Sample records for mhd high performance

  1. Global Magnetohydrodynamic Simulation Using High Performance FORTRAN on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    High Performance Fortran (HPF) is one of modern and common techniques to achieve high performance parallel computation. We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5 VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  2. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.

  3. Performance calculations for 200-1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.

    1981-01-01

    The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.

  4. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Astrophysics Data System (ADS)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  5. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  6. Studies of several small seawater MHD thrusters using the high-field solenoid of MIT's bitter magnet laboratory. Annual report, 1 February 1992-31 January 1993. [MHD (Magnetohydrodynamic)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, T.F.; Aumiller, D.L.; Gilbert, J.B.

    1993-02-01

    The performance of several small, seawater magnetohydrodynamic (MHD) thrusters was studied in a closed loop environment. Three different thrusters were designed, constructed, and evaluated. For the first time, videographic and photographic recordings of flow through an MHD thrusters were obtained. The MHD induced flowrate, thrust, and mechanical efficiency was measured/calculated for each thruster at different combinations of electric current and magnetic field strength. Direct determination of thrust, and subsequently of efficiency were not possible. Therefore, the hydraulic resistance of each different thruster was correlated with flowrate. This information was used in conjunction with the measured MHD induced flowrate to calculatemore » the thrust and efficiency of each thruster. Experimental results were repeatable. A theoretical model was developed to predict the performance of each thruster. The results of this model are presented for one thruster at several magnetic field strengths at various electric currents. These predictions corresponded well with the measured/calculated values of MHD induced flowrate and mechanical efficiency. Finally, several MHD thrusters with radically different configurations are proposed.« less

  7. Magnetohydrodynamics with GAMER

    NASA Astrophysics Data System (ADS)

    Zhang, Ui-Han; Schive, Hsi-Yu; Chiueh, Tzihong

    2018-06-01

    GAMER, a parallel Graphic-processing-unit-accelerated Adaptive-MEsh-Refinement (AMR) hydrodynamic code, has been extended to support magnetohydrodynamics (MHD) with both the corner-transport-upwind and MUSCL-Hancock schemes and the constraint transport technique. The divergent preserving operator for AMR has been applied to reinforce the divergence-free constraint on the magnetic field. GAMER-MHD has fully exploited the concurrent executions between the graphic process unit (GPU) MHD solver and other central processing unit computation pertinent to AMR. We perform various standard tests to demonstrate that GAMER-MHD is both second-order accurate and robust, producing results as accurate as those given by high-resolution uniform-grid runs. We also explore a new 3D MHD test, where the magnetic field assumes the Arnold–Beltrami–Childress configuration, temporarily becomes turbulent with current sheets, and finally settles to a lowest-energy equilibrium state. This 3D problem is adopted for the performance test of GAMER-MHD. The single-GPU performance reaches 1.2 × 108 and 5.5 × 107 cell updates per second for the single- and double-precision calculations, respectively, on Tesla P100. We also demonstrate a parallel efficiency of ∼70% for both weak and strong scaling using 1024 XK nodes on the Blue Waters supercomputers.

  8. Laser-energized MHD generator for hypersonic electric air-turborockets

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.; Rosa, R. J.; Moder, J. P.; Blandino, J. S.; Frazier, S. R.

    1987-01-01

    The analysis and design of an open cycle Faraday MHD generator suitable for use in an electric air-turborocket cycle, the MHD-fanjet, is presented. The working fluid for the generators is unseeded high temperature hydrogen, generated by a standing, laser-supported combustion wave. This study also examines the performance of an advanced combined-cycle engine, powered by beamed energy, proposed for use in future SSTO aerospacecraft. This innovative engine incorporates the MHD-fanjet for the acceleration role within the hypersonic flight regime, from about Mach 11 to above Mach 25. Performance results indicate that specific impulses could fall in the range of 10,000 to 16,000 seconds. This would enable propellant mass fractions as low as 6 percent to 9 percent for such advanced shuttlecraft flying SSTO missions to low earth orbit.

  9. Coaxial plasma thrusters for high specific impulse propulsion

    NASA Technical Reports Server (NTRS)

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  10. On controlling nonlinear dissipation in high order filter methods for ideal and non-ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.

    2004-01-01

    The newly developed adaptive numerical dissipation control in spatially high order filter schemes for the compressible Euler and Navier-Stokes equations has been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations. These filter schemes are applicable to complex unsteady MHD high-speed shock/shear/turbulence problems. They also provide a natural and efficient way for the minimization of Div(B) numerical error. The adaptive numerical dissipation mechanism consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is very general. The objective of this paper is to investigate the performance of three commonly used types of nonlinear numerical dissipation for both the ideal and non-ideal MHD.

  11. Concept for a high performance MHD airbreathing-IEC fusion rocket

    NASA Astrophysics Data System (ADS)

    Froning, H. D.; Miley, G. H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.

    2001-02-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. .

  12. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  13. Global MHD simulation of magnetosphere using HPF

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5% using 56 PEs of Fujitsu VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  14. An innovative demonstration of high power density in a compact MHD generator

    NASA Astrophysics Data System (ADS)

    Lineberry, J. T.; Schmidt, H. J.; Chapman, J. N.

    1988-05-01

    This document is the first semi-annual report for this project. It has been prepared in accordance with contractual reporting obligations and contains a written summary of the research work which has been performed since the beginning of the project through March 31, 1988. During this period, research work has included a variety of studies on several aspects of the overall project as was needed to scope out the requirements for proceeding with a detailed design of experimental hardware. One of the major objectives of these efforts was to provide a definition of operating conditions that are required to allow this MHD system to meet the program objectives. These background studies encompassed detailed analyses of the combustion of the aluminum/carbon (Al:C) solid fuel and evaluations of the gas dynamic characteristics of the combustion plasma produced by combustion. Another major effort was that of analyses and predictions of the performance of conceptual designs for the MHD generator. Both of these tasks were directed at obtaining necessary information which would allow geometric scaling of the experimental MHD system. A summary of the design studies that were performed is given within the body of this report.

  15. A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG

    NASA Astrophysics Data System (ADS)

    Griffiths, M. K.; Fedun, V.; Erdélyi, R.

    2015-03-01

    Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.

  16. MHD retrofit of steam power plants. Feasibility study. Summary and conclusions, Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    The US Department of Energy Division of Magnetohydrodynamics (DOE/MHD) initiated this study to evaluate the feasibility of a retrofit option to reduce the time and cost of commercializing MHD. The MHD retrofit option will integrate a nominal 260 megawatt thermal (MWt) MHD topping cycle into an existing or scheduled private utility steam plant; this facility will test both the MHD system and the combined operation of the MHD/steam plant. The 260 MWt input level was determined to be the size which could most effectively demonstrate and verify the engineering design and operational characteristics of a coal-fired, open-cycle, MHD power plant.more » Details are presented. A goal of the MHD program is to have operational by the year 2003 a commercial size, fully integrated MHD plant. This would be accomplished by demonstrating commercial scale, baseload performance of a fully integrated, MHD/steam power plant. (WHK)« less

  17. Metallurgical technologies, energy conversion, and magnetohydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Branover, Herman; Unger, Yeshajahu

    The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)

  18. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  19. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, I: Basic Theory

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.

    2003-01-01

    The objective of this paper is to extend our recently developed highly parallelizable nonlinear stable high order schemes for complex multiscale hydrodynamic applications to the viscous MHD equations. These schemes employed multiresolution wavelets as adaptive numerical dissipation controls t o limit the amount of and to aid the selection and/or blending of the appropriate types of dissipation to be used. The new scheme is formulated for both the conservative and non-conservative form of the MHD equations in curvilinear grids. The four advantages of the present approach over existing MHD schemes reported in the open literature are as follows. First, the scheme is constructed for long-time integrations of shock/turbulence/combustion MHD flows. Available schemes are too diffusive for long-time integrations and/or turbulence/combustion problems. Second, unlike exist- ing schemes for the conservative MHD equations which suffer from ill-conditioned eigen- decompositions, the present scheme makes use of a well-conditioned eigen-decomposition obtained from a minor modification of the eigenvectors of the non-conservative MHD equations t o solve the conservative form of the MHD equations. Third, this approach of using the non-conservative eigensystem when solving the conservative equations also works well in the context of standard shock-capturing schemes for the MHD equations. Fourth, a new approach to minimize the numerical error of the divergence-free magnetic condition for high order schemes is introduced. Numerical experiments with typical MHD model problems revealed the applicability of the newly developed schemes for the MHD equations.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldyrev, Stanislav; Perez, Jean Carlos

    The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracymore » the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the experiment.« less

  1. High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows

    NASA Astrophysics Data System (ADS)

    Sjögreen, Björn; Yee, H. C.

    2018-07-01

    The Sjogreen and Yee [31] high order entropy conservative numerical method for compressible gas dynamics is extended to include discontinuities and also extended to equations of ideal magnetohydrodynamics (MHD). The basic idea is based on Tadmor's [40] original work for inviscid perfect gas flows. For the MHD four formulations of the MHD are considered: (a) the conservative MHD, (b) the Godunov [14] non-conservative form, (c) the Janhunen [19] - MHD with magnetic field source terms, and (d) a MHD with source terms by Brackbill and Barnes [5]. Three forms of the high order entropy numerical fluxes for the MHD in the finite difference framework are constructed. They are based on the extension of the low order form of Chandrashekar and Klingenberg [9], and two forms with modifications of the Winters and Gassner [49] numerical fluxes. For flows containing discontinuities and multiscale turbulence fluctuations the high order entropy conservative numerical fluxes as the new base scheme under the Yee and Sjogreen [31] and Kotov et al. [21,22] high order nonlinear filter approach is developed. The added nonlinear filter step on the high order centered entropy conservative spatial base scheme is only utilized at isolated computational regions, while maintaining high accuracy almost everywhere for long time integration of unsteady flows and DNS and LES of turbulence computations. Representative test cases for both smooth flows and problems containing discontinuities for the gas dynamics and the ideal MHD are included. The results illustrate the improved stability by using the high order entropy conservative numerical flux as the base scheme instead of the pure high order central scheme.

  2. CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    NASA Astrophysics Data System (ADS)

    Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  3. Analytical investigation of critical phenomena in MHD power generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-07-31

    Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the US U-25 Experiment, are analyzed. Also analyzed are the performance of a NASA-specified 500 MW(th) flow train and computations concerning critica issues for the scale-up of MHD Generators. The HPDE is characterized by computational simulations of both the nominal conditions and the conditions during the experimental runs. The steady-state performance is discussed along with the Hall voltage overshoots during the start-up and shutdown transients. The results of simulations of the HPDE runs with codes from the Q3D and TRANSIENT code families are compared tomore » the experimental results. The results of the simulations are in good agreement with the experimental data. Additional critica phenomena analyzed in the AEDC/HPDE are the optimal load schedules, parametric variations, the parametric dependence of the electrode voltage drops, the boundary layer behavior, near electrode phenomena with finite electrode segmentation, and current distribution in the end regions. The US U-25 experiment is characterized by computational simulations of the nominal operating conditions. The steady-state performance for the nominal design of the US U-25 experiment is analyzed, as is the dependence of performance on the mass flow rate. A NASA-specified 500 MW(th) MHD flow train is characterized for computer simulation and the electrical, transport, and thermodynamic properties at the inlet plane are analyzed. Issues for the scale-up of MHD power trains are discussed. The AEDC/HPDE performance is analyzed to compare these experimental results to scale-up rules.« less

  4. Initial Flow Matching Results of MHD Energy Bypass on a Supersonic Turbojet Engine Using the Numerical Propulsion System Simulation (NPSS) Environment

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2010-01-01

    Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.

  5. Resistive wall modes in the EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.

    2003-10-01

    Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.

  6. Rocket-Induced Magnetohydrodynamic Ejector: A Single-Stage-to-Orbit Advanced Propulsion Concept

    NASA Technical Reports Server (NTRS)

    Cole, John; Campbell, Jonathan; Robertson, Anthony

    1995-01-01

    During the atmospheric boost phase of a rocket trajectory, magnetohydrodynamic (MHD) principles can be utilized to augment the thrust by several hundred percent without the input of additional energy. The concept is an MHD implementation of a thermodynamic ejector. Some ejector history is described and some test data showing the impressive thrust augmentation capabilities of thermodynamic ejectors are provided. A momentum and energy balance is used to derive the equations to predict the MHD ejector performance. Results of these equations are compared with the test data and then applied to a specific performance example. The rocket-induced MHD ejector (RIME) engine is described and a status of the technology and availability of the engine components is provided. A top level vehicle sizing analysis is performed by scaling existing MHD designs to the required flight vehicle levels. The vehicle can achieve orbit using conservative technology. Modest improvements are suggested using recently developed technologies, such as superconducting magnets, which can improve predicted performance well beyond those expected for current single-stage-to-orbit (SSTO) designs.

  7. The conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1996-12-31

    The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Pro-ram, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the Near the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magneto-hydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) frommore » a 200{degrees}C NaK facility to a 350{degrees}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degrees}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer multiple-hour, MHD tests, all at 230{degrees}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000.« less

  8. Conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1996-12-31

    The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Program, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magnetohydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) from a 200{degree}Cmore » NaK facility to a 350{degree}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degree}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer, multiple-hour, MHD tests, all at 230{degree}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000. 4 refs., 2 figs.« less

  9. Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.

    2003-01-01

    The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.

  10. Effect of vacuum exhaust pressure on the performance of MHD ducts at high B-field

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Morgan, J. L.; Wang, S.-Y.

    1982-01-01

    The effect of area ratio variation on the performance of a supersonic Hall MHD duct showed that for a given combustion pressure there exists an area ratio below which the power generating region of the duct is shock free and the power output increases linearly with the square of the magnetic field. For area ratios greater than this, a shock forms in the power generating region which moves upstream with increasing magnetic field strength resulting in a less rapid raise in the power output. The shock can be moved downstream by either increasing the combustion pressure or decreasing the exhaust pressure. The influence of these effects upon duct performance is presented in this paper.

  11. Effect of vacuum exhaust pressure on the performance of MHD ducts at high B-field

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Morgan, J. L.; Wang, S. Y.

    1982-01-01

    The effect of area ratio variation on the performance of a supersonic Hall MHD duct is investigated. Results indicate that for a given combustion pressure there exists an area ratio below which the power generating region of the duct is shock free and the power output increases linearly with the square of the magnetic field. For area ratios greater than this, a shock forms in the power generating region which moves upstream with increasing magnetic field strength resulting in a less rapid raise in the power output. The shock can be moved downstream by either increasing the combustion pressure of decreasing the exhaust pressure. The influence of these effects upon duct performance is presented.

  12. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  13. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Airbreathing Hypersonic Engines

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Bityurin, Valentine A.; Lineberry, John T.

    1999-01-01

    Established analyses of conventional ramjet/scramjet performance characteristics indicate that a considerable decrease in efficiency can be expected at off-design flight conditions. This can be explained, in large part, by the deterioration of intake mass flow and limited inlet compression at low flight speeds and by the onset of thrust degradation effects associated with increased burner entry temperature at high flight speeds. In combination, these effects tend to impose lower and upper Mach number limits for practical flight. It has been noted, however, that Magnetohydrodynamic (MHD) energy management techniques represent a possible means for extending the flight Mach number envelope of conventional engines. By transferring enthalpy between different stages of the engine cycle, it appears that the onset of thrust degradation may be delayed to higher flight speeds. Obviously, the introduction of additional process inefficiencies is inevitable with this approach, but it is believed that these losses are more than compensated through optimization of the combustion process. The fundamental idea is to use MHD energy conversion processes to extract and bypass a portion of the intake kinetic energy around the burner. We refer to this general class of propulsion system as an MHD-bypass engine. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass airbreathing hypersonic engines using ideal gasdynamics and fundamental thermodynamic principles.

  14. New Developments in Modeling MHD Systems on High Performance Computing Architectures

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D. J.; Bhattacharjee, A.

    2009-04-01

    Modeling the wide range of time and length scales present even in fluid models of plasmas like MHD and X-MHD (Extended MHD including two fluid effects like Hall term, electron inertia, electron pressure gradient) is challenging even on state-of-the-art supercomputers. In the last years, HPC capacity has continued to grow exponentially, but at the expense of making the computer systems more and more difficult to program in order to get maximum performance. In this paper, we will present a new approach to managing the complexity caused by the need to write efficient codes: Separating the numerical description of the problem, in our case a discretized right hand side (r.h.s.), from the actual implementation of efficiently evaluating it. An automatic code generator is used to describe the r.h.s. in a quasi-symbolic form while leaving the translation into efficient and parallelized code to a computer program itself. We implemented this approach for OpenGGCM (Open General Geospace Circulation Model), a model of the Earth's magnetosphere, which was accelerated by a factor of three on regular x86 architecture and a factor of 25 on the Cell BE architecture (commonly known for its deployment in Sony's PlayStation 3).

  15. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.

  16. Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, P. T.; Shadid, J. N.; Hu, J. J.

    Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less

  17. MHD Energy Bypass Scramjet Performance with Real Gas Effects

    NASA Technical Reports Server (NTRS)

    Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.

    2000-01-01

    The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.

  18. Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD

    DOE PAGES

    Lin, P. T.; Shadid, J. N.; Hu, J. J.; ...

    2017-11-06

    Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less

  19. Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments

    NASA Astrophysics Data System (ADS)

    Chang, Zuoyang

    1996-11-01

    Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K.-L. Wong and S. Zweben, Princeton Plasma Physics Lab. Department of Physics, University of California, Irvine, CA 92717 ^*Work supported by the U.S. Department of Energy DoE Contract No. DE-AC02-76CH03073.

  20. Summary and evaluation of the parametric study of potential early commercial MHD power plants (PSPEC)

    NASA Technical Reports Server (NTRS)

    Staigner, P. J.; Abbott, J. M.

    1980-01-01

    Two parallel contracted studies were conducted. Each contractor investigated three base cases and parametric variations about these base cases. Each contractor concluded that two of the base cases (a plant using separate firing of an advanced high temperature regenerative air heater with fuel from an advanced coal gasifier and a plant using an intermediate temperature metallic recuperative heat exchanger to heat oxygen enriched combustion air) were comparable in both performance and cost of electricity. The contractors differed in the level of their cost estimates with the capital cost estimates for the MHD topping cycle and the magnet subsystem in particular accounting for a significant part of the difference. The impact of the study on the decision to pursue a course which leads to an oxygen enriched plant as the first commercial MHD plant is described.

  1. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  2. Status of Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Lineberry, John T.

    2007-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems, The baseline configuration for this high-power experimental facility utilizes a 1,5-MW, multi-gas arc-heater as a thermal driver for a 2-MW, MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable beat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  3. Numerical Simulations of Free Surface Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema

    2003-11-01

    We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.

  4. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  5. A summary of the ECAS performance and cost results for MHD systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The potential is examined of various advanced power plant concepts using coal and coal-derived fuel. The results indicate that open cycle coal fired direct preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed cycle MHD systems may have the potential to approach the efficiency and COE of open cycle MHD. The 1200-1500 F liquid metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  6. Magnetosphere simulations with a high-performance 3D AMR MHD Code

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Dezeeuw, Darren; Groth, Clinton; Powell, Kenneth; Song, Paul

    1998-11-01

    BATS-R-US is a high-performance 3D AMR MHD code for space physics applications running on massively parallel supercomputers. In BATS-R-US the electromagnetic and fluid equations are solved with a high-resolution upwind numerical scheme in a tightly coupled manner. The code is very robust and it is capable of spanning a wide range of plasma parameters (such as β, acoustic and Alfvénic Mach numbers). Our code is highly scalable: it achieved a sustained performance of 233 GFLOPS on a Cray T3E-1200 supercomputer with 1024 PEs. This talk reports results from the BATS-R-US code for the GGCM (Geospace General Circularculation Model) Phase 1 Standard Model Suite. This model suite contains 10 different steady-state configurations: 5 IMF clock angles (north, south, and three equally spaced angles in- between) with 2 IMF field strengths for each angle (5 nT and 10 nT). The other parameters are: solar wind speed =400 km/sec; solar wind number density = 5 protons/cc; Hall conductance = 0; Pedersen conductance = 5 S; parallel conductivity = ∞.

  7. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.

    2000-01-01

    The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.

  8. Continued Development and Validation of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2015-11-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks; determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and provide an intermediate step between theory and future experiments. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (~ 36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. Results from verification of the PSI-TET extended MHD model using the GEM magnetic reconnection challenge will also be presented along with investigation of injector configurations for future SIHI experiments using Taylor state equilibrium calculations. Work supported by DoE.

  9. Metal/gas MHD conversion

    NASA Astrophysics Data System (ADS)

    Thibault, J. P.; Joussellin, F.; Alemany, A.; Dupas, A.

    1982-09-01

    Operation features, theory, performance, and possible spatial applications of metal/gas MHD electrical generators are described. The working principle comprises an MHD channel, surrounded by a magnet, filled with a molten, highly conductive metal into which gas is pumped. The heat of the metal expands the gas, forcing a flow through the magnetic field crossing the channel, thus creating an electrical current conducted by the metal. The gas and metal are separated by a centrifugal device and both are redirected into the channel, forming thereby a double closed circuit when the heat of the molten metal is returned to the flow. Necessary characteristics for the gas such as a fairly low vaporization temperature and nonmiscibility with the metal, are outlined, and a space system using Li-Cs or Z-K as the heat carrier kept molten by a parabolic dish system is sketched. Equations governing the fluid mechanics, thermodynamics, and the electrical generation are defined. The construction of a prototype MHD generator using a tin-water flow operating at 250 C, a temperature suitable for coupling to solar heat sources, is outlined, noting expected efficiencies of 20-30 percent.

  10. A Computational Study of a Circular Interface Richtmyer-Meshkov Instability in MHD

    NASA Astrophysics Data System (ADS)

    Maxon, William; Black, Wolfgang; Denissen, Nicholas; McFarland, Jacob; Los Alamos National Laboratory Collaboration; University of Missouri Shock Tube Laboratory Team

    2017-11-01

    The Richtmyer-Meshkov instability (RMI) is a hydrodynamic instability that appears in several high energy density applications such as inertial confinement fusion (ICF). In ICF, as the thermonuclear fuel is being compressed it begins to mix due to fluid instabilities including the RMI. This mixing greatly decreases the energy output. The RMI occurs when two fluids of different densities are impulsively accelerated and the pressure and density gradients are misaligned. In magnetohydrodynamics (MHD), the RMI may be suppressed by introducing a magnetic field in an electrically conducting fluid, such as a plasma. This suppression has been studied as a possible mechanism for improving confinement in ICF targets. In this study,ideal MHD simulations are performed with a circular interface impulsively accelerated by a shock wave in the presence of a magnetic field. These simulations are executed with the research code FLAG, a multiphysics, arbitrary Lagrangian/Eulerian, hydrocode developed and utilized at Los Alamos National Laboratory. The simulation results will be assessed both quantitatively and qualitatively to examine the stabilization mechanism. These simulations will guide ongoing MHD experiments at the University of Missouri Shock Tube Facility.

  11. Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications

    NASA Astrophysics Data System (ADS)

    Macheret, Sergey

    2005-05-01

    The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the "reverse energy bypass" scheme. MHD power generation on board reentry vehicles is also discussed.

  12. Off-design performance analysis of MHD generator channels

    NASA Technical Reports Server (NTRS)

    Wilson, D. R.; Williams, T. S.

    1980-01-01

    A computer code for performing parametric design point calculations, and evaluating the off-design performance of MHD generators has been developed. The program is capable of analyzing Faraday, Hall, and DCW channels, including the effect of electrical shorting in the gas boundary layers and coal slag layers. Direct integration of the electrode voltage drops is included. The program can be run in either the design or off-design mode. Details of the computer code, together with results of a study of the design and off-design performance of the proposed ETF MHD generator are presented. Design point variations of pre-heat and stoichiometry were analyzed. The off-design study included variations in mass flow rate and oxygen enrichment.

  13. Performance simulation of a plasma magnetohydrodynamic power generator

    NASA Astrophysics Data System (ADS)

    Huang, Hulin; Li, Linyong; Zhu, Guiping

    2018-05-01

    The performance of magnetohydrodynamic (MHD) power generator is affected by many issues, among which the load coefficient k is of great importance. This paper reveals the relationship between the k and the performance of MHD generator by numerical simulation on Faraday-type MHD power generator using He/Xe as working plasma. The results demonstrate that the power generation efficiency increases with an increment of the load factor. However, the enthalpy extraction firstly increases then decreases with the load factor increasing. The enthalpy extraction rate reaches the maximum when the load coefficient k equals to 0.625, which infers the best performance of the power generator channel with the maximum electricity production.

  14. Flow Matching Results of an MHD Energy Bypass System on a Supersonic Turbojet Engine Using the Numerical Propulsion System Simulation (NPSS) Environment

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2011-01-01

    Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.

  15. Mechanism analysis of Magnetohydrodynamic heat shield system and optimization of externally applied magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-04-01

    As a novel thermal protection technique for hypersonic vehicles, Magnetohydrodynamic (MHD) heat shield system has been proved to be of great intrinsic value in the hypersonic field. In order to analyze the thermal protection mechanisms of such a system, a physical model is constructed for analyzing the effect of the Lorentz force components in the counter and normal directions. With a series of numerical simulations, the dominating Lorentz force components are analyzed for the MHD heat flux mitigation in different regions of a typical reentry vehicle. Then, a novel magnetic field with variable included angle between magnetic induction line and streamline is designed, which significantly improves the performance of MHD thermal protection in the stagnation and shoulder areas. After that, the relationships between MHD shock control and MHD thermal protection are investigated, based on which the magnetic field above is secondarily optimized obtaining better performances of both shock control and thermal protection. Results show that the MHD thermal protection is mainly determined by the Lorentz force's effect on the boundary layer. From the stagnation to the shoulder region, the flow deceleration effect of the counter-flow component is weakened while the flow deflection effect of the normal component is enhanced. Moreover, there is no obviously positive correlation between the MHD shock control and thermal protection. But once a good Lorentz force's effect on the boundary layer is guaranteed, the thermal protection performance can be further improved with an enlarged shock stand-off distance by strengthening the counter-flow Lorentz force right after shock.

  16. Effects of UGT1A9 genetic polymorphisms on monohydroxylated derivative of oxcarbazepine concentrations and oxcarbazepine monotherapeutic efficacy in Chinese patients with epilepsy.

    PubMed

    Lu, Yao; Fang, Youxin; Wu, Xunyi; Ma, Chunlai; Wang, Yue; Xu, Lan

    2017-03-01

    The human UDP-glucuronosyltransferase which is genetically polymorphic catalyzes glucuronidations of various drugs. The interactions among UGT1A4, UGT1A6, UGT1A9, and UGT2B15 genetic polymorphisms, monohydroxylated derivative (MHD) of oxcarbazepine (OXC) plasma concentrations, and OXC monotherapeutic efficacy were explored in 124 Chinese patients with epilepsy receiving OXC monotherapy. MHD is the major active metabolite of OXC, and its plasma concentration was measured using high-performance liquid chromatography when patients reached their maintenance dose of OXC. Genomic DNA was extracted from whole blood and SNP genotyping performed using PCR followed by dideoxy chain termination sequencing. We followed the patients for at least 1 year to evaluate the OXC monotherapy efficacy. Patients were divided into two groups according to their therapeutic outcome: group 1, seizure free; group 2, not seizure free. The data were analyzed using T test, one-way analysis of variance (ANOVA), Kruskal-Wallis test, chi-square test, Fisher's exact test, correlation analysis, and multivariate regression analysis. T test analysis showed that MHD plasma concentrations were significantly different between the two groups (p = 0.002). One-way ANOVA followed by Bonferroni post hoc testing of four candidate SNPs revealed that carriers of the UGT1A9 variant allele I399 C > T (TT 13.28 ± 7.44 mg/L, TC 16.41 ± 6.53 mg/L) had significantly lower MHD plasma concentrations and poorer seizure control than noncarriers (CC 22.24 ± 8.49 mg/L, p < 0.05). In our study, we have demonstrated the effects of UGT1A9 genetic polymorphisms on MHD plasma concentrations and OXC therapeutic efficacy. Through MHD monitoring, we can predict OXC therapeutic efficacy, which may be useful for the personalization of OXC therapy in epileptic patients.

  17. A summary of the ECAS MHD power plant results

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Harris, L. P.

    1976-01-01

    The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.

  18. H2-O2 combustion powered steam-MHD central power systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Smith, J. M.; Nichols, L. D.

    1974-01-01

    Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.

  19. Results from study of potential early commercial MHD power plants and from recent ETF design work. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1980-01-01

    The study deals with different 'moderate technology' entry-level commercial MHD power plants. Two of the reference plants are based on combustion of coal with air preheated in a high-temperature regenerative air heater separately fired with a low-BTU gas produced in a gasifier integrated with the power plant. The third reference plant design is based on the use of oxygen enriched combustion air. Performance calculations show that an overall power plant efficiency of the order of 44% can be reached with the use of oxygen enrichment.

  20. Fast Magnetotail Reconnection: Challenge to Global MHD Modeling

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; de Zeeuw, D.; Gombosi, T.

    2005-05-01

    Representation of fast magnetotail reconnection rates during substorm onset is one of the major challenges to global MHD modeling. Our previous comparative study of collisionless magnetic reconnection in GEM Challenge geometry demonstrated that the reconnection rate is controlled by ion nongyrotropic behavior near the reconnection site and that it can be described in terms of nongyrotropic corrections to the magnetic induction equation. To further test the approach we performed MHD simulations with nongyrotropic corrections of forced reconnection for the Newton Challenge setup. As a next step we employ the global MHD code BATSRUS and test different methods to model fast magnetotail reconnection rates by introducing non-ideal corrections to the induction equation in terms of nongyrotropic corrections, spatially localized resistivity, or current dependent resistivity. The BATSRUS adaptive grid structure allows to perform global simulations with spatial resolution near the reconnection site comparable with spatial resolution of local MHD simulations for the Newton Challenge. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at the Community Coordinated Modeling Center.

  1. Nonlinear MHD study on the influence of E×B flow in QH-mode plasma of DIII-D

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Huijsmans, Guido; Loarte, Alberto; Garofalo, Andrea; Solomon, Wayne; Nkonga, Boniface; Hoelzl, Matthias

    2017-10-01

    In QH-mode experiments with zero-net NBI torque show that there remains a finite E×B rotation in the pedestal region implying that a minimum E×B flow or flow shear is required for the plasma to develop the Edge Harmonic Oscillation (EHO), which is a saturated KPM (kink-peeling mode) characteristic of the QH-mode. To understand the roles of E×B flow and its shear in the saturation of KPMs, non-linear MHD simulations of DIII-D QH-mode plasmas including toroidal mode numbers n = 0 to 10 with different E×B rotation speed have been performed. These simulation show that ExB rotation strongly stabilizes high-n modes but destabilizes low-n modes (particularly the n =2 mode) in the linear growth phase, which is consistent experimental observations and previous linear MHD modelling. US DOE under DE-FC02-04ER54698.

  2. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency.

    PubMed

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-12-15

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.

  3. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    PubMed Central

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-01-01

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393

  4. A fully implicit Hall MHD algorithm based on the ion Ohm's law

    NASA Astrophysics Data System (ADS)

    Chacón, Luis

    2010-11-01

    Hall MHD is characterized by extreme hyperbolic numerical stiffness stemming from fast dispersive waves. Implicit algorithms are potentially advantageous, but of very difficult efficient implementation due to the condition numbers of associated matrices. Here, we explore the extension of a successful fully implicit, fully nonlinear algorithm for resistive MHD,ootnotetextL. Chac'on, Phys. Plasmas, 15 (2008) based on Jacobian-free Newton-Krylov methods with physics-based preconditioning, to Hall MHD. Traditionally, Hall MHD has been formulated using the electron equation of motion (EOM) to determine the electric field in the plasma (the so-called Ohm's law). However, given that the center-of-mass EOM, the ion EOM, and the electron EOM are linearly dependent, one could equivalently employ the ion EOM as the Ohm's law for a Hall MHD formulation. While, from a physical standpoint, there is no a priori advantage for using one Ohm's law vs. the other, we argue in this poster that there is an algorithmic one. We will show that, while the electron Ohm's law prevents the extension of the resistive MHD preconditioning strategy to Hall MHD, an ion Ohm's law allows it trivially. Verification and performance numerical results on relevant problems will be presented.

  5. Generation and characterization of gas bubbles in liquid metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, S.; Gerbeth, G.; Witke, W.

    1996-06-01

    There is an ongoing research performed in the RCR on local transport phenomena in turbulent liquid metal (LM) duct flows exposed to external magnetic fields. In this context so-called MHD flow phenomena can be observed, which are unknown in usual hydraulic engineering. The field of interest covers also the influence of magnetic fields on the behaviour of liquid metal - gas mixtures. Profound knowledge on these LMMHD two-phase flow plays an important role in a variety of technological applications, in particular, in the design of Liquid-Metal MHD generators or for several metallurgical processes employing gas-stirred reactors. However, the highly empiricalmore » nature of two-phase flow analysis gives little hope for the prediction of MHD two-phase flows without extensive experimental data. A summary is given about the authors research activities focussing on two directions: (a) Momentum transfer between gas and liquid metal in a bubbly flow regime to investigate the influence of the external magnetic field on the velocity slip ration S (b) Peculiarities of the MHD turbulence to use small gas bubbles as local tracers in order to study the turbulent mass transfer.« less

  6. Coupling MHD and PIC models in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Daldorff, L.; Toth, G.; Sokolov, I.; Gombosi, T. I.; Lapenta, G.; Brackbill, J. U.; Markidis, S.; Amaya, J.

    2013-12-01

    Even for extended fluid plasma models, like Hall, anisotropic ion pressure and multi fluid MHD, there are still many plasma phenomena that are not well captured. For this reason, we have coupled the Implicit Particle-In-Cell (iPIC3D) code with the BATSRUS global MHD code. The PIC solver is applied in a part of the computational domain, for example, in the vicinity of reconnection sites, and overwrites the MHD solution. On the other hand, the fluid solver provides the boundary conditions for the PIC code. To demonstrate the use of the coupled codes for magnetospheric applications, we perform a 2D magnetosphere simulation, where BATSRUS solves for Hall MHD in the whole domain except for the tail reconnection region, which is handled by iPIC3D.

  7. Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Sondak, David

    The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting-edge dynamic Smagorinsky eddy viscosity (DSEV) models. The new models typically outperform the classical models.

  8. H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan E.; Hawk, Clark W.

    1998-01-01

    A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.

  9. Magnetic levitation and MHD propulsion

    NASA Astrophysics Data System (ADS)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des développements actuels avec en particulier les premiers essais en rade de Kobe de Yamato I, navire de 260 tonnes, entraîné par MHD.

  10. Evaluation of the Effects of Ketoconazole and Voriconazole on the Pharmacokinetics of Oxcarbazepine and Its Main Metabolite MHD in Rats by UPLC-MS-MS.

    PubMed

    Chen, Xinxin; Gu, Ermin; Wang, Shuanghu; Zheng, Xiang; Chen, Mengchun; Wang, Li; Hu, Guoxin; Cai, Jian-ping; Zhou, Hongyu

    2016-03-01

    Oxcarbazepine (OXC), a second-generation antiepileptic drug, undergoes rapid reduction with formation of the active metabolite 10,11-dihydro-10-hydroxy-carbazepine (MHD) in vivo. In this study, a method for simultaneous determination of OXC and MHD in rat plasma using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS-MS) was developed and validated. Under given chromatographic conditions, OXC, MHD and internal standard diazepam were separated well and quantified by electrospray positive ionization mass spectrometry in the multiple reaction monitoring transitions mode. The method validation demonstrated good linearity over the range of 10-2,000 ng/mL for OXC and 5-1,000 ng/mL for MHD. The lower limit of quantification was 5 ng/mL for OXC and 2.5 ng/mL for MHD, respectively. The method was successfully applied to the evaluation of the pharmacokinetics of OXC and MHD in rats, with or without pretreatment by ketoconazole (KET) and voriconazole (VOR). Statistics indicated that KET and VOR significantly affected the disposition of OXC and MHD in vivo, whereas VOR predominantly interfered with the disposition of MHD. This method is suitable for pharmacokinetic study in small animals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Sharp Interface Algorithm for Large Density Ratio Incompressible Multiphase Magnetohydrodynamic Flows

    DTIC Science & Technology

    2013-01-01

    experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets for the proposed muon collider...validated through the comparison with experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets...FronTier-MHD code have been performed using experimental and theoretical studies of liquid mercury jets in magnetic fields. Experimental studies of a

  12. Particle acceleration in regions of magnetic flux emergence: a statistical approach using test-particle- and MHD-simulations

    NASA Astrophysics Data System (ADS)

    Vlahos, Loukas; Archontis, Vasilis; Isliker, Heinz

    We consider 3D nonlinear MHD simulations of an emerging flux tube, from the convection zone into the corona, focusing on the coronal part of the simulations. We first analyze the statistical nature and spatial structure of the electric field, calculating histograms and making use of iso-contour visualizations. Then test-particle simulations are performed for electrons, in order to study heating and acceleration phenomena, as well as to determine HXR emission. This study is done by comparatively exploring quiet, turbulent explosive, and mildly explosive phases of the MHD simulations. Also, the importance of collisional and relativistic effects is assessed, and the role of the integration time is investigated. Particular aim of this project is to verify the quasi- linear assumptions made in standard transport models, and to identify possible transport effects that cannot be captured with the latter. In order to determine the relation of our results to Fermi acceleration and Fokker-Planck modeling, we determine the standard transport coefficients. After all, we find that the electric field of the MHD simulations must be downscaled in order to prevent an un-physically high degree of acceleration, and the value chosen for the scale factor strongly affects the results. In different MHD time-instances we find heating to take place, and acceleration that depends on the level of MHD turbulence. Also, acceleration appears to be a transient phenomenon, there is a kind of saturation effect, and the parallel dynamics clearly dominate the energetics. The HXR spectra are not yet really compatible with observations, we have though to further explore the scaling of the electric field and the integration times used.

  13. Usefulness of oral loading of oxcarbazepine suspension in selected patients with epilepsy.

    PubMed

    Kim, Dong Wook; Gu, Namyi; Lee, Howard; Jang, In-Jin; Chu, Kon; Yu, Kyung-Sang; Cho, Joo-Youn; Yoon, Seo Hyun; Na, Hyun Jeong; Lee, Sang Kun

    2013-10-01

    Oral loading of oxcarbazepine tablet is effective and well tolerated to adequately achieve the therapeutic levels of its active metabolite, 10,11-dihydro-10-hydroxy-carbazepine (monohydroxy derivative, MHD) in epilepsy patients. The present study was performed to investigate the safety, tolerability, and pharmacokinetic profiles of oral loading of oxcarbazepine suspension in epilepsy patients with a high risk of recurrent seizures. Oxcarbazepine suspension was administered orally at a single loading dose of 30 mg/kg to 38 adult patients with recurrent seizures, who required rapid seizure control or temporarily discontinued antiepileptic drugs for diagnostic or pre-surgical evaluation. Plasma concentrations of oxcarbazepine and MHD were determined, and adverse events were assessed at 2, 4, 6, 8, 10, 12, 14, 16, and 24 hours after oral loading of oxcarbazepine suspension. 30 patients experienced ≥ 1 adverse event during the first 24 hours after oral loading of oxcarbazepine (e.g., dizziness, transient diplopia, nausea or vomiting), most of which occurred within 4 hours after loading, suggesting no temporal association with MHD plasma levels. 35 (92.1%) patients were still compliant with a maintenance dose of oxcarbazepine after discharge from hospital. 34 (89.4%) patients reached the lower therapeutic level of MHD (12 mg/l) at 4 hours after oral loading of oxcarbazepine suspension, which lasted up to 24 hours in most patients. No patient reached the supratherapeutic levels of MHD (> 35 mg/l) during the study. The mean plasma concentration-time curves and pharmacokinetic profiles of oral loading of oxcarbazepine suspension were similar to those of oral loading of oxcarbazepine tablet. Oral loading of oxcarbazepine suspension followed by maintenance dosing is well tolerated and effective in steadily achieving the therapeutic level of MHD in selected patients with epilepsy.

  14. Influence of verapamil on the pharmacokinetics of oxcarbazepine and of the enantiomers of its 10-hydroxy metabolite in healthy volunteers.

    PubMed

    Antunes, Natalícia de Jesus; Wichert-Ana, Lauro; Coelho, Eduardo Barbosa; Della Pasqua, Oscar; Alexandre Junior, Veriano; Takayanagui, Osvaldo Massaiti; Tozatto, Eduardo; Marques, Maria Paula; Lanchote, Vera Lucia

    2016-02-01

    Oxcarbazepine (OXC), a second-generation antiepileptic, and its chiral metabolite 10-hydroxycarbazepine (MHD) are substrates of P-glycoprotein, which can be inhibited by verapamil. This study evaluated the influence of verapamil on the pharmacokinetics of OXC and MHD enantiomers in healthy volunteers. Healthy volunteers (n = 12) on occasion O (OXC monotherapy) received 300 mg OXC/12 h for 5 days, and on the O + V occasion (treatment with OXC  + verapamil), they received 300 mg OXC/12 h and 80 mg verapamil/8 h for 5 days. Blood samples were collected over a period of 12 h. Total and free plasma concentrations of OXC and the MHD enantiomers were evaluated by LC-MS/MS. Noncompartmental pharmacokinetic analysis was performed using the WinNonlin program. The kinetic disposition of MHD was enantioselective with plasma accumulation (AUC(0-12) S-(+)/R-(-) ratio of 4.38) and lower fraction unbound (0.37 vs 0.42) of the S-(+)-MHD enantiomer. Treatment with verapamil reduced the OXC mean residence time (4.91 vs 4.20 h) and apparent volume of distribution (4.72 vs 3.15 L/kg). Verapamil also increased for both MHD enantiomers C max total [R-(-)-MHD: 2.65 vs 2.98 μg/mL and S-(+)-MHD: 10.15 vs 11.60 μg/mL], C average [R-(-)-MHD: 1.98 vs 2.18 μg/mL and S-(+)-MHD: 8.10 vs 8.83 μg/mL], and AUC(0-12) [R-(-)-MHD: 23.79 vs 26.19 μg h/mL and S-(+)-MHD: 97.87 vs 108.35 μg h/mL]. Verapamil increased the AUC values of both MDH enantiomers, which is probably related to the inhibition of intestinal P-glycoprotein. Considering that the exposure of both MHD enantiomers was increased in only 10 %, no OXC dose adjustment could be recommended in the situation of verapamil coadministration.

  15. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  16. A MHD channel study for the ETF conceptual design

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    1981-01-01

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  17. A MHD channel study for the ETF conceptual design

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  18. A summary of the ECAS performance and cost results for MHD system. [Energy Conversion Alternatives Study

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The interagency-funded, NASA-coordinated Energy Conversion Alternatives Study (ECAS) has studied the potential of various advanced power plant concepts using coal and coal-derived fuel. Principle studies were conducted through prime contracts with the General Electric Company and the Westinghouse Electric Corporation. The results indicate that open-cycle coal-fired direct-preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed-cycle MHD systems may have the potential to approach the efficiency and COE of open-cycle MHD. The 1200-1500 F liquid-metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  19. DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.

    2016-09-01

    This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.

  20. DISCO: A 3D MOVING-MESH MAGNETOHYDRODYNAMICS CODE DESIGNED FOR THE STUDY OF ASTROPHYSICAL DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffell, Paul C., E-mail: duffell@berkeley.edu

    2016-09-01

    This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide varietymore » of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.« less

  1. Summary and evaluation of the conceptual design study of a potential early commercial MHD power plant (CSPEC)

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.; Penko, P. F.

    1982-01-01

    The conceptual design study of a potential early commercial MHD power plant (CSPEC) is described and the results are summarized. Each of two contractors did a conceptual design of an approximtely 1000 MWe open-cycle MHD/steam plant with oxygen enriched combustion air preheated to an intermediate temperatue in a metallic heat exchanger. The contractors were close in their overall plant efficiency estimates but differed in their capital cost and cost of electricity estimates, primarily because of differences in balance-of-plant material, contingency, and operating and maintenance cost estimates. One contractor concluded that its MHD plant design compared favorably in cost of electricity with conventional coal-fired steam plants. The other contractor is making such a comparison as part of a follow-on study. Each contractor did a preliminary investigation of part-load performance and plant availability. The results of NASA studies investigating the effect of plant size and oxidizer preheat temperature on the performance of CSPEC-type MHD plants are also described. The efficiency of a 1000 MWe plant is about three points higher than of a 200 MWe plant. Preheating to 1600 F gives an efficiency about one and one-half points higher than preheating to 800 F for all plant sizes. For each plant size and preheat temperature there is an oxidizer enrichment level and MHD generator length that gives the highest plant efficiency.

  2. Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, E.D.; Sikes, W.C.

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less

  3. On the performance of exponential integrators for problems in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Einkemmer, Lukas; Tokman, Mayya; Loffeld, John

    2017-02-01

    Exponential integrators have been introduced as an efficient alternative to explicit and implicit methods for integrating large stiff systems of differential equations. Over the past decades these methods have been studied theoretically and their performance was evaluated using a range of test problems. While the results of these investigations showed that exponential integrators can provide significant computational savings, the research on validating this hypothesis for large scale systems and understanding what classes of problems can particularly benefit from the use of the new techniques is in its initial stages. Resistive magnetohydrodynamic (MHD) modeling is widely used in studying large scale behavior of laboratory and astrophysical plasmas. In many problems numerical solution of MHD equations is a challenging task due to the temporal stiffness of this system in the parameter regimes of interest. In this paper we evaluate the performance of exponential integrators on large MHD problems and compare them to a state-of-the-art implicit time integrator. Both the variable and constant time step exponential methods of EPIRK-type are used to simulate magnetic reconnection and the Kevin-Helmholtz instability in plasma. Performance of these methods, which are part of the EPIC software package, is compared to the variable time step variable order BDF scheme included in the CVODE (part of SUNDIALS) library. We study performance of the methods on parallel architectures and with respect to magnitudes of important parameters such as Reynolds, Lundquist, and Prandtl numbers. We find that the exponential integrators provide superior or equal performance in most circumstances and conclude that further development of exponential methods for MHD problems is warranted and can lead to significant computational advantages for large scale stiff systems of differential equations such as MHD.

  4. Global magnetohydrodynamic simulations on multiple GPUs

    NASA Astrophysics Data System (ADS)

    Wong, Un-Hong; Wong, Hon-Cheng; Ma, Yonghui

    2014-01-01

    Global magnetohydrodynamic (MHD) models play the major role in investigating the solar wind-magnetosphere interaction. However, the huge computation requirement in global MHD simulations is also the main problem that needs to be solved. With the recent development of modern graphics processing units (GPUs) and the Compute Unified Device Architecture (CUDA), it is possible to perform global MHD simulations in a more efficient manner. In this paper, we present a global magnetohydrodynamic (MHD) simulator on multiple GPUs using CUDA 4.0 with GPUDirect 2.0. Our implementation is based on the modified leapfrog scheme, which is a combination of the leapfrog scheme and the two-step Lax-Wendroff scheme. GPUDirect 2.0 is used in our implementation to drive multiple GPUs. All data transferring and kernel processing are managed with CUDA 4.0 API instead of using MPI or OpenMP. Performance measurements are made on a multi-GPU system with eight NVIDIA Tesla M2050 (Fermi architecture) graphics cards. These measurements show that our multi-GPU implementation achieves a peak performance of 97.36 GFLOPS in double precision.

  5. Numerical simulation of surface wave dynamics of liquid metal MHD flow on an inclined plane in a magnetic field with spatial variation

    NASA Astrophysics Data System (ADS)

    Gao, Donghong

    Interest in utilizing liquid metal film flows to protect the plasma-facing solid structures places increasing demand on understanding the magnetohydrodynamics (MHD) of such flows in a magnetic field with spatial variation. The field gradient effect is studied by a two-dimensional (2D) model in Cartesian coordinates. The thin film flow down an inclined plane in spanwise (z-direction) magnetic field with constant streamwise gradient and applied current is analyzed. The solution to the equilibrium flow shows forcefully the M-shaped velocity profile and dependence of side layer thickness on Ha-1/2 whose definition is based on field gradient. The major part of the dissertation is the numerical simulation of free surface film flows and understanding the results. The VOF method is employed to track the free surface, and the CSF model is combined with VOF method to account for surface dynamics condition. The code is validated with respect to Navier-Stokes solver and MHD implementation by computations of ordinary wavy films, MHD flat films and a colleague proposed film flow. The comparisons are performed against respective experimental, theoretical or numerical solutions, and the results are well matched with them. It is found for the ordinary water falling films, at low frequency and high flowrate, the small forcing disturbance at inlet flowrate develops into big roll waves preceded by small capillary bow waves; at high frequency and low Re, it develops into nearly sinusoidal waves with small amplitude and without fore-running capillary waves. The MHD surface instability is investigated for two kinds of film flows in constant streamwise field gradient: one with spatial disturbance and without surface tension, the other with inlet forcing disturbance and with surface tension. At no surface tension condition, the finite amplitude disturbance is rapidly amplified and degrades to irregular shape. With surface tension to maintain smooth interface, finite amplitude regular waves can be established only on near inlet region and they decay to nearly zero amplitude ripple on the far downstream region. At both film conditions, the wave traveling velocity is reduced by the MHD drag from field gradient. The code is also used to explore the exit-pipe and first wall conceptual designs for fusion reactor being proposed in the APEX program. It is seen that the field gradient restrains and lifts up the flow to the whole channel in the exit-pipe high field gradient condition, but an applied streamwise current can propel the flow through the gradient region. The Sn jet flow with high inertia is able to overcome the inverted gravity and MHD induction to form the desired protection liquid layer on top of the first wall.

  6. Simulation of wave interactions with MHD

    NASA Astrophysics Data System (ADS)

    Batchelor, D.; Alba, C.; Bateman, G.; Bernholdt, D.; Berry, L.; Bonoli, P.; Bramley, R.; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, W.; Fu, G.; Harvey, R.; Jaeger, E.; Jardin, S.; Jenkins, T.; Keyes, D.; Klasky, S.; Kruger, S.; Ku, L.; Lynch, V.; McCune, D.; Ramos, J.; Schissel, D.; Schnack, D.; Wright, J.

    2008-07-01

    The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  7. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    NASA Technical Reports Server (NTRS)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  8. A Comprehensive High Performance Predictive Tool for Fusion Liquid Metal Hydromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Peter; Chhabra, Rupanshi; Munipalli, Ramakanth

    In Phase I SBIR project, HyPerComp and Texcel initiated the development of two induction-based MHD codes as a predictive tool for fusion hydro-magnetics. The newly-developed codes overcome the deficiency of other MHD codes based on the quasi static approximation by defining a more general mathematical model that utilizes the induced magnetic field rather than the electric potential as the main electromagnetic variable. The UCLA code is a finite-difference staggered-mesh code that serves as a supplementary tool to the massively-parallel finite-volume code developed by HyPerComp. As there is no suitable experimental data under blanket-relevant conditions for code validation, code-to-code comparisons andmore » comparisons against analytical solutions were successfully performed for three selected test cases: (1) lid-driven MHD flow, (2) flow in a rectangular duct in a transverse magnetic field, and (3) unsteady finite magnetic Reynolds number flow in a rectangular enclosure. The performed tests suggest that the developed codes are accurate and robust. Further work will focus on enhancing the code capabilities towards higher flow parameters and faster computations. At the conclusion of the current Phase-II Project we have completed the preliminary validation efforts in performing unsteady mixed-convection MHD flows (against limited data that is currently available in literature), and demonstrated flow behavior in large 3D channels including important geometrical features. Code enhancements such as periodic boundary conditions, unmatched mesh structures are also ready. As proposed, we have built upon these strengths and explored a much increased range of Grashof numbers and Hartmann numbers under various flow conditions, ranging from flows in a rectangular duct to prototypic blanket modules and liquid metal PFC. Parametric studies, numerical and physical model improvements to expand the scope of simulations, code demonstration, and continued validation activities have also been completed.« less

  9. Annular MHD Physics for Turbojet Energy Bypass

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  10. Stability of DIII-D high-performance, negative central shear discharges

    DOE PAGES

    Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.; ...

    2017-03-20

    Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less

  11. Stability of DIII-D high-performance, negative central shear discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.

    Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less

  12. MHD performance calculations with oxygen enrichment

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Staiger, P. J.; Seikel, G. R.

    1979-01-01

    The impact of oxygen enrichment of the combustion air on the generator and overall plant performance was studied for the ECAS-scale MHD/steam plants. A channel optimization technique is described and the results of generator performance calculations using this technique are presented. Performance maps were generated to assess the impact of various generator parameters. Directly and separately preheated plant performance with varying O2 enrichment was calculated. The optimal level of enrichment was a function of plant type and preheat temperature. The sensitivity of overall plant performance to critical channel assumptions and oxygen plant performance characteristics was also examined.

  13. Divergence Free High Order Filter Methods for Multiscale Non-ideal MHD Flows

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2003-01-01

    Low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous MHD flows has been constructed. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field (Delta . B) numerical error in the sense that no standard divergence cleaning is required. For certain 2-D MHD test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.

  14. High Order Filter Methods for the Non-ideal Compressible MHD Equations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2003-01-01

    The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard divergence cleaning is not required by the present filter approach. For certain non-ideal MHD test cases, divergence free preservation of the magnetic fields has been achieved.

  15. Divergence Free High Order Filter Methods for the Compressible MHD Equations

    NASA Technical Reports Server (NTRS)

    Yea, H. C.; Sjoegreen, Bjoern

    2003-01-01

    The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard diver- gence cleaning is not required by the present filter approach. For certain MHD test cases, divergence free preservation of the magnetic fields has been achieved.

  16. Study to assess the effects of magnetohydrodynamic electromagnetic pulse on electric power systems, phase 1, volume 3

    NASA Astrophysics Data System (ADS)

    Legro, J. R.; Abi-Samra, N. C.; Tesche, F. M.

    1985-05-01

    In addition to the initial transients designated as fast transient high-altitude EMP (HEMP) and intermediate time EMP, electromagnetic signals are also perceived at times from seconds to hundreds of seconds after a high-altitude nuclear burst. This signal was defined by the term magnetohydrodynamic-electromagnetic pulse (MHD-EMP). The MHD-EMP phenomena was detected in actual weapon tests and predicted from theoretical models. A preliminary research effort to investigate the nature and coupling of the MHD-EMP environments to electric power systems documented the construction of approximate system response network models, and the development of a unified methodology to assess equipment and systematic vulnerability are defined. The MHD-EMP environment is compared to a qualitatively similar natural event, the electromagnetic environment produced by geomagnetic storms.

  17. Extended MHD Effects in High Energy Density Experiments

    NASA Astrophysics Data System (ADS)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation results. Collaborator: Nathaniel D. Hamlin, School of Electrical and Computer Engineering, Cornell University, Ithaca, New York.

  18. Pressure distribution with surface roughness for effect between porous infinitely long rectangular plates with MHD couple stress squeeze film lubrication

    NASA Astrophysics Data System (ADS)

    Sangeetha, S.; Kesavan, Sundarammal

    2018-04-01

    This investigation is an analysis of MHD couple stress squeeze film performance with a rough surface between porous infinitely long rectangular plates. The pressure equation for the magnetic field is mathematically derived using Christensen’s stochastic equation. Therefore, the upshot of this magnetic effect reveals the enhanced performance of the pressure which is compared to the Newtonian instance.

  19. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  20. Extended MHD modeling of nonlinear instabilities in fusion and space plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germaschewski, Kai

    A number of different sub-projects where pursued within this DOE early career project. The primary focus was on using fully nonlinear, curvilinear, extended MHD simulations of instabilities with applications to fusion and space plasmas. In particular, we performed comprehensive studies of the dynamics of the double tearing mode in different regimes and confi gurations, using Cartesian and cyclindrical geometry and investigating both linear and non-linear dynamics. In addition to traditional extended MHD involving Hall term and electron pressure gradient, we also employed a new multi-fluid moment model, which shows great promise to incorporate kinetic effects, in particular off-diagonal elements ofmore » the pressure tensor, in a fluid model, which is naturally computationally much cheaper than fully kinetic particle or Vlasov simulations. We used our Vlasov code for detailed studies of how weak collisions effect plasma echos. In addition, we have played an important supporting role working with the PPPL theory group around Will Fox and Amitava Bhattacharjee on providing simulation support for HED plasma experiments performed at high-powered laser facilities like OMEGA-EP in Rochester, NY. This project has support a great number of computational advances in our fluid and kinetic plasma models, and has been crucial to winning multiple INCITE computer time awards that supported our computational modeling.« less

  1. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  2. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  3. Ideal MHD stability and performance of ITER steady-state scenarios with ITBs

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.

    2012-06-01

    Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.

  4. MHD work related to a self-cooled Pb-17Li blanket with poloidal-radial-toroidal ducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimann, J.; Barleon, L.; Buehler, L.

    1994-12-31

    For self cooled liquid metal blankets MHD pressure drop and velocity distributions are considered as critical issues. This paper summarizes MHD work performed for a DEMO-relevant Pb-17Li blanket which uses essential characteristics of a previous ANL design: The coolant flows downwards in the rear poloidal ducts, turns by 180{degrees} at the blanket bottom and is distributed from the ascending poloidal ducts into short radial channels which feed the toroidal First Wall coolant ducts (aligned with the main magnetic field direction). The flow through the subsequent radial channels is collected again in poloidal channels and the coolant leaves the blanket segmentmore » at the top. The blanket design is based on the use of flow channel inserts (FCIs) (which means electrically thin conducting walls for MHD) for all ducts except for the toroidal FW coolant channels. MHD related issues were defined and estimations of corresponding pressure drops were performed. Previous experimental work included a proof of principle of FCIs and a detailed experiment with a single {open_quotes}poloidal{sm_bullet}toroidal{sm_bullet}poloidal{close_quotes} duct (cooperation with ANL). In parallel, a numerical code based on the Core Flow Approximation (CFA) was developed to predict pressure drop and velocity distributions for arbitrary single duct geometries.« less

  5. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 1: Introduction and summary and general assumptions. [energy conversion systems for electric power plants using coal - feasibility

    NASA Technical Reports Server (NTRS)

    Beecher, D. T.

    1976-01-01

    Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.

  6. The effect of extreme ionization rates during the initial collapse of a molecular cloud core

    NASA Astrophysics Data System (ADS)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-05-01

    What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.

  7. PerSEUS: Ultra-Low-Power High Performance Computing for Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Doxas, I.; Andreou, A.; Lyon, J.; Angelopoulos, V.; Lu, S.; Pritchett, P. L.

    2017-12-01

    Peta-op SupErcomputing Unconventional System (PerSEUS) aims to explore the use for High Performance Scientific Computing (HPC) of ultra-low-power mixed signal unconventional computational elements developed by Johns Hopkins University (JHU), and demonstrate that capability on both fluid and particle Plasma codes. We will describe the JHU Mixed-signal Unconventional Supercomputing Elements (MUSE), and report initial results for the Lyon-Fedder-Mobarry (LFM) global magnetospheric MHD code, and a UCLA general purpose relativistic Particle-In-Cell (PIC) code.

  8. Large eddy simulations of compressible magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Grete, Philipp

    2017-02-01

    Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the subsonic (sonic Mach number M s ≈ 0.2) to the highly supersonic (M s ≈ 20) regime, and against other SGS closures. The latter include established closures of eddy-viscosity and scale-similarity type. In all tests and over the entire parameter space, we find that the proposed closures are (significantly) closer to the reference data than the other closures. In the a posteriori tests, we perform large eddy simulations of decaying, supersonic MHD turbulence with initial M s ≈ 3. We implemented closures of all types, i.e. of eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their performance in comparison to simulations without a model (and at higher resolution). We find that the models need to be calculated on a scale larger than the grid scale, e.g. by an explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only the proposed nonlinear closure improves higher-order statistics.

  9. Performance optimization of an MHD generator with physical constraints

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Seikel, G. R.; Smith, J. M.

    1979-01-01

    A technique has been described which optimizes the power out of a Faraday MHD generator operating under a prescribed set of electrical and magnetic constraints. The method does not rely on complicated numerical optimization techniques. Instead the magnetic field and the electrical loading are adjusted at each streamwise location such that the resultant generator design operates at the most limiting of the cited stress levels. The simplicity of the procedure makes it ideal for optimizing generator designs for system analysis studies of power plants. The resultant locally optimum channel designs are, however, not necessarily the global optimum designs. The results of generator performance calculations are presented for an approximately 2000 MWe size plant. The difference between the maximum power generator design and the optimal design which maximizes net MHD power are described. The sensitivity of the generator performance to the various operational parameters are also presented.

  10. Adaptive Low Dissipative High Order Filter Methods for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, Bjoern

    2004-01-01

    Adaptive low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous MHD flows has been constructed. Several variants of the filter approach that cater to different flow types are proposed. These filters provide a natural and efficient way for the minimization of the divergence of the magnetic field [divergence of B] numerical error in the sense that no standard divergence cleaning is required. For certain 2-D MHD test problems, divergence free preservation of the magnetic fields of these filter schemes has been achieved.

  11. The Magnetic Reconnection Code: an AMR-based fully implicit simulation suite

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Bhattacharjee, A.; Ng, C.-S.

    2006-12-01

    Extended MHD models, which incorporate two-fluid effects, are promising candidates to enhance understanding of collisionless reconnection phenomena in laboratory, space and astrophysical plasma physics. In this paper, we introduce two simulation codes in the Magnetic Reconnection Code suite which integrate reduced and full extended MHD models. Numerical integration of these models comes with two challenges: Small-scale spatial structures, e.g. thin current sheets, develop and must be well resolved by the code. Adaptive mesh refinement (AMR) is employed to provide high resolution where needed while maintaining good performance. Secondly, the two-fluid effects in extended MHD give rise to dispersive waves, which lead to a very stringent CFL condition for explicit codes, while reconnection happens on a much slower time scale. We use a fully implicit Crank--Nicholson time stepping algorithm. Since no efficient preconditioners are available for our system of equations, we instead use a direct solver to handle the inner linear solves. This requires us to actually compute the Jacobian matrix, which is handled by a code generator that calculates the derivative symbolically and then outputs code to calculate it.

  12. Validation and Continued Development of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2016-10-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. An implementation of anisotropic viscosity, a feature observed to improve agreement between NIMROD simulations and experiment, will also be presented, along with investigations of flux conserver features and their impact on density control for future SIHI experiments. Work supported by DoE.

  13. Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight

    NASA Astrophysics Data System (ADS)

    Froning, H. D.; Miley, G. H.; Luo, Nie; Yang, Yang; Momota, H.; Burton, E.

    2005-02-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines.

  14. MHD Turbulence, div B = 0 and Lattice Boltzmann Simulations

    NASA Astrophysics Data System (ADS)

    Phillips, Nate; Keating, Brian; Vahala, George; Vahala, Linda

    2006-10-01

    The question of div B = 0 in MHD simulations is a crucial issue. Here we consider lattice Boltzmann simulations for MHD (LB-MHD). One introduces a scalar distribution function for the velocity field and a vector distribution function for the magnetic field. This asymmetry is due to the different symmetries in the tensors arising in the time evolution of these fields. The simple algorithm of streaming and local collisional relaxation is ideally parallelized and vectorized -- leading to the best sustained performance/PE of any code run on the Earth Simulator. By reformulating the BGK collision term, a simple implicit algorithm can be immediately transformed into an explicit algorithm that permits simulations at quite low viscosity and resistivity. However the div B is not an imposed constraint. Currently we are examining a new formulations of LB-MHD that impose the div B constraint -- either through an entropic like formulation or by introducing forcing terms into the momentum equations and permitting simpler forms of relaxation distributions.

  15. Analysis of oxcarbazepine and the 10-hydroxycarbazepine enantiomers in plasma by LC-MS/MS: application in a pharmacokinetic study.

    PubMed

    de Jesus Antunes, Natalicia; Wichert-Ana, Lauro; Coelho, Eduardo Barbosa; Della Pasqua, Oscar; Alexandre, Veriano; Takayanagui, Osvaldo Massaiti; Tozatto, Eduardo; Lanchote, Vera Lucia

    2013-12-01

    Oxcarbazepine is a second-generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic-clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10-hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)-(+)- and R-(-)-MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert-butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD-H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC-MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S-(+)-MHD enantiomer compared to R-(-)-MHD and an AUC(0-12) S-(+)/R-(-) ratio of 5.44. © 2013 Wiley Periodicals, Inc.

  16. GPU Particle Tracking and MHD Simulations with Greatly Enhanced Computational Speed

    NASA Astrophysics Data System (ADS)

    Ziemba, T.; O'Donnell, D.; Carscadden, J.; Cash, M.; Winglee, R.; Harnett, E.

    2008-12-01

    GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for less cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU, and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. 3-D particle tracking and MHD codes have been developed using NVIDIA's CUDA and have demonstrated speed up of nearly a factor of 20 over equivalent CPU versions of the codes. Such a speed up enables new applications to develop, including real time running of radiation belt simulations and real time running of global magnetospheric simulations, both of which could provide important space weather prediction tools.

  17. C-Mod MHD stability analysis with LHCD

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Fatima; Bhattacharjee, A.; Delgado, L.; Scott, S.; Wilson, J. R.; Wallace, G. M.; Shiraiwa, S.; Mumgaard, R. T.

    2016-10-01

    In lower hybrid current drive (LHCD) experiments on the Alcator C-Mod, sawtooth activity could be suppressed as the safety factor q on axis is raised above unity. However, in some of these experiments, after applying LHCD, the onset of MHD mode activity caused the current drive efficiency to significantly drop. Here, we study the stability of these experiments by performing MHD simulations using the NIMROD code starting with experimental EFIT equilibria. First, consistent with the LHCD experiment with no signature of MHD activity, MHD mode activity was also absent in the simulations. Second, for experiments with MHD mode activity, we find that a core n=1 reconnecting mode with dominate poloidal modes of m=2,3 is unstable. This mode is a resistive current-driven mode as its growth rate scales with a negative power of the Lundquist number in the simulations. In addition, with further enhanced reversed-shear q profile in the simulations, a core double tearing mode is found to be unstable. This work is supported by U.S. DOE cooperative agreement DE-FC02-99ER54512 using the Alcator C-Mod tokamak, a DOE Office of Science user facility.

  18. Interlaboratory variability in the quantification of new generation antiepileptic drugs based on external quality assessment data.

    PubMed

    Williams, John; Bialer, Meir; Johannessen, Svein I; Krämer, Günther; Levy, René; Mattson, Richard H; Perucca, Emilio; Patsalos, Philip N; Wilson, John F

    2003-01-01

    To assess interlaboratory variability in the determination of serum levels of new antiepileptic drugs (AEDs). Lyophilised serum samples containing clinically relevant concentrations of felbamate (FBM), gabapentin (GBP), lamotrigine (LTG), the monohydroxy derivative of oxcarbazepine (OCBZ; MHD), tiagabine (TGB), topiramate (TPM), and vigabatrin (VGB) were distributed monthly among 70 laboratories participating in the international Heathcontrol External Quality Assessment Scheme (EQAS). Assay results returned over a 15-month period were evaluated for precision and accuracy. The most frequently measured compound was LTG (65), followed by MHD (39), GBP (19), TPM (18), VGB (15), FBM (16), and TGB (8). High-performance liquid chromatography was the most commonly used assay technique for all drugs except for TPM, for which two thirds of laboratories used a commercial immunoassay. For all assay methods combined, precision was <11% for MHD, FBM, TPM, and LTG, close to 15% for GBP and VGB, and as high as 54% for TGB (p < 0.001). Mean accuracy values were <10% for all drugs other than TGB, for which measured values were on average 13.9% higher than spiked values, with a high variability around the mean (45%). No differences in precision and accuracy were found between methods, except for TPM, for which gas chromatography showed poorer accuracy compared with immunoassay and gas chromatography-mass spectrometry. With the notable exception of TGB, interlaboratory variability in the determination of new AEDs was comparable to that reported with older-generation agents. Poor assay performance is related more to individual operators than to the intrinsic characteristics of the method applied. Participation in an EQAS scheme is recommended to ensure adequate control of assay variability in therapeutic drug monitoring.

  19. Stability of DIII-D high-performance, negative central shear discharges

    NASA Astrophysics Data System (ADS)

    Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.

    2017-05-01

    Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89  =  2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.

  20. Remote Numerical Simulations of the Interaction of High Velocity Clouds with Random Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Santillan, Alfredo; Hernandez--Cervantes, Liliana; Gonzalez--Ponce, Alejandro; Kim, Jongsoo

    The numerical simulations associated with the interaction of High Velocity Clouds (HVC) with the Magnetized Galactic Interstellar Medium (ISM) are a powerful tool to describe the evolution of the interaction of these objects in our Galaxy. In this work we present a new project referred to as Theoretical Virtual i Observatories. It is oriented toward to perform numerical simulations in real time through a Web page. This is a powerful astrophysical computational tool that consists of an intuitive graphical user interface (GUI) and a database produced by numerical calculations. In this Website the user can make use of the existing numerical simulations from the database or run a new simulation introducing initial conditions such as temperatures, densities, velocities, and magnetic field intensities for both the ISM and HVC. The prototype is programmed using Linux, Apache, MySQL, and PHP (LAMP), based on the open source philosophy. All simulations were performed with the MHD code ZEUS-3D, which solves the ideal MHD equations by finite differences on a fixed Eulerian mesh. Finally, we present typical results that can be obtained with this tool.

  1. Modified NASA-Lewis chemical equilibrium code for MHD applications

    NASA Technical Reports Server (NTRS)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  2. MHD technology transfer, integration, and review committee

    NASA Astrophysics Data System (ADS)

    1990-05-01

    As part of Task 8 of the magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The TTIRC consists of an Executive Committee (EC) which acts as the governing body, and a General Committee (GC), also referred to as the main or full committee, consisting of representatives from the various POC contractors, participating universities and national laboratories, utilities, equipment suppliers, and other potential MHD users or investors. The purpose of the TTIRC is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the U.S. MHD Program. There are seven sections: introduction; Executive Committee and General Committee activity; Committee activities related to technology transfer; ongoing POC integration activities being performed under the auspices of the Executive Committee; recommendations passed on to the DOE by the Executive Committee; Planned activities for the next six months.

  3. Stochastic Flux-Freezing in MHD Turbulence and Reconnection in the Heliosheath

    NASA Astrophysics Data System (ADS)

    Eyink, G. L.; Lalescu, C.; Vishniac, E.

    2012-12-01

    Fast reconnection of the sectored magnetic field in the heliosheath created by flapping of the heliospheric current sheet has been conjectured to accelerate anomalous cosmic rays and to create other signatures observed by the Voyager probes. The reconnecting flux structures could have sizes up to ˜100 AU, much larger than the ion cyclotron radius ˜10^3 km. Hence MHD should be valid at those scales. To account for rapid reconnection of such large-scale structures, we note that the high Reynolds numbers in the heliosheath for motions perpendicular to the magnetic field (Re ˜10^{14}) suggest transition to turbulence. The Lazarian-Vishnian theory of turbulent reconnection can account for the fast rates, but it implies a puzzling breakdown of magnetic flux-freezing in high-conductivity MHD plasmas. We address this paradox with a novel stochastic formulation of flux-freezing for resistive MHD and a numerical Lagrangian study with a spacetime database of MHD turbulence. We report the first observation of Richardson diffusion in MHD turbulence, which leads to "spontaneous stochasticity" of the Lagrangian trajectories and a violation of standard flux-freezing by many orders of magnitude. The work supports a prediction by Lazarian-Opher (2009) of extended thick reconnection zones within the heliosheath, perhaps up to an AU across, although the microscale reconnection events within these zones would have thickness of order the ion cyclotron radius and be described by kinetic Vlasov theory.

  4. Stochastic Flux-Freezing in MHD Turbulence and Reconnection in the Heliosheath (Invited)

    NASA Astrophysics Data System (ADS)

    Eyink, G. L.; Lalescu, C. C.; Vishniac, E. T.

    2013-12-01

    Fast reconnection of the sectored magnetic field in the heliosheath created by flapping of the heliospheric current sheet has been conjectured to accelerate anomalous cosmic rays and to create other signatures observed by the Voyager probes. The reconnecting flux structures could have sizes up to ˜100 AU, much larger than the ion cyclotron radius ˜103 km. Hence MHD should be valid at those scales. To account for rapid reconnection of such large-scale structures, we note that the high Reynolds numbers in the heliosheath for motions perpendicular to the magnetic field (Re ˜1014) suggest transition to turbulence. The Lazarian-Vishnian theory of turbulent reconnection can account for the fast rates, but it implies a puzzling breakdown of magnetic flux-freezing in high-conductivity MHD plasmas. We address this paradox with a novel stochastic formulation of flux-freezing for resistive MHD and a numerical Lagrangian study with a spacetime database of MHD turbulence. We report the first observation of Richardson diffusion in MHD turbulence, which leads to 'spontaneous stochasticity' of the Lagrangian trajectories and a violation of standard flux- freezing by many orders of magnitude. The work supports a prediction by Lazarian-Opher (2009) of extended thick reconnection zones within the heliosheath, perhaps up to an AU across, although the microscale reconnection events within these zones would have thickness of order the ion cyclotron radius and be described by kinetic Vlasov theory.

  5. Applying MHD Results to a Scramjet Vehicle

    DTIC Science & Technology

    2007-02-12

    flow, arc formation and extinction, high temperature materials, and non-intrusive gas diagnostics. In this report, results from the DOE Program, and...3) Use of demonstrated non-intrusive diagnostics for plasma and boundary layer measurements, and (4) Testing of high - temperature materials for an MHD...cycle systems with researchers in Eindhoven, The Netherlands, and open-cycle systems with personnel at the High Temperature Institute, Moscow, Russia

  6. Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.

    2017-12-01

    An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.

  7. MHD conversion of solar energy. [space electric power system

    NASA Technical Reports Server (NTRS)

    Lau, C. V.; Decher, R.

    1978-01-01

    Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.

  8. The STD/MHD codes - Comparison of analyses with experiments at AEDC/HPDE, Reynolds Metal Co., and Hercules, Inc. [for MHD generator flows

    NASA Technical Reports Server (NTRS)

    Vetter, A. A.; Maxwell, C. D.; Swean, T. F., Jr.; Demetriades, S. T.; Oliver, D. A.; Bangerter, C. D.

    1981-01-01

    Data from sufficiently well-instrumented, short-duration experiments at AEDC/HPDE, Reynolds Metal Co., and Hercules, Inc., are compared to analyses with multidimensional and time-dependent simulations with the STD/MHD computer codes. These analyses reveal detailed features of major transient events, severe loss mechanisms, and anomalous MHD behavior. In particular, these analyses predicted higher-than-design voltage drops, Hall voltage overshoots, and asymmetric voltage drops before the experimental data were available. The predictions obtained with these analyses are in excellent agreement with the experimental data and the failure predictions are consistent with the experiments. The design of large, high-interaction or advanced MHD experiments will require application of sophisticated, detailed and comprehensive computational procedures in order to account for the critical mechanisms which led to the observed behavior in these experiments.

  9. Geospace simulations on the Cell BE processor

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D.

    2008-12-01

    OpenGGCM (Open Geospace General circulation Model) is an established numerical code that simulates the Earth's space environment. The most computing intensive part is the MHD (magnetohydrodynamics) solver that models the plasma surrounding Earth and its interaction with Earth's magnetic field and the solar wind flowing in from the sun. Like other global magnetosphere codes, OpenGGCM's realism is limited by computational constraints on grid resolution. We investigate porting of the MHD solver to the Cell BE architecture, a novel inhomogeneous multicore architecture capable of up to 230 GFlops per processor. Realizing this high performance on the Cell processor is a programming challenge, though. We implemented the MHD solver using a multi-level parallel approach: On the coarsest level, the problem is distributed to processors based upon the usual domain decomposition approach. Then, on each processor, the problem is divided into 3D columns, each of which is handled by the memory limited SPEs (synergistic processing elements) slice by slice. Finally, SIMD instructions are used to fully exploit the vector/SIMD FPUs in each SPE. Memory management needs to be handled explicitly by the code, using DMA to move data from main memory to the per-SPE local store and vice versa. We obtained excellent performance numbers, a speed-up of a factor of 25 compared to just using the main processor, while still keeping the numerical implementation details of the code maintainable.

  10. Results from conceptual design study of potential early commercial MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1981-01-01

    This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.

  11. Performance Analysis of a Ring Current Model Driven by Global MHD

    NASA Astrophysics Data System (ADS)

    Falasca, A.; Keller, K. A.; Fok, M.; Hesse, M.; Gombosi, T.

    2003-12-01

    Effectively modeling the high-energy particles in Earth's inner magnetosphere has the potential to improve safety in both manned and unmanned spacecraft. One model of this environment is the Fok Ring Current Model. This model can utilize as inputs both solar wind data, and empirical ionospheric electric field and magnetic field models. Alternatively, we have a procedure which allows the model to be driven by outputs from the BATS-R-US global MHD model. By using in-situ satellite data we will compare the predictive capability of this model in its original stand-alone form, to that of the model when driven by the BATS-R-US Global Magnetosphere Model. As a basis for comparison we use the April 2002 and May 2003 storms where suitable LANL geosynchronous data are available.

  12. Realistic Modeling of Interaction of Quiet-Sun Magnetic Fields with the Chromosphere

    NASA Technical Reports Server (NTRS)

    Kitiashvili, I. N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.

    2017-01-01

    High­-resolution observations and 3D MHD simulations reveal intense interaction between the convection zone dynamics and the solar atmosphere on subarcsecond scales. To investigate processes of the dynamical coupling and energy exchange between the subsurface layers and the chromosphere we perform 3D radiative MHD modeling for a computational domain that includes the upper convection zone and the chromosphere, and investigate the structure and dynamics for different intensity of the photospheric magnetic flux. For comparison with observations, the simulation models have been used to calculate synthetic Stokes profiles of various spectral lines. The results show intense energy exchange through small­-scale magnetized vortex tubes rooted below the photosphere, which provide extra heating of the chromosphere, initiate shock waves, and small­-scale eruptions.

  13. Hall-MHD and PIC Modeling of the Conduction-to-Opening Transition in a Plasma Opening Switch

    NASA Astrophysics Data System (ADS)

    Schumer, J. W.; SwanekampDdagger, S. B.; Ottinger, P. F.; Commisso, R. J.; Weber, B. V.

    1998-11-01

    Utilizing the fast opening characteristics of a plasma opening switch (POS), inductive energy storage devices can generate short-duration high-power pulses (<0.1 μ s, >1 TW) with current rise-times on the order of 10 ns. Plasma redistribution and thinning during the POS conduction phase can be modeled adequately with MHD methods. By including the Hall term in Ohm's Law, MHD methods can simulate plasmas with density gradient scale lengths between c/ω_pe < Ln < c/ω_pi. However, the neglect of electron inertia (c/ω_pe) and space-charge separation (λ_De) by single-fluid theory eventually becomes invalid in small gap regions that form during POS opening. PIC methods are well-suited for low-density plasmas, but are numerically taxed by high-density POS regions. An interface converts MHD (Mach2) output into PIC (Magic) input suitable for validating various transition criteria through comparison of current and density distributions from both methods. We will discuss recent progress in interfacing Hall-MHD and PIC simulations. Work supported by Defense Special Weapons Agency. ^ NRL-NRC Research Associate. hspace0.25in ^ JAYCOR, Vienna, VA 22102.

  14. MHD heat flux mitigation in hypersonic flow around a blunt body with ablating surface

    NASA Astrophysics Data System (ADS)

    Bityurin, V. A.; Bocharov, A. N.

    2018-07-01

    One of the possible applications of magnetohydrodynamic flow control is considered. Namely, the surface heat flux mitigation by means of magnetohydrodynamic (MHD) interaction in hypersonic flow around a blunt body. The 2D computational model realizes a coupled solution of chemically non-equilibrium ionized airflow in magnetic field. Heat- and mass-transfer due to the ablation of materials from the body surface is taken into account. Two cases of free-stream flow conditions are considered: moderate free-stream velocity (7500 m s‑1) case and high free-stream velocity (11 000 m s‑1) case. It is shown that the first flow case results in moderate ionization in the shock layer, while the second flow case results in high ionization. In the first case, the Hall effect is significant, and effective electrical conductivity in the shock layer is rather low. In the second case, the Hall effect reduces, and effective conductivity is high. Even if the Hall effect is strong, as in the first case, intensive MHD deceleration of the flow behind the shock is provided due to the presence of insulating boundaries, the bow shock front and non-conductive wall of the blunt body. In the second case, high effective conductivity provides a high intensity of MHD flow deceleration. In both cases, a strong effect of MHD interaction on the flow structure is observed. As a consequence, a noticeable reduction of the surface heat flux is revealed for reasonable values of magnetic induction. The new treatment of mechanism for the surface heat flux reduction is proposed, which is different from commonly used one assuming that MHD interaction increases the bow shock stand-off distance, and, consequently results in a decrease of the mean temperature drop across the shock layer. The new effect of ‘saturation of heat flux’ is discussed.

  15. High Pulsed Power, Self Excited Magnetohydrodynamic Power Generation Systems

    DTIC Science & Technology

    1985-12-27

    MHD GENERATOR OUTPUT, CASE G-2 86 TABLE 25:TEMPERATURE IN A SEMI -INFINITE COPPER SLAB EXPOSED TO GAS AT t=O 89 TABLE 26:TIME FOR GAS-Cu INTERFACE TO...REACH 2000 0 F, & BACK SURFACE TEMPERATURE AT THIS TIME,FOR A SEMI -INFINITE SLAB OF GIVEN THICKNESS,d. 89 TABLE 27: CONVECTIVE HEATING OF THE MHD...magnetic field for the explosive MHD generator. A dc room temperature magnet requires too much pow- er for operation at the 5 Tesla fields required by

  16. Impact of ideal MHD stability limits on high-beta hybrid operation

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team

    2017-01-01

    The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n  =  1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n  =  1 response is due to a global, marginally-stable n  =  1 kink characterized by a large m  =  1, n  =  1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.

  17. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piovesan, Paolo; Igochine, V.; Turco, F.

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  18. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE PAGES

    Piovesan, Paolo; Igochine, V.; Turco, F.; ...

    2016-10-27

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  19. MHD control experiments in the Extrap T2R Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Marrelli, L.; Bolzonella, T.; Brunsell, P.; Cecconello, M.; Drake, J.; Franz, P.; Gregoratto, D.; Manduchi, G.; Martin, P.; Ortolani, S.; Paccagnella, R.; Piovesan, P.; Spizzo, G.; Yadikin, D.; Zanca, P.

    2004-11-01

    We report here on MHD active control experiments performed in the Extrap T2R device, which has been recently equipped with a set of 32 feedback controlled saddle coils couples. Experiments aiming at selectively exciting a resonant resistive instability in order to actively induce Quasi Single Helicity states will be presented. Open loop experiments have in fact shown that a spectrum with one dominant mode can be excited in a high aspect ratio device like T2R. In addition, evidences of controlled braking of tearing modes, which spontaneously rotate in T2R, have been gathered, allowing the determination of a threshold for mode wall locking. Different feedback control schemes have been implemented. In particular, mode suppression schemes proved successful in delaying resistive wall modes growth and in increasing the discharge duration: this suggests a hybrid mode control scenario, in which RWM are suppressed and QSH is induced. Radiation imaging and internal magnetic field reconstructions performed with the ORBIT code will be presented.

  20. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Smith, J. M.

    1981-01-01

    The effects of MHD channel end regions on the overall power generation were considered. The peak plant thermodynamic efficiency was found to be slightly lower than for the active region (41%). The channel operating point for the peak efficiency was shifted to the supersonic mode (Mach No., M sub c approx. 1.1) rather than the previous subsonic operation (M sub c approx. 0.9). The sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure is also discussed. In addition, methods for operating the channel in a constant-current mode are investigated. This mode is highly desirable from the standpoint of simplifying the current and voltage consolidation for the inverter system. This simplification could result in significant savings in the cost of the equipment. The initial results indicate that this simplification is possible, even under a strict Hall field constraint, with resonable plant thermodynamic efficiency (40.5%).

  1. Correlation of serum levels of fibroblast growth factor 23 and Klotho protein levels with bone mineral density in maintenance hemodialysis patients.

    PubMed

    Zheng, Shubei; Chen, Yan; Zheng, Yu; Zhou, Zhihong; Li, Zhanyuan

    2018-04-17

    The correlation of serum fibroblast growth factor 23 (FGF-23) and Klotho protein levels with bone mineral density (BMD) in maintenance hemodialysis (MHD) patients was analyzed. Between January 2015 and November 2015, 125 MHD patients in our hospital were enrolled. Dual-energy X-ray absorptiometry was used to examine the BMD in the femoral neck and lumbar spine of MHD patients. The patients were divided into three groups: a normal bone mass group, an osteopenia group, and an osteoporosis group. An ELISA was performed to measure serum FGF-23, Klotho protein, and 1,25(OH) 2 VitD 3 levels. Other parameters, including calcium (Ca), phosphorus (P), and parathyroid hormone, were also measured. Of the 125 MHD patients, 82.40% of patients had femoral neck osteopenia, and 56.00% of patients had lumbar spinal osteopenia. The serum FGF-23 level was highest in the osteoporosis group. However, there was no significant difference in serum FGF-23 levels among the three groups, depending on femoral neck and lumbar spinal BMD (P > 0.05). Spearman's correlation analysis also pointed to a lack of correlation between serum FGF-23 levels and BMD. Among the three groups, there were significant differences in serum Klotho protein levels and femoral neck BMD (P < 0.05). Serum Klotho protein levels in the osteoporosis group were clearly lower than those in the normal bone mass group and osteopenia group (P < 0.05). Similarly, serum Klotho protein levels were significantly lower in those with lumbar spinal osteopenia as compared with those in the normal group. There was a positive correlation between serum Klotho protein levels and BMD and T values for the femoral neck and lumbar spine. The results of a multiple linear regression analysis revealed that the serum Klotho protein level was one of the main factors affecting BMD in MHD patients. The serum level of FGF-23 was not correlated with a change in BMD of MHD patients, whereas the serum Klotho protein level was associated with the degree of BMD. A high Klotho protein level may decrease the severity of chronic kidney disease and mineral bone disorder (CKD-MBD) in MHD patients with low BMD.

  2. Design Study: Rocket Based MHD Generator

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  3. Numerical analysis of Hall effect on the performance of magnetohydrodynamic heat shield system based on nonequilibrium Hall parameter model

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-01-01

    Magnetohydrodynamic (MHD) heat shield system, a novel thermal protection technique in the hypersonic field, has been paid much attention in recent years. In the real flight condition, not only the Lorentz force but also the Hall electric field is induced by the interaction between ionized air post shock and magnetic field. In order to analyze the action mechanisms of the Hall effect, numerical methods of coupling thermochemical nonequilibrium flow field with externally applied magnetic field as well as the induced electric field are constructed and validated. Based on the nonequilibrium model of Hall parameter, numerical simulations of the MHD heat shield system is conducted under two different magnetic induction strengths (B0=0.2 T, 0.5 T) on a reentry capsule forebody. Results show that, the Hall effect is the same under the two magnetic induction strengths when the wall is assumed to be conductive. For this case, with the Hall effect taken into account, the Lorentz force counter stream diminishes a lot and the circumferential component dominates, resulting that the heat flux and shock-off distance approach the case without MHD control. However, for the insulating wall, the Hall effect acts in different ways under these two magnetic induction strengths. For this case, with the Hall effect taken into account, the performance of MHD heat shield system approaches the case neglecting the Hall effect when B0 equals 0.2 T. Such performance becomes worse when B0 equals 0.5 T and the aerothermal environment on the capsule shoulder is even worse than the case without MHD control.

  4. Magnetospheric Substorm Evolution in the Magnetotail: Challenge to Global MHD Modeling.

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Hesse, M.; Dorelli, J.; Rastaetter, L.

    2003-12-01

    Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at CCMC. We perform simulations of magnetotail dynamics using global MHD models residing at CCMC. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. We will analyze the effects of spatial resolution in the plasma sheet on modeled expansion phase evolution, maximum energy stored in the tail, and details of magnetotail reconnection. We will pay special attention to current sheet thinning and multiple plasmoid formation.

  5. Infiltration of MHD liquid into a deformable porous material

    NASA Astrophysics Data System (ADS)

    Naseem, Anum; Mahmood, Asif; Siddique, J. I.; Zhao, Lifeng

    2018-03-01

    We analyze the capillary rise dynamics for magnetohydrodynamics (MHD) fluid flow through deformable porous material in the presence of gravity effects. The modeling is performed using mixture theory approach and mathematical manipulation yields a nonlinear free boundary problem. Due to the capillary rise action, the pressure gradient in the liquid generates a stress gradient that results in the deformation of porous substrate. The capillary rise process for MHD fluid slows down as compared to Newtonian fluid case. Numerical solutions are obtained using a method of lines approach. The graphical results are presented for important physical parameters, and comparison is presented with Newtonian fluid case.

  6. Feasibility of MHD submarine propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, E.D.; Sikes, W.C.

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less

  7. Associations between mental health disorders and body mass index among military personnel.

    PubMed

    Smith, Tracey J; White, Alan; Hadden, Louise; Young, Andrew J; Marriott, Bernadette P

    2014-07-01

    To determine if overweight or obesity is associated with mental health disorder (MHD) symptoms among military personnel Methods: Secondary analysis using the 2005 Department of Defense Health Related Behaviors Survey (N = 15,195). Standard Body Mass Index (BMI) categories were used to classify participants' body composition. For women, obesity was associated with symptoms of serious psychological distress (SPD), post-traumatic stress disorder, and depression. For men, obesity and overweight was associated with symptoms of generalized anxiety disorder and SPD, respectively. Self-reported high personal stress was the strongest predictor of MHD symptoms and suicide attempts. Self-reported stress was a stronger predictor of MHD symptoms than BMI. There is potential value in screening personnel for personal stress as a MHD risk factor.

  8. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies

    NASA Astrophysics Data System (ADS)

    Rashidi, Saman; Esfahani, Javad Abolfazli; Maskaniyan, Mahla

    2017-10-01

    Magnetohydrodynamic (MHD) fluid flow in different geometries relevant to human body parts is an interesting and important scientific area due to its applications in medical sciences. This article performs a comprehensive review on the applications of MHD and their numerical modelling in biological systems. Applications of MHD in medical sciences are classified into four categories in this paper. Applications of MHD in simple flow, peristaltic flow, pulsatile flow, and drag delivery are these categories. The numerical researches performed for these categories are reviewed and summarized separately. Finally, some conclusions and suggestions for future works based on the literature review are presented. The results indicated that during a surgery when it is necessary to drop blood flow or reduce tissue temperature, it may be achieved by using a magnetic field. Moreover, the review showed that the trapping is an important phenomenon in peristaltic flows that causes the formation of thrombus in blood and the movement of food bolus in gastrointestinal tract. This phenomenon may be disappeared by using a proper magnetic field. Finally, the concentration of particles that are delivered to the target region increases with an increase in the magnetic field intensity.

  9. Resolving the Kinetic Reconnection Length Scale in Global Magnetospheric Simulations with MHD-EPIC

    NASA Astrophysics Data System (ADS)

    Toth, G.; Chen, Y.; Cassak, P.; Jordanova, V.; Peng, B.; Markidis, S.; Gombosi, T. I.

    2016-12-01

    We have recently developed a new modeling capability: the Magnetohydrodynamics with Embedded Particle-in-Cell (MHD-EPIC) algorithm with support from Los Alamos SHIELDS and NSF INSPIRE grants. We have implemented MHD-EPIC into the Space Weather Modeling Framework (SWMF) using the implicit Particle-in-Cell (iPIC3D) and the BATS-R-US extended magnetohydrodynamic codes. The MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. Both BATS-R-US and iPIC3D are massively parallel codes. The MHD-EPIC approach allows global magnetosphere simulations with embedded kinetic simulations. For small magnetospheres, like Ganymede or Mercury, we can easily resolve the ion scales around the reconnection sites. Modeling the Earth magnetosphere is very challenging even with our efficient MHD-EPIC model due to the large separation between the global and ion scales. On the other hand the large separation of scales may be exploited: the solution may not be sensitive to the ion inertial length as long as it is small relative to the global scales. The ion inertial length can be varied by changing the ion mass while keeping the MHD mass density, the velocity, and pressure the same for the initial and boundary conditions. Our two-dimensional MHD-EPIC simulations for the dayside reconnection region show in fact, that the overall solution is not sensitive to ion inertial length. The shape, size and frequency of flux transfer events are very similar for a wide range of ion masses. Our results mean that 3D MHD-EPIC simulations for the Earth and other large magnetospheres can be made computationally affordable by artificially increasing the ion mass: the required grid resolution and time step in the PIC model are proportional to the ion inertial length. Changing the ion mass by a factor of 4, for example, speeds up the PIC code by a factor of 256. In fact, this approach allowed us to perform an hour-long 3D MHD-EPIC simulations for the Earth magnetosphere.

  10. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  11. Parametric study of prospective early commercial MHD power plants (PSPEC). General Electric Company, task 1: Parametric analysis

    NASA Technical Reports Server (NTRS)

    Marston, C. H.; Alyea, F. N.; Bender, D. J.; Davis, L. K.; Dellinger, T. C.; Hnat, J. G.; Komito, E. H.; Peterson, C. A.; Rogers, D. A.; Roman, A. J.

    1980-01-01

    The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs.

  12. Adaptive Numerical Dissipation Control in High Order Schemes for Multi-D Non-Ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.

    2005-01-01

    The required type and amount of numerical dissipation/filter to accurately resolve all relevant multiscales of complex MHD unsteady high-speed shock/shear/turbulence/combustion problems are not only physical problem dependent, but also vary from one flow region to another. In addition, proper and efficient control of the divergence of the magnetic field (Div(B)) numerical error for high order shock-capturing methods poses extra requirements for the considered type of CPU intensive computations. The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multiresolution wavelets (WAV) (for the above types of flow feature). These filters also provide a natural and efficient way for the minimization of Div(B) numerical error.

  13. Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2009-01-01

    Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.

  14. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Smith, J. M.

    1982-01-01

    It is noted that operating conditions which yielded a peak thermodynamic efficiency (41%) for an EFT-size MHD/steam power plant were previously (Wang et al., 1981; Staiger, 1981) identified by considering only the active region (the primary portion for power production) of an MHD channel. These previous efforts are extended here to include an investigation of the effects of the channel end regions on overall power generation. Considering these effects, the peak plant thermodynamic efficiency is found to be slightly lowered (40.7%); the channel operating point for peak efficiency is shifted to the supersonic mode (Mach number of approximately 1.1) rather than the previous subsonic operation (Mach number of approximately 0.9). Also discussed is the sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure.

  15. Overview of Current Drive Experiment-Upgrade (CDX-U)

    NASA Astrophysics Data System (ADS)

    Hwang, Y. S.; Choe, W.; Stutman, D.; Lo, E.; Menard, J.; Ono, M.; Jones, T. G.; Armstrong, R.

    1996-11-01

    The CDX-U tokamak is a spherical tokamak (ST) facility with R ≈ 32 cm, R/a >= 1.4, and B_TF ≈ 1 kG. With an OH power supply of 60 mV-S capability, experiments were conducted with Ip up to ~ 100 kA and q(a) >= 3.5. The ST plasma performance has been studied along with various MHD-related activities. By appropriate discharge programing, it was possible to obtain MHD-quiescent discharges with a factor of 2 - 3 improvement in the electron energy confinement. Recently, the outer vacuum vessel was replaced with a toroidally continuous stainless steel chamber to accomodate the fast wave antenna. With the newly installed antenna, preliminary heating experiments using high harmonic fast waves have been pursued. The success of fast wave heating is a crucial element for achieving high beta plasmas in ST devices such as NSTX. Also, preliminary electron ripple injection (ERI) experiments were performed in CDX-U to examine the feasibility of this technique for improving ST tokamak confinement. To support the ST physics investigation, various novel plasma profile diagnostics such as the multi-pass Thomson scattering, soft x-ray tomography, and tangential-phase-contrast-imaging systems are under development on CDX-U.

  16. Calculation of the non-inductive current profile in high-performance NSTX plasmas

    NASA Astrophysics Data System (ADS)

    Gerhardt, S. P.; Fredrickson, E.; Gates, D.; Kaye, S.; Menard, J.; Bell, M. G.; Bell, R. E.; Le Blanc, B. P.; Kugel, H.; Sabbagh, S. A.; Yuh, H.

    2011-03-01

    The constituents of the current profile have been computed for a wide range of high-performance plasmas in NSTX (Ono et al 2000 Nucl. Fusion 40 557); these include cases designed to maximize the non-inductive fraction, pulse length, toroidal-β or stored energy. In the absence of low-frequency MHD activity, good agreement is found between the reconstructed current profile and that predicted by summing the independently calculated inductive, pressure-driven and neutral beam currents, without the need to invoke any anomalous beam ion diffusion. Exceptions occur, for instance, when there are toroidal Alfvén eigenmode avalanches or coupled m/n = 1/1 + 2/1 kink-tearing modes. In these cases, the addition of a spatially and temporally dependent fast-ion diffusivity can reduce the core beam current drive, restoring agreement between the reconstructed profile and the summed constituents, as well as bringing better agreement between the simulated and measured neutron emission rate. An upper bound on the fast-ion diffusivity of ~0.5-1 m2 s-1 is found in 'MHD-free' discharges, based on the neutron emission, the time rate of change in the neutron signal when a neutral beam is stepped and reconstructed on-axis current density.

  17. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  18. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE PAGES

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    2018-03-26

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  19. A large eddy lattice Boltzmann simulation of magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Flint, Christopher; Vahala, George

    2018-02-01

    Large eddy simulations (LES) of a lattice Boltzmann magnetohydrodynamic (LB-MHD) model are performed for the unstable magnetized Kelvin-Helmholtz jet instability. This algorithm is an extension of Ansumali et al. [1] to MHD in which one performs first an expansion in the filter width on the kinetic equations followed by the usual low Knudsen number expansion. These two perturbation operations do not commute. Closure is achieved by invoking the physical constraint that subgrid effects occur at transport time scales. The simulations are in very good agreement with direct numerical simulations.

  20. Shell models of magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Plunian, Franck; Stepanov, Rodion; Frick, Peter

    2013-02-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfvén waves and the Hall effect.

  1. MHD Advanced Power Train Phase I, Final Report, Volume 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. R. Jones

    This appendix provides additional data in support of the MHD/Steam Power Plant Analyses reported in report Volume 5. The data is in the form of 3PA/SUMARY computer code printouts. The order of presentation in all four cases is as follows: (1) Overall Performance; (2) Component/Subsystem Information; (3) Plant Cost Accounts Summary; and (4) Plant Costing Details and Cost of Electricity.

  2. Study of radiatively sustained cesium plasmas for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Dunning, G. J.

    1980-01-01

    The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.

  3. Electric fields and field-aligned currents in polar regions of the solar corona: 3-D MHD consideration

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.

  4. Io's Magnetospheric Interaction: An MHD Model with Day-Night Asymmetry

    NASA Technical Reports Server (NTRS)

    Kabin, K.; Combi, M. R.; Gombosi, T. I.; DeZeeuw, D. L.; Hansen, K. C.; Powell, K. G.

    2001-01-01

    In this paper we present the results of all improved three-dimensional MHD model for Io's interaction with Jupiter's magnetosphere. We have included the day-night asymmetry into the spatial distribution of our mass-loading, which allowed us to reproduce several smaller features or the Galileo December 1995 data set. The calculation is performed using our newly modified description of the pick-up processes that accounts for the effects of the corotational electric field existing in the Jovian magnetosphere. This change in the formulation of the source terms for the MHD equations resulted in significant improvements in the comparison with the Galileo measurements. We briefly discuss the limitations of our model and possible future improvements.

  5. Engineering test facility design definition

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  6. Mixing of the Interstellar and Solar Plasmas at the Heliospheric Interface

    DOE PAGES

    Pogorelov, N. V.; Borovikov, S. N.

    2015-10-12

    From the ideal MHD perspective, the heliopause is a tangential discontinuity that separates the solar wind plasma from the local interstellar medium plasma. There are physical processes, however, that make the heliopause permeable. They can be subdivided into kinetic and MHD categories. Kinetic processes occur on small length and time scales, and cannot be resolved with MHD equations. On the other hand, MHD instabilities of the heliopause have much larger scales and can be easily observed by spacecraft. The heliopause may also be a subject of magnetic reconnection. In this paper, we discuss mechanisms of plasma mixing at the heliopausemore » in the context of Voyager 1 observations. Numerical results are obtained with a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. The code can also treat nonthermal ions and turbulence produced by them.« less

  7. LES models for incompressible magnetohydrodynamics derived from the variational multiscale formulation

    NASA Astrophysics Data System (ADS)

    Sondak, David; Oberai, Assad

    2012-10-01

    Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation (VMS) of LES to the equations of incompressible MHD, a new residual-based eddy viscosity model (RBEVM,) and a mixed LES model that combines the strengths of both of these models. The new models result in a consistent numerical method that is relatively simple to implement. A dynamic procedure for determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical and state-of-the art LES turbulence models as well as direct numerical simulations (DNS). These new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by A. Pouquet et al., for which the ratio of DNS modes to LES modes is 262,144. Additionally, we extend these models to a finite element setting in which boundary conditions play a role. A classic problem on which we test these models is turbulent channel flow, which in the case of MHD, is called Hartmann flow.

  8. Validation of Extended MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.

    2016-10-01

    Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  9. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 9: Closed-cycle MHD. [energy conversion efficiency of electric power plants using magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Tsu, T. C.

    1976-01-01

    A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.

  10. High mode magnetohydrodynamic waves propagation in a twisted rotating jet emerging from a filament eruption

    NASA Astrophysics Data System (ADS)

    Zhelyazkov, Ivan; Chandra, Ramesh

    2018-05-01

    We study the conditions under which high mode magnetohydrodynamic (MHD) waves propagating on a rotating jet emerging from the filament eruption on 2013 April 10-11 can became unstable against the Kelvin-Helmholtz instability (KHI). The evolution of jet indicates the blob like structure at its boundary which could be one of the observable features of the KHI development. We model the jet as a twisted rotating axially moving magnetic flux tube and explore the propagation characteristics of the running MHD modes on the basis of dispersion relations derived in the framework of the ideal magnetohydrodynamics. It is established that unstable MHD waves with wavelengths in the range of 12-15 Mm and instability developing times from 1.5 to 2.6 min can be detected at the excitation of high mode MHD waves. The magnitude of the azimuthal mode number m crucially depends upon the twist of the internal magnetic field. It is found that at slightly twisted magnetic flux tube the appropriate azimuthal mode number is m = 16 while in the case of a moderately twisted flux tube it is equal to 18.

  11. High beta and second stability region transport and stability analysis: Technical progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, M.H.; Phillips, M.W.

    1995-03-01

    This report summarizes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the 12 month period starting March 1, 1994. Progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. The development of codes to calculate the significant effects of highly anisotropic pressure distributions is discussed along with results from this model.

  12. EDITORIAL: Selected papers from the 16th Workshop on MHD Stability Control: Optimizing and Understanding the Role of Coils for Mode Control Selected papers from the 16th Workshop on MHD Stability Control: Optimizing and Understanding the Role of Coils for Mode Control

    NASA Astrophysics Data System (ADS)

    La Haye, Rob

    2012-09-01

    The Magnetohydrodynamic (MHD) Control Workshop with the theme 'Optimizing and Understanding the Role of Coils for Mode Control' was held at General Atomics (20-22 November 2011) following the 2011 APS-DPP Annual Meeting in Salt Lake City, Utah (14-18 November). This was the 16th in the annual series and was organized jointly by Columbia University, General Atomics, Princeton Plasma Physics Laboratory, and the University of Wisconsin-Madison. Program committee participation included representatives from the EU and Japan along with other US laboratory and university institutions. This workshop highlighted the role of applied non-axisymmetric magnetic fields from both internal and external coils for control of MHD stability to achieve high performance fusion plasmas. The application of 3D magnetic field offers control of important elements of equilibrium, stability, and transport. The use of active 3D fields to stabilize global instabilities and to correct magnetic field errors is an established tool for achieving high beta configurations. 3D fields also affect transport and plasma momentum, and are shown to be important for the control of edge localized modes (ELMs), resistive wall modes, and optimized stellarator configurations. The format was similar to previous workshops, including 13 invited talks, 21 contributed talks, and this year there were 2 panel discussions ('Error Field Correction' led by Andrew Cole of Columbia University and 'Application of Coils in General' led by Richard Buttery of General Atomics). Ted Strait of General Atomics also gave a summary of the International Tokamak Physics Activity (ITPA) MHD meeting in Padua, a group for which he is now the leader. In this special section of Plasma Physics and Controlled Fusion (PPCF) is a sample of the presentations at the workshop, which have been subject to the normal refereeing procedures of the journal. They include a review (A Boozer) and an invited talk (R Fitzpatrick) on error fields, an invited on control of neoclassical tearing modes (H van den Brand), and an invited talk (P Zanca) and a contributed talk (E Oloffson) on control of the resistive wall mode kink. These are just representative of the broad spectrum of recent work on stability found posted at the web site (https://fusion.gat.com/conferences/mhd11/). We thank PPCF for continuing to have this special issue section. This was the third time the workshop was held at General Atomics. We thank General Atomics for making the site available for an internationally represented workshop in the new era of heightened security and controls. The next workshop (17th) will be held at Columbia University for the (fourth time) (https://fusion.gat.com/conferences/mhd12/) with the theme of 'Addressing the Disruption Challenge for ITER' to be combined with the Joint US-Japan MHD Workshop with a special session on: 'Fundamentals of 3D Perturbed Equilibrium Control: Present & Beyond'.

  13. Efficacy of beta-hydroxy-beta-methylbutyrate supplementation in maintenance hemodialysis patients.

    PubMed

    Fitschen, Peter J; Biruete, Annabel; Jeong, Jinny; Wilund, Kenneth R

    2017-01-01

    Maintenance hemodialysis (MHD) patients suffer from a number of co-morbidities including declines in muscle mass and physical function. Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite of the amino acid leucine that has been shown to improve lean mass and physical function in elderly and clinical populations, but had not been studied in MHD patients. The purpose of this study was to investigate the efficacy of HMB in this population. We performed a double-blind, placebo-controlled, randomized trial to assess the effects of daily HMB supplementation on co-morbidities in MHD patients. MHD patients were recruited and assigned to either daily supplementation with HMB (n = 16) or placebo (n = 17) for 6 months. Measurements of body composition, bone density, strength, physical function, fall risk, quality of life, and blood parameters were measured at baseline and 6 months. Blood was drawn at baseline, 3, and 6 months to measure compliance. No significant effects of HMB on body composition, bone density, strength, physical function, fall risk, quality of life, or blood parameters were observed. On analysis of plasma HMB concentrations, 5 of 16 patients (31%) in the HMB group were found to be noncompliant at 3 or 6 months. Therefore, we performed a per-protocol analysis with compliant participants only and observed no significant differences in our outcomes of interest. These results do not support the efficacy of HMB to attenuate co-morbid conditions in MHD patients. Moreover, this highlights the need for future interventions targeted at reducing pill burden and improving pill compliance in this population. © 2016 International Society for Hemodialysis.

  14. Performance characteristics of a slagging gasifier for MHD combustor systems

    NASA Technical Reports Server (NTRS)

    Smith, K. O.

    1979-01-01

    The performance of a two stage, coal combustor concept for magnetohydrodynamic (MHD) systems was investigated analytically. The two stage MHD combustor is comprised of an entrained flow, slagging gasifier as the first stage, and a gas phase reactor as the second stage. The first stage was modeled by assuming instantaneous coal devolatilization, and volatiles combustion and char gasification by CO2 and H2O in plug flow. The second stage combustor was modeled assuming adiabatic instantaneous gas phase reactions. Of primary interest was the dependence of char gasification efficiency on first stage particle residence time. The influence of first stage stoichiometry, heat loss, coal moisture, coal size distribution, and degree of coal devolatilization on gasifier performance and second stage exhaust temperature was determined. Performance predictions indicate that particle residence times on the order of 500 msec would be required to achieve gasification efficiencies in the range of 90 to 95 percent. The use of a finer coal size distribution significantly reduces the required gasifier residence time for acceptable levels of fuel use efficiency. Residence time requirements are also decreased by increased levels of coal devolatilization. Combustor design efforts should maximize devolatilization by minimizing mixing times associated with coal injection.

  15. A numerical code for a three-dimensional magnetospheric MHD equilibrium model

    NASA Technical Reports Server (NTRS)

    Voigt, G.-H.

    1992-01-01

    Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.

  16. MHD-EMP protection guidelines

    NASA Astrophysics Data System (ADS)

    Barnes, P. R.; Vance, E. F.

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  17. Cloning and characterization of the SERK1 gene in triploid Pingyi Tiancha [Malus hupehensis (Pamp.) Rehd. var. pingyiensis Jiang] and a tetraploid hybrid strain.

    PubMed

    Zhang, L J; Dong, W X; Guo, S M; Wang, Y X; Wang, A D; Lu, X J

    2015-11-19

    This study aims to explore the roles of somatic embryogenesis receptor-like kinase (SERK) in Malus hupehensis (Pingyi Tiancha). The full-length sequences of SERK1 in triploid Pingyi Tiancha (3n) and a tetraploid hybrid strain 33# (4n) were cloned, sequenced, and designated as MhSERK1 and MhdSERK1, respectively. Multiple alignments of amino acid sequences were conducted to identify similarity between MhSERK1 and MhdSERK1 and SERK sequences in other species, and a neighbor-joining phylogenetic tree was constructed to elucidate their phylogenetic relations. Expression levels of MhSERK1 and MhdSERK1 in different tissues and developmental stages were investigated using quantitative real-time PCR. The coding sequence lengths of MhSERK1 and MhdSERK1 were 1899 bp (encoding 632 amino acids) and 1881 bp (encoding 626 amino acids), respectively. Sequence analysis demonstrated that MhSERK1 and MhdSERK1 display high similarity to SERKs in other species, with a conserved intron/exon structure that is unique to members of the SERK family. Additionally, the phylogenetic tree showed that MhSERK1 and MhdSERK1 clustered with orange CitSERK (93%). Furthermore, MhSERK1 and MhdSERK1 were mainly expressed in the reproductive organs, in particular the ovary. Their expression levels were highest in young flowers and they differed among different tissues and organs. Our results suggest that MhSERK1 and MhdSERK1 are related to plant reproduction, and that MhSERK1 is related to apomixis in triploid Pingyi Tiancha.

  18. Space-based laser-driven MHD generator: Feasibility study

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1986-01-01

    The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.

  19. Research and development studies for MHD/coal power flow train components. Part II. Diagnostics and instrumentation MHD channel combutor. Progres report. [Flow calculations for combustors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, M.H.; Lederman, S.; Sforza, P.

    1980-01-01

    This is Part II of the Technical Progress Report on Tasks II-IV of the subject contract. It deals sequentially with Diagnostics and Instrumentation, the MHD Channel and the Combustor. During this period, a significant effort has gone into establishing a schematic design of a laser diagnostic system which can be applied to the flow-train of the MHD system, and to acquiring, assembling and shaking down a laboratory set-up upon which a prototype can be based. With further reference to the MHD Channel, a model analysis has been initiated of the two-dimensional MHD boundary layer between two electrodes in the limitmore » of small magnetic Reynolds numbers with negligible effect of the flow on the applied magnetic field. An objective of this model study is the assessment of variations in initial conditions on the boundary layer behavior. Finally, the problem of combustion modeling has been studied on an initial basis. The open reports on this subject depict a high degree of empiricism, centering attention on global behavior mainly. A quasi-one-dimensional model code has been set-up to check some of the existing estimates. Also a code for equilibrium combustion has been activated.« less

  20. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    DOE PAGES

    Seyler, C. E.; Martin, M. R.

    2011-01-14

    In this study, it is shown that the two-fluid model under a generalized Ohm’s law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm’s law determines the current density to a system where Ohm’s law determines the electric field. This resultmore » is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.« less

  1. High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II

    PubMed Central

    Sverdlov, Aaron L.; Elezaby, Aly; Behring, Jessica B.; Bachschmid, Markus M.; Luptak, Ivan; Tu, Vivian H.; Siwik, Deborah A.; Miller, Edward J.; Liesa, Marc; Shirihai, Orian S; Pimentel, David R.; Cohen, Richard A.; Colucci, Wilson S.

    2014-01-01

    Background Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM. Methods and results Male C57Bl/6J mice were fed either a high-fat, high-sucrose (HFHS) or control diet for 8 months. Cardiac mitochondria from HFHS-fed mice (vs. control diet) had an increased rate of H2O2 production, a decreased GSH/GSSG ratio, a decreased rate of complex II substrate-driven ATP synthesis and decreased complex II activity. Complex II substrate-driven ATP synthesis and complex II activity were partially restored ex-vivo by reducing conditions. A biotin switch assay showed that HFHS feeding increased cysteine OPTM in complex II subunits A (SDHA) and B (SDHB). Using iodo-TMT multiplex tags we found that HFHS feeding is associated with reversible oxidation of cysteines 89 and 231 in SDHA, and 100, 103 and 115 in SDHB. Conclusions MHD due to consumption of a HFHS “Western” diet causes increased H2O2 production and oxidative stress in cardiac mitochondria associated with decreased ATP synthesis and decreased complex II activity. Impaired complex II activity and ATP production are associated with reversible cysteine OPTM of complex II. Possible sites of reversible cysteine OPTM in SDHA and SDHB were identified by iodo-TMT tag labeling. Mitochondrial ROS may contribute to the pathophysiology of MHD by impairing the function of complex II. PMID:25109264

  2. Numerical analysis of real gas MHD flow on two-dimensional self-field MPD thrusters

    NASA Astrophysics Data System (ADS)

    Xisto, Carlos M.; Páscoa, José C.; Oliveira, Paulo J.

    2015-07-01

    A self-field magnetoplasmadynamic (MPD) thruster is a low-thrust electric propulsion space-system that enables the usage of magnetohydrodynamic (MHD) principles for accelerating a plasma flow towards high speed exhaust velocities. It can produce an high specific impulse, making it suitable for long duration interplanetary space missions. In this paper numerical results obtained with a new code, which is being developed at C-MAST (Centre for Mechanical and Aerospace Technologies), for a two-dimensional self-field MPD thruster are presented. The numerical model is based on the macroscopic MHD equations for compressible and electrically resistive flow and is able to predict the two most important thrust mechanisms that are associated with this kind of propulsion system, namely the thermal thrust and the electromagnetic thrust. Moreover, due to the range of very high temperatures that could occur during the operation of the MPD, it also includes a real gas model for argon.

  3. High-beta extended MHD simulations of stellarators

    NASA Astrophysics Data System (ADS)

    Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.; Roberds, N. A.

    2016-10-01

    The high beta properties of stellarator plasmas are studied using the nonlinear, extended MHD code NIMROD. In this work, we describe recent developments to the semi-implicit operator which allow the code to model 3D plasma evolution with better accuracy and efficiency. The configurations under investigation are an l=2, M=5 torsatron with geometry modeled after the Compact Toroidal Hybrid (CTH) experiment and an l=2, M=10 torsatron capable of having vacuum rotational transform profiles near unity. High-beta plasmas are created using a volumetric heating source and temperature dependent anisotropic thermal conduction and resistivity. To reduce computation expenses, simulations are initialized from stellarator symmetric pseudo-equilibria by turning on symmetry breaking modes at finite beta. The onset of MHD instabilities and nonlinear consequences are monitored as a function of beta as well as the fragility of the magnetic surfaces. Research supported by US DOE under Grant No. DE-FG02-99ER54546.

  4. Statistical evaluation of substorm strength and onset times in a global MHD model

    NASA Astrophysics Data System (ADS)

    Haiducek, J. D.; Welling, D. T.; Morley, S.; Ganushkina, N. Y.

    2016-12-01

    Magnetospheric substorms are characterized by an explosive release of energy stored in the magnetotail, resulting in a tailward plasmoid release, magnetic field perturbations which reach the ground, and a brightening of the aurora. The basic energy release process has been reproduced in magnetohydrodynamic (MHD) models of the global magnetosphere, but previous studies of substorms using MHD have been limited to case studies covering one or a few events. The lack of large-scale validation studies, and the fact that most MHD models rely on numerical or ad-hoc resistivity to produce the reconnection necessary for substorms, has led some to question the suitability of MHD for studying substorms. However, MHD models are able to capture global implications of substorms, including magnetospheric and ionospheric current systems, dipolarizations, and magnetic field perturbations at the surface, providing a compelling motivation to understand and improve substorm physics in global MHD.The present work seeks to assess the capabilities and limitations of MHD with respect to capturing substorms. We identify substorms in long (one month of simulation time) simulations and compare these to observations during the same time period. To reduce the risk of mis-identifying other phenomena as substorms, we use multiple signatures for the identification, including ground-based magnetic field in mid and high latitudes, plasmoid releases, dipolarization signatures, particle injections, and auroral imagery. We evaluate the model in terms of substorm frequency, strength, location, and timing. We model the same time period using the Minimal Substorm Model, which solves an energy balance equation based on solar wind input. This model has been previously shown to produce substorms at a realistic frequency given solar wind conditions; by comparing it to the MHD we are able to assess the relative importance of MHD physics in terms of substorm timing and occurrence rate. We compute a superposed epoch analysis (SEA) of the substorm "hits" (events that occurred in both the model and observations), "misses" (events that occurred only in observations), and false positives. The SEA result serves as a representative scenario with which we evaluate new model configurations in terms of their ability to reproduce substorm dynamics.

  5. Assessment of MCRM Boost Assist from Orbit for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides results of analysis for the beamed energy driven MHD Chemical Rocket Motor (MCRM) for application to boost from orbit to escape for deep space and interplanetary missions. Parametric analyses were performed in the mission to determine operating regime for which the MCRM provides significant propulsion performance enhancement. Analysis of the MHD accelerator was performed numerical computational methods to determine design and operational features necessary to achieve Isp on the order of 2,000 to 3,000 seconds. Algorithms were developed to scale weights for the accelerator and power supply. Significant improvement in propulsion system performance can be achieved with the beamed energy driven MCRM. The limiting factor on achievable vehicle acceleration is the specific power of the rectenna.

  6. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2014-10-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.

  7. Validation of numerical solvers for liquid metal flow in a complex geometry in the presence of a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Patel, Anita; Pulugundla, Gautam; Smolentsev, Sergey; Abdou, Mohamed; Bhattacharyay, Rajendraprasad

    2018-04-01

    Following the magnetohydrodynamic (MHD) code validation and verification proposal by Smolentsev et al. (Fusion Eng Des 100:65-72, 2015), we perform code to code and code to experiment comparisons between two computational solvers, FLUIDYN and HIMAG, which are presently considered as two of the prospective CFD tools for fusion blanket applications. In such applications, an electrically conducting breeder/coolant circulates in the blanket ducts in the presence of a strong plasma-confining magnetic field at high Hartmann numbers, it{Ha} (it{Ha}^2 is the ratio between electromagnetic and viscous forces) and high interaction parameters, it{N} (it{N} is the ratio of electromagnetic to inertial forces). The main objective of this paper is to provide the scientific and engineering community with common references to assist fusion researchers in the selection of adequate computational means to be used for blanket design and analysis. As an initial validation case, the two codes are applied to the classic problem of a laminar fully developed MHD flows in a rectangular duct. Both codes demonstrate a very good agreement with the analytical solution for it{Ha} up to 15, 000. To address the capabilities of the two codes to properly resolve complex geometry flows, we consider a case of three-dimensional developing MHD flow in a geometry comprising of a series of interconnected electrically conducting rectangular ducts. The computed electric potential distributions for two flows (Case A) it{Ha}=515, it{N}=3.2 and (Case B) it{Ha}=2059, it{N}=63.8 are in very good agreement with the experimental data, while the comparisons for the MHD pressure drop are still unsatisfactory. To better interpret the observed differences, the obtained numerical data are analyzed against earlier theoretical and experimental studies for flows that involve changes in the relative orientation between the flow and the magnetic field.

  8. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as liquid pumping and internal compression. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  9. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  10. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  11. Multifluid MHD Simulations of the Plasma Environment of Comet Churyumov-Gerasimenko at Different Heliocentric Distances

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Jia, X.; Rubin, M.; Fougere, N.; Gombosi, T. I.; Tenishev, V.; Combi, M. R.; Bieler, A. M.; Toth, G.; Hansen, K. C.; Shou, Y.

    2014-12-01

    We study the plasma environment of the comet Churyumov-Gerasimenko, which is the target of the Rosetta mission, by performing large scale numerical simulations. Our model is based on BATS-R-US within the Space Weather Modeling Framework that solves the governing multifluid MHD equations, which describe the behavior of the cometary heavy ions, the solar wind protons, and electrons. The model includes various mass loading processes, including ionization, charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. The neutral background used in our MHD simulations is provided by a kinetic Direct Simulation Monte Carlo (DSMC) model. We will simulate how the cometary plasma environment changes at different heliocentric distances.

  12. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  13. Three-dimensional computer simulation of non-reacting jet-gas flow mixing in an MHD second stage combustor

    NASA Astrophysics Data System (ADS)

    Chang, S. L.; Lottes, S. A.; Berry, G. F.

    Argonne National Laboratory is investigating the non-reacting jet-gas mixing patterns in a magnetohydrodynamics (MHD) second stage combustor by using a three-dimensional single-phase hydrodynamics computer program. The computer simulation is intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may improve downstream MHD channel performance. The code is used to examine the three-dimensional effects of the side walls and the distributed jet flows on the non-reacting jet-gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  14. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft

    NASA Astrophysics Data System (ADS)

    Myrabo, L. N.; Rosa, R. J.

    2004-03-01

    Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.

  15. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  16. Implementation of the full viscoresistive magnetohydrodynamic equations in a nonlinear finite element code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haverkort, J.W.; Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven; Blank, H.J. de

    Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity. The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite element discretization of the full MHD equations. Amore » rigorous and generally applicable solution is proposed here. Useful analytical test cases are devised to verify the correct implementation of the momentum and induction equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown to be associated with our use of a magnetic vector potential to describe the magnetic field. Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code. The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The results are compared with predictions from the reduced MHD model. Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method without the need to add any physical dissipation.« less

  17. US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 4. Tests in the U-25B facility: MHD generator tests No. 6 and 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picologlou, B F; Batenin, V M

    1981-01-01

    A description of the main results obtained during Tests No. 6 and 7 at the U-25B Facility using the new channel No. 2 is presented. The purpose of these tests was to operate the MHD generator at its design parameters. Described here are new plasma diagnostic devices: a traversing dual electrical probe for determining distribution of electron concentrations, and a traversing probe that includes a pitot tube for measuring total and static pressure, and a light detector for measuring plasma luminescence. Data are presented on heat flux distribution along the channel, the first data of this type obtained for anmore » MHD facility of such size. Results are given of experimental studies of plasma characteristics, gasdynamic, thermal, and electrical MHD channel performance, and temporal and spatial nonuniformities. Typical modes of operation are analyzed by means of local electrical analyses. Computer models are used to obtain predictions for both localized and overall generator characteristics. These theoretical predictions agree closely with the results of the local analyses, as well as with measurements of the overall gasdynamic and electrical characteristics of the generator.« less

  18. Validation of MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; den Hartog, D. J.; McCollam, K. J.; Sarff, J. S.; Sovinec, C. R.

    2017-10-01

    Rigorous validation of computational models used in fusion energy sciences over a large parameter space and across multiple magnetic configurations can increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation with plasma current ranging from 60 kA to 500 kA. The resulting Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), ranges from 4 ×104 to 8 ×106 for standard RFP plasmas and provides substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 105 for single-fluid runs, and the magnetic Prandtl number Pm = 1 . Validation metric comparisons are presented, focusing on how normalized magnetic fluctuations at the edge b scale with S. Preliminary results for the dominant n = 6 mode are b S - 0 . 20 +/- 0 . 02 for single-fluid NIMROD, b S - 0 . 25 +/- 0 . 05 for DEBS, and b S - 0 . 20 +/- 0 . 02 for experimental measurements, however there is a significant discrepancy in mode amplitudes. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  19. A Numerical Approach to Solving the Hall MHD Equations Including Diamagnetic Drift (Preprint)

    DTIC Science & Technology

    2008-02-19

    SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Dr. Jean-Luc Cambier a. REPORT...1997. [3] L. Chacon and D.A. Knoll. A 2d high-beta hall mhd implicit nonlinear solver. Journal of Computational Physics, 188:573–592, 2003. [4] Tony F

  20. Suppression of high-energy electrons generated in both disrupting and sustained MST tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Pandya, M. D.; Chapman, B. E.; Munaretto, S.; Cornille, B. S.; McCollam, K. J.; Sovinec, C. R.; Dubois, A. M.; Almagri, A. F.; Goetz, J. A.

    2017-10-01

    High-energy electrons appearing during MST tokamak plasma disruptions are rapidly lost from the plasma due apparently to internal MHD activity. Work has just recently begun on generating and diagnosing disruptions in MST tokamak plasmas. Initial measurements show the characteristic drop in central temperature and density preceding a quench of the plasma current. This corresponds to a burst of dominantly n=1 MHD activity, which is accompanied by a short-lived burst of high-energy electrons. The short-lived nature of these electrons is suspected to be due to stochastic transport associated with the increased MHD. Earlier work shows that runaway electrons generated in low density, sustained plasmas are suppressed by a sufficiently large m=3 RMP in plasmas with q(a) <3. RMPs of various poloidal mode number can be generated with an array of saddle coils wound around the vertical insulated gap in MST's thick conducting shell. With an m=3 RMP, the degree of runaway suppression increases with RMP amplitude, while an m=1 RMP has little effect on the runaways. Nonlinear MHD modeling with NIMROD of these MST plasmas indicates increased stochasticity with an m=3 RMP, while no such increase in stochasticity is observed with an m=1 RMP. Work supported by US DOE.

  1. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  2. Research and development studies for MHD/coal power flow train components. Technical progress report, 1 September 1979-31 August 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, M. H.

    1980-01-01

    The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to amore » significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)« less

  3. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    NASA Astrophysics Data System (ADS)

    González, J. J.; Guzmán, F.

    2015-12-01

    In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  4. Propagation and Dissipation of MHD Waves in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2006-11-01

    bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.

  5. Design Considerations of a Virtual Laboratory for Advanced X-ray Sources

    NASA Astrophysics Data System (ADS)

    Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.

    2004-11-01

    The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.

  6. Physical Function and Physical Activity in Peritoneal Dialysis Patients.

    PubMed

    Painter, Patricia L; Agarwal, Adhish; Drummond, Micah

    2017-01-01

    Physical functioning (PF) and physical activity (PA) are low in patients treated with maintenance hemodialysis (MHD). Little information exists on this topic in patients treated with peritoneal dialysis (PD). The objective of this study was to compare PF and PA in patients with Stage-5 chronic kidney disease (CKD) treated with PD and in-center MHD. Physical functioning was measured in 45 prevalent PD patients using standard physical performance measures that include gait speed, chair stand, standing balance, 6-minute-walk, incremental shuttle walk and self-reported PF using the short form (SF)-36 questionnaire. Physical activity was determined from self-report and using the Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire. Scores for the short physical performance battery (SPPB) were calculated. In-center MHD patients were matched by age, gender, and diabetes status to the PD patients. Unadjusted comparisons showed significantly higher 6-minute-walk distance, shuttle-walk distance and hand-grip in the PD patients. Adjustment in multiple regression analysis resulted in only gait speed being significantly different between the groups. All test results in both groups were lower than reference values for age and gender in the general population, and were at the levels indicating impairment. Physical activity was not different between the 2 groups (average age 49 yrs), and both groups had weekly caloric expenditure from all exercise and from moderate-intensity exercise that was similar to older (> 70 yrs) community-dwelling adults. Adjusted association indicated that PA was significantly associated with shuttle-walk distance. Physical functioning and PA measures were low in both PD and MHD groups. Interventions to improve PA and PF should be strongly considered for both PD and MHD patients. Copyright © 2017 International Society for Peritoneal Dialysis.

  7. A divergence-cleaning scheme for cosmological SPMHD simulations

    NASA Astrophysics Data System (ADS)

    Stasyszyn, F. A.; Dolag, K.; Beck, A. M.

    2013-01-01

    In magnetohydrodynamics (MHD), the magnetic field is evolved by the induction equation and coupled to the gas dynamics by the Lorentz force. We perform numerical smoothed particle magnetohydrodynamics (SPMHD) simulations and study the influence of a numerical magnetic divergence. For instabilities arising from {nabla }\\cdot {boldsymbol B} related errors, we find the hyperbolic/parabolic cleaning scheme suggested by Dedner et al. to give good results and prevent numerical artefacts from growing. Additionally, we demonstrate that certain current SPMHD implementations of magnetic field regularizations give rise to unphysical instabilities in long-time simulations. We also find this effect when employing Euler potentials (divergenceless by definition), which are not able to follow the winding-up process of magnetic field lines properly. Furthermore, we present cosmological simulations of galaxy cluster formation at extremely high resolution including the evolution of magnetic fields. We show synthetic Faraday rotation maps and derive structure functions to compare them with observations. Comparing all the simulations with and without divergence cleaning, we are able to confirm the results of previous simulations performed with the standard implementation of MHD in SPMHD at normal resolution. However, at extremely high resolution, a cleaning scheme is needed to prevent the growth of numerical {nabla }\\cdot {boldsymbol B} errors at small scales.

  8. Statistical properties of MHD fluctuations associated with high speed streams from HELIOS 2 observations

    NASA Technical Reports Server (NTRS)

    Bavassano, B.; Dobrowolny, H.; Fanfoni, G.; Mariani, F.; Ness, N. F.

    1981-01-01

    Helios 2 magnetic data were used to obtain several statistical properties of MHD fluctuations associated with the trailing edge of a given stream served in different solar rotations. Eigenvalues and eigenvectors of the variance matrix, total power and degree of compressibility of the fluctuations were derived and discussed both as a function of distance from the Sun and as a function of the frequency range included in the sample. The results obtained add new information to the picture of MHD turbulence in the solar wind. In particular, a dependence from frequency range of the radial gradients of various statistical quantities is obtained.

  9. Advances in simulation of wave interactions with extended MHD phenomena

    NASA Astrophysics Data System (ADS)

    Batchelor, D.; Abla, G.; D'Azevedo, E.; Bateman, G.; Bernholdt, D. E.; Berry, L.; Bonoli, P.; Bramley, R.; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, W.; Foley, S.; Fu, G.; Harvey, R.; Jaeger, E.; Jardin, S.; Jenkins, T.; Keyes, D.; Klasky, S.; Kruger, S.; Ku, L.; Lynch, V.; McCune, D.; Ramos, J.; Schissel, D.; Schnack, D.; Wright, J.

    2009-07-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  10. Growth and detachment of single hydrogen bubbles in a magnetohydrodynamic shear flow

    NASA Astrophysics Data System (ADS)

    Baczyzmalski, Dominik; Karnbach, Franziska; Mutschke, Gerd; Yang, Xuegeng; Eckert, Kerstin; Uhlemann, Margitta; Cierpka, Christian

    2017-09-01

    This study investigates the effect of a magnetohydrodynamic (MHD) shear flow on the growth and detachment of single sub-millimeter-sized hydrogen gas bubbles. These bubbles were electrolytically generated at a horizontal Pt microelectrode (100 μ m in diameter) in an acidic environment (1 M H2SO4 ). The inherent electric field was superimposed by a homogeneous electrode-parallel magnetic field of up to 700 mT to generate Lorentz forces in the electrolyte, which drive the MHD flow. The growth and motion of the hydrogen bubble was analyzed by microscopic high-speed imaging and measurements of the electric current, while particle tracking velocimetry (μ PTV ) and particle image velocimetry (μ PIV ) were applied to measure the surrounding electrolyte flow. In addition, numerical flow simulations were performed based on the experimental conditions. The results show a significant reduction of the bubble growth time and detachment diameter with increasing magnetic induction, which is known to improve the efficiency of water electrolysis. In order to gain further insight into the bubble detachment mechanism, an analysis of the forces acting on the bubble was performed. The strong MHD-induced drag force causes the bubble to slowly slide away from the center of the microelectrode before its detachment. This motion increases the active electrode area and enhances the bubble growth rate. The results further indicate that at large current densities the coalescence of tiny bubbles formed at the foot of the main bubble might play an important role for the bubble detachment. Moreover, the occurrence of Marangoni stresses at the gas-liquid interface is discussed.

  11. Liquid-metal flows: Magnetohydrodynamics and applications; Proceedings of the Fifth Beersheba International Seminar on Magnetohydrodynamic Flows and Turbulence, University of the Negev, Beersheba, Israel, Mar. 2-6, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branover, H.; Mond, M.; Unger, Y.

    The present collection of papers on MHD-related uses of liquid metal flows and their applications discusses topics in laminar MHD flows, MHD power generation, metallurgical MHD applications, and two-phase MHD flows. Attention is given to MHD flows with closed streamlines, nonlinear waves in liquid metals under a transverse magnetic field, liquid-metal MHD conversion of nuclear energy to electricity, the testing of optimized MHD conversion (OMACON) systems, and aspects of a liquid-metal induction generator. Also discussed are MHD effects in liquid-metal breeder reactors, a plasma-driven MHD powerplant, modeling the recirculating flows in channel-induction surfaces, the hydrodynamics of aluminum reduction cells, free-surfacemore » determination in a levitation-melting process, the parametric interactions of waves in bubbly liquid metals, and the occurrence of cavitation in water jets.« less

  12. NIMROD simulations of HIT-SI plasmas

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Jarboe, Thomas; Nelson, Brian; Kim, Charlson

    2011-10-01

    HIT-SI (Steady Inductive Helicity Injected Torus) is a current drive experiment that uses two semi-toroidal helicity injectors driven at 5-15 kHz to generate steady inductive helicity injection (SIHI). All the plasma-facing walls of the experiment are coated with an insulating material to guarantee an inductive discharge. NIMROD is a 3-D extended MHD code that can only model toroidally-uniform geometries. The helicity injectors of the experiment are simulated as flux and voltage boundary conditions with odd toroidal symmetry. A highly resistive, thin edge-layer approximates the insulating walls. The simulations are initial-value calculations that use a zero β resistive MHD (rMHD) model with uniform density. The Prandtl number (Pr = 10), and Lundquist number (S = 5 - 50) closely match the experimental values. rMHD calculations at S ~ 10 show no growth of an n = 0 mode and only a few kA of toroidal current whereas HIT-SI has demonstrated toroidal currents greater than 50 kA with a current amplification of 3. At higher S (>= 20) the simulations exhibit significant n = 0 magnetic energy growth and a current amplification exceeding unity: Itor/Iinj >= 1 . While HIT-SI has shown evidence for separatrix formation, rMHD calculations indicate an entirely stochastic magnetic structure during sustainment. Results will also presented for Hall MHD, anticipated to play a crucial role in the physics of SIHI.

  13. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    NASA Astrophysics Data System (ADS)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two-dimensional transient simulations. The dynamics of the detonation are found to be affected by the application of magnetic and electric fields. We find that the regularity of one-dimensional cesium-seeded detonations can be significantly altered by reasonable applied magnetic fields (Bz ≤ 8T), but that it takes a stronger applied field (Bz > 16T) to significantly alter the cellular structure and detonation velocity of a two-dimensional detonation in the time in which these phenomena were observed. This observation is likely attributed to the additional coupling of the two-dimensional detonation with the transverse waves, which are not captured in the one-dimensional simulations. Future studies involving full ionization kinetics including collisional-radiative processes, will be used to examine these processes in further detail.

  14. MHD simulation of transition process from the magneto-rotational instability to magnetic turbulence by using a high-order MHD simulation scheme

    NASA Astrophysics Data System (ADS)

    Hirai, K.; Katoh, Y.; Terada, N.; Kawai, S.

    2016-12-01

    In accretion disks, magneto-rotational instability (MRI; Balbus & Hawley, 1991) makes the disk gas in the magnetic turbulent state and drives efficient mass accretion into a central star. MRI drives turbulence through the evolution of the parasitic instability (PI; Goodman & Xu, 1994), which is related to both Kelvin-Helmholtz (K-H) instability and magnetic reconnection. The wave number vector of PI is strongly affected by both magnetic diffusivity and fluid viscosity (Pessah, 2010). This fact makes MHD simulation of MRI difficult, because we need to employ the numerical diffusivity for treating discontinuities in compressible MHD simulation schemes. Therefore, it is necessary to use an MHD scheme that has both high-order accuracy so as to resolve MRI driven turbulence and small numerical diffusivity enough to treat discontinuities. We have originally developed an MHD code by employing the scheme proposed by Kawai (2013). This scheme focuses on resolving turbulence accurately by using a high-order compact difference scheme (Lele, 1992), and meanwhile, the scheme treats discontinuities by using the localized artificial diffusivity method (Kawai, 2013). Our code also employs the pipeline algorithm (Matsuura & Kato, 2007) for MPI parallelization without diminishing the accuracy of the compact difference scheme. We carry out a 3-dimensional ideal MHD simulation with a net vertical magnetic field in the local shearing box disk model. We use 256x256x128 grids. Simulation results show that the spatially averaged turbulent stress induced by MRI linearly grows until around 2.8 orbital periods, and decreases after the saturation. We confirm the strong enhancement of the K-H mode PI at a timing just before the saturation, identified by the enhancement of its anisotropic wavenumber spectra in the 2-dimensional wavenumber space. The wave number of the maximum growth of PI reproduced in the simulation result is larger than the linear analysis. This discrepancy is explained by the simulation result that a shear flow created by MRI locally becomes thinner and faster due to interactions between antiparallel vortices induced by K-H mode PI, and this structure induces small scale waves which break the shear flow itself. We report the results of the simulation, and discuss how the saturation amplitude of MRI is determined.

  15. Parametric study of potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1979-01-01

    Three different reference power plant configurations were considered with parametric variations of the various design parameters for each plant. Two of the reference plant designs were based on the use of high temperature regenerative air preheaters separately fired by a low Btu gas produced from a coal gasifier which was integrated with the power plant. The third reference plant design was based on the use of oxygen enriched combustion air preheated to a more moderate temperature in a tubular type metallic recuperative heat exchanger which is part of the bottoming plant heat recovery system. Comparative information was developed on plant performance and economics. The highest net plant efficiency of about 45 percent was attained by the reference plant design with the use of a high temperature air preheater separately fired with the advanced entrained bed gasifier. The use of oxygen enrichment of the combustion air yielded the lowest cost of generating electricity at a slightly lower plant efficiency. Both of these two reference plant designs are identified as potentially attractive for early MHD power plant applications.

  16. Effect of Finite Chemical Reaction Rates on Heat Transfer to the Walls of Combustion-Driven Supersonic MHD Generator Channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DAILY, J. W. ..; RAEDER, J.; ZANKL, G.

    1974-03-01

    The effect of finite-rate homogeneous chemical reactions on the heat transfer rates to the walls of combustion-driven supersonic MHD generators was investigated. Experiments were performed on a 200 kW(e) combustion generator. The density of the heat flux to the wall was measured at various axial positions along both a circular cross section Hall-type channel and a diagonal wall channel with a rectangular cross section. From the results it was concluded that a substantial decrease in heat transfer rate to the walls of a combustion-driven supersonic MHD power generator was ob served which appears to occur because of chemical nonequilibrium inmore » the developing wall boundary layers. (LCL)« less

  17. Present status of MHD research and development in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branover, H.; Lesin, S.

    1994-12-31

    As in the previous years the Israel MHD program is concentrating exclusively on Liquid Metal MHD (LMMHD). The main effort is the development of gravitational heavy metal power generation systems with a Faraday type generator (ETGAR-type system). However, in the wake of this main development a number of diverse research projects are also elaborated. Two of those projects are reflected in this paper. First is the direct contact boiling of volatile thermodynamic liquids in hot liquid metals and the second is MHD turbulence with a variety of applications. The LMMHD power generation project is now about to enter the stagemore » of building a semi-commercial scale demonstration plant. The concept and performance parameters of this plant have been presented already at SEAM 30. Direct contact boiling of the volatile liquid in a hot metal leads to a substantial decrease of the cost of a LMMHD power generation system. Indeed, in this case a separate boiler is not needed. Moreover, the overall efficiency of the system is increased through achieving a more desirable two-phase flow pattern. A Special integrated facility for this study is in advanced stage of assembly and it will be put in operation soon. It will work with lead and water at temperatures up to 750{degrees}K. In the field of MHD Turbulence research, studies of two applications are pursued. The first is related to the engineering of liquid metal blankets in thermonuclear reactors. The second is connected with a possibility to simulate large scale atmospheric and oceanic turbulence using a laboratory MHD channel with liquid metal flow.« less

  18. A New Approach to Modeling Jupiter's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Fukazawa, K.; Katoh, Y.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.

    2017-12-01

    The scales in planetary magnetospheres range from 10s of planetary radii to kilometers. For a number of years we have studied the magnetospheres of Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations. However, we have not been able to reach even the limits of the MHD approximation because of the large amount of computer resources required. Recently thanks to the progress in supercomputer systems, we have obtained the capability to simulate Jupiter's magnetosphere with 1000 times the number of grid points used in our previous simulations. This has allowed us to combine the high resolution global simulation with a micro-scale simulation of the Jovian magnetosphere. In particular we can combine a hybrid (kinetic ions and fluid electrons) simulation with the MHD simulation. In addition, the new capability enables us to run multi-parameter survey simulations of the Jupiter-solar wind system. In this study we performed a high-resolution simulation of Jovian magnetosphere to connect with the hybrid simulation, and lower resolution simulations under the various solar wind conditions to compare with Hisaki and Juno observations. In the high-resolution simulation we used a regular Cartesian gird with 0.15 RJ grid spacing and placed the inner boundary at 7 RJ. From these simulation settings, we provide the magnetic field out to around 20 RJ from Jupiter as a background field for the hybrid simulation. For the first time we have been able to resolve Kelvin Helmholtz waves on the magnetopause. We have investigated solar wind dynamic pressures between 0.01 and 0.09 nPa for a number of IMF values. These simulation data are open for the registered users to download the raw data. We have compared the results of these simulations with Hisaki auroral observations.

  19. NASA Lewis Research Center combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1982-01-01

    The MHD power generation experiments were conducted in a high field strength cryomagnet which was adapted from an existing facility. In its original construction, it consisted of 12 high purity aluminum coils pool cooled in a bath of liquid neon. In this configuration, a peak field of 15 tesla was produced. For the present experiments, the center four coils were removed and a 23 cm diameter transverse warm bore tube was inserted to allow the placement of the MHD experiment between the remaining eight coils. In this configuration, a peak field of 6 tesla should be obtainable. The time duration of the experiment is limited by the neon supply which allows on the order of 1 minute of total operating time followed by an 18-hour reliquefaction period. As a result, the experiments are run in a pulsed mode. The run duration for the data presented here was 5 sec. The magnetic field profile along the MHD duct is shown. Since the working fluid is in essence superheated steam, it is easily water quenched at the exit of the diffuser and the components are designed vacuum tight so that the exhaust pipe and demister an be pumped down to simulate the vacuum of outer space.

  20. A note on two-dimensional asymptotic magnetotail equilibria

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes; Moore, Brian D.

    1994-01-01

    In order to understand, on the fluid level, the structure, the time evolution, and the stability of current sheets, such as the magnetotail plasma sheet in Earth's magnetosphere, one has to consider magnetic field configurations that are in magnetohydrodynamic (MHD) force equilibrium. Any reasonable MHD current sheet model has to be two-dimensional, at least in an asymptotic sense (B(sub z)/B (sub x)) = epsilon much less than 1. The necessary two-dimensionality is described by a rather arbitrary function f(x). We utilize the free function f(x) to construct two-dimensional magnetotail equilibria are 'equivalent' to current sheets in empirical three-dimensional models. We obtain a class of asymptotic magnetotail equilibria ordered with respect to the magnetic disturbance index Kp. For low Kp values the two-dimensional MHD equilibria reflect some of the realistic, observation-based, aspects of three-dimensional models. For high Kp values the three-dimensional models do not fit the asymptotic MHD equlibria, which is indicative of their inconsistency with the assumed pressure function. This, in turn, implies that high magnetic activity levels of the real magnetosphere might be ruled by thermodynamic conditions different from local thermodynamic equilibrium.

  1. Study of Second Stability for Global ITG Modes in MHD-stable Equilibria

    NASA Astrophysics Data System (ADS)

    Fivaz, Mathieu; Sauter, Olivier; Appert, Kurt; Tran, Trach-Minh; Vaclavik, Jan

    1997-11-01

    We study finite pressure effects on the Ion Temperature Gradient (ITG) instabilities; these modes are stabilized when the magnetic field gradient is reversed at high β [1]. This second stability regime for ITG modes is studied in details with a global linear gyrokinetic Particle-In-Cell code which takes the full toroidal MHD equilibrium data from the equilibrium solver CHEASE [2]. Both the trapped-ion and the toroidal ITG regimes are explored. In contrast to second stability for MHD ballooning modes, low magnetic shear and high values of the safety factor do not facilitate strongly the access to the second-stable ITG regime. The consequences for anomalous ion heat transport in tokamaks are explored. We use the results to find optimized configurations that are stable to ideal MHD modes for both the long (kink) and short (ballooning) wavelengths and where the ITG modes are stable or have very low growth rates; such configurations might present very low level of anomalous transport. [1] M. Fivaz, T.M. Tran, K. Appert, J. Vaclavik and S. E. Parker, Phys. Rev. Lett. 78, 1997, p. 3471 [2] H. Lütjens, A. Bondeson and O. Sauter, Comput. Phys. Commun. 97, 1996, p. 219

  2. Lab experiments investigating astrophysical jet physics

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2014-10-01

    Dynamics relevant to astrophysical plasmas is being investigated in lab experiments having similar physics and topology, but much smaller time and space scales. High speed movies and numerical simulations both show that highly collimated MHD-driven plasma flows are a critical feature; these collimated flows can be considered to be a lab version of an astrophysical jet. Having both axial and azimuthal magnetic fields, the jet is effectively an axially lengthening plasma-confining flux tube with embedded helical magnetic field (flux rope). The jet velocity is in good agreement with an MHD acceleration model. Axial stagnation of the jet compresses embedded azimuthal magnetic flux and so results in jet self-collimation. Jets kink when they breach the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can provide an effective gravity which provides the environment for a spontaneously-developing, fine-scale, extremely fast Rayleigh-Taylor instability that erodes the current channel to be smaller than the ion skin depth. This cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale can result in a fast magnetic reconnection whereby the jet breaks off from its source electrode. Supported by USDOE and NSF.

  3. A Comparison of Spectral Element and Finite Difference Methods Using Statically Refined Nonconforming Grids for the MHD Island Coalescence Instability Problem

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Bhattacharjee, A.

    2009-04-01

    A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (\\ci) in two dimensions. \\ci is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.

  4. Simulations of a dense plasma focus on a high impedance generator

    NASA Astrophysics Data System (ADS)

    Beresnyak, Andrey; Giuliani, John; Jackson, Stuart; Richardson, Steve; Swanekamp, Steve; Schumer, Joe; Commisso, Robert; Mosher, Dave; Weber, Bruce; Velikovich, Alexander

    2017-10-01

    We study the connection between plasma instabilities and fast ion acceleration for neutron production on a Dense Plasma Focus (DPF). The experiments will be performed on the HAWK generator (665 kA), which has fast rise time, 1.2 μs, and a high inductance, 607 nH. It is hypothesized that high impedance may enhance the neutron yield because the current will not be reduced during the collapse resulting in higher magnetization. To prevent upstream breakdown, we will inject plasma far from the insulator stack. We simulated rundown and collapse dynamics with Athena - Eulerian 3D, unsplit finite volume MHD code that includes shock capturing with Riemann solvers, resistive diffusion and the Hall term. The simulations are coupled to an equivalent circuit model for HAWK. We will report the dynamics and implosion time as a function of the initial injected plasma distribution and the implications of non-ideal effects. We also traced test particles in MHD fields and confirmed the presence of stochastic acceleration, which was limited by the size of the system and the strength of the magnetic field. Supported by DOE/NNSA and the Naval Research Laboratory Base Program.

  5. Flare particle acceleration in the interaction of twisted coronal flux ropes

    NASA Astrophysics Data System (ADS)

    Threlfall, J.; Hood, A. W.; Browning, P. K.

    2018-03-01

    Aim. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods: We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results: The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.

  6. Fully Parallel MHD Stability Analysis Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang

    2015-11-01

    Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.

  7. Plasma sheet low-entropy flow channels and dipolarization fronts from macro to micro scales: Global MHD and PIC simulations

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Wiltberger, M. J.; Sitnov, M. I.; Lyon, J.

    2016-12-01

    Observations show that much of plasma and magnetic flux transport in the magnetotail occurs in the form of discrete activations such as bursty bulk flows (BBFs). These flow structures are typically associated with strong peaks of the Z-component of the magnetic field normal to the magnetotail current sheet (dipolarization fronts, DFs), as well as density and flux tube entropy depletions also called plasma bubbles. Extensive observational analysis of these structures has been carried out using data from Geotail spacecraft and more recently from Cluster, THEMIS, and MMS multi-probe missions. Global magnetohydrodynamic (MHD) simulations of the magnetosphere reveal similar plasma sheet flow bursts, in agreement with regional MHD and particle-in-cell (PIC) models. We present results of high-resolution simulations using the Lyon-Fedder-Mobarry (LFM) global MHD model and analyze the properties of the bursty flows including their structure and evolution as they propagate from the mid-tail region into the inner magnetosphere. We highlight similarities and differences with the corresponding observations and discuss comparative properties of plasma bubbles and DFs in our global MHD simulations with their counterparts in 3D PIC simulations.

  8. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anninos, Peter; Lau, Cheuk; Bryant, Colton

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performedmore » separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.« less

  9. Preliminary results in the NASA Lewis H2-O2 combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1979-01-01

    MHD (magnetohydrodynamic) power generation experiments were carried out in the NASA Lewis Research Center cesium-seeded H2-O2 combustion facility. This facility uses a neon-cooled cryomagnet capable of producing magnetic fields in excess of 5 tesla. The effects of power takeoff location, generator loading, B-field strength, and electrode breakdown on generator performance are discussed. The experimental data is compared to a theory based on one-dimensional flow with heat transfer, friction, and voltage drops.

  10. High Performance Computing Application: Solar Dynamo Model Project II, Corona and Heliosphere Component Initialization, Integration and Validation

    DTIC Science & Technology

    2015-06-24

    physically . While not distinct from IH models, they require inner boundary magnetic field and plasma property values, the latter not currently measured...initialization for the computational grid. Model integration continues until a physically consistent steady-state is attained. Because of the more... physical basis and greater likelihood of realistic solutions, only MHD-type coronal models were considered in the review. There are two major types of

  11. Leucine disposal rate for assessment of amino acid metabolism in maintenance hemodialysis patients

    PubMed Central

    Denny, Gerald B.; Deger, Serpil M.; Chen, Guanhua; Bian, Aihua; Sha, Feng; Booker, Cindy; Kesler, Jaclyn T.; David, Sthuthi; Ellis, Charles D.; Ikizler, T. Alp

    2016-01-01

    Background Protein energy wasting (PEW) is common in patients undergoing maintenance hemodialysis (MHD) and closely associated with poor outcomes. Insulin resistance and associated alterations in amino acid metabolism are potential pathways leading to PEW. We hypothesized that the measurement of leucine disposal during a hyperinsulinemic- euglycemic-euaminoacidemic clamp (HEAC) procedure would accurately measure the sensitivity to insulin for its actions on concomitant carbohydrate and protein metabolism in MHD patients. Methods We examined 35 MHD patients and 17 control subjects with normal kidney function by hyperinsulinemic-euglycemic clamp (HEGC) followed by HEAC clamp procedure to obtain leucine disposal rate (LDR) along with isotope tracer methodology to assess whole body protein turnover. Results The glucose disposal rate (GDR) by HEGC was 5.1 ± 2.1 mg/kg/min for the MHD patients compared to 6.3 ± 3.9 mg/kg/min for the controls (p = 0.38). The LDR during HEAC was 0.09 ± 0.03 mg/kg/min for the MHD patients compared to 0.11 ± 0.05 mg/kg/min for the controls (p = 0.009). The LDR level was correlated with whole body protein synthesis (r = 0.25; p = 0.08), with whole body protein breakdown (r = −0.38 p = 0.01) and net protein balance (r = 0.85; p < 0.001) in the overall study population. Correlations remained significant in subgroup analysis. The GDR derived by HEGC and LDR correlated well in the controls (r = 0.79, p < 0.001), but less so in the MHD patients (r = 0.58, p < 0.001). Conclusions Leucine disposal rate reliably measures amino acid utilization in MHD patients and controls in response to high dose insulin. PMID:27413537

  12. Leucine disposal rate for assessment of amino acid metabolism in maintenance hemodialysis patients.

    PubMed

    Denny, Gerald B; Deger, Serpil M; Chen, Guanhua; Bian, Aihua; Sha, Feng; Booker, Cindy; Kesler, Jaclyn T; David, Sthuthi; Ellis, Charles D; Ikizler, T Alp

    Protein energy wasting (PEW) is common in patients undergoing maintenance hemodialysis (MHD) and closely associated with poor outcomes. Insulin resistance and associated alterations in amino acid metabolism are potential pathways leading to PEW. We hypothesized that the measurement of leucine disposal during a hyperinsulinemic- euglycemic-euaminoacidemic clamp (HEAC) procedure would accurately measure the sensitivity to insulin for its actions on concomitant carbohydrate and protein metabolism in MHD patients. We examined 35 MHD patients and 17 control subjects with normal kidney function by hyperinsulinemic-euglycemic clamp (HEGC) followed by HEAC clamp procedure to obtain leucine disposal rate (LDR) along with isotope tracer methodology to assess whole body protein turnover. The glucose disposal rate (GDR) by HEGC was 5.1 ± 2.1 mg/kg/min for the MHD patients compared to 6.3 ± 3.9 mg/kg/min for the controls ( p = 0.38). The LDR during HEAC was 0.09 ± 0.03 mg/kg/min for the MHD patients compared to 0.11 ± 0.05 mg/kg/min for the controls ( p = 0.009). The LDR level was correlated with whole body protein synthesis ( r = 0.25; p = 0.08), with whole body protein breakdown ( r = -0.38 p = 0.01) and net protein balance ( r = 0.85; p < 0.001) in the overall study population. Correlations remained significant in subgroup analysis. The GDR derived by HEGC and LDR correlated well in the controls ( r = 0.79, p < 0.001), but less so in the MHD patients ( r = 0.58, p < 0.001). Leucine disposal rate reliably measures amino acid utilization in MHD patients and controls in response to high dose insulin.

  13. Interaction between acyl-ghrelin and BMI predicts clinical outcomes in hemodialysis patients.

    PubMed

    Beberashvili, Ilia; Sinuani, Inna; Azar, Ada; Shapiro, Gregory; Feldman, Leonid; Doenyas-Barak, Keren; Stav, Kobi; Efrati, Shai

    2017-01-18

    Ghrelin, a gastric orexigenic peptide, and body mass index (BMI) are known as inversely associated to each other and are both linked to cardiovascular (CV) risk and mortality in maintenance hemodialysis (MHD) patients. However, it is unclear whether the interaction between ghrelin and BMI is associated with a risk of all-cause and CV death in this population. A prospective observational study was performed on 261 MHD outpatients (39% women, mean age 68.6 ± 13.6 years) recruited from October 2010 through April 2012, and were followed until November 2014 (median follow-up-28 months, interquartile range-19-34 months). We measured acyl-ghrelin (AG) levels, appetite, nutritional and inflammatory markers, prospective all-cause and cardiovascular (CV) mortality. During follow-up, 109 patients died, 51 due to CV causes. A significant interaction effect of high BMI and high AG (defined as levels higher than median) on all-cause mortality was found. Crude Cox HR for the product termed BMI x AG was 0.52, with a 95% confidence interval (CI): 0.29 to 0.95 (P = 0.03). Evaluating the interaction on an additive scale revealed that the combined predictive value of BMI and AG is larger than the sum of their individual predictive values (synergy index was 1.1). Across the four BMI-AG categories, the group with high BMI and high AG exhibited better all-cause and cardiovascular mortality irrespective of appetite and nutritional status (multivariable adjusted hazard ratios were 0.31, 95% CI 0.16 to 0.62, P = 0.001, and 0.35, 95% CI 0.13 to 0.91, P = 0.03, respectively). Data analyses made by dividing patients according to fat mass-AG, but not to lean body mass-AG categories, provided similar results. Higher AG levels enhance the favourable association between high BMI and survival in MHD patients irrespective of appetite, nutritional status and inflammation.

  14. Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Bitteker, L. J.; Jones, J. E.

    2001-01-01

    Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted Mars missions during the 2018 opportunity.

  15. PIXIE3D: A Parallel, Implicit, eXtended MHD 3D Code

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2006-10-01

    We report on the development of PIXIE3D, a 3D parallel, fully implicit Newton-Krylov extended MHD code in general curvilinear geometry. PIXIE3D employs a second-order, finite-volume-based spatial discretization that satisfies remarkable properties such as being conservative, solenoidal in the magnetic field to machine precision, non-dissipative, and linearly and nonlinearly stable in the absence of physical dissipation. PIXIE3D employs fully-implicit Newton-Krylov methods for the time advance. Currently, second-order implicit schemes such as Crank-Nicolson and BDF2 (2^nd order backward differentiation formula) are available. PIXIE3D is fully parallel (employs PETSc for parallelism), and exhibits excellent parallel scalability. A parallel, scalable, MG preconditioning strategy, based on physics-based preconditioning ideas, has been developed for resistive MHD, and is currently being extended to Hall MHD. In this poster, we will report on progress in the algorithmic formulation for extended MHD, as well as the the serial and parallel performance of PIXIE3D in a variety of problems and geometries. L. Chac'on, Comput. Phys. Comm., 163 (3), 143-171 (2004) L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002); J. Comput. Phys., 188 (2), 573-592 (2003) L. Chac'on, 32nd EPS Conf. Plasma Physics, Tarragona, Spain, 2005 L. Chac'on et al., 33rd EPS Conf. Plasma Physics, Rome, Italy, 2006

  16. High fidelity studies of exploding foil initiator bridges, Part 3: ALEGRA MHD simulations

    NASA Astrophysics Data System (ADS)

    Neal, William; Garasi, Christopher

    2017-01-01

    Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, and predict a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this third paper of a three part study, the experimental results presented in part 2 are compared against 3-dimensional MHD simulations. This improved experimental capability, along with advanced simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.

  17. SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franci, Luca; Verdini, Andrea; Landi, Simone

    2015-05-10

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and themore » parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.« less

  18. Solar Wind Turbulence from MHD to Sub-ion Scales: High-resolution Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Franci, Luca; Verdini, Andrea; Matteini, Lorenzo; Landi, Simone; Hellinger, Petr

    2015-05-01

    We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.

  19. High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II.

    PubMed

    Sverdlov, Aaron L; Elezaby, Aly; Behring, Jessica B; Bachschmid, Markus M; Luptak, Ivan; Tu, Vivian H; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Colucci, Wilson S

    2015-01-01

    Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM. Male C57BL/6J mice were fed either a high-fat, high-sucrose (HFHS) or control diet for 8months. Cardiac mitochondria from HFHS-fed mice (vs. control diet) had an increased rate of H2O2 production, a decreased GSH/GSSG ratio, a decreased rate of complex II substrate-driven ATP synthesis and decreased complex II activity. Complex II substrate-driven ATP synthesis and complex II activity were partially restored ex-vivo by reducing conditions. A biotin switch assay showed that HFHS feeding increased cysteine OPTM in complex II subunits A (SDHA) and B (SDHB). Using iodo-TMT multiplex tags we found that HFHS feeding is associated with reversible oxidation of cysteines 89 and 231 in SDHA, and 100, 103 and 115 in SDHB. MHD due to consumption of a HFHS "Western" diet causes increased H2O2 production and oxidative stress in cardiac mitochondria associated with decreased ATP synthesis and decreased complex II activity. Impaired complex II activity and ATP production are associated with reversible cysteine OPTM of complex II. Possible sites of reversible cysteine OPTM in SDHA and SDHB were identified by iodo-TMT tag labeling. Mitochondrial ROS may contribute to the pathophysiology of MHD by impairing the function of complex II. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease". Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease.

    PubMed

    Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S

    2016-01-11

    Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. Drift kinetic effects on the plasma response in high beta spherical tokamak experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.

    The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less

  2. Drift kinetic effects on plasma response in high beta spherical tokamak experiments

    NASA Astrophysics Data System (ADS)

    Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; Liu, Yueqiang; Kaye, Stanley M.; Gerhardt, Stefan

    2018-01-01

    The high β plasma response to rotating n=1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit (Troyon et al 1984 Plasma Phys. Control. Fusion 26 209). Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. The complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.

  3. Drift kinetic effects on the plasma response in high beta spherical tokamak experiments

    DOE PAGES

    Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; ...

    2017-09-21

    The high β plasma response to rotating n = 1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit. Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppressesmore » the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. In conclusion, the complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.« less

  4. Advances and issues from the simulation of planetary magnetospheres with recent supercomputer systems

    NASA Astrophysics Data System (ADS)

    Fukazawa, K.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.

    2016-12-01

    Planetary magnetospheres are very large, while phenomena within them occur on meso- and micro-scales. These scales range from 10s of planetary radii to kilometers. To understand dynamics in these multi-scale systems, numerical simulations have been performed by using the supercomputer systems. We have studied the magnetospheres of Earth, Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations for a long time, however, we have not obtained the phenomena near the limits of the MHD approximation. In particular, we have not studied meso-scale phenomena that can be addressed by using MHD.Recently we performed our MHD simulation of Earth's magnetosphere by using the K-computer which is the first 10PFlops supercomputer and obtained multi-scale flow vorticity for the both northward and southward IMF. Furthermore, we have access to supercomputer systems which have Xeon, SPARC64, and vector-type CPUs and can compare simulation results between the different systems. Finally, we have compared the results of our parameter survey of the magnetosphere with observations from the HISAKI spacecraft.We have encountered a number of difficulties effectively using the latest supercomputer systems. First the size of simulation output increases greatly. Now a simulation group produces over 1PB of output. Storage and analysis of this much data is difficult. The traditional way to analyze simulation results is to move the results to the investigator's home computer. This takes over three months using an end-to-end 10Gbps network. In reality, there are problems at some nodes such as firewalls that can increase the transfer time to over one year. Another issue is post-processing. It is hard to treat a few TB of simulation output due to the memory limitations of a post-processing computer. To overcome these issues, we have developed and introduced the parallel network storage, the highly efficient network protocol and the CUI based visualization tools.In this study, we will show the latest simulation results using the petascale supercomputer and problems from the use of these supercomputer systems.

  5. Computation of resistive instabilities by matched asymptotic expansions

    DOE PAGES

    Glasser, A. H.; Wang, Z. R.; Park, J. -K.

    2016-11-17

    Here, we present a method for determining the linear resistive magnetohydrodynamic (MHD) stability of an axisymmetric toroidal plasma, based on the method of matched asymptotic expansions. The plasma is partitioned into a set of ideal MHD outer regions, connected through resistive MHD inner regions about singular layers where q = m/n, with m and n toroidal mode numbers, respectively, and q the safety factor. The outer regions satisfy the ideal MHD equations with zero-frequency, which are identical to the Euler-Lagrange equations for minimizing the potential energy delta W. The solutions to these equations go to infinity at the singular surfaces.more » The inner regions satisfy the equations of motion of resistive MHD with a finite eigenvalue, resolving the singularity. Both outer and inner regions are solved numerically by newly developed singular Galerkin methods, using specialized basis functions. These solutions are matched asymptotically, providing a complex dispersion relation which is solved for global eigenvalues and eigenfunctions in full toroidal geometry. The dispersion relation may have multiple complex unstable roots, which are found by advanced root-finding methods. These methods are much faster and more robust than the previous numerical methods. The new methods are applicable to more challenging high-pressure and strongly shaped plasma equilibria and generalizable to more realistic inner region dynamics. In the thermonuclear regime, where the outer and inner regions overlap, they are also much faster and more accurate than the straight-through methods, which treat the resistive MHD equations in the whole plasma volume.« less

  6. Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickeler, Dieter H.; Karlický, Marian; Kraus, Michaela

    Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as themore » original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.« less

  7. MHD mixed convection analysis of non-Newtonian power law fluid in an open channel with round cavity

    NASA Astrophysics Data System (ADS)

    Bose, Pritom; Rakib, Tawfiqur; Das, Sourav; Rabbi, Khan Md.; Mojumder, Satyajit

    2017-06-01

    In this study, magneto-hydrodynamic (MHD) mixed convection flow through a channel with a round cavity at bottom wall using non-Newtonian power law fluid is analysed numerically. The cavity is kept at uniformly high temperature whereas rest of the bottom wall is insulated and top wall of the channel is maintained at a temperature lower than cavity temperature. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method is appointed to solve the continuity, momentum and energy equations. The problem is solved for wide range of pertinent parameters like Rayleigh number (Ra= 103 - 105), Hartmann number (Ha= 0 - 60) and power law index (n= 0.5 - 1.5) at constant Richardson number Ri= 1.0. The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study is illustrated by average Nusselt number plots. Result of this investigation indicates that heat transfer is highest for dilatant fluids at this configuration and they perform better (47% more heat transfer) in absence of magnetic field. The retardation of heat transfer is offset by shear thickening nature of non-Newtonian fluid.

  8. Solving free-plasma-boundary problems with the SIESTA MHD code

    NASA Astrophysics Data System (ADS)

    Sanchez, R.; Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Tribaldos, V.; Geiger, J.; Hirshman, S. P.; Cianciosa, M.

    2017-10-01

    SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for 3D magnetic configurations. It is an iterative code that uses the solution obtained by the VMEC code to provide a background coordinate system and an initial guess of the solution. The final solution that SIESTA finds can exhibit magnetic islands and stochastic regions. In its original implementation, SIESTA addressed only fixed-boundary problems. This fixed boundary condition somewhat restricts its possible applications. In this contribution we describe a recent extension of SIESTA that enables it to address free-plasma-boundary situations, opening up the possibility of investigating problems with SIESTA in which the plasma boundary is perturbed either externally or internally. As an illustration, the extended version of SIESTA is applied to a configuration of the W7-X stellarator.

  9. Ideal GLM-MHD: About the entropy consistent nine-wave magnetic field divergence diminishing ideal magnetohydrodynamics equations

    NASA Astrophysics Data System (ADS)

    Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie; Bohm, Marvin

    2018-07-01

    The paper presents two contributions in the context of the numerical simulation of magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics (MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a way that the resulting model is consistent with the second law of thermodynamics. As a byproduct of these derivations, we show that not all of the commonly used divergence cleaning extensions of the ideal MHD equations are thermodynamically consistent. Secondly, we present a numerical scheme obtained by constructing a specific finite volume discretization that is consistent with the discrete thermodynamic entropy. It includes a mechanism to control the discrete divergence error of the magnetic field by construction and is Galilean invariant. We implement the new high-order MHD solver in the adaptive mesh refinement code FLASH where we compare the divergence cleaning efficiency to the constrained transport solver available in FLASH (unsplit staggered mesh scheme).

  10. Relationship between mono-hydroxy-carbazepine serum concentrations and adverse effects in patients on oxcarbazepine monotherapy.

    PubMed

    Sattler, Annika; Schaefer, Marion; May, Theodor W

    2015-09-01

    To evaluate the relationship between serum concentrations of mono-hydroxy-carbazepine (MHD), the main metabolite of oxcarbazepine (OXC), and the occurrence of adverse effects (AE) in a large group of patients on OXC monotherapy. An antiepileptic drug (AED) therapeutic drug monitoring (TDM) database was analyzed especially with regard to OXC dosage, MHD serum concentration, and the occurrence of AE. In total, 893 blood samples of 442 patients were included in this retrospective study. The statistical evaluation was performed by means of Kaplan-Meier estimates, log-rank tests and generalized estimating equations (GEE). At least one AE was reported in 78 (17.6%) of the 442 patients. At MHD serum concentrations of 30.0 μg/ml and 43.7 μg/ml and OXC dosages of 33.1 mg/kg and 62.3 mg/kg, 25% and 75% of patients, respectively, experienced at least one AE. Log-rank tests indicated that younger patients (<18 years) may be able to tolerate higher MHD serum levels (p = 0.006) and higher OXC dosages per body weight (p < 0.001) compared to adult patients (≥ 18 years). Furthermore, AEs occurred at higher body-weight adjusted OXC dosages of extended release formulations compared to immediate-release formulations (p = 0.010), whereas MHD serum levels at which AEs occurred did not differ significantly between formulations (p = 0.125). Multivariate GEE confirmed the results. The occurrence of AEs is significantly (and non-linearly) dependent on MHD serum level, whereas the dependence of OXC dosage is less distinctive. But, tolerability of OXC seems to depend on age of the patients as well as on pharmaceutical formulation of OXC. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  11. DETECTION OF MALNUTRITION IN PATIENTS UNDERGOING MAINTENANCE HAEMODIALYSIS: A QUANTITATIVE DATA ANALYSIS ON 12 PARAMETERS.

    PubMed

    Nafzger, Sonja; Fleury, Lea-Angelica; Uehlinger, Dominik E; Plüss, Petra; Scura, Ninetta; Kurmann, Silvia

    2015-09-01

    Protein-energy-malnutrition (PEM) is common in people with end stage kidney disease (ESKD) undergoing maintenance haemodialysis (MHD) and correlates strongly with mortality. To this day, there is no gold standard for detecting PEM in patients on MHD. The aim of this study was to evaluate if Nutritional Risk Screening 2002 (NRS-2002), handgrip strength measurement, mid-upper arm muscle area (MUAMA), triceps skin fold measurement (TSF), serum albumin, normalised protein catabolic rate (nPCR), Kt/V and eKt/V, dry body weight, body mass index (BMI), age and time since start on MHD are relevant for assessing PEM in patients on MHD. The predictive value of the selected parameters on mortality and mortality or weight loss of more than 5% was assessed. Quantitative data analysis of the 12 parameters in the same patients on MHD in autumn 2009 (n = 64) and spring 2011 (n = 40) with paired statistical analysis and multivariate logistic regression analysis was performed. Paired data analysis showed significant reduction of dry body weight, BMI and nPCR. Kt/Vtot did not change, eKt/v and hand grip strength measurements were significantly higher in spring 2011. No changes were detected in TSF, serum albumin, NRS-2002 and MUAMA. Serum albumin was shown to be the only predictor of death and of the combined endpoint "death or weight loss of more than 5%". We now screen patients biannually for serum albumin, nPCR, Kt/V, handgrip measurement of the shunt-free arm, dry body weight, age and time since initiation of MHD. © 2015 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  12. Efficacy, tolerability, and pharmacokinetics of oxcarbazepine oral loading in patients with epilepsy.

    PubMed

    Kim, Dong Wook; Gu, Nami; Jang, In-Jin; Chu, Kon; Yu, Kyung-Sang; Cho, Joo-Youn; Yoon, Seo Hyun; Kim, Hwa Suk; Oh, Jeeyoung; Lee, Sang Kun

    2012-01-01

    The rapid achievement of effective levels of antiepileptic drugs (AEDs) is required in patients with epilepsy who have a higher risk of seizures, and oral loading of AEDs may be an important consideration in these patients. We performed the present study to investigate the efficacy and tolerability of oral loading of oxcarbazepine in patients with recurrent seizures, or after temporary discontinuation of AEDs for diagnostic or presurgical evaluation of epilepsy. Forty adult patients were studied and oxcarbazepine was administered orally at a single loading dosage of 30 mg/kg. The plasma levels of oxcarbazepine and its active metabolite, 10,11-dihydro-10-hydroxy-carbazepine (monohydroxy derivative, MHD), were measured, and clinical assessment of adverse events was performed at 2, 4, 6, 8, 10, 12, 16, and 24 h after oral loading of oxcarbazepine. Approximately two-thirds of patients reached effective levels of MHD 2 h after receiving the oral loading, and all patients reached effective levels 4 h after oxcarbazepine administration. Most patients maintained therapeutic MHD levels for at least 16 h. Almost half of the patients experienced adverse events, but all were mild to moderate in severity and resolved spontaneously within 24 h. Our study shows that oral loading of oxcarbazepine is an effective and well-tolerated method for rapidly achieving therapeutic levels of MHD in patients with epilepsy, and is a useful option in selected patients with recurrent seizures, or after temporary discontinuation of AEDs. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  13. Numerical studies and metric development for validation of magnetohydrodynamic models on the HIT-SI experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, C., E-mail: hansec@uw.edu; Columbia University, New York, New York 10027; Victor, B.

    We present application of three scalar metrics derived from the Biorthogonal Decomposition (BD) technique to evaluate the level of agreement between macroscopic plasma dynamics in different data sets. BD decomposes large data sets, as produced by distributed diagnostic arrays, into principal mode structures without assumptions on spatial or temporal structure. These metrics have been applied to validation of the Hall-MHD model using experimental data from the Helicity Injected Torus with Steady Inductive helicity injection experiment. Each metric provides a measure of correlation between mode structures extracted from experimental data and simulations for an array of 192 surface-mounted magnetic probes. Numericalmore » validation studies have been performed using the NIMROD code, where the injectors are modeled as boundary conditions on the flux conserver, and the PSI-TET code, where the entire plasma volume is treated. Initial results from a comprehensive validation study of high performance operation with different injector frequencies are presented, illustrating application of the BD method. Using a simplified (constant, uniform density and temperature) Hall-MHD model, simulation results agree with experimental observation for two of the three defined metrics when the injectors are driven with a frequency of 14.5 kHz.« less

  14. Coronal magnetohydrodynamic waves and oscillations: observations and quests.

    PubMed

    Aschwanden, Markus J

    2006-02-15

    Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.

  15. HVEPS Scramjet-Driven MHD Power Demonstration Test Results (Preprint)

    DTIC Science & Technology

    2007-06-01

    an outer annulus which provides the flow passage for the liquid NaK. Final fabrication and assembly of the seeding system was completed at UTRC as...ABSTRACT The Air Force sponsored Hypersonic Vehicle Electric Power System (HVEPS) program was a research program to develop scramjet driven...magnetohydrodynamic (MHD) power for an advanced high power, airborne electric power system . This program has been active for the past five years with various

  16. Solar-Driven Liquid-Metal MHD Generator

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  17. High beta and second stability region transport and stability analysis. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, M.H.; Phillips, M.W.

    1996-01-01

    This report describes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the period March 1 to December 31, 1995. Significant progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of Advanced Tokamak experiments at TFTR involving plasmas in which the q-profiles were non-monotonic.

  18. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Heng, LAN; Guosheng, XU; Kevin, TRITZ; Ning, YAN; Tonghui, SHI; Yongliang, LI; Tengfei, WANG; Liang, WANG; Jingbo, CHEN; Yanmin, DUAN; Yi, YUAN; Youwen, SUN; Shuai, GU; Qing, ZANG; Ran, CHEN; Liang, CHEN; Xingwei, ZHENG; Shuliang, CHEN; Huan, LIU; Yang, YE; Huiqian, WANG; Baonian, WAN; the EAST Team

    2017-12-01

    A new edge tangential multi-energy soft x-ray (ME-SXR) diagnostic with high temporal (≤ 0.1 ms) and spatial (∼1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma. The fast edge electron temperature profile (approximately from r/a∼ 0.6 to the scrape-off layer) is investigated using ME-SXR diagnostic system. The data process was performed by the ideal ‘multi-foil’ technique, with no priori assumptions of plasma profiles. Reconstructed ME-SXR emissivity profiles for a variety of EAST experimental scenarios are presented here for the first time. The applications of the ME-SXR for study of the effects of resonant magnetic perturbation on edge localized modes and the first time neon radiating divertor experiment in EAST are also presented in this work. It has been found that neon impurity can suppress the 2/1 tearing mode and trigger a 3/1 MHD mode.

  19. Performance Improvement of Diagonal Type MHD Generator by Modification of PTO Electrode Configuration

    NASA Astrophysics Data System (ADS)

    Takahashi, Toru; Fujino, Takayasu; Ishikawa, Motoo

    Time dependent three-dimensional numerical analysis is carried out in order to clarify causes of voltage loss occurring near power takeoff regions and to suggest how to reduce the voltage loss for the scramjet engine driven MHD generator which was developed under the hypersonic vehicle electric power system program in USA. The numerical results under the experimental condition show that the local positive electric field is induced near the power takeoff electrodes. The phenomenon is due to the electric field loss by the high electric current through the weakly ionized plasma with low temperature and also by the low electromotive force near the power takeoff electrodes. When the configuration of power takeoff electrodes is modified, the current density near the power takeoff electrodes becomes small and the electromotive force becomes strong. The electric power output under the optimum electrode configuration of power takeoff is improved by 22 percent, compared with the value under the experimental condition.

  20. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    PubMed

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  1. High-order conservative finite difference GLM-MHD schemes for cell-centered MHD

    NASA Astrophysics Data System (ADS)

    Mignone, Andrea; Tzeferacos, Petros; Bodo, Gianluigi

    2010-08-01

    We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. [J. Comput. Phys. 175 (2002) 645-673]. The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.

  2. Stability of a two-volume MRxMHD model in slab geometry

    NASA Astrophysics Data System (ADS)

    Tuen, Li Huey

    Ideal MHD models are known to be inadequate to describe various physical attributes of a toroidal field with non-continuous symmetry, such as magnetic islands and stochastic regions. Motivated by this omission, a new variational principle MRXMHD was developed; rather than include an infinity of magnetic flux surfaces, MRxMHD has a finite number of flux surfaces, and thus supports partial plasma relaxation. The model comprises of relaxed plasma regions which are separated by nested ideal MHD interfaces (flux surfaces), and can be encased in a perfectly conducting wall. In each region the pressure is constant, but can jump across interfaces. The field and field pitch, or rotational transform, can also jump across the interfaces. Unlike ideal MHD, MRxMHD plasmas can support toroidally non-axisymmetric confined magnetic fields, magnetic islands and stochastic regions. In toroidally non-axisymmetric plasma, the existence of interfaces in MRxMHD is contingent on the irrationality of the rotational transform of flux surfaces. That is, the KAM theorem shows that invariant tori (flux surfaces) continue to exist for sufficiently small perturbations to an integrable system (which describes flux surfaces), provided that the rotational transform is sufficiently irrational. Building upon the MRxMHD stability model, we study the effects of irrationality of the rotational transform at interfaces in MRxMHD on plasma stability. We present an MRxMHD equilibrium model to investigate the effects of magnetic field pitch within the plasma and across the aforementioned flux surfaces within a chosen geometry. In this model, it is found that the 2D system stability conditions are dependent on the interface and resonant surface magnetic field pitch at minimised energy states, and the stability of a system as a function of magnetic field pitch destabilises at particular values of magnetic field pitch. We benchmark the treatment of a two-volume system, along with the calculations for background and perturbed magnetic fields to existing cylindrical working. An expression is formulated for the stability eigenvalues by creating a model for the slab geometry system. The eigenvalues for system stability at a minimum energy state are found to depend upon the rationality of the magnetic field pitch at resonant surfaces. Various system parameter scans are conducted to determine their affect upon system stability and their implications. While tearing instabilities exist at low order rational resonances, investigating the instability of high-order rationals requires study of pressure-driven instabilities.

  3. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  4. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, C.M.; Deeds, W.E.

    1999-07-13

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.

  5. Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device

    DOEpatents

    Haaland, Carsten M.; Deeds, W. Edward

    1999-01-01

    A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.

  6. Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech

    NASA Astrophysics Data System (ADS)

    Murakami, T.; Okuno, Y.; Yamasaki, H.

    2008-02-01

    This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  7. "Magnetic Reconnection Code: Applications to Sawtooth Oscillations, Error-Field Induced Islands, and the Dynamo Effect" - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, Richard

    2007-09-24

    Dr. Fitzpatrick has written an MHD code in order to investigate the interaction of tearing modes with flow and external magnetic perturbations, which has been successfully benchmarked against both linear and nonlinear theory and used to investigate error-field penetration in flowing plasmas. The same code was used to investigate the so-called Taylor problem. He employed the University of Chicago's FLASH code to further investigate the Taylor problem, discovering a new aspect of the problem. Dr. Fitzpatrick has written a 2-D Hall MHD code and used it to investigate the collisionless Taylor problem. Dr. Waelbroeck has performed an investigation of themore » scaling of the error-field penetration threshold in collisionless plasmas. Paul Watson and Dr. Fitzpatrick have written a fully-implicit extended-MHD code using the PETSC framework. Five publications have resulted from this grant work.« less

  8. Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1

    NASA Technical Reports Server (NTRS)

    Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  9. Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2

    NASA Technical Reports Server (NTRS)

    Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  10. Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems

    DOE PAGES

    Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul; ...

    2017-08-28

    Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less

  11. Extension of the SIESTA MHD equilibrium code to free-plasma-boundary problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peraza-Rodriguez, Hugo; Reynolds-Barredo, J. M.; Sanchez, Raul

    Here, SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for three-dimensional magnetic configurations. Since SIESTA does not assume closed magnetic surfaces, the solution can exhibit magnetic islands and stochastic regions. In its original implementation SIESTA addressed only fixed-boundary problems. That is, the shape of the plasma edge, assumed to be a magnetic surface, was kept fixed as the solution iteratively converges to equilibrium. This condition somewhat restricts the possible applications of SIESTA. In this paper we discuss an extension that will enable SIESTA to address free-plasma-boundary problems, opening upmore » the possibility of investigating problems in which the plasma boundary is perturbed either externally or internally. As an illustration, SIESTA is applied to a configuration of the W7-X stellarator.« less

  12. Application of magnetohydrodynamic actuation to continuous flow chemistry.

    PubMed

    West, Jonathan; Karamata, Boris; Lillis, Brian; Gleeson, James P; Alderman, John; Collins, John K; Lane, William; Mathewson, Alan; Berney, Helen

    2002-11-01

    Continuous flow microreactors with an annular microchannel for cyclical chemical reactions were fabricated by either bulk micromachining in silicon or by rapid prototyping using EPON SU-8. Fluid propulsion in these unusual microchannels was achieved using AC magnetohydrodynamic (MHD) actuation. This integrated micropumping mechanism obviates the use of moving parts by acting locally on the electrolyte, exploiting its inherent conductive nature. Both silicon and SU-8 microreactors were capable of MHD actuation, attaining fluid velocities of the order of 300 microm s(-1) when using a 500 mM KCl electrolyte. The polymerase chain reaction (PCR), a thermocycling process, was chosen as an illustrative example of a cyclical chemistry. Accordingly, temperature zones were provided to enable a thermal cycle during each revolution. With this approach, fluid velocity determines cycle duration. Here, we report device fabrication and performance, a model to accurately describe fluid circulation by MHD actuation, and compatibility issues relating to this approach to chemistry.

  13. Discharge start-up and ramp-up development for NSTX-U and MAST-U

    NASA Astrophysics Data System (ADS)

    Battaglia, D. J.; Boyer, M. D.; Gerhardt, S. P.; Menard, J. E.; Mueller, D.; Cunningham, G.; Kirk, A.; Kogan, L.; McArdle, G.; Pangione, L.; Thornton, A. J.; Ren, E.

    2017-10-01

    A collaborative modeling effort is underway to develop robust inductive start-up and ramp-up scenarios for NSTX-U and MAST-U. These complementary spherical tokamak devices aim to generate the physics basis for achieving steady-state, high-beta and high-confinement plasma discharges with a self-consistent solution for managing the divertor heat flux. High-performance discharges in these devices require sufficient plasma elongation (κ = 2.4 - 2.8) to maximize the bootstrap and beam-driven current drive, increase MHD stability at high Ip and high βN, and realize advanced divertor geometries such as the snowflake and super-X. Achieving the target elongation on NSTX-U is enabled by an L-H transition in the current ramp-up that slows the current diffusion and maintains a low internal inductance (li <= 0.8). Modeling focuses on developing scenarios that achieve a suitable field null for breakdown and discharge conditions conducive to an early L-H transition while maintaining vertical and MHD stability, with appropriate margin for variation in experimental conditions. The toroidal currents induced in conducting structures and the specifications of the real-time control and power supply systems are unique constraints for the two devices. Work Supported by U.S. DOE Contract No. DE-AC02-09CH11466 and the RCUK Energy Programme [Grant Number EP/P012450/1].

  14. Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas.

    PubMed

    Ida, K; Kobayashi, T; Yoshinuma, M; Akiyama, T; Tokuzawa, T; Tsuchiya, H; Itoh, K; Itoh, S-I

    2018-02-12

    Interaction between a quasi-stable stationary MHD mode and a tongue-shaped deformation is observed in the toroidal plasma with energetic particle driven MHD bursts. The quasi-stable stationary 1/1 MHD mode with interchange parity appears near the resonant rational surface of q = 1 between MHD bursts. The tongue-shaped deformation rapidly appears at the non-resonant non-rational surface as a localized large plasma displacement and then collapses (tongue event). It curbs the stationary 1/1 MHD mode and then triggers the collapse of energetic particle and magnetic field reconnection. The rotating 1/1 MHD mode with tearing parity at the q = 1 resonant surface, namely, the MHD burst, is excited after the tongue event.

  15. Investigation of MHD instabilities and control in KSTAR preparing for high beta operation

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Lee, S. G.; Ko, W. H.; Bak, J. G.; Jeon, Y. M.; Park, J. K.; Kim, J.; Hahn, S. H.; Ahn, J.-W.; Yoon, S. W.; Lee, K. D.; Choi, M. J.; Yun, G. S.; Park, H. K.; You, K.-I.; Bae, Y. S.; Oh, Y. K.; Kim, W.-C.; Kwak, J. G.

    2013-08-01

    Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with Wtot = 340 kJ, βN = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce Wtot. In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H-L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of βN by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2 applied field configurations. The result addresses perspective on access to low rotation regimes for MHD instability studies applicable to ITER. Computation of active RWM control using the VALEN-3D code examines control performance using midplane locked mode detection sensors. The LM sensors are found to be strongly affected by mode and control coil-induced vessel current, and consequently lead to limited control performance theoretically.

  16. Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Grete, Philipp; Vlaykov, Dimitar G.; Schmidt, Wolfram; Schleicher, Dominik R. G.; Federrath, Christoph

    2015-02-01

    Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment—magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures—models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The SGS energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pressure ({{β }p}=0.25,1,2.5,5,25) and sonic Mach numbers ({{M}s}=2,2.5,4). Furthermore, we make a comparison to traditional, phenomenological eddy-viscosity and α -β -γ closures. We find only mediocre performance of the kinetic eddy-viscosity and α -β -γ closures, and that the magnetic eddy-viscosity closure is poorly correlated with the simulation data. Moreover, three of five coefficients of the traditional closures exhibit a significant spread in values. In contrast, our new closures demonstrate consistently high correlations and constant coefficient values over time and over the wide range of parameters tested. Important aspects in compressible MHD turbulence such as the bi-directional energy cascade, turbulent magnetic pressure and proper alignment of the EMF are well described by our new closures.

  17. Evaluation of High-Performance Space Nuclear Electric Generators for Electric Propulsion Application

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon; Kross, Dennis A. (Technical Monitor)

    2002-01-01

    Electric propulsion applications are enhanced by high power-to-mass ratios for their electric power sources. At multi-megawatt levels, we can expect thrust production systems to be less than 5 kg/kWe. Application of nuclear electric propulsion to human Mars missions becomes an attractive alternative to nuclear thermal propulsion if the propulsion system is less than about 10 kg/kWe. Recent references have projected megawatt-plus nuclear electric sources at specific mass values from less than 1 kg/kWe to about 5 kg/kWe. Various assumptions are made regarding power generation cycle (turbogenerator; MHD (magnetohydrodynamics)) and reactor heat source design. The present paper compares heat source and power generation options on the basis of a parametric model that emphasizes heat transfer design and realizable hardware concept. Pressure drop (important!) is included in the power cycle analysis, and MHD and turbogenerator cycles are compared. Results indicate that power source specific mass less than 5 kg/kWe is attainable, even if peak temperatures achievable are limited to 1500 K. Projections of specific mass less than 1 kg/kWe are unrealistic, even at the highest peak temperatures considered.

  18. 3D MHD MODELING OF TWISTED CORONAL LOOPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reale, F.; Peres, G.; Orlando, S.

    We perform MHD modeling of a single bright coronal loop to include the interaction with a non-uniform magnetic field. The field is stressed by random footpoint rotation in the central region and its energy is dissipated into heating by growing currents through anomalous magnetic diffusivity that switches on in the corona above a current density threshold. We model an entire single magnetic flux tube in the solar atmosphere extending from the high- β chromosphere to the low- β corona through the steep transition region. The magnetic field expands from the chromosphere to the corona. The maximum resolution is ∼30 km.more » We obtain an overall evolution typical of loop models and realistic loop emission in the EUV and X-ray bands. The plasma confined in the flux tube is heated to active region temperatures (∼3 MK) after ∼2/3 hr. Upflows from the chromosphere up to ∼100 km s{sup −1} fill the core of the flux tube to densities above 10{sup 9} cm{sup −3}. More heating is released in the low corona than the high corona and is finely structured both in space and time.« less

  19. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Wei; Li, Hui; Zhang, Bing

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  20. Relativistic MHD simulations of collision-induced magnetic dissipation in poynting-flux-dominated jets/outflows

    DOE PAGES

    Deng, Wei; Li, Hui; Zhang, Bing; ...

    2015-05-29

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less

  1. Magnetic flux pumping mechanism prevents sawtoothing in 3D nonlinear MHD simulations of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Krebs, Isabel; Jardin, Stephen C.; Guenter, Sibylle; Lackner, Karl; Hoelzl, Matthias; Strumberger, Erika; Ferraro, Nate

    2017-10-01

    3D nonlinear MHD simulations of tokamak plasmas have been performed in toroidal geometry by means of the high-order finite element code M3D-C1. The simulations are set up such that the safety factor on axis (q0) is driven towards values below unity. As reported in and the resulting asymptotic states either exhibit sawtooth-like reconnection cycling or they are sawtooth-free. In the latter cases, a self-regulating magnetic flux pumping mechanism, mainly provided by a saturated quasi-interchange instability via a dynamo effect, redistributes the central current density so that the central safety factor profile is flat and q0 1 . Sawtoothing is prevented if β is sufficiently high to allow for the necessary amount of flux pumping to counterbalance the tendency of the current density profile to centrally peak. We present the results of 3D nonlinear simulations based on specific types of experimental discharges and analyze their asymptotic behavior. A set of cases is presented where aspects of the current ramp-up phase of Hybrid ASDEX Upgrade discharges are mimicked. Another set of simulations is based on low-qedge discharges in DIII-D.

  2. Model-based high-throughput design of ion exchange protein chromatography.

    PubMed

    Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo

    2016-08-12

    This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Impact of uniform electrode current distribution on ETF. [Engineering Test Facility MHD generator

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1982-01-01

    A basic reason for the complexity and sheer volume of electrode consolidation hardware in the MHD ETF Powertrain system is the channel electrode current distribution, which is non-uniform. If the channel design is altered to provide uniform electrode current distribution, the amount of hardware required decreases considerably, but at the possible expense of degraded channel performance. This paper explains the design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution, and presents the alternate consolidation designs which occur. They are compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is presented for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.

  4. Dietary egg whites for phosphorus control in maintenance haemodialysis patients: a pilot study.

    PubMed

    Taylor, Lynn M; Kalantar-Zadeh, Kamyar; Markewich, Theodore; Colman, Sara; Benner, Debbie; Sim, John J; Kovesdy, Csaba P

    2011-03-01

    High dietary protein intake is associated with greater survival in maintenance haemodialysis (MHD) patients. High-protein foods may increase dietary phosphorus burden, which is associated with increased mortality in these patients. Hypothesis is: an egg white based diet with low phosphorus to protein ratio (<1.4 mg/g) will lower serum phosphorus without deteriorating the nutritional status in MHD patients. We assessed serum phosphorus and albumin levels in MHD patients who agreed to ingest one meal per day with pasteurised liquid egg whites without phosphorus additives, as principal protein source. Thirteen otherwise stable MHD patients with serum phosphorus >4.0 mg/dl agreed to consume eight ounces (225 g) of pasteurised liquid egg whites one meal per day for six weeks. Recipes were suggested to improve diet variety. Thirteen participating patients included seven women, three African Americans and five diabetics. Twelve patients exhibited drop in serum phosphorus. Mean population fall in serum phosphorus was 0.94 mg/dl, i.e. from 5.58 ± 1.34 (mean ± SD) to 4.63 ± 1.18 (p = 0.003). Serum albumin showed an increase by 0.19 g/dl, i.e. from 4.02 ± 0.29 to 4.21 ± 0.36 g/dl (p = 0.014). Changes in phosphorus pill count were not statistically significant (p = 0.88). The egg white diet was well tolerated, and recipe variety appreciated. Pasteurised liquid egg whites may be an effective diet component lowering serum phosphorus without risking malnutrition. Controlled trials are indicated to examine egg white based dietary interventions in MHD patients at home or during haemodialysis treatment. © 2011 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  5. MHD modeling of DIII-D QH-mode discharges and comparison to observations

    NASA Astrophysics Data System (ADS)

    King, Jacob

    2016-10-01

    MHD modeling of DIII-D QH-mode discharges and comparison to observations Nonlinear NIMROD simulations, initialized from a reconstruction of a DIII-D QH-mode discharge with broadband MHD, saturate into a turbulent state, but do not saturate when flow is not included. This is consistent with the experimental results of the quiescent regime observed on DIII-D with broadband MHD activity [Garofalo et al., PoP (2015) and refs. within]. These ELM-free discharges have the normalized pedestal-plasma confinement necessary for burning-plasma operation on ITER. Relative to QH-mode operation with more coherent MHD activity, operation with broadband MHD tends to occur at higher densities and lower rotation and thus may be more relevant to ITER. The nonlinear NIMROD simulations require highly accurate equilibrium reconstructions. Our equilibrium reconstructions include the scrape-off-layer profiles and the measured toroidal and poloidal rotation profiles. The simulation develops into a saturated turbulent state and the n=1 and 2 modes become dominant through an inverse cascade. Each toroidal mode in the range of n=1-5 is dominant at a different time. The perturbations are advected and sheared apart in the counter-clockwise direction consistent with the direction of the poloidal flow inside the LCFS. Work towards validation through comparison to magnetic coil and Doppler reflectometry measurements is presented. Consistent with experimental observations during QH-mode, the simulated state leads to large particle transport relative to the thermal transport. Analysis shows that the phase of the density and temperature perturbations differ resulting in greater convective particle transport relative to the convective thermal transport. This work supported by the U.S. Department of Energy Office of Science and the SciDAC Center for Extended MHD Modeling under Contract Numbers DE-FC02-06ER54875, DE-FC02-08ER54972 and DE-FC02-04ER54698.

  6. Impact-generated magnetic fields on the Moon : a magnetohydrodynamic numerical investigation

    NASA Astrophysics Data System (ADS)

    Oran, Rona; Shprits, Yuri; Weiss, Benjamin; Gombosi, Tamas

    2015-04-01

    Natural remanent magnetization has been identified in lunar rocks, the lunar crust, and a diversity of meteorites. Much of this magnetization is thought to have been produced by cooling a core dynamo mag-netic field. However, the identification of lunar crustal magnetic anomalies at the antipodes of four of the five youngest large (>600 km diameter) impact basins has motivated the alternative hypothesis that the lunar crust could have been magnetized by the impacts. In particular, it has been proposed that highly conducting ionized vapor produced by a basin-forming impact interacts with the ambient solar wind plasma surrounding the Moon to amplify the ambient solar wind magnetic field or any core dynamo field. In this picture, as the ionized vapor cloud expands around the Moon, it pushes and compresses the solar wind plasma into a small region at the antipodal point. The conservation of magnetic flux then leads to an enhanced magnetic field in the compressed plasma. This field can then be recorded as shock remanent magnetization by crustal materials at the antipodal point following the impact of converging basin ejecta. A key requirement for the impact-generated fields hypothesis is that the compressed field be suffi-ciently strong to explain the lunar paleointensities (at least tens of μT) and maintained at the antipodal point for a sufficiently long time (several hours) for the ejecta to arrive and impact the surface. Previous simulations of the expansion of the vapor cloud found that the enhanced field will be strong enough (per-haps reaching hundreds of μT) and will remain at the antipodal site for a sufficiently long time (>1 day) for the arrival of incoming ejecta. However, these studies did not include an explicit calculation of the interaction of the magnetized solar wind plasma with the vapor cloud. Rather, the cloud evolution under the lunar gravity was simulated in the purely hydrodynamic regime. The vapor cloud structure at certain times was used to derive a simplified picture of what the effects would be on an ambient magnetized plasma using general magnetohydrodynamic (MHD) arguments. The solar wind drag acting on the cloud, as well as MHD effects such as field lines stretching and magnetic reconnection were not taken into ac-count. With the advances made in computational MHD models in recent years, we can now revisit these ear-lier important models. Our goal is to perform the first MHD simulations of an impact-generated vapor cloud expanding in the solar wind around the Moon, using BATSRUS, a 3D highly-parallelized versatile MHD code developed at the University of Michigan, in order to self-consistently test the previous estima-tions of the strength and duration of the magnetic field enhancement at the antipodal points. We will con-sider different MHD processes, such as: 1) the finite resistivity of the lunar mantle 2) magnetic diffusion between the solar wind and the initially non-magnetized cloud, 3) magnetic reconnection at the antipode, and 4) viscous drag and the transport of magnetic flux due to solar wind motion, and 4) MHD instabili-ties. This will allow us to systematically examine whether impact-generated fields can indeed be respon-sible for the formation of crustal field enhancements on the Moon.

  7. Reynolds-number dependence of the dimensionless dissipation rate in homogeneous magnetohydrodynamic turbulence.

    PubMed

    Linkmann, Moritz; Berera, Arjun; Goldstraw, Erin E

    2017-01-01

    This paper examines the behavior of the dimensionless dissipation rate C_{ɛ} for stationary and nonstationary magnetohydrodynamic (MHD) turbulence in the presence of external forces. By combining with previous studies for freely decaying MHD turbulence, we obtain here both the most general model equation for C_{ɛ} applicable to homogeneous MHD turbulence and a comprehensive numerical study of the Reynolds number dependence of the dimensionless total energy dissipation rate at unity magnetic Prandtl number. We carry out a series of medium to high resolution direct numerical simulations of mechanically forced stationary MHD turbulence in order to verify the predictions of the model equation for the stationary case. Furthermore, questions of nonuniversality are discussed in terms of the effect of external forces as well as the level of cross- and magnetic helicity. The measured values of the asymptote C_{ɛ,∞} lie between 0.193≤C_{ɛ,∞}≤0.268 for free decay, where the value depends on the initial level of cross- and magnetic helicities. In the stationary case we measure C_{ɛ,∞}=0.223.

  8. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Shu, Chi-Wang; Zhang, Mengping

    2018-02-01

    We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.

  9. New MHD feedback control schemes using the MARTe framework in RFX-mod

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Manduchi, Gabriele; Marrelli, Lionello; Piovesan, Paolo; Zanca, Paolo

    2013-10-01

    Real-time feedback control of MHD instabilities is a topic of major interest in magnetic thermonuclear fusion, since it allows to optimize a device performance even beyond its stability bounds. The stability properties of different magnetic configurations are important test benches for real-time control systems. RFX-mod, a Reversed Field Pinch experiment that can also operate as a tokamak, is a well suited device to investigate this topic. It is equipped with a sophisticated magnetic feedback system that controls MHD instabilities and error fields by means of 192 active coils and a corresponding grid of sensors. In addition, the RFX-mod control system has recently gained new potentialities thanks to the introduction of the MARTe framework and of a new CPU architecture. These capabilities allow to study new feedback algorithms relevant to both RFP and tokamak operation and to contribute to the debate on the optimal feedback strategy. This work focuses on the design of new feedback schemes. For this purpose new magnetic sensors have been explored, together with new algorithms that refine the de-aliasing computation of the radial sideband harmonics. The comparison of different sensor and feedback strategy performance is described in both RFP and tokamak experiments.

  10. Advancing parabolic operators in thermodynamic MHD models: Explicit super time-stepping versus implicit schemes with Krylov solvers

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.; Mikić, Z.; Linker, J. A.; Lionello, R.

    2017-05-01

    We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with the implicit backward Euler scheme computed using the preconditioned conjugate gradient (PCG) solver with both a point-Jacobi and a non-overlapping domain decomposition ILU0 preconditioner. The algorithms are used to integrate anisotropic Spitzer thermal conduction and artificial kinematic viscosity at time-steps much larger than classic explicit stability criteria allow. A key component of the comparison is the use of an established MHD model (MAS) to compute a real-world simulation on a large HPC cluster. Special attention is placed on the parallel scaling of the algorithms. It is shown that, for a specific problem and model, the RKL2 method is comparable or surpasses the implicit method with PCG solvers in performance and scaling, but suffers from some accuracy limitations. These limitations, and the applicability of RKL methods are briefly discussed.

  11. QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LAO,LL; SNYDER,PB; LEONARD,AW

    2003-03-01

    A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES. Several testable features of the working model of edge localized modes (ELMs) as intermediate toroidal mode number peeling-ballooning modes are evaluated quantitatively using DIII-D and JT-60U experimental data and the ELITE MHD stability code. These include the hypothesis that ELM sizes are related to the radial widths of the unstable MHD modes, the unstable modes have a strong ballooning character localized in the outboard bad curvature region, and ELM size generally becomes smaller at high edge collisionality. ELMs are triggered when the growth rates of the unstable MHD modes becomemore » significantly large. These testable features are consistent with many ELM observations in DIII-D and JT-60U discharges.« less

  12. Solar Wind Interaction with the Martian Upper Atmosphere at Early Mars/Extreme Solar Conditions

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Combi, M. R.

    2014-12-01

    The investigation of ion escape fluxes from Mars, resulting from the solar wind interaction with its upper atmosphere/ionosphere, is important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0 ~ 300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100 km ~ 5 RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model output fields into the 3-D BATS-R-US Mars multi-fluid MHD (MF-MHD) model (100 km ~ 20 RM) that can simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid MHD model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres. This feature allows us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model output fields are used as the input for the multi-fluid MHD model and the M-GITM is used as input into the AMPS exosphere model. In this study, we present M-GITM, AMPS, and MF-MHD calculations (1-way coupled) for 2.5 GYA conditions and/or extreme solar conditions for present day Mars (high solar wind velocities, high solar wind dynamic pressure, and high solar irradiance conditions, etc.). Present day extreme conditions may result in MF-MHD outputs that are similar to 2.5 GYA cases. The crustal field orientations are also considered in this study. By comparing estimates of past ion escape rates with the current ion loss rates to be returned by the MAVEN spacecraft (2013-2016), we can better constrain the total ion loss to space over Mars history, and thus enhance the science returned from the MAVEN mission.

  13. On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T., E-mail: daniel.verscharen@unh.edu, E-mail: christopher.chen@imperial.ac.uk, E-mail: r.wicks@ucl.ac.uk

    Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predictedmore » wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.« less

  14. The Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Bastian, N.; O'Connell, R.; Kendrick, R.; Goldwin, J.; Forest, C. B.

    1998-11-01

    A liquid metal magneto-hydrodynamic (MHD) experiment at the University of Wisconsin is being constructed in order to validate 3 key elements of MHD dynamo theory: magnetic instabilities driven by flow shear, the effects of turbulence on current generation (primarily the α and β effects) and the nature of saturation for these on these processes. The experiment consists of two main stages, the first of which uses water to test impeller designs that are used to generate flows capable of supporting a dynamo. Since water has nearly the same viscosity and mass density as sodium, it is the ideal substance with which to test our impeller designs. The second stage of the experiment uses a one meter diameter sphere filled with ≈ 200 gallons of liquid sodium to directly test MHD theory. Impellers will be used to impose flows on the liquid sodium that are predicted by MHD theory to lead to a growing magnetic field. In addition, large scale flows will lead to small-scale turbulence which can produce a dynamo effect and a current. This is known as the turbulent α-effect which we will attempt to observe. The MHD theory also predicts an anomalously high resistivity or magnetic diffusivity (the β-effect). Once a growing magnetic field is present it should be possible to measure the effect that the growing magnetic field has on the flow that created it.

  15. First Analysis of the Association Between CYP3A4/5, ABCB1 Genetic Polymorphisms and Oxcarbazepine Metabolism and Transport in Chinese Epileptic Patients with Oxcarbazepine Monotherapy and Bitherapy.

    PubMed

    Wang, Ping; Yin, Tao; Ma, Hong-ying; Liu, Dan-Qi; Sheng, Yangh-ao; Zhou, Bo-Ting

    2015-01-01

    Oxcarbazepine (OXC) is widely used in anti-epileptic treatment. Cytochrome P450 3A4 (CYP3A4), cytochrome P450 3A5(CYP3A5), and ATP-binding cassette sub-family B member 1 (ABCB1) are potential genes involved in OXC metabolisms and transport in vivo. This study aims to examine the genetic effects of CYP3A4, CYP3A5, and ABCB1 on OXC metabolism and transport in Chinese epileptic patients using OXC as monotherapy and bitherapy with lamotrigine (LTG), levetiracetam (LEV), or valproic acid (VPA). Sixty-six Chinese epileptic patients were recruited from Xiangya Hospital Central South University, of whom 40 patients were receiving OXC monotherapy, 11 patients were placed in the OXC bitherapy group combined with one enzyme-inducing anti-epileptic drugs (LTG or LEV), and 15 patients were placed in the OXC bitherapy group combined with VPA. Oxcarbazepine and its main metabolite 10-hydrocarbazepine (MHD) plasma concentrations were measured using high performance liquid chromatography (HPLC)-UV method. In addition, eight single nucleotide polymorphisms (SNPs) in CYP3A4, CYP3A5, ABCB1 gene were genotyped by polymerase chain reaction-improved multiple ligase detection reaction (PCR-iMLDR). In the OXC+VPA group, ABCB1 rs2032582 and rs2032582-rs10234411-rs1045642 TAG haplotype were associated with MHD and MHD+OXC plasma concentration before permutation test. In OXC monotherapy and OXC+ LTG/LEV groups, no significant association between genetic polymorphisms in CYP3A4/5, ABCB1 gene and OXC plasma concentration parameters were observed. CYP3A4/5 and ABCB1 genetic variants might not take part in the metabolism and transport of MHD and OXC among epileptic patients using OXC monotherapy and bitherapy in combination with LEV, LTG or VPA.

  16. X-ray emitting MHD accretion shocks in classical T Tauri stars. Case for moderate to high plasma-β values

    NASA Astrophysics Data System (ADS)

    Orlando, S.; Sacco, G. G.; Argiroffi, C.; Reale, F.; Peres, G.; Maggio, A.

    2010-02-01

    Context. Plasma accreting onto classical T Tauri stars (CTTS) is believed to impact the stellar surface at free-fall velocities, generating a shock. Current time-dependent models describing accretion shocks in CTTSs are one-dimensional, assuming that the plasma moves and transports energy only along magnetic field lines (β ≪ 1). Aims: We investigate the stability and dynamics of accretion shocks in CTTSs, considering the case of β ⪆ 1 in the post-shock region. In these cases the 1D approximation is not valid and a multi-dimensional MHD approach is necessary. Methods: We model an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere by performing 2D axisymmetric MHD simulations. The model takes into account the stellar magnetic field, the gravity, the radiative cooling, and the thermal conduction (including the effects of heat flux saturation). Results: The dynamics and stability of the accretion shock strongly depend on the plasma β. In the case of shocks with β > 10, violent outflows of shock-heated material (and possibly MHD waves) are generated at the base of the accretion column and intensely perturb the surrounding stellar atmosphere and the accretion column itself (therefore modifying the dynamics of the shock). In shocks with β ≈ 1, the post-shock region is efficiently confined by the magnetic field. The shock oscillations induced by cooling instability are strongly influenced by β: for β > 10, the oscillations may be rapidly dumped by the magnetic field, approaching a quasi-stationary state, or may be chaotic with no obvious periodicity due to perturbation of the stream induced by the post-shock plasma itself; for β≈ 1 the oscillations are quasi-periodic, although their amplitude is smaller and the frequency higher than those predicted by 1D models. Three movies are only available in electronic form at http://www.aanda.org

  17. MHD generator with improved network coupling electrodes to a load

    DOEpatents

    Rosa, Richard J.

    1977-01-01

    An MHD generator has a plurality of segmented electrodes extending longitudinally of a duct, whereby progressively increasing high DC voltages are derived from a set of cathode electrodes and progressively increasing low DC voltages are derived from a set of anode electrodes. First and second load terminals are respectively connected to the cathode and anode electrodes by separate coupling networks, each of which includes a number of SCR's and a number of diode rectifiers.

  18. Nonlinear MHD simulations of QH-mode DIII-D plasmas and implications for ITER high Q scenarios

    NASA Astrophysics Data System (ADS)

    Liu, F.; Huijsmans, G. T. A.; Loarte, A.; Garofalo, A. M.; Solomon, W. M.; Hoelzl, M.; Nkonga, B.; Pamela, S.; Becoulet, M.; Orain, F.; Van Vugt, D.

    2018-01-01

    In nonlinear MHD simulations of DIII-D QH-mode plasmas it has been found that low n kink/peeling modes (KPMs) are unstable and grow to a saturated kink-peeling mode. The features of the dominant saturated KPMs, which are localised toroidally by nonlinear coupling of harmonics, such as mode frequencies, density fluctuations and their effect on pedestal particle and energy transport, are in good agreement with the observations of the edge harmonic oscillation typically present in DIII-D QH-mode experiments. The nonlinear evolution of MHD modes including both kink-peeling modes and ballooning modes, is investigated through MHD simulations by varying the pedestal current and pressure relative to the initial conditions of DIII-D QH-mode plasma. The edge current and pressure at the pedestal are key parameters for the plasma either saturating to a QH-mode regime or a ballooning mode dominant regime. The influence of E × B flow and its shear on the QH-mode plasma has been investigated. E × B flow shear has a strong stabilisation effect on the medium to high-n modes but is destabilising for the n = 2 mode. The QH-mode extrapolation results of an ITER Q = 10 plasma show that the pedestal currents are large enough to destabilise n = 1-5 KPMs, leading to a stationary saturated kink-peeling mode.

  19. Enhanced understanding of the MHD dynamics and ELM control experiments in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Hyeon K.

    2013-10-01

    In KSTAR, H-mode discharges have been achieved reliably at toroidal fields from 1.4 to 3.5 T with a heating power of ~ 5 MW. Using real-time plasma shape control the flattop time in H-mode has been extended to over ~ 16 s at 600 kA in the 2012 campaign and the extended plasma operation boundary has surpassed the n = 1 no-wall limit with βN /li up to 4.1. In order to achieve a high beta steady state operation in KSTAR, establishment of predictive MHD simulation and first-principle-based control of the harmful MHD are the first steps. Visualization of MHD dynamics via a 2-D Electron Cyclotron Emission Imaging (ECEI) has significantly enhanced the level of understanding of the MHD dynamics. Following the first 2-D ELM measurements in H-mode plasmas in KSTAR the measured 2-D ELM images were compared with synthetic images from the BOUT + + code. The physics of ELMs is characterized based on a wide range of measured mode numbers (n, m) local magnetic shear and pressure gradients. The observed ELM dynamics during control experiments have been enlightening and consistent with the stability models. Near the q ~ 2 surface, the island width and Δ' of the m = 2 tearing mode have been verified through the modified Rutherford model based on the 2-D images. With the aid of a second (toroidally separated) ECEI system installed in the 2012 KSTAR campaign, a 3-D reconstruction of the MHD instabilities has allowed further validation of the computed magnetic field pitch angles, rotation speeds, and toroidal asymmetries of the MHDs Work supported by NRF of Korea under contract No. 20120005920 and the U.S. DoE under contract No. DE-FG-02-99ER54531.

  20. The temporal behaviour of MHD waves in a partially ionized prominence-like plasma: Effect of heating and cooling

    NASA Astrophysics Data System (ADS)

    Ballester, J. L.; Carbonell, M.; Soler, R.; Terradas, J.

    2018-01-01

    Context. During heating or cooling processes in prominences, the plasma microscopic parameters are modified due to the change of temperature and ionization degree. Furthermore, if waves are excited on this non-stationary plasma, the changing physical conditions of the plasma also affect wave dynamics. Aims: Our aim is to study how temporal variation of temperature and microscopic plasma parameters modify the behaviour of magnetohydrodynamic (MHD) waves excited in a prominence-like hydrogen plasma. Methods: Assuming optically thin radiation, a constant external heating, the full expression of specific internal energy, and a suitable energy equation, we have derived the profiles for the temporal variation of the background temperature. We have computed the variation of the ionization degree using a Saha equation, and have linearized the single-fluid MHD equations to study the temporal behaviour of MHD waves. Results: For all the MHD waves considered, the period and damping time become time dependent. In the case of Alfvén waves, the cut-off wavenumbers also become time dependent and the attenuation rate is completely different in a cooling or heating process. In the case of slow waves, while it is difficult to distinguish the slow wave properties in a cooling partially ionized plasma from those in an almost fully ionized plasma, the period and damping time of these waves in both plasmas are completely different when the plasma is heated. The temporal behaviour of the Alfvén and fast wave is very similar in the cooling case, but in the heating case, an important difference appears that is related with the time damping. Conclusions: Our results point out important differences in the behaviour of MHD waves when the plasma is heated or cooled, and show that a correct interpretation of the observed prominence oscillations is very important in order to put accurate constraints on the physical situation of the prominence plasma under study, that is, to perform prominence seismology.

  1. NaK-nitrogen liquid metal MHD converter tests at 30 kW.

    NASA Technical Reports Server (NTRS)

    Cerini, D. J.

    1973-01-01

    Description of the tests performed and test results obtained in an experiment where a NaK-nitrogen liquid metal MHD converter was operated over a range of nozzle inlet pressures of 100 to 165 N per sq cm, NaK flow rates of 46 to 72 kg/sec, and nitrogen flow rates of 3.4 to 3.8 kg/sec. The test results indicate: (1) smooth and stable operation, (2) absence of unexpected electrical or flow losses, and (3) possibility of operation with the expected full power output of 30 kW.

  2. MHD oxidant intermediate temperature ceramic heater study

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-01-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  3. Numerical simulation of plasma response to externally applied resonant magnetic perturbation on the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Bicheng, LI; Zhonghe, JIANG; Jian, LV; Xiang, LI; Bo, RAO; Yonghua, DING

    2018-05-01

    Nonlinear magnetohydrodynamic (MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations (RMPs) are performed with NIMROD (non-ideal MHD with rotation, open discussion). Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology, plasma density and rotation profile. The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling, and finally change density profile by particle transport. At the same time, plasma rotation plays an important role during the entire evolution process.

  4. Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loizu, J., E-mail: joaquim.loizu@ipp.mpg.de; Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton New Jersey 08543; Hudson, S.

    2015-02-15

    Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac δ-function, which presumably prevents the formation of islands, and the Pfirsch-Schlüter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2)more » retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD.« less

  5. MHD code using multi graphical processing units: SMAUG+

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Griffiths, M. K.; Erdélyi, R.

    2018-01-01

    This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 × 1000, 2044 × 2044, 4000 × 4000 and 8000 × 8000 . We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems.

  6. Multi-physics simulations of space weather

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Toth, Gabor; Sokolov, Igor; de Zeeuw, Darren; van der Holst, Bart; Cohen, Ofer; Glocer, Alex; Manchester, Ward, IV; Ridley, Aaron

    Presently magnetohydrodynamic (MHD) models represent the "workhorse" technology for simulating the space environment from the solar corona to the ionosphere. While these models are very successful in describing many important phenomena, they are based on a low-order moment approximation of the phase-space distribution function. In the last decade our group at the Center for Space Environment Modeling (CSEM) has developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on extended magnetohydrodynamics with anisotropic pressures. This talk will show the effects of added physics and compare space weather simulation results to "standard" ideal MHD.

  7. Optimization of DIII-D discharges to avoid AE destabilization

    NASA Astrophysics Data System (ADS)

    Varela, Jacobo; Spong, Donald; Garcia, Luis; Huang, Juan; Murakami, Masanori

    2017-10-01

    The aim of the study is to analyze the stability of Alfven Eigenmodes (AE) perturbed by energetic particles (EP) during DIII-D operation. We identify the optimal NBI operational regimes that avoid or minimize the negative effects of AE on the device performance. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles, including the effect of the acoustic modes. We add the Landau damping and resonant destabilization effects using a closure relation. We perform parametric studies of the MHD and AE stability, taking into account the experimental profiles of the thermal plasma and EP, also using a range of values of the energetic particles β, density and velocity as well the effect of the toroidal couplings. We reproduce the AE activity observed in high poloidal β discharge at the pedestal and reverse shear discharges. This material based on work is supported both by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Research sponsored in part by the Ministerio de Economia y Competitividad of Spain under the project.

  8. Real time MHD mode control using ECCD in KSTAR: Plan and requirements

    NASA Astrophysics Data System (ADS)

    Joung, M.; Woo, M. H.; Jeong, J. H.; Hahn, S. H.; Yun, S. W.; Lee, W. R.; Bae, Y. S.; Oh, Y. K.; Kwak, J. G.; Yang, H. L.; Namkung, W.; Park, H.; Cho, M. H.; Kim, M. H.; Kim, K. J.; Na, Y. S.; Hosea, J.; Ellis, R.

    2014-02-01

    For a high-performance, advanced tokamak mode in KSTAR, we have been developing a real-time control system of MHD modes such as sawtooth and Neo-classical Tearing Mode (NTM) by ECH/ECCD. The active feedback control loop will be also added to the mirror position and the real-time detection of the mode position. In this year, for the stabilization of NTM that is crucial to plasma performance we have implemented open-loop ECH antenna control system in KSTAR Plasma Control System (PCS) for ECH mirror movement during a single plasma discharge. KSTAR 170 GHz ECH launcher which was designed and fabricated by collaboration with PPPL and POSTECH has a final mirror of a poloidally and toroidally steerable mirror. The poloidal steering motion is only controlled in the real-time NTM control system and its maximum steering speed is 10 degree/sec by DC motor. However, the latency of the mirror control system and the return period of ECH antenna mirror angle are not fast because the existing launcher mirror control system is based on PLC which is connected to the KSTAR machine network through serial to LAN converter. In this paper, we present the design of real time NTM control system, ECH requirements, and the upgrade plan.

  9. Extending the Riemann-Solver-Free High-Order Space-Time Discontinuous Galerkin Cell Vertex Scheme (DG-CVS) to Solve Compressible Magnetohydrodynamics Equations

    DTIC Science & Technology

    2016-06-08

    forces. Plasmas in hypersonic and astrophysical flows are one of the most typical examples of such conductive fluids. Though MHD models are a low...remain powerful tools in helping researchers to understand the complex physical processes in the geospace environment. For example, the ideal MHD...vertex level within each physical time step. For this reason and the method’s DG ingredient, the method was named as the space-time discontinuous Galerkin

  10. Field-aligned currents and magnetospheric convection - A comparison between MHD simulations and observations

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Ogino, Tatsuki

    1988-01-01

    A time-dependent three-dimensional MHD model was used to investigate the magnetospheric configuration as a function of the interplanetary magnetic field direction when it was in the y-z plane in geocentric solar magnetospheric coordinates. The model results show large global convection cells, tail lobe cells, high-latitude polarcap cells, and low latitude cells. The field-aligned currents generated in the model magnetosphere and the model convection system are compared with observations from low-altitude polar orbiting satellites.

  11. Proposed Approach to Stable High Beta Plasmas in ET

    NASA Astrophysics Data System (ADS)

    Taylor, R. J.; Carter, T. A.; Gauvreau, J.-L.; Gourdain, P.-A.; Grossman, A.; Lafonteese, D. J.; Pace, D. C.; Schmitz, L. W.

    2003-10-01

    Five second long plasmas have been produced in ET with ease. We need these long pulses to evolve high beta equilibria under controlled conditions. However, equilibrium control is lost to internal disruptions due to the development of giant sawteeth on the 1 second time scale. This time scale is approximately the central energy confinement time, while the central particle confinement time is much longer than 1 second. This persistent limitation is present in ohmic and ICRF heated discharges. MHD stable current profiles have been found using DCON(A.H. Glasser, private communication) but transport related phenomena like giant sawteeth and uncontrolled transport barrier evolution are not yet part of a simple stability study. We are advocating avoiding the evolution of giant sawtooth and conditions responsible for MHD instabilities as opposed to exploring their stabilization. This is equivalent to the statement that self-organized plasmas are in fact not welcome in long pulse tokamaks. We intend to prevent self-organization by the application of a multi-faceted ICRF strategy. The in house technology is ready but the approach needs to be artful and not preconceived. The flexibility built into the ET hardware is likely to help us to find a way to achieve global plasma control. It is essential that this work be pursued geared towards parameter performance and configuration control. Both require a significant commitment to understanding the device physics AND delivering on the engineering required for control and performance.

  12. Adaptive Numerical Dissipative Control in High Order Schemes for Multi-D Non-Ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.

    2004-01-01

    The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free of numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multi-resolution wavelets (WAV) (for the above types of flow feature). These filter approaches also provide a natural and efficient way for the minimization of Div(B) numerical error. The filter scheme consists of spatially sixth order or higher non-dissipative spatial difference operators as the base scheme for the inviscid flux derivatives. If necessary, a small amount of high order linear dissipation is used to remove spurious high frequency oscillations. For example, an eighth-order centered linear dissipation (AD8) might be included in conjunction with a spatially sixth-order base scheme. The inviscid difference operator is applied twice for the viscous flux derivatives. After the completion of a full time step of the base scheme step, the solution is adaptively filtered by the product of a 'flow detector' and the 'nonlinear dissipative portion' of a high-resolution shock-capturing scheme. In addition, the scheme independent wavelet flow detector can be used in conjunction with spatially compact, spectral or spectral element type of base schemes. The ACM and wavelet filter schemes using the dissipative portion of a second-order shock-capturing scheme with sixth-order spatial central base scheme for both the inviscid and viscous MHD flux derivatives and a fourth-order Runge-Kutta method are denoted.

  13. On MHD rotational transport, instabilities and dynamo action in stellar radiation zones

    NASA Astrophysics Data System (ADS)

    Mathis, Stéphane; Brun, A.-S.; Zahn, J.-P.

    2009-04-01

    Magnetic field and their related dynamical effects are thought to be important in stellar radiation zones. For instance, it has been suggested that a dynamo, sustained by a m = 1 MHD instability of toroidal magnetic fields (discovered by Tayler in 1973), could lead to a strong transport of angular momentum and of chemicals in such stable regions. We wish here to recall the different magnetic transport processes present in radiative zone and show how the dynamo can operate by recalling the conditions required to close the dynamo loop (BPol → BTor → BPol). Helped by high-resolution 3D MHD simulations using the ASH code in the solar case, we confirm the existence of the m = 1 instability, study its non-linear saturation, but we do not detect, up to a magnetic Reylnods number of 105, any dynamo action.

  14. MHD-waves in the geomagnetic tail: A review

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoliy; Mazur, Vitaliy; Kozlov, Daniil

    2015-03-01

    This article presents the review of experimental and theoretical studies on ultra-lowfrequency MHD oscillations of the geomagnetic tail. We consider the Kelvin-Helmholtz instability at the magnetopause, oscillations with a discrete spectrum in the "magic frequencies"range, the ballooning instability of coupled Alfvén and slow magnetosonic waves, and "flapping" oscillations of the current sheet of the geomagnetic tail. Over the last decade, observations from THEMIS, CLUSTER and Double Star satellites have been of great importance for experimental studies. The use of several spacecraft allows us to study the structure of MHD oscillations with high spatial resolution. Due to this, we can make a detailed comparison between theoretical results and those obtained from multi-spacecraft studies. To make such comparisons in theoretical studies, in turn, we have to use the numerical models closest to the real magnetosphere.

  15. Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibayama, Takuya, E-mail: shibayama@stelab.nagoya-u.ac.jp; Nakabou, Takashi; Kusano, Kanya

    2015-10-15

    Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate thatmore » fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.« less

  16. Improvements in the equation of state for the partially ionized plasmas of the solar interior

    NASA Astrophysics Data System (ADS)

    Liang, Aihua

    2005-11-01

    The three major material properties relevant for solar and stellar modeling are the equation of state (EOS), opacity and the nuclear reaction rate. Due to the nature of the equations of stellar structure and evolution, in most parts of a stars interior, the three material properties are entangled, and it is difficult to use astrophysics to constrain a single one. Luckily, thanks to the adiabatic stratification of the convection zone, there the structure only depends on the EOS, which is therefore largely disentangled from the other quantities. Our research, which aims at constraining the EOS using information from the Sun, is therefore most successful when data from the convection zone are used. Among the many solar equations of state that are being currently used there are two popular ones: Mihalas-Däppen-Hummer (MHD) EOS and OPAL EOS. Helioseismic inversion procedures, which have become standard to evaluate the accuracy of different solar models with respect to the real Sun, have revealed that except for the top 2%, the OPAL EOS matches the solar observations better than the MHD EOS. For this reason we have set our research goal to find a modification of the MHD EOS that can, in a first step, simulate the OPAL EOS, and ultimately, the real Sun. This goal has been attained. By construction, the OPAL EOS contains higher order correlation terms which are missing in the MHD EOS. Through an inversion procedure from the activity series expansion (ACTEX), upon which the OPAL EOS is based to the free energy expression of the MHD EOS, we have found out that the free particle assumption, used in the original version of the MHD EOS has indeed to be abandoned. We show that the two-body scattering terms of the Coulomb interaction, as well as electron degeneracy play a significant role in the difference between the original version of the MHD and OPAL EOS. During our interdisciplinary investigation, aiming at seeking an improved MHD EOS under the guidance of the OPAL EOS, we have performed a thorough systematic theoretical and numerical analysis, particularly on applicability of the static screened Coulomb potential (SSCP) as an intra-atomic potential and the physical meaning of the Planck-Larkin partition function (PLPF). We thereby clarified some misunderstandings and confusions. In particular, we have addressed the density dependence of the Planck-Larkin partition function, an issue that has been debated for more than 30 years.

  17. Equilibrium 𝛽-limits in classical stellarators

    NASA Astrophysics Data System (ADS)

    Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.

    2017-12-01

    A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.

  18. Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes

    NASA Astrophysics Data System (ADS)

    Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata

    2016-10-01

    Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.

  19. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  20. Edge-localized mode avoidance and pedestal structure in I-mode plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to themore » structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of large ELMs in I-mode.« less

  1. Edge-localized mode avoidance and pedestal structure in I-mode plasmasa)

    NASA Astrophysics Data System (ADS)

    Walk, J. R.; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E.; Snyder, P. B.; Osborne, T.; Dominguez, A.; Cziegler, I.

    2014-05-01

    I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle Pnet/n ¯e, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of Pnet/n ¯e. This is consistent with targets for increased performance in I-mode, elevating pedestal βp and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of large ELMs in I-mode.

  2. Nonlinear simulation of the fishbone instability

    NASA Astrophysics Data System (ADS)

    Idouakass, Malik; Faganello, Matteo; Berk, Herbert; Garbet, Xavier; Benkadda, Sadruddin; PIIM Team; IFS Team; IRFM Team

    2014-10-01

    We propose to extend the Odblom-Breizman precessional fishbone model to account for both the MagnetoHydroDynamic (MHD) nonlinearity at the q = 1 surface and the nonlinear response of the energetic particles contained within the q = 1 surface. This electromagnetic mode, whose excitation, damping and frequency chirping are determined by the self-consistent interaction between an energetic trapped particle population and the bulk plasma evolution, can induce effective transport and losses for the energetic particles, being them alpha-particles in next-future fusion devices or heated particles in present Tokamaks. The model is reduced to its simplest form, assuming a reduced MHD description for the bulk plasma and a two-dimensional phase-space evolution (gyro and bounce averaged) for deeply trapped energetic particles. Numerical simulations have been performed in order to characterize the mode chirping and saturation, in particular looking at the interplay between the development of phase-space structures and the system dissipation associated to the MHD non-linearities at the resonance locations.

  3. Numerical Simulation of Coronal Waves Interacting with Coronal Holes. III. Dependence on Initial Amplitude of the Incoming Wave

    NASA Astrophysics Data System (ADS)

    Piantschitsch, Isabell; Vršnak, Bojan; Hanslmeier, Arnold; Lemmerer, Birgit; Veronig, Astrid; Hernandez-Perez, Aaron; Čalogović, Jaša

    2018-06-01

    We performed 2.5D magnetohydrodynamic (MHD) simulations showing the propagation of fast-mode MHD waves of different initial amplitudes and their interaction with a coronal hole (CH), using our newly developed numerical code. We find that this interaction results in, first, the formation of reflected, traversing, and transmitted waves (collectively, secondary waves) and, second, in the appearance of stationary features at the CH boundary. Moreover, we observe a density depletion that is moving in the opposite direction of the incoming wave. We find a correlation between the initial amplitude of the incoming wave and the amplitudes of the secondary waves as well as the peak values of the stationary features. Additionally, we compare the phase speed of the secondary waves and the lifetime of the stationary features to observations. Both effects obtained in the simulation, the evolution of secondary waves, as well as the formation of stationary fronts at the CH boundary, strongly support the theory that coronal waves are fast-mode MHD waves.

  4. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    DOE PAGES

    Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; ...

    2015-11-05

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment modelmore » with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.« less

  5. Multi-dimensional computer simulation of MHD combustor hydrodynamics

    NASA Astrophysics Data System (ADS)

    Berry, G. F.; Chang, S. L.; Lottes, S. A.; Rimkus, W. A.

    1991-04-01

    Argonne National Laboratory is investigating the nonreacting jet gas mixing patterns in an MHD second stage combustor by using a 2-D multiphase hydrodynamics computer program and a 3-D single phase hydrodynamics computer program. The computer simulations are intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may lead to improvement of the downstream MHD channel performance. A 2-D steady state computer model, based on mass and momentum conservation laws for multiple gas species, is used to simulate the hydrodynamics of the combustor in which a jet of oxidizer is injected into an unconfined cross stream gas flow. A 3-D code is used to examine the effects of the side walls and the distributed jet flows on the non-reacting jet gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.

  6. Assessing the performance of community-available global MHD models using key system parameters and empirical relationships

    NASA Astrophysics Data System (ADS)

    Gordeev, E.; Sergeev, V.; Honkonen, I.; Kuznetsova, M.; Rastätter, L.; Palmroth, M.; Janhunen, P.; Tóth, G.; Lyon, J.; Wiltberger, M.

    2015-12-01

    Global magnetohydrodynamic (MHD) modeling is a powerful tool in space weather research and predictions. There are several advanced and still developing global MHD (GMHD) models that are publicly available via Community Coordinated Modeling Center's (CCMC) Run on Request system, which allows the users to simulate the magnetospheric response to different solar wind conditions including extraordinary events, like geomagnetic storms. Systematic validation of GMHD models against observations still continues to be a challenge, as well as comparative benchmarking of different models against each other. In this paper we describe and test a new approach in which (i) a set of critical large-scale system parameters is explored/tested, which are produced by (ii) specially designed set of computer runs to simulate realistic statistical distributions of critical solar wind parameters and are compared to (iii) observation-based empirical relationships for these parameters. Being tested in approximately similar conditions (similar inputs, comparable grid resolution, etc.), the four models publicly available at the CCMC predict rather well the absolute values and variations of those key parameters (magnetospheric size, magnetic field, and pressure) which are directly related to the large-scale magnetospheric equilibrium in the outer magnetosphere, for which the MHD is supposed to be a valid approach. At the same time, the models have systematic differences in other parameters, being especially different in predicting the global convection rate, total field-aligned current, and magnetic flux loading into the magnetotail after the north-south interplanetary magnetic field turning. According to validation results, none of the models emerges as an absolute leader. The new approach suggested for the evaluation of the models performance against reality may be used by model users while planning their investigations, as well as by model developers and those interesting to quantitatively evaluate progress in magnetospheric modeling.

  7. Advances in long pulse operation at high radio frequency power in Tore Supra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goniche, M.; Dumont, R.; Bourdelle, C.

    2014-06-15

    The lower hybrid current drive (LHCD) system of Tore Supra has been upgraded for long pulse operation at higher power (7–8 MW). The two launchers have coupled on plasma 3.8 MW and 2.7 MW separately. This new power capability allows extending the operational domain of Tore Supra for long pulses at higher current and density. 38 long (20 s –155 s) discharges with very low loop voltage (V{sub L} = 30-60 mV) were performed with combined LHCD (5-5.7 MW) and ICRH (1–3 MW) powers, with up to 1 GJ of injected energy. Higher LHCD efficiency, with respect to the previous long discharges, is reported. MHD stability of these discharges ismore » very sensitive to the LHCD power and parallel wave index, in particular in the preforming phase. For theses evanescent loop voltage plasmas, the ICRH power, in excess of 1 MW, is found to have a beneficial effect on the MHD stability.« less

  8. Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach

    NASA Astrophysics Data System (ADS)

    Antón, Luis; Zanotti, Olindo; Miralles, Juan A.; Martí, José M.; Ibáñez, José M.; Font, José A.; Pons, José A.

    2006-01-01

    We present a general procedure to solve numerically the general relativistic magnetohydrodynamics (GRMHD) equations within the framework of the 3+1 formalism. The work reported here extends our previous investigation in general relativistic hydrodynamics (Banyuls et al. 1997) where magnetic fields were not considered. The GRMHD equations are written in conservative form to exploit their hyperbolic character in the solution procedure. All theoretical ingredients necessary to build up high-resolution shock-capturing schemes based on the solution of local Riemann problems (i.e., Godunov-type schemes) are described. In particular, we use a renormalized set of regular eigenvectors of the flux Jacobians of the relativistic MHD equations. In addition, the paper describes a procedure based on the equivalence principle of general relativity that allows the use of Riemann solvers designed for special relativistic MHD in GRMHD. Our formulation and numerical methodology are assessed by performing various test simulations recently considered by different authors. These include magnetized shock tubes, spherical accretion onto a Schwarzschild black hole, equatorial accretion onto a Kerr black hole, and magnetized thick disks accreting onto a black hole and subject to the magnetorotational instability.

  9. Verification of BOUT++ by the method of manufactured solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudson, B. D., E-mail: benjamin.dudson@york.ac.uk; Hill, P.; Madsen, J.

    2016-06-15

    BOUT++ is a software package designed for solving plasma fluid models. It has been used to simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid models. A verification exercise has been performed as part of a EUROfusion Enabling Research project, to rigorously test the correctness of the algorithms implemented in BOUT++, by testing order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We present tests of individual components including time-integration and advection schemes, non-orthogonal toroidal field-aligned coordinate systemsmore » and the shifted metric procedure which is used to handle highly sheared grids. The flux coordinate independent approach to differencing along magnetic field-lines has been implemented in BOUT++ and is here verified using the MMS in a sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal coordinates, and 5-field reduced MHD in slab geometry.« less

  10. Comparison of solar photospheric bright points between Sunrise observations and MHD simulations

    NASA Astrophysics Data System (ADS)

    Riethmüller, T. L.; Solanki, S. K.; Berdyugina, S. V.; Schüssler, M.; Martínez Pillet, V.; Feller, A.; Gandorfer, A.; Hirzberger, J.

    2014-08-01

    Bright points (BPs) in the solar photosphere are thought to be the radiative signatures (small-scale brightness enhancements) of magnetic elements described by slender flux tubes or sheets located in the darker intergranular lanes in the solar photosphere. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hence may play a role in influencing the Earth's climate. Here we aim to obtain a better insight into their properties by combining high-resolution UV and spectro-polarimetric observations of BPs by the Sunrise Observatory with 3D compressible radiation magnetohydrodynamical (MHD) simulations. To this end, full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. In a first step it is demonstrated that the selected MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. The simulated line width also displays the correct mean, but a scatter that is too small. In the second step, the properties of observed BPs are compared with synthetic ones. Again, these are found to match relatively well, except that the observations display a tail of large BPs with strong polarization signals (most likely network elements) not found in the simulations, possibly due to the small size of the simulation box. The higher spatial resolution of the simulations has a significant effect, leading to smaller and more numerous BPs. The observation that most BPs are weakly polarized is explained mainly by the spatial degradation, the stray light contamination, and the temperature sensitivity of the Fe i line at 5250.2 Å. Finally, given that the MHD simulations are highly consistent with the observations, we used the simulations to explore the properties of BPs further. The Stokes V asymmetries increase with the distance to the center of the mean BP in both observations and simulations, consistent with the classical picture of a production of the asymmetry in the canopy. This is the first time that this has been found also in the internetwork. More or less vertical kilogauss magnetic fields are found for 98% of the synthetic BPs underlining that basically every BP is associated with kilogauss fields. At the continuum formation height, the simulated BPs are on average 190 K hotter than the mean quiet Sun, the mean BP field strength is found to be 1750 G, and the mean inclination is 17°, supporting the physical flux-tube paradigm to describe BPs. On average, the synthetic BPs harbor downflows increasing with depth. The origin of these downflows is not yet understood very well and needs further investigation.

  11. Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations

    NASA Technical Reports Server (NTRS)

    Birn, J.; Hesse, Michael

    2014-01-01

    Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.

  12. Linear and nonlinear regimes of the 2-D Kelvin-Helmholtz/Tearing instability in Hall MHD.

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Knoll, D. A.; Finn, J. M.

    2002-11-01

    The study to date of the magnetic field effects on the Kelvin-Helmholtz instability (KHI) within the framework of Hall MHD has been limited to configurations with uniform magnetic fields and/or with the magnetic field perpendicular to the sheared ion flow (( B_0⊥ v0 )).(E. N. Opp et al., Phys. Fluids B), 3, 885 (1990)^,(M. Fujimoto et al., J. Geophys. Res.), 96, 15725 (1991)^,(J. D. Huba, Phys. Rev. Lett.), 72, 2033 (1994) Here, we are concerned with the effects of Hall physics in configurations in which (B_0allel v0 ) and both are sheared.(L. Chacon et al, Phys. Lett. A), submitted (2002) In resistive MHD, and for this configuration, either the tearing mode instability (TMI) or the KHI instability dominates depending upon their relative strength.( R. B. Dahlburg et al., Phys. Plasmas), 4, 1213 (1997) In Hall MHD, however, Hall physics decouples the ion and electron flows in a boundary layer of thickness (d_i=c/ω_pi) (ion skin depth), within which electrons are the only magnetized species. Hence, while KHI essentially remains an ion instability, TMI becomes an electron instability. As a result, both KHI and TMI can be unstable simultaneously and interact, creating a very rich linear and nonlinear behavior. This is confirmed by a linear study of the Hall MHD equations. Nonlinearly, both saturated regimes and highly dynamic regimes (with vortex and magnetic island merging) are observed.

  13. Evidence of Active MHD Instability in EULAG-MHD Simulations of Solar Convection

    NASA Astrophysics Data System (ADS)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul

    2015-11-01

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos & Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  14. CPU and GPU-based Numerical Simulations of Combustion Processes

    DTIC Science & Technology

    2012-04-27

    Distribution unlimited UCLA MAE Research and Technology Review April 27, 2012 Magnetohydrodynamic Augmentation of the Pulse Detonation Rocket Engines...Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) – Energy extract from exhaust flow by MHD generator – Seeded air stream acceleration by MHD...accelerator for thrust enhancement and control • Alternative concept: Magnetic piston – During PDE blowdown process, MHD extracts energy and

  15. A Riccati solution for the ideal MHD plasma response with applications to real-time stability control

    NASA Astrophysics Data System (ADS)

    Glasser, Alexander; Kolemen, Egemen; Glasser, A. H.

    2018-03-01

    Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel operation in near real-time, with wall-clock time ≪1 s . Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ≳ 1s—as in ITER.

  16. Present understanding of MHD and heat transfer phenomena for liquid metal blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirillov, I.R.; Barleon, L.; Reed, C.B.

    1994-12-31

    Liquid metals (Li, Li17Pb83, Pb) are considered as coolants in many designs of fusion reactor blankets. To estimate their potential and to make an optimal design, one has to know the magnetohydrodynamic (MHD) and heat transfer characteristics of liquid metal flow in the magnetic field. Such flows with high characteristic parameter values (Hartmann number M and interaction parameter N) open up a relatively new field in Magnetohydrodynamics requiring both theoretical and experimental efforts. A review of experimental work done for the last ten years in different countries shows that there are some data on MHD/HT characteristics in straight channels ofmore » simple geometry under fusion reactor relevant conditions (M>>1, N>>1) and not enough data for complex flow geometries. Future efforts should be directed to investigation of MHD/HT in straight channels with perfect and imperfect electroinsulated walls, including those with controlled imperfections, and in channels of complex geometry. The experiments are not simple, since the fusion relevant conditions require facilities with magnetic fields at, or even higher than, 5-7 T in comparatively large volumes. International cooperation in constructing and operating these facilities may be of great help.« less

  17. Kinetic-MHD simulations of gyroresonance instability driven by CR pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Lebiga, O.; Santos-Lima, R.; Yan, H.

    2018-05-01

    The transport of cosmic rays (CRs) is crucial for the understanding of almost all high-energy phenomena. Both pre-existing large-scale magnetohydrodynamic (MHD) turbulence and locally generated turbulence through plasma instabilities are important for the CR propagation in astrophysical media. The potential role of the resonant instability triggered by CR pressure anisotropy to regulate the parallel spatial diffusion of low-energy CRs (≲100 GeV) in the interstellar and intracluster medium of galaxies has been shown in previous theoretical works. This work aims to study the gyroresonance instability via direct numerical simulations, in order to access quantitatively the wave-particle scattering rates. For this, we employ a 1D PIC-MHD code to follow the growth and saturation of the gyroresonance instability. We extract from the simulations the pitch-angle diffusion coefficient Dμμ produced by the instability during the linear and saturation phases, and a very good agreement (within a factor of 3) is found with the values predicted by the quasi-linear theory (QLT). Our results support the applicability of the QLT for modelling the scattering of low-energy CRs by the gyroresonance instability in the complex interplay between this instability and the large-scale MHD turbulence.

  18. Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.

    1995-01-01

    The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.

  19. Sawtooth mitigation in 3D MHD tokamak modelling with applied magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Veranda, M.; Cappello, S.; Chacón, L.; Escande, D. F.

    2017-01-01

    The effect of magnetic perturbations (MPs) on the sawtoothing dynamics of the internal kink mode in the tokamak is discussed in the framework of nonlinear 3D MHD modelling. Numerical simulations are performed with the pixie3d code (Chacón 2008 Phys. Plasmas 15 056103) based on a D-shaped configuration in toroidal geometry. MPs are applied as produced by two sets of coils distributed along the toroidal direction, one set located above and the other set below the outboard midplane, like in experimental devices such as DIII-D and ASDEX Upgrade. The capability of n  =  1 MPs to affect quasi-periodic sawteeth is shown to depend on the toroidal phase difference Δ φ between the perturbations produced by the two sets of coils. In particular, sawtooth mitigation is obtained for the Δ φ =π phasing, whereas no significant effect is observed for Δ φ =0 . Numerical findings are explained by the interplay between different poloidal harmonics in the spectrum of applied MPs, and appear to be consistent with experiments performed in the DIII-D device. Sawtooth mitigation and stimulation of self-organized helical states by applied MPs have been previously demonstrated in both circular tokamak and reversed-field pinch (RFP) experiments in the RFX-mod device, and in related 3D MHD modelling.

  20. High-tone external muscle stimulation in end-stage renal disease: effects on symptomatic diabetic and uremic peripheral neuropathy.

    PubMed

    Klassen, A; Di Iorio, B; Guastaferro, P; Bahner, U; Heidland, A; De Santo, N

    2008-01-01

    Pain and peripheral neuropathy are frequent complications of end-stage renal disease (ESRD). Because drug treatment is associated with numerous side effects and is largely ineffective in many maintenance hemodialysis (MHD) patients, nonpharmacologic strategies such as electrotherapy are a potential recourse. Among various forms of electrostimulation, high-tone external muscle stimulation (HTEMS) is a promising alternative treatment for symptomatic diabetic peripheral polyneuropathy (PPN), as demonstrated in a short-term study. Based on these novel findings, we performed a prospective, nonrandomized, pilot trial in MHD patients to determine (1) whether HTEMS is also effective in treating diabetic PPN in the uremic state, and (2) whether uremic PPN is similarly modulated. In total, 40 MHD patients diagnosed with symptomatic PPN (25 with diabetic and 15 with uremic PPN) were enrolled. Both lower extremities were treated intradialytically with HTEMS for 1 hour, three times a week. Initially, a subgroup of 12 patients was followed for 4 weeks, and a further 28 patients for 12 weeks. The patients' degree of neuropathy was graded at baseline before HTEMS and after 1 and 3 months, respectively. Five neuropathic symptoms (tingling, burning, pain, numbness, and numbness in painful areas) as well as sleep disturbances were measured, using the 10-point Neuropathic Pain Scale of Galer and Jensen (Neurology 48:332-338, 1997). A positive response was defined as the improvement of one symptom or more, by at least 3 points. Other parameters included blood pressure, heart rate, dry body weight, and a routine laboratory investigation. The HTEMS led to a significant improvement in all five neuropathic symptoms, and to a significant reduction in sleep disturbances for both diabetic and uremic PPN. The response was independent of the patient's age, with a responder rate of 73%. The improvement of neuropathy was time-dependent, with the best results achieved after 3 months of treatment. The HTEMS was well-tolerated by nearly all patients. This pilot study shows for the first time that HTEMS can ameliorate the discomfort and pain associated with both diabetic and uremic PPN in MHD patients, and could be a valuable supplement in the treatment of pain and neuropathic discomfort in patients who do not respond to, or are unable to participate in, exercise programs during hemodialysis treatment.

  1. MHD generator electrode development. Summary report, July 1, 1981-September 30, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossing, B.R.; Buckman, R.W. Jr.; Pouchot, W.D.

    Emphasis on this program was the development of and understanding wastage mechanism(s) of metallic electrodes which may be suitable alternatives to platinum anode material for use in long-term open cycle, coal-fired MHD generator operations. The laboratory tests simulate both modes of material wastage observed in MHD electrode operation; i.e., arc erosion (melting/vaporization) and electrochemical corrosion. Based on experimental results from the electrochemical tests at 1473/sup 0/K, the rank order listing of the materials tested for anode applications were platinum, E-Brite 26-1 modified with a five percent addition of platinum, chromium, IN 601, E-Brite 26-1, and 330 stainless steel ranked inmore » decreasing order. The rank order listing based on the arc erosion test was platinum, chromium, E-Brite 26-1, 330 stainless steel, and IN 601. The relative arc erosion resistance of materials based on the AVCO Mark VII generator test results gave a rank order of platinum, 330 stainless steel, IN 601, and E-Brite 26-1. Engineering tests under simulated open-cycle coal-fired MHD operating conditions were performed in the 500 kW Westinghouse Electrode System Test Facility (WESTF). Tests were conducted on candidate metallic anode materials (cold wall) and ceramic anode (hot wall) materials. A ten-hour duration cold wall slagging test was conducted on platinum, E-Brite 26-1, 330 stainless steel and IN 601 and the results were similar to those obtained for those materials in the AVCO Mark VII generator tests. Non-slagging, super hot (>1700/sup 0/C) wall hafnia-rare earth oxide electrodes were tested in a sulfurous, western coal-fired MHD environment. All four ceramic electrode pairs were destroyed. 20 references.« less

  2. NIMROD calculations of energetic particle driven toroidal Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Hou, Yawei; Zhu, Ping; Kim, Charlson C.; Hu, Zhaoqing; Zou, Zhihui; Wang, Zhengxiong; Nimrod Team

    2018-01-01

    Toroidal Alfvén eigenmodes (TAEs) are gap modes induced by the toroidicity of tokamak plasmas in the absence of continuum damping. They can be excited by energetic particles (EPs) when the EP drive exceeds other dampings, such as electron and ion Landau damping, and collisional and radiative damping. A TAE benchmark case, which was proposed by the International Tokamak Physics Activity group, is studied in this work. The numerical calculations of linear growth of TAEs driven by EPs in a circular-shaped, large aspect ratio tokamak have been performed using the Hybrid Kinetic-MHD (HK-MHD) model implemented in the NIMROD code. This HK-MHD model couples a δf particle-in-cell representation of EPs with the 3D MHD representation of the bulk plasma through moment closure for the momentum conservation equation. Both the excitation of TAEs and their transition to energetic particle modes (EPMs) have been observed. The influence of EP density, temperature, density gradient, and position of the maximum relative density gradient, on the frequency and the growth rate of TAEs are obtained, which are consistent with those from the eigen-analysis calculations, kinetic-MHD, and gyrokinetic simulations for an initial Maxwellian distribution of EPs. The relative pressure gradient of EP at the radial location of the TAE gap, which represents the drive strength of EPs, can strongly affect the growth rate of TAEs. It is demonstrated that the mode transition due to EP drive variation leads to not only the change of frequency but also the change of the mode structure. This mechanism can be helpful in understanding the nonlinear physics of TAE/EPM, such as frequency chirping.

  3. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-10-01

    Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on unstructured meshes. Several stringent two- and three-dimensional problems are shown to work well with the methods presented here.

  4. RELATIVISTIC MHD SIMULATIONS OF COLLISION-INDUCED MAGNETIC DISSIPATION IN POYNTING-FLUX-DOMINATED JETS/OUTFLOWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Wei; Zhang, Bing; Li, Hui

    We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.« less

  5. Test Particle Simulations of Electron Injection by the Bursty Bulk Flows (BBFs) using High Resolution Lyon-Feddor-Mobarry (LFM) Code

    NASA Astrophysics Data System (ADS)

    Eshetu, W. W.; Lyon, J.; Wiltberger, M. J.; Hudson, M. K.

    2017-12-01

    Test particle simulations of electron injection by the bursty bulk flows (BBFs) have been done using a test particle tracer code [1], and the output fields of the Lyon-Feddor-Mobarry global magnetohydro- dynamics (MHD) code[2]. The MHD code was run with high resolu- tion (oct resolution), and with specified solar wind conditions so as to reproduce the observed qualitative picture of the BBFs [3]. Test par- ticles were injected so that they interact with earthward propagating BBFs. The result of the simulation shows that electrons are pushed ahead of the BBFs and accelerated into the inner magnetosphere. Once electrons are in the inner magnetosphere they are further energized by drift resonance with the azimuthal electric field. In addition pitch angle scattering of electrons resulting in the violation conservation of the first adiabatic invariant has been observed. The violation of the first adiabatic invariant occurs as electrons cross a weak magnetic field region with a strong gradient of the field perturbed by the BBFs. References 1. Kress, B. T., Hudson,M. K., Looper, M. D. , Albert, J., Lyon, J. G., and Goodrich, C. C. (2007), Global MHD test particle simulations of ¿ 10 MeV radiation belt electrons during storm sudden commencement, J. Geophys. Res., 112, A09215, doi:10.1029/2006JA012218. Lyon,J. G., Fedder, J. A., and Mobarry, C.M., The Lyon- Fedder-Mobarry (LFM) Global MHD Magnetospheric Simulation Code (2004), J. Atm. And Solar-Terrestrial Phys., 66, Issue 15-16, 1333- 1350,doi:10.1016/j.jastp. Wiltberger, Merkin, M., Lyon, J. G., and Ohtani, S. (2015), High-resolution global magnetohydrodynamic simulation of bursty bulk flows, J. Geophys. Res. Space Physics, 120, 45554566, doi:10.1002/2015JA021080.

  6. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    NASA Astrophysics Data System (ADS)

    González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.

    2015-12-01

    We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  7. Fully Implict Magneto-hydrodynamics Simulations of Coaxial Plasma Accelerators

    DOE PAGES

    Subramaniam, Vivek; Raja, Laxminarayan L.

    2017-01-05

    The resistive Magneto-Hydrodynamic (MHD) model describes the behavior of a strongly ionized plasma in the presence of external electric and magnetic fields. We developed a fully implicit MHD simulation tool to solve the resistive MHD governing equations in the context of a cell-centered finite-volume scheme. The primary objective of this study is to use the fully-implicit algorithm to obtain insights into the plasma acceleration and jet formation processes in Coaxial Plasma accelerators; electromagnetic acceleration devices that utilize self-induced magnetic fields to accelerate thermal plasmas to large velocities. We also carry out plasma-surface simulations in order to study the impact interactionsmore » when these high velocity plasma jets impinge on target material surfaces. Scaling studies are carried out to establish some basic functional relationships between the target-stagnation conditions and the current discharged between the coaxial electrodes.« less

  8. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Kim, Charlson C.; Victor, Brian S.; Jarboe, Thomas R.

    2013-08-01

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth di to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification Itor/Iinj and formation time τf demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates Itor/Iinj and exhibits much a longer τf. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.

  9. Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Chacón, Luis; Pernice, Michael

    2008-10-01

    An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.

  10. Viscous dissipation impact on MHD free convection radiating fluid flow past a vertical porous plate

    NASA Astrophysics Data System (ADS)

    Raju, R. Srinivasa; Reddy, G. Jithender; Kumar, M. Anil

    2018-05-01

    An attempt has been made to study the radiation effects on unsteady MHD free convective flow of an incompressible fluid past an infinite vertical porous plate in the presence of viscous dissipation. The governing partial differential equations are solved numerically by using Galerkin finite element method. Computations were performed for a wide range of governing flow parameters viz., Magnetic Parameter, Schmidt number, Thermal radiation, Prandtl number, Eckert number and Permeability parameter. The effects of these flow parameters on velocity, temperature are shown graphically. In addition the local values of the Skin friction coefficient are shown in tabular form.

  11. Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Makwana, K. D.; Keppens, R.; Lapenta, G.

    2017-12-01

    We describe a method for coupling an embedded domain in a magnetohydrodynamic (MHD) simulation with a particle-in-cell (PIC) method. In this two-way coupling we follow the work of Daldorff et al. (2014) [19] in which the PIC domain receives its initial and boundary conditions from MHD variables (MHD to PIC coupling) while the MHD simulation is updated based on the PIC variables (PIC to MHD coupling). This method can be useful for simulating large plasma systems, where kinetic effects captured by particle-in-cell simulations are localized but affect global dynamics. We describe the numerical implementation of this coupling, its time-stepping algorithm, and its parallelization strategy, emphasizing the novel aspects of it. We test the stability and energy/momentum conservation of this method by simulating a steady-state plasma. We test the dynamics of this coupling by propagating plasma waves through the embedded PIC domain. Coupling with MHD shows satisfactory results for the fast magnetosonic wave, but significant distortion for the circularly polarized Alfvén wave. Coupling with Hall-MHD shows excellent coupling for the whistler wave. We also apply this methodology to simulate a Geospace Environmental Modeling (GEM) challenge type of reconnection with the diffusion region simulated by PIC coupled to larger scales with MHD and Hall-MHD. In both these cases we see the expected signatures of kinetic reconnection in the PIC domain, implying that this method can be used for reconnection studies.

  12. Towards an MHD Theory for the Standoff Distance of Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Carins, Iver H.; Grabbe, Crockett L.

    1994-01-01

    A magnetohydrodynamic (MHD) theory is developed for the standoff distance a(s) of the bow shock and the thickness Delta(ms) of the magnetosheath, using the empirical Spreiter et al. relation Delta(ms) = kX and the MHD density ratio X across the shock. The theory includes as special cases the well-known gasdynamic theory and associated phenomenological MHD-like models for Delta(ms) and As. In general, however, MHD effects produce major differences from previous models, especially at low Alfev (Ma) and Sonic (Ms) Mach numbers. The magnetic field orientation Ma, Ms and the ratio of specific heats gamma are all important variables of the theory. In contrast, the fast mode Mach number need play no direct role. Three principle conclusions are reached. First the gasdynamic and phenomenological models miss important dependences of field orientation and Ms generally provide poor approximations to the MHD results. Second, changes in field orientation and Ms are predicted to cause factor of approximately 4 changes in Delta(ms) at low Ma. These effects should be important when predicting the shock's location or calculating gramma from observations. Third, using Spreiter et al.'s value for k in the MHD theory leads to maxima a(s) values at low Ma and nominal Ms that are much smaller than observations and MHD simulations require. Resolving this problem requires either the modified Spreiter-like relation and larger k found in recent MHD simulations and/or a breakdown in the Spreiter-like relation at very low Ma.

  13. Comparative analysis of the conceptual design studies of potential early commercial MHD power plants (CSPEC)

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Winter, J. M.; Juhasz, A. J.; Berg, R. D.

    1982-01-01

    A conceptual design study of the MHD/steam plant that incorporates the use of oxygen enriched air preheated in a metallic heat exchanger as the combustor oxidant showed that this plant is the most attractive for early commercial applications. The variation of performance and cost was investigated as a function of plant size. The contractors' results for the overall efficiencies are in reasonable agreement considering the slight differences in their plant designs. NASA LeRC is reviewing cost and performance results for consistency with those of previous studies, including studies of conventional steam plants. LeRC in house efforts show that there are still many tradeoffs to be considered for these oxygen enriched plants and considerable variations can be made in channel length and level of oxygen enrichment with little change in overall plant efficiency.

  14. Turbulence scaling study in an MHD wind tunnel on the Swarthmore Spheromak Experiment

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.; Wan, A.; Owusu-Boateng, J.; Brown, M. R.; Lukin, V. S.

    2013-10-01

    The turbulence of colliding spheromaks are explored in the MHD wind tunnel on the SSX. Fully ionized hydrogen plasma is produced by two plasma guns on opposite sides of a 1 m by 15 cm copper cylinder. Modification of B-field, Ti and β are made through stuffing flux variation of the plasma guns. Presented here are turbulent f-/ k-spectra and correlation times/lengths of B-field fluctuations as measured by a 16 channel B-dot radial probe array at the chamber midplane. Power-law fits to spectra show scaling that is robust to changes in stuffing flux; fits are on the order of f-3 and k - 2 . 1 for all flux variations. Dissipation range modification of the spectra is observed; changes to the f-spectra slopes occur around f =fci while changes in k-spectra slopes appear around ~ 5ρi . Dissipation range fits are made with an exponentially modified power-law model [Terry et al., PoP 2012]. Fluctuations in axial velocity are made using a Mach probe. Both B-field and velocity fluctuations persist on the same timescale in these experiments. Mach velocity f-spectra show power-laws similar to that for B-field. Comparison of spectra from MHD and Hall MHD simulations of SSX performed within the HiFi modeling framework are made to the experimental results.

  15. Coupling extended magnetohydrodynamic fluid codes with radiofrequency ray tracing codes for fusion modeling

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas G.; Held, Eric D.

    2015-09-01

    Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.

  16. Ideal MHD stability and characteristics of edge localized modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team

    2018-01-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R  =  5.7 m, B T  =  5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a  =  1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R  =  6.6 m, B T  =  6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.

  17. Multi-Fluid Simulations of a Coupled Ionosphere-Magnetosphere System

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.; Glocer, A.; Toth, G.; Ridley, A. J.; Sokolov, I. V.; de Zeeuw, D. L.

    2008-05-01

    In the last decade we have developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on an extended magnetohydrodynamics model with anisotropic pressures. Ionosheric outflow can be a significant contributor to the plasma population of the magnetosphere during active geomagnetic conditions. This talk will present preliminary results of our simulations when we couple a new field- aligned multi-fluid polar wind code to the Ionosphere Electrodynamics (IE), and Global Magnetosphere (GM) components of the SWMF. We use multi-species and multi-fluid MHD to track the resulting plasma composition in the magnetosphere.

  18. Thermoelectric effects in decaying homogeneous magneto-gas turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1991-01-01

    In the formulation of compressible MHD (i.e., magneto-gas dynamics), a 'generalized Ohm's law is required. In particular, an electron pressure term and a 'Hall effect' term may appear as non-negligible additions to the Ohm's law that is conventionally used for incompressible MHD. In 'high-beta' (i.e., relatively low magnetic energy) situations, the Hall term may be neglected (at least initially) but, as it turns out, the electron pressure term cannot be neglected. Here, three-dimensional, high-beta, homogeneous, decaying, magneto-gas turbulence is examined with regard to this additional term. Through numerical simulation, it is found that 'thermoelectric effects' are produced that significantly alter the evolution of the magnetic field and electric current strengths.

  19. Results of duct area ratio changes in the NASA Lewis H2-O2 combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1979-01-01

    MHD power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, generator loading B field strength, and electrode breakdown voltage were investigated. The effect of area ratio, multiple loading of the duct, and duct location within the magnetic field are considered.

  20. Magnetohydrodynamic modelling of exploding foil initiators

    NASA Astrophysics Data System (ADS)

    Neal, William

    2015-06-01

    Magnetohydrodynamic (MHD) codes are currently being developed, and used, to predict the behaviour of electrically-driven flyer-plates. These codes are of particular interest to the design of exploding foil initiator (EFI) detonators but there is a distinct lack of comparison with high-fidelity experimental data. This study aims to compare a MHD code with a collection of temporally and spatially resolved diagnostics including PDV, dual-axis imaging and streak imaging. The results show the code's excellent representation of the flyer-plate launch and highlight features within the experiment that the model fails to capture.

  1. Magnetohydrodynamic Heat Transfer Research Related to the Design of Fusion Blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barleon, Leopold; Burr, Ulrich; Mack, Klaus Juergen

    2001-03-15

    Lithium or any lithium alloy like the lithium lead alloy Pb-17Li is an attractive breeder material used in blankets of fusion power reactors because it allows the breeding of tritium and, in the case of self-cooled blankets, the transfer of the heat generated within the liquid metal and the walls of the cooling ducts to an external heat exchanger. Nevertheless, this type of liquid-metal-cooled blanket, called a self-cooled blanket, requires specific design of the coolant ducts, because the interaction of the circulating fluid and the plasma-confining magnetic fields causes magnetohydrodynamic (MHD) effects, yielding completely different flow patterns compared to ordinarymore » hydrodynamics (OHD) and pressure drops significantly higher than there. In contrast to OHD, MHD flows depend strongly on the electrical properties of the wall. Also, MHD flows reveal anisotropic turbulence behavior and are quite sensitive to obstacles exposed to the fluid flow.A comprehensive study of the heat transfer characteristics of free and forced convective MHD flows at fusion-relevant conditions is conducted. The general ideas of the analytical and numerical models to describe MHD heat transfer phenomena in this parameter regime are discussed. The MHD laboratory being installed, the experimental program established, and the experiments on heat transfer of free and forced convective flow being conducted are described. The theoretical results are compared to the results of a series of experiments in forced and free convective MHD flows with different wall properties, such as electrically insulating as well as electric conducting ducts. Based on this knowledge, methods to improve the heat transfer by means of electromagnetic/mechanic turbulence promoters (TPs) or sophisticated, arranged electrically conducting walls are discussed, experimental results are shown, and a cost-benefit analysis related to these methods is performed. Nevertheless, a few experimental results obtained should be highlighted:1. The heat flux removable in rectangular electrically conducting ducts at walls parallel to the magnetic field is by a factor of 2 higher than in the slug flow model previously used in design calculations. Conditions for which this heat transfer enhancement is attainable are presented. The measured dimensionless pressure gradient coincides with the theoretical one and is constant throughout the whole Reynolds number regime investigated (Re = 10{sup 3} {yields} 10{sup 5}), although the flow turns from laminar to turbulent. The use of electromagnetic TPs close to the heated wall leads to nonmeasurable increase of the heat transfer in the same Re regime as long as they do not lead to an interaction with the wall adjacent boundary layers.2. Mechanical TPs used in an electrically insulated rectangular duct improved the heat transfer up to seven times compared to slug flow, but the pressure drop can increase also up to 300%. In a cost-benefit analysis, the advantageous parameter regime for applying this method is determined.3. Experiments performed in a flat box both in a vertical and a horizontal arrangement within a horizontal magnetic field show the expected increase of damping of the fluid motion with increasing Hartmann number M. At high M, buoyant convection will be completely suppressed in the horizontal case. In the vertical setup, the fluid motion is reduced to one large vortex leading to a decreasing heat transfer between heated and cooled plate to pure heat conduction.From an analysis of the experimental and theoretical results, general design criteria are derived for the orientation and shape of the first wall coolant ducts of self-cooled liquid metal blankets. Methods to generate additional turbulence within the flow, which can improve the heat transfer further are elaborated.« less

  2. von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Verdini, Andrea; Landi, Simone; Franci, Luca; Matteini, Lorenzo

    2018-04-01

    A dynamical vectorial equation for homogeneous incompressible Hall-magnetohydrodynamic (MHD) turbulence together with the exact scaling law for third-order correlation tensors, analogous to that for the incompressible MHD, is rederived and applied to the results of two-dimensional hybrid simulations of plasma turbulence. At large (MHD) scales the simulations exhibit a clear inertial range where the MHD dynamic law is valid. In the sub-ion range the cascade continues via the Hall term, but the dynamic law derived in the framework of incompressible Hall-MHD equations is obtained only in a low plasma beta simulation. For a higher beta plasma the cascade rate decreases in the sub-ion range and the change becomes more pronounced as the plasma beta increases. This break in the cascade flux can be ascribed to nonthermal (kinetic) features or to others terms in the dynamical equation that are not included in the Hall-MHD incompressible approximation.

  3. Results from the OH-PT model: a Kinetic-MHD Model of the Outer Heliosphere within SWMF

    NASA Astrophysics Data System (ADS)

    Michael, A.; Opher, M.; Tenishev, V.; Borovikov, D.; Toth, G.

    2017-12-01

    We present an update of the OH-PT model, a kinetic-MHD model of the outer heliosphere. The OH-PT model couples the Outer Heliosphere (OH) and Particle Tracker (PT) components within the Space Weather Modeling Framework (SWMF). The OH component utilizes the Block-Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) MHD code, a highly parallel, 3D, and block-adaptive solver. As a stand-alone model, the OH component solves the ideal MHD equations for the plasma and a separate set of Euler's equations for the different populations of neutral atoms. The neutrals and plasma in the outer heliosphere are coupled through charge-exchange. While this provides an accurate solution for the plasma, it is an inaccurate description of the neutrals. The charge-exchange mean free path is on the order of the size of the heliosphere; therefore the neutrals cannot be described as a fluid. The PT component is based on the Adaptive Mesh Particle Simulator (AMPS) model, a 3D, direct simulation Monte Carlo model that solves the Boltzmann equation for the motion and interaction of multi-species plasma and is used to model the neutral distribution functions throughout the domain. The charge-exchange process occurs within AMPS, which handles each event on a particle-by-particle basis and calculates the resulting source terms to the MHD equations. The OH-PT model combines the MHD solution for the plasma with the kinetic solution for the neutrals to form a self-consistent model of the heliosphere. In this work, we present verification and validation of the model as well as demonstrate the codes capabilities. Furthermore we provide a comparison of the OH-PT model to our multi-fluid approximation and detail the differences between the models in both the plasma solution and neutral distribution functions.

  4. Advanced lattice Boltzmann scheme for high-Reynolds-number magneto-hydrodynamic flows

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro; Lévêque, Emmanuel; Chahine, Robert

    2018-06-01

    Is the lattice Boltzmann method suitable to investigate numerically high-Reynolds-number magneto-hydrodynamic (MHD) flows? It is shown that a standard approach based on the Bhatnagar-Gross-Krook (BGK) collision operator rapidly yields unstable simulations as the Reynolds number increases. In order to circumvent this limitation, it is here suggested to address the collision procedure in the space of central moments for the fluid dynamics. Therefore, an hybrid lattice Boltzmann scheme is introduced, which couples a central-moment scheme for the velocity with a BGK scheme for the space-and-time evolution of the magnetic field. This method outperforms the standard approach in terms of stability, allowing us to simulate high-Reynolds-number MHD flows with non-unitary Prandtl number while maintaining accuracy and physical consistency.

  5. Modélisation du champ magnétique d'un propulseur M.H.D. annulaire

    NASA Astrophysics Data System (ADS)

    Kom, C. H.; Brunet, Y.

    1995-01-01

    Stray fields have to be as small as possible to reduce the magnetic signature of the vessel in M.H.D. propulsion where the magnetic field has to be very high. The calculation of the magnetic field of an angular M.H.D. thruster is presented. The field is produced by a distribution of superconducting magnets in the shape of sectors. An analytical formulation of the field can be used in the active zone, outside the coil ends. An analytical method using a Fourier development of the current sheets is employed for an inductor in cylindrical sectors, and a direct method is used for a massive inductor. Numerical and analytical results are compared. Pour des raisons de discrétion, les champs de fuite doivent être minimisés en propulsion M.H.D. où les champs magnétiques doivent être intenses. Le calcul du champ magnétique d'un propulseur M.H.D. naval annulaire, constitué de secteurs inducteurs supraconducteurs est représenté. Dans la zone active, hors des têtes de bobines, une formulation analytique peut être utilisée. Une méthode analytique utilisant le développemment en série de Fourier du courant est adoptée pour les industeurs cylindriques, et une méthode directe pour les inducteurs massifs. Les résultats numériques sont comparés à ceux obtenus avec un logiciel d'éléments finis 2D.

  6. Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2004-01-01

    Incompressible, homogeneous magnetohydrodynamic (MHD) turbulence consists of fluctuating vorticity and magnetic fields, which are represented in terms of their Fourier coefficients. Here, a set of five Fourier spectral transform method numerical simulations of two-dimensional (2-D) MHD turbulence on a 512(sup 2) grid is described. Each simulation is a numerically realized dynamical system consisting of Fourier modes associated with wave vectors k, with integer components, such that k = |k| less than or equal to k(sub max). The simulation set consists of one ideal (non-dissipative) case and four real (dissipative) cases. All five runs had equivalent initial conditions. The dimensions of the dynamical systems associated with these cases are the numbers of independent real and imaginary parts of the Fourier modes. The ideal simulation has a dimension of 366104, while each real simulation has a dimension of 411712. The real runs vary in magnetic Prandtl number P(sub M), with P(sub M) is a member of {0.1, 0.25, 1, 4}. In the results presented here, all runs have been taken to a simulation time of t = 25. Although ideal and real Fourier spectra are quite different at high k, they are similar at low values of k. Their low k behavior indicates the existence of broken symmetry and coherent structure in real MHD turbulence, similar to what exists in ideal MHD turbulence. The value of PM strongly affects the ratio of kinetic to magnetic energy and energy dissipation (which is mostly ohmic). The relevance of these results to 3-D Navier-Stokes and MHD turbulence is discussed.

  7. EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensionalmore » instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.« less

  8. MODELING OBSERVED DECAY-LESS OSCILLATIONS AS RESONANTLY ENHANCED KELVIN–HELMHOLTZ VORTICES FROM TRANSVERSE MHD WAVES AND THEIR SEISMOLOGICAL APPLICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antolin, P.; De Moortel, I.; Van Doorsselaere, T.

    2016-10-20

    In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfvén waves. Due to its localized nature, direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction are recent observations that indicate that in the low-amplitude regime such transverse MHD waves can also appear decay-less, a still unsolved phenomenon. Recent numerical work has shown that Kelvin–Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work,more » we combine 3D MHD simulations and forward modeling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant absorption. Such an effect is especially clear in emission lines forming at temperatures that capture the boundary dynamics rather than the core, and reflects the low damping character of the local azimuthal Alfvén waves resonantly coupled to the kink mode. Due to phase mixing, the detected period can vary depending on the emission line, with those sensitive to the boundary having shorter periods than those sensitive to the loop core. This allows us to estimate the density contrast at the boundary.« less

  9. Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; hide

    2016-01-01

    We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHO-EPIC) algorithm Is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the Interaction between Jupiter's magnetospherlc plasma and Ganymede's magnetosphere. We compare the MHO-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the Importance of kinetic effects In controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHO-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular. the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHO-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-0 structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHO-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.

  10. Observation of finite-. beta. MHD phenomena in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuire, K.M.

    1984-09-01

    Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1more » internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.« less

  11. High Field Side MHD Activity During Local Helicity Injection

    NASA Astrophysics Data System (ADS)

    Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.

    2017-10-01

    MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.

  12. Effect of protein and energy intakes on body composition in non-diabetic maintenance-hemodialysis patients.

    PubMed

    Ichikawa, Yoko; Hiramatsu, Fumie; Hamada, Hisayo; Sakai, Atsuko; Hara, Keiko; Kogirima, Miho; Kawahara, Kazuhiko; Minakuchi, Jun; Kawashima, Shu; Yamamoto, Shigeru

    2007-10-01

    This cross sectional study was performed to find the adequate amount and combination of dietary protein and energy for maintaining better nutritional status for stable non-diabetic maintenance hemodialysis (MHD) patients. The body composition including body fat, total body water, body cell mass and body protein were measured by multi-frequency bioelectrical impedance analysis in 200 stable MHD patients without diabetes (124 men, 76 women). Dietary energy intake (DEI) and dietary protein intake (DPI) were assessed by a brief self-administered diet history questionnaire (BDHQ), the DPI value being confirmed by calculating the normalized protein equivalent of total nitrogen appearance (nPNA). The nutritional status and the body composition were compared among 4 groups of patients in each gender that were divided by the combination of DEI and DPI; high energy (HE)/high protein (HP), HE/low protein (LP), low energy (LE)/HP and LE/LP groups. The mean DPI ranged between 1.17-1.23 and 0.89-0.95 g/kg IBW/d in the HP and LP groups, respectively for both genders, and the mean DEI was 35-37 and 24-25 kcal/kg IBW/d in HE and LE groups, respectively. BMI and serum albumin concentration were not different among the 4 groups. Body cell mass index (BCMI) was maintained in the HE groups regardless of DPI, and it was significantly higher in the HE/HP group than in the LE/LP group. Multiple regression analysis also showed that the BCMI was more greatly affected by DEI than DPI. These results indicated that a DPI of 0.89-0.95 g/kg IBW/d could be sufficient for maintaining BCMI, if DEI is kept over 35 kcal/kg IBW/d in stable non-diabetic MHD patients. This DPI level is lower than the recommended DPI proposed by dietary guidelines in the US and Japan.

  13. Population pharmacokinetic analysis for 10-monohydroxy derivative of oxcarbazepine in pediatric epileptic patients shows no difference between Japanese and other ethnicities.

    PubMed

    Sugiyama, Ikuo; Bouillon, Thomas; Yamaguchi, Masayuki; Suzuki, Hikoe; Hirota, Takashi; Fink, Martin

    2015-04-01

    Oxcarbazepine is an anti-epileptic drug, which is almost completely metabolized by cytosolic enzymes in the liver to the active 10-monohyroxy metabolite (MHD) following oral administration. The pharmacokinetic (PK) profiles of MHD were evaluated in pediatric epileptic patients and a possible ethnic difference in PK of MHD between Japanese and non-Japanese pediatric patients was assessed. A non-linear mixed effect modeling approach was used to determine the PK of MHD. A one-compartment population model with first-order absorption appropriately described the PK of MHD. No clinically relevant differences were found for using body surface area or weight to explain between-patient variability, therefore the final model included the effects of body weight on apparent clearance (CL/F) and apparent volume of distribution (V/F) of MHD, and in addition, the effect of 3 concomitant anti-epileptic drugs (carbamazepine, phenobarbital and phenytoin) on CL/F of MHD. Inclusion of ethnicity as a covariate in the final model, concluded no ethnic difference with respect to CL/F of MHD between Japanese and non-Japanese patients. Hence, oxcarbazepine can be generally applied using the same dosage and administration for the treatment of partial onset seizures in pediatric patients, regardless of ethnicity. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  14. Correlation between the microinflammatory state and left ventricular structural and functional changes in maintenance haemodialysis patients

    PubMed Central

    SHI, LIHUA; SONG, JIE; ZHANG, XIAODONG; LI, YING; LI, HUI

    2013-01-01

    The aim of this study was to examine the correlation between the microinflammatory state and structural and functional changes of the left ventricle in maintenance haemodialysis patients (MHD). In total, 48 MHD patients and 30 healthy volunteers participated in this study. The microinflammatory state was detected from high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) levels determined by ELISA. The structure and function of the left ventricle was measured according to ultrasound cardiogram examination. The serum levels of hs-CRP, IL-6 and TNF-α in the MHD patients were higher compared with those in the controls (P<0.05). Furthermore, the measurements of the left atrial diameter (LAD), left venticular diameter (LVD), interventricular septal thickness (IVST), left ventricular posterior wall thickness (LVPWT) and the left ventricular mass index (LVMI) increased significantly and the left ventricular function (LVEF) was reduced. Correlation analysis demonstrated that the concentrations of hs-CRP, TNF-α and IL-6 correlated with the LVMI (P<0.05), but only hs-CRP correlated with the loss of function of the heart in the haemodialysis patients (P<0.05). The microinflammatory state may be closely associated with the structural and functional impairment of the heart in MHD patients. PMID:24137221

  15. Models of Plumes: Their Flow, Their Geometric Spreading, and Their Mixing with Interplume Flow

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.

    1998-01-01

    There are two types of plume flow models: (1) 1D models using ad hoc spreading functions, f(r); (2) MagnetoHydroDynamics (MHD) models. 1D models can be multifluid, time dependent, and incorporate very general descriptions of the energetics. They confirm empirical results that plume flow is slow relative to requirements for high speed wind. But, no published 1 D model incorporates the rapid local spreading at the base (fl(r)) which has an important effect on mass flux. The one published MHD model is isothermal, but confirms that if b=8*pi*p/absolute value(B)2<

  16. Nonlinear MHD Waves in a Prominence Foot

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.

    2015-11-01

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  17. Optimal Control Techniques for ResistiveWall Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Clement, Mitchell Dobbs Pearson

    Tokamaks can excite kink modes that can lock or nearly lock to the vacuum vessel wall, and whose rotation frequencies and growth rates vary in time but are generally inversely proportional to the magnetic flux diffusion time of the vacuum vessel wall. This magnetohydrodynamic (MHD) instability is pressure limiting in tokamaks and is called the Resistive Wall Mode (RWM). Future tokamaks that are expected to operate as fusion reactors will be required to maximize plasma pressure in order to maximize fusion performance. The DIII-D tokamak is equipped with electromagnetic control coils, both inside and outside of its vacuum vessel, which create magnetic fields that are small by comparison to the machine's equilibrium field but are able to dynamically counteract the RWM. Presently for RWM feedback, DIII-D uses its interior control coils using a classical proportional gain only controller to achieve high plasma pressure. Future advanced tokamak designs will not likely have the luxury of interior control coils and a proportional gain algorithm is not expected to be effective with external control coils. The computer code VALEN was designed to calculate the performance of an MHD feedback control system in an arbitrary geometry. VALEN models the perturbed magnetic field from a single MHD instability and its interaction with surrounding conducting structures using a finite element approach. A linear quadratic gaussian (LQG) control, or H 2 optimal control, algorithm based on the VALEN model for RWM feedback was developed for use with DIII-D's external control coil set. The algorithm is implemented on a platform that combines a graphics processing unit (GPU) for real-time control computation with low latency digital input/output control hardware and operates in parallel with the DIII-D Plasma Control System (PCS). Simulations and experiments showed that modern control techniques performed better, using 77% less current, than classical techniques when using coils external to the vacuum vessel for RWM feedback. RWM feedback based on VALEN outperformed a classical control algorithm using external coils to suppress the normalized plasma response to a rotating n=1 perturbation applied by internal coils over a range of frequencies. This study describes the design, development and testing of the GPU based control hardware and algorithm along with its performance during experiment and simulation.

  18. The Selective Centrifugation Ensures a Better In Vitro Isolation of ASCs and Restores a Soft Tissue Regeneration In Vivo.

    PubMed

    De Francesco, Francesco; Guastafierro, Antonio; Nicoletti, Gianfranco; Razzano, Sergio; Riccio, Michele; Ferraro, Giuseppe A

    2017-05-12

    Autologous fat grafting procedures in plastic surgery have been extensively used to reinforce soft tissue in congenital or acquired tissue impairments. With this background, the aim of this study is firstly to examine the impact of a selective centrifugation on existing adipose stem cells (ASCs) in terms of stemness profile maintenance and, secondly, to investigate the effect of restoring volume in reconstruction on patients affected by soft tissue damage. After centrifugation, the fat graft products were separated into two layers and subsequently examined in vitro for the expression of CD34, CD90, CD117, CD105, CD29, CD31, CD44, CD73, CD133, CD14 and CD45 markers by flow cytometry and gene expression analyses were performed for Sox2, WNT3A, END, CD44, FUT4, COLL1, CTNNB1, hbEGF, KRTLG, MMP2 and VIM genes. The results showed that in the middle-high density (MHD) layer there was a peak concentration of ASCs, compared to another layer obtained after centrifugation. Research carried out on patients under treatment for soft tissue regeneration using cells obtained from MHD layer selection will be fundamental in comparative analysis. These studies will lead to an adequate standardization of outcomes, provided that treatment is performed through cell selection. Therefore, a unique procedure in tissue reconstruction and regeneration through fat grafting is presented here.

  19. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d{sub i} to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeledmore » as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I{sub tor}/I{sub inj}) and formation time τ{sub f} demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I{sub tor}/I{sub inj}) and exhibits much a longer τ{sub f}. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.« less

  20. On the generation of magnetohydrodynamic waves in a stratified and magnetized fluid. II - Magnetohydrodynamic energy fluxes for late-type stars

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Rosner, R.

    1988-01-01

    Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.

  1. Numerical and experimental investigation of plasma plume deflection with MHD flow control

    NASA Astrophysics Data System (ADS)

    Kai, ZHAO; Feng, LI; Baigang, SUN; Hongyu, YANG; Tao, ZHOU; Ruizhi, SUN

    2018-04-01

    This paper presents a composite magneto hydrodynamics (MHD) method to control the low-temperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an aeroengine. The principle of plasma flow with MHD control is analyzed. The feasibility of plasma jet deflection is investigated using numerical simulation with MHD control by loading the User-Defined Function model. A test rig with plasma flow controlled by MHD is established. An alkali salt compound with a low ionization energy is injected into combustion gas to obtain the low-temperature plasma flow. Finally, plasma plume deflection is obtained in different working conditions. The results demonstrate that plasma plume deflection with MHD control can be realized via numerical simulation. A low-temperature plasma flow can be obtained by injecting an alkali metal salt compound with low ionization energy into a combustion gas at 1800–2500 K. The vector angle of plasma plume deflection increases with the increase of gas temperature and the magnetic field intensity. It is feasible to realize the aim of the thrust vector of aeroengine by using MHD to control plasma flow deflection.

  2. Nonlinear Two Fluid and Kinetic ELM Simulations

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.; Sugiyama, L.; Chang, C. S.; Ku, S.; Hientzsch, B.; Breslau, J.; Park, W.; Samtaney, R.; Adams, M.; Jardin, S.

    2006-04-01

    Simulations of ELMs using dissipative MHD, two fluid MHD, and neoclassical kinetic physics models are being carried out using the M3D code [1]. Resistive MHD simulations of nonlinear edge pressure and current driven instabilities have been performed, initialized with realistic DIIID equilibria. Simulations show the saturation of the modes and relaxation of equilbrium profiles. Linear simulations including two fluid effects show the stabilization of toroidal mode number n = 10 modes, when the Hall parameter H, the ratio of ion skin depth to major radius, exceeds a threshhold. Nonlinear simulations are being done including gyroviscous stabilization. Kinetic effects are incorporated by coupling with the XGC code [2], which is able to simulate the edge plasma density and pressure pedestal buildup. These profiles are being used to initialize M3D simulations of an ELM crash and pedestal relaxation. The goal is to simulate an ELM cycle. [1] Park, W., Belova, E.V., Fu, G.Y., Tang, X.Z., Strauss, H.R., Sugiyama, L.E., Phys. Plas. 6, 1796 (1999).[2] Chang, C.S., Ku, S., and Weitzner, H., Phys. Plas. 11, 2649 (2004)

  3. Experimental and theoretical study of magnetohydrodynamic ship models.

    PubMed

    Cébron, David; Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe

    2017-01-01

    Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.

  4. Coupled Kinetic-MHD Simulations of Divertor Heat Load with ELM Perturbations

    NASA Astrophysics Data System (ADS)

    Cummings, Julian; Chang, C. S.; Park, Gunyoung; Sugiyama, Linda; Pankin, Alexei; Klasky, Scott; Podhorszki, Norbert; Docan, Ciprian; Parashar, Manish

    2010-11-01

    The effect of Type-I ELM activity on divertor plate heat load is a key component of the DOE OFES Joint Research Target milestones for this year. In this talk, we present simulations of kinetic edge physics, ELM activity, and the associated divertor heat loads in which we couple the discrete guiding-center neoclassical transport code XGC0 with the nonlinear extended MHD code M3D using the End-to-end Framework for Fusion Integrated Simulations, or EFFIS. In these coupled simulations, the kinetic code and the MHD code run concurrently on the same massively parallel platform and periodic data exchanges are performed using a memory-to-memory coupling technology provided by EFFIS. The M3D code models the fast ELM event and sends frequent updates of the magnetic field perturbations and electrostatic potential to XGC0, which in turn tracks particle dynamics under the influence of these perturbations and collects divertor particle and energy flux statistics. We describe here how EFFIS technologies facilitate these coupled simulations and discuss results for DIII-D, NSTX and Alcator C-Mod tokamak discharges.

  5. Experimental and theoretical study of magnetohydrodynamic ship models

    PubMed Central

    Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe

    2017-01-01

    Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques. PMID:28665941

  6. Stabilizing Effect of Resistivity towards ELM-free H-mode Discharge in Lithium-conditioned NSTX

    NASA Astrophysics Data System (ADS)

    Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh

    2016-10-01

    The stabilizing effect of edge resistivity on the edge localized modes (ELMs) has been recently recovered through analyzing NSTX experimental profiles of Lithium-conditioned ELM-free H-mode discharge. Comparative studies of ELM-free and a reference NSTX ELMy-H mode equilibriums have been performed using both resistive and 2-fluid MHD models implemented in the initial value extended MHD code NIMROD. Our results indicate that in addition to the pedestal profile refinement in electron pressure, the inclusion of enhanced resistivity due to the increase in the effective electric charge number Zeff, which is observed after Lithium-conditioning in experiment, is further required to account for the full stabilization of the low- n edge localized modes. Such a stabilization from the enhanced edge resistivity only becomes effective when the two-fluid diamagnetic and finite-Larmor-radius (FLR) effects are considered in the MHD model. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of the Chinese Academy of Sciences.

  7. Fitting Flux Ropes to a Global MHD Solution: A Comparison of Techniques. Appendix 1

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Linker, J. A.; Lionello, R.; Mikic, Z.; Odstrcil, D.; Hidalgo, M. A.; Cid, C.; Hu, Q.; Lepping, R. P.; Lynch, B. J.

    2004-01-01

    Flux rope fitting (FRF) techniques are an invaluable tool for extracting information about the properties of a subclass of CMEs in the solar wind. However, it has proven difficult to assess their accuracy since the underlying global structure of the CME cannot be independently determined from the data. In contrast, large-scale MHD simulations of CME evolution can provide both a global view as well as localized time series at specific points in space. In this study we apply 5 different fitting techniques to 2 hypothetical time series derived from MHD simulation results. Independent teams performed the analysis of the events in "blind tests", for which no information, other than the time series, was provided. F rom the results, we infer the following: (1) Accuracy decreases markedly with increasingly glancing encounters; (2) Correct identification of the boundaries of the flux rope can be a significant limiter; and (3) Results from techniques that infer global morphology must be viewed with caution. In spite of these limitations, FRF techniques remain a useful tool for describing in situ observations of flux rope CMEs.

  8. Coupled Kelvin-Helmholtz and Tearing Mode Instabilities at the Mercury's Magnetopause

    NASA Astrophysics Data System (ADS)

    Ivanovski, S. L.; Milillo, A.; Kartalev, M.; Massetti, S.

    2018-05-01

    A MHD approach for numerical simulations of coupled Kelvin-Helmholtz and tearing mode instabilities has been applied to Mercury’s magnetopause and used to perform a physical parameters study constrained by the MESSENGER data.

  9. A nuclear driven metallic vapor MHD coupled with MPD thrusters

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim; Kumar, Ratan

    1991-01-01

    Nuclear energy as a source of power for space missions, represents an enabling technology for advanced and ambitious space applications. Nuclear fuel in a gaseous or liquid form has been configured as a promising and practical candidate in this regard. The present study investigates and performs a feasibility analysis of an innovative concept for space power generation and propulsion. The system embodies a conceptual nuclear reactor with an MHD generator and coupled to MPD thrusters. The reactor utilizes liquid uranium in droplet form as fuel and superheated metallic vapor as the working fluid. This ultrahigh temperature vapor core reactor brings forward varied and challenging technical issues, and it has been addressed to in this paper. A parametric study of the conceived system has been performed in a qualitative and quantitative manner. Preliminary results show enough promise for further indepth analysis of this novel system.

  10. An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Han, Jianqiang; Tang, Huazhong

    2007-01-01

    This paper presents an adaptive moving mesh algorithm for two-dimensional (2D) ideal magnetohydrodynamics (MHD) that utilizes a staggered constrained transport technique to keep the magnetic field divergence-free. The algorithm consists of two independent parts: MHD evolution and mesh-redistribution. The first part is a high-resolution, divergence-free, shock-capturing scheme on a fixed quadrangular mesh, while the second part is an iterative procedure. In each iteration, mesh points are first redistributed, and then a conservative-interpolation formula is used to calculate the remapped cell-averages of the mass, momentum, and total energy on the resulting new mesh; the magnetic potential is remapped to the new mesh in a non-conservative way and is reconstructed to give a divergence-free magnetic field on the new mesh. Several numerical examples are given to demonstrate that the proposed method can achieve high numerical accuracy, track and resolve strong shock waves in ideal MHD problems, and preserve divergence-free property of the magnetic field. Numerical examples include the smooth Alfvén wave problem, 2D and 2.5D shock tube problems, two rotor problems, the stringent blast problem, and the cloud-shock interaction problem.

  11. A fibre positioner solution for the 4MOST instrument

    NASA Astrophysics Data System (ADS)

    Lang-Bardl, Florian; Bender, Ralf; Grupp, Frank; Häuser, Marco; Hess, Hans-Joachim; Junk, Veronika; Kosyra, Ralf; Muschielok, Bernard; Richter, Josef; Schlichter, Jörg; Schwab, Christoph

    2012-09-01

    4MOST1 is a multi object spectrograph facility for ESO's NTT or VISTA telescope. 4MOST is one of the two projects selected for a conceptual design study by ESO. The 4MOST instrument will be able to position < 1500 fibres in the focal plane and collect spectra in a high resolution (R=20000)2 and a low resolution (R=5000) mode (HRM, LRM). The spectral coverage for the LRM is 400-900 nm, the HRM covers 390-459 nm and 564-676 nm. We will present one of the possible positioner designs and first tests of some components for the focal plane array. The design follows the LAMOST3 positioner and has two rotational axes to move the fibre inside the patrol disc. Each axis consists of a stepper motor attached to micro harmonic drive (MHD). The small outer dimensions and high gear ratios of the MHD-stepper motor package, makes them perfectly suitable for our application. The MHD is also backlash free and self-locking what gives us the opportunity to minimize power consumption and heat dissipation during observation without loosing the position of the fibre on sky. The control electronics will also be miniaturized and part of the positioner unit.

  12. Enhancing Understanding of Magnetized High Energy Density Plasmas from Solid Liner Implosions Using Fluid Modeling with Kinetic Closures

    NASA Astrophysics Data System (ADS)

    Masti, Robert; Srinivasan, Bhuvana; King, Jacob; Stoltz, Peter; Hansen, David; Held, Eric

    2017-10-01

    Recent results from experiments and simulations of magnetically driven pulsed power liners have explored the role of early-time electrothermal instability in the evolution of the MRT (magneto-Rayleigh-Taylor) instability. Understanding the development of these instabilities can lead to potential stabilization mechanisms; thereby providing a significant role in the success of fusion concepts such as MagLIF (Magnetized Liner Inertial Fusion). For MagLIF the MRT instability is the most detrimental instability toward achieving fusion energy production. Experiments of high-energy density plasmas from wire-array implosions have shown the requirement for more advanced physics modeling than that of ideal magnetohydrodynamics. The overall focus of this project is on using a multi-fluid extended-MHD model with kinetic closures for thermal conductivity, resistivity, and viscosity. The extended-MHD model has been updated to include the SESAME equation-of-state tables and numerical benchmarks with this implementation will be presented. Simulations of MRT growth and evolution for MagLIF-relevant parameters will be presented using this extended-MHD model with the SESAME equation-of-state tables. This work is supported by the Department of Energy Office of Science under Grant Number DE-SC0016515.

  13. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles (POSTPRINT)

    DTIC Science & Technology

    2005-10-06

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF...dense plasma focus (DPF) fusion power and propulsion technology, with advanced waverider-like airframe configurations utilizing air-breathing MHD

  14. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  15. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  16. MHD program plan, FY 1991

    NASA Astrophysics Data System (ADS)

    1990-10-01

    The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.

  17. Parametric study of potential early commercial power plants Task 3-A MHD cost analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.

  18. TRANSITION FROM KINETIC TO MHD BEHAVIOR IN A COLLISIONLESS PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.

    The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag–Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the questionmore » of interest by examining several different indicators of MHD-like behavior.« less

  19. Nonlocality and the critical Reynolds numbers of the minimum state magnetohydrodynamic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Ye; Oughton, Sean

    2011-07-15

    Magnetohydrodynamic (MHD) systems can be strongly nonlinear (turbulent) when their kinetic and magnetic Reynolds numbers are high, as is the case in many astrophysical and space plasma flows. Unfortunately these high Reynolds numbers are typically much greater than those currently attainable in numerical simulations of MHD turbulence. A natural question to ask is how can researchers be sure that their simulations have reproduced all of the most influential physics of the flows and magnetic fields? In this paper, a metric is defined to indicate whether the necessary physics of interest has been captured. It is found that current computing resourcesmore » will typically not be sufficient to achieve this minimum state metric.« less

  20. The effects of the aqueous extract and residue of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet.

    PubMed

    Xu, Ping; Ying, Le; Hong, Gaojie; Wang, Yuefei

    2016-01-01

    Matcha is a kind of powdered green tea produced by grinding with a stone mill. In the present study, the preventive effects of the aqueous extract (water-soluble) and residue (water-insoluble) of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet were investigated. Mice were fed seven different experimental diets for 4 weeks: a normal diet control (NC), a high-fat diet (HF), a high-fat diet with 0.025% Matcha (MLD), a high-fat diet with 0.05% Matcha (MMD), a high-fat diet with 0.075% Matcha (MHD), a high-fat diet with 0.05% Matcha aqueous extracts (ME), and a high-fat diet with 0.05% Matcha residues (MR). It was found that serum total cholesterol (TC) and triglyceride (TG) levels of the MHD group were significantly decreased compared to those of the HF group. Furthermore, in the MHD group, the level of high-density lipoprotein-cholesterol (HDL-C) was elevated, on the contrary the level of low-density lipoprotein-cholesterol (LDL-C) was suppressed. Moreover, Matcha could significantly lower the blood glucose levels, and improve the superoxide dismutase (SOD) activity and malondialdehyde (MAD) contents both in serum and liver; besides, the serum GSH-Px activity indicated that the oxidative stress caused by HF could be reversed by administration of Matcha. These findings suggest that Matcha has beneficial effects through the suppression of the blood glucose (BG) accumulation and promotion of the lipid metabolism and antioxidant activities. Moreover, the water-insoluble part of Matcha is suggested to play an important role in the suppression of diet-induced high levels of lipid and glucose.

  1. Resistive MHD Stability Analysis in Near Real-time

    NASA Astrophysics Data System (ADS)

    Glasser, Alexander; Kolemen, Egemen

    2017-10-01

    We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.

  2. Parametric study of potential early commercial MHD power plants. Task 3: Parameter variation of plant size

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    Plants with a nominal output of 200 and 500 MWe and conforming to the same design configuration as the Task II plant were investigated. This information is intended to permit an assessment of the competitiveness of first generation MHD/steam plants with conventional steam plants over the range of 200 to 1000 MWe. The results show that net plant efficiency of the MHD plant is significantly higher than a conventional steam plant of corresponding size. The cost of electricity is also less for the MHD plant over the entire plant size range. As expected, the cost differential is higher for the larger plant and decreases with plant size. Even at the 200 MWe capacity, however, the differential in COE between the MHD plant and the conventional plant is sufficient attractive to warrant serious consideration. Escalating fuel costs will enhance the competitive position of MHD plants because they can utilize the fuel more efficiently than conventional steam plants.

  3. The distinguishing signature of magnetic Penrose process

    NASA Astrophysics Data System (ADS)

    Dadhich, Naresh; Tursunov, Arman; Ahmedov, Bobomurat; Stuchlík, Zdeněk

    2018-07-01

    In this Letter, we wish to point out that the distinguishing feature of magnetic Penrose process (MPP) is its super high-efficiency exceeding 100 per cent (which was established in mid 1980s for discrete particle accretion) of extraction of rotational energy of a rotating black hole electromagnetically for a magnetic field of milli Gauss order. Another similar process, which is also driven by the electromagnetic field, is Blandford-Znajek mechanism (BZ) that could be envisaged as high magnetic field limit MPP as it requires threshold magnetic field of order 104 G. Recent simulation studies of fully relativistic magnetohydrodynamic (MHD) flows have borne out super high-efficiency signature of the process for high magnetic field regime; viz BZ. We would like to make a clear prediction that similar simulation studies of MHD flows for low magnetic field regime, where BZ would be inoperative, would also have superefficiency.

  4. Ceramic component for electrodes

    DOEpatents

    Marchant, David D.

    1979-01-01

    A ceramic component suitable for preparing MHD generator electrodes consists of HfO.sub.2 and sufficient Tb.sub.4 O.sub.7 to stabilize at least 60 volume percent of the HfO.sub.2 into the cubic structure. The ceramic component may also contain a small amount of PrO.sub.2, Yb.sub.2 O.sub.3 or a mixture of both to improve stability and electronic conductivity of the electrode. The component is highly resistant to corrosion by molten potassium seed and molten coal slag in the MHD fluid and exhibits both ionic and electronic conductivity.

  5. Engineering support for magnetohydrodynamic power plant analysis and design studies

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.

    1980-01-01

    The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.

  6. Alpha-driven magnetohydrodynamics (MHD) and MHD-induced alpha loss in the Tokamak Fusion Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Z.; Nazikian, R.; Fu, G.Y.

    1997-02-01

    Alpha-driven toroidal Alfven eigenmodes (TAEs) are observed as predicted by theory in the post neutral beam phase in high central q (safety factor) deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR). The mode location, poloidal structure and the importance of q profile for TAE instability are discussed. So far no alpha particle loss due to these modes was detected due to the small mode amplitude. However, alpha loss induced by kinetic ballooning modes (KBMs) was observed in high confinement D-T discharges. Particle orbit simulation demonstrates that the wave-particle resonant interaction can explain the observed correlation between the increasemore » in alpha loss and appearance of multiple high-n (n {ge} 6, n is the toroidal mode number) modes.« less

  7. Two-dimensional vacuum ultraviolet images in different MHD events on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zhijun, WANG; Xiang, GAO; Tingfeng, MING; Yumin, WANG; Fan, ZHOU; Feifei, LONG; Qing, ZHUANG; EAST Team

    2018-02-01

    A high-speed vacuum ultraviolet (VUV) imaging telescope system has been developed to measure the edge plasma emission (including the pedestal region) in the Experimental Advanced Superconducting Tokamak (EAST). The key optics of the high-speed VUV imaging system consists of three parts: an inverse Schwarzschild-type telescope, a micro-channel plate (MCP) and a visible imaging high-speed camera. The VUV imaging system has been operated routinely in the 2016 EAST experiment campaign. The dynamics of the two-dimensional (2D) images of magnetohydrodynamic (MHD) instabilities, such as edge localized modes (ELMs), tearing-like modes and disruptions, have been observed using this system. The related VUV images are presented in this paper, and it indicates the VUV imaging system is a potential tool which can be applied successfully in various plasma conditions.

  8. Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case

    NASA Astrophysics Data System (ADS)

    Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan

    2017-04-01

    Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.

  9. 3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field

    NASA Astrophysics Data System (ADS)

    Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.

    1999-11-01

    The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.

  10. MODELING STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS THROUGH DIRECT NUMERICAL SIMULATIONS OF 3D-MHD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malapaka, Shiva Kumar; Mueller, Wolf-Christian

    Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of themore » observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.« less

  11. Sun-to-Earth MHD Simulation of the 2000 July 14 “Bastille Day” Eruption

    NASA Astrophysics Data System (ADS)

    Török, Tibor; Downs, Cooper; Linker, Jon A.; Lionello, R.; Titov, Viacheslav S.; Mikić, Zoran; Riley, Pete; Caplan, Ronald M.; Wijaya, Janvier

    2018-03-01

    Solar eruptions are the main driver of space-weather disturbances at Earth. Extreme events are of particular interest, not only because of the scientific challenges they pose, but also because of their possible societal consequences. Here we present a magnetohydrodynamic (MHD) simulation of the 2000 July 14 “Bastille Day” eruption, which produced a very strong geomagnetic storm. After constructing a “thermodynamic” MHD model of the corona and solar wind, we insert a magnetically stable flux rope along the polarity inversion line of the eruption’s source region and initiate the eruption by boundary flows. More than 1033 erg of magnetic energy is released in the eruption within a few minutes, driving a flare, an extreme-ultraviolet wave, and a coronal mass ejection (CME) that travels in the outer corona at ≈1500 km s‑1, close to the observed speed. We then propagate the CME to Earth, using a heliospheric MHD code. Our simulation thus provides the opportunity to test how well in situ observations of extreme events are matched if the eruption is initiated from a stable magnetic equilibrium state. We find that the flux-rope center is very similar in character to the observed magnetic cloud, but arrives ≈8.5 hr later and ≈15° too far to the north, with field strengths that are too weak by a factor of ≈1.6. The front of the flux rope is highly distorted, exhibiting localized magnetic field concentrations as it passes 1 au. We discuss these properties with regard to the development of space-weather predictions based on MHD simulations of solar eruptions.

  12. SUN-TO-EARTH MHD SIMULATION OF THE 14 JULY 2000 "BASTILLE DAY" ERUPTION.

    PubMed

    Török, Tibor; Downs, Cooper; Linker, Jon A; Lionello, R; Titov, Viacheslav S; Mikić, Zoran; Riley, Pete; Caplan, Ronald M; Wijaya, Janvier

    2018-03-20

    Solar eruptions are the main driver of space-weather disturbances at the Earth. Extreme events are of particular interest, not only because of the scientific challenges they pose, but also because of their possible societal consequences. Here we present a magnetohydrodynamic (MHD) simulation of the 14 July 2000 "Bastille Day" eruption, which produced a very strong geomagnetic storm. After constructing a "thermodynamic" MHD model of the corona and solar wind, we insert a magnetically stable flux rope along the polarity inversion line of the eruption's source region and initiate the eruption by boundary flows. More than 10 33 ergs of magnetic energy are released in the eruption within a few minutes, driving a flare, an EUV wave, and a coronal mass ejection (CME) that travels in the outer corona at ≈1500 km s -1 , close to the observed speed. We then propagate the CME to Earth, using a heliospheric MHD code. Our simulation thus provides the opportunity to test how well in situ observations of extreme events are matched if the eruption is initiated from a stable magnetic-equilibrium state. We find that the flux-rope center is very similar in character to the observed magnetic cloud, but arrives ≈8.5 hours later and ≈ 15° too far to the North, with field strengths that are too weak by a factor of ≈ 1.6. The front of the flux rope is highly distorted, exhibiting localized magnetic-field concentrations as it passes 1 AU. We discuss these properties with regard to the development of space-weather predictions based on MHD simulations of solar eruptions.

  13. Long Pulse Operation on Tore-Supra: Towards Steady State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, P.; Bucalossi, J.; Brosset, C.

    The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long-duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non-inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non-inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch.

  14. An Analysis of Processes in the Solar Wind in a Thin Layer Adjacent to the Front of the Shock Wave

    NASA Astrophysics Data System (ADS)

    Molotkov, I. A.; Atamaniuk, B.

    2018-05-01

    A two-dimensional stationary system of nonlinear magnetohydrodynamics (MHD) equations in a thin layer adjoining the front of the interplanetary shock wave has been solved. Previously, any available publications relied on linear transport equations. But the presence of high-energy particles in the solar wind (SW) requires taking into account the processes of self-interaction. Our analysis examines the nonlinear terms in the MHD equations. A solution has been constructed for three cases: (1) in the absence of magnetic reconnections; (2) for magnetic reconnections; and (3) with the simultaneous action of reconnections and junction of magnetic islands. In all three cases, expressions were found for the main parameters of the SW. The results obtained on the basis of the solution of the MHD equations are consistent with the conclusions based on the investigation of the particle velocity distribution functions. This makes it possible to confirm the previously established fraction of particles excited to energies above 1 MeV.

  15. Behavior of MHD Instabilities of the Large Helical Device near the Effective Plasma Boundary in the Magnetic Stochastic Region

    NASA Astrophysics Data System (ADS)

    Ohdachi, S.; Suzuki, Y.; Sakakibara, S.; Watanabe, K. Y.; Ida, K.; Goto, M.; Du, X. D.; Narushima, Y.; Takemura, Y.; Yamada, H.

    In the high beta experiments of the Large Helical Device (LHD), the plasma tends to expand from the last closed flux surface (LCFS) determined by the vacuum magnetic field. The pressure/temperature gradient in the external region is finite. The scale length of the pressure profile does not change so much even when the mean free path of electrons exceeds the connection length of the magnetic field line to the wall. There appear MHD instabilities with amplitude of 10-4 of the toroidal magnetic field. From the mode number of the activities (m/n = 2/3, 1/2, 2/4), the location of the corresponding rational surface is outside the vacuum LCFS. The location of the mode is consistent with the fluctuation measurement, e.g., soft X-ray detector arrays. The MHD mode localized in the magnetic stochastic region is affected by the magnetic field structure estimated by the connection length to the wall using 3D equilibrium calculation.

  16. Scalable Parallel Computation for Extended MHD Modeling of Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Glasser, Alan H.

    2008-11-01

    Parallel solution of a linear system is scalable if simultaneously doubling the number of dependent variables and the number of processors results in little or no increase in the computation time to solution. Two approaches have this property for parabolic systems: multigrid and domain decomposition. Since extended MHD is primarily a hyperbolic rather than a parabolic system, additional steps must be taken to parabolize the linear system to be solved by such a method. Such physics-based preconditioning (PBP) methods have been pioneered by Chac'on, using finite volumes for spatial discretization, multigrid for solution of the preconditioning equations, and matrix-free Newton-Krylov methods for the accurate solution of the full nonlinear preconditioned equations. The work described here is an extension of these methods using high-order spectral element methods and FETI-DP domain decomposition. Application of PBP to a flux-source representation of the physics equations is discussed. The resulting scalability will be demonstrated for simple wave and for ideal and Hall MHD waves.

  17. Hall-MHD simulations of the magnetosphere-northward solar wind interface : the Kelvin-Helmholtz instability as an entry mechanism for the solar wind through mixing and reconnections

    NASA Astrophysics Data System (ADS)

    Leroy, Matthieu; Keppens, Rony

    2016-04-01

    The transfer of matter from the solar-wind to the Earth's magnetosphere during southward solar wind is mostly well understood but the processes governing the same phenomenon during northward solar wind remains to be fully apprehended. Numerous numerical studies have investigated the topic with many interesting results but most of these were considering two-dimensional situations with simplified magnetic configuration and often neglecting the inhomogeneities for the sake of clarity. Given the typical parameters at the magnetosphere-solar wind interface, the situation must be considered in the frame of Hall-MHD, due to the fact that the current layers widths and the gradient lengths can be in the order of the ion inertial length. As a consequence of Hall-MHD creating a third vector component from two planar ones, and also because magnetic perturbations can affect the field configuration at a distance in all directions and not only locally, three-dimensional treatment is necessary. In this spirit three-dimensional simulations of a configuration approaching the conditions leading to the development of Kelvin-Helmholtz instabilities at the flank of the magnetosphere during northward oriented solar-wind are performed as means to study the entry of solar-wind matter into Earth's magnetic field. In the scope of assessing the effect of the Hall-term in the physical processes, the simulations are also performed in the MHD frame. Furthermore the influence of the density and velocity jump through the shear layer on the rate of mass entering the magnetosphere is explored. Indeed, depending on the exact values of the physical quantities, the Kelvin-Helmholtz instability may have to compete with secondary instabilities and the non-linear phase may exhibit vortex merging and large-scale structures reorganisation, creating very different mixing layers, or generate different reconnection sites, locally and at a distance. These different configurations may have discernible signatures that can be identified by spacecraft diagnostics.

  18. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    PubMed

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  19. Pressure profiles of plasmas confined in the field of a dipole magnet

    NASA Astrophysics Data System (ADS)

    Davis, Matthew Stiles

    Understanding the maintenance and stability of plasma pressure confined by a strong magnetic field is a fundamental challenge in both laboratory and space plasma physics. Using magnetic and X-ray measurements on the Levitated Dipole Experiment (LDX), the equilibrium plasma pressure has been reconstructed, and variations of the plasma pressure for different plasma conditions have been examined. The relationship of these profiles to the magnetohydrodynamic (MHD) stability limit, and to the enhanced stability limit that results from a fraction of energetic trapped electrons, has been analyzed. In each case, the measured pressure profiles and the estimated fractional densities of energetic electrons were qualitatively consistent with expectations of plasma stability. LDX confines high temperature and high pressure plasma in the field of a superconducting dipole magnet. The strong dipole magnet can be either mechanically supported or magnetically levitated. When the dipole was mechanically supported, the plasma density profile was generally uniform while the plasma pressure was highly peaked. The uniform density was attributed to the thermal plasma being rapidly lost along the field to the mechanical supports. In contrast, the strongly peaked plasma pressure resulted from a fraction of energetic, mirror trapped electrons created by microwave heating at the electron cyclotron resonance (ECRH). These hot electrons are known to be gyrokinetically stabilized by the background plasma and can adopt pressure profiles steeper than the MHD limit. X-ray measurements indicated that this hot electron population could be described by an energy distribution in the range 50-100 keV. Combining information from the magnetic reconstruction of the pressure profile, multi-chord interferometer measurements of the electron density profile, and X-ray measurements of the hot electron energy distribution, the fraction of energetic electrons at the pressure peak was estimated to be ˜ 35% of the total electron population. When the dipole was magnetically levitated the plasma density increased substantially because particle losses to the mechanical supports were eliminated so particles could only be lost via slower cross-field transport processes. The pressure profile was observed to be broader during levitated operation than it was during supported operation, and the pressure appeared to be contained in both a thermal population and an energetic electron population. X-ray spectra indicated that the X-rays came from a similar hot electron population during levitated and supported operation; however, the hot electron fraction was an order of magnitude smaller during levitated operation (<3% of the total electron population). Pressure gradients for both supported and levitated plasmas were compared to the MHD limit. Levitated plasmas had pressure profiles that were (i) steeper than, (ii) shallower than, or (iii) near the MHD limit dependent on plasma conditions. However, those profiles that exceeded the MHD limit were observed to have larger fractions of energetic electrons. When the dipole magnet was supported, high pressure plasmas always had profiles that exceeded the MHD interchange stability limit, but the high pressure in these plasmas appeared to arise entirely from a population of energetic trapped electrons.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru; Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru

    The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reachingmore » high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10−40 to n = 3−20.« less

  1. MHD Turbulence and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much investigation, by greatly extending the statistical theory of ideal MHD turbulence. The mathematical details of broken ergodicity, in fact, give a quantitative explanation of how coherent structure, dynamic alignment and force-free states appear in turbulent magnetofluids. The relevance of these ideal results to real MHD turbulence occurs because broken ergodicity is most manifest in the ideal case at the largest length scales and it is in these largest scales that a real magnetofluid has the least dissipation, i.e., most closely approaches the behavior of an ideal magnetofluid. Furthermore, the effects grow stronger when cross and magnetic helicities grow large with respect to energy, and this is exactly what occurs with time in a real magnetofluid, where it is called selective decay. The relevance of these results found in ideal MHD turbulence theory to the real world is that they provide at least a qualitative explanation of why confined turbulent magnetofluids, such as the liquid iron that fills the Earth's outer core, produce stationary, large-scale magnetic fields, i.e., the geomagnetic field. These results should also apply to other planets as well as to plasma confinement devices on Earth and in space, and the effects should be manifest if Reynolds numbers are high enough and there is enough time for stationarity to occur, at least approximately. In the presentation, details will be given for both theoretical and numerical results, and references will be provided.

  2. Extended MHD Modeling of Tearing-Driven Magnetic Relaxation

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua

    2016-10-01

    Driven plasma pinch configurations are characterized by the gradual accumulation and episodic release of free energy in discrete relaxation events. The hallmark of this relaxation in a reversed-field pinch (RFP) plasma is flattening of the parallel current density profile effected by a fluctuation-induced dynamo emf in Ohm's law. Nonlinear two-fluid modeling of macroscopic RFP dynamics has shown appreciable coupling of magnetic relaxation and the evolution of plasma flow. Accurate modeling of RFP dynamics requires the Hall effect in Ohm's law as well as first order ion finite Larmor radius (FLR) effects, represented by the Braginskii ion gyroviscous stress tensor. New results find that the Hall dynamo effect from < J × B > / ne can counter the MHD effect from - < V × B > in some of the relaxation events. The MHD effect dominates these events and relaxes the current profile toward the Taylor state, but the opposition of the two dynamos generates plasma flow in the direction of equilibrium current density, consistent with experimental measurements. Detailed experimental measurements of the MHD and Hall emf terms are compared to these extended MHD predictions. Tracking the evolution of magnetic energy, helicity, and hybrid helicity during relaxation identifies the most important contributions in single-fluid and two-fluid models. Magnetic helicity is well conserved relative to the magnetic energy during relaxation. The hybrid helicity is dominated by magnetic helicity in realistic low-beta pinch conditions and is also well conserved. Differences of less than 1 % between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution through ion FLR effects, which have not been included in contemporary relaxation theories. The kinetic energy driven by relaxation in the computations is dominated by velocity components perpendicular to the magnetic field, an effect that had not been predicted. Work performed at University of Wisconsin-Madison. LA-UR-16-24727.

  3. New methods and astrophysical applications of adaptive mesh fluid simulations

    NASA Astrophysics Data System (ADS)

    Wang, Peng

    The formation of stars, galaxies and supermassive black holes are among the most interesting unsolved problems in astrophysics. Those problems are highly nonlinear and involve enormous dynamical ranges. Thus numerical simulations with spatial adaptivity are crucial in understanding those processes. In this thesis, we discuss the development and application of adaptive mesh refinement (AMR) multi-physics fluid codes to simulate those nonlinear structure formation problems. To simulate the formation of star clusters, we have developed an AMR magnetohydrodynamics (MHD) code, coupled with radiative cooling. We have also developed novel algorithms for sink particle creation, accretion, merging and outflows, all of which are coupled with the fluid algorithms using operator splitting. With this code, we have been able to perform the first AMR-MHD simulation of star cluster formation for several dynamical times, including sink particle and protostellar outflow feedbacks. The results demonstrated that protostellar outflows can drive supersonic turbulence in dense clumps and explain the observed slow and inefficient star formation. We also suggest that global collapse rate is the most important factor in controlling massive star accretion rate. In the topics of galaxy formation, we discuss the results of three projects. In the first project, using cosmological AMR hydrodynamics simulations, we found that isolated massive star still forms in cosmic string wakes even though the mega-parsec scale structure has been perturbed significantly by the cosmic strings. In the second project, we calculated the dynamical heating rate in galaxy formation. We found that by balancing our heating rate with the atomic cooling rate, it gives a critical halo mass which agrees with the result of numerical simulations. This demonstrates that the effect of dynamical heating should be put into semi-analytical works in the future. In the third project, using our AMR-MHD code coupled with radiative cooling module, we performed the first MHD simulations of disk galaxy formation. We find that the initial magnetic fields are quickly amplified to Milky-Way strength in a self-regulated way with amplification rate roughly one e-folding per orbit. This suggests that Milky Way strength magnetic field might be common in high redshift disk galaxies. We have also developed AMR relativistic hydrodynamics code to simulate black hole relativistic jets. We discuss the coupling of the AMR framework with various relativistic solvers and conducted extensive algorithmic comparisons. Via various test problems, we emphasize the importance of resolution studies in relativistic flow simulations because extremely high resolution is required especially when shear flows are present in the problem. Then we present the results of 3D simulations of supermassive black hole jets propagation and gamma ray burst jet breakout. Resolution studies of the two 3D jets simulations further highlight the need of high resolutions to calculate accurately relativistic flow problems. Finally, to push forward the kind of simulations described above, we need faster codes with more physics included. We describe an implementation of compressible inviscid fluid solvers with AMR on Graphics Processing Units (GPU) using NVIDIA's CUDA. We show that the class of high resolution shock capturing schemes can be mapped naturally on this architecture. For both uniform and adaptive simulations, we achieve an overall speedup of approximately 10 times faster execution on one Quadro FX 5600 GPU as compared to a single 3 GHz Intel core on the host computer. Our framework can readily be applied to more general systems of conservation laws and extended to higher order shock capturing schemes. This is shown directly by an implementation of a magneto-hydrodynamic solver and comparing its performance to the pure hydrodynamic case.

  4. DISPATCH: a numerical simulation framework for the exa-scale era - I. Fundamentals

    NASA Astrophysics Data System (ADS)

    Nordlund, Åke; Ramsey, Jon P.; Popovas, Andrius; Küffmeier, Michael

    2018-06-01

    We introduce a high-performance simulation framework that permits the semi-independent, task-based solution of sets of partial differential equations, typically manifesting as updates to a collection of `patches' in space-time. A hybrid MPI/OpenMP execution model is adopted, where work tasks are controlled by a rank-local `dispatcher' which selects, from a set of tasks generally much larger than the number of physical cores (or hardware threads), tasks that are ready for updating. The definition of a task can vary, for example, with some solving the equations of ideal magnetohydrodynamics (MHD), others non-ideal MHD, radiative transfer, or particle motion, and yet others applying particle-in-cell (PIC) methods. Tasks do not have to be grid based, while tasks that are, may use either Cartesian or orthogonal curvilinear meshes. Patches may be stationary or moving. Mesh refinement can be static or dynamic. A feature of decisive importance for the overall performance of the framework is that time-steps are determined and applied locally; this allows potentially large reductions in the total number of updates required in cases when the signal speed varies greatly across the computational domain, and therefore a corresponding reduction in computing time. Another feature is a load balancing algorithm that operates `locally' and aims to simultaneously minimize load and communication imbalance. The framework generally relies on already existing solvers, whose performance is augmented when run under the framework, due to more efficient cache usage, vectorization, local time-stepping, plus near-linear and, in principle, unlimited OpenMP and MPI scaling.

  5. The Impact of Comorbid Mental Health Disorders on Complications Following Adult Spinal Deformity Surgery with Minimum 2-Year Surveillance.

    PubMed

    Diebo, Bassel G; Lavian, Joshua D; Murray, Daniel P; Liu, Shian; Shah, Neil V; Beyer, George A; Segreto, Frank A; Bloom, Lee; Vasquez-Montes, Dennis; Day, Louis M; Hollern, Douglas A; Horn, Samantha R; Naziri, Qais; Cukor, Daniel; Passias, Peter G; Paulino, Carl B

    2018-02-06

    Retrospective analysis OBJECTIVE.: To compare long-term outcomes between patients with and without mental health comorbidities who are undergoing surgery for adult spinal deformity (ASD). Recent literature reveals that one in three patients admitted for surgical treatment for ASD has comorbid mental health disorder. Currently, impacts of baseline mental health status on long-term outcomes following ASD surgery have not been thoroughly investigated. Patients admitted from 2009-2013 with diagnoses of ASD who underwent ≥4-level thoracolumbar fusion with minimum two-year follow-up were retrospectively reviewed using New York State's Statewide Planning and Research Cooperative System (SPARCS). Patients were stratified by fusion length (Short: 4-8-level; Long: ≥9 level). Patients with comorbid mental health disorder (MHD) at time of admission were selected for analysis (MHD) and compared against those without MHD (no-MHD). Univariate analysis compared demographics, complications, readmissions and revisions between cohorts for each fusion length. Multivariate binary logistic regression models identified independent predictors of outcomes (covariates: fusion length, age, female gender, and Deyo score). 6,020 patients (MHD: n = 1,631; no-MHD: n = 4,389) met inclusion criteria. Mental health diagnoses included disorders of depression (59.0%), sleep (28.0%), anxiety (24.0%), and stress (2.3%). At two-year follow-up, MHD patients with short fusion had significantly higher complication rates (p = 0.001). MHD patients with short or long fusion also had significantly higher rates of any readmission and revision (all p ≤ 0.002). Regression modeling revealed that comorbid MHD was a significant predictor of any complication (OR: 1.17, p = 0.01) and readmission (OR: 1.32, p < 0.001). MHD was the strongest predictor of any revision (OR: 1.56, p < 0.001). Long fusion most strongly predicted any complication (OR: 1.87, p < 0.001). ASD patients with comorbid depressive, sleep, anxiety, and stress disorders were more likely to experience surgical complications and revision at minimum of two years following spinal fusion surgery. Proper patient counseling and psychological screening/support is recommended to complement ASD treatment. 3.

  6. Transport and Dynamics in Toroidal Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, Dalton D

    2006-05-16

    This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for themore » magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD result. Computations performed with a non-local kinetic closure for parallel electron thermal conduction that is valid over all collisionality regimes identify thermal diffusivity ratios of {chi}{sub ||}/{chi}{sub {perpendicular}} ~ 10{sup 7} - 10{sup 8} as appropriate when using collisional heat flux modeling for these modes. Adding significant parallel viscosity proves to have little effect. Nonlinear ELM computations solve the resistive MHD model with toroidal resolution 0{<=}n{<=}21, including anisotropic thermal conduction, temperature-dependent resistivity, and number density evolution. The computations are based on a realistic equilibrium with high pedestal temperature from the linear study. When the simulated ELM grows to appreciable amplitude, ribbon-like thermal structures extend from the separatrix to the wall as the spectrum broadens about a peak at n=13. Analysis of the results finds the heat flux on the wall to be very nonuniform with greatest intensity occurring in spots on the top and bottom of the chamber. Net thermal energy loss occurs on a time-scale of 100 {micro}s, and the instantaneous loss rate exceeds 1 GW.« less

  7. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  8. Comparison of predictive estimates of high-latitude electrodynamics with observations of global-scale Birkeland currents

    NASA Astrophysics Data System (ADS)

    Anderson, Brian J.; Korth, Haje; Welling, Daniel T.; Merkin, Viacheslav G.; Wiltberger, Michael J.; Raeder, Joachim; Barnes, Robin J.; Waters, Colin L.; Pulkkinen, Antti A.; Rastaetter, Lutz

    2017-02-01

    Two of the geomagnetic storms for the Space Weather Prediction Center Geospace Environment Modeling challenge occurred after data were first acquired by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). We compare Birkeland currents from AMPERE with predictions from four models for the 4-5 April 2010 and 5-6 August 2011 storms. The four models are the Weimer (2005b) field-aligned current statistical model, the Lyon-Fedder-Mobarry magnetohydrodynamic (MHD) simulation, the Open Global Geospace Circulation Model MHD simulation, and the Space Weather Modeling Framework MHD simulation. The MHD simulations were run as described in Pulkkinen et al. (2013) and the results obtained from the Community Coordinated Modeling Center. The total radial Birkeland current, ITotal, and the distribution of radial current density, Jr, for all models are compared with AMPERE results. While the total currents are well correlated, the quantitative agreement varies considerably. The Jr distributions reveal discrepancies between the models and observations related to the latitude distribution, morphologies, and lack of nightside current systems in the models. The results motivate enhancing the simulations first by increasing the simulation resolution and then by examining the relative merits of implementing more sophisticated ionospheric conductance models, including ionospheric outflows or other omitted physical processes. Some aspects of the system, including substorm timing and location, may remain challenging to simulate, implying a continuing need for real-time specification.

  9. On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo

    2017-06-01

    We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfvén waves, and the tearing mode (TM) instability using the MHD code Aenus. By comparing the simulation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of TMs, we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast magnetosonic speed and wavelength are the characteristic velocity and length, respectively, ofmore » the aforementioned (relatively simple) systems. We also determine the dependence of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results, we infer the numerical resolution (as a function of the spatial reconstruction method) required to properly resolve the growth and saturation level of the magnetic field amplified by the magnetorotational instability in the post-collapsed core of massive stars. Our results show that it is most advantageous to resort to ultra-high-order methods (e.g., the ninth-order monotonicity-preserving method) to tackle this problem properly, in particular, in three-dimensional simulations.« less

  10. Magnetohydrodynamic Oscillations in the Solar Corona and Earth's Magnetosphere: Towards Consolidated Understanding

    NASA Astrophysics Data System (ADS)

    Nakariakov, V. M.; Pilipenko, V.; Heilig, B.; Jelínek, P.; Karlický, M.; Klimushkin, D. Y.; Kolotkov, D. Y.; Lee, D.-H.; Nisticò, G.; Van Doorsselaere, T.; Verth, G.; Zimovets, I. V.

    2016-04-01

    Magnetohydrodynamic (MHD) oscillatory processes in different plasma systems, such as the corona of the Sun and the Earth's magnetosphere, show interesting similarities and differences, which so far received little attention and remain under-exploited. The successful commissioning within the past ten years of THEMIS, Hinode, STEREO and SDO spacecraft, in combination with matured analysis of data from earlier spacecraft (Wind, SOHO, ACE, Cluster, TRACE and RHESSI) makes it very timely to survey the breadth of observations giving evidence for MHD oscillatory processes in solar and space plasmas, and state-of-the-art theoretical modelling. The paper reviews several important topics, such as Alfvénic resonances and mode conversion; MHD waveguides, such as the magnetotail, coronal loops, coronal streamers; mechanisms for periodicities produced in energy releases during substorms and solar flares, possibility of Alfvénic resonators along open field lines; possible drivers of MHD waves; diagnostics of plasmas with MHD waves; interaction of MHD waves with partly-ionised boundaries (ionosphere and chromosphere). The review is mainly oriented to specialists in magnetospheric physics and solar physics, but not familiar with specifics of the adjacent research fields.

  11. Accelerating 3D Hall MHD Magnetosphere Simulations with Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Bard, C.; Dorelli, J.

    2017-12-01

    The resolution required to simulate planetary magnetospheres with Hall magnetohydrodynamics result in program sizes approaching several hundred million grid cells. These would take years to run on a single computational core and require hundreds or thousands of computational cores to complete in a reasonable time. However, this requires access to the largest supercomputers. Graphics processing units (GPUs) provide a viable alternative: one GPU can do the work of roughly 100 cores, bringing Hall MHD simulations of Ganymede within reach of modest GPU clusters ( 8 GPUs). We report our progress in developing a GPU-accelerated, three-dimensional Hall magnetohydrodynamic code and present Hall MHD simulation results for both Ganymede (run on 8 GPUs) and Mercury (56 GPUs). We benchmark our Ganymede simulation with previous results for the Galileo G8 flyby, namely that adding the Hall term to ideal MHD simulations changes the global convection pattern within the magnetosphere. Additionally, we present new results for the G1 flyby as well as initial results from Hall MHD simulations of Mercury and compare them with the corresponding ideal MHD runs.

  12. Emission of magnetosound from MHD-unstable shear flow boundaries

    NASA Astrophysics Data System (ADS)

    Turkakin, H.; Rankin, R.; Mann, I. R.

    2016-09-01

    The emission of propagating MHD waves from the boundaries of flow channels that are unstable to the Kelvin-Helmholtz Instability (KHI) in magnetized plasma is investigated. The KHI and MHD wave emission are found to be two competing processes. It is shown that the fastest growing modes of the KHI surface waves do not coincide with efficient wave energy transport away from a velocity shear boundary. MHD wave emission is found to be inefficient when growth rates of KHI surface waves are maximum, which corresponds to the situation where the ambient magnetic field is perpendicular to the flow channel velocity vector. The efficiency of wave emission increases with increasing magnetic field tension, which in Earth's magnetosphere likely dominates along the nightside magnetopause tailward of the terminator, and within earthward Bursty Bulk Flows (BBFs) in the inner plasma sheet. MHD wave emission may also dominate in Supra-Arcade Downflows (SADs) in the solar corona. Our results suggest that efficient emission of propagating MHD waves along BBF and SAD boundaries can potentially explain observations of deceleration and stopping of BBFs and SADs.

  13. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics – Revisiting Perturbative Hybrid Kinetic-MHD Theory

    PubMed Central

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  14. [Output standard in the mental health services of Reggio Emilia, Italy. Methodological issues].

    PubMed

    Grassi, G

    2000-01-01

    The project Output Standards of the Mental Health Department (MHD) of Reggio Emilia is set out to define outputs and quality standards and to guarantee transparency and to facilitate organizational improvement. The MHD started an interprofessional working group that defined the MHD outputs as long as process, quality peculiarities, indicators and standards for each output. The MHD Director validated the group results. The MHD defined 9 outputs and its indicators and standards and consequently modified its data registration system, the way to supply free and partially charged services and budget indicators. As a result, a new instrument for management and quality control has been provided. The A. maintains that to define outputs, indicators and standards will allow to compare several services of the Department, get them omogeneous and guarantee and improve quality.

  15. Experimental identification of nonlinear coupling between (intermediate, small)-scale microturbulence and an MHD mode in the core of a superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Xu, L. Q.; Chen, R.; Li, Q.; Zhao, H. L.; Zhang, J. Z.; Shi, T. H.; Wang, Y. M.; Lyu, B.; Hu, L. Q.; Li, J.; The EAST Team

    2018-01-01

    In this paper, we present clear experimental evidence of core region nonlinear coupling between (intermediate, small)-scale microturbulence and an magnetohydrodynamics (MHD) mode during the current ramp-down phase in a set of L-mode plasma discharges in the experimental advanced superconducting tokamak (EAST, Wan et al (2006 Plasma Sci. Technol. 8 253)). Density fluctuations of broadband microturbulence (k\\perpρi˜2{-}5.2 ) and the MHD mode (toroidal mode number m = -1 , poloidal mode number n = 1 ) are measured simultaneously, using a four-channel tangential CO2 laser collective scattering diagnostic in core plasmas. The nonlinear coupling between the broadband microturbulence and the MHD mode is directly demonstrated by showing a statistically significant bicoherence and modulation of turbulent density fluctuation amplitude by the MHD mode.

  16. General Relativistic MHD Simulations of Jet Formation

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.

    2005-01-01

    We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.

  17. Theory-based model for the pedestal, edge stability and ELMs in tokamaks

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Bateman, G.; Brennan, D. P.; Schnack, D. D.; Snyder, P. B.; Voitsekhovitch, I.; Kritz, A. H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G. W.; Pacher, H. D.

    2006-04-01

    An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.

  18. MHD Stability of Axisymmetric Plasmas In Closed Line Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Simakov, Andrei N.; Catto, Peter J.; Ramos, Jesus J.; Hastie, R. J.

    2003-04-01

    The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study stability of pressure driven Alfvén modes. A point dipole is considered in detail to demonstrate that equilibria exist, which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated next for point dipole equilibria by means of resistive MHD theory.

  19. Analysis and gyrokinetic simulation of MHD Alfven wave interactions

    NASA Astrophysics Data System (ADS)

    Nielson, Kevin Derek

    The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the effect of wave amplitude upon the validity of our analytic solution, exploring the nature of strong turbulence. In the kinetic limit where k⊥ rhoi ≳ 1 where incompressible MHD is no longer a valid description, we illustrate how the nonlinear evolution departs from our analytic expression. The analytic theory we develop provides a framework from which more sophisticated of weak and strong inertial-range turbulence theories may be developed. Characterization of the limits of this theory may provide guidance in the development of kinetic Alfven wave turbulence.

  20. Scaling laws in magnetized plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldyrev, Stanislav

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features ofmore » MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar wind, solar corona heating, and planetary magnetospheres; strong MHD turbulence, which is relevant for fusion devices, star formation, cosmic rays acceleration, scattering and trapping in galaxies, as well as many aspects of dynamics, distribution and composition of space plasmas, and the process of magnetic dynamo action, which explains the generation and the structure of magnetic fields in turbulent plasmas. The planned work will aim at developing new analytic approaches, conducting new numerical simulations with currently unmatched resolution, and training students in the methods of the modern theory of plasma turbulence. The work will be performed at the University of Wisconsin--Madison.« less

  1. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  2. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-05

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  3. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  4. Advances towards high performance low-torque qmin > 2 operations with large-radius ITB on DIII-D

    NASA Astrophysics Data System (ADS)

    Xu, G. S.; Solomon, W. M.; Garofalo, A. M.; Ferron, J. R.; Hyatt, A. W.; Wang, Q.; Yan, Z.; McKee, G. R.; Holcomb, C. T.; EAST Team

    2015-11-01

    A joint DIII-D/EAST experiment was performed aimed at extending a fully noninductive scenario with high βP and qmin > 2 to inductive operation at lower torque and higher Ip (0.6 --> 0.8 MA) for better performance. Extremely high confinement was obtained, i.e., H98y2 ~ 2.1 at βN ~ 3, which was associated with a strong ITB at large minor radius (ρ ~ 0.7). Alfvén Eigenmodes and broadband turbulence were significantly suppressed in the core, and fast-ion confinement was improved. ITB collapses at 0.8 MA were induced by ELM-triggered n = 1 MHD modes at the ITB location, which is different from the ``relaxation oscillations'' associated with the steady-state plasmas at lower current (0.6 MA). This successful joint experiment may open up a new avenue towards high performance low-torque qmin > 2 plasmas with large-radius ITBs, which will be demonstrated on EAST in the near future. Work supported by NMCFSP 2015GB102000, 2015GB110001 and the US DOE under DE-AC02-09CH11466, DE-FC02-04ER54698, DE-FG02-89ER53296 and DE-AC52-07NA27344.

  5. Multi-Fluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms, Initial Results

    NASA Technical Reports Server (NTRS)

    Gkocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J. C.; Kistler, L. M.

    2010-01-01

    The magnetosphere contains a significant amount of ionospheric O{+}, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the BATS-R-US model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multi-fluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single- fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multi-fluid MHD model (with outflow) gives comparable results to the multi-species MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multi-species and multi-fluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H{+} and O(+}, which is not possible when utilizing the other techniques considered.

  6. Multifluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms-Initial Results

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J.-C.; Kistler, L. M.

    2009-01-01

    The magnetosphere contains a significant amount of ionospheric O+, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multifluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single-fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multifluid MHD model (with outflow) gives comparable results to the multispecies MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multispecies and multifluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H+ and O+, which is not possible when utilizing the other techniques considered

  7. Broken Ergodicity in MHD Turbulence in a Spherical Domain

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; wang, Yifan

    2011-01-01

    Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.

  8. Initial exploration of scenarios with Internal Transport Barrier in the first NBI-heated L-mode TCV plasmas

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Sauter, Olivier; Coda, Stefano; Merle, Antoine; Karpushov, Alexander; Pigatto, Leonardo; Bolzonella, Tommaso; Piovesan, Paolo; Vianello, Nicola; TCV Team; EUROfusion MST1 Team

    2016-10-01

    Fully non-inductive operation of high performance plasmas is one of the main objectives of contemporary Tokamak research. In this perspective, plasmas with Internal Transport Barriers (ITBs) are an attractive scenario, since they can attain a high fraction of bootstrap current. In this work we start exploring ITB scenarios on the Tokamak à Configuration Variable (TCV) heated by a newly available 1MW Neutral Beam Injector (NBI). Here we investigate for the first time in this device the impact of the additional NBI power on the performance and stability of L-mode plasmas with ITBs. Results of both experimental data analyses and ASTRA transport simulations are presented. The work examines also the Magneto Hydro-Dynamics (MHD) activity and stability of the explored plasmas. In particular, the role of plasma magnetic equilibrium parameters, such as plasma elongation and triangularity, on the sustainment of these NBI-heated ITB scenarios is discussed.

  9. Poloidal structure of the plasma response to n = 1 Resonant Magnetic Perturbations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Marrelli, L.; Bettini, P.; Piovesan, P.; Terranova, D.; Giannone, L.; Igochine, V.; Maraschek, M.; Suttrop, W.; Teschke, M.; Liu, Y. Q.; Ryan, D.; Eurofusion Mst1 Team; ASDEX Upgrade Team

    2017-10-01

    The hybrid scenario, a candidate for high-beta steady-state tokamak operations, becomes highly sensitive to 3D magnetic field near the no-wall limit. A predictive understanding of the plasma response to 3D fields near ideal MHD limits in terms of validated MHD stability codes is therefore important in order to safely operate future devices. Slowly rotating (5 - 10 Hz) n = 1 external magnetic fields have been applied in hybrid discharges in ASDEX Upgrade for an experimental characterization: the global n = 1 kink response has been measured by means of SXR and complete poloidal arrays of bθ probes located at different toroidal angles and compared to predictions of MHD codes such as MARS-F and V3FIT-VMEC. A Least-Squares Spectral Analysis approach has been developed together with a Monte Carlo technique to extract the small plasma response and its confidence interval from the noisy magnetic signals. MARS-F correctly reproduces the poloidal structure of the n = 1 measurements: for example, the dependence of the dominant poloidal mode number at the plasma edge from q95 is the same as in the experiment. Similar comparisons with V3FIT-VMEC and will be presented. See author list of ``H. Meyer et al. 2017 Nucl. Fusion 57 102014''.

  10. MHD stability analysis and global mode identification preparing for high beta operation in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Jiang, Y.; Ahn, J. H.; Han, H. S.; Bak, J. G.; Park, B. H.; Jeon, Y. M.; Kim, J.; Hahn, S. H.; Lee, J. H.; Ko, J. S.; in, Y. K.; Yoon, S. W.; Oh, Y. K.; Wang, Z.; Glasser, A. H.

    2017-10-01

    H-mode plasma operation in KSTAR has surpassed the computed n = 1 ideal no-wall stability limit in discharges exceeding several seconds in duration. The achieved high normalized beta plasmas are presently limited by resistive tearing instabilities rather than global kink/ballooning or RWMs. The ideal and resistive stability of these plasmas is examined by using different physics models. The observed m/ n = 2/1 tearing stability is computed by using the M3D-C1 code, and by the resistive DCON code. The global MHD stability modified by kinetic effects is examined using the MISK code. Results from the analysis explain the stabilization of the plasma above the ideal MHD no-wall limit. Equilibrium reconstructions used include the measured kinetic profiles and MSE data. In preparation for plasma operation at higher beta utilizing the planned second NBI system, three sets of 3D magnetic field sensors have been installed and will be used for RWM active feedback control. To accurately determine the dominant n-component produced by low frequency unstable RWMs, an algorithm has been developed that includes magnetic sensor compensation of the prompt applied field and the field from the induced current on the passive conductors. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-SC0016614.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Paul T.; Shadid, John N.; Tsuji, Paul H.

    Here, this study explores the performance and scaling of a GMRES Krylov method employed as a smoother for an algebraic multigrid (AMG) preconditioned Newton- Krylov solution approach applied to a fully-implicit variational multiscale (VMS) nite element (FE) resistive magnetohydrodynamics (MHD) formulation. In this context a Newton iteration is used for the nonlinear system and a Krylov (GMRES) method is employed for the linear subsystems. The efficiency of this approach is critically dependent on the scalability and performance of the AMG preconditioner for the linear solutions and the performance of the smoothers play a critical role. Krylov smoothers are considered inmore » an attempt to reduce the time and memory requirements of existing robust smoothers based on additive Schwarz domain decomposition (DD) with incomplete LU factorization solves on each subdomain. Three time dependent resistive MHD test cases are considered to evaluate the method. The results demonstrate that the GMRES smoother can be faster due to a decrease in the preconditioner setup time and a reduction in outer GMRESR solver iterations, and requires less memory (typically 35% less memory for global GMRES smoother) than the DD ILU smoother.« less

  12. Magnetohydrodynamic generator electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.

    1979-01-01

    An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.

  13. Are Birds Smarter Than Mathematicians? Pigeons (Columba livia) Perform Optimally on a Version of the Monty Hall Dilemma

    PubMed Central

    Herbranson, Walter T.; Schroeder, Julia

    2011-01-01

    The “Monty Hall Dilemma” (MHD) is a well known probability puzzle in which a player tries to guess which of three doors conceals a desirable prize. After an initial choice is made, one of the remaining doors is opened, revealing no prize. The player is then given the option of staying with their initial guess or switching to the other unopened door. Most people opt to stay with their initial guess, despite the fact that switching doubles the probability of winning. A series of experiments investigated whether pigeons (Columba livia), like most humans, would fail to maximize their expected winnings in a version of the MHD. Birds completed multiple trials of a standard MHD, with the three response keys in an operant chamber serving as the three doors and access to mixed grain as the prize. Across experiments, the probability of gaining reinforcement for switching and staying was manipulated, and birds adjusted their probability of switching and staying to approximate the optimal strategy. Replication of the procedure with human participants showed that humans failed to adopt optimal strategies, even with extensive training. PMID:20175592

  14. Analysis and design of an ultrahigh temperature hydrogen-fueled MHD generator

    NASA Technical Reports Server (NTRS)

    Moder, Jeffrey P.; Myrabo, Leik N.; Kaminski, Deborah A.

    1993-01-01

    A coupled gas dynamics/radiative heat transfer analysis of partially ionized hydrogen, in local thermodynamic equilibrium, flowing through an ultrahigh temperature (10,000-20,000 K) magnetohydrodynamic (MHD) generator is performed. Gas dynamics are modeled by a set of quasi-one-dimensional, nonlinear differential equations which account for friction, convective and radiative heat transfer, and the interaction between the ionized gas and applied magnetic field. Radiative heat transfer is modeled using nongray, absorbing-emitting 2D and 3D P-1 approximations which permit an arbitrary variation of the spectral absorption coefficient with frequency. Gas dynamics and radiative heat transfer are coupled through the energy equation and through the temperature- and density-dependent absorption coefficient. The resulting nonlinear elliptic problem is solved by iterative methods. Design of such MHD generators as onboard, open-cycle, electric power supplies for a particular advanced airbreathing propulsion concept produced an efficient and compact 128-MWe generator characterized by an extraction ratio of 35.5 percent, a power density of 10,500 MWe/cu m, and a specific (extracted) energy of 324 MJe/kg of hydrogen. The maximum wall heat flux and total wall heat load were 453 MW/sq m and 62 MW, respectively.

  15. Are birds smarter than mathematicians? Pigeons (Columba livia) perform optimally on a version of the Monty Hall Dilemma.

    PubMed

    Herbranson, Walter T; Schroeder, Julia

    2010-02-01

    The "Monty Hall Dilemma" (MHD) is a well known probability puzzle in which a player tries to guess which of three doors conceals a desirable prize. After an initial choice is made, one of the remaining doors is opened, revealing no prize. The player is then given the option of staying with their initial guess or switching to the other unopened door. Most people opt to stay with their initial guess, despite the fact that switching doubles the probability of winning. A series of experiments investigated whether pigeons (Columba livia), like most humans, would fail to maximize their expected winnings in a version of the MHD. Birds completed multiple trials of a standard MHD, with the three response keys in an operant chamber serving as the three doors and access to mixed grain as the prize. Across experiments, the probability of gaining reinforcement for switching and staying was manipulated, and birds adjusted their probability of switching and staying to approximate the optimal strategy. Replication of the procedure with human participants showed that humans failed to adopt optimal strategies, even with extensive training.

  16. Influence of Thermal Anisotropy on Equilibrium Stellarator Beta Limits

    NASA Astrophysics Data System (ADS)

    Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.

    2017-10-01

    The effect of anisotropic heat conduction on the upper beta limit of stellarator plasmas is studied using the nonlinear, extended MHD code NIMROD. The configuration under investigation is an l=2, M=10 torsatron with vacuum rotational transform near unity. Finite-beta plasmas are created using a volumetric heating source and temperature dependent resistivity; modeled with 22 stellarator symmetric (integer multiples of M) toroidal modes. Extended MHD simulations are then performed to generate steady state solutions that represent 3D equilibria. With increased heating, Shafranov shifts occur, and the associated break up of edge magnetic surfaces limits the achievable beta. Due to the presence of finite parallel heat conduction, pressure profiles can exist in regions of magnetic stochasticity. Here, we present results of independently varying the parallel and perpendicular thermal anisotropy. In particular, simulations show that the attained stored energy is a function of the magnitude of parallel and perpendicular thermal conduction for a given heat source, indicating that equilibrium beta limits are sensitive to anisotropic transport properties. Preliminary studies of MHD stability with non-stellarator symmetric modes, near the highest achievable beta, are also presented. Research supported by US DOE under Grant No. DE-FG02-99ER54546.

  17. Age modifies the association between serum obestatin, appetite and nutritional status in maintenance hemodialysis patients.

    PubMed

    Katkov, Anna; Sinuani, Inna; Azar, Ada; Shapiro, Gregory; Efrati, Shai; Beberashvili, Ilia

    2018-01-23

    Increased age is strongly associated with anorexia and protein-energy wasting (PEW) in maintenance hemodialysis (MHD) population. We hypothesized that the association of obestatin, a recently discovered anorexigenic gut hormone, with appetite and nutritional status differs by age groups. We performed a cross-sectional study on 261MHD patients. Obestatin, acyl-ghrelin, markers of inflammation (CRP, IL-6, TNF-α) and nutrition (self-reported appetite, dietary intake, biochemical nutritional parameters, and body composition) were measured. Obestatin was associated with appetite in multivariate analyses even after controlling for such confounders as lean body mass (LBM), IL-6 and acyl-ghrelin in patients younger than 71 years. For each ng/ml increase in obestatin levels, the odds for diminished appetite was 0.75 (95% CI: 0.59-0.96). However, these associations were not observed in patients 71 years and older. Multivariable logistic regression models (including appetite) also showed increasing odds for PEW (defined by ESPEN consensus-based criteria for the diagnosis of malnutrition) across increasing serum obestatin levels (OR: 1.51, 95% CI: 1.05-2.18) in patients 71 years and older. However, after lean body mass (LBM) was added to this model, the association between obestatin and malnutrition was abolished (OR: 1.26, 95% CI: 0.83-1.91). The association between serum obestatin, appetite and PEW differs depending on age in MHD patients. A positive link with appetite exists in patients younger than 71 years, whereas this relationship disappears by the age of 71. In older MHD patients, obestatin is associated with PEW through mechanisms related to LBM, but not to appetite.

  18. A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars

    2016-11-01

    We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.

  19. MHD Turbulence at Moderate Magnetic Reynolds Number

    NASA Technical Reports Server (NTRS)

    Knaepen, B.; Kassinos, S.; Carati, D.

    2003-01-01

    In the present article we will consider the decay of MHD turbulence under the influence of a strong external magnetic field at moderate magnetic Reynolds numbers. Typical values of R(sub m) that are considered here range from R(sub m) approx. 0.1 to R(sub m) approx. 20. As a comparison, the initial kinetic Reynolds number common to all our simulations is Re(sub L) = 199. This means that the range of Prandtl numbers explored is 5 x 10(exp -4) to 10(exp -1). Our motivation is mainly to exhibit how the transition from the QS approximation to FMHD occurs. At the lowest values of R(sub m) studied here, the QS approximation is shown to model the flow faithfully. However, for the higher values of R(sub m) considered, it is clearly inadequate but can be replaced by another approximation which will be referred to as the Quasi-Linear (QL) approximation. Another objective of the present study is to describe how variations in the magnetic Reynolds number (while maintaining all other parameters constant) affect the dynamics of the flow. This complements past studies where variations in either the strength of the external magnetic field or the kinetic Reynolds number were considered. This article is organized as follows. In section 2 we recall the definition of the quasi-static approximation. Section 3 is devoted to the description of the numerical experiments performed using the quasi-static approximation and full MHD. In section 4 we describe the quasi-linear approximation and test it numerically against full MHD. A concluding summary is given in section 5.

  20. The role of inflammatory cytokines and ERK1/2 signaling in chronic prostatitis/chronic pelvic pain syndrome with related mental health disorders

    PubMed Central

    Hu, Chao; Yang, Hualan; Zhao, Yanfang; Chen, Xiang; Dong, Yinying; Li, Long; Dong, Yehao; Cui, Jiefeng; Zhu, Tongyu; Zheng, Ping; Lin, Ching-Shwun; Dai, Jican

    2016-01-01

    Mental health disorders(MHD) in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) have been widely studied. However, the underlying role of inflammatory cytokines and their associated signaling pathways have not been investigated. Here, we report the potential role of cytokines and associated signaling pathways in CP/CPPS patients with MHD and in a CP/CPPS animal model. CP/CPPS patients (n = 810) and control subjects (n = 992) were enrolled in this case-control multicenter study, and serum cytokine levels were measured. Male Sprague-Dawley rats received multiple intracutaneous injections of an immuno-agent along with a pertussis-diphtheria-tetanus triple vaccine for autoimmune CP/CPPS development. The results revealed that, in CP/CPPS patients with significant MHD, elevated IL-1α, IL-1β, IL-4, IL-13, and TNF-α serum levels were observed. The above five cytokines in CP/CPPS rats were significantly elevated in prostate tissue (p < 0.05), and IL-1β levels were elevated in serum and cerebrospinal fluid. In behavioral tests, CP/CPPS rats showed anxiety- and depression-like symptoms, and impaired spatial and associative memory performance (p < 0.05). In the CP/CPPS group, ERK1/2 phosphorylation levels were increased in the amygdala and nucleus accumbens, and decreased in the hippocampus, but not caudate nucleus. Thus, prostate-derived cytokines, especially IL-1β, cross the blood brain barrier and may lead to enhanced ERK1/2 signaling in several brain areas, possibly underlying induction of CP/CPPS-related MHD. PMID:27334333

  1. Local properties of magnetic reconnection in nonlinear resistive- and extended-magnetohydrodynamic toroidal simulations of the sawtooth crash

    DOE PAGES

    Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; ...

    2016-12-15

    We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C 1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m, n) = (1, 1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibitmore » a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. Furthermore, this study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beidler, M. T.; Cassak, P. A.; Jardin, S. C.

    We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C 1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m, n) = (1, 1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibitmore » a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. Furthermore, this study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.« less

  3. Relativistic self-similar dynamic gravitational collapses of a quasi-spherical general polytropic magnetofluid

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Xia, Yu-Kai

    2017-05-01

    We study magnetohydrodynamic (MHD) self-similar collapses and void evolution, with or without shocks, of a general polytropic quasi-spherical magnetofluid permeated by random transverse magnetic fields under the Paczynski-Wiita gravity that captures essential general relativistic effects of a Schwarzschild black hole (BH) with a growing mass. Based on the derived set of non-linear MHD ordinary differential equations, we obtain various asymptotic MHD solutions, the geometric and analytical properties of the magnetosonic critical curve (MSCC) and MHD shock jump conditions. Novel asymptotic MHD solution behaviours near the rim of central expanding voids are derived analytically. By exploring numerical global MHD solutions, we identify allowable boundary conditions at large radii that accommodate a smooth solution and show that a reasonable amount of magnetization significantly increases the mass accretion rate in the expansion-wave-collapse solution scenario. We also construct the counterparts of envelope-expansion-core-collapse solutions that cross the MSCC twice, which are found to be closely paired with a sequence of global smooth solutions satisfying a novel type of central MHD behaviours. MHD shocks with static outer and various inner flow profiles are also examined. Astrophysical applications include dynamic core collapses of magnetized massive stars and compact objects as well as formation of supermassive, hypermassive, dark matter and mixed matter BHs in the Universe, including the early Universe. Such gigantic BHs can be detected in X-ray/gamma-ray sources, quasars, ultraluminous infrared galaxies or extremely luminous infrared galaxies and dark matter overwhelmingly dominated elliptical galaxies as well as massive dark matter halos, etc. Gravitational waves and electromagnetic wave emissions in broad band (including e.g., gamma-ray bursts and fast radio bursts) can result from this type of dynamic collapses of forming BHs involving magnetized media.

  4. Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleishman, Gregory D.; Loukitcheva, Maria; Anfinogentov, Sergey

    Quantifying the coronal magnetic field remains a central problem in solar physics. Nowadays, the coronal magnetic field is often modeled using nonlinear force-free field (NLFFF) reconstructions, whose accuracy has not yet been comprehensively assessed. Here we perform a detailed casting of the NLFFF reconstruction tools, such as π -disambiguation, photospheric field preprocessing, and volume reconstruction methods, using a 3D snapshot of the publicly available full-fledged radiative MHD model. Specifically, from the MHD model, we know the magnetic field vector in the entire 3D domain, which enables us to perform a “voxel-by-voxel” comparison of the restored and the true magnetic fieldsmore » in the 3D model volume. Our tests show that the available π -disambiguation methods often fail in the quiet-Sun areas dominated by small-scale magnetic elements, while they work well in the active region (AR) photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although it does produce a more force-free boundary condition, also results in some effective “elevation” of the magnetic field components. This “elevation” height is different for the longitudinal and transverse components, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolations performed starting from the actual AR photospheric magnetogram are free from this systematic error, while other metrics are comparable with those for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing. Our tests further suggest that extrapolations from a force-free chromospheric boundary produce measurably better results than those from a photospheric boundary.« less

  5. One and two fluid numerical investigations of solar wind gas releases

    NASA Astrophysics Data System (ADS)

    Harold, James Benedict

    1993-01-01

    The dynamics of gas releases into high Mach number flowing plasmas are investigated. Emphasis is placed on systems of intermediate magnetization for which the scale size of the release lies between the ion and electron Larmor radii. The study is motivated by the December 1984 AMPTE (Active Magnetospheric Particle Tracer Explorer) solar wind barium release in which, contrary to the predictions of MHD theory, the barium cloud shifted transverse to the solar wind (in the uwind x B0 direction) before eventually turning downstream. Particular emphasis is given to identifying mechanisms responsible for this lateral motion. A modified MHD cold fluid approach that takes advantage of the supersonic nature of the problem forms the basis of this work. Two specific models are developed which incorporate large effective ion Larmor radius effects. The first is for a single ion species, the second for two ion species. Two physical effects are identified which are not present in the conventional MHD system: the Hall effect, based on a Hall magnetic drift wave, and a hybrid electrostatic ion cyclotron mode. Linear analysis shows that the effect of the Hall term is to propagate the upwind magnetic field compression azimuthally to the downwind side of the cloud, leading to a quasi-steady state field compression on the -uwind x BO side of the cloud. The cyclotron mode can lead to a similar compression through deflection of the solar wind ions into the uwind x BO direction. In each case the resulting compression leads to a transverse acceleration of the cloud. The relative importance of these two mechanisms is shown to depend on deltac / rc, the ratio of the collisionless skin depth to the cloud size. Nonlinear, two-dimensional simulations are performed for each model. These simulations produce the expected field compressions and the resultant lateral acceleration, in general qualitative agreement with the AMPTE experiment. The dependence of these mechanisms on the ratio deltac / rc is demonstrated. While no simulations are performed that precisely duplicate the parameters of the AMPTE release, the results suggest that the Hall effect, and possibly deflection of the solar wind by the cyclotron mode, constitute plausible mechanisms for the AMPTE shift.

  6. The Selective Centrifugation Ensures a Better In Vitro Isolation of ASCs and Restores a Soft Tissue Regeneration In Vivo

    PubMed Central

    De Francesco, Francesco; Guastafierro, Antonio; Nicoletti, Gianfranco; Razzano, Sergio; Riccio, Michele; Ferraro, Giuseppe A.

    2017-01-01

    Autologous fat grafting procedures in plastic surgery have been extensively used to reinforce soft tissue in congenital or acquired tissue impairments. With this background, the aim of this study is firstly to examine the impact of a selective centrifugation on existing adipose stem cells (ASCs) in terms of stemness profile maintenance and, secondly, to investigate the effect of restoring volume in reconstruction on patients affected by soft tissue damage. After centrifugation, the fat graft products were separated into two layers and subsequently examined in vitro for the expression of CD34, CD90, CD117, CD105, CD29, CD31, CD44, CD73, CD133, CD14 and CD45 markers by flow cytometry and gene expression analyses were performed for Sox2, WNT3A, END, CD44, FUT4, COLL1, CTNNB1, hbEGF, KRTLG, MMP2 and VIM genes. The results showed that in the middle-high density (MHD) layer there was a peak concentration of ASCs, compared to another layer obtained after centrifugation. Research carried out on patients under treatment for soft tissue regeneration using cells obtained from MHD layer selection will be fundamental in comparative analysis. These studies will lead to an adequate standardization of outcomes, provided that treatment is performed through cell selection. Therefore, a unique procedure in tissue reconstruction and regeneration through fat grafting is presented here. PMID:28498335

  7. Successful experiments on an external MHD Accelerator: wall confinement of the plasma, annihilation of the electrothermal instability by magnetic gradient inversion, creation of a stable spiral current pattern

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Pierre; Dore, Jean-Christophe

    2013-09-01

    MHD propulsion has been extensively studied since the fifties. To shift from propulsion to an MHD Aerodyne, one only needs to accelerate the air externally, along its outer skin, using Lorentz forces. We present a set of successful experiments, obtained around a model, placed in low density air. We successfully dealt with various problems: wall confinement of two-temperature plasma obtained by inversion of the magnetic pressure gradient, annihilation of the Velikhov electrothermal instability by magnetic confinement of the streamers, establishment of a stable spiral distribution of the current, obtained by an original method. Another direction of research is devoted to the study of an MHD-controlled inlet which, coupled with a turbofan engine and implying an MHD-bypass system, would extend the flight domain to hypersonic conditions. Research manager

  8. Magnetohydrodynamic Turbulence and the Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2016-01-01

    Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.

  9. Resonant behavior of MHD waves on magnetic flux tubes. IV - Total resonant absorption and MHD radiating eigenmodes

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Hollweg, Joseph V.

    1993-01-01

    Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.

  10. On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion

    NASA Astrophysics Data System (ADS)

    Larios, Adam; Pei, Yuan

    2017-07-01

    We prove a Prodi-Serrin-type global regularity condition for the three-dimensional Magnetohydrodynamic-Boussinesq system (3D MHD-Boussinesq) without thermal diffusion, in terms of only two velocity and two magnetic components. To the best of our knowledge, this is the first Prodi-Serrin-type criterion for such a 3D hydrodynamic system which is not fully dissipative, and indicates that such an approach may be successful on other systems. In addition, we provide a constructive proof of the local well-posedness of solutions to the fully dissipative 3D MHD-Boussinesq system, and also the fully inviscid, irresistive, non-diffusive MHD-Boussinesq equations. We note that, as a special case, these results include the 3D non-diffusive Boussinesq system and the 3D MHD equations. Moreover, they can be extended without difficulty to include the case of a Coriolis rotational term.

  11. Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Xu, Kun

    1998-01-01

    A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.

  12. Investigation of applications for high-power, self-critical fissioning uranium plasma reactors

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.; Latham, T. S.; Krascella, N. L.

    1976-01-01

    Analytical studies were conducted to investigate potentially attractive applications for gaseous nuclear cavity reactors fueled by uranium hexafluoride and its decomposition products at temperatures of 2000 to 6000 K and total pressures of a few hundred atmospheres. Approximate operating conditions and performance levels for a class of nuclear reactors in which fission energy removal is accomplished principally by radiant heat transfer from the high temperature gaseous nuclear fuel to surrounding absorbing media were determined. The results show the radiant energy deposited in the absorbing media may be efficiently utilized in energy conversion system applications which include (1) a primary energy source for high thrust, high specific impulse space propulsion, (2) an energy source for highly efficient generation of electricity, and (3) a source of high intensity photon flux for heating working fluid gases for hydrogen production or MHD power extraction.

  13. UF6 breeder reactor power plants for electric power generation

    NASA Technical Reports Server (NTRS)

    Rust, J. H.; Clement, J. D.; Hohl, F.

    1976-01-01

    The reactor concept analyzed is a U-233F6 core surrounded by a molten salt (Li(7)F, BeF2, ThF4) blanket. Nuclear survey calculations were carried out for both spherical and cylindrical geometries. Thermodynamic cycle calculations were performed for a variety of Rankine cycles. A conceptual design is presented along with a system layout for a 1000 MW stationary power plant. Advantages of the gas core breeder reactor (GCBR) are as follows: (1) high efficiency; (2) simplified on-line reprocessing; (3) inherent safety considerations; (4) high breeding ratio; (5) possibility of burning all or most of the long-lived nuclear waste actinides; and (6) possibility of extrapolating the technology to higher temperatures and MHD direct conversion.

  14. Superconductor Permanent Magnets for Advanced Propulsion Applications

    NASA Astrophysics Data System (ADS)

    Putman, Phil; Zhou, Yuxiang; Salama, Kamel; Robertson, Tony; Bond, Deborah D.

    2005-02-01

    Improved trapped fields of 17 T at 29 K and 11.2 T at 47 K have been reported for the melt-textured YBCO superconductor material. Such high field strengths give the possibility for producing superconductor permanent magnets (SCPM) for plasma-related space propulsion applications, such as the anti-matter trap, magnetohydrodynamic (MHD) propulsion and electrical power generation, and others that are under development or being studied. The SCPM could be beneficial in reducing the weight-to-power ratio for the associated delivery and containment systems needed for plasma interactions that are inherently imbedded in many of these propulsion systems. In this paper, a review of the superconductor literature is presented, followed by uses of the SCPM in high-performance space propulsion applications.

  15. A randomized controlled trial of long term effect of BCM guided fluid management in MHD patients (BOCOMO study): rationales and study design

    PubMed Central

    2012-01-01

    Background Bioimpedance analysis (BIA) has been reported as helpful in identifying hypervolemia. Observation data showed that hypervolemic maintenance hemodialysis (MHD) patients identified using BIA methods have higher mortality risk. However, it is not known if BIA-guided fluid management can improve MHD patients’ survival. The objectives of the BOCOMO study are to evaluate the outcome of BIA guided fluid management compared with standard care. Methods This is a multicenter, prospective, randomized, controlled trial. More than 1300 participants from 16 clinical sites will be included in the study. The enrolment period will last 6 months, and minimum length of follow-up will be 36 months. MHD patients aged between 18 years and 80 years who have been on MHD for at least 3 months and meet eligibility criteria will be invited to participate in the study. Participants will be randomized to BIA arm or control arm in a 1:1 ratio. A portable whole body bioimpedance spectroscopy device (BCM—Fresenius Medical Care D GmbH) will be used for BIA measurement at baseline for both arms of the study. In the BIA arm, additional BCM measurements will be performed every 2 months. The primary intent-to-treat analysis will compare outcomes for a composite endpoint of death, acute myocardial infarction, stroke or incident peripheral arterial occlusive disease between groups. Secondary endpoints will include left ventricular wall thickness, blood pressure, medications, and incidence and length of hospitalization. Discussions Previous results regarding the benefit of strict fluid control are conflicting due to small sample sizes and unstable dry weight estimating methods. To our knowledge this is the first large-scale, multicentre, prospective, randomized controlled trial to assess whether BIS-guided volume management improves outcomes of MHD patients. The endpoints of the BOCOMO study are of utmost importance to health care providers. In order to obtain that aim, the study was designed with very careful important considerations related to the endpoints, sample size, inclusion criteria, exclusion criteria and so on. For example, annual mortality of Beijing MHD patients was around 10%. To reach statistical significance, the sample size will be very large. By using composite endpoint, the sample size becomes reasonable and feasible. Limiting inclusion to patients with urine volume less than 800 ml/day the day before dialysis session will limit confounding due to residual renal function effects on the measured parameters. Patients who had received BIS measurement within 3 months prior to enrolment are excluded as data from such measurements might lead to protocol violation. Although not all patients enrolled will be incident patients, we will record the vintage of dialysis in the multivariable analysis. Trial registration Current Controlled Trials NCT01509937 PMID:23006960

  16. 9 CFR 3.104 - Space requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... required minimum horizontal dimension (MHD) of a pool for Group I cetaceans shall be 7.32 meters (24.0 feet... area requirements are met based on an MHD of 7.32 meters (24.0 feet) or two times the average adult... maturity. (ii) The MHD of a pool for Group II cetaceans shall be 7.32 meters (24.0 feet) or four times the...

  17. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingam, Manasvi; Abdelhamid, Hamdi M.; Hudson, Stuart R.

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposedmore » for deriving the partially relaxed states.« less

  19. Energy structure of MHD flow coupling with outer resistance circuit

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.

    2015-08-01

    Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.

  20. Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures

  1. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  2. DAMPING OF MAGNETOHYDRODYNAMIC TURBULENCE IN PARTIALLY IONIZED PLASMA: IMPLICATIONS FOR COSMIC RAY PROPAGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Siyao; Yan, Huirong; Lazarian, A., E-mail: syxu@pku.edu.cn, E-mail: huirong.yan@desy.de, E-mail: lazarian@astro.wisc.edu

    2016-08-01

    We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of theirmore » propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.« less

  3. Analytical and computational investigations of a magnetohydrodynamics (MHD) energy-bypass system for supersonic gas turbine engines to enable hypersonic flight

    NASA Astrophysics Data System (ADS)

    Benyo, Theresa Louise

    Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the exhaust flow from the engine by converting electrical current back into flow enthalpy to increase thrust. Though there has been considerable research into the use of MHD generators to produce electricity for industrial power plants, interest in the technology for flight-weight aerospace applications has developed only recently. In this research, electromagnetic fields coupled with weakly ionzed gases to slow hypersonic airflow were investigated within the confines of an MHD energy-bypass system with the goal of showing that it is possible for an air-breathing engine to transition from takeoff to Mach 7 without carrying a rocket propulsion system along with it. The MHD energy-bypass system was modeled for use on a supersonic turbojet engine. The model included all components envisioned for an MHD energy-bypass system; two preionizers, an MHD generator, and an MHD accelerator. A thermodynamic cycle analysis of the hypothesized MHD energy-bypass system on an existing supersonic turbojet engine was completed. In addition, a detailed thermodynamic, plasmadynamic, and electromagnetic analysis was combined to offer a single, comprehensive model to describe more fully the proper plasma flows and magnetic fields required for successful operation of the MHD energy bypass system. The unique contribution of this research involved modeling the current density, temperature, velocity, pressure, electric field, Hall parameter, and electrical power throughout an annular MHD generator and an annular MHD accelerator taking into account an external magnetic field within a moving flow field, collisions of electrons with neutral particles in an ionized flow field, and collisions of ions with neutral particles in an ionized flow field (ion slip). In previous research, the ion slip term has not been considered. The MHD energy-bypass system model showed that it is possible to expand the operating range of a supersonic jet engine from a maximum of Mach 3.5 to a maximum of Mach 7. The inclusion of ion slip within the analysis further showed that it is possible to 'drive' this system with maximum magnetic fields of 3 T and with maximum conductivity levels of 11 mhos/m. These operating parameters better the previous findings of 5 T and 10 mhos/m, and reveal that taking into account collisions between ions and neutral particles within a weakly ionized flow provides a more realistic model with added benefits of lower magnetic fields and conductivity levels especially at the higher Mach numbers. (Abstract shortened by UMI.).

  4. Coal feed component testing for CDIF

    NASA Technical Reports Server (NTRS)

    Pearson, C. V.; Snyder, B. K.; Fornek, T. E.

    1977-01-01

    Investigations conducted during the conceptual design of the Montana MHD Component Development and Integration Facility (CDIF) identified commercially available processing and feeding equipment potentially suitable for use in a reference design. Tests on sub-scale units of this equipment indicated that they would perform as intended.

  5. High β effects on cosmic ray streaming in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Wiener, Joshua; Zweibel, Ellen G.; Oh, S. Peng

    2018-01-01

    Diffuse, extended radio emission in galaxy clusters, commonly referred to as radio haloes, indicate the presence of high energy cosmic ray (CR) electrons and cluster-wide magnetic fields. We can predict from theory the expected surface brightness of a radio halo, given magnetic field and CR density profiles. Previous studies have shown that the nature of CR transport can radically effect the expected radio halo emission from clusters (Wiener, Oh & Guo 2013). Reasonable levels of magnetohydrodynamic (MHD) wave damping can lead to significant CR streaming speeds. But a careful treatment of MHD waves in a high β plasma, as expected in cluster environments, reveals damping rates may be enhanced by a factor of β1/2. This leads to faster CR streaming and lower surface brightnesses than without this effect. In this work, we re-examine the simplified, 1D Coma cluster simulations (with radial magnetic fields) of Wiener et al. (2013) and discuss observable consequences of this high β damping. Future work is required to study this effect in more realistic simulations.

  6. The influence of the Hall term on the development of magnetized laser-produced plasma jets

    NASA Astrophysics Data System (ADS)

    Hamlin, N. D.; Seyler, C. E.; Khiar, B.

    2018-04-01

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGON and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. This points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.

  7. Is Clinical Assessment of Addiction Severity of Individuals with Substance Use Disorder, Using the Addiction Severity Index, A Predictor of Future Inpatient Mental Health Hospitalization? A Nine-Year Registry Study.

    PubMed

    Padyab, Mojgan; Armelius, Bengt-Åke; Armelius, Kerstin; Nyström, Siv; Blom, Björn; Grönlund, Ann-Sofie; Lundgren, Lena

    2018-04-23

    In Sweden, the Addiction Severity Index (ASI) is the Swedish National Board of Health and Welfare's recommended substance use disorder assessment tool and used routinely for patient intakes. Our study of 213 individuals assessed for substance use disorder with the ASI used nine years of the National Patient Register and examined whether clinical social workers' assessments of addiction severity at baseline were associated with later hospitalizations for mental health disorder (MHD). ASI composite scores and interviewer severity rating were used to measure clients' problems in seven areas (mental health, family and social relationships, employment, alcohol, drug use, health, and legal) at baseline. A stepwise regression method was used to assess the relative importance of ASI composite scores, MHD hospitalization two years prior to baseline, age, and gender for MHD hospitalization seven years post-baseline. Almost two-thirds of the individuals (63%) were hospitalized at least once for MHD in the seven years post-baseline. At the multivariable level, MHD hospitalization prior to baseline was the strongest predictor of future MHD hospitalization, followed by ASI composite scores for drug use, employment, mental health and, last, male gender. A key finding is that higher ASI composite scores for drug use and mental health are predictors of future need for MHD treatment. Future studies will replicate this effort with a national population of individuals with substance use disorder.

  8. Nonhelical inverse transfer of a decaying turbulent magnetic field.

    PubMed

    Brandenburg, Axel; Kahniashvili, Tina; Tevzadze, Alexander G

    2015-02-20

    In the presence of magnetic helicity, inverse transfer from small to large scales is well known in magnetohydrodynamic (MHD) turbulence and has applications in astrophysics, cosmology, and fusion plasmas. Using high resolution direct numerical simulations of magnetically dominated self-similarly decaying MHD turbulence, we report a similar inverse transfer even in the absence of magnetic helicity. We compute for the first time spectral energy transfer rates to show that this inverse transfer is about half as strong as with helicity, but in both cases the magnetic gain at large scales results from velocity at similar scales interacting with smaller-scale magnetic fields. This suggests that both inverse transfers are a consequence of universal mechanisms for magnetically dominated turbulence. Possible explanations include inverse cascading of the mean squared vector potential associated with local near two dimensionality and the shallower k^{2} subinertial range spectrum of kinetic energy forcing the magnetic field with a k^{4} subinertial range to attain larger-scale coherence. The inertial range shows a clear k^{-2} spectrum and is the first example of fully isotropic magnetically dominated MHD turbulence exhibiting weak turbulence scaling.

  9. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-01

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  10. MHD Wind Models in X-Ray Binaries and AGN

    NASA Astrophysics Data System (ADS)

    Behar, Ehud; Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris R.; Tombesi, Francesco; Contopoulos, Ioannis

    2017-08-01

    Self-similar magnetohydrodynamic (MHD) wind models that can explain both the kinematics and the ionization structure of outflows from accretion sources will be presented.The X-ray absorption-line properties of these outflows are diverse, their velocity ranging from 0.001c to 0.1c, and their ionization ranging from neutral to fully ionized.We will show how the velocity structure and density profile of the wind can be tightly constrained, by finding the scaling of the magnetic flux with the distance from the center that best matches observations, and with no other priors.It will be demonstrated that the same basic MHD wind structure that successfully accounts for the X-ray absorber properties of outflows from supermassive black holes, also reproduces the high-resolution X-ray spectrum of the accreting stellar-mass black hole GRO J1655-40 for a series of ions between ~1A and ~12A.These results support both the magnetic nature of these winds, as well as the universal nature of magnetic outflows across all black hole sizes.

  11. Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle

    NASA Astrophysics Data System (ADS)

    Lian, Kun; Heng, Khee-Hang

    2001-09-01

    This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.Y. Fu; L.P. Ku; M.H. Redi

    A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism formore » external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length.« less

  13. Modeling Magnetospheric Sources

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Ashour-Abdalla, Maha; Ogino, Tatsuki; Peroomian, Vahe; Richard, Robert L.

    2001-01-01

    We have used global magnetohydrodynamic, simulations of the interaction between the solar wind and magnetosphere together with single particle trajectory calculations to investigate the sources of plasma entering the magnetosphere. In all of our calculations solar wind plasma primarily enters the magnetosphere when the field line on which it is convecting reconnects. When the interplanetary magnetic field has a northward component the reconnection is in the polar cusp region. In the simulations plasma in the low latitude boundary layer (LLBL) can be on either open or closed field lines. Open field lines occur when the high latitude reconnection occurs in only one cusp. In the MHD calculations the ionosphere does not contribute significantly to the LLBL for northward IMF. The particle trajectory calculations show that ions preferentially enter in the cusp region where they can be accelerated by non-adiabatic motion across the high latitude electric field. For southward IMF in the MHD simulations the plasma in the middle and inner magnetosphere comes from the inner (ionospheric) boundary of the simulation. Solar wind plasma on open field lines is confined to high latitudes and exits the tailward boundary of the simulation without reaching the plasma sheet. The LLBL is populated by both ionospheric and solar wind plasma. When the particle trajectories are included solar wind ions can enter the middle magnetosphere. We have used both the MHD simulations and the particle calculations to estimate source rates for the magnetosphere which are consistent with those inferred from observations.

  14. Lower hybrid current drive in experiments for transport barriers at high βN of JET (Joint European Torus)

    NASA Astrophysics Data System (ADS)

    Cesario, R. C.; Castaldo, C.; Fonseca, A.; De Angelis, R.; Parail, V.; Smeulders, P.; Beurskens, M.; Brix, M.; Calabrò, G.; De Vries, P.; Mailloux, J.; Pericoli, V.; Ravera, G.; Zagorski, R.

    2007-09-01

    LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas (δ≈0.4) at high βN (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B0 = 2.3 T, IP = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.

  15. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  16. Long-term effects of low calcium dialysates on the serum calcium levels during maintenance hemodialysis treatments: A systematic review and meta-analysis.

    PubMed

    Yoshikawa, Masahiro; Takase, Osamu; Tsujimura, Taro; Sano, Etsuko; Hayashi, Matsuhiko; Takato, Tsuyoshi; Hishikawa, Keiichi

    2018-03-28

    Hypercalcemia and hyperparathyroidism in patients receiving maintenance hemodialysis (MHD) can cause the progression of cardiovascular diseases (CVD) and mineral bone disorders (MBD). The KDIGO recommends the dialysates with a calcium (Ca) concentration of 1.25-1.5 mmol/L for MHD treatments, but the optimal concentration remains controversial. Here, we conducted a systematic review and a meta-analysis of seven randomized controlled trials examining a total of 622 patients to investigate the optimal concentration for MHD for 6 months or longer. The dialysates with a low Ca concentration (1.125 or 1.25 mmol/L) significantly lowered the serum Ca and raised the intact parathyroid hormone levels by 0.52 mg/dL (95% confidence interval, 0.20-0.85) and 39.59 pg/mL (14.80-64.38), respectively, compared with a high Ca concentration (1.50 or 1.75 mmol/L). Three studies showed that a low concentration was preferred for lowering arterial calcifications or atherosclerosis in different arteries, but one study showed that coronary arterial calcifications increased with a low concentration. Two studies showed contradictory outcomes in terms of MBD. Our meta-analysis showed that a dialysate with a low Ca concentration lowered the serum Ca levels in patients receiving long-term MHD, but further studies are needed to determine the optimal Ca concentration in terms of CVD and MBD.

  17. Structure of the runaway electron loss during induced disruptions in TEXTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wongrach, K.; Finken, K. H.; Willi, O.

    2015-10-15

    The loss of runaway electrons during an induced disruption is recorded by a synchrotron imaging technique using a fast infrared CCD camera. The loss is predominantly diffuse. During the “spiky-loss phase”, when the runaway beam moves close to the wall, a narrow channel between the runaway column and a scintillator probe is formed and lasts until the runaway beam is terminated. In some cases, the processed images show a stripe pattern at the plasma edge. A comparison between the MHD dominated disruptions and the MHD-free disruption is performed. A new mechanism of plasma disruptions with the runaway electron generation andmore » a novel model which reproduces many characteristic features of the plasma beam evolution during a disruption is briefly described.« less

  18. A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Bard, Christopher M.; Dorelli, John C.

    2014-02-01

    We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of ≈126 for a 10242 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.

  19. U. S. and Soviet MHD Technology: A Comparative Overview

    DTIC Science & Technology

    1974-01-01

    developments in magnetohydro- dynamic power generation, in which the Soviet program far exceeds the American« The USSR now operates the first MUD power...their respective development approaches, and compares major U.S. and USSR MHD facilities and national program objectives. Preceding page blank...devoted to the history of MHD develop - ment in these two countries, respective development approaches, and cur- rent status of individual programs

  20. Broken Symmetries and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.

Top