. We investigate how efficiently the reconnection region accelerates charged particles and what kind of energy distribution they acquire. Methods: The particle tracing is done numerically using the Guiding Center Approximation on individual data sets from the numerical MHD experiment. Results: We derive particle and implied photon distribution functions having power law forms, and look at the impact patterns of particles hitting the photosphere. We find that particles reach energies far in excess of those seen in observations of solar flares. However the structure of the impact region in the photosphere gives a good representation of the topological structure of the magnetic field. Three movies are only available in electronic form at http://www.aanda.org

  4. Linear MHD stability analysis of post-disruption plasmas in ITER

    SciTech Connect

    Aleynikova, K.; Huijsmans, G. T. A.; Aleynikov, P.

    2016-05-15

    Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile, we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.

  5. Marking nut anaphylaxis

    PubMed Central

    Kral, Anita Christine; Hayball, John; Smith, William B

    2016-01-01

    Marking nut Semecarpus anacardium, so-called because it contains a pigment that has been used in the past to mark fabrics, is a known cause of contact hypersensitivity. It may be ingested as an ingredient of some traditional Hindi foods. We describe the first reported case of anaphylaxis to marking nut. PMID:27489793

  6. Mastering Marking Madness

    ERIC Educational Resources Information Center

    Moore, Brooke

    2009-01-01

    Teachers are smart people, so why does marking reduce them to stressed and soulless messes? Because in their hearts they know that students do not learn from it, and that drives them nuts. Researchers like Lorna Earl and Dylan Wiliam have looked closely at marking systems and have proven what teachers already know deep down: marking student work…

  7. Advanced LMMHD space power generation concept

    NASA Astrophysics Data System (ADS)

    Ho, Vincent; Wong, Albert; Kim, Kilyoo; Dhir, Vijay

    Magnetohydrodynamic (MHD) power generation concept has been proposed and studied worldwide as one of the future power generation sources. An advanced one fluid two phase liquid metal (LM) MHD power generation concept was developed for space nuclear power generation design. The concept employs a nozzle to accelerate the liquid metal coolant to an acceptable velocity with Mach number greater than unity. Such nozzle and the MHD power generator replace the turbogenerator of a high temperature Rankine turboelectric cycle concept. As a result, the power generation system contains no movable parts. This provides high reliability, which is a very important factor in space application.

  8. New excimer laser marking method using MMD

    NASA Astrophysics Data System (ADS)

    Kuntze, Thomas H.; Panzner, Michael; Klotzbach, Udo; Beyer, Eckhard

    2003-11-01

    Higher and higher through-puts in marking industry are todays requirements. Mainly packaging industry or cable marking companies ask for part-by-part varying markings like serial numbers, weight, date or barcodes. That gives a need to develop a flexible, high-speed on-the-fly marking technique. Current laser marking techniques like direct writing using a scanned laser beam or excimer laser fixed mask projection offer proven quality and either flexibility or detailism. Their drawbacks are limited speed (direct writing) and invariability (fixed mask projection). The Fraunhofer IWS developed a marking system using excimer laser mask projection with a micro mirror device (MMD) as computer-controlled 'flexible mask.' The idea is to generate complex markings within one laser pulse so the marking speed is only limited by the laser repetition rate. The IWS used a 308nm excimer laser and a reflective phase-shifting mask from Fh IMS to demonstrate the marking capabilities. It was possible to generate free-programmable, high-contrast markings on common materials like paper and plastic. Furthermore, it could be shown that the technique is also usable to generate 3D structures in PI. Result of the studies is the development of a very fast marking technique using MMDs in combination with short wavelength and short pulse lasers. It also has high potential in 3D laser micromachining.

  9. The Next Generation Virgo Cluster Survey. VII. The Intrinsic Shapes of Low-luminosity Galaxies in the Core of the Virgo Cluster, and a Comparison with the Local Group

    NASA Astrophysics Data System (ADS)

    Sánchez-Janssen, Rubén; Ferrarese, Laura; MacArthur, Lauren A.; Côté, Patrick; Blakeslee, John P.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Gwyn, Stephen; McConnacchie, Alan W.; Boselli, Alessandro; Courteau, Stéphane; Emsellem, Eric; Mei, Simona; Peng, Eric; Puzia, Thomas H.; Roediger, Joel; Simard, Luc; Boyer, Fred; Santos, Matthew

    2016-03-01

    We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo Cluster using deep imaging obtained as part of the Next Generation Virgo Cluster Survey (NGVS). We build a sample of nearly 300 red-sequence cluster members in the yet-unexplored -14 < Mg < -8 mag range, and we measure their apparent axis ratios, q, through Sérsic fits to their two-dimensional light distribution, which is well described by a constant ellipticity parameter. The resulting distribution of apparent axis ratios is then fit by families of triaxial models with normally distributed intrinsic ellipticities, E = 1 - C/A, and triaxialities, T = (A2 - B2)/(A2 - C2). We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface-brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity \\bar{E} = {0.43}-0.02+0.02 and a mean triaxiality \\bar{T} = {0.16}-0.06+0.07. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. The core of Virgo lacks highly elongated low-luminosity galaxies, with 95% of the population having q > 0.45. We additionally attempt a study of the intrinsic shapes of Local Group (LG) satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity \\bar{E} = {0.51}-0.06+0.07, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. Numerical studies that follow the tidal evolution of satellites within LG-sized halos are in good agreement with the inferred shape distributions, but the mismatch for faint galaxies in Virgo highlights the need for more adequate simulations of this population in the cluster environment. We finally compare the intrinsic shapes of NGVS low-mass galaxies with

  10. Simulation of wave interactions with MHD

    SciTech Connect

    Batchelor, Donald B; Abla, G; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Fu, GuoYong; Harvey, R. W.; Jaeger, Erwin Frederick; Jardin, S. C.; Jenkins, T; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; Lynch, Vickie E; McCune, Douglas; Ramos, J.; Schissel, D.; Schnack,; Wright, J.

    2008-07-01

    The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  11. MHD Equation of State with Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Gong, Zhigang; Däppen, Werner; Zejda, Ladislav

    2001-01-01

    The Mihalas-Däppen-Hummer (MHD) equation of state does not include the effect of relativistic partially degenerate electrons, although nonrelativistic partial degeneracy is taken into account. The discovery of a relativistic correction in helioseismology forces us to perform an appropriate upgrade of the MHD equation of state. We have adopted the method of J. M. Aparicio to evaluate the relativistic Fermi-Dirac functions. Our calculations confirm the validity of the approximation used, which works well for the weakly relativistic electrons under solar-center conditions. However, our results will also provide reliable thermodynamic quantities in the stronger relativistic regime as found in more massive stars. Since a particular feature of the original MHD papers was an explicit list of the adopted free energy and its first- and second-order analytical derivatives, we give the corresponding relativistic quantities in the Appendix.

  12. Performance calculations for 200-1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.

    1981-01-01

    The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.

  13. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  14. MHD simulations of supernova driven ISM turbulence

    NASA Astrophysics Data System (ADS)

    Gressel, Oliver; Ziegler, Udo

    The dynamic evolution of the (stratified) turbulent interstellar medium (ISM) is simulated utilizing a three-dimensional MHD model including various physical effects. The computational domain covers a box of 0.5x0.5x2.0 kpc at a resolution of typically 128x128x1024 grid cells. The model includes (constant kinematic) viscosity and magnetic diffusivity. The adiabatic equation of state is supplemented by a parameterized heating- and cooling-function allowing for thermal instability (TI). The update due to heating and cooling is implemented implicitly using a Patankar-type discretization. Turbulence is driven by supernova explosions which are modelled as local injections of thermal energy, smeared over three standard-deviations of a Gaussian support with FWHM of 20pc. Supernova rates are adopted for typical cited values. Within our model we make a distinction between Type I and Type II SNe. Latter are statistically clustered by the (artificial) constraint that the density at the explosion site be above average (with respect to a horizontal slab) - former are spatially uncorrelated. The dual-energy feature of the conservative NIRVANA-code is used to tackle the extreme ratio of kinetic to internal energy that arises from the violent energy input. We stress the importance of using a conservative scheme to properly transfer the injected energy to kinetic motion. The model also includes a differentially rotating background (with shearing boundary conditions in radial direction) as well as vertical stratification. The initial density and pressure profiles are in hydrostatic equilibrium with respect to the equation of state given by the radiative equilibrium. Including z-dependent heating rates this leads to a considerable deviation from usual isothermal initial models. The primary focus of this work is on the galactic dynamo and the generation of large-scale magnetic fields. As a secondary target we are also interested in general properties of the ISM that are of importance

  15. Vorticity equation for MHD fast waves in geospace environment

    SciTech Connect

    Yamauchi, M.; Lundin, R.; Lui, A.T.Y.

    1993-08-01

    The magnetohydrodynamic (MHD) vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization (u{sub {perpendicular}}{center_dot}J{sub {perpendicular}}) causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass (i.e., Langmuir mode), a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion. 14 refs., 3 figs.

  16. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  17. Markedly enhanced visible-light photocatalytic H2 generation over g-C3N4 nanosheets decorated by robust nickel phosphide (Ni12P5) cocatalysts.

    PubMed

    Wen, Jiuqing; Xie, Jun; Shen, Rongchen; Li, Xin; Luo, XingYi; Zhang, Hongdan; Zhang, Aiping; Bi, Guican

    2017-02-14

    In the present work, nickel phosphide (Ni12P5) modified graphitic carbon nitride (g-C3N4) nanosheets were synthesized by a simple grinding method. The structural characterization clearly proved that Ni12P5 nanoparticles were well loaded on the surface of g-C3N4 nanosheets. The photocatalytic activity of the composites was tested by catalyzing the reduction of water to hydrogen under visible light irradiation. The results demonstrate that Ni12P5 is an efficient co-catalyst for photocatalytic H2 production of g-C3N4 nanosheets. The maximum photocatalytic H2-production rate of 126.61 μmol g(-1) h(-1) could be obtained by loading 2.0% Ni12P5 nanoparticles on the surface of g-C3N4, which is about 269.4 times higher than that of pure g-C3N4. It is believed that Ni12P5 nanoparticles on the surface of g-C3N4 could act as significant active sites to boost separation of photoexcited electrons and holes and accelerate the H2-evolution kinetics, thus achieving greatly enhanced hydrogen generation. It is expected that this work could contribute to further experimental investigation for exploiting the low cost, high-efficiency, and environmentally friendly g-C3N4-based nanocomposites for photocatalytic H2 production.

  18. Neon Induced MHD Activity in FTU

    NASA Astrophysics Data System (ADS)

    Botrugno, A.; Buratti, P.; Marinucci, M.; Mazzotta, C.; Pucella, G.; Romano, A.; Sozzi, C.

    The m/n=2/1 tearing instability driven by rapid increasing of the current density gradient near the q=2 radius induced by Ne puffing has discussed for different Frascati Tokamak Upgraded (FTU) L-mode ohmic plasmas. The dynamic of modes can be divided in three phases. The formation and dynamic of MHD activity strictly depends on the amount of Ne in plasma, for this reason, Ne puffing represents a very efficient method to deliberately induce formation of repeatable MHD targets for different experimental needs.

  19. Evaluation of the Effects of Ketoconazole and Voriconazole on the Pharmacokinetics of Oxcarbazepine and Its Main Metabolite MHD in Rats by UPLC-MS-MS.

    PubMed

    Chen, Xinxin; Gu, Ermin; Wang, Shuanghu; Zheng, Xiang; Chen, Mengchun; Wang, Li; Hu, Guoxin; Cai, Jian-ping; Zhou, Hongyu

    2016-03-01

    Oxcarbazepine (OXC), a second-generation antiepileptic drug, undergoes rapid reduction with formation of the active metabolite 10,11-dihydro-10-hydroxy-carbazepine (MHD) in vivo. In this study, a method for simultaneous determination of OXC and MHD in rat plasma using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS-MS) was developed and validated. Under given chromatographic conditions, OXC, MHD and internal standard diazepam were separated well and quantified by electrospray positive ionization mass spectrometry in the multiple reaction monitoring transitions mode. The method validation demonstrated good linearity over the range of 10-2,000 ng/mL for OXC and 5-1,000 ng/mL for MHD. The lower limit of quantification was 5 ng/mL for OXC and 2.5 ng/mL for MHD, respectively. The method was successfully applied to the evaluation of the pharmacokinetics of OXC and MHD in rats, with or without pretreatment by ketoconazole (KET) and voriconazole (VOR). Statistics indicated that KET and VOR significantly affected the disposition of OXC and MHD in vivo, whereas VOR predominantly interfered with the disposition of MHD. This method is suitable for pharmacokinetic study in small animals.

  20. Molecular analysis of patients with beta-glucuronidase deficiency presenting as hydrops fetalis or as early mucopolysaccharidosis VII.

    PubMed Central

    Vervoort, R.; Islam, M. R.; Sly, W. S.; Zabot, M. T.; Kleijer, W. J.; Chabas, A.; Fensom, A.; Young, E. P.; Liebaers, I.; Lissens, W.

    1996-01-01

    Although not all mucopolysaccharidosis type VII (MPS VII) neonates present with hydrops fetalis or with related symptoms, hydrops fetalis is a common form of presentation of this mucopolysaccharidosis. We used reverse-transcription-PCR-SSCP and direct sequencing to screen for mutations in the human beta-glucuronidase cDNA of 17 MPS VII patients with severe presentation of the disease. Mutations resulting in an unstable mRNA were detected in genomic DNA with direct sequencing of the PCR-amplified beta-glucuronidase exons. We found extensive genetic heterogeneity in MPS VII alleles: in addition to 6 or 12 previously reported mutations (L176F, R216W, R357X, R382C, W507X, and W627C), we detected 14 undescribed mutations in the beta-glucuronidase coding region that produce MPS VII alleles (G136R, E150K, S312X, Y320S, Y320C, H351Y, R382H, R374C, R435P, R477W, G572D, Y508C, K606N and 1900 delta GA). The mutations in hydropic fetuses were widely scattered in the beta-glucuronidase gene. Analysis of three polymorphic sites of the mutant alleles (1766T/C, 1972C/T and a new 1091+27C/G polymorphism) allowed exclusion of identity by descent for some recurrent mutations. Three of four mutations introducing a premature translation stop codon were found to affect mRNA abundance and/or structure. Expression studies provided evidence for the causal relationship between each of the mutations found in MPS VII alleles and the enzyme deficiency, in that all mutations identified exhibited markedly reduced enzyme activity expressed in COS7 cells following transfection with the mutant cDNA. Images Figure 2 Figure 3A Figure 3BC Figure 4 PMID:8644704

  1. Molecular analysis of patients with beta-glucuronidase deficiency presenting as hydrops fetalis or as early mucopolysaccharidosis VII.

    PubMed

    Vervoort, R; Islam, M R; Sly, W S; Zabot, M T; Kleijer, W J; Chabas, A; Fensom, A; Young, E P; Liebaers, I; Lissens, W

    1996-03-01

    Although not all mucopolysaccharidosis type VII (MPS VII) neonates present with hydrops fetalis or with related symptoms, hydrops fetalis is a common form of presentation of this mucopolysaccharidosis. We used reverse-transcription-PCR-SSCP and direct sequencing to screen for mutations in the human beta-glucuronidase cDNA of 17 MPS VII patients with severe presentation of the disease. Mutations resulting in an unstable mRNA were detected in genomic DNA with direct sequencing of the PCR-amplified beta-glucuronidase exons. We found extensive genetic heterogeneity in MPS VII alleles: in addition to 6 or 12 previously reported mutations (L176F, R216W, R357X, R382C, W507X, and W627C), we detected 14 undescribed mutations in the beta-glucuronidase coding region that produce MPS VII alleles (G136R, E150K, S312X, Y320S, Y320C, H351Y, R382H, R374C, R435P, R477W, G572D, Y508C, K606N and 1900 delta GA). The mutations in hydropic fetuses were widely scattered in the beta-glucuronidase gene. Analysis of three polymorphic sites of the mutant alleles (1766T/C, 1972C/T and a new 1091+27C/G polymorphism) allowed exclusion of identity by descent for some recurrent mutations. Three of four mutations introducing a premature translation stop codon were found to affect mRNA abundance and/or structure. Expression studies provided evidence for the causal relationship between each of the mutations found in MPS VII alleles and the enzyme deficiency, in that all mutations identified exhibited markedly reduced enzyme activity expressed in COS7 cells following transfection with the mutant cDNA.

  2. Molecular analysis of patients with {Beta}-glucuronidase deficiency presenting as hydrops fetalis or as early mucopolysaccharidosis VII

    SciTech Connect

    Vervoort, R.; Liebaers, I.; Lissens, W.

    1996-03-01

    Although not all mucopolysaccharidosis type VII (MPS VII) neonates present with hydrops fetalis or with related symptoms, hydrops fetalis is a common form of presentation of this mucopolysaccharidosis. We used reverse-transcription-PCR-SSCP and direct sequencing to screen for mutations in the human {beta}-glucuronidase cDNA of 17 MPS VII patients with severe presentation of the disease. Mutations resulting in an unstable mRNA were detected in genomic DNA with direct sequencing of the PCR-amplified {beta}-glucuronidase exons. We found extensive genetic heterogeneity in MPS VII alleles: in addition to 6 of 12 previously reported mutations (L176F, R216W, R357X, R382C, W507X, and W627C), we detected 14 undescribed mutations in the {beta}-glucuronidase coding region that produce MPS VII alleles (G136R, E150K, S312X, Y320S, Y320C, H351Y, R382H, R374C, R435P, R477W, G572D, Y508C, K606N, and 1900{Delta}GA). The mutations in hydropic fetuses were widely scattered in the {beta}-glucuronidase gene. Analysis of three polymorphic sites of the mutant alleles (1766T/C, 1972C/T, and a new 1091+27C/G polymorphism) allowed exclusion of identity by descent for some recurrent mutations. Three of four mutations introducing a premature translation stop codon were found to affect mRNA abundance and/or structure. Expression studies provided evidence for the causal relationship between each of the mutations found in MPS VII alleles and the enzyme deficiency, in that all mutations identified exhibited markedly reduced enzyme activity expressed in COS7 cells following transfection with the mutant cDNA. 52 refs., 4 figs., 5 tabs.

  3. Generation of a Slc39a8 hypomorph mouse: Markedly decreased ZIP8 Zn{sup 2+}/(HCO{sub 3}{sup -}){sub 2} transporter expression

    SciTech Connect

    Wang, Bin; He, Lei; Dong, Hongbin; Dalton, Timothy P.; Nebert, Daniel W.

    2011-07-01

    Highlights: {yields} The mouse Slc39a8 gene encodes the ZIP8 transporter. {yields} ZIP8 functions endogenously as a electroneutral Zn{sup 2+}/(HCO{sub 3}{sup -}){sub 2} symporter. {yields} A Slc39a8(neo/neo) hypomorph mouse, due to retention of the neo mini-gene, has been created. {yields} ZIP8 expression in utero is {approx}90% decreased in all tissues examined. {yields} This mouse model will be useful for studying developmental and in utero physiological functions of ZIP8. -- Abstract: Previously this laboratory has identified the mouse Slc39a8 gene encoding the ZIP8 transporter, important in cadmium uptake. ZIP8 functions endogenously as a electroneutral Zn{sup 2+}/(HCO{sub 3}{sup -}){sub 2} symporter, moving both ions into the cell. The overall physiological importance of ZIP8 remains unclear. Herein we describe generation of a mouse line carrying the Slc39a8(neo) allele, containing the Frt-flanked neomycin-resistance (neo) mini-cassette in intron 3 and loxP sites in introns 3 and 6. Cre recombinase functions correctly in Escherichia coli and in adeno-Cre-infected mouse fetal fibroblasts, but does not function in the intact mouse for reasons not clear. Slc39a8(neo) is a hypomorphic allele, because Slc39a8(neo/neo) homozygotes exhibit dramatically decreased ZIP8 expression in embryo, fetus, and visceral yolk sac - in comparison to their littermate wild-type controls. This ZIP8 hypomorph will be instrumental in studying developmental and in utero physiological functions of the ZIP8 transporter.

  4. Factor VII deficiency in a mixed breed dog.

    PubMed Central

    Macpherson, R; Scherer, J; Ross, M L; Gentry, P A

    1999-01-01

    Abnormal bleeding following routine orchectomy of a 5-month-old mixed breed was determined to be due to factor VII deficiency. Although pedigree information was unavailable, failure to respond to vitamin K therapy and the absence of a plasma coagulation inhibitor suggested that the factor VII deficiency was likely inherited rather than acquired. PMID:10416073

  5. 40 CFR Appendixes I-Vii to Part 85 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false I Appendixes I-VII to Part 85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Appendixes I-VII to Part 85...

  6. 40 CFR Appendixes I-Vii to Part 85 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false I Appendixes I-VII to Part 85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Appendixes I-VII to Part 85...

  7. 40 CFR Appendixes I-Vii to Part 85 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false I Appendixes I-VII to Part 85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Appendixes I-VII to Part 85...

  8. 40 CFR Appendixes I-Vii to Part 85 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false I Appendixes I-VII to Part 85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Appendixes I-VII to Part 85...

  9. 32 CFR 2003.7 - Support Staff (Article VII).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Support Staff (Article VII). 2003.7 Section 2003.7 National Defense Other Regulations Relating to National Defense INFORMATION SECURITY OVERSIGHT... (ISCAP) BYLAWS, RULES, AND APPEAL PROCEDURES Bylaws § 2003.7 Support Staff (Article VII). The staff...

  10. 40 CFR Appendixes I-Vii to Part 85 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false I Appendixes I-VII to Part 85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM MOBILE SOURCES Appendixes I-VII to Part 85...

  11. 40 CFR Appendixes Vi-Vii to Part 600 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false VI Appendixes VI-VII to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Appendixes VI-VII to Part 600 ...

  12. 40 CFR Appendixes Vi-Vii to Part 600 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false VI Appendixes VI-VII to Part 600 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Appendixes VI-VII to Part 600 ...

  13. Act Three: Some Thoughts on the Thrust of Title VII

    ERIC Educational Resources Information Center

    Specter, Russell

    1977-01-01

    During the 10 years of existence of Title VII, the compliance agencies and courts have gradually developed procedures and standards of proof looking toward the eradication of bias and discrimination in employment. The course of Title VII to date is reviewed and some observations on future approaches are offered. (Editor/LBH)

  14. Title VII and Public Employers: Did Congress Exceed Its Powers?

    ERIC Educational Resources Information Center

    Dean, John P.

    1979-01-01

    The impact of federal legislation aimed at discriminatory practices of state and local governments as mandated by the Civil Rights Act of 1964 and the Equal Employment Opportunity Act of 1972 is examined. Several Title VII violations are outlined; it is concluded that federal authority can be upheld under Title VII and the Fourteenth Amendment.…

  15. a New ENDF/B-VII.0 Based Multigroup Cross-Section Library for Reactor Dosimetry

    NASA Astrophysics Data System (ADS)

    Alpan, F. A.; Anderson, S. L.

    2009-08-01

    The latest of the ENDF/B libraries, ENDF/B-VII.0 was released in December 2006. In this paper, the ENDF/B-VII.O evaluations were used in generating a new coupled neutron/gamma multigroup library having the same group structure of VITAMIN-B6, i.e., the 199-neutron, 42-gamma group library. The new library was generated utilizing NJOY99.259 for pre-processing and the AMPX modules for post-processing of cross sections. An ENDF/B-VI.3 based VITAMIN-B6-like library was also generated. The fine-group libraries and the ENDF/B-VI.3 based 47-neutron, 20-gamma group BUGLE-96 library were used with the discrete ordinates code DORT to obtain a three-dimensional synthesized flux distribution from r, r-θ, and r-z models for a standard Westinghouse 3-loop design reactor. Reaction rates were calculated for ex-vessel neutron dosimetry containing 63Cu(n,α)60Co, 46Ti(n,p)46Sc, 54Fe(n,P)54Mn, 58Ni(n,P)58Co, 238U(n,f)137Cs, 237Np(n,f)137Cs, and 59Co(n,γ)60Co (bare and cadmium covered) reactions. Results were compared to measurements. In comparing the 199-neutron, 42-gamma group ENDF/B-VI.3 and ENDF/B-VII.O libraries, it was observed that the ENDF/B-VI.3 based library results were in better agreement with measurements. There is a maximum difference of 7% (for the 63Cu(n,α)60Co reaction rate calculation) between ENDF/B-VI.3 and ENDF/B-VII.O. Differences between ENDF/B-VI.3 and ENDF/B-VII.O libraries are due to 16O, 1H, 90Zr, 91Zr, 92Zr, 238U, and 239Pu evaluations. Both ENDF/B-VI.3 and ENDF/B-VII.O library calculated reaction rates are within 20% of measurement and meet the criterion specified in the U. S. Nuclear Regulatory Commission Regulatory Guide 1.190, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence."

  16. GCF Mark IV development

    NASA Technical Reports Server (NTRS)

    Mortensen, L. O.

    1982-01-01

    The Mark IV ground communication facility (GCF) as it is implemented to support the network consolidation program is reviewed. Changes in the GCF are made in the area of increased capacity. Common carrier circuits are the medium for data transfer. The message multiplexing in the Mark IV era differs from the Mark III era, in that all multiplexing is done in a GCF computer under GCF software control, which is similar to the multiplexing currently done in the high speed data subsystem.

  17. Experimental Study of MHD-Assisted Mixing and Combustion Under Low Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Zhang, Bailing; Li, Yiwen; Fan, Hao; Duan, Chengduo; Wang, Yutian

    2016-08-01

    In order to reveal the mechanism of MHD-assisted mixing, and analyse the major parameters which influence the effect of MHD-assisted mixing, experiments of MHD-assisted mixing are carried out with a non-premixed butane-air combustion system. The evolvement of the discharge section and the effect of MHD-assisted mixing on combustion are investigated by changing the magnetic flux density and airflow velocity. The results show that the discharge area not only bends but also rotates around the centered wire electrode, which are mainly caused by the Lorentz force. Moreover, the highest curvature occurs near the centered wire electrode. The discharge localizes near the surface of the wire electrode and annular electrode when there is no ponderomotive force. However, if the ponderomotive force is applied, the discharge happens between these two electrodes and it gradually shrinks with time. The discharge area cannot localize near the annular electrode, which is due to the increase of energy loss in the airflow. When the airflow velocity exceeds a certain value, the discharge section becomes unstable because the injected energy cannot maintain the discharge. The rotation motion of the discharge section could enlarge the contact surface between butane and air, and is therefore beneficial for mixing and combustion. Magnetic flux density and airflow velocity are critical parameters for MHD-assisted mixing. supported by National Natural Science Foundation of China (No. 11372352) and the Mechanism Research on Near Electrode Thermal-Electromagnetic-Flow of High Temperature Supersonic MHD Generation (No. 51306207), and Natural Science Foundation of Shaanxi Province of China (No. 2015JM5184)

  18. Analytical estimates of turbulent MHD transport coefficients

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Hatori, T.

    1984-01-01

    Turbulent transfer rates from small-scale MHD excitations to large-scale Fourier modes are calculated algebraically, using the method of Biskamp and Welter. Three cases are considered: two-dimensional Navier-Stokes flows, two-dimensional incompressible MHD, and the weakly three-dimensional Strauss equations. In all cases, an initially large spectral gap between the small-scale and large-scale excitations is assumed, and attention focusses on the initial values of the back-transfer rates. The sign of the transfer is determined by the sign of an analytically calculable eddy viscosity and/or anomalous resistivity. We are able to confirm the results of Biskamp and Welter for the case of two-dimensional MHD, but find some differences for the case of the Strauss equations. It is argued that the Strauss equations may not exhibit an inverse cascade phenomenon for the spatially periodic case unless their initial spectra are such that the behavior is essentially that of two-dimensional MHD.

  19. MHD (magnetohydrodynamics) instabilities in simple plasma configuration

    SciTech Connect

    Manheimer, W.M.; Lashmore-Davies, C.

    1984-01-01

    This work provides what, we hope, is a relatively simple, self contained description of MHD instabilities in plasmas with simple configurations. By simple configuration, we mean a plasma in which all quantities vary in only one spatial direction. We deal with such plasmas here because we want to emphasize the basic physics of MHD instabilities. Although some fusion devices are inherently two or three dimensional in nature, there are others, specifically tokamaks and reversed field pinches which are, to good approximation, one dimensional. Also, these devices both display a wealth of complex MHD activity which can be fruitfully discussed. One deceptive aspect of MHD instabilities is that the simplest ones are extremely easy to understand. However more complicated instabilities, for instance in a plasma where both an axial and azimuthal field are present are much more difficult to visualize; but they are also much more interesting. This work is divided into two parts. Chapters 2-9 describe linear theory and chapters 10-15 describe the nonlinear theory. The latter part is naturally much more speculative than the former because less is known about nonlinear theory.

  20. Featured Image: Tests of an MHD Code

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Creating the codes that are used to numerically model astrophysical systems takes a lot of work and a lot of testing! A new, publicly available moving-mesh magnetohydrodynamics (MHD) code, DISCO, is designed to model 2D and 3D orbital fluid motion, such as that of astrophysical disks. In a recent article, DISCO creator Paul Duffell (University of California, Berkeley) presents the code and the outcomes from a series of standard tests of DISCOs stability, accuracy, and scalability.From left to right and top to bottom, the test outputs shown above are: a cylindrical Kelvin-Helmholtz flow (showing off DISCOs numerical grid in 2D), a passive scalar in a smooth vortex (can DISCO maintain contact discontinuities?), a global look at the cylindrical Kelvin-Helmholtz flow, a Jupiter-mass planet opening a gap in a viscous disk, an MHD flywheel (a test of DISCOs stability), an MHD explosion revealing shock structures, an MHD rotor (a more challenging version of the explosion), a Flock 3D MRI test (can DISCO study linear growth of the magnetorotational instability in disks?), and a nonlinear 3D MRI test.Check out the gif below for a closer look at each of these images, or follow the link to the original article to see even more!CitationPaul C. Duffell 2016 ApJS 226 2. doi:10.3847/0067-0049/226/1/2

  1. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  2. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2014-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  3. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2013-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Preliminary results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  4. MHD Ballooning Instability in the Plasma Sheet

    SciTech Connect

    C.Z. Cheng; S. Zaharia

    2003-10-20

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum.

  5. Open boundary conditions for dissipative MHD

    NASA Astrophysics Data System (ADS)

    Meier, Eric; Glasser, Alan; Lukin, Vyacheslav; Shumlak, Uri; PSI-Center Collaboration

    2011-10-01

    In modeling magnetic confinement, astrophysics, and plasma propulsion, representing the entire physical domain is often difficult or impossible, and artificial, or ``open'' boundaries are appropriate. A novel open boundary condition (BC) for dissipative MHD, called Lacuna-based open BC (LOBC), is presented. LOBC, based on the idea of lacuna-based truncation originally presented by V.S. Ryaben'kii and S.V. Tsynkov, provide truncation with low numerical noise and minimal reflections. For hyperbolic systems, characteristic-based BC (CBC) exist for separating the solution into outgoing and incoming parts. In the hyperbolic-parabolic dissipative MHD system, such separation is not possible, and CBC are numerically unstable. LOBC are applied in dissipative MHD test problems including a translating FRC, and coaxial-electrode plasma acceleration. Solution quality is compared to solutions using CBC and zero-normal derivative BC. LOBC are a promising new open BC option for dissipative MHD. Supported by DOE grant DE-FC02-05ER54811.

  6. On denture marking.

    PubMed

    Borrman, H I; DiZinno, J A; Wasén, J; René, N

    1999-06-01

    During the last decades in Sweden dentures have been permanently marked with a stainless steel metal band incorporated into the acrylic and containing the patient's birth date, a special number, and "S" for Sweden. The last recommendation issued by the National Board of Health and Welfare states that "the patients shall always be offered denture marking and be informed about the benefit thereof. Denture marking is not permitted if the patient refuses it". Requirements for denture markers have been that they should be biologically inert (when incorporated into the denture), not be expensive, be easy to inscribe, be possible to retrieve after an accident, and survive elevated temperatures for a reasonable time under normal circumstances. Although the frequency of edentulousness has decreased in recent years due to the improvement in oral health there remains a need to address the issue of marking of complete dentures, because there is a large variation in the oral status of populations in different countries. Given that only one marked denture can reveal the identity of a deceased person when all other methods fail to do so, makes it worthwhile. Furthermore, denture marking is important in long-term care facilities. We have investigated the issue of denture marking in Europe and in the United States. The results from the European survey show that denture marking is, to our knowledge regulated by law only in Sweden and Iceland. In the US denture marking is so far mandatory in 21 states while New York State requires dentures to be marked if the patient requests it and several other states impose the obligation to mark dentures on long-term care facilities. Since there is no international consensus regarding the issue of denture marking it is important to address it. A survey from the Nordic countries has shown that if denture marking was in general use, the contribution to the establishment of identity by forensic odontology in cases of fire would increase by about 10

  7. RGB marking facilitates multicolor clonal cell tracking.

    PubMed

    Weber, Kristoffer; Thomaschewski, Michael; Warlich, Michael; Volz, Tassilo; Cornils, Kerstin; Niebuhr, Birte; Täger, Maike; Lütgehetmann, Marc; Pollok, Jörg-Matthias; Stocking, Carol; Dandri, Maura; Benten, Daniel; Fehse, Boris

    2011-04-01

    We simultaneously transduced cells with three lentiviral gene ontology (LeGO) vectors encoding red, green or blue fluorescent proteins. Individual cells were thereby marked by different combinations of inserted vectors, resulting in the generation of numerous mixed colors, a principle we named red-green-blue (RGB) marking. We show that lentiviral vector-mediated RGB marking remained stable after cell division, thus facilitating the analysis of clonal cell fates in vitro and in vivo. Particularly, we provide evidence that RGB marking allows assessment of clonality after regeneration of injured livers by transplanted primary hepatocytes. We also used RGB vectors to mark hematopoietic stem/progenitor cells that generated colored spleen colonies. Finally, based on limiting-dilution and serial transplantation assays with tumor cells, we found that clonal tumor cells retained their specific color-code over extensive periods of time. We conclude that RGB marking represents a useful tool for cell clonality studies in tissue regeneration and pathology.

  8. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet

  9. Development of MHD Wave Diagnostic and Models of Coronal Active Regions

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Thompson, B. J.; Davila, J. M.

    2004-05-01

    We investigate the generation, propagation, and damping of MHD waves in active regions, with the goal to develop a diagnostic tool of active region structure, dynamics, and stability. We used 3D MHD model to study the generation and the propagation of EIT waves in a simple model of an active regions, and the interaction of EIT waves with the active region magnetic field. We model the oscillation of active region loops numerically using the 3D MHD model active regions. Such oscillations have been recently observed by TRACE. We use photospheric magnetograms as the boundary conditions for the magnetic field model, and construct an initial field using force-free extrapolation. Finite plasma temperature, density, and gravity are included in the model. We construct loop density structures in the model, guided by TRACE and EIT observations in the EUV. We demonstrate that by comparing the results of the MHD models of waves in an active region to observations we will be able to construct a diagnostic tool for the physical properties of the active regions, such as magnetic field and density structure.

  10. MHD simulations of coronal dark downflows considering thermal conduction

    NASA Astrophysics Data System (ADS)

    Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.

    2017-10-01

    While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.

  11. A nuclear driven metallic vapor MHD coupled with MPD thrusters

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim; Kumar, Ratan

    1991-01-01

    Nuclear energy as a source of power for space missions, represents an enabling technology for advanced and ambitious space applications. Nuclear fuel in a gaseous or liquid form has been configured as a promising and practical candidate in this regard. The present study investigates and performs a feasibility analysis of an innovative concept for space power generation and propulsion. The system embodies a conceptual nuclear reactor with an MHD generator and coupled to MPD thrusters. The reactor utilizes liquid uranium in droplet form as fuel and superheated metallic vapor as the working fluid. This ultrahigh temperature vapor core reactor brings forward varied and challenging technical issues, and it has been addressed to in this paper. A parametric study of the conceived system has been performed in a qualitative and quantitative manner. Preliminary results show enough promise for further indepth analysis of this novel system.

  12. Marking as Judgment

    ERIC Educational Resources Information Center

    Brooks, Val

    2012-01-01

    An aspect of assessment which has received little attention compared with perennial concerns, such as standards or reliability, is the role of judgment in marking. This paper explores marking as an act of judgment, paying particular attention to the nature of judgment and the processes involved. It brings together studies which have explored…

  13. Symmetry, Statistics and Structure in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.

  14. The MHD spectral web: Connecting all instabilities of stationary plasmas

    NASA Astrophysics Data System (ADS)

    Goedbloed, Hans

    2015-11-01

    Quite a lot is known about the spectra of MHD instabilities in plasmas with background flow, in particular through numerical studies. They exhibit bewildering distributions of the complex eigenvalues, with isolated global modes as well as local modes clustering towards complicated continuous spectra. This calls for the development of a general theory generating physically meaningful structures in the complex ω-plane connecting the eigenvalues. Whereas the simplicity of the energy principle of static equilibria no longer applies, proper consideration of the two quadratic forms of the potential energy and the averaged Doppler-Coriolis shift leads a new approach to the analysis of stationary plasmas, called the spectral web, that provides the desired structures. Thus, for the first time, the full complex spectrum of stationary plasmas is obtained together with a connecting structure. This permits to consider the enormous diversity of MHD instabilities of laboratory and astrophysical plasmas with arbitrary flow and rotation profiles from a single unifying view point. I will illustrate that with results obtained on these instabilities with the new spectral code ROC.

  15. Brain transplantation of genetically engineered human neural stem cells globally corrects brain lesions in the mucopolysaccharidosis type VII mouse.

    PubMed

    Meng, Xing-Li; Shen, Jin-Song; Ohashi, Toya; Maeda, Hiroshi; Kim, Seung Up; Eto, Yoshikatsu

    2003-10-15

    In the present study, we investigated the feasibility of using human neural stem cells (NSCs) in the treatment of diffuse central nervous system (CNS) alterations in a murine model of mucopolysaccharidosis VII (MPS VII), a lysosomal storage disease caused by a genetic defect in the beta-glucuronidase gene. An immortalized NSC line derived from human fetal telencephalon was genetically engineered to overexpress beta-glucuronidase and transplanted into the cerebral ventricles of neonatal MPS VII mouse. Transplanted human NSCs were found to integrate and migrate in the host brain and to produce large amount of beta-glucuronidase. Brain contents of the substrates of beta-glucuronidase were reduced to nearly normal levels, and widespread clearing of lysosomal storage was observed in the MPS VII mouse brain at 25 days posttransplantation. The number of engrafted cells decreased markedly after the transplantation, and it appears that the major cause of the cell death was not the immune response of the host but apoptotic cell death of grafted human NSCs. Results showed that human NSCs would serve as a useful gene transfer vehicle for the treatment of diffuse CNS lesions in human lysosomal storage diseases and are potentially applicable in the treatment of patients suffering from neurological disorders.

  16. Risk of low-dose radiation and the BEIR VII report: A critical review of what it does and doesn't say.

    PubMed

    O'Connor, Michael K

    2017-08-18

    This article briefly reviews the history behind the BEIR VII report and the use of the linear no-threshold hypothesis. The BEIR VII committee considered four primary sources of data on the stochastic effects of ionizing radiation. These were environmental studies, occupational studies, medical studies and studies on the atomic bomb survivors. These sources are briefly reviewed along with key studies that run counter to the LNT hypothesis. We review many of the assumptions, hypotheses and subjective decisions used to generate risk estimates in the BEIR VII report. Position statement by the Health Physics Society, American Association of Physicists in Medicine, and UNSCEAR support the conclusion that the risk estimates in the BEIR VII report should not be used for estimating cancer risks from low doses of ionizing radiation. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Characteristics of a magnetohydrodynamic electrical power generator using convexly divergent channel

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro

    2010-03-01

    We describe a magnetohydrodynamic (MHD) electrical power generator equipped with a convexly divergent channel, as determined through shock-tunnel-based experiments. The slight enhancement in a MHD channel divergence upstream provides boundary layer relief in a MHD flow decelerated by a retarding Lorentz force. Despite the present approach being simple and requiring a relatively minor modification of the MHD channel profile, the quality of MHD power-generating plasma and the energy conversion efficiency are improved compared to those from a previous linearly divergent channel; an excessive increase in static pressure is suppressed and a Hall field is enhanced, whereby notably high isentropic efficiency is achieved.

  18. 10 CFR 1045.40 - Marking requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Marking requirements. 1045.40 Section 1045.40 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review of Documents Containing Restricted Data and Formerly Restricted Data § 1045.40 Marking...

  19. 10 CFR 1045.40 - Marking requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Marking requirements. 1045.40 Section 1045.40 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review of Documents Containing Restricted Data and Formerly Restricted Data § 1045.40 Marking...

  20. 10 CFR 1045.40 - Marking requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Marking requirements. 1045.40 Section 1045.40 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review of Documents Containing Restricted Data and Formerly Restricted Data § 1045.40 Marking...

  1. 10 CFR 1045.40 - Marking requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Marking requirements. 1045.40 Section 1045.40 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review of Documents Containing Restricted Data and Formerly Restricted Data § 1045.40 Marking...

  2. 10 CFR 1045.40 - Marking requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Marking requirements. 1045.40 Section 1045.40 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) NUCLEAR CLASSIFICATION AND DECLASSIFICATION Generation and Review of Documents Containing Restricted Data and Formerly Restricted Data § 1045.40 Marking...

  3. Successive passaging of the scrapie strains, ME7-ha and 139A-ha, generated by the interspecies transmission of mouse-adapted strains into hamsters markedly shortens the incubation times, but maintains their molecular and pathological properties.

    PubMed

    Shi, Qi; Xiao, Kang; Zhang, Bao-Yun; Zhang, Xiao-Mei; Chen, Li-Na; Chen, Cao; Gao, Chen; Dong, Xiao-Ping

    2015-04-01

    As a type of zoonotic disease, prion diseases may be transmitted naturally and experimentally among species. In a previous study, we demonstrated that the mouse-adapted scrapie strains, ME7 (ME7-mo) and 139A (139A-mo), can overcome the species barrier and induce experimental scrapie when inoculated into Golden hamsters and generated 2 new hamster-adapted strains, ME7 (ME7-ha) and 139A (139A-ha). In the present study, in order to assess the infectivity and other molecular and neuropathological properties of the newly formed scrapie agents, ME7-ha and 139A-ha were further intracerebrally inoculated into hamsters. Compared with infection with 1st passage strains, the incubation times and clinical courses of infection with 2nd passage strains were markedly shorter, which were quite comparable with those of the mice infected with their parent mouse strains. The glycosylation patterns of brain PrP(Sc) in the animals infected with the 2nd passage of those 2 strains maintained similar features as those in the animals infected with the 1st passage of those strains, with predominantly diglycosylated PrP(Sc). Neuropathological assays revealed comparable spongiform degeneration and microglia proliferation in the brain tissues from the infected mice and hamsters, but markedly more plaque-like deposits of PrP(Sc) and more severe astrogliosis in the brains of the hamster. These data indicate that the strains, ME7-ha 1st and 139A-ha 1st generated by interspecies infection can passage in the new host hamster and stably maintain their molecular and neuropathological characteristics.

  4. The Mark 5C VLBI Data System

    NASA Technical Reports Server (NTRS)

    Whitney, Alan; Ruszczyk, Chester; Romney, Jon; Owens, Ken

    2010-01-01

    The Mark 5C disk-based VLBI data system is being developed as the third-generation Mark 5 disk-based system, increasing the sustained data-recording rate capability to 4 Gbps. It is built on the same basic platform as the Mark 5A, Mark 5B and Mark 5B+ systems and will use the same 8-disk modules as earlier Mark 5 systems, although two 8-disk modules will be necessary to support the 4 Gbps rate. Unlike its earlier brethren, which use proprietary data interfaces, the Mark 5C will accept data from a standard 10 Gigabit Ethernet connection and be compatible with the emerging VLBI Data Interchange Format (VDIF) standard. Data sources for the Mark 5C system will be based on new digital backends now being developed, specifically the RDBE in the U.S. and the dBBC in Europe, as well as others. The Mark 5C system is being planned for use with the VLBI2010 system and will also be used by NRAO as part of the VLBA sensitivity upgrade program; it will also be available to the global VLBI community from Conduant. Mark 5C system specification and development is supported by Haystack Observatory, NRAO, and Conduant Corporation. Prototype Mark 5C systems are expected in early 2010.

  5. Marking: A Critical Alternative.

    ERIC Educational Resources Information Center

    Hull, Charles

    1984-01-01

    Having pupils critique their own work is an alternative to marking that is worthy of consideration. Pupil critique fosters in students a willingness to take responsibility for the quality of their work products. (RM)

  6. Ames Fellows Award - Mark

    NASA Image and Video Library

    Dr. Hans Mark is a leading expert in the fields of aerospace design and national defense policy. From 1969 to 1977, he served as Director of the NASA Ames Research Center. During his tenure, Ames b...

  7. Comparison of ENDF/B-VII.1 and ENDF/B-VII.0 Results for the Expanded Criticality Validation Suite for MCNP and for Selected Additional Criticality Benchmarks

    NASA Astrophysics Data System (ADS)

    Mosteller, R.

    2014-04-01

    Results obtained with the MCNP5 Monte Carlo code and the ENDF/B-VII.1 and ENDF/B-VII.0 nuclear data libraries have been compared for the 119 benchmarks in the expanded criticality validation suite for MCNP and for 23 additional benchmarks. ENDF/B-VII.1 was found to produce improvements relative to ENDF/B-VII.0 for benchmarks that contain significant amounts of tungsten, zirconium, cadmium, or beryllium, although the results for the benchmarks with beryllium suggest that further improvement still may be needed. In addition, a number of deficiencies previously identified for ENDF/B-VII.0 still remain in ENDF/B-VII.1.

  8. Mark IVA microprocessor support

    NASA Technical Reports Server (NTRS)

    Burford, A. L.

    1982-01-01

    The requirements and plans for the maintenance support of microprocessor-based controllers in the Deep Space Network Mark IVA System are discussed. Additional new interfaces and 16-bit processors have introduced problems not present in the Mark III System. The need for continuous training of maintenance personnel to maintain a level of expertise consistent with the sophistication of the required tools is also emphasized.

  9. Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods

    SciTech Connect

    Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S

    2009-06-03

    This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.

  10. MHD heat and seed recovery technology project. Tenth quarterly report, April-June 1980

    SciTech Connect

    Petrick, M.; Johnson, T. R.

    1980-12-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The primary effort of the HSR Technology Project at Argonne is directed toward experimental investigations of critical problem areas, such as (1) corrosion and erosion of refractories and metal alloys; (2) NO/sub x/ behavior in the radiant boiler and secondary combustor; (3) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed-slag separation; (4) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; (5) formation, growth, and deposition of seed-slag particles; and (6) character of the combustion gas effluents. These investigations are performed primarily in a 2-MW test facility, the Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, and evaluation of seed regeneration processes. Progress is reported.

  11. Multimegawatt nuclear electric propulsion with gaseous and vapor core reactors with MHD

    NASA Astrophysics Data System (ADS)

    Knight, Travis; Anghaie, Samim; Smith, Blair; Houts, Michael

    2001-02-01

    This study investigated the development of a system concept for space power generation and nuclear electric propulsion based on a fissioning plasma core reactor (FPCR) with magnetohydrodynamic (MHD) power conversion system, coupled to a magnetoplasmadynamic (MPD) thruster. The FPCR is a liquid-vapor core reactor concept operating with metallic uranium or uranium tetrafluoride (UF4) vapor as the fissioning fuel and alkali metals or their fluorides as working fluid in a closed Rankine cycle with MHD energy conversion. Candidate working fluids include K, Li, Na, KF, LiF, NaF, etc. The system features core outlet temperatures of 3000 to 4000 K at pressures of about 1 to 10 MPa, MHD temperatures of 2000 to 3000 K, and radiator temperatures of 1200 to 2000 K. This combination of parameters offers the potential for low total system specific mass in the range of 0.4 to 0.6 kg/kWe. The MHD output could be coupled with minimal power conditioning to the variable specific impulse magnetoplasma rocket (VASIMR), MPD thrusters or other types of thruster for producing thrust at very high specific impulse (Isp=1500 to 10,000 s). .

  12. MHD compressor---expander conversion system integrated with GCR inside a deployable reflector

    SciTech Connect

    Tuninetti, G. . Research Div.); Botta, E.; Criscuolo, C.; Riscossa, P. . Nuclear Div.); Giammanco, F. . Dipt. di Fisica); Rosa-Clot, M. . Dipt. di Fisica)

    1989-04-20

    This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statement of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.

  13. MHD Integrated Topping Cycle Project. Thirteenth quarterly technical progress report, August 1, 1990--October 31, 1990

    SciTech Connect

    Not Available

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number_sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  14. Exonuclease VII is involved in "reckless" DNA degradation in UV-irradiated Escherichia coli.

    PubMed

    Repar, Jelena; Briški, Nina; Buljubašić, Maja; Zahradka, Ksenija; Zahradka, Davor

    2013-01-20

    The recA mutants of Escherichia coli exhibit an abnormal DNA degradation that starts at sites of double-strand DNA breaks (DSBs), and is mediated by RecBCD exonuclease (ExoV). This "reckless" DNA degradation occurs spontaneously in exponentially growing recA cells, and is stimulated by DNA-damaging agents. We have previously found that the xonA and sbcD mutations, which inactivate exonuclease I (ExoI) and SbcCD nuclease, respectively, markedly suppress "reckless" DNA degradation in UV-irradiated recA cells. In the present work, we show that inactivation of exonuclease VII (ExoVII) by an xseA mutation contributes to attenuation of DNA degradation in UV-irradiated recA mutants. The xseA mutation itself has only a weak effect, however, it acts synergistically with the xonA or sbcD mutations in suppressing "reckless" DNA degradation. The quadruple xseA xonA sbcD recA mutants show no sign of DNA degradation during post-irradiation incubation, suggesting that ExoVII, together with ExoI and SbcCD, plays a crucial role in regulating RecBCD-catalyzed chromosome degradation. We propose that these nucleases act on DSBs to create blunt DNA ends, the preferred substrates for the RecBCD enzyme. In addition, our results show that in UV-irradiated recF recA(+) cells, the xseA, xonA, and sbcD mutations do not affect RecBCD-mediated DNA repair, suggesting that ExoVII, ExoI and SbcCD nucleases are not essential for the initial targeting of RecBCD to DSBs. It is possible that the DNA-blunting activity provided by ExoVII, ExoI and SbcCD is required for an exchange of RecBCD molecules on dsDNA ends during ongoing "reckless" DNA degradation.

  15. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions

    PubMed Central

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail. PMID:27776174

  16. MHD viscous Casson fluid flow and heat transfer with second-order slip velocity and thermal slip over a permeable stretching sheet in the presence of internal heat generation/absorption and thermal radiation

    NASA Astrophysics Data System (ADS)

    Megahed, Ahmed M.

    2015-04-01

    This article is devoted to describing the boundary layer flow and heat transfer for an electrically conducting Casson fluid over a permeable stretching surface with second-order slip velocity model and thermal slip conditions in the presence of internal heat generation/absorption and thermal radiation. The basic equations governing the flow and heat transfer are in the form of partial differential equations; the same have been reduced to a set of highly non-linear ordinary differential equations by applying suitable similarity transformations. Exact solution corresponding to momentum equation is obtained, and, in the case of no slip conditions, we get the exact solutions for both momentum and energy equation. The resulting similarity equations are solved numerically by shooting method. Comparisons with previously published work are performed and the results are found to be in excellent agreement. In the present work the effect of magnetic parameter, suction/injection parameter, Casson parameter, slip parameters, radiation parameter, internal heat generation/absorption parameter and the Prandtl number on flow and heat transfer characteristics have been discussed. Also, the local skin-friction coefficient and the local Nusselt number at the sheet are computed and discussed. It is found that the temperature rises to a higher value when the Casson parameter increases but the reverse is true for the velocity distribution. Finally, increasing the velocity and thermal slip parameters makes the rate of heat transfer decrease.

  17. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions.

    PubMed

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas

    2016-01-01

    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  18. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  19. The Termination Shock and Beyond: MHD Modeling

    SciTech Connect

    Ratkiewicz, Romana; Grygorczuk, Jolanta; Ben-Jaffel, Lotfi

    2005-08-01

    The 3D MHD models of the solar wind - interstellar plasma interaction including, in a self-consistent way, interactions of various populations of plasma and neutral particles should be ready to confront their results with the forthcoming data that will be obtained from space missions. In the near future, predictions made by sophisticated theoretical models should help refine the goals and optimize the capabilities of the instruments that will explore the far heliosphere and the LISM. In this paper we are giving a short survey of the MHD models and point out the problems, which need to be solved in the near future. As the example we show our recent numerical results with the simple model of the current sheet.

  20. Classical MHD shocks: theory and numerical simulation

    SciTech Connect

    Pogorelov, Nikolai V.

    2005-08-01

    Recent results are surveyed in the investigation of the behavior of shocks in ideal magnetohydrodynamics (MHD) and corresponding structures in dissipative/resistive plasma flows. In contrast to evolutionary shocks, a solution of the problem of the nonevolutionary shock interaction with small perturbations is either nonunique or does not exist. The peculiarity of non-ideal MHD is in that some nonevolutionary shocks have dissipative structures. Since this structure is always non-plane, it can reveal itself in problems where transverse perturbations do not exist due to symmetries restrictions. We discuss the numerical behavior of nonevolutionary shocks and argue that they necessarily disappear once the problem is solved in a genuinely three-dimensional statement.

  1. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  2. Coherent Eigenmodes in Homogeneous MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    The statistical mechanics of Fourier models of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence is discussed, along with their relevance for dissipative magnetofluids. Although statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation, i.e., we have coherent structure. We use eigenanalysis of the modal covariance matrices in the probability density function to explain this phenomena in terms of `broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We provide examples from 2-D and 3-D magnetohydrodynamic simulations of homogeneous turbulence, and show new results from long-time simulations of MHD turbulence with and without a mean magnetic field

  3. Amplitudes of MHD Waves in Sunspots

    NASA Astrophysics Data System (ADS)

    Norton, Aimee Ann; Cally, Paul; Baldner, Charles; Kleint, Lucia; Tarbell, Theodore D.; De Pontieu, Bart; Scherrer, Philip H.; Rajaguru, Paul

    2016-05-01

    The conversion of p-modes into MHD waves by strong magnetic fields occurs mainly in the sub-photospheric layers. The photospheric signatures of MHD waves are weak due to low amplitudes at the beta=1 equipartion level where mode-conversion occurs. We report on small amplitude oscillations observed in the photosphere with Hinode SOT/SP in which we analyze time series for sunspots ARs 12186 (11.10.2014) and 12434 (17.10.2015). No significant magnetic field oscillations are recovered in the umbra or penumbra in the ME inversion. However, periodicities in the inclination angle are found at the umbral/penumbral boundary with 5 minute periods. Upward propagating waves are indicated in the intensity signals correlated between HMI and AIA at different heights. We compare SP results with the oscillations observed in HMI data. Simultaneous IRIS data shows transition region brightening above the umbral core.

  4. MHD processes in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1984-01-01

    The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.

  5. beta-Glucuronidase P408S, P415L mutations: evidence that both mutations combine to produce an MPS VII allele in certain Mexican patients.

    PubMed

    Islam, M R; Vervoort, R; Lissens, W; Hoo, J J; Valentino, L A; Sly, W S

    1996-09-01

    Mucopolysaccharidosis type VII (MPS VII, Sly syndrome) is an autosomal recessively inherited lysosomal storage disease caused by a deficiency in beta-glucuronidase. We identified and studied a novel allele containing two C-to-T transitions resulting in P408S and P415L alterations, which is present in homozygous state in one Mexican patient and in heterozygous state in another. None of the previous reports describing mutations in the MPS VII gene include Mexican patients. Expression of either of the mutations individually showed only modest effects on the properties of the enzyme. However, expression of the doubly mutant allele resulted in markedly reduced activity and rapid degradation in an early biosynthetic compartment.

  6. Polydispersed MHD flow in a cylindrical vessel

    SciTech Connect

    Gorislavets, Yu.M.

    1986-07-01

    A large number of works on MHD separation of nonelectrically conducting particles assume that particle growth does not occur. The authors adopt the well-known model of coagulation according to which the collision of particles is determined only by their mutual displacement in the carrying liquid. Figures show relative density of coagulating particles, and particle-size distribution. It was shown that the process of coagulation in the situation under study develops in an avalanchelike fashion.

  7. Laboratory-produced MHD plasma jets

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2008-04-01

    Because space plasmas are neither confined by vacuum chamber walls nor have magnetic fields produced by physical coils, space plasmas have shapes that are much less determinate than lab plasmas. An experimental program underway at Caltech produces plasmas where the shape is neither fixed by a vacuum chamber wall nor imposed by an external coil set, but rather is allowed to be determined by self-organizing MHD processes subject to the constraint of imposed boundary conditions analogous to the boundary conditions of space plasmas. These self-organizing processes are believed to be fundamental to astrophysical jets, solar coronal loops, and MHD turbulence (e.g. Taylor relaxation). The experimental dynamics are sufficiently reproducible to allow detailed study despite the morphology being complex and dynamic. A surprising result has been the observation that instead of the plasma uniformly filling up the available volume, the plasma is spatially localized in a highly collimated, small diameter magnetic flux tube, the length and axis of which change in time in response to MHD forces. A model shows that the collimation results from stagnation of linked magnetic flux frozen into a MHD-driven jet that accelerates plasma from the wall into the flux tube, filling the flux tube with plasma. Jet flow has been imaged with a high-speed multi-frame camera, diagnosed via Doppler spectroscopy, and most recently (i) the collision between two opposing, color-coded jets flowing from opposite ends of a flux tube has been observed, and (ii) the collision of a jet with a target cloud has been observed.

  8. MHD simulations on an unstructured mesh

    SciTech Connect

    Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Longcope, D.W.; Sugiyama, L.E.

    1998-12-31

    Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.

  9. Magnetic reconnection in a compressible MHD plasma

    SciTech Connect

    Hesse, Michael; Zenitani, Seiji; Birn, Joachim

    2011-04-15

    Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed.

  10. MHD Technology Transfer, Integration and Review Committee

    SciTech Connect

    Not Available

    1992-01-01

    This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

  11. Magnetic Reconnection in a Compressible MHD Plasma

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Zenitani, Seiji

    2011-01-01

    Using steady-state resistive MHD, magnetic reconnection is reinvestigated for conditions of high resistivity/low magnetic Reynolds number, when the thickness of the diffusion region is no longer small compared to its length. Implicit expressions for the reconnection rate and other reconnection parameters are derived based on the requirements of mass, momentum, and energy conservation. These expressions are solved via simple iterative procedures. Implications specifically for low Reynolds number/high resistivity are being discussed

  12. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  13. Estimation of Specific Mass for Multimegawatt NEP Systems Based on Vapor Core Reactors with MHD Power Conversion

    NASA Astrophysics Data System (ADS)

    Knight, Travis; Anghaie, Samim

    2004-02-01

    Very low specific-mass power generation in space is possible using Vapor Core Reactors with Magnetohydrodynamic (VCR/MHD) generator. These advanced reactors at the conceptual design level have potential for the generation of tens to hundreds of megawatts of power in space with specific mass of about 1 kg/kWe. Power for nuclear electric propulsion (NEP) is possible with almost direct power conditioning and coupling of the VCR/MHD power output to the VASIMR engine, MPD, and a whole host of electric thrusters. The VCR/MHD based NEP system is designed to power space transportation systems that dramatically reduce the mission time for human exploration of the entire solar system or for aggressive long-term robotic missions. There are more than 40 years of experience in the evaluation of the scientific and technical feasibility of gas and vapor core reactor concepts. The proposed VCR is based on the concept of a cavity reactor made critical through the use of a reflector such as beryllium or beryllium oxide. Vapor fueled cavity reactors that are considered for NEP applications operate at maximum core center and wall temperatures of 4000 K and 1500K, respectively. A recent investigation has resulted in the conceptual design of a uranium tetrafluoride fueled vapor core reactor coupled to a MHD generator. Detailed neutronic design and cycle analyses have been performed to establish the operating design parameters for 10 to 200 MWe NEP systems. An integral system engineering-simulation code is developed to perform parametric analysis and design optimization studies for the VCR/MHD power system. Total system weight and size calculated based on existing technology has proven the feasibility of achieving exceptionally low specific mass (α ~1 kg/kWe) with a VCR/MHD powered system.

  14. MHD pressure drop in ducts with imperfectly insulating coatings

    SciTech Connect

    Malang, S.; Buehler, L.

    1994-08-01

    Liquid metal cooled blankets in fusion tokamak`s are feasible only with electrically insulating coatings at the coolant channel walls. The requirements of such coatings are investigated and a simple analytical model is developed to determine the influence of imperfections in the coatings on the magneto-hydrodynamic pressure drop. This model is compared with the results of a 3D-MHD code based on the core flow approach. Both methods are in good agreement as long as the imperfections do not increase the pressure drop by more than 20%. The analytical model over-estimates the pressure drop for values larger than 20%. The importance of self-healing of coatings in case of cracking or flaking is quantified and an equation for the equilibrium conditions between the generation of imperfection and the healing of such spots is provided.

  15. MHD Turbulence in the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Heyer, M.; Gong, H.; Brunt, C.; Ostriker, E.

    2005-12-01

    The presence of MHD turbulence in the Taurus Molecular Cloud is examined from 12CO and 13CO J=1-0 imaging observations using the FCRAO 14 meter telescope. The degree of velocity anisotropy is measured from velocity structure functions derived separately along the x and y axes using Principal Component Analysis of spectroscopic imaging data (Brunt & Heyer 2002). Such anisotropy is predicted from model descriptions and computational simulations of MHD turbulence in the case of strong magnetic fields (Goldreich & Sridhar 1995; Cho, Lazarian, & Vishniac 2002; Vestuto, Ostriker, & Stone 2003). Within a subfield of the Taurus image where the column densities are low, this velocity anisotropy is largest along an angle that is coincident with the local magnetic field direction determined independently from optical polarization of background stars.The structure function derived from data perpendicular to the local field shows a shallower scaling exponent and a larger scaling coefficient than the values that describe the structure function constructed along the magnetic field as predicted by the MHD models. This alignment provides strong evidence that the magnetic field is a significant dynamical force within this column density regime of the Taurus cloud.

  16. MHD edge instabilities in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda

    2015-11-01

    Different types of MHD edge instabilities in different toroidal magnetically confined plasmas are compared. Large scale numerical simulations show that the nonlinear evolution of an unstable edge mode in a shaped plasma with a single X-point and a surrounding open field line region has a number of common features in the full resistive MHD model for strongly unstable and weaker instabilities. These include the relation of the nonlinear mode structure and dominant toroidal harmonics to the linear eigenmode spectrum, the effects of the mode on reducing the edge pressure or density gradient, the inward penetration of a ballooning-type perturbation into the plasma interior, and the potential to drive a coherent axisymmetric poloidal rotation of the outer part of the plasma, exhibited at different strengths. The results can be compared to experiment to estimate the usefulness and validity of the MHD model for predicting edge stability and instability properties. Work supported by the U.S. DOE OFES under Awards DE-SC-0007883, DE-FG02-04ER54802, and DE-SC-0008737. Some computation carried out at NERSC.

  17. Thermodynamic MHD Modeling of Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Linker, Jon A.; Lionello, R.; Mikic, Z.; Riley, P.; Titov, V.

    2007-05-01

    Coronal mass ejections (CMEs) disrupt the large-scale coronal magnetic field and propel plasma and magnetic flux outward into interplanetary space. The most energetic CMEs typically originate from active regions on the Sun. Accurately modeling active regions while also capturing the entire corona requires MHD models that include energy transport (radiative losses,anisotropic thermal conduction, and coronal heating) in the transition region and solar corona. We refer to this as the thermodynamic MHD model. The more accurate representation of energy flow in the thermodynamic MHD model allows us to to compute simulated EUV and X-ray emission as would be observed from spacecraft such as SOHO, STEREO, and Hinode. With this approach, theorists no longer get to argue what emission they think their favorite model's magnetic field evolution implies; we can actually go compute the emission and compare with observations. As an example, we show a simulation of the May 12, 1997 CME, and compare the simulated emission with observations from the actual event of dimming regions, postflare loops, and reformation of loops near the northern polar coronal hole. Work supported by NASA, NSF and the Center for Integrated Space Weather Modeling (an NSF Science and Technology Center).

  18. Modeling open boundaries in dissipative MHD simulation

    NASA Astrophysics Data System (ADS)

    Meier, E. T.; Glasser, A. H.; Lukin, V. S.; Shumlak, U.

    2012-04-01

    The truncation of large physical domains to concentrate computational resources is necessary or desirable in simulating many natural and man-made plasma phenomena. Three open boundary condition (BC) methods for such domain truncation of dissipative magnetohydrodynamics (MHD) problems are described and compared here. A novel technique, lacuna-based open boundary conditions (LOBC), is presented for applying open BC to dissipative MHD and other hyperbolic and mixed hyperbolic-parabolic systems of partial differential equations. LOBC, based on manipulating Calderon-type near-boundary sources, essentially damp hyperbolic effects in an exterior region attached to the simulation domain and apply BC appropriate for the remaining parabolic effects (if present) at the exterior region boundary. Another technique, approximate Riemann BC (ARBC), is adapted from finite volume and discontinuous Galerkin methods. In ARBC, the value of incoming flux is specified using a local, characteristic-based method. A third commonly-used open BC, zero-normal derivative BC (ZND BC), is presented for comparison. These open BC are tested in several gas dynamics and dissipative MHD problems. LOBC are found to give stable, low-reflection solutions even in the presence of strong parabolic behavior, while ARBC are stable only when hyperbolic behavior is dominant. Pros and cons of the techniques are discussed and put into context within the body of open BC research to date.

  19. The Statistical Mechanics of Ideal MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  20. Shock Waves in Hall-MHD

    NASA Astrophysics Data System (ADS)

    Hagstrom, George; Hameiri, Eliezer

    2012-03-01

    Hall-MHD is a partial differential equation of degenerate parabolic type that describes the dynamics of an ideal two fluid plasma with massless electrons. We study shock waves and discontinuities in this system. We characterize planar travelling wave solutions and find solutions with discontinuities in the hydrodynamic variables. These solutions, which correspond to the ion-acoustic wave, arise due to the presence of hydrodynamic real characteristics in Hall-MHD. We demonstrate finite-time discontinuity formation for certain types of initial data with discontinuous derivatives and study the shock structure under different regularizations. We also explore the possible existence of solutions with discontinuous magnetic field. A non-algebraic, non-local set of jump conditions is derived under the assumption of [B]!=0. These conditions are used to study the contact discontinuity and it is shown that massless electrons crossing the surface of discontinuity may enter and leave at different locations. These conditions suggest the possible existence of mathematically novel shocks in Hall-MHD.

  1. Robust preconditioners for incompressible MHD models

    NASA Astrophysics Data System (ADS)

    Ma, Yicong; Hu, Kaibo; Hu, Xiaozhe; Xu, Jinchao

    2016-07-01

    In this paper, we develop two classes of robust preconditioners for the structure-preserving discretization of the incompressible magnetohydrodynamics (MHD) system. By studying the well-posedness of the discrete system, we design block preconditioners for them and carry out rigorous analysis on their performance. We prove that such preconditioners are robust with respect to most physical and discretization parameters. In our proof, we improve the existing estimates of the block triangular preconditioners for saddle point problems by removing the scaling parameters, which are usually difficult to choose in practice. This new technique is applicable not only to the MHD system, but also to other problems. Moreover, we prove that Krylov iterative methods with our preconditioners preserve the divergence-free condition exactly, which complements the structure-preserving discretization. Another feature is that we can directly generalize this technique to other discretizations of the MHD system. We also present preliminary numerical results to support the theoretical results and demonstrate the robustness of the proposed preconditioners.

  2. MHD thrust vectoring of a rocket engine

    NASA Astrophysics Data System (ADS)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  3. Inductive ionospheric solver for magnetospheric MHD simulations

    NASA Astrophysics Data System (ADS)

    Vanhamäki, H.

    2011-01-01

    We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances) and similar output is produced (ionospheric electric field). The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km-1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current) in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981).

  4. Building Action Principles for Extended MHD Models

    NASA Astrophysics Data System (ADS)

    Keramidas Charidakos, Ioannis; Lingam, Manasvi; Morrison, Philip; White, Ryan; Wurm, Alexander

    2014-10-01

    The general, non-dissipative, two-fluid model in plasma physics is Hamiltonian, but this property is sometimes lost in the process of deriving simplified two-fluid or one-fluid models from the two-fluid equations of motion. One way to ensure that the reduced models are Hamiltonian is to derive them from an action. We start with the general two-fluid action functional for an electron and an ion fluid interacting with an electromagnetic field, expressed in Lagrangian variables. We perform a change of variables and make various approximations (eg. quasineutrality and ordering of the fields) and small parameter expansions directly in the action. The resulting equations of motion are then mapped to the Eulerian fluid variables using a novel nonlocal Lagrange-Euler map. The correct Eulerian equations are obtained after we impose locality. Using this method and the proper approximations and expansions, we recover Lust's general two-fluid model, extended MHD, Hall MHD, and Electron MHD from a unified framework. The variational formulation allows us to use Noether's theorem to derive conserved quantities for each symmetry of the action. U.S. Dept. of Energy Contract # DE-FG05-80ET-53088, Western New England University Research Fund.

  5. Multi-dimensional MHD simple waves

    SciTech Connect

    Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.

    1996-07-20

    In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density {rho}, gas pressure p, fluid velocity u, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function {phi}(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function {phi} satisfies an implicit equation of the form f({phi})=r{center_dot}n({phi})-{lambda}({phi})t, where n({phi})={nabla}{phi}/|{nabla}{phi}| is the wave normal, {lambda}({phi})={omega}/k=-{phi}{sub t}/|{nabla}{phi}| is the normal speed of the wave front, and f({phi}) is an arbitrary differentiable function of {phi}. The formalism allows for more general simple waves than that usually dealt with in which n({phi}) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation and wave breaking for multi-dimensional waves.

  6. Multi-dimensional MHD simple waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density rho, gas pressure p, fluid velocity V, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function phi(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function has the form phi = r x n(phi) - lambda(phi)t, where = n(phi) = Delta phi / (absolute value of Delta phi) is the wave normal and lambda(phi) = omega/k = -phi t / (absolute value of Delta phi) is the normal speed of the wave front. The formalism allows for more general simple waves than that usually dealt with in which n(phi) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation for multi-dimensional waves.

  7. Anisotropic MHD model and some solutions

    SciTech Connect

    Kuznetsov, V. D.; Dzhalilov, N. S.

    2010-09-15

    MHD waves and instabilities in a collisionless anisotropic-pressure plasma are analyzed in an anisotropic MHD model based on the 16-moment approximation, and the results are found to agree well with those obtained in the low-frequency limit of the kinetic model. It is shown that accounting for heat fluxes leads to an asymmetry in the phase velocities of the wave modes with respect to the heat flux direction and also to a strong interaction between the modes, especially between the backward ones (those that propagate in a direction opposite to that of the heat flux). A correct description of the mirror instability is given. The resonant interaction of three backward modes-fast acoustic, fast magnetosonic, and slow acoustic-under the conditions for the onset of the classical firehose instability triggers a new type of instability the growth rate of which is faster than the maximum growth rate of the conventional firehose instability. The results prove that, in contrast to the familiar Chew-Goldberger-Low approximate model, the anisotropic MHD approach provides a correct description of the large-scale dynamics of collisionless anisotropic plasmas (such as solar corona, solar wind, and ionospheric and magnetospheric plasmas).

  8. 1990 Clean Air Act Amendment Summary: Title VII

    EPA Pesticide Factsheets

    This page provides an overview of the 1990 amendments to Title VII of the Clean Air Act, which were enacted to curb acid rain, urban air pollution and toxic air emissions. The edits to this title deal with enforcement provisions.

  9. The Fokker "Trimotor F VII" commercial transport monoplane

    NASA Technical Reports Server (NTRS)

    1928-01-01

    Directly developed from the single engined type F VII ten passenger monoplanes, The Fokker Trimotor closely follows the commercial aircraft that preceded it. It has three Wright Whirlwind air-cooled engines, rated at 200 HP each.

  10. Meetings with Mark Vishik

    NASA Astrophysics Data System (ADS)

    Kalikinskaya, E. I.

    2014-12-01

    Mark Iosifovich Vishik was my husband Vladimir Chepyzhov's advisor during his years as a student in the Faculty of Mechanics and Mathematics at Moscow State University, and afterwards they worked together for almost 30 years. This is why I knew him personally while not being a mathematician myself: we sometimes talked on the phone, and met during common trips and a few holidays. In his last years, after the death of his devoted wife who was also his best friend, my husband and I decided to visit Mark regularly in order to comfort him in his loneliness, and many other of his friends did the same. I can say without exaggeration that Mark loved to talk with me about everyday matters, to reminisce about his wife Asya Moiseevna, their friends and relatives, to tell stories of his youth and the wonderful encounters that had so enriched his life. We had the idea to write down our conversations and publish them as a book. Unfortunately, few such conversations lay ahead. The last one took place in January 2010. We did not write a book, but we did write an article [1], which was published in English in the form of an interview with Mark. The present article is based on our conversations with Mark. Here I will try to recount his memories about people who played an important role in his life.

  11. Compression Freezing Kinetics of Water to Ice VII

    DOE PAGES

    Gleason, A. E.; Bolme, C. A.; Galtier, E.; ...

    2017-07-11

    Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. In conclusion, these first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.

  12. Compression Freezing Kinetics of Water to Ice VII

    NASA Astrophysics Data System (ADS)

    Gleason, A. E.; Bolme, C. A.; Galtier, E.; Lee, H. J.; Granados, E.; Dolan, D. H.; Seagle, C. T.; Ao, T.; Ali, S.; Lazicki, A.; Swift, D.; Celliers, P.; Mao, W. L.

    2017-07-01

    Time-resolved x-ray diffraction (XRD) of compressed liquid water shows transformation to ice VII in 6 nsec, revealing crystallization rather than amorphous solidification during compression freezing. Application of classical nucleation theory indicates heterogeneous nucleation and one-dimensional (e.g., needlelike) growth. These first XRD data demonstrate rapid growth kinetics of ice VII with implications for fundamental physics of diffusion-mediated crystallization and thermodynamic modeling of collision or impact events on ice-rich planetary bodies.

  13. Rhenium(VII) Catalysis of Prins Cyclization Reactions

    PubMed Central

    Tadpetch, Kwanruthai; Rychnovsky, Scott D.

    2009-01-01

    The rhenium(VII) complex O3ReOSiPh3 are particularly effective catalyst for Prins cyclizations using aromatic and α,β-unsaturated aldehydes. The reaction conditions are mild and the highly substituted 4-hydroxy tetrahydropyran products are formed stereoselectively. Rhenium(VII) complexes appear to spontaneously form esters with alcohols and to directly activate electron rich alcohols for solvolysis. Re2O7 and perrhenic acid were equally effective in catalyzing these cyclizations. PMID:18816133

  14. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting

    NASA Astrophysics Data System (ADS)

    Slovák, Jan; Tanaka, Hideki

    2005-05-01

    Molecular dynamics simulations of metastable ice VII and cubic ice Ic are carried out in order to examine (1) the ability of commonly used water interaction potentials to reproduce the properties of ices, and (2) the possibility of generating low-density amorphous (LDA) structures by heating ice VII, which is known to transform to LDA at ˜135K at normal pressure [S. Klotz, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday, and W. G. Marshall, Nature (London) 398, 681 (1999)]. We test four simple empirical interaction potentials of water: TIP4P [W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983)], SPC/E [H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. B 91, 6269 (1987)], TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)], and ST2 [F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)]. We have found that TIP5P ice VII melts at 210 K, TIP4P at 90 K, and SPC/E at 70 K. Only TIP5P water after transition has a structure similar to that of LDA. TIP4P and SPC/E have almost identical structures, dissimilar to any known water or amorphous phases, but upon heating both slowly evolve towards LDA-like structure. ST2 ice VII is remarkably stable up to 430 K. TIP4P and SPC/E predict correctly the cubic ice collapse into a high-density amorphous ice (HDA) at ˜1GPa whereas TIP5P remains stable up to ˜5GPa. The densities of the simulated ice phases differ significantly, depending on the potential used, and are generally higher than experimental values. The importance of proper treatment of long-range electrostatic interactions is also discussed.

  15. Computer simulation study of metastable ice VII and amorphous phases obtained by its melting.

    PubMed

    Slovák, Jan; Tanaka, Hideki

    2005-05-22

    Molecular dynamics simulations of metastable ice VII and cubic ice Ic are carried out in order to examine (1) the ability of commonly used water interaction potentials to reproduce the properties of ices, and (2) the possibility of generating low-density amorphous (LDA) structures by heating ice VII, which is known to transform to LDA at approximately 135 K at normal pressure [S. Klotz, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday, and W. G. Marshall, Nature (London) 398, 681 (1999)]. We test four simple empirical interaction potentials of water: TIP4P [W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983)], SPC/E [H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. B 91, 6269 (1987)], TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)], and ST2 [F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)]. We have found that TIP5P ice VII melts at 210 K, TIP4P at 90 K, and SPC/E at 70 K. Only TIP5P water after transition has a structure similar to that of LDA. TIP4P and SPC/E have almost identical structures, dissimilar to any known water or amorphous phases, but upon heating both slowly evolve towards LDA-like structure. ST2 ice VII is remarkably stable up to 430 K. TIP4P and SPC/E predict correctly the cubic ice collapse into a high-density amorphous ice (HDA) at approximately 1 GPa whereas TIP5P remains stable up to approximately 5 GPa. The densities of the simulated ice phases differ significantly, depending on the potential used, and are generally higher than experimental values. The importance of proper treatment of long-range electrostatic interactions is also discussed.

  16. Validation and Testing of ENDF/B-VII Decay Data

    NASA Astrophysics Data System (ADS)

    Gauld, I. C.; Pigni, M. T.; Ilas, G.

    2014-06-01

    The nuclear decay library developed for the ORIGEN code was upgraded from ENDF/B-VI.8 to -VII.0 and released in the SCALE nuclear modeling and simulation code system in 2011. Experience with the ENDF/B-VII.0 library identified serious errors and performance issues in the evaluated decay sublibrary. Initially, errors were identified in the decay scheme for the 238U series, leading to large discrepancies in the gamma emission rate for uranium. Further testing of the fission product decay data revealed significant performance issues with ENDF/B-VII.0 relative to the previous release of ENDF/B-VI. To address the performance issues, the decay data library in SCALE was upgraded to ENDF/B-VII.1 and released as an update for users in 2013. This paper describes the practical impact of the ENDF/B-VII.0 decay data performance issues on common code applications, and the validation and testing performed on the updated ORIGEN libraries developed from the ENDF/B-VII.1 sublibrary.

  17. Effective method for MHD retrofit of power plants

    SciTech Connect

    Berry, G.F.; Dennis, C.B.; Johnson, T.R.; Minkov, V.

    1981-10-01

    Retrofitting existing power plants with an open-cycle MHD system has been re-examined in light of recent developments in the heat and seed recovery technology area. A new retrofit cycle configuration has been developed which provides for a direct gas-gas coupling; also, the MHD topping cycle can be decoupled from the existing plant for either separate or joint operation. As an example, the MHD retrofit concept has been applied to Illinois Power Company's Vermilion Station No. 1, a coal-fired power plant presently in operation. Substantial increases in efficiency have been demonstrated and the economic validity of the MHD retrofit approach has been established.

  18. The PCB mark

    SciTech Connect

    1994-12-01

    Polychlorinated biphenyls (PCBs) are a class of organic chemicals that had become widely used in industrial applications due to their practical physical and chemical properties. Historical uses of PCBs include dielectric fluids (used in utility transformers, capacitors, etc.), hydraulic fluids, and other applications requiring stable, fire-retardant materials. Due to findings that PCBs may cause adverse health effects and due to their persistence and accumulation in the environment. The Toxic Substances Control Act (TSCA), enacted on October 11, 1976, banned the manufacture of PCBs after 1978 [Section 6(e)]. The first PCB regulations, promulgated at 40 CFR Part 761, were finalized on February 17, 1978. These PCB regulations include requirements specifying disposal methods and marking (labeling) procedures, and controlling PCB use. To assist the Department of Energy (DOE) in its efforts to comply with the TSCA statute and implementing regulations, the Office of Environmental Guidance has prepared the document ``Guidance on the Management of Polychlorinated Biphenyls (PCBs).`` That document explains the requirements specified in the statute and regulations for managing PCBs including PCB use, storage, transport, and disposal. The requirements outlined at 40 CFR 761.40 through 761.45 specify marking requirements for most PCB items (i.e., any PCB Article, PCB Container, PCB Article Container, or PCB Equipment that contains PCBs). Most PCB items require PCB marks, which are defined as a descriptive name, instructions, cautions, or other information applied to PCB Items or other objects subject to these regulations. The marking regulations include requirements for PCB marks on PCB Items, storage areas, and temporary storage areas. This Information Brief supplements the PCB guidance document by responding to common questions concerning marking requirements for PCBs. It is one of a series of Information Briefs pertinent to PCB management issues.

  19. Shock-associated MHD waves - A model for interstellar density fluctuations

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1988-01-01

    The possibility that the density fluctuations responsible for radio scintillations could be due to ion-beam-generated MHD waves near interstellar shock waves is discussed. This suggestion is inspired by spacecraft observations which reveal these phenomena near shocks in the solar system. The model quite naturally accounts for the scale on which these fluctuations occur; it is dictated by the wavelength of the unstable waves.

  20. On accelerated flow of MHD powell–eyring fluid via homotopy analysis method

    NASA Astrophysics Data System (ADS)

    Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul

    2017-09-01

    The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell–Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.