Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods
NASA Technical Reports Server (NTRS)
Wu, S. T.
1988-01-01
Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.
Chatterjee, Dipankar; Amiroudine, Sakir
2011-02-01
A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative.
Magnetohydrodynamic (MHD) channel corner seal
Spurrier, Francis R.
1980-01-01
A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.
Magnetohydrodynamic (MHD) driven droplet mixer
Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.
2004-05-11
A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.
Application of Magnetohydrodynamics (MHD) and Recent Research Trend
NASA Astrophysics Data System (ADS)
Harada, Nobuhiro
As the applications of Magnetohydrodynamic (MHD) energy conversion, research and development for high-efficiency and low emission electric power generation system, MHD accelerations and/or MHD thrusters, and flow control around hypersonic and re-entry vehicles are introduced. For closed cycle MHD power generation, high-efficiency MHD single system is the most hopeful system and space power system using mixed inert gas (MIG) working medium is proposed. For open cycle MHD, high-efficiency coal fired MHD system with CO2 recovery has been proposed. As inverse process of MHD power generation, MHD accelerators/thrusters are expected as the next generation propulsion system. Heat flux reduction to protect re-entry vehicles is expected by an MHD process for safety return from space missions.
OpenMHD: Godunov-type code for ideal/resistive magnetohydrodynamics (MHD)
NASA Astrophysics Data System (ADS)
Zenitani, Seiji
2016-04-01
OpenMHD is a Godunov-type finite-volume code for ideal/resistive magnetohydrodynamics (MHD). It is written in Fortran 90 and is parallelized by using MPI-2 and OpenMP. The code was originally developed for studying magnetic reconnection problems and has been made publicly available in the hope that others may find it useful.
[Nonlinear magnetohydrodynamics]. [Threshold unstable MHD activity
Not Available
1992-01-01
Theoretical predictions were compared with available data from JET on the threshold unstable MHD activity in toroidal confinement devices. In particular, questions arising as to Hartmans number and the selection of a kinematic viscosity are discussed.
Diagnostic development and support of MHD (magnetohydrodynamics) test facilities
Not Available
1989-07-01
Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.
Barnes, P.R.; Tesche, F.M.; McConnell, B.W.; Vance, E.F.
1993-09-01
A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic-electromagnetic pulse (MHD-EMP). MHD-EMP is similar to solar geomagnetic storms in its global and low frequency (less than 1 Hz) nature except that it can be more intense with a shorter duration. It will induce quasi-dc currents in long lines. The MHD-EMP induced currents may cause large voltage fluctuations and severe harmonic distortion in commercial electric power systems. Several MHD-EMP coupling models for predicting the induced current on a wide variety of conducting structures are described, various simulation concepts are summarized, and the results from several MHD-EMP tests are presented. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building, and the commercial power harmonics and voltage swings must be addressed. It is found that facilities can be protected against MHD-EMP by using methods which are consistent with standard engineering practices. MHD-EMP Interaction Analysis, Power Line Model, MHD-EMP Protection Guidelines, Transformer Test.
Tesche, F.M. , Dallas, TX ); Barnes, P.R. ); Meliopoulos, A.P.S. . Dept. of Electrical Engineering)
1992-02-01
This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.
Tesche, F.M.; Barnes, P.R.; Meliopoulos, A.P.S.
1992-02-01
This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
NASA Technical Reports Server (NTRS)
Han, S. M.; Wu, S. T.; Nakagawa, Y.
1982-01-01
Radial propagation of one-dimensional magnetohydrodynamic (MHD) waves are analyzed numerically on the basis of the Implicit-Continuous-Fluid-Eulerian (ICE) scheme. Accuracy of the numerical method and other properties are tested through the study of MHD wave propagation. The three different modes of MHD waves (i.e., fast-, slow- and Alfven (transverse) mode) are generated by applying physically consistent boundary perturbations derived from MHD compatibility relations. It is shown that the resulting flow following these waves depend upon the relative configurations of the initial magnetic field and boundary perturbations.
Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX
Bush, C. E.; Stratton, B. C.; Robinson, J.; Zakharov, L. E.; Fredrickson, E. D.; Stutman, D.; Tritz, K.
2008-10-15
A variety of magnetohydrodynamic (MHD) phenomena have been observed on NSTX. Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and p-i-n diode arrays for soft x-ray emission from the plasma core. Data reported here are from a unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a charge coupled device chip, of light resulting from conversion of soft x rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot) and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and edge localized modes (ELMs). New data including modes with frequency >90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and p-i-n diode array results.
Fast soft x-ray images of magnetohydrodynamic phenomena in NSTXa)
NASA Astrophysics Data System (ADS)
Bush, C. E.; Stratton, B. C.; Robinson, J.; Zakharov, L. E.; Fredrickson, E. D.; Stutman, D.; Tritz, K.
2008-10-01
A variety of magnetohydrodynamic (MHD) phenomena have been observed on NSTX. Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and p-i-n diode arrays for soft x-ray emission from the plasma core. Data reported here are from a unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64×64 pixel image, on a charge coupled device chip, of light resulting from conversion of soft x rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot) and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and edge localized modes (ELMs). New data including modes with frequency >90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and p-i-n diode array results.
Not Available
1987-06-01
This report presents a study of the nuclear weapons magnetohydrodynamic (MHD) effects on submarine communications cables. The study consisted of the analysis and interpretation of currently available data on submarine cable systems TAT-4, TAT-6, and TAT-7. The primary result of the study is that decrease of the effective resistivity with frequency over the available experimental range, coupled with the model results, leads to quite small effective resistivities at the MHD characteristic frequencies, and hence small earth potential differences. Thus, it appears that submarine cable systems are less susceptible to an MHD threat than their land-based counter-parts.
Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Vance, E.F. , Fort Worth, TX )
1992-03-01
A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.
Present understanding of MHD and heat transfer phenomena for liquid metal blankets
Kirillov, I.R.; Barleon, L.; Reed, C.B.; Miyazaki, K.
1994-07-01
A review of experimental work on magnetohydrodynamic (MHD) and heat transfer (HT) characteristics of liquid metal flows in fusion relevant conditions is presented. Experimental data on MHD flow pressure drop in straight channels of round and rectangular cross-section with electroconducting walls in a transverse magnetic field show good agreement with theoretical predictions, and simple engineering formulas are confirmed. Less data are available on velocity distribution and HT characteristics, and even less data are available for channels with electroinsulating walls or artificially made self-heating electroinsulating coatings. Some experiments show an interesting phenomena of HT increase in the presence of a transverse or axial magnetic field. For channels of complex geometry -- expansions, contractions, bends, and manifolds -- few experimental data are available. Future efforts should be directed toward investigation of MHD/HT in straight channels with perfect and nonperfect electroinsulated walls, including walls with controlled imperfections, and in channels of complex geometry. International cooperation in manufacturing and operating experimental facilities with magnetic fields at, or even higher than, 5--7 T with comparatively large volumes may be of great help.
FLIP MHD - A particle-in-cell method for magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Brackbill, J. U.
1991-01-01
The fluid-implicit-particle, or 'FLIP' method presently extended to 2D and 3D MHD flow incorporates a Lagrangian field representation and yields a grid magnetic Reynolds number of up to 16 while preserving contact continuities that retain the Galilean invariance of the MHD flow equations. Analytical arguments and numerical examples demonstrate the conservation of mass, momentum, magnetic flux, and energy; 2D calculation results for the illustrative cases of contact discontinuity convection, Rayleigh-Taylor unstable flow.
Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants
NASA Technical Reports Server (NTRS)
Owens, W.; Berg, R.; Murthy, R.; Patten, J.
1981-01-01
A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.
MHD (magnetohydrodynamic) simulation of a comet magnetosphere. Memorandum report
Fedder, J.A.; Brecht, S.H.; Lyon, J.G.
1984-04-12
This paper presents results of a numerical magnetohydrodynamic simulation of the interaction of the solar wind with a comet. It states that for a steady solar wind and interplanetary magnetic field (IMF) the cometary plasma has a distinctive structure; a spheroidal head and a long ribbon-like tail. Rotational discontinuities in the IMF lead to changes in the tail structure. It is shown how these effects occur and describe ray-like structures as well as a tail disconnection event. The simulation results provide a simple explanation for a number of observable features in cometary plasma tails.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2010-01-01
This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.
MHD (magnetohydrodynamic) undersea propulsion: A novel concept with renewed interest
Doss, E.D.; Geyer, H.K. ); Roy, G.D. )
1990-01-01
This paper discusses the reasons for the national and international renewed interest in the concept of MHD seawater propulsion. The main advantages of this concept are presented, together with some of the technical challenges that need to be overcome to achieve reliability, performance, and stealth. The paper discusses in more detail some of the technical issues and loss mechanisms influencing the thruster performance in terms of its electrical efficiency. Among the issues discussed are the jet losses and nozzle efficiency. Ohmic losses and frictional losses inside the thruster. Also discussed are the electrical end losses caused by the fringing magnetic field near the end of the electrodes. It has been shown that the frictional and end losses can have strong adverse effects on the thruster performance. Furthermore, a parametric study has been performed to investigate the effects of several parameters on the performance of the MHD thrusters. Those parameters include the magnetic field, thruster diameter, all roughness, flow velocity, and electrical load factor. The results of the parametric study indicate that the thruster efficiency increases with the strength of the magnetic field and thruster diameter, and decreases with the wall roughness and the flow velocity. 8 refs., 8 figs.
WhiskyMHD: Numerical Code for General Relativistic Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Baiotti, Luca; Giacomazzo, Bruno; Hawke, Ian; et al.
2010-10-01
Whisky is a code to evolve the equations of general relativistic hydrodynamics (GRHD) and magnetohydrodynamics (GRMHD) in 3D Cartesian coordinates on a curved dynamical background. It was originally developed by and for members of the EU Network on Sources of Gravitational Radiation and is based on the Cactus Computational Toolkit. Whisky can also implement adaptive mesh refinement (AMR) if compiled together with Carpet. Whisky has grown from earlier codes such as GR3D and GRAstro_Hydro, but has been rewritten to take advantage of some of the latest research performed here in the EU. The motivation behind Whisky is to compute gravitational radiation waveforms for systems that involve matter. Examples would include the merger of a binary system containing a neutron star, which are expected to be reasonably common in the universe and expected to produce substantial amounts of radiation. Other possible sources are given in the projects list.
Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
Guazzotto, L.; Betti, R.
2011-09-15
Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.
Substorm features in MHD (magnetohydrodynamics) simulations of magnetotail dynamics
Birn, J.; Hesse, M.
1990-01-01
We present a review and extended analysis of characteristic results from our nonideal three-dimensional MHD simulations of unstable magnetotail evolution, which develops without the necessity of external driving or prescribed localization on nonideal effects. These modes involve magnetic reconnection at a near-Earth site in the tail, consistent with the near-Earth neutral line model of substorms. The evolution tailward of the reconnection site is characterized by plasmoid formation and ejection into the far tail, plasma sheet thinning between the near-Earth neutral line (X line) and the departing plasmoid, and fast tailward flow, which occupies large sections of the plasma sheet at larger distance from the X line, while it occurs only in very limited space and time sections close to the X line. The region earthward of the X line is characterized by dipolarization, propagating from midnight toward the flank regions and, perhaps, tailward. It is associated with the signatures of the substorm current wedge: reduction and diversion of cross-tail current from a region surrounding the reconnection site and increase of Region 1 type field-aligned currents. A mapping of these currents to the Earth on the basis of an empirical magnetic field model shows good agreement of the mapped current system with the observed Region 1 field-aligned current system and its substorm associated changes, including also a nightward and equatorward shift of the peaks of the field-aligned current density. The evolution of the mappings of the boundaries of the closed field line region bears strong resemblance to the formation and expansion of he auroral bulge. The consistency of all of these details with observed substorm features strongly supports the idea that substorm evolution in the tail is that of a large scale nonideal instability.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
Theoretical and numerical modeling of solar activity and its effects on the solar atmosphere within the context of magnetohydrodynamics were examined. Specifically, the scientific objectives were concerned with the physical mechanisms for the flare energy build-up and subsequent release. In addition, transport of this energy to the corona and solar wind was also investigated. Well-posed, physically self-consistent, numerical simulation models that are based upon magnetohydrodynamics were sought. A systematic investigation of the basic processes that determine the macroscopic dynamic behavior of solar and heliospheric phenomena was conducted. A total of twenty-three articles were accepted and published in major journals. The major achievements are summarized.
Barnes, P.R.; Tesche, F.M.; Vance, E.F.
1992-03-01
A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth`s magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.
Nonlinear tearing mode study using the almost ideal magnetohydrodynamics (MHD) constraint
Ren, C.; Callen, J.D.; Jensen, T.H.
1998-12-31
The tearing mode is an important resistive magnetohydrodynamics (MHD) mode. It perturbs the initial equilibrium magnetic flux surfaces through magnetic field line reconnection to form new flux surfaces with magnetic islands. In the study of the tearing mode, usually the initial equilibria are one dimensional with two ignorable coordinates and the perturbed equilibria are two dimensional with one ignorable coordinate. The tearing mode can be linearly unstable and its growth saturates at a fine amplitude. The neoclassical tearing mode theory shows that the mode can be nonlinearly driven by the bootstrap current even when it is linearly stable to the classical tearing mode. It is important to study the nonlinear behavior of the tearing mode. As an intrinsically nonlinear approach, the use of the almost ideal MHD constraint is suited to study the nonlinear properties of the tearing mode. In this paper, as a validation of the method, the authors study two characteristics of the tearing mode using the almost ideal MHD constraint: (1) the linear stability condition for the initial one dimensional equilibrium; and (2) the final saturation level for the unstable case. In this work, they only consider the simplest case where no gradient of pressure or current density exists at the mode resonant surface.
Lectures on magnetohydrodynamical drives
NASA Astrophysics Data System (ADS)
Loigom, Villem
The paper deals with nonconventional types of electrical machines and drives - magnetohydrodynamical (MHD) machines and drives. In cardinal it is based on the research conducted with participation of the author in Tallinn Technical University at the Institute of Electrical Drives and Power Electronics, where the use of magnetohydrodynamical motors and drives in the metallurgical and casting industries have been studied for a long time. Major research interests include the qualities and applications of the induction MHD-drives for set in the motion (pumping, turning, dosing, mixing, etc.) non-ferrous molten metals like Al, Mg, Sn, Pb, Na, K, and their alloys. The first part of the paper describes induction MHD motors and their electrohydraulical qualities. In the second part energy conversion problems are described. Also, on the basis of the analogy between electromechanical and electrohydraulical phenomenas, static and dynamic qualities of MHD drives with induction MHD machines are discussed.
Development of materials for open-cycle magnetohydrodynamics (MHD): ceramic electrode. Final report
Bates, J.L.; Marchant, D.D.
1986-09-01
Pacific Northwest Laboratory, supported by the US Department of Energy, developed advanced materials for use in open-cycle, closed cycle magnetohydrodynamics (MHD) power generation, an advanced energy conversion system in which the flow of electrically conducting fluid interacts with an electric field to convert the energy directly into electricity. The purpose of the PNL work was to develop electrodes for the MHD channel. Such electrodes must have: (1) electrical conductivity above 0.01 (ohm-cm)/sup -1/ from near room temperature to 1900/sup 0/K, (2) resistance to both electrochemical and chemical corrosion by both slag and potassium seed, (3) resistance to erosion by high-velocity gases and particles, (4) resistance to thermal shock, (5) adequate thermal conductivity, (6) compatibility with other channel components, particularly the electrical insulators, (7) oxidation-reduction stability, and (8) adequate thermionic emission. This report describes the concept and development of high-temperature, graded ceramic composite electrode materials and their electrical and structural properties. 47 refs., 16 figs., 13 tabs.
Magnetohydrodynamic power generation
NASA Technical Reports Server (NTRS)
Smith, J. L.
1984-01-01
Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.
Observation of finite-. beta. MHD phenomena in tokamaks
McGuire, K.M.
1984-09-01
Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1 internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.
Analytical investigation of critical phenomena in MHD power generators
NASA Technical Reports Server (NTRS)
1980-01-01
Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the U.S. U-25 Experiment, are analyzed. The performance of a NASA specified 500 MW(th) flow train is analyzed. Critical phenomena analyzed include: Hall voltage overshoots; optimal load schedules; parametric dependence of the electrode voltage drops; boundary layer behavior; near electrode phenomena with finite electrode segmentation; current distribution in the end regions; scale up rules; optimum Mach number distribution; and the effects of alternative cross sectional shapes.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
NASA Astrophysics Data System (ADS)
Kalteh, M.; Ghorbani, S.; Khademinejad, T.
2016-05-01
An axisymmetric magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a fluid over a slender cylinder are investigated numerically. The effects of viscous dissipation, thermal radiation, and surface transverse curvature are taken into account in the simulations. For this purpose, the governing partial differential equations are transformed to ordinary differential equations by using appropriate similarity transformations. The resultant ordinary differential equations along with appropriate boundary conditions are solved by the fourth-order Runge-Kutta method combined with the shooting technique. The effects of various parameters on the velocity and temperature profiles, local skin friction coefficient, and Nusselt number are analyzed.
NASA Technical Reports Server (NTRS)
Riggins, David W.
2002-01-01
The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet
Fast Soft X-ray Images of MHD Phenomena in NSTX
C.E. Bush, B.C. Stratton, J. Robinson, L.E. Zakharov, E. D. Fredrickson, D. Stutman, K. Tritz
2008-07-21
A variety of MHD phenomena have been observed on NSTX. Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and PIN diode arrays for soft x-ray emission from the plasma core. Data reported here are from an unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a CCD chip, of light resulting from conversion of soft x-rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot), and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and ELMs. New data including modes with frequency > 90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and PIN diode array results.
NASA Technical Reports Server (NTRS)
Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.
1981-01-01
A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.
NASA Technical Reports Server (NTRS)
1981-01-01
The estimated plant capital cost for a coal fired 200 MWE electric generating plant with open cycle magnetohydrodynamics is divided into principal accounts based on Federal Energy Regulatory Commision account structure. Each principal account is defined and its estimated cost subdivided into identifiable and major equipment systems. The cost data sources for compiling the estimates, cost parameters, allotments, assumptions, and contingencies, are discussed. Uncertainties associated with developing the costs are quantified to show the confidence level acquired. Guidelines established in preparing the estimated costs are included. Based on an overall milestone schedule related to conventional power plant scheduling experience and starting procurement of MHD components during the preliminary design phase there is a 6 1/2-year construction period. The duration of the project from start to commercial operation is 79 months. The engineering phase of the project is 4 1/2 years; the construction duration following the start of the man power block is 37 months.
Lattice Boltzmann model for simulation of magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William
1991-01-01
A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.
NASA Astrophysics Data System (ADS)
Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.
2016-02-01
As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Song, M. T.; Martens, P. C. H.; Dryer, M.
1991-01-01
A situation wherein a bipolar magnetic field embedded in a stratified solar atmosphere undergoes symmetrical shear motion at the footpoints is investigated via a 2D (nonplanar) MHD simulation. It was found that the vertical plasma flow velocities grow exponentially, leading to a new type of global MHD instability. The growth rate increases almost linearly until it reaches the same order of magnitude as the Alfven speed. Then a nonlinear MHD instability occurs beyond this point. It was found that the central loops are pinched by opposing Lorentz forces, and the outer closed loops stretch upward with the vertically-rising mass flow. The nonlinear dynamical shearing instability is illustrated by a numerical example that is given for three different values of the plasma beta that span several orders of magnitude.
NASA Astrophysics Data System (ADS)
Haiducek, J. D.; Welling, D. T.; Morley, S.; Ozturk, D. S.
2015-12-01
Magnetospheric substorms are events in which energy stored in the magnetotail is released into the auroral zone and into the downstream solar wind. Because of the complex, nonlinear, and possibly chaotic nature of the substorm energy release mechanism, it may be extremely difficult to forecast individual substorms in the near term. However, the inter-substorm timing (the amount of time elapsed between substorms) can be reproduced in a statistical sense, as was demonstrated by Freeman and Morley (2004) using their Minimal Substorm Model (MSM), a simple solar-wind driven model with the only free parameter being a recurrence time. The goal of the present work is to reproduce the observed distribution of inter-substorm timings with a global MHD model. The period of 1-31 January 2005 was simulated using the Space Weather Modeling Framework (SWMF), driven by solar wind observations. Substorms were identified in the model output by synthesizing surface magnetometer data and by looking for tailward-moving plasmoids. Substorms identified in the MHD model are then compared with observational data from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft, Los Alamos National Laboratory (LANL) geostationary satellite energetic particle data, and surface magnetometer data. For each dataset (MHD model and observations), we calculate the substorm occurrence rate, and for the MHD model we additionally calculate the timing error of the substorm onsets relative to the observed substorms. Finally, we calculate distribution functions for the inter-substorm timings in both the observations and the model. The results of this analysis will guide improvements to the MHD-based substorm model, including the use of Hall MHD and embedded particle in cell (EPIC), leading to a better reproduction of the observed inter-substorm timings and an improved understanding of the underlying physical processes. ReferencesM. P. Freeman and S. K. Morley. A minimal substorm model that
A nonvariational code for calculating three-dimensional MHD (magnetohydrodynamic) equilibria
Greenside, H.S.; Reiman, A.H.; Salas, A.
1987-09-01
Details are presented of the PIES code, which uses a nonvariational algorithm for calculating fully three-dimensional MHD equilibria. The MHD equilibrium equations are directly iterated in special coordinates to find self-consistent currents and magnetic fields for given pressure and current profiles and for a given outermost magnetic surface. Three important advantages of this approach over previous methods are the ease with which net current profiles can be imposed, the explicit treatment of resonances, and the ability to handle magnetic islands and stochastic field lines. The convergence properties of the code are studied for several axisymmetric and nonaxisymmetric finite-..beta.. equilibria that have magnetic surfaces. 36 refs., 14 figs., 3 tabs.
Design study of superconducting magnets for a combustion magnetohydrodynamic (MHD) generator
NASA Technical Reports Server (NTRS)
Thome, R. J.; Ayers, J. W.
1977-01-01
Design trade off studies for 13 different superconducting magnet systems were carried out. Based on these results, preliminary design characteristics were prepared for several superconducting magnet systems suitable for use with a combustion driven MHD generator. Each magnet generates a field level of 8 T in a volume 1.524 m (60 in.) long with a cross section 0.254 m x 0.254 m (10 in. x 10 in.) at the inlet and 0.406 m x .406 m (16 in. x 16 in.) at the outlet. The first design involves a racetrack coil geometry intended for operation at 4.2 K; the second design uses a racetrack geometry at 2.0 K; and the third design utilizes a rectangular saddle geometry at 4.2 K. Each case was oriented differently in terms of MHD channel axis and main field direction relative to gravity in order to evaluate fabrication ease. All cases were designed such that the system could be disassembled to allow for alteration of field gradient in the MHD channel by changing the angle between coils. Preliminary design characteristics and assembly drawings were generated for each case.
Experiments in Magnetohydrodynamics
ERIC Educational Resources Information Center
Rayner, J. P.
1970-01-01
Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)
NASA Technical Reports Server (NTRS)
Leventis, Nicholas; Dass, Amala
2004-01-01
There are three kinds of body forces operating in electrolytic solutions in the magnetic field: the magnetohydrodynamic force F(sub B) (=i x B), the F(sub delB) force (approximately B(raised dot)gradB) and the F(sub delC) force (approximately |B|(sup 2)gradC). These three forces manifest themselves differently, depending on the experimental conditions. Thus, diamagnetic disc millielectrodes (e.g., Au) with their plane parallel to the flux density of the homogeneous magnetic field of an electromagnet yield convective behavior analogous to that observed with rotating electrodes; that response is controlled by F(sub B). The same electrodes placed in the inhomogeneous field of a strong permanent magnet yield also convective behavior that is controlled by both F(sub B) and F(sub delB). Finally, similarly sized millielectrodes made of permanent magnets (e.g., Au-coated Nd-Fe-B discs) yield diffusion-controlled behavior at conditions where a gold disc electrode shows behavior dominated by density gradient driven natural convection; in this case the predominant forces are both F(sub delB) and F(sub delC). Under open circuit conditions, ferromagnetic (i.e., magnetizable) millielectrodes (Co, Fe, Ni) dipped in corrosive solutions and placed in homogeneous magnetic fields yield mass-transfer phenomena that seem to be controlled by magnetophoresis.
Zhu, X. S.; Wang, H. N.; Du, Z. L.; Fan, Y. L.
2013-05-10
We undertake an attempt to reconstruct the Sun's non-force-free magnetic field. The solar corona is often considered to be magnetohydrostatic. We solve the full MHD equations with a semi-realistic atmosphere model to attain this stationary state. Our method is tested with a Sun-like model which simulates the emergence of a magnetic flux rope passing from below the photosphere into the corona. Detailed diagnostics shows that our method can model the forced field more successfully than the optimization and potential method, but it still needs to be applied to real data.
Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle
NASA Astrophysics Data System (ADS)
Lian, Kun; Heng, Khee-Hang
2001-09-01
This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.
MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS
Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I.; Downs, Cooper; Roussev, Ilia I.; Evans, Rebekah M.
2013-02-10
We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.
Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Rashid, Madiha; Imtiaz, Maria; Alsaedi, Ahmed
2015-06-01
This paper investigates MHD steady flow of viscous nanofluid due to a rotating disk. Water is treated as a base fluid and copper as nanoparticle. Nanofluid fills the porous medium. Effects of partial slip, viscous dissipation and thermal radiation are also considered. Similarity transformations reduce the nonlinear partial differential equations to ordinary differential equations. Flow and heat transfer characteristics are computed by HAM solutions. Also computations for skin friction coefficient and Nusselt number are presented and examined for pertinent parameters. It is noted that higher velocity slip parameter decreases the radial and azimuthal velocities while temperature decreases for larger values of the thermal slip parameter. Also the rate of heat transfer enhances when the nanoparticle volume fraction increases.
Not Available
1987-09-01
In this Quarterly Technical Progress Report, UTSI reports on progress in a multitask program to develop MHD technology, currently oriented toward the steam bottoming plant and environmental considerations. Plans and preparation for resumption of testing in the DOE Coal Fired Flow Facility are summarized. The status of the new aerodynamic duct, nozzle and diffuser is reported. Plans for continued testing of tubes made of candidate materials in the superheater test module are discussed. Progress in preparing the facility for the upcoming tests are included. Plans formulated jointly with Mississippi State University for application of advanced instrumentation in future tests are detailed. Additional analyses of data from previous tests is included in particulate loading and size distribution, seed recovery and trace elements. Progress in the environmental program is reported for the water quality program, the trace element study and process gas analysis.
NASA Technical Reports Server (NTRS)
Wang, A. H.; Wu, S. T.; Liu, Yang; Hathaway, D.
2008-01-01
We introduce a numerical simulation method for recovering the photospheric velocity field from the vector magnetograms. The traditional method is local correlation tracking (LCT) which is based on measuring the relative displacements of features in blocks of pixels between successive white-light images or magnetograms. Within this method, there are a variety of implementations. One of recently developed implementations is induction local correlation tracking (ILCT) as described by Welsch et al. (2004). They employ the normal component of magnetic induction equation as a constraint to assure consistent solutions. Our numerical method uses the fully three-dimensional MHD equations to recover the photospheric velocity field with individual vector magnetograms. We compare our method to the ILCT method using NOAA AR8210 as an example. The differences and similarities are discussed in detail.
Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip
Hayat, Tasawar; Rashid, Madiha; Imtiaz, Maria; Alsaedi, Ahmed
2015-06-15
This paper investigates MHD steady flow of viscous nanofluid due to a rotating disk. Water is treated as a base fluid and copper as nanoparticle. Nanofluid fills the porous medium. Effects of partial slip, viscous dissipation and thermal radiation are also considered. Similarity transformations reduce the nonlinear partial differential equations to ordinary differential equations. Flow and heat transfer characteristics are computed by HAM solutions. Also computations for skin friction coefficient and Nusselt number are presented and examined for pertinent parameters. It is noted that higher velocity slip parameter decreases the radial and azimuthal velocities while temperature decreases for larger values of the thermal slip parameter. Also the rate of heat transfer enhances when the nanoparticle volume fraction increases.
An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator
Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.
1990-06-01
The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.
ERIC Educational Resources Information Center
Kantrowitz, Arthur; Rosa, Richard J.
1975-01-01
Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)
Hua, T.A.; Picologlou, B.F.; Reed, C.B.; Walker, J.S.
1988-02-01
Magnetohydrodynamic flows of liquid metals in thin conducting ducts of various geometries in the presence of strong nonuniform transverse magnetic fields are examined. The interaction parameter and Hartmann number are assumed to be large, whereas the magnetic Reynolds number is assumed to be small. Under these assumptions, viscous and inertial effects are confined in very thin boundary layers adjacent to the walls. At walls parallel to the magnetic field lines, as at the side walls of a rectangular duct, the boundary layers (side layers) carry a significant fraction of the volumetric flow rate in the form of high velocity jets. The presence of these jets strongly enhances heat transfer performance. In addition, heat transfer can be further improved by guiding the flow toward a heated wall by proper variation of wall thicknesses, duct cross sectional dimensions and/or shape. Flows in nonconducting circular ducts are also examined. Experimental results obtained from the ALEX experiments at the Argonne National Laboratory are used to validate the numerical predictions. 6 refs., 7 figs.
Design study of superconducting magnets for a combustion magnetohydrodynamic /MHD/ generator
NASA Technical Reports Server (NTRS)
Thome, R. J.; Ayers, J. W.; Hrycaj, T. M.; Burkhart, J. A.
1978-01-01
Results are presented for a trade-off and preliminary design study on concepts of a superconducting magnet system for a combustion MHD generator test facility. The main objective is to gain insight into the magnitude of the project in terms of physical characteristics and cost. The net result of a first-phase evaluation of attractive design alternatives is to concentrate subsequent efforts on (1) a racetrack coil geometry with an operating temperature of 4.2 K, (2) a racetrack coil geometry with an operating temperature of 2.0 K, and (3) a rectangular saddle coil geometry with an operating temperature of 4.2 K. All three systems are to produce 8 T, and use NbTi superconductor and iron for field enhancement. Design characteristics of the three systems are described. It is shown that the racetrack and rectangular saddle coil geometries seem most suitable for this application, the former because of its simplicity and the latter because of its efficient use of material. Advantages of the rectangular saddle over the two other systems are stressed.
Parks, K.D.; Sheth, A.C. )
1988-01-01
Magnetohydrodynamics is a branch of the physical sciences dealing with the electromagnetic fields and electrically conduction gases and liquids. Examples of MHD are everywhere, from stars and nuclear fusion to applications like MHD electrical power generation, i.e. when electrical conductors cut magnetic field lines, an electromotive force (EMF) is induced. If electrodes and external circuits are connected, current will flow. In conventional electric generators, the copper wire conductors are rotated through a magnetic field, and are usually driven by a steam turbine. On the other hand, the conductor in an MHD system is a fluid (gas or liquid) which flows through a magnetic field. There are two basic types of MHD energy conversion systems - open cycle and closed cycle. In closed cycle, the working fluid or conducting medium is recycled, while in the open cycle it is appropriately utilized and discarded. In this paper, the authors discuss the priority pollutants study carried out for an open cycle concept in which the conductor is a high temperature combustion gas, which flows through a magnetic field from a high pressure source and is not recycled.
NASA Astrophysics Data System (ADS)
Benyo, Theresa Louise
Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the
NASA Astrophysics Data System (ADS)
Benyo, Theresa Louise
Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the
Gyroscopic analog for magnetohydrodynamics
Holm, D.D.
1981-01-01
The gross features of plasma equilibrium and dynamics in the ideal magnetohydrodynamics (MHD) model can be understood in terms of a dynamical system which closely resembles the equations for a deformable gyroscope.
Gyroscopic analog for magnetohydrodynamics
Holm, D.D.
1982-07-20
The gross features of plasma equilibrium and dynamics in the ideal magnetohydrodynamics (MHD) model can be understood in terms of a dynamical system which closely resembles the equations for a deformable gyroscope.
Boquist, Carl W.; Marchant, David D.
1978-01-01
A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.
NASA Technical Reports Server (NTRS)
1981-01-01
Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.
Anghaie, S.; Saraph, G.
1995-12-31
A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses.
Weller, A.; Anton, M.; Geiger, J.; Goerner, C.; Jaenicke, R.; Konrad, C.; Penningsfeld, F.P.; Rust, N.; Teo, C.Y.; Spong, D.A.
1997-12-31
Energy and particle transport in W7-AS exhibits a resonance like dependence on the edge rotational transform (iota) as long as the magnetic shear is relatively weak (low beta, no significant net toroidal currents). MHD modes at resonant surfaces may cause enhanced radial transport depending on the magnitude and radial extent of the magnetic perturbations. In many cases discharges in W7-AS are very quiescent, or in case of mode activity, often no influence on energy and particle confinement is found. In the high beta regime ((beta)
Efficient magnetohydrodynamic simulations on graphics processing units with CUDA
NASA Astrophysics Data System (ADS)
Wong, Hon-Cheng; Wong, Un-Hong; Feng, Xueshang; Tang, Zesheng
2011-10-01
Magnetohydrodynamic (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the best of the author's knowledge, the first implementation of MHD simulations entirely on GPUs with CUDA, named GPU-MHD, to accelerate the simulation process. GPU-MHD supports both single and double precision computations. A series of numerical tests have been performed to validate the correctness of our code. Accuracy evaluation by comparing single and double precision computation results is also given. Performance measurements of both single and double precision are conducted on both the NVIDIA GeForce GTX 295 (GT200 architecture) and GTX 480 (Fermi architecture) graphics cards. These measurements show that our GPU-based implementation achieves between one and two orders of magnitude of improvement depending on the graphics card used, the problem size, and the precision when comparing to the original serial CPU MHD implementation. In addition, we extend GPU-MHD to support the visualization of the simulation results and thus the whole MHD simulation and visualization process can be performed entirely on GPUs.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Guo, W. P.
1997-01-01
We present results for an investigation of the interaction of a helmet streamer arcade and a helical flux-rope emerging from the sub-photosphere. These results are obtained by using a three-dimensional axisymmetric, time-dependent ideal magnetohydrodynamic (MHD) model. Because of the physical nature of the flux-rope, we investigate two types of flux-ropes; (1) high density flux-rope (i.e. flux-rope without cavity), and (2) low density flux rope (i.e. flux-rope with cavity). When the streamer is disrupted by the flux-rope, it will evolve into a configuration resembling the typical observed loop-like Coronal Mass Ejection (CMES) for both cases. The streamer-flux rope system with cavity is easier to be disrupted and the propagation speed of the CME is faster than the streamer-flux rope system without cavity. Our results demonstrate that magnetic buoyancy force plays an important role in disrupting the streamer.
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel
Magnetohydrodynamic fluidic system
Lee, Abraham P.; Bachman, Mark G.
2004-08-24
A magnetohydrodynamic fluidic system includes a reagent source containing a reagent fluid and a sample source containing a sample fluid that includes a constituent. A reactor is operatively connected to the supply reagent source and the sample source. MHD pumps utilize a magnetohydrodynamic drive to move the reagent fluid and the sample fluid in a flow such that the reagent fluid and the sample fluid form an interface causing the constituent to be separated from the sample fluid.
AC magnetohydrodynamic microfluidic switch
Lemoff, A V; Lee, A P
2000-03-02
A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.
Relativistic magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests
Duez, Matthew D.; Liu, Yuk Tung; Shapiro, Stuart L.; Stephens, Branson C.
2005-07-15
Many problems at the forefront of theoretical astrophysics require the treatment of magnetized fluids in dynamical, strongly curved spacetimes. Such problems include the origin of gamma-ray bursts, magnetic braking of differential rotation in nascent neutron stars arising from stellar core collapse or binary neutron star merger, the formation of jets and magnetized disks around newborn black holes, etc. To model these phenomena, all of which involve both general relativity (GR) and magnetohydrodynamics (MHD), we have developed a GRMHD code capable of evolving MHD fluids in dynamical spacetimes. Our code solves the Einstein-Maxwell-MHD system of coupled equations in axisymmetry and in full 3+1 dimensions. We evolve the metric by integrating the Baumgarte-Shapiro-Shibata-Nakamura equations, and use a conservative, shock-capturing scheme to evolve the MHD equations. Our code gives accurate results in standard MHD code-test problems, including magnetized shocks and magnetized Bondi flow. To test our code's ability to evolve the MHD equations in a dynamical spacetime, we study the perturbations of a homogeneous, magnetized fluid excited by a gravitational plane wave, and we find good agreement between the analytic and numerical solutions.
Marchant, David D.; Killpatrick, Don H.
1978-01-01
An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.
Magnetohydrodynamic projects at the CDIF
Not Available
1992-01-01
The Component Development and Integration Facility (CDIF) is a major U.S. Department of Energy magnetohydrodynamics (MHD) test facility in Butte, Montana. The CDIF is operated by MSE, Inc. Within the national MHD program, MSE personnel are responsible for performing integration testing of vendor-supplied MHD power train components at the CDIF to support the goal of commercialization. During the second quarter of FY92, a second external water leak on the iron-core magnet was repaired, and MHD testing was completed on February 11; this was the final testing of the workhorse hardware. Workhorse hardware was removed, and installation of the proof-of-concept (POC) combustor began.
Magnetohydrodynamic projects at the CDIF
Not Available
1991-01-01
The Component Development and Integration Facility (CDIF) is a major US Department of Energy magnetohydrodynamic (MHD) test facility in Butte, Montana. The CDIF is operated by MSE, Inc. Within the national MHD program, MSE personnel are responsible for performing integration testing of vendor-supplied MHD power train components at the CDIF to support the goal of commercialization. During the first quarter of FY92, MHD testing was initiated. Off-line and on-line calibration tests were completed for the Endress+Hauser flowmeter, and thermal, conductivity, and electrical testing was initiated.
Tripathi, Dharmendra; Anwar Bég, O
2013-11-01
Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport. PMID:23911695
Tripathi, Dharmendra; Anwar Bég, O
2013-11-01
Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport.
Numerical Simulations and Diagnostics in Astrophysics:. a Few Magnetohydrodynamics Examples
NASA Astrophysics Data System (ADS)
Peres, Giovanni; Bonito, Rosaria; Orlando, Salvatore; Reale, Fabio
2007-12-01
We discuss some issues related to numerical simulations in Astrophysics and, in particular, to their use both as a theoretical tool and as a diagnostic tool, to gain insight into the physical phenomena at work. We make our point presenting some examples of Magneto-hydro-dynamic (MHD) simulations of astrophysical plasmas and illustrating their use. In particular we show the need for appropriate tools to interpret, visualize and present results in an adequate form, and the importance of spectral synthesis for a direct comparison with observations.
NASA Technical Reports Server (NTRS)
1981-01-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
Feasibility of MHD submarine propulsion
Doss, E.D. ); Sikes, W.C. )
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
Legro, J.R.; Abi-Samra, N.C.; Tesche, F.M.
1985-05-01
In addition to the initial transients designated as fast transient high-altitude EMP (HEMP) and intermediate time EMP, electromagnetic signals are also perceived at times from seconds to hundreds of seconds after a high-altitude nuclear burst. This signal has been defined by the term magnetohydrodynamic-electromagnetic pulse (MHD-EMP). The MHD-EMP phenomena has been both detected in actual weapon tests and predicted from theoretical models. This volume documents a preliminary research effort to investigate the nature and coupling of the MHD-EMP environments to electric power systems, define the construction of approximate system response network models, and document the development of a unified methodology to assess equipment and systematic vulnerability. The MHD-EMP environment is compared to a qualitatively similar natural event, the electromagnetic environment produced by geomagnetic storms.
Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.
Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav
2015-02-13
Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.
NASA Astrophysics Data System (ADS)
Alexakis, A.
2009-04-01
Most astrophysical and planetary systems e.g., solar convection and stellar winds, are in a turbulent state and coupled to magnetic fields. Understanding and quantifying the statistical properties of magneto-hydro-dynamic (MHD) turbulence is crucial to explain the involved physical processes. Although the phenomenological theory of hydro-dynamic (HD) turbulence has been verified up to small corrections, a similar statement cannot be made for MHD turbulence. Since the phenomenological description of Hydrodynamic turbulence by Kolmogorov in 1941 there have been many attempts to derive a similar description for turbulence in conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is going to be based inevitably on strong assumptions (typically borrowed from hydrodynamics) that do not however necessarily apply to the MHD case. In this talk I will discuss some of the properties and differences of the energy and helicity cascades in turbulent MHD and HD flows. The investigation is going to be based on the analysis of direct numerical simulations. The cascades in MHD turbulence appear to be a more non-local process (in scale space) than in Hydrodynamics. Some implications of these results to turbulent modeling will be discussed
NASA Technical Reports Server (NTRS)
Tsu, T. C.
1976-01-01
A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.
Magneto-Hydrodynamics Based Microfluidics
Qian, Shizhi; Bau, Haim H.
2009-01-01
In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890
Picologlou, B.F.
1985-01-01
During the course of the Blanket Comparison and Selection Study, magnetohydrodynamic effects were shown to prevent not only an efficiency but also a feasibility issue for self-cooled liquid-metal blankets, especially for tokamak machines. Based on state-of-the art MHD analyses and understanding of related phenomena, designs for both mirror and tokamak machines were developed. Although details of the designs depend on specific reactor parameters, MHD related considerations were the main driver in the development of the designs. This paper presents, in a unified way, these considerations, as well as effective strategies to minimize adverse MHD effects so that they can be used as guidelines by others in future design efforts.
Turning the resistive MHD into a stochastic field theory
NASA Astrophysics Data System (ADS)
Materassi, M.; Consolini, G.
2008-08-01
Classical systems stirred by random forces of given statistics may be described via a path integral formulation in which their degrees of freedom are stochastic variables themselves, undergoing a multiple-history probabilistic evolution. This framework seems to be easily applicable to resistive Magneto-Hydro-Dynamics (MHD). Indeed, MHD equations form a dynamic system of classical variables in which the terms representing the density, the pressure and the conductivity of the plasma are irregular functions of space and time when turbulence occurs. By treating those irregular terms as random stirring forces, it is possible to introduce a Stochastic Field Theory which should represent correctly the impulsive phenomena caused by the spece- and time-irregularity of plasma turbulence. This work is motivated by the recent observational evidences of the crucial role played by stochastic fluctuations in space plasmas.
Magnetohydrodynamic Turbulence and the Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2016-01-01
Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.
Solar Flares: Magnetohydrodynamic Processes
NASA Astrophysics Data System (ADS)
Shibata, Kazunari; Magara, Tetsuya
2011-12-01
This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.
Parabolized Navier-Stokes Code for Computing Magneto-Hydrodynamic Flowfields
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B. (Technical Monitor); Tannehill, J. C.
2003-01-01
This report consists of two published papers, 'Computation of Magnetohydrodynamic Flows Using an Iterative PNS Algorithm' and 'Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm'.
NASA Technical Reports Server (NTRS)
Hoover, D. Q.
1976-01-01
Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.
Improvement of Scramjet Performance-Experimental Demonstration of MHD Acceleration
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.; Park, Chul; Mehta, Unmeel B.; Arnold, James (Technical Monitor)
2001-01-01
One of the critical technologies of MHD (Magnetohydrodynamics) bypass scramjet propulsion for space launch and cruise vehicles is MHD acceleration. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. The objectives, the methods used and the preliminary results are described in this paper.
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
NASA Astrophysics Data System (ADS)
González, J. J.; Guzmán, F.
2015-12-01
In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Plasma relaxation and topological aspects in Hall magnetohydrodynamics
Shivamoggi, B. K.
2012-07-15
Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient {alpha} in the Hall MHD Beltrami condition turns out now to be proportional to the potential vorticity. The Hall MHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics if the Hall MHD Lagrange multiplier {beta} is taken to be proportional to the potential vorticity as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as potential vorticity lines in 2D hydrodynamics.
Magneto-hydrodynamics Simulation in Astrophysics
NASA Astrophysics Data System (ADS)
Pang, Bijia
2011-08-01
Magnetohydrodynamics (MHD) studies the dynamics of an electrically conducting fluid under the influence of a magnetic field. Many astrophysical phenomena are related to MHD, and computer simulations are used to model these dynamics. In this thesis, we conduct MHD simulations of non-radiative black hole accretion as well as fast magnetic reconnection. By performing large scale three dimensional parallel MHD simulations on supercomputers and using a deformed-mesh algorithm, we were able to conduct very high dynamical range simulations of black hole accretion of Sgr A* at the Galactic Center. We find a generic set of solutions, and make specific predictions for currently feasible observations of rotation measure (RM). The magnetized accretion flow is subsonic and lacks outward convection flux, making the accretion rate very small and having a density slope of around -1. There is no tendency for the flows to become rotationally supported, and the slow time variability of th! e RM is a key quantitative signature of this accretion flow. We also provide a constructive numerical example of fast magnetic reconnection in a three-dimensional periodic box. Reconnection is initiated by a strong, localized perturbation to the field lines and the solution is intrinsically three-dimensional. Approximately 30% of the magnetic energy is released in an event which lasts about one Alfvén time, but only after a delay during which the field lines evolve into a critical configuration. In the co-moving frame of the reconnection regions, reconnection occurs through an X-like point, analogous to the Petschek reconnection. The dynamics appear to be driven by global flows rather than local processes. In addition to issues pertaining to physics, we present results on the acceleration of MHD simulations using heterogeneous computing systems te{shan2006heterogeneous}. We have implemented the MHD code on a variety of heterogeneous and multi-core architectures (multi-core x86, Cell, Nvidia and
Multiple time scale methods in tokamak magnetohydrodynamics
Jardin, S.C.
1984-01-01
Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B/sup 2//2..mu../sub 0/, which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed.
Viscosity and Vorticity in Reduced Magneto-Hydrodynamics
Joseph, Ilon
2015-08-12
Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.
Channel-wall limitations in the magnetohydrodynamic induction generator
NASA Technical Reports Server (NTRS)
Jackson, W. D.; Pierson, E. S.
1969-01-01
Discussion of magnetohydrodynamic induction generator examines the machine in detail and materials problems influencing its design. The higher upper-temperature limit of the MHD system promises to be more efficient than present turbine systems for generating electricity.
Generalized reduced magnetohydrodynamic equations
Kruger, S.E.
1999-02-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics.
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, D.H.; Thresh, H.R.
1980-06-24
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.
Remarkable connections between extended magnetohydrodynamics models
Lingam, M. Morrison, P. J. Miloshevich, G.
2015-07-15
Through the use of suitable variable transformations, the commonality of all extended magnetohydrodynamics (MHD) models is established. Remarkable correspondences between the Poisson brackets of inertialess Hall MHD and inertial MHD (which has electron inertia, but not the Hall drift) and extended MHD (which has both effects) are established. The helicities (two in all) for each of these models are obtained through these correspondences. The commonality of all the extended MHD models is traced to the existence of two Lie-dragged 2-forms, which are closely associated with the canonical momenta of the two underlying species. The Lie-dragging of these 2-forms by suitable velocities also leads to the correct equations of motion. The Hall MHD Poisson bracket is analyzed in detail, the Jacobi identity is verified through a detailed proof, and this proof ensures the Jacobi identity for the Poisson brackets of all the models.
Magnetohydrodynamically generated velocities in confined plasma
Morales, Jorge A. Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.
2015-04-15
We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.
Magnetohydrodynamically generated velocities in confined plasma
NASA Astrophysics Data System (ADS)
Morales, Jorge A.; Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.
2015-04-01
We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.
The classification of magnetohydrodynamic regimes of thermonuclear combustion
Remming, Ian S.; Khokhlov, Alexei M.
2014-10-10
Physical properties of magnetohydrodynamic (MHD) reaction fronts are studied as functions of the thermodynamic conditions, and the strength and orientation of the magnetic field in the unburned matter through which the fronts propagate. We determine the conditions for the existence of the various types of MHD reaction fronts and the character of the changes in physical quantities across these reaction fronts. The analysis is carried out in general for a perfect gas equation of state and a constant energy release, and then extended to thermonuclear reaction fronts in degenerate carbon-oxygen mixtures and degenerate helium in conditions typical of Type Ia supernova explosions. We find that as unburned matter enters perpendicular to a reaction front, the release of energy through burning generates shear velocity in the reacting gas that, depending on the type of reaction front, strengthens or weakens the magnetic field. In addition, we find that the steady-state propagation of a reaction front is impossible for certain ranges of magnetic field direction. Our results provide insight into the phenomena of MHD thermonuclear combustion that is relevant to the interpretation of future simulations of SN Ia explosions that have magnetic fields systematically incorporated.
Conservation of circulation in magnetohydrodynamics
Bekenstein; Oron
2000-10-01
We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices. PMID:11089118
Generalized reduced MHD equations
Kruger, S.E.; Hegna, C.C.; Callen, J.D.
1998-07-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson.
Self-organisation and non-linear dynamics in driven magnetohydrodynamic turbulent flows
NASA Astrophysics Data System (ADS)
Dallas, V.; Alexakis, A.
2015-04-01
Magnetohydrodynamic (MHD) turbulent flows driven by random, large-scale, mechanical and electromagnetic external forces of zero helicities are investigated by means of direct numerical simulations. It is shown that despite the absence of helicities in the forcing, the system is attracted to helical states of large scale condensates that exhibit laminar behaviour despite the large value of the Reynolds numbers examined. We demonstrate that the correlation time of the external forces controls the time spent on these states, i.e., for short correlation times, the system remains in the turbulent state while as the correlation time is increased, the system spends more and more time in the helical states. As a result, time averaged statistics are significantly affected by the time spent on these states. These results have important implications for MHD and turbulence theory and they provide insight into various physical phenomena where condensates transpire.
MHD Energy Bypass Scramjet Engine
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)
2001-01-01
Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several
Magnetohydrodynamic generators using two-phase liquid-metal flows
NASA Technical Reports Server (NTRS)
Petrick, M.
1969-01-01
Two-phase flow generator cycle of a magnetohydrodynamic /MHD/ generator uses a working fluid which is compressible and treated as an expanding gas. The two-phase mixture passes from the heat source through the MHD generator, where the expansion process takes place and the electrical energy is extracted.
MHD simple waves and the divergence wave
Webb, G. M.; Pogorelov, N. V.; Zank, G. P.
2010-03-25
In this paper we investigate magnetohydrodynamic (MHD) simple divergence waves in MHD, for models in which nablacentre dotBnot =0. These models are related to the eight wave Riemann solvers in numerical MHD, in which the eighth wave is the divergence wave associated with nablacentre dotBnot =0. For simple wave solutions, all physical variables (the gas density, pressure, fluid velocity, entropy, and magnetic field induction in the MHD case) depend on a single phase function phi. We consider the form of the MHD equations used by both Powell et al. and Janhunen. It is shown that the Janhunen version of the equations possesses fully nonlinear, exact simple wave solutions for the divergence wave, but no physically meaningful simple divergence wave solution exists for the Powell et al. system. We suggest that the 1D simple, divergence wave solution for the Janhunen system, may be useful for the testing and validation of numerical MHD codes.
A simulation of the IPS variations from a magnetohydrodynamical simulation
NASA Technical Reports Server (NTRS)
Tappin, S. J.; Dryer, M.; Han, S. M.; Wu, S. T.
1987-01-01
Calculations of the variations of interplanetary scintillation (IPS) from a disturbance simulated by a 3-D magnetohydrodynamical (MHD) model of the solar wind are presented. The simulated maps are compared with observations and it is found that the MHD model reproduces the qualitative features of observed disturbances. The disturbance produced by the MHD simulation is found to correspond in strength with the weakest disturbance which can be reliably detected by existing single station IPS observations.
Magnetohydrodynamic turbulence: Observation and experiment
Brown, M. R.; Schaffner, D. A.; Weck, P. J.
2015-05-15
We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.
Magnetohydrodynamic Turbulence and the Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2014-01-01
The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
NASA Astrophysics Data System (ADS)
González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.
2015-12-01
We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Doss, E.D.; Sikes, W.C.
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
Global Magnetohydrodynamic Modeling of the Solar Corona
NASA Technical Reports Server (NTRS)
Linker, Jon A.
2001-01-01
This report describes the progress made in the investigation of the solar corona using magnetohydrodynamic (MHD) simulations. Coronal mass ejections (CME) are believed to be the primary cause of nonrecurrent geomagnetic storms and these have been investigated through the use of three-dimensional computer simulation.
Symmetry transforms for ideal magnetohydrodynamics equilibria.
Bogoyavlenskij, Oleg I
2002-11-01
A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)
Symmetry transforms for ideal magnetohydrodynamics equilibria.
Bogoyavlenskij, Oleg I
2002-11-01
A method for constructing ideal magnetohydrodynamics (MHD) equilibria is introduced. The method consists of the application of symmetry transforms to any known MHD equilibrium [ O. I. Bogoyavlenskij, Phys. Rev. E. 62, 8616, (2000)]. The transforms break the geometrical symmetries of the field-aligned solutions and produce continuous families of the nonsymmetric MHD equilibria. The method of symmetry transforms also allows to obtain MHD equilibria with current sheets and exact solutions with noncollinear vector fields B and V. A model of the nonsymmetric astrophysical jets outside of their accretion disks is developed. The total magnetic and kinetic energy of the jet is finite in any layer c(1)
Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines
NASA Astrophysics Data System (ADS)
Cole, Lord Kahil
A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two
BOOK REVIEW: Nonlinear Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
Assessment of MHD power plants with coal gasification
NASA Astrophysics Data System (ADS)
Delallo, M. R., Jr.; Weinstein, R. E.; Cutting, J. C.; Owens, W. R.
1981-12-01
An assessment of the operational characteristics and cost of magnetohydrodynamic (MHD) power plants integrated with coal gasification was performed. The coal gasifier produces a slag and sulfur free fuel for the MHD combustor. This clean fuel eliminates slag and sulfur interactions with the MHD topping cycle and simplifies the design of the combustor, the MHD channel, and the heat and seed recovery (HRSR) subsystem components. This may increase MHD and HRSR system reliability and provide the potential for earlier commercial demonstration of MHD. Integration techniques with three advanced medium BTU gasifiers were evaluated and an optimum system defined. A detailed comparison was then performed with a direct coal fired MHD power plant using oxygen enrichment. Results indicate that incorporating a coal gasification process with MHD simplifies system design at the expense of lower overall net plant efficiency and higher levelized cost of electricity
[Nonlinear magnetohydrodynamics
Not Available
1992-11-01
Theoretical predictions were compared with available data from JET on the threshold unstable MHD activity in toroidal confinement devices. In particular, questions arising as to Hartmans number and the selection of a kinematic viscosity are discussed.
Coupled neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
NASA Astrophysics Data System (ADS)
Lyons, Brendan C.
2014-10-01
Neoclassical effects (e.g., the bootstrap current and neoclassical toroidal viscosity [NTV]) have a profound impact on many magnetohydrodynamic (MHD) instabilities, including tearing modes, edge-localized modes (ELMs), and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We present the first results of the DK4D code, a dynamic drift-kinetic equation (DKE) solver being developed for this application. In this study, DK4D solves a set of time-dependent, axisymmetric DKEs for the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The plasma is formally assumed to be in the low- to finite-collisionality regimes. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by an appropriate set of extended MHD equations. We will discuss computational methods used and benchmarks to other neoclassical models and codes. Furthermore, DK4D has been coupled to a reduced, transport-timescale MHD code, allowing for self-consistent simulations of the dynamic formation of the ohmic and bootstrap currents. Several applications of this hybrid code will be presented, including an ELM-like pressure collapse. We will also discuss plans for coupling to the spatially three-dimensional, extended MHD code M3D-C1 and generalizing to nonaxisymmetric geometries, with the goal of performing self-consistent hybrid simulations of tokamak instabilities and calculations of NTV torque. This work supported by the U.S. Department of Energy (DOE) under Grant Numbers DE-FC02-08ER54969 and DE-AC02-09CH11466.
Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.
2015-12-01
Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.
Not Available
1990-10-01
The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: Develop technical and environmental data for the integrated MHD topping cycle system through POC testing (1000 hours); and bottoming cycle (4000 hours); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle, prepare conceptual designs for a site specific MHD retrofit plant, and continue supporting research necessary for system testing. 7 figs.
Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator
NASA Astrophysics Data System (ADS)
Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.
2015-09-01
The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.
MHD Integrated Topping Cycle Project
Not Available
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
A photolithographic fabrication technique for magnetohydrodynamic micropumps
NASA Astrophysics Data System (ADS)
Kuenstner, Stephen; Baylor, Martha-Elizabeth
2014-03-01
Magnetohydrodynamic (MHD) devices use perpendicular electric and magnetic fields to exert a Lorentz body force on a conducting fluid. Miniaturized MHD devices have been used to create pumps, stirrers, heat exchangers, and microfluidic networks. Compared to mechanical micropumps, MHD micropumps are appealing because they require no moving parts, which simplifies fabrication, and because they are amenable to electronic control. This abstract reports the fabrication and testing of a centimeter-scale MHD pump using a thiol-ene/methacrylate-based photopolymer and mask-based photolithographic technique. Pumps like this one could simplify the fabrication of sophisticated optofluidic devices, including liquid-core, liquid cladding (L2) waveguides, which are usually created with PDMS using stamps, or etched into silicon wafers. The photolithographic technique demonstrated here requires only one masking step to create fluid channels with complex geometries.
Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)
2002-01-01
A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate
Micromachined magnetohydrodynamic actuators and sensors
Lee, Abraham P.; Lemoff, Asuncion V.
2000-01-01
A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.
Scale locality of magnetohydrodynamic turbulence.
Aluie, Hussein; Eyink, Gregory L
2010-02-26
We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic Reynold's numbers in the "inertial-inductive range" of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross helicity-or, equivalently, fluxes of Elsässer energies-are dominated by the contributions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion nonlocally between disparate scales. We present supporting data from a 1024{3} simulation of forced MHD turbulence.
Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel
1976-08-24
A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.
MHD power generation: not now, but ever
Not Available
1981-10-01
The basic concept of magnetohydrodynamics (MHD) has been known for over 100 years, but commercial viability is still a decade or more away despite US-Soviet collaborations to solve engineering problems. The simplicity of the concept offers advantages in terms of stress and efficiency, but implementation requires high-conductivity fluids and specially-designed subsystems. Other problems include the Hall field effect, the size and flux density requirements of superconducting magnets, ash, seed recovery, power inversion, and channel design. Researchers are developing both open-cycle and closed-cycle systems as well as technologies based on MHD and steam bottoming and MHD cogeneration. First-generation MHD plants will probably stress reliability above efficiency. Military applications could include space power generation. 4 figures. (DCK)
MHD coal-fired flow facility. Annual technical progress report, October 1979-September 1980
Alstatt, M.C.; Attig, R.C.; Brosnan, D.A.
1981-03-01
The University of Tennessee Space Institute (UTSI) reports on significant activity, task status, planned research, testing, development, and conclusions for the Magnetohydrodynamics (MHD) Coal-Fired Flow Faclity (CFFF) and the Energy Conversion Facility (ECF).
Magnetohydrodynamic energy conversion by using convexly divergent channel
Murakami, Tomoyuki; Okuno, Yoshihiro
2009-12-21
We describe a magnetohydrodynamic (MHD) electrical power generator equipped with a convexly divergent channel, as determined through shock-tunnel-based experiments. The quality of MHD power-generating plasma and the energy conversion efficiency in the convexly divergent channel are compared with those from previous linearly divergent channel. The divergence enhancement in the channel upstream is effective for suppressing an excessive increase in static pressure, whereby notably high isentropic efficiency is achieved.
Investigation of a liquid-metal magnetohydrodynamic power system.
NASA Technical Reports Server (NTRS)
Elliott, D. G.; Hays, L. G.; Cerini, D. J.; Bogdanoff, D. W.
1972-01-01
Liquid-metal magnetohydrodynamic power conversion is being investigated for nuclear-electric propulsion. A liquid-metal MHD converter has no moving mechanical parts and requires a heat source temperature of only 1300 K. Cycle efficiencies of 5% to 8% for single-stage converters and 10% for multistage converters appear attainable. The specific weight of a 240 kWe MHD power plant has been estimated as 30 kg/kWe with shielding for unmanned science missions.
Tokamak Magnetohydrodynamic Equilibrium States with Axisymmetric Boundary and a 3D Helical Core
Cooper, W. A.; Graves, J. P.; Pochelon, A.; Sauter, O.; Villard, L.
2010-07-16
Magnetohydrodynamic (MHD) equilibrium states with imposed axisymmetric boundary are computed in which a spontaneous bifurcation develops to produce an internal three-dimensional (3D) configuration with a helical structure in addition to the standard axisymmetric system. Equilibrium states with similar MHD energy levels are shown to develop very different geometric structures. The helical equilibrium states resemble saturated internal kink mode structures.
Tokamak magnetohydrodynamic equilibrium states with axisymmetric boundary and a 3D helical core.
Cooper, W A; Graves, J P; Pochelon, A; Sauter, O; Villard, L
2010-07-16
Magnetohydrodynamic (MHD) equilibrium states with imposed axisymmetric boundary are computed in which a spontaneous bifurcation develops to produce an internal three-dimensional (3D) configuration with a helical structure in addition to the standard axisymmetric system. Equilibrium states with similar MHD energy levels are shown to develop very different geometric structures. The helical equilibrium states resemble saturated internal kink mode structures.
Selective decay and dynamic alignment in the MHD turbulence: The role of the rugged invariants
NASA Astrophysics Data System (ADS)
Telloni, Daniele; Perri, Silvia; Carbone, Vincenzo; Bruno, Roberto
2016-03-01
In the evolving MagnetoHydroDynamic (MHD) turbulence a key role is played by the relaxation processes, which drive a magnetized fluid towards self-organized, stable configurations, like a force-free state (resulting from a selective decay) or a dynamic alignment (anti-alignment) between the plasma flow velocity and magnetic field. The evolution of the three MHD rugged invariants, namely of the magnetic helicity Hm, the cross-helicity Hc and the total energy E, is of particular importance in interpreting the asymptotic solutions of the MHD decay. It is thus prominent to investigate the magnetic and cross-helicity content carried by the solar wind and by magnetic structures advected by the flowing plasma, and particularly their radial evolution throughout the inner heliosphere, in order to offer a rather complete picture of the phenomenological aspect of the relaxation phenomena occurring in the solar wind turbulence. The results presented in this paper show that within some solar wind streams, the ideal MHD decays towards a state with maximal cross-helicity, where the magnetic and velocity fluctuations are (anti-)aligned with a high correlation degree. The maximal magnetic helicity state, say the force-free configuration, is instead observed in interplanetary flux ropes, a particular class of magnetic objects advected by the solar wind. However, it is worth noting that in some peculiar flux ropes, the competitive action of both rugged invariants drives the MHD configuration of these structures to intermediate states, where both the magnetic and cross-helicity significantly deviate from zero, without, however, reaching a maximum value.
MHD processes in the outer heliosphere
NASA Technical Reports Server (NTRS)
Burlaga, L. F.
1984-01-01
The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.
Global Magnetohydrodynamic Modeling of the Solar Corona
NASA Technical Reports Server (NTRS)
Linker, Jon A.
1997-01-01
Under this contract, we have continued our investigations of the large scale structure of the solar corona and inner heliosphere using global magnetohydrodynamic (MHD) simulations. These computations have also formed the basis for studies of coronal mass ejections (CMES) using realistic coronal configurations. We have developed a technique for computing realistic magnetohydrodynamic (MHD) computations of the solar corona and inner heliosphere. To perform computations that can be compared with specific observations, it is necessary to incorporate solar observations into the boundary conditions. We have used the Wilcox Solar Observatory synoptic maps (collected during a solar rotation by daily measurements of the line-of-sight magnetic field at central meridian) to specify the radial magnetic field (B,) at the photosphere. For the initial condition, we use a potential magnetic field consistent with the specified distribution of B, at the lower boundary, and a wind solution consistent with the specified plasma density and temperature at the solar surface. Together this initial condition forms a (non-equilibrium) approximation of the state of the solar corona for the time-dependent MHD computation. The MHD equations are then integrated in time to steady state. Here we describe solutions relevant to a recent solar eclipse, as well as Ulysses observations. We have also developed a model configuration of solar minimum, useful for studying CME initiation and propagation.
Global magnetohydrodynamic simulations on multiple GPUs
NASA Astrophysics Data System (ADS)
Wong, Un-Hong; Wong, Hon-Cheng; Ma, Yonghui
2014-01-01
Global magnetohydrodynamic (MHD) models play the major role in investigating the solar wind-magnetosphere interaction. However, the huge computation requirement in global MHD simulations is also the main problem that needs to be solved. With the recent development of modern graphics processing units (GPUs) and the Compute Unified Device Architecture (CUDA), it is possible to perform global MHD simulations in a more efficient manner. In this paper, we present a global magnetohydrodynamic (MHD) simulator on multiple GPUs using CUDA 4.0 with GPUDirect 2.0. Our implementation is based on the modified leapfrog scheme, which is a combination of the leapfrog scheme and the two-step Lax-Wendroff scheme. GPUDirect 2.0 is used in our implementation to drive multiple GPUs. All data transferring and kernel processing are managed with CUDA 4.0 API instead of using MPI or OpenMP. Performance measurements are made on a multi-GPU system with eight NVIDIA Tesla M2050 (Fermi architecture) graphics cards. These measurements show that our multi-GPU implementation achieves a peak performance of 97.36 GFLOPS in double precision.
[Nonlinear magnetohydrodynamics
Not Available
1994-01-01
Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday`s law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm`s law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile.
Computation of Multi-region Relaxed Magnetohydrodynamic Equilibria
Hudson, S. R.; Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; von Nessi, G.; Lazerson, S.
2013-03-29
We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.
Magnetohydrodynamic turbulence: Generalized formulation and extension to compressible cases
Shivamoggi, Bhimsen K.
2008-06-15
A general framework that incorporates the Iroshnikov-Kraichnan (IK) and Goldreich-Sridhar (GS) phenomenalogies of magnetohydrodynamic (MHD) turbulence is developed. This affords a clarification of the regimes of validity of the IK and GS models and hence help resolve some controversies on this aspect. This general formulation appears to have a certain robustness as revealed here by its form invariance with respect to inclusion of compressible effects. Generalizations of the IK and GS spectra to compressible MHD turbulence are given. These two branches are shown to merge with the MHD shockwave spectrum, as to be expected, in the infinite compressibility limit.
Entropy generation analysis of magnetohydrodynamic induction devices
NASA Astrophysics Data System (ADS)
Salas, Hugo; Cuevas, Sergio; López de Haro, Mariano
1999-10-01
Magnetohydrodynamic (MHD) induction devices such as electromagnetic pumps or electric generators are analysed within the approach of entropy generation. The flow of an electrically-conducting incompressible fluid in an MHD induction machine is described through the well known Hartmann model. Irreversibilities in the system due to ohmic dissipation, flow friction and heat flow are included in the entropy-generation rate. This quantity is used to define an overall efficiency for the induction machine that considers the total loss caused by process irreversibility. For an MHD generator working at maximum power output with walls at constant temperature, an optimum magnetic field strength (i.e. Hartmann number) is found based on the maximum overall efficiency.
Action principles for extended magnetohydrodynamic models
Keramidas Charidakos, I.; Lingam, M.; Morrison, P. J.; White, R. L.; Wurm, A.
2014-09-15
The general, non-dissipative, two-fluid model in plasma physics is Hamiltonian, but this property is sometimes lost or obscured in the process of deriving simplified (or reduced) two-fluid or one-fluid models from the two-fluid equations of motion. To ensure that the reduced models are Hamiltonian, we start with the general two-fluid action functional, and make all the approximations, changes of variables, and expansions directly within the action context. The resulting equations are then mapped to the Eulerian fluid variables using a novel nonlocal Lagrange-Euler map. Using this method, we recover Lüst's general two-fluid model, extended magnetohydrodynamic (MHD), Hall MHD, and electron MHD from a unified framework. The variational formulation allows us to use Noether's theorem to derive conserved quantities for each symmetry of the action.
Nuclear magnetohydrodynamic EMP, solar storms, and substorms
Rabinowitz, M. ); Meliopoulous, A.P.S.; Glytsis, E.N. . School of Electrical Engineering); Cokkinides, G.J. )
1992-10-20
In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E [approx lt] 10[sup [minus] 1] V/m and lasts [approx lt] 10[sup 2] sec, whereas for solar storms E [approx gt] 10[sup [minus] 2] V/m and lasts [approx gt] 10[sup 3] sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects.
NASA Astrophysics Data System (ADS)
Dewar, R. L.; Mills, R.; Hole, M. J.
2009-05-01
The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics. To resolve the continuation problem we regularize the Newcomb equation, solve it in terms of Legendre functions of imaginary argument, and define the small weak solutions of the Newcomb equation as generalized functions in the manner of Lighthill, i.e. via a limiting sequence of analytic functions that connect smoothly across the singularity.
The optimization air separation plants for combined cycle MHD-power plant applications
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Springmann, H.; Greenberg, R.
1980-01-01
Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.
NASA Astrophysics Data System (ADS)
Qamar, Shamsul; Ahmed, Sidrah
2013-04-01
The development of powerful computational tools for simulating phenomena that inhibits the relativistic magnetohydrodynamic (MHD) structure has become one of the core research issues in astrophysics and is one of the compelling fields. The relativistic MHD equations are more complex than the non-relativistic ones due to non-linear relations between conserved and state (primitive) variables. The non-linearity of the systems and the flow near speed of light pose major challenges to the theoretical investigation of the models and to the numerical solution techniques. The current numerical study is related to the implementation of the space-time conservation element and solution element (CE/SE) method for solving one-dimensional special relativistic magnetohydrodynamic (SRMHD) equations. In contrast to the existing upwind finite volume schemes, the Riemann solver and reconstruction procedure are not the building blocks of the suggested method. The method differs from previous techniques because of global and local flux conservation in a space-time domain without resorting to interpolation or extrapolation. For validation, the numerical results of the method are compared with the second order central and kinetic flux-vector splitting schemes. The one-dimensional computations of this paper verify the method’s efficiency, robustness and accuracy which are the key parameters in the context of astrophysical scenario.
Toward multi-scale simulation of reconnection phenomena in space plasma
NASA Astrophysics Data System (ADS)
Den, M.; Horiuchi, R.; Usami, S.; Tanaka, T.; Ogawa, T.; Ohtani, H.
2013-12-01
Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow. On the other hand configuration of the magnetic field leading to formation of diffusion region is determined in macroscopic scale and topological change after reconnection is also expressed in macroscopic scale. Thus magnetic reconnection is typical multi-scale phenomenon and microscopic and macroscopic physics are strongly coupled. Recently Horiuchi et al. developed an effective resistivity model based on particle-in-cell (PIC) simulation results obtained in study of collisionless driven reconnection and applied to a global magnetohydrodynamics (MHD) simulation of substorm in the Earth's magnetosphere. They showed reproduction of global behavior in substrom such as dipolarization and flux rope formation by global three dimensional MHD simulation. Usami et al. developed multi-hierarchy simulation model, in which macroscopic and microscopic physics are solved self-consistently and simultaneously. Based on the domain decomposition method, this model consists of three parts: a MHD algorithm for macroscopic global dynamics, a PIC algorithm for microscopic kinetic physics, and an interface algorithm to interlock macro and micro hierarchies. They verified the interface algorithm by simulation of plasma injection flow. In their latest work, this model was applied to collisionless reconnection in an open system and magnetic reconnection was successfully found. In this paper, we describe our approach to clarify multi-scale phenomena and report the current status. Our recent study about extension of the MHD domain to global system is presented. We
Flow development and analysis of MHD generators and seawater thrusters
Doss, E.D. ); Roy, G.D. )
1992-03-01
In this paper, the flow characteristics inside magnetohydrodynamic (MHD) plasma generators and seawater thrusters are analyzed and are compared using a three-dimensional computer model that solves the governing partial differential equations for fluid flow and electrical fields. Calculations have been performed for a Faraday plasma generator and for a continuous electrode seawater thruster. The results of the calculations show that the effects caused by the interaction of the MHD forces with the fluid flow are strongly manifested in the case of the MHD generator as compared to the flow development in the MHD thruster. The existence of velocity overshoots over the sidewalls confirm previously published results for MHD generators with strong MHD interaction. For MHD thrusters, the velocity profile is found to be slightly flatter over the sidewall as compared to that over the electrode wall. As a result, distinct enhancement of the skin friction exists over the sidewalls of MHD generators in comparison to that of MHD thrusters. Plots of velocity profiles and skin friction distributions are presented to illustrate and compare the flow development in MHD generators and thrusters.
Accurate, meshless methods for magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Raives, Matthias J.
2016-01-01
Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.
Broken Symmetry and Coherent Structure in MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Absolute equilibrium ensemble theory for ideal homogeneous magnetohydrodynamic (MHD) turbulence is fairly well developed. Theory and Simulation indicate that ideal MHD turbulence non-ergodic and contains coherent structure. The question of applicability real (i.e., dissipative) MHD turbulence is examined. Results from several very long time numerical simulations on a 64(exp 3) grid are presented. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection with inverse spectral cascades and selective decay will also be discussed.
MHD augmented chemical rocket propulsion for space applications
Schulz, R.J.; Chapman, J.N.; Rhodes, R.P. )
1992-07-01
A performance analysis is carried out of a magnetohydrodynamic (MHD) augmented chemical thruster (based on a gaseous hydrogen-oxygen system) for space applications such as orbit transfer. The mathematical model used in the analysis is a one-dimensional flow model using equilibrium chemistry for the combustor, choked nozzle, and MHD channel portions of the system, and chemical nonequilibrium kinetics for the high area-ratio gas dynamic nozzle portion of the system. The performance of the chemical-MHD-augmented thruster is compared with that of a pure electric thruster of the same specific impulse level. 13 refs.
MHD stability of incompressible coronal loops with radiative energy loss
NASA Technical Reports Server (NTRS)
An, C.-H.
1983-01-01
Previous studies of the magnetohydrodynamic (MHD) stability of solar coronal loops have not taken into account the effects of radiative energy loss in the energy equation. However, since coronal loops continuously lose energy by radiation and heat conduction, it is important to understand how these energy loss mechanisms affect MHD stability. We investigate the problem assuming that a magnetic loop has cylindrical geometry. As a first step, stability is studied for a localized mode, and the result is applied to a specific equilibrium. We find that the radiative energy loss effect not only changes the growth rate of ideally unstable modes, but also alters the stability boundary predicted by ideal MHD theory.
NASA Astrophysics Data System (ADS)
Vlaykov, Dimitar G.; Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R. G.
2016-06-01
Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.
MHD technology transfer, integration, and review committee
NASA Astrophysics Data System (ADS)
1990-05-01
As part of Task 8 of the magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The TTIRC consists of an Executive Committee (EC) which acts as the governing body, and a General Committee (GC), also referred to as the main or full committee, consisting of representatives from the various POC contractors, participating universities and national laboratories, utilities, equipment suppliers, and other potential MHD users or investors. The purpose of the TTIRC is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the U.S. MHD Program. There are seven sections: introduction; Executive Committee and General Committee activity; Committee activities related to technology transfer; ongoing POC integration activities being performed under the auspices of the Executive Committee; recommendations passed on to the DOE by the Executive Committee; Planned activities for the next six months.
Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2
NASA Technical Reports Server (NTRS)
Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.
1997-01-01
This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.
Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1
NASA Technical Reports Server (NTRS)
Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.
1997-01-01
This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.
NASA Astrophysics Data System (ADS)
Griton, Léa; Pantellini, Filippo; Moncuquet, Michel
2016-04-01
We present 3D simulations of the interaction of the solar wind with Mercury's magnetosphere using the magnetohydrodynamic code AMRVAC. A procedure for the identification of standing MHD modes has been applied to these simulations showing that large scale standing slow mode structures may exist in Mercury's magnetosheath. The identification is mostly based on relatively simple approximate analytical solutions to the old problem of determining the family of all standing linear plane MHD waves in a flowing plasma. The question of the identification of standing slow mode structures using in situ measurements such as the future BepiColombo MMO mission to Mercury will be discussed as well.
BOOK REVIEW: Magnetohydrodynamics of Plasma Relaxation
NASA Astrophysics Data System (ADS)
Connor, J. W.
1998-06-01
This monograph on magnetohydrodynamic (MHD) relaxation in plasmas by Ortolani and Schnack occupies a fascinating niche in the plasma physics literature. It is rare in the complex and often technically sophisticated subject of plasma physics to be able to isolate a topic and deal with it comprehensively in a mere 180 pages. Furthermore, it brings a refreshingly original and personal approach to the treatment of plasma relaxation, synthesizing the experiences of the two authors to produce a very readable account of phenomena appearing in such diverse situations as laboratory reversed field pinches (RFPs) and the solar corona. Its novelty lies in that, while it does acknowledge the seminal Taylor theory of relaxation as a general guide, it emphasizes the role of large scale numerical MHD simulations in developing a picture for the relaxation phenomena observed in experiment and nature. Nevertheless, the volume has some minor shortcomings: a tendency to repetitiveness and some omissions that prevent it being entirely self-contained. The monograph is divided into nine chapters, with the first a readable, `chatty', introduction to the physics and phenomena of relaxation discussed in the later chapters. Chapter 2 develops the tools for describing relaxation processes, namely the resistive MHD model, leading to a discussion of resistive instabilities and the stability properties of RFPs. This chapter demonstrates the authors' confessed desire to avoid mathematical detail with a rather simplified discussion of Δ' and magnetic islands; it also sets the stage for their own belief, or thesis, that numerical simulation of the non-linear consequences of the MHD model is the best approach to explaining the physics of relaxation. Nevertheless, in Chapter 3 they provide a reasonably good account and critique of one analytic approach that is available, and which is the commonly accepted picture for relaxation in pinches - the Taylor relaxation theory based on the conservation of
Slow shock and rotational discontinuity in MHD and Hall MHD models with anisotropic pressure
NASA Astrophysics Data System (ADS)
Hau, L.-N.; Wang, B.-J.
2016-07-01
Pressure anisotropy may modify the characteristics of magnetohydrodynamic (MHD) waves, in particular, the slow mode wave and the corresponding shocks and discontinuities. In this study the formation of slow shocks (SSs) in anisotropic plasmas is examined by solving the gyrotropic MHD and Hall MHD equations numerically for one-dimensional Riemann problem. The MHD shocks and discontinuities are generated by imposing a finite normal magnetic field on the Harris type current sheet with a guide magnetic By component. It is shown that anomalous SSs moving faster than the intermediate wave or with positive density-magnetic field correlation may be generated in gyrotropic MHD and Hall MHD models. Moreover, for some parameter values SSs may exhibit upstream wave trains with right-handed polarization in contrast with the earlier prediction that SSs shall possess downstream left-hand polarized wave trains based on the isotropic Hall MHD theory. For the cases of By ≠ 0, SSs with increased density and decreased magnetic field followed by noncoplanar intermediate mode or rotational discontinuity (RD)-like structures similar to the compound SS-RD structures observed in space plasma environments may possibly form in symmetric and asymmetric current layers. The Walén relation of these anomalous RDs without the correction of pressure anisotropy may significantly be violated.
MHD--Developing New Technology to Meet the Energy Crisis
ERIC Educational Resources Information Center
Fitch, Sandra S.
1978-01-01
Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)
Priority pollutant analysis of MHD-derived combustion products
NASA Astrophysics Data System (ADS)
Parks, Katherine D.
An important factor in developing Magnetohydrodynamics (MHD) for commercial applications is environmental impact. Consequently, an effort was initiated to identify and quantify any possible undesirable minute chemical constituents in MHD waste streams, with special emphasis on the priority pollutant species. This paper discusses how priority pollutant analyses were used to accomplish the following goals at the University of Tennessee Space Institute (UTSI): comparison of the composition of solid combustion products collected from various locations along a prototypical MHD flow train during the firing of Illinois No. 6 and Montana Rosebud coals; comparison of solid waste products generated from MHD and conventional power plant technologies; and identification of a suitable disposal option for various MHD derived combustion products. Results from our ongoing research plans for gas phase sampling and analysis of priority pollutant volatiles, semi-volatiles, and metals are discussed.
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, Don H.; Thresh, Henry R.
1982-01-01
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.
Seyler, C. E.; Martin, M. R.
2011-01-15
It is shown that the two-fluid model under a generalized Ohm's law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm's law determines the current density to a system where Ohm's law determines the electric field. This result is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.
Two Types of Magnetohydrodynamic Sheath Jets
NASA Astrophysics Data System (ADS)
Kaburaki, Osamu
2009-06-01
Recent observations of astrophysical jets emanating from various galactic nuclei strongly suggest that a double-layered structure, or a spine-sheath structure, is likely to be their common feature. We propose that such a sheath jet structure can be formed magnetohydrodynamically within a valley of the magnetic pressures, which is formed between the peaks due to the poloidal and toroidal components, with the centrifugal force acting on the rotating sheath plasma being balanced by the hoop stress of the toroidal field. The poloidal field concentrated near the polar axis is maintained by a converging plasma flow toward the jet region, and the toroidal field is developed outside the jet cone owing to the poloidal current circulating through the jet. Under such situations, the set of magnetohydrodynamic (MHD) equations allows two main types of solutions, at least, in the region far from the footpoint. The first type solution describes the jets of marginally bound nature. This type is realized when the jet temperature decreases like a virial one, and neither the pressure-gradient nor the MHD forces, which are both determined consistently, cannot completely overcome the gravity, even at infinity. The second type is realized under an isothermal situation, and the gravity is cancelled exactly by the pressure-gradient force. Hence, the jets of this type are accelerated purely by the MHD force. It is also suggested that these two types correspond, respectively, to the jets from type I and II radio galaxies in the Fanaroff-Riley classification.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M.
1995-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M.
1997-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
NASA Technical Reports Server (NTRS)
Montgomery, David
1988-01-01
Three areas of study in MHD turbulence are considered. These are the turbulent relaxation of the toroidal Z pinch, density fluctuations in MHD fluids, and MHD cellular automata. A Boolean computer game that updates a cellular representation in parallel and that has macroscopic averages converging to solutions of the two-dimensional MHD equations is discussed.
ANALYTIC APPROXIMATE SEISMOLOGY OF PROPAGATING MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR CORONA
Goossens, M.; Soler, R.; Arregui, I.
2012-12-01
Observations show that propagating magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. The technique of MHD seismology uses the wave observations combined with MHD wave theory to indirectly infer physical parameters of the solar atmospheric plasma and magnetic field. Here, we present an analytical seismological inversion scheme for propagating MHD waves. This scheme uses the observational information on wavelengths and damping lengths in a consistent manner, along with observed values of periods or phase velocities, and is based on approximate asymptotic expressions for the theoretical values of wavelengths and damping lengths. The applicability of the inversion scheme is discussed and an example is given.
Properties of mass-loading shocks. II - Magnetohydrodynamics. [of Giacobini-Zinner and Halley comets
NASA Technical Reports Server (NTRS)
Zank, G. P.; Oughton, S.; Neubauer, F. M.; Webb, G. M.
1992-01-01
The one-dimensional magnetohydrodynamics of mass-loading shocks is examined. These shocks, which are distinct from MHD shocks of classical nonreacting fluid dynamics and of combustion theory and which are characterized by the addition of mass within the shock transition, are to be found at comets and, depending upon circumstances, at nonmagnetized and weakly magnetized planets such as Venus and Mars. A completely general mass-loading form of the Hugoniot equation is derived, and some of the most important differences between mass-loading and nonreacting classical MHD shocks are identified. Two new types of MHD shocks are described which have no classical MHD analogues.
Not Available
1991-12-31
The Component Development and Integration Facility (CDIF) is a major US Department of Energy magnetohydrodynamic (MHD) test facility in Butte, Montana. The CDIF is operated by MSE, Inc. Within the national MHD program, MSE personnel are responsible for performing integration testing of vendor-supplied MHD power train components at the CDIF to support the goal of commercialization. During the first quarter of FY92, MHD testing was initiated. Off-line and on-line calibration tests were completed for the Endress+Hauser flowmeter, and thermal, conductivity, and electrical testing was initiated.
Not Available
1992-08-01
The Component Development and Integration Facility (CDIF) is a major U.S. Department of Energy magnetohydrodynamics (MHD) test facility in Butte, Montana. The CDIF is operated by MSE, Inc. Within the national MHD program, MSE personnel are responsible for performing integration testing of vendor-supplied MHD power train components at the CDIF to support the goal of commercialization. During the second quarter of FY92, a second external water leak on the iron-core magnet was repaired, and MHD testing was completed on February 11; this was the final testing of the workhorse hardware. Workhorse hardware was removed, and installation of the proof-of-concept (POC) combustor began.
Magnetohydrodynamic Propulsion for the Classroom
NASA Astrophysics Data System (ADS)
Font, Gabriel I.; Dudley, Scott C.
2004-10-01
The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.
Magnetic levitation and MHD propulsion
NASA Astrophysics Data System (ADS)
Tixador, P.
1994-04-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d
Dipole Alignment in Rotating MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
Ji, H.; Almagri, A.F.; Prager, S.C.; Sarff, J.S. )
1994-08-01
We report the first experimental verification of the magnetohydrodynamic (MHD) dynamo in the reversed-field pinch (RFP). A burst of MHD dynamo electric field is observed during the sawtooth crash, followed by an increase in the local parallel current in the Madison Symmetric Totus RFP edge. By measuring each term, the parallel MHD mean-field Ohm's law is observed to hold within experimental error bars both between and during sawtooth crashes.
MHD Wave Modes Resolved in Fine-Scale Chromospheric Magnetic Structures
NASA Astrophysics Data System (ADS)
Verth, G.; Jess, D. B.
2016-02-01
Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must be founded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromospheric magnetoseismology.
Theory and Simulation Basis for Magnetohydrodynamic Stability in DIII-D
Turnbull, A.D.; Brennan, D.P.; Chu, M.S.; Lao, L.L.; Snyder, P.B.
2005-10-15
Theory and simulation have provided one of the critical foundations for many of the significant achievements in magnetohydrodynamic (MHD) stability in DIII-D over the past two decades. Early signature achievements included the validation of tokamak MHD stability limits, beta and performance optimization through cross-section shaping and profiles, and the development of new operational regimes. More recent accomplishments encompass the realization and sustainment of wall stabilization using plasma rotation and active feedback, a new understanding of edge stability and its relation to edge-localized modes, and recent successes in predicting resistive tearing and interchange instabilities. The key to success has been the synergistic tie between the theory effort and the experiment made possible by the detailed equilibrium reconstruction data available in DIII-D and the corresponding attention to the measured details in the modeling. This interaction fosters an emphasis on the important phenomena and leads to testable theoretical predictions. Also important is the application of a range of analytic and simulation techniques, coupled with a program of numerical tool development. The result is a comprehensive integrated approach to fusion science and improving the tokamak approach to burning plasmas.
Multi-region relaxed Hall magnetohydrodynamics with flow
NASA Astrophysics Data System (ADS)
Lingam, Manasvi; Abdelhamid, Hamdi M.; Hudson, Stuart R.
2016-08-01
The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of "ideal barriers" that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.
Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.
Meyrand, Romain; Galtier, Sébastien
2012-11-01
Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed.
The complete set of Casimirs in Hall-magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Kawazura, Yohei; Hameiri, Eliezer
2012-08-01
A procedure for determining all the Casimir constants of motion in magnetohydrodynamics (MHD) [E. Hameiri, Phys. Plasmas 11, 3423 (2004)] is extended to Hall-MHD. We obtain and solve differential equations for the variational derivatives of all the Casimirs, which must be satisfied for any dynamically accessible motion in Hall-MHD. In an extension of the more commonly considered Hall-MHD model, we also include the electron fluid entropy. The most interesting case for plasma confinement, which is usually true for axisymmetric configurations but desirable in general, is when both the magnetic field and the ion velocity field form the two separate families of nested toroidal surfaces. The Casimirs are then three functionals for each surface, involving the fluxes of certain vector fields and the number of particles contained in each. We also determine a family of independent Casimirs in a general configuration.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2013-12-14
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Magnetohydrodynamic Modeling of the Jovian Magnetosphere
NASA Technical Reports Server (NTRS)
Walker, Raymond
2005-01-01
Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.
Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics
Klein, R I; Stone, J M
2007-11-20
We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.
Nonlinear magnetohydrodynamics of electron-positron plasmas
NASA Astrophysics Data System (ADS)
Shukla, P. K.; Dasgupta, B.; Sakanaka, P. H.
2000-05-01
A set of nonlinear magnetohydrodynamic (MHD) equations for magnetized, nonrelativistic electron-positron plasmas is derived by employing a two fluid model that is supplemented by Ampère's and Faraday's laws. The nonlinear equations show how the baroclinic driver (the Biermann battery) generates the electron positron flows and how these flows give rise to plasma currents which act as a source for the magnetic fields. The newly derived nonlinear equations form a basis for investigating waves, instabilities, as well as coherent nonlinear structures, in addition to studying exact equilibria of electron-positron jets in a magnetoplasma.
Cooling of Moving Wavy Surface through MHD Nanofluid
NASA Astrophysics Data System (ADS)
Mehmood, Ahmer; Iqbal, Muhammad Saleem; Mustafa, Irfan
2016-07-01
Heat transfer analysis has been carried out in the Magnetohydrodynamic (MHD) boundary layer formed near the wavy rough plate moving in x-direction. Due to the presence of metallic nanoparticle in the fluid and enhanced surface area of the plate as a consequence of surface texture, an increase in heat transfer rates is expected. However, the calculation of these enhanced rates of heat transfer is not straightforward because the convection phenomena become more complicated due to the motion of nanoparticle in the base fluid and also the waviness of the plate surface. The contribution of nanoparticle toward convective heat transfer is manifold which requires a suitable model in order to capture the correct physics. Famous Tiwari and Das model has been utilised in the current study. Percent increase in the rate of heat transfer is calculated for the nanoparticle of different metals, such as MWCNT, SWCNT, Al2O3, TiO2 and Ag. Appreciable increase in the rate of heat transfer is observed, which is 24% at the most for Al2O3 nanoparticle. The effect of applied magnetic field on the velocity profile, skin friction coefficient, and Nusselt number has also been presented through graphs. The concentration of the nanoparticle has been limited up to 10%.
MHD Turbulence and Magnetic Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere. PMID:26382548
Magnetohydrodynamic Augmentation of Pulse Detonation Engines
NASA Astrophysics Data System (ADS)
Zeineh, Christopher; Cole, Lord; Karagozian, Ann
2010-11-01
Pulse detonation engines (PDEs) are the focus of increasing attention due to their potentially superior performance over constant pressure engines. Yet due to its unsteady chamber pressure, the PDE system will either be over- or under-expanded for the majority of the cycle, with energy being used without maximum gain. Magnetohydrodynamic (MHD) augmentation offers the opportunity to extract energy and apply it to a separate stream where the net thrust will be increased. With MHD augmentation, such as in the Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) concept, energy could be extracted from the high speed portion of the system, e.g., through a generator in the nozzle, and then applied directly to another flow or portion of the flow as a body force. The present high resolution numerical simulations explore the flow evolution and potential performance of such propulsion systems. An additional magnetic piston applying energy in the PDE chamber can also act in concert with the PDRIME for separate thrust augmentation. Results show that MHD can indeed influence the flow and pressure fields in a beneficial way in these configurations, with potential performance gains under a variety of flight and operating conditions. There are some challenges associated with achieving these gains, however, suggesting further optimization is required.
Nuclear-electric magnetohydrodynamic propulsion for submarine. Master's thesis
Bednarczyk, A.A.
1989-05-01
The thesis analyzes the superconducting technology for a shipboard magnetohydrodynamic propulsion system. Based on the the principles of magnetohydrodynamics (MHD), the concept of open-water efficiency was used to optimize the preliminary design of the MHD thruster. After the baseline submarine hull modeled after the Los Angeles class submarine was selected, propulsive efficiency and the top speed for four variant MHD submarines were evaluated. The design criteria were set at a 100-MWt nuclear reactor power upper limit and a requirement of 30 knots for the top speed. This required advanced reactor plants and advanced energy conversion systems. The selection of High Temperature Gas Reactor (HTGR) and Liquid-Metal Fast Breeder Reactor (LMFBR) was based on the combined merits of safety, environmental impact, high source temperature and maximum-volume power density (KW/L). With the reactor outlet temperatures of 2000 K, direct-cycle energy conversion-systems gave the best results in terms of thermal efficiency and propulsion plant power density. Two energy conversion systems selected were closed-cycle gas turbine geared to a superconducting generator, and closed-cycle liquid-metal MHD generator. Based on submarine reliability and safety, the option of using an intermediate heat exchanger was also considered. Finally, non-nuclear support systems affected by the advanced power plant and MHD propulsion, stressing submarine safety, are proposed.
MHD SIMULATIONS OF ACCRETION ONTO Sgr A*: QUIESCENT FLUCTUATIONS, OUTBURSTS, AND QUASIPERIODICITY
Chan Chikwan; Liu Siming; Fryer, Christopher L.; Psaltis, Dimitrios; Oezel, Feryal; Melia, Fulvio; Rockefeller, Gabriel
2009-08-10
High-resolution observations of Sgr A* have revealed a wide variety of phenomena, ranging from intense rapid flares to quasi-periodic oscillations (QPOs), making this object an ideal system to study the properties of low luminosity accreting black holes. In this paper, we use a pseudospectral algorithm to construct and evolve a three-dimensional magnetohydrodynamic (MHD) model of the accretion disk in Sgr A*. Assuming a hybrid thermal-nonthermal emission scheme and calibrating the parameters by observations, we show that the MHD turbulence in the environment of Sgr A* can by itself only produce factor two fluctuations in luminosity. These fluctuations cannot explain the magnitude of flares observed in this system. However, we also demonstrate that external forcing of the accretion disk, which may be generated by the 'clumpy material' raining down onto the disk from the large-scale flow, do produce outbursts qualitatively similar to those observed by XMM-Newton in X-rays and by ground-based facilities in the near infrared. Strong, but short-term QPOs emerge naturally in the simulated light curves. We attribute these to nonaxisymmetric density perturbations that emerge as the disk evolves back toward its quiescent state.
Magnetohydrodynamic waves and coronal seismology: an overview of recent results.
De Moortel, Ineke; Nakariakov, Valery M
2012-07-13
Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfvén waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares. PMID:22665899
Magnetohydrodynamic waves and coronal seismology: an overview of recent results.
De Moortel, Ineke; Nakariakov, Valery M
2012-07-13
Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfvén waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares.
Microwave imaging of magnetohydrodynamic instabilities in fusion plasma
NASA Astrophysics Data System (ADS)
Sabot, Roland; Elbèze, Didier; Lee, Woochang; Nam, Yoonbum; Park, Hyeon; Shen, Junsong; Yun, Gunsu; Choi, Minjun; Giacalone, Jean-Claude; Nicolas, Timothée; Bottereau, Christine; Clairet, Frédéric; Lotte, Philippe; Molina, Diego
2016-11-01
Microwave imaging diagnostics are extremely useful for observing magnetohydrodynamic (MHD) instabilities in magnetic fusion plasmas. Two imaging diagnostics will be available on the WEST tokamak. A method was developed to reconstruct electron density maps from electron density profiles measured by ultrafast reflectometry, a technique based on FM-CW radar principle. It relies on plasma rotation to perform 2D reconstruction. An Electron Cyclotron Emission Imaging (ECEI) diagnostic will image directly the temperature fluctuations. It will be equivalent to 24 stacked vertically radiometers, each probing a spot of few centimetres. These two complementary techniques will contribute to the validation of MHD models. xml:lang="fr"
Three Dimensional Simulations of Compressible Hall MHD Plasmas
Shaikh, Dastgeer; Shukla, P. K.
2008-10-15
We have developed three dimensional, time dependent, compressible, non-adiabatic, driven and massively parallelized Hall magnetohydrodynamic (MHD) simulations to investigate turbulent spectral cascades in a regime where characteristic lengthscales associated with plasma fluctuations are smaller than ion gyro radii. Such regime is ubiquitously present in solar wind and many other collisionless space plasmas. Particularly in the solar wind, the high time resolution databases identify a spectral break at the end of MHD inertial range spectrum that corresponds to a high frequency regime. In the regime, turbulent cascades cannot be explained by the usual MHD models. With the help of our 3D Hall MHD code, we find that characteristic turbulent interactions in the high frequency regime evolve typically on kinetic Alfven time scales. The turbulent fluctuation associated with kinetic Alfven interactions are compressive and anisotropic and possess equipartition of kinetic and magnetic energies.
Laser-powered MHD generators for space application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1986-01-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.
2000-01-01
The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.
Multimegawatt NEP with vapor core reactor MHD
NASA Astrophysics Data System (ADS)
Smith, Blair; Knight, Travis; Anghaie, Samim
2002-01-01
Efforts at the Innovative Nuclear Space Power and Propulsion Institute have assessed the feasibility of combining gaseous or vapor core reactors with magnetohydrodynamic power generators to provide extremely high quality, high density, and low specific mass electrical power for space applications. Innovative shielding strategies are employed to maintain an effective but relatively low mass shield, which is the most dominating part of multi-megawatt space power systems. The fission driven magnetohydrodynamic generator produces tens of kilowatt DC power at specific mass of less than 0.5 kg/kW for the total power system. The MHD output with minor conditioning is coupled to magnetoplasmadynamic thruster to achieve an overall NEP system specific mass of less than 1.0 kg/kW for power levels above 20 MWe. Few other concepts would allow comparable ensuing payload savings and flexible mission abort options for manned flights to Mars for example. .
NASA Astrophysics Data System (ADS)
Maget, P.; Huysmans, G. T. A.; Lütjens, H.; Ottaviani, M.; Moreau, Ph; Ségui, J.-L.
2009-06-01
Attempts to run non-inductive plasma discharges on Tore Supra sometimes fail due to the triggering of magneto-hydro-dynamic (MHD) instabilities that saturate at a large amplitude, producing degraded confinement and loss of wave driven fast electrons (the so-called MHD regime (Maget et al 2005 Nucl. Fusion 45 69-80)). In this paper we investigate the transition to this soft (in the sense of non-disruptive) MHD limit from experimental observations, and compare it with non-linear code predictions. Such a comparison suggests that different non-linear regimes, with periodic relaxations or saturation, are correctly understood. However, successful non-inductive discharges without detectable magnetic island at q = 2 cannot be reproduced if realistic transport coefficients are used in the computation. Additional physics seems mandatory for explaining these discharges, such as diamagnetic effects, that could also justify cases of abrupt transition to the MHD regime.
Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts
NASA Astrophysics Data System (ADS)
Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei
2016-05-01
Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)
Classical MHD shocks: theory and numerical simulation
Pogorelov, Nikolai V.
2005-08-01
Recent results are surveyed in the investigation of the behavior of shocks in ideal magnetohydrodynamics (MHD) and corresponding structures in dissipative/resistive plasma flows. In contrast to evolutionary shocks, a solution of the problem of the nonevolutionary shock interaction with small perturbations is either nonunique or does not exist. The peculiarity of non-ideal MHD is in that some nonevolutionary shocks have dissipative structures. Since this structure is always non-plane, it can reveal itself in problems where transverse perturbations do not exist due to symmetries restrictions. We discuss the numerical behavior of nonevolutionary shocks and argue that they necessarily disappear once the problem is solved in a genuinely three-dimensional statement.
Numerical MHD codes for modeling astrophysical flows
NASA Astrophysics Data System (ADS)
Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.
2016-05-01
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.
NASA Astrophysics Data System (ADS)
Ofman, L.
2016-02-01
This chapter focuses on reviewing several observational aspects of magnetohydrodynamic (MHD) waves in the solar wind, in particular on Alfvén waves, Alfvénic turbulent spectrum, and their role in heating and accelerating the solar wind. It also reviews computational models that incorporate Alfvén waves as the driving source of the wind in the lower corona (coronal holes) and in the inner heliosphere, with emphasis on multi-dimensional models. Evidence for MHD waves in the solar wind is obtained from interplanetary scintillation (IPS) observations using Earth-based radio telescope observations of distant (galactic) radio sources. The solar wind electron density variability in the line of sight affects the received radio signal. The propagating fluctuations and their correlations are used to estimate the solar wind velocity and the wave amplitude in the parallel and the perpendicular directions in line of sight.
MHD shocks in coronal mass ejections
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1991-01-01
The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).
Experimental investigation of the magnetohydrodynamic parachute effect in a hypersonic air flow
NASA Astrophysics Data System (ADS)
Fomichev, V. P.; Yadrenkin, M. A.
2013-01-01
New data on experimental implementation of the magnetohydrodynamic (MHD) parachute configuration in an air flow with Mach number M = 6 about a flat plate are considered. It is shown that MHD interaction near a flat plate may transform an attached oblique shock wave into a normal detached one, which considerably extends the area of body-incoming flow interaction. This effect can be employed in optimizing return space vehicle deceleration conditions in the upper atmosphere.
Pankratov, I. M. E-mail: rjzhou@ipp.ac.cn; Zhou, R. J. E-mail: rjzhou@ipp.ac.cn; Hu, L. Q.
2015-07-15
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.
VisAn MHD: a toolbox in Matlab for MHD computer model data visualisation and analysis
NASA Astrophysics Data System (ADS)
Daum, P.
2007-03-01
Among the many challenges facing modern space physics today is the need for a visualisation and analysis package which can examine the results from the diversity of numerical and empirical computer models as well as observational data. Magnetohydrodynamic (MHD) models represent the latest numerical models of the complex Earth's space environment and have the unique ability to span the enormous distances present in the magnetosphere from several hundred kilometres to several thousand kilometres above the Earth surface. This feature enables scientist to study complex structures of processes where otherwise only point measurements from satellites or ground-based instruments are available. Only by combining these observational data and the MHD simulations it is possible to enlarge the scope of the point-to-point observations and to fill the gaps left by measurements in order to get a full 3-D representation of the processes in our geospace environment. In this paper we introduce the VisAn MHD toolbox for Matlab as a tool for the visualisation and analysis of observational data and MHD simulations. We have created an easy to use tool which is capable of highly sophisticated visualisations and data analysis of the results from a diverse set of MHD models in combination with in situ measurements from satellites and ground-based instruments. The toolbox is being released under an open-source licensing agreement to facilitate and encourage community use and contribution.
Featured Image: Tests of an MHD Code
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-09-01
Creating the codes that are used to numerically model astrophysical systems takes a lot of work and a lot of testing! A new, publicly available moving-mesh magnetohydrodynamics (MHD) code, DISCO, is designed to model 2D and 3D orbital fluid motion, such as that of astrophysical disks. In a recent article, DISCO creator Paul Duffell (University of California, Berkeley) presents the code and the outcomes from a series of standard tests of DISCOs stability, accuracy, and scalability.From left to right and top to bottom, the test outputs shown above are: a cylindrical Kelvin-Helmholtz flow (showing off DISCOs numerical grid in 2D), a passive scalar in a smooth vortex (can DISCO maintain contact discontinuities?), a global look at the cylindrical Kelvin-Helmholtz flow, a Jupiter-mass planet opening a gap in a viscous disk, an MHD flywheel (a test of DISCOs stability), an MHD explosion revealing shock structures, an MHD rotor (a more challenging version of the explosion), a Flock 3D MRI test (can DISCO study linear growth of the magnetorotational instability in disks?), and a nonlinear 3D MRI test.Check out the gif below for a closer look at each of these images, or follow the link to the original article to see even more!CitationPaul C. Duffell 2016 ApJS 226 2. doi:10.3847/0067-0049/226/1/2
Shadid, J. N.; Pawlowski, R. P.; Cyr, E. C.; Tuminaro, R. S.; Chacon, L.; Weber, P. D.
2016-02-10
Here, we discuss that the computational solution of the governing balance equations for mass, momentum, heat transfer and magnetic induction for resistive magnetohydrodynamics (MHD) systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena, as well as the significant range of time- and length-scales that the interactions of these physical mechanisms produce. This paper explores the development of a scalable, fully-implicit stabilized unstructured finite element (FE) capability for 3D incompressible resistive MHD. The discussion considers the development of a stabilized FE formulation in context of the variational multiscale (VMS) method,more » and describes the scalable implicit time integration and direct-to-steady-state solution capability. The nonlinear solver strategy employs Newton–Krylov methods, which are preconditioned using fully-coupled algebraic multilevel preconditioners. These preconditioners are shown to enable a robust, scalable and efficient solution approach for the large-scale sparse linear systems generated by the Newton linearization. Verification results demonstrate the expected order-of-accuracy for the stabilized FE discretization. The approach is tested on a variety of prototype problems, that include MHD duct flows, an unstable hydromagnetic Kelvin–Helmholtz shear layer, and a 3D island coalescence problem used to model magnetic reconnection. Initial results that explore the scaling of the solution methods are also presented on up to 128K processors for problems with up to 1.8B unknowns on a CrayXK7.« less
Computational Methods for Ideal Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Kercher, Andrew D.
Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency
Supersonic MHD generator system
Rahman, M.A.
1983-11-29
An improved MHD electrical power generating system of the type having a MHD topping cycle and a steam generating bottoming cycle is disclosed. The system typically includes a combustion system, a conventional MHD generator and a first diffuser radiant boiler. The improvement comprises a first supersonic MHD generator and ramjet engine configuration operatively connected in series with each other and with the conventional MHD generator. The first supersonic MHD generator and ramjet engine configuration increase the power output and improve the operating efficiency of the electrical generating system. A diffuser system is also disclosed which is in fluid communication with the supersonic MHD generator and the ramjet engine for collecting bypass plasma gas to be used for heating a second radiant boiler adapted for powering a steam turbine generator.
H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation
NASA Technical Reports Server (NTRS)
Jones, Jonathan E.; Hawk, Clark W.
1998-01-01
A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is
D.S. Darrow; S.S. Medley; A.L. Roquemore; W.W. Heidbrink; A. Alekseyev; F.E. Cecil; J. Egedal; V.Ya. Goloborod'ko; N.N. Gorelenkov; M. Isobe; S. Kaye; M. Miah; F. Paoletti; M.H. Redi; S.N. Reznik; A. Rosenberg; R. White; D. Wyatt; V.A. Yavorskij
2002-10-15
A range of effects may make fast ion confinement in spherical tokamaks worse than in conventional aspect ratio tokamaks. Data from neutron detectors, a neutral particle analyzer, and a fast ion loss diagnostic on the National Spherical Torus Experiment (NSTX) indicate that neutral beam ion confinement is consistent with classical expectations in quiescent plasmas, within the {approx}25% errors of measurement. However, fast ion confinement in NSTX is frequently affected by magnetohydrodynamic (MHD) activity, and the effect of MHD can be quite strong.
NASA Astrophysics Data System (ADS)
Löhner-Böttcher, Johannes
2016-03-01
Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere
NASA Astrophysics Data System (ADS)
Tóth, Gábor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; Glocer, Alex; Dorelli, John C.
2016-02-01
We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD-EPIC) algorithm is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the interaction between Jupiter's magnetospheric plasma and Ganymede's magnetosphere. We compare the MHD-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHD-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHD-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.
Magnetohydrodynamic Power Generation in the Laboratory Simulated Martian Entry Plasma
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Popovic, S.; Drake, J.; Moses, R. W.
2005-01-01
This paper addresses the magnetohydrodynamic (MHD) conversion of the energy released during the planetary entry phase of an interplanetary vehicle trajectory. The effect of MHD conversion is multi-fold. It reduces and redirects heat transferred to the vehicle, and regenerates the dissipated energy in reusable and transportable form. A vehicle on an interplanetary mission carries about 10,000 kWh of kinetic energy per ton of its mass. This energy is dissipated into heat during the planetary atmospheric entry phase. For instance, the kinetic energy of Mars Pathfinder was about 4220 kWh. Based on the loss in velocity, Mars Pathfinder lost about 92.5% of that energy during the plasma-sustaining entry phase that is approximately 3900 kWh. An ideal MHD generator, distributed over the probe surface of Mars Pathfinder could convert more than 2000 kWh of this energy loss into electrical energy, which correspond to more than 50% of the kinetic energy loss. That means that the heat transferred to the probe surface can be reduced by at least 50% if the converted energy is adequately stored, or re-radiated, or directly used. Therefore, MHD conversion could act not only as the power generating, but also as the cooling process. In this paper we describe results of preliminary experiments with light and microwave emitters powered by model magnetohydrodynamic generators and discuss method for direct use of converted energy.
Small-scale behavior of Hall magnetohydrodynamic turbulence.
Stawarz, Julia E; Pouquet, Annick
2015-12-01
Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct numerical simulations with grids up to 768(3) points and two different types of initial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to a magnetically dominated state. The transition in behavior is associated with the advection term in the momentum equation becoming subdominant to dissipation. Examination of autocorrelation functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD current structures are narrower and vorticity structures are wider. The electric field autocorrelation function is significantly narrower in HMHD than in MHD and is similar to the HMHD current autocorrelation function at small separations. HMHD current structures are found to be significantly more intense than in MHD and appear to have an enhanced association with strong alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. When hyperdiffusivity is used, a longer region consistent with a k(-7/3) scaling is present for right-polarized fluctuations when compared to Laplacian dissipation runs.
Small-scale behavior of Hall magnetohydrodynamic turbulence.
Stawarz, Julia E; Pouquet, Annick
2015-12-01
Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct numerical simulations with grids up to 768(3) points and two different types of initial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to a magnetically dominated state. The transition in behavior is associated with the advection term in the momentum equation becoming subdominant to dissipation. Examination of autocorrelation functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD current structures are narrower and vorticity structures are wider. The electric field autocorrelation function is significantly narrower in HMHD than in MHD and is similar to the HMHD current autocorrelation function at small separations. HMHD current structures are found to be significantly more intense than in MHD and appear to have an enhanced association with strong alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. When hyperdiffusivity is used, a longer region consistent with a k(-7/3) scaling is present for right-polarized fluctuations when compared to Laplacian dissipation runs. PMID:26764833
NASA Technical Reports Server (NTRS)
Barth, Timothy
2005-01-01
The role of involutions in energy stability of the discontinuous Galerkin (DG) discretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differences are identified in the symmetrization of the Maxwell and MHD systems that impact the construction of energy stable discretizations using the DG method. Specifically, general sufficient conditions to be imposed on the DG numerical flux and approximation space are given so that energy stability is retained These sufficient conditions reveal the favorable energy consequence of imposing continuity in the normal component of the magnetic induction field at interelement boundaries for MHD discretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations using the discontinuous Galerkin method.
Zonal flow driven by energetic particle during magneto-hydro-dynamic burst in a toroidal plasma
NASA Astrophysics Data System (ADS)
Ohshima, S.; Fujisawa, A.; Shimizu, A.; Nakano, H.; Iguchi, H.; Yoshimura, Y.; Nagaoka, K.; Minami, T.; Isobe, M.; Nishimura, S.; Suzuki, C.; Akiyama, T.; Takahashi, C.; Takeuchi, M.; Ito, T.; Watari, T.; Kumazawa, R.; Itoh, S.-I.; Itoh, K.; Matsuoka, K.; Okamura, S.
2007-11-01
The internal structural measurements of electric field and density using twin heavy ion beam probes have been performed to elucidate the nonlinear evolution of the magneto-hydro-dynamic (MHD) bursty phenomenon driven by the interaction with high-energy particles in a toroidal plasma. The results have given the finest observation of the internal structure of plasma quantities, such as electric field, density and magnetic field distortion, which nonlinearly develop during the MHD phenomenon. In particular, the finding of a new kind of oscillating zonal flow driven by interaction between energetic particles and MHD modes should be emphasized for burning state plasmas.
Directional multi-scale statistics of quasi-static magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Okamoto, Naoya; Yoshimatsu, Katsunori; Schneider, Kai; Farge, Marie; Multiscale methodsturbulence Collaboration
2013-10-01
Anisotropy and intermittency of quasi-static magnetohydrodynamic (MHD) turbulence in an imposed magnetic field are examined, using three-dimensional orthonormal wavelet analysis. This analysis is applied to two turbulent MHD flows computed by direct numerical simulation with 5123 grid points and with different intensities of the imposed magnetic field. It is found that the imposed magnetic field leads to a substantial amplification of intermittency in the velocity field, especially in the direction of the imposed magnetic field. The Eulerian and Lagrangian accelerations are also examined by applying directional multi-scale analyses. This work was supported by the contract SiCoMHD (ANR-Blanc 2011-045).
FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments
NASA Astrophysics Data System (ADS)
Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.
2012-12-01
We report the results of benchmark FLASH magnetohydrodynamic (MHD) simulations of experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. We first outline the implementation of 2D cylindrical geometry in the unsplit MHD solver in FLASH and present results of verification tests. We then describe the results of benchmark 2D cylindrical MHD simulations of the LULI experiments using FLASH that explore the impact of external fields along with the possibility of magnetic field amplification by turbulence that is associated with the shock waves and that is induced by a grid placed in the gas-filled chamber.
Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence.
Banerjee, Supratik; Galtier, Sébastien
2016-03-01
Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants, which are the magnetic helicity and the generalized helicity. Exact relations are derived for homogeneous (nonisotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with nonzero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e., the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations, while the magnetic helicity cascade is linked to the right polarized fluctuations. PMID:27078460
Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence.
Banerjee, Supratik; Galtier, Sébastien
2016-03-01
Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants, which are the magnetic helicity and the generalized helicity. Exact relations are derived for homogeneous (nonisotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with nonzero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e., the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations, while the magnetic helicity cascade is linked to the right polarized fluctuations.
Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Lingam, Manasvi; Miloshevich, George; Morrison, Philip J.
2016-07-01
The paper describes the unique geometric properties of ideal magnetohydrodynamics (MHD), and demonstrates how such features are inherited by extended MHD, viz. models that incorporate two-fluid effects (the Hall term and electron inertia). The generalized helicities, and other geometric expressions for these models are presented in a topological context, emphasizing their universal facets. Some of the results presented include: the generalized Kelvin circulation theorems; the existence of two Lie-dragged 2-forms; and two concomitant helicities that can be studied via the Jones polynomial, which is widely utilized in Chern-Simons theory. The ensuing commonality is traced to the existence of an underlying Hamiltonian structure for all the extended MHD models, exemplified by the presence of a unique noncanonical Poisson bracket, and its associated energy.
Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Turner, M. W.; Hawk, C. W.; Litchford, R. J.
2009-01-01
Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.
Imbalanced relativistic force-free magnetohydrodynamic turbulence
Cho, Jungyeon; Lazarian, A.
2014-01-01
When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b{sub +}{sup 2}/b{sub −}{sup 2}∝(ϵ{sub +}/ϵ{sub −}){sup n} with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.
Solar-Driven Liquid-Metal MHD Generator
NASA Technical Reports Server (NTRS)
Hohl, F.; Lee, J. H.
1982-01-01
Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.
Collisionless magnetic reconnection under anisotropic MHD approximation
NASA Astrophysics Data System (ADS)
Hirabayashi, Kota; Hoshino, Masahiro
We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{⊥}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{⊥})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.
Plasma flow structures as analytical solution of a magneto-hydro-dynamic model with pressure
NASA Astrophysics Data System (ADS)
Paccagnella, R.
2012-03-01
In this work starting from a set of magnetohydrodynamic (MHD) equations that describe the dynamical evolution for the pressure driven resistive/interchange modes in a magnetic confinement system, global solutions for the plasma flow relevant for toroidal pinches like tokamaks and reversed field pinches (RFPs) are derived. Analytical solutions for the flow stream function associated with the dominant modes are presented.
NASA Astrophysics Data System (ADS)
Guo, Xiaocheng
2015-06-01
By revisiting the derivation of the previously developed HLLC Riemann solver for magneto-hydrodynamics (MHD), the paper presents an extended HLLC Riemann solver specifically designed for the MHD system in which the magnetic field can be decomposed into a strong internal magnetic field and an external component. The derived HLLC Riemann solver satisfies the conservation laws. The numerical tests show that the extended solver deals with the global MHD simulation of the Earth's magnetosphere well, and maintains high numerical resolution. It recovers the previously developed HLLC Riemann solver for the MHD as long as the internal field is set to zero. Thus, it is backward compatible with the previous HLLC solver, and suitable for the MHD simulations no matter whether a strong internal magnetic field is included or not.
Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Xu, Kun
1998-01-01
A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.
Pulse Detonation Rocket Magnetohydrodynamic Power Experiment
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.
2003-01-01
The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.
Evaluation of materials for the MHD steam bottoming plant
Natesan, K.; Swift, W.M.
1989-05-01
Test data have been obtained on the corrosion of several commercial ASME-coded alloys and their weldments by exposing internally cooled ring specimens to simulated magnetohydrodynamics (MHD) environments. The specimens, coated with a K/sub 2/SO/sub 4/-rich deposit, were exposed for times up to 2000 h at metal temperatures of 762, 593, and 567/degree/C to simulated MHD conditions for the intermediate-temperature air heater (ITAH), ITAH transition region (transition from a low- to medium-chromium alloy to a high-chromium steel), and secondary superheater (SSH), respectively. This paper discusses, in detail, the observed corrosion scale morphologies of various exposed specimens. Data on scale thickness, depth of intergranular penetration, and metal recession are presented, and the results are used to assess the corrosion behavior of various materials for application in the MHD steam bottoming plant. 6 refs., 7 figs., 3 tabs.
Diagnostic development and support of MHD test facilities
Not Available
1990-01-01
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 9 figs., 1 tab.
Outline of fast analyzer for MHD equilibrium FAME
NASA Astrophysics Data System (ADS)
Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji; Watanabe, Hideto
1994-02-01
The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments.
Tomida, Kengo; Okuzumi, Satoshi; Machida, Masahiro N. E-mail: okuzumi@geo.titech.ac.jp
2015-03-10
The transport of angular momentum by magnetic fields is a crucial physical process in the formation and evolution of stars and disks. Because the ionization degree in star-forming clouds is extremely low, nonideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion and ohmic dissipation work strongly during protostellar collapse. These effects have significant impacts in the early phase of star formation as they redistribute magnetic flux and suppress angular momentum transport by magnetic fields. We perform three-dimensional nested-grid radiation magnetohydrodynamic simulations including ohmic dissipation and ambipolar diffusion. Without these effects, magnetic fields transport angular momentum so efficiently that no rotationally supported disk is formed even after the second collapse. Ohmic dissipation works only in a relatively high density region within the first core and suppresses angular momentum transport, enabling formation of a very small rotationally supported disk after the second collapse. With both ohmic dissipation and ambipolar diffusion, these effects work effectively in almost the entire region within the first core and significant magnetic flux loss occurs. As a result, a rotationally supported disk is formed even before a protostellar core forms. The size of the disk is still small, about 5 AU at the end of the first core phase, but this disk will grow later as gas accretion continues. Thus, the nonideal MHD effects can resolve the so-called magnetic braking catastrophe while keeping the disk size small in the early phase, which is implied from recent interferometric observations.
New Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence
NASA Astrophysics Data System (ADS)
Banerjee, Supratik; Galtier, Sebastien
2016-04-01
Hall magnetohydrodynamics is a mono-fluid plasma model appropriate for probing Final{some of the} physical processes (other than pure kinetic effects) at length scales smaller than the scales of standard MHD. In sub-ionic space plasma turbulence (e.g. the solar wind) this fluid model has been proved to be useful. Three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses three inviscid invariants which are the total energy, the magnetic helicity and the generalized helicity. In this presentation, we would like to discuss new exact relations for helicities (magnetic helicities and generalized helicities) which are derived for homogeneous stationary (not necessarily isotropic) Hall MHD turbulence (and also for its inertialess electron MHD limit) in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e. the scalar product of two different increments and are written simply as ηM = di < δ ( {b} × {j}) \\cdot δ {b} >, with ηM the average magnetic helicity flux rate, {b} the magnetic field, {j} the current and ± ηG = < δ ( {v} × {Ω} ) \\cdot δ {Ω} > , with ηM the average generalized helicity flux rate, {v} the fluid velocity and {Ω} = {b} + dI {ω} being the generalized helicity where ω is simply the fluid vorticity ( = nabla × {v}). It provides, therefore, a direct measurement of the dissipation rates for the corresponding helicities even in case of an anisotropic plasma turbulence. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations while the magnetic helicity cascade is linked to the right polarized fluctuations. The newly derived relations also show that like energy, a non-zero helicity flux can only be associated to a departure of Beltrami flow state. {Reference} S. Banerjee & S. Galtier, {Chiral Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence} (submitted).
Self-consistent hybrid neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
NASA Astrophysics Data System (ADS)
Lyons, Brendan Carrick
Neoclassical effects (e.g., conductivity reduction and bootstrap currents) have a profound impact on many magnetohydrodynamic (MHD) instabilities in toroidally-confined plasmas, including tearing modes, edge-localized modes, and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We review a hybrid formulation from the recent literatureAB that is appropriate for such studies. In particular, the formulation uses a set of time-dependent drift-kinetic equations (DKEs) to advance the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by a set of MHD equations which are closed by moments of fNM . We then present two DKE solvers based upon this formulation in axisymmetric toroidal geometries. The Neoclassical Ion-Electron Solver (NIES) solves the steady-state DKEs in the low-collisionality limit. Convergence and benchmark studies are discussed, providing a proof-of-principle that this new formulation can accurately reproduce results from the literature in the limit considered. We then present the DK4D code which evolves the finite-collisionality DKEs time-dependently. Computational methods used and successful benchmarks to other neoclassical models and codes are discussed. Furthermore, we couple DK4D to a reduced, transport-timescale MHD code. The resulting hybrid code is used to simulate the evolution of the current density in a large-aspect-ratio plasma in the presence of several different time-dependent pressure profiles. These simulations demonstrate the self-consistent, dynamic formation of the ohmic and bootstrap currents. In the slowly-evolving plasmas considered
Robust preconditioners for incompressible MHD models
NASA Astrophysics Data System (ADS)
Ma, Yicong; Hu, Kaibo; Hu, Xiaozhe; Xu, Jinchao
2016-07-01
In this paper, we develop two classes of robust preconditioners for the structure-preserving discretization of the incompressible magnetohydrodynamics (MHD) system. By studying the well-posedness of the discrete system, we design block preconditioners for them and carry out rigorous analysis on their performance. We prove that such preconditioners are robust with respect to most physical and discretization parameters. In our proof, we improve the existing estimates of the block triangular preconditioners for saddle point problems by removing the scaling parameters, which are usually difficult to choose in practice. This new technique is applicable not only to the MHD system, but also to other problems. Moreover, we prove that Krylov iterative methods with our preconditioners preserve the divergence-free condition exactly, which complements the structure-preserving discretization. Another feature is that we can directly generalize this technique to other discretizations of the MHD system. We also present preliminary numerical results to support the theoretical results and demonstrate the robustness of the proposed preconditioners.
A solution of two-dimensional magnetohydrodynamic flow using the finite element method
Verardi, S.L.L.; Cardoso, J.R.; Motta, C.C.
1998-09-01
The problem of magnetohydrodynamic flow through channels has become important because of several engineering applications such as design of nuclear reactor cooling systems, electromagnetic pumps, MHD flowmeters, MHD generators, blood flow measurements, etc. A numerical code based on the Finite Element Method (FEM) was developed to solve the two-dimensional, steady-state magnetohydrodynamic (MHD) flow in a rectangular channel. In order to apply the FEM, the Galerkin Weak Formulation was used. In this analysis, in contrast with the previous works, the thickness of the duct wall is taken into account and the results are compared to those obtained in the limit case when the thickness is much smaller than a characteristic dimension of the duct. In this case, convergence behavior of several iterative methods, for high Hartmann numbers, was also investigated.
NASA Astrophysics Data System (ADS)
Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.
2010-03-01
A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n =1-20). The results use the compressible MHD model and depend on a precise representation of "ideal-like" and "vacuumlike" or "halo" regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 108 and 103 for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 105, which is much larger than experimentally measured values using Te values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.
Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm
NASA Technical Reports Server (NTRS)
Kato, Hiromasa; Tannehill, John C.; Mehta, Unmeel B.
2003-01-01
A new parabolized Navier-Stokes (PNS) algorithm has been developed to efficiently compute magnetohydrodynamic (MHD) flows in the low magnetic Reynolds number regime. In this regime, the electrical conductivity is low and the induced magnetic field is negligible compared to the applied magnetic field. The MHD effects are modeled by introducing source terms into the PNS equation which can then be solved in a very efficient manner. To account for upstream (elliptic) effects, the flowfields are computed using multiple streamwise sweeps with an iterated PNS algorithm. Turbulence has been included by modifying the Baldwin-Lomax turbulence model to account for MHD effects. The new algorithm has been used to compute both laminar and turbulent, supersonic, MHD flows over flat plates and supersonic viscous flows in a rectangular MHD accelerator. The present results are in excellent agreement with previous complete Navier-Stokes calculations.
Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation
Lytle, J.M.; Marchant, D.D.
1980-11-01
The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.
PROPAGATING WAVE PHENOMENA DETECTED IN OBSERVATIONS AND SIMULATIONS OF THE LOWER SOLAR ATMOSPHERE
Jess, D. B.; Shelyag, S.; Mathioudakis, M.; Keys, P. H.; Keenan, F. P.; Christian, D. J.
2012-02-20
We present high-cadence observations and simulations of the solar photosphere, obtained using the Rapid Oscillations in the Solar Atmosphere imaging system and the MuRAM magnetohydrodynamic (MHD) code, respectively. Each data set demonstrates a wealth of magnetoacoustic oscillatory behavior, visible as periodic intensity fluctuations with periods in the range 110-600 s. Almost no propagating waves with periods less than 140 s and 110 s are detected in the observational and simulated data sets, respectively. High concentrations of power are found in highly magnetized regions, such as magnetic bright points and intergranular lanes. Radiative diagnostics of the photospheric simulations replicate our observational results, confirming that the current breed of MHD simulations are able to accurately represent the lower solar atmosphere. All observed oscillations are generated as a result of naturally occurring magnetoconvective processes, with no specific input driver present. Using contribution functions extracted from our numerical simulations, we estimate minimum G-band and 4170 A continuum formation heights of 100 km and 25 km, respectively. Detected magnetoacoustic oscillations exhibit a dominant phase delay of -8 Degree-Sign between the G-band and 4170 A continuum observations, suggesting the presence of upwardly propagating waves. More than 73% of MBPs (73% from observations and 96% from simulations) display upwardly propagating wave phenomena, suggesting the abundant nature of oscillatory behavior detected higher in the solar atmosphere may be traced back to magnetoconvective processes occurring in the upper layers of the Sun's convection zone.
SCALING PROPERTIES OF SMALL-SCALE FLUCTUATIONS IN MAGNETOHYDRODYNAMIC TURBULENCE
Perez, Jean Carlos; Mason, Joanne; Boldyrev, Stanislav; Cattaneo, Fausto E-mail: j.mason@exeter.ac.uk E-mail: cattaneo@flash.uchicago.edu
2014-09-20
Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scale—the Alfvén velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this also imposes stringent conditions on numerical studies of MHD turbulence. In contrast with the hydrodynamic case, the discretization scale in numerical simulations of MHD turbulence should decrease faster than the dissipation scale, in order for the simulations to remain resolved as the Reynolds number increases.
General polytropic magnetohydrodynamic cylinder under self-gravity
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Xing, Heng-Rui
2016-02-01
Based on general polytropic (GP) magnetohydrodynamics (MHD), we offer a self-similar dynamic formalism for a magnetized, infinitely long, axially uniform cylinder of axisymmetry under self-gravity with radial and axial flows and with helical magnetic field. We identify two major classes of solution domains and obtain a few valuable MHD integrals in general. We focus on one class that has the freedom of prescribing a GP dynamic equation of state including the isothermal limit and derive analytic asymptotic solutions for illustration. In particular, we re-visit the isothermal MHD problem of Tilley & Pudritz (TP) and find that TP's main conclusion regarding the MHD solution behaviour for a strong ring magnetic field of constant toroidal flux-to-mass ratio Γϕ to be incorrect. As this is important for conceptual scenarios, MHD cylinder models, testing numerical codes and potential observational diagnostics of magnetized filaments in various astrophysical contexts, we show comprehensive theoretical analysis and reasons as well as extensive numerical results to clarify pertinent points in this Letter. In short, for any given Γϕ value be it small or large, the asymptotic radial scaling of the reduced mass density α(x) at sufficiently large x should always be ˜x-4 instead of ˜x-2 contrary to the major claim of TP.
Magnetohydrodynamic Heat Transfer Research Related to the Design of Fusion Blankets
Barleon, Leopold; Burr, Ulrich; Mack, Klaus Juergen; Stieglitz, Robert
2001-03-15
Lithium or any lithium alloy like the lithium lead alloy Pb-17Li is an attractive breeder material used in blankets of fusion power reactors because it allows the breeding of tritium and, in the case of self-cooled blankets, the transfer of the heat generated within the liquid metal and the walls of the cooling ducts to an external heat exchanger. Nevertheless, this type of liquid-metal-cooled blanket, called a self-cooled blanket, requires specific design of the coolant ducts, because the interaction of the circulating fluid and the plasma-confining magnetic fields causes magnetohydrodynamic (MHD) effects, yielding completely different flow patterns compared to ordinary hydrodynamics (OHD) and pressure drops significantly higher than there. In contrast to OHD, MHD flows depend strongly on the electrical properties of the wall. Also, MHD flows reveal anisotropic turbulence behavior and are quite sensitive to obstacles exposed to the fluid flow.A comprehensive study of the heat transfer characteristics of free and forced convective MHD flows at fusion-relevant conditions is conducted. The general ideas of the analytical and numerical models to describe MHD heat transfer phenomena in this parameter regime are discussed. The MHD laboratory being installed, the experimental program established, and the experiments on heat transfer of free and forced convective flow being conducted are described. The theoretical results are compared to the results of a series of experiments in forced and free convective MHD flows with different wall properties, such as electrically insulating as well as electric conducting ducts. Based on this knowledge, methods to improve the heat transfer by means of electromagnetic/mechanic turbulence promoters (TPs) or sophisticated, arranged electrically conducting walls are discussed, experimental results are shown, and a cost-benefit analysis related to these methods is performed. Nevertheless, a few experimental results obtained should be
COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO
Collins, David C.; Xu Hao; Norman, Michael L.; Li Hui; Li Shengtai
2010-02-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzo to include the effects of magnetic fields through the ideal magnetohydrodynamics approximation. We use a higher order Godunov method for the computation of interface fluxes. We use two constrained transport methods to compute the electric field from those interface fluxes, which simultaneously advances the induction equation and maintains the divergence of the magnetic field. A second-order divergence-free reconstruction technique is used to interpolate the magnetic fields in the block-structured adaptive mesh refinement framework already extant in Enzo. This reconstruction also preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non-cosmological test problems to demonstrate the quality of solution resulting from this combination of solvers.
General Relativistic Magnetohydrodynamic Simulations of Collapsars
NASA Technical Reports Server (NTRS)
Mizuno, Yosuke; Yamada, S.; Koider, S.; Shipata, K.
2005-01-01
We have performed 2.5-dimensional general relativistic magnetohydrodynamic (MHD) simulations of collapsars including a rotating black hole. Initially, we assume that the core collapse has failed in this star. A rotating black hole of a few solar masses is inserted by hand into the calculation. The simulation results show the formation of a disklike structure and the generation of a jetlike outflow near the central black hole. The jetlike outflow propagates and accelerated mainly by the magnetic field. The total jet velocity is approximately 0.3c. When the rotation of the black hole is faster, the magnetic field is twisted strongly owing to the frame-dragging effect. The magnetic energy stored by the twisting magnetic field is directly converted to kinetic energy of the jet rather than propagating as an Alfven wave. Thus, as the rotation of the black hole becomes faster, the poloidal velocity of the jet becomes faster.
A pressure-based high resolution numerical method for resistive MHD
NASA Astrophysics Data System (ADS)
Xisto, Carlos M.; Páscoa, José C.; Oliveira, Paulo J.
2014-10-01
In the paper we describe in detail a numerical method for the resistive magnetohydrodynamic (MHD) equations involving viscous flow and report the results of application to a number of typical MHD test cases. The method is of the finite volume type but mixes aspects of pressure-correction and density based solvers; the algorithm arrangement is patterned on the well-known PISO algorithm, which is a pressure method, while the flux computation makes use of the AUSM-MHD scheme, which originates from density based methods. Five groups of test cases are addressed to verify and validate the method. We start with two resistive MHD cases, namely the Shercliff and Hunt flow problems, which are intended to validate the method for low-speed resistive MHD flows. The remaining three test cases, namely the cloud-shock interaction, the MHD rotor and the MHD blast wave, are standard 2D ideal MHD problems that serve to validate the method under high-speed flow and complex interaction of MHD shocks. Finally, we demonstrate the method with a more complex application problem, and discuss results of simulation for a quasi-bi-dimensional self-field magnetoplasmadynamic (MPD) thruster, for which we study the effect of cathode length upon the electromagnetic nozzle performance.
NASA Astrophysics Data System (ADS)
Pahud, D. M.; Merkin, V. G.; Arge, C. N.; Hughes, W. J.; McGregor, S. M.
2012-07-01
We present results from a new magnetohydrodynamic (MHD) model of the inner heliosphere. The model is adapted from the well-established Lyon-Fedder-Mobarry (LFM) MHD simulation code, which until recently mostly applied to studies of the terrestrial magnetosphere. We perform quasi steady-state simulations of two Carrington rotations: 2060 and 2068. During both of these periods, the heliosphere remained quiet and undisturbed by transient phenomena, making them well-suited for simulation studies of Corotating Interaction Regions (CIRs). The MHD model of the solar wind is driven at the inner boundary by the Wang-Sheeley-Arge (WSA) model of the corona augmented with empirical relations to infer the solar wind velocity, density, and temperature. Here we report on a validation exercise whereby LFM-helio simulation results are compared with in situ data from the Advanced Composition Explorer (ACE) and MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft. We find that the model successfully reproduces the large-scale configuration of the inner heliosphere, namely timing and duration of high-speed streams and heliospheric current sheet crossings, as reflected in ACE and MESSENGER observations. Discrepancies between in situ measurements and simulations, such as 1-2 day errors in the time of arrival of a CIR or the strength of the simulated magnetic field at the spacecraft, are attributed to the uncertainty in the specification of the coronal conditions, rather than a poor performance of the solar wind model. More comparisons between different inner heliosphere models driven with identical coronal conditions are suggested as a way to explore their comparative strengths and weaknesses.
Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics
Barmin, A.A.; Kulikovskiy, A.G.; Pogorelov, N.V.
1996-06-01
Shock-capturing methods have become an effective tool for the solution of hyperbolic partial differential equations. Both upwind and symmetric TVD schemes in the framework of the shock-capturing approach are thoroughly investigated and applied with great success to a number of complicated multidimensional gasdynamic problems. The extension of these schemes to magnetohydrodynamic (MHD) equations is not a simple task. First, the exact solution of the MHD Riemann problem is too multivariant to be used in regular calculations. On the other hand, the extensions of Roe`s approximate Riemann problem solvers for MHD equations in general case are nonunique and need further investigation. That is why, some simplified approaches should be constructed. In this work, the second order of accuracy in time and space high-resolution Lax-Friedrichs type scheme is suggested that gives a drastic simplification of the numerical algorithm comparing to the precise characteristic splitting of Jacobian matrices. The necessity is shown to solve the full set of MHD equations for modeling of multishocked flows, even when the problem is axisymmetric, to obtain evolutionary solutions. for the numerical example, the MHD Riemann problem is used with the initial data consisting of two constant states lying to the right and to the left from the centerline of the computational domain. If the problem is solved as purely coplanar, a slow compound wave appears in the self-similar solution obtained by any shock-capturing scheme. If the full set of MHD equations is used and a small uniform tangential disturbance is added to the magnetic field vector, a rotational jump splits from the compound wave, and it degrades into a slow shock. The reconstruction process of the nonevolutionary compound wave into evolutionary shocks is investigated. Presented results should be taken into account in the development of shock-capturing methods for MHD flows. 18 refs., 17 figs.
Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves
NASA Astrophysics Data System (ADS)
Lehmann, Andrew; Wardle, Mark
2015-08-01
The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.
Statistical Theory of the Ideal MHD Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the
Forest, C. B.
2002-11-15
The project is designed to understand current and magnetic field generation in plasmas and other magnetohydrodynamic systems. The experiments will investigate the generation of a dynamo using liquid Na.
Zhao, Xuan; Seyler, C. E.
2015-07-15
The magnetized shock problem is studied in the context where supersonic plasma flows past a solid obstacle. This problem exhibits interesting and important phenomena such as a bow shock, magnetotail formation, reconnection, and plasmoid formation. This study is carried out using a discontinuous Galerkin method to solve an extended magneto-hydrodynamic model (XMHD). The main goals of this paper are to present a reasonably complete picture of the properties of this interaction using the MHD model and then to compare the results to the XMHD model. The inflow parameters, such as the magnetosonic Mach number M{sub f} and the ratio of thermal pressure to magnetic pressure β, can significantly affect the physical structures of the flow-obstacle interaction. The Hall effect can also significantly influence the results in the regime in which the ion inertial length is numerically resolved. Most of the results presented are for the two-dimensional case; however, two three-dimensional simulations are presented to make a connection to the important case in which the solar wind interacts with a solid body and to explore the possibility of performing scaled laboratory experiments.
Martin, L. N.; Dmitruk, P.; Gomez, D. O.
2010-11-15
In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.
FEMHD: An adaptive finite element method for MHD and edge modelling
Strauss, H.R.
1995-07-01
This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.
MHD aspects of fire-hose type instabilities
NASA Astrophysics Data System (ADS)
Wang, B.; Hau, L.
2003-12-01
In a homogeneous anisotropic plasma the magnetohydrodynamic (MHD) Alfvén wave may become unstable for p∥ > pperpendicular to + B2/μ 0. Recently a new type of fire-hose instability is found by Hellinger and Matsumoto [2000] that has maximum growth rate occurring for oblique propagation and may grow faster than the Alfvén mode. This new mode is compressional and may be more efficient at destroying pressure anisotropy than the standard fire hose. In this study we examines the fire-hose type (p∥ > pperpendicular to ) instabilities based on the linear and nonlinear double-polytropic MHD theory. It is shown that there exist two types of MHD fire-hose instabilities associated with the intermediate and slow modes, respectively, and with suitable choice of polytropic exponents the linear instability criteria become the same as those based on the Vlasov theory in the hydromagnetic limit. Moreover, the properties of the nonlinear MHD fire-hose instabilities are found to have great similarities with those obtained from the kinetic theory and hybrid simulation. In particular, the classical fire-hose instability evolves toward the linear fire-hose stability threshold while the nonlinear marginal stability associated with the new fire hose is well below the condition of β ∥ - β perpendicular to = 2 but complies with less stringent linear stability threshold for MHD slow-mode wave.
Dynamo action in dissipative, forced, rotating MHD turbulence
NASA Astrophysics Data System (ADS)
Shebalin, John V.
2016-06-01
Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Rosner, R.
1988-01-01
Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.
Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.
2008-01-01
Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing
Large-scale quasi-geostrophic magnetohydrodynamics
Balk, Alexander M.
2014-12-01
We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.
Magneto-hydrodynamically stable axisymmetric mirrors
Ryutov, D. D.; Cohen, B. I.; Molvik, A. W.; Berk, H. L.; Simonen, T. C.
2011-09-15
Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.
Lack of universality in decaying magnetohydrodynamic turbulence.
Lee, E; Brachet, M E; Pouquet, A; Mininni, P D; Rosenberg, D
2010-01-01
Using computations of three-dimensional magnetohydrodynamic (MHD) turbulence with a Taylor-Green flow, whose inherent time-independent symmetries are implemented numerically, and in the absence of either a forcing function or an imposed uniform magnetic field, we show that three different inertial ranges for the energy spectrum may emerge for three different initial magnetic fields, the selecting parameter being the ratio of nonlinear eddy to Alfvén time. Equivalent computational grids range from 128(3) to 2048(3) points with a unit magnetic Prandtl number and a Taylor Reynolds number of up to 1500 at the peak of dissipation. We also show a convergence of our results with Reynolds number. Our study is consistent with previous findings of a variety of energy spectra in MHD turbulence by studies performed in the presence of both a forcing term with a given correlation time and a strong, uniform magnetic field. However, in contrast to the previous studies, here the ratio of characteristic time scales can only be ascribed to the intrinsic nonlinear dynamics of the paradigmatic flows under study.
Multicomponent diffusion in two-temperature magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Ramshaw, J. D.; Chang, C. H.
1996-06-01
A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zero-field form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations.
NASA Astrophysics Data System (ADS)
Gaina, Alex
1996-08-01
Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Dasgupta, B.; McKenzie, J. F.; Hu, Q.; Zank, G. P.
2014-03-01
Conservation laws in ideal gas dynamics and magnetohydrodynamics (MHD) associated with fluid relabeling symmetries are derived using Noether's first and second theorems. Lie dragged invariants are discussed in terms of the MHD Casimirs. A nonlocal conservation law for fluid helicity applicable for a non-barotropic fluid involving Clebsch variables is derived using Noether's theorem, in conjunction with a fluid relabeling symmetry and a gauge transformation. A nonlocal cross helicity conservation law involving Clebsch potentials, and the MHD energy conservation law are derived by the same method. An Euler-Poincaré variational approach is also used to derive conservation laws associated with fluid relabeling symmetries using Noether's second theorem.
Magneto-hydrodynamically stable axisymmetric mirrors
NASA Astrophysics Data System (ADS)
Ryutov, Dmitri
2010-11-01
The achievement of high beta (60%) plasma with near classical confinement in a linear axisymmetric magnetic configuration has sparked interest in the Gas Dynamic Trap concept. The significance of these results is that they can be projected directly to a neutron source for materials testing. The possibility of axisymmetric mirrors (AM) being magneto-hydrodynamically (MHD) stable is also of interest from a general physics standpoint (as it seemingly contradicts to well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a brief summary of classical results (in particular of the Rosenbluth-Longmire theory and of the energy principle as applied to AM) several approaches towards achieving MHD stabilization of the AM will be considered: 1) Employing the favorable field-line curvature in the end tanks; 2) Using the line-tying effect; 3) Setting the plasma in a slow or fast differential rotation; 4) Imposing a divertor configuration on the solenoidal magnetic field; 5) Controlling the plasma dynamics by the ponderomotive force; 6) Other techniques. Several of these approaches go beyond pure MHD and require accounting for finite Larmor radius effects and trapped particle modes. Some illuminative theoretical approaches for understanding axisymmetric mirror stability will be described. Wherever possible comparison of theoretical and experimental results on AM will be provided. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors will be discussed and the constraints on the plasma parameters will be formulated. Prepared by LLNL under Contract DE-AC52-07NA27344.
Validation of Magnetospheric Magnetohydrodynamic Models
NASA Astrophysics Data System (ADS)
Curtis, Brian
Magnetospheric magnetohydrodynamic (MHD) models are commonly used for both prediction and modeling of Earth's magnetosphere. To date, very little validation has been performed to determine their limits, uncertainties, and differences. In this work, we performed a comprehensive analysis using several commonly used validation techniques in the atmospheric sciences to MHD-based models of Earth's magnetosphere for the first time. The validation techniques of parameter variability/sensitivity analysis and comparison to other models were used on the OpenGGCM, BATS-R-US, and SWMF magnetospheric MHD models to answer several questions about how these models compare. The questions include: (1) the difference between the model's predictions prior to and following to a reversal of Bz in the upstream interplanetary field (IMF) from positive to negative, (2) the influence of the preconditioning duration, and (3) the differences between models under extreme solar wind conditions. A differencing visualization tool was developed and used to address these three questions. We find: (1) For a reversal in IMF Bz from positive to negative, the OpenGGCM magnetopause is closest to Earth as it has the weakest magnetic pressure near-Earth. The differences in magnetopause positions between BATS-R-US and SWMF are explained by the influence of the ring current, which is included in SWMF. Densities are highest for SWMF and lowest for OpenGGCM. The OpenGGCM tail currents differ significantly from BATS-R-US and SWMF; (2) A longer preconditioning time allowed the magnetosphere to relax more, giving different positions for the magnetopause with all three models before the IMF Bz reversal. There were differences greater than 100% for all three models before the IMF Bz reversal. The differences in the current sheet region for the OpenGGCM were small after the IMF Bz reversal. The BATS-R-US and SWMF differences decreased after the IMF Bz reversal to near zero; (3) For extreme conditions in the solar
Drag reduction in turbulent MHD pipe flows
NASA Technical Reports Server (NTRS)
Orlandi, P.
1996-01-01
This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.
Observational Tests of Recent MHD Turbulence Perspectives
NASA Technical Reports Server (NTRS)
Ghosh, Sanjoy; Guhathakurta, M. (Technical Monitor)
2001-01-01
This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.
Observational Tests of Recent MHD Turbulence Perspectives
NASA Astrophysics Data System (ADS)
Ghosh, Sanjoy
2001-06-01
This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.
Statistical Analysis of Current Sheets in Three-dimensional Magnetohydrodynamic Turbulence
NASA Astrophysics Data System (ADS)
Zhdankin, Vladimir; Uzdensky, Dmitri A.; Perez, Jean C.; Boldyrev, Stanislav
2013-07-01
We develop a framework for studying the statistical properties of current sheets in numerical simulations of magnetohydrodynamic (MHD) turbulence with a strong guide field, as modeled by reduced MHD. We describe an algorithm that identifies current sheets in a simulation snapshot and then determines their geometrical properties (including length, width, and thickness) and intensities (peak current density and total energy dissipation rate). We then apply this procedure to simulations of reduced MHD and perform a statistical analysis on the obtained population of current sheets. We evaluate the role of reconnection by separately studying the populations of current sheets which contain magnetic X-points and those which do not. We find that the statistical properties of the two populations are different in general. We compare the scaling of these properties to phenomenological predictions obtained for the inertial range of MHD turbulence. Finally, we test whether the reconnecting current sheets are consistent with the Sweet-Parker model.
An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.
1994-01-01
An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.
A blowup criterion for viscous, compressible, and heat-conductive magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Du, Lili; Wang, Yongfu
2015-09-01
In this paper, we proved a blowup criterion for the two-dimensional (2D) viscous, compressible, and heat-conducting magnetohydrodynamic (MHD) flows for Cauchy problem, which depends only on the divergence of the velocity vector field, as well as for the case of bounded domain with Dirichlet boundary conditions. This result indicates that the nature of the blowup for compressible models of viscous media in 2D space is similar to the barotropic compressible Navier-Stokes equations and does not depend on further sophistication of the MHD model. More precisely, taking into account the magnetic effects and heat conductivity does not introduce any new features in the blowup mechanism of full MHD flows, especially, which is independent of the temperature and the magnetic field. The results also imply the global regularity of the strong solution to compressible MHD flows, provided that velocity divergence remains bounded.
A Global Magnetohydrodynamic Model of Jovian Magnetosphere
NASA Technical Reports Server (NTRS)
Walker, Raymond J.; Sharber, James (Technical Monitor)
2001-01-01
The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5R(sub J). The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by C(sub max)(Delta)t/(Delta)x less than 1 where C(sub max) is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is C(sub w) and the flow speed is C(sub f), C(sub max) = C(sub w) + C(sub f). Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a
Turbulent two-dimensional magnetohydrodynamics and conformal field theory
Rahimi Tabar, M.R.; Rouhani, S. |
1996-03-01
We show that an infinite number of non-unitary minimal models may describe two dimensional turbulent magnetohydrodynamics (MHD), both in the presence and absence of the Alf{close_quote}ven effect. We argue that the existence of a critical dynamical index results in the Alf{close_quote}ven effect or equivalently the equipartition of energy. We show that there are an infinite number of conserved quantities in 2{ital D}{endash}{ital MHD} turbulent systems both in the limit of vanishing the viscocities and in force free case. In the force free case, using the non-unitary minimal model {ital M}{sub 2,7} we derive the correlation functions for the velocity stream function and magnetic flux function. Generalizing this simple model we find the exponents of the energy spectrum in the inertial range for a class of conformal field theories. Copyright {copyright} 1996 Academic Press, Inc.
Global magnetohydrodynamic instabilities in the L-2M stellarator
Mikhailov, M. I.; Shchepetov, S. V.; Nührenberg, C.; Nührenberg, J.
2015-12-15
Analysis of global magnetohydrodynamic (MHD) instabilities in the L-2M stellarator (Prokhorov General Physics Institute, Russian Academy of Sciences) is presented. The properties of free-boundary equilibria states are outlined, the stability conditions for small-scale modes are briefly discussed, and the number of trapped particles is estimated. All the magnetic configurations under study are stable against ballooning modes. It is shown that global ideal internal MHD modes can be found reliably only in Mercier unstable plasmas. In plasma that is stable with respect to the Mercier criterion, global unstable modes that are localized in the vicinity of the free plasma boundary and are not associated with any rational magnetic surface inside the plasma (the so-called peeling modes) can be found. The radial structure of all perturbations under study is almost entirely determined by the poloidal coupling of harmonics. The results of calculations are compared with the available experimental data.
Magnetohydrodynamic turbulent cascade of coronal loop magnetic fields.
Rappazzo, A F; Velli, M
2011-06-01
The Parker model for coronal heating is investigated through a high resolution simulation. An inertial range is resolved where fluctuating magnetic energy EMk[Please see symbol]) [Please see symbol] k[Please see symbol](-2.7) exceeds kinetic energy EK(k[Please see symbol])[Please see symbol]k[Please see symbol](-0.6). Increments scale as δbℓ ~/= ℓ(-0.85) and δuℓ ~/= ℓ(+0.2) with velocity increasing at small scales, indicating that magnetic reconnection plays a prime role in this turbulent system. We show that spectral energy transport is akin to standard magnetohydrodynamic (MHD) turbulence even for a system of reconnecting current sheets sustained by the boundary. In this new MHD turbulent cascade, kinetic energy flows are negligible while cross-field flows are enhanced, and through a series of "reflections" between the two fields, cascade more than half of the total spectral energy flow.
MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283
Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu
2013-07-10
Current magnetohydrodynamic (MHD) simulations of the initiation of solar eruptions are still commonly carried out with idealized magnetic field models, whereas the realistic coronal field prior to eruptions can possibly be reconstructed from the observable photospheric field. Using a nonlinear force-free field extrapolation prior to a sigmoid eruption in AR 11283 as the initial condition in an MHD model, we successfully simulate the realistic initiation process of the eruption event, as is confirmed by a remarkable resemblance to the SDO/AIA observations. Analysis of the pre-eruption field reveals that the envelope flux of the sigmoidal core contains a coronal null and furthermore the flux rope is prone to a torus instability. Observations suggest that reconnection at the null cuts overlying tethers and likely triggers the torus instability of the flux rope, which results in the eruption. This kind of simulation demonstrates the capability of modeling the realistic solar eruptions to provide the initiation process.
Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes
NASA Astrophysics Data System (ADS)
Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.
2016-03-01
We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R˜ 0.05 and spin parameters of a/M=0,0.5,0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.
Plasma relaxation and topological aspects in electron magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Shivamoggi, B. K.
2016-07-01
Parker's formulation of isotopological plasma relaxation process toward minimum magnetics energy states in magnetohydrodynamics (MHD) is extended to electron MHD (EMHD). The lower bound on magnetic energy in EMHD is determined by both the magnetic field and the electron vorticity field topologies, and is shown to be reduced further in EMHD by an amount proportional to the sum of total electron-flow kinetic energy and total electron-flow enstrophy. The EMHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics, and the torsion coefficient α turns out to be proportional to potential vorticity. The winding pattern of the magnetic field lines appears to evolve, therefore, in the same way as potential vorticity lines in 2D hydrodynamics.
Magnetohydrodynamic Characteristic Boundary Conditions
NASA Astrophysics Data System (ADS)
Schaffenberger, Werner; Stein, R.
2009-05-01
We implemented MHD characteristic boundary conditions for a non-ideal plasma in the "stagger-code" (Gudiksen and Nordlund, 2005, ApJ 618, 1020). The aim of these boundary conditions is to reduce reflection at the boundaries which is important for the simulation of wave propagation. We present some test simulations of propagating waves demonstrating the capability of these boundary conditions.
Local conservative regularizations of compressible magnetohydrodynamic and neutral flows
NASA Astrophysics Data System (ADS)
Krishnaswami, Govind S.; Sachdev, Sonakshi; Thyagaraja, A.
2016-02-01
Ideal systems like magnetohydrodynamics (MHD) and Euler flow may develop singularities in vorticity ( w =∇×v ). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper, we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length λ which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/ωpe. Our regularization preserves the symmetries of the original systems and, with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied to generalize the constitutive relation to bound higher moments of vorticity. A "swirl" velocity field is identified, and shown to transport w/ρ and B/ρ, generalizing the Kelvin-Helmholtz and Alfvén theorems. The steady regularized equations are used to model a rotating vortex, MHD pinch, and a plane vortex sheet. The proposed regularization could facilitate numerical simulations of fluid/MHD equations and provide a consistent statistical mechanics of vortices/current filaments in 3D, without blowup of enstrophy. Implications for detailed analyses of fluid and plasma dynamic systems arising from our work are briefly discussed.
Finite Volume TVD Schemes for Magnetohydrodynamics on Unstructered Grids
NASA Astrophysics Data System (ADS)
Tanaka, T.
A three-dimensional (3-D) high-resolution magnetohydrodynamic (MHD) simulation scheme is developed on unstructured grid systems to solve the complex-system problems in space science and space weather in which numerical difficulties arise from inhomogeneity due to strong background potential fields, inclusion of multi-species ions, and formations of shocks and discontinuities. The ideal MHD equations are extended to the 9-component MHD equations for multi-component ions and modified soas to avoid a direct inclusion of background potential field in dependent variables through the use of new variables. The numerical scheme adopts the finite volume method (FVM) with an upwinding numerical flux based on the linearized Riemann solver. Upwindings on unstructured grid systems are realized from the fact that the MHD equations are symmetric with respect to the rotation of the space. Despite the modifications of the equation system, the eigenvectors in the mode-synthesis matrix necessary for the ev aluation of the upwinding numerical flux can still be written analytically. To get a higher order of accuracy, the upwinding flux is extended to the third-order total variation diminishing (TVD) numerical flux in the calculation of FVM, through the monotonic upstream scheme for conservation laws (MUSCL) approach and Van Leer's differentiable limiter. Three numerical examples are given in order to show the efficiency of the above scheme.
SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS
Beresnyak, Andrey
2014-04-01
Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096{sup 3}, which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics.
Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Airbreathing Hypersonic Engines
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Bityurin, Valentine A.; Lineberry, John T.
1999-01-01
Established analyses of conventional ramjet/scramjet performance characteristics indicate that a considerable decrease in efficiency can be expected at off-design flight conditions. This can be explained, in large part, by the deterioration of intake mass flow and limited inlet compression at low flight speeds and by the onset of thrust degradation effects associated with increased burner entry temperature at high flight speeds. In combination, these effects tend to impose lower and upper Mach number limits for practical flight. It has been noted, however, that Magnetohydrodynamic (MHD) energy management techniques represent a possible means for extending the flight Mach number envelope of conventional engines. By transferring enthalpy between different stages of the engine cycle, it appears that the onset of thrust degradation may be delayed to higher flight speeds. Obviously, the introduction of additional process inefficiencies is inevitable with this approach, but it is believed that these losses are more than compensated through optimization of the combustion process. The fundamental idea is to use MHD energy conversion processes to extract and bypass a portion of the intake kinetic energy around the burner. We refer to this general class of propulsion system as an MHD-bypass engine. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass airbreathing hypersonic engines using ideal gasdynamics and fundamental thermodynamic principles.
Neoclassical viscosity effects on resistive magnetohydrodynamic modes in toroidal geometry
Yang, J.G.; Oh, Y.H.; Choi, D.I. ); Kim, J.Y.; Horton, W. )
1992-03-01
The flux-surface-averaged linearized resistive magnetohydrodynamic (MHD) boundary-layer equations including the compressibility, diamagnetic drift, and neoclassical viscosity terms are derived in toroidal geometry. These equations describe the resistive layer dynamics of resistive MHD modes over the collisionality regime between the banana plateau and the Pfirsch--Schlueter. From the resulting equations, the effects of neoclassical viscosity on the stability of the tearing and resistive ballooning modes are investigated numerically. Also, a study is given for the problem of how the neoclassical resistive MHD mode is generated as the collisionality is reduced. It is shown that the neoclassical viscosity terms give a significant destabilizing effect for the tearing and resistive ballooning modes. This destabilization comes mainly from the reduction of the stabilizing effect of the parallel ion sound compression by the ion neoclassical viscosity. In the banana-plateau collisionality limit, where the compressibility is negligible, the dispersion relations of the tearing and resistive ballooning modes reduce to the same form, with the threshold value of the driving force given by {Delta}{sub {ital c}}=0. On the other hand, with the finite neoclassical effect it is found that the neoclassical resistive MHD instability is generated in agreement with previous results. Furthermore, it is shown that this later instability can be generated in a wide range of the collisionality including near the Pfirsch--Schlueter regime as well as the banana-plateau regime, suggesting that this mode is a probable cause of anomalous transport.
Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind.
Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos
2012-04-27
Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.
Approximate Riemann Solvers for the Cosmic Ray Magnetohydrodynamical Equations
NASA Astrophysics Data System (ADS)
Kudoh, Yuki; Hanawa, Tomoyuki
2016-08-01
We analyze the cosmic-ray magnetohydrodynamic (CR MHD) equations to improve the numerical simulations. We propose to solve them in the fully conservation form, which is equivalent to the conventional CR MHD equations. In the fully conservation form, the CR energy equation is replaced with the CR "number" conservation, where the CR number density is defined as the three fourths power of the CR energy density. The former contains an extra source term, while latter does not. An approximate Riemann solver is derived from the CR MHD equations in the fully conservation form. Based on the analysis, we propose a numerical scheme of which solutions satisfy the Rankine-Hugoniot relation at any shock. We demonstrate that it reproduces the Riemann solution derived by Pfrommer et al. (2006) for a 1D CR hydrodynamic shock tube problem. We compare the solution with those obtained by solving the CR energy equation. The latter solutions deviate from the Riemann solution seriously, when the CR pressure dominates over the gas pressure in the post-shocked gas. The former solutions converge to the Riemann solution and are of the second order accuracy in space and time. Our numerical examples include an expansion of high pressure sphere in an magnetized medium. Fast and slow shocks are sharply resolved in the example. We also discuss possible extension of the CR MHD equations to evaluate the average CR energy.
Approximate Riemann solvers for the cosmic ray magnetohydrodynamical equations
NASA Astrophysics Data System (ADS)
Kudoh, Yuki; Hanawa, Tomoyuki
2016-11-01
We analyse the cosmic ray magnetohydrodynamic (CR MHD) equations to improve the numerical simulations. We propose to solve them in the fully conservation form, which is equivalent to the conventional CR MHD equations. In the fully conservation form, the CR energy equation is replaced with the CR `number' conservation, where the CR number density is defined as the three-fourths power of the CR energy density. The former contains an extra source term, while latter does not. An approximate Riemann solver is derived from the CR MHD equations in the fully conservation form. Based on the analysis, we propose a numerical scheme of which solutions satisfy the Rankine-Hugoniot relation at any shock. We demonstrate that it reproduces the Riemann solution derived by Pfrommer et al. for a 1D CR hydrodynamic shock tube problem. We compare the solution with those obtained by solving the CR energy equation. The latter solutions deviate from the Riemann solution seriously, when the CR pressure dominates over the gas pressure in the post-shocked gas. The former solutions converge to the Riemann solution and are of the second-order accuracy in space and time. Our numerical examples include an expansion of high-pressure sphere in a magnetized medium. Fast and slow shocks are sharply resolved in the example. We also discuss possible extension of the CR MHD equations to evaluate the average CR energy.
Etienne, Zachariah B.; Liu, Yuk Tung; Shapiro, Stuart L.
2010-10-15
We have written and tested a new general relativistic magnetohydrodynamics code, capable of evolving magnetohydrodynamics (MHD) fluids in dynamical spacetimes with adaptive-mesh refinement (AMR). Our code solves the Einstein-Maxwell-MHD system of coupled equations in full 3+1 dimensions, evolving the metric via the Baumgarte-Shapiro Shibata-Nakamura formalism and the MHD and magnetic induction equations via a conservative, high-resolution shock-capturing scheme. The induction equations are recast as an evolution equation for the magnetic vector potential, which exists on a grid that is staggered with respect to the hydrodynamic and metric variables. The divergenceless constraint {nabla}{center_dot}B=0 is enforced by the curl of the vector potential. Our MHD scheme is fully compatible with AMR, so that fluids at AMR refinement boundaries maintain {nabla}{center_dot}B=0. In simulations with uniform grid spacing, our MHD scheme is numerically equivalent to a commonly used, staggered-mesh constrained-transport scheme. We present code validation test results, both in Minkowski and curved spacetimes. They include magnetized shocks, nonlinear Alfven waves, cylindrical explosions, cylindrical rotating disks, magnetized Bondi tests, and the collapse of a magnetized rotating star. Some of the more stringent tests involve black holes. We find good agreement between analytic and numerical solutions in these tests, and achieve convergence at the expected order.
Free-boundary ideal MHD stability of W7-X divertor equilibria
NASA Astrophysics Data System (ADS)
Nührenberg, C.
2016-07-01
Plasma configurations describing the stellarator experiment Wendelstein 7-X (W7-X) are computationally established taking into account the geometry of the test-divertor unit and the high-heat-flux divertor which will be installed in the vacuum chamber of the device (Gasparotto et al 2014 Fusion Eng. Des. 89 2121). These plasma equilibria are computationally studied for their global ideal magnetohydrodynamic (MHD) stability properties. Results from the ideal MHD stability code cas3d (Nührenberg 1996 Phys. Plasmas 3 2401), stability limits, spatial structures and growth rates are presented for free-boundary perturbations. The work focusses on the exploration of MHD unstable regions of the W7-X configuration space, thereby providing information for future experiments in W7-X aiming at an assessment of the role of ideal MHD in stellarator confinement.
Tungsten and tungsten-copper for coal-fired MHD power generation
Farrar, L.C. ); Shields, J.A. Jr. )
1992-08-01
This paper reports that magnetohydrodynamics (MHD) can improve the thermal efficiency and reduce levels of SO{sub x} and NO emissions of existing coal-fired power generation plants. Although the thermal and electrochemical environments for a coal-fired MHD channel challenge the materials used, platinum, tungsten, and tungsten-copper have been found to be suitable choices. Evaluations indicate these materials perform adequately as electrodes and other gas-side surfaces in the coal-fired MHD channel. Analysis of test elements has resulted in the identification of wear mechanisms. Testing of a prototypical coal-fired MHD channel incorporating these materials is under way and will be completed in 1993.
MHD can clean up the environment
Sheth, A.C.; Crawford, L.W.; Holt, J.K.
1993-01-01
Magnetohydrodynamics (MHD) involves interactions among electromagnetic fields and electrically conducting gases and liquids. The most developed application for MM in the United States is for central station electric power generation using a coal-fired combined cycle system. Proof-of-Concept (POC) scale demonstration of the downstream components used in this technology is currently being carried out at the US Department of Energy's (DOE) Coal-Fired Flow Facility (CFFF), located at the University of Tennessee Space Institute (UTSI). Some of the attractive features of MHD include: A potential for increasing overall plant efficiency to 60% as compared to <40% for conventional power plants. Provision of built-in controls to eliminate/reduce the emissions of acid rain precursors, such as SO[sub 2] and NO[sub x] well below the existing New Source Performance Standards (NSPS) and Clean Air Act requirements. Provision of adequate particulate resistivity for easy and efficient capture of submicron sized panicles in dry and wet electrostatic precipitators. Provision of built-in control to eliminate/reduce the Cl[sub 2]/HCl emission problems common to waste incinerators. Producing nearly zero emissions of priority pollutants (inorganics as well as organics on a pound per pound of coal basis) in comparison to conventional coal-fired facilities. Environmentally acceptable solid and liquid waste streams, and release of less CO[sub 2] (a suspected greenhouse gas) per unit of electricity generated than the conventional power plant due to the increased efficiency.
Investigations for biogas operated MHD power generators
Dahiya, R.P.; Chand, A.; Sharma, S.C.
1983-12-01
Biogas is produced from the anaerobic fermentation of the organic matter containing cellulose, such as agricultural wastes, human wastes, animal wastes, etc. It contains methane (50-70%), carbon dioxide (30-50%), and very small amounts of hydrogen and hydrogen sulphide. Adequate quantities of raw material to generate biogas are normally available in rural areas, and therefore, there is a possibility that almost all the energy requirements of the rural sector may be fulfilled by biogas. Presently in the rural sector, biogas is used mainly to provide thermal energy (for cooking, etc.), and up to a limited extent, to meet the electrical energy requirements by running electrical generators with engines powered by a mixture of oil and biogas. In this paper, the authors propose a scheme in which biogas can be used to generate electricity more efficiently by using magnetohydrodynamic (MHD) power generators. Investigations have been carried out to make feasibility studies for biogas-operated open cycle MHD power generators. Composition, temperature and electrical conductivity of the seeded (with potassium) combustion products of biogas-air/oxygen systems have been analytically investigated for different percentages of CO/sub 2/ in biogas and at various combustor pressures for a seeding ratio of 1 percent by weight. The effect of preheating and enrichment of air on temperature and electrical conductivity of the seeded combustion plasmas has also been studied.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-11-16
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Aiba, N.; Hirota, M.
2015-08-15
In a rotating toroidal plasma surrounded by a resistive wall, it is shown that linear magnetohydrodynamic (MHD) instabilities can be excited by interplay between the resistive wall mode (RWM) and stable ideal MHD modes, where the RWM can couple with not only a stable external kink mode but also various stable Alfvén eigenmodes that abound in a toroidal plasma. The RWM growth rate is shown to peak repeatedly as the rotation frequency reaches specific values for which the frequencies of the ideal MHD modes are Doppler-shifted to the small RWM frequency. Such destabilization can be observed even when the RWM in a static plasma is stable. A dispersion relation clarifies that the unstable mode changes from the RWM to the ideal MHD mode destabilized by wall resistivity when the rotation frequency passes through these specific values. The unstable mode is excited at these rotation frequencies even though plasma rotation also tends to stabilize the RWM from the combination of the continuum damping and the ion Landau damping.
Plunian, Franck; Stepanov, Rodion
2010-10-01
A phenomenology of isotropic magnetohydrodynamic (MHD) turbulence subject to both rotation and applied magnetic field is presented. It is assumed that the triple correlation decay time is the shortest between the eddy turn-over time and the ones associated to the rotating frequency and the Alfvén wave period. For Pm=1 it leads to four kinds of piecewise spectra, depending on four parameters: injection rate of energy, magnetic diffusivity, rotation rate, and applied field. With a shell model of MHD turbulence (including rotation and applied magnetic field), spectra for Pm ≤ 1 are presented, together with the ratio between magnetic and viscous dissipations.
Moawad, S. M.
2015-02-15
In this paper, we present a solution method for constructing exact analytic solutions to magnetohydrodynamics (MHD) equations. The method is constructed via all the trigonometric and hyperbolic functions. The method is applied to MHD equilibria with mass flow. Applications to a solar system concerned with the properties of coronal mass ejections that affect the heliosphere are presented. Some examples of the constructed solutions which describe magnetic structures of solar eruptions are investigated. Moreover, the constructed method can be applied to a variety classes of elliptic partial differential equations which arise in plasma physics.
Theory of energetic/alpha particle effects on magnetohydrodynamic modes in tokamaks
Chen, L.; White, R.B.; Rewoldt, G.; Colestock, P.; Rutherford, P.H.; Chen, Y.P.; Ke, F.J.; Tsai, S.T.; Bussac, M.N.
1989-01-01
The presence of energetic particles is shown to qualitatively modify the stability properties of ideal as well as resistive magnetohydrodynamic (MHD) modes in tokamaks. Specifically, we demonstrate that, consistent with highpower ICRF heating experiments in JET, high energy trapped particles can effectively stabilize the sawtooth mode, providing a possible route to stable high current tokamak operation. An alternative stabilization scheme employing barely circulating energetic particles is also proposed. Finally, we present analytical and numerical studies on the excitations of high-n MHD modes via transit resonances with circulating alpha particles. 14 refs., 3 figs.
Two-dimensional magnetohydrodynamic equilibria with flow and studies of equilibrium fluctuations
Agim, Y.Z.
1989-01-01
A set of reduced ideal MHD (magnetohydrodynamic) equations is derived to investigate equilibria of plasmas with mass flow in general two-dimensional geometry. These equations provide a means of investigating the effects of flow on self-consistent equilibria in a number of new two-dimensional configurations such as helically symmetric configurations with helical axis, which are relevant to stellarators, as well as axisymmetric configurations. In the second part, magnetic fluctuations due to the thermally excited MHD waves are investigated using fluid and kinetic models to describe a stable, uniform, compressible plasma in the range above the drift wave frequency and below the ion cyclotron frequency.
Simulated annealing applied to two-dimensional low-beta reduced magnetohydrodynamics
Chikasue, Y.; Furukawa, M.
2015-02-15
The simulated annealing (SA) method is applied to two-dimensional (2D) low-beta reduced magnetohydrodynamics (R-MHD). We have successfully obtained stationary states of the system numerically by the SA method with Casimir invariants preserved. Since the 2D low-beta R-MHD has two fields, the relaxation process becomes complex compared to a single field system such as 2D Euler flow. The obtained stationary state can have fine structure. We have found that the fine structure appears because the relaxation processes are different between kinetic energy and magnetic energy.
Phenomenology treatment of magnetohydrodynamic turbulence with non-equipartition and anisotropy
Zhou, Y; Matthaeus, W H
2005-02-07
Magnetohydrodynamics (MHD) turbulence theory, often employed satisfactorily in astrophysical applications, has often focused on parameter ranges that imply nearly equal values of kinetic and magnetic energies and length scales. However, MHD flow may have disparity magnetic Prandtl number, dissimilar kinetic and magnetic Reynolds number, different kinetic and magnetic outer length scales, and strong anisotropy. Here a phenomenology for such ''non-equipartitioned'' MHD flow is discussed. Two conditions are proposed for a MHD flow to transition to strong turbulent flow, extensions of (1) Taylor's constant flux in an inertial range, and (2) Kolmogorov's scale separation between the large and small scale boundaries of an inertial range. For this analysis, the detailed information on turbulence structure is not needed. These two conditions for MHD transition are expected to provide consistent predictions and should be applicable to anisotropic MHD flows, after the length scales are replaced by their corresponding perpendicular components. Second, it is stressed that the dynamics and anisotropy of MHD fluctuations is controlled by the relative strength between the straining effects between eddies of similar size and the sweeping action by the large-eddies, or propagation effect of the large-scale magnetic fields, on the small scales, and analysis of this balance in principle also requires consideration of non-equipartition effects.
NASA Astrophysics Data System (ADS)
Toth, Gabor; Gombosi, Tamas; Jia, Xianzhe; Welling, Daniel; Chen, Yuxi; Haiducek, John; Jordanova, Vania; Peng, Ivy Bo; Markidis, Stefano; Lapenta, Giovanni
2016-04-01
We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US extended magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code with its block-adaptive grid can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions and grid structures. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's and Mercury's magnetospheres. We compared our results with Galileo and MESSENGER magnetic observations, respectively, and found good overall agreement. We will report our progress on modeling the Earth magnetosphere with MHD-EPIC with the goal of providing direct comparison with and global context for the MMS observations.
3D MHD disruptions simulations of tokamaks plasmas
NASA Astrophysics Data System (ADS)
Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua
2008-11-01
Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.
NASA Astrophysics Data System (ADS)
Toth, G.; Jia, X.; Chen, Y.; Markidis, S.; Peng, B.; Daldorff, L. K. S.; Tenishev, V.; Borovikov, D.; Haiducek, J. D.; Gombosi, T. I.; Glocer, A.; Dorelli, J.; Lapenta, G.
2015-12-01
We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient with its block-adaptive grid. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's magnetosphere. Using four PIC regions we have in effect performed a fully kinetic simulation of the moon's mini-magnetosphere with a grid resolution that is about 5 times finer than the ion inertial length. The Hall MHD model provides proper boundary conditions for the four PIC regions and connects them with each other and with the inner and outer outer boundary conditions of the much larger MHD domain. We compare our results with Galileo magnetic observations and find good overall agreement with both Hall MHD and MHD-EPIC simulations. The power spectrum for the small scale fluctuations, however, agrees with the data much better for the MHD-EPIC simulation than for Hall MHD. In the MHD-EPIC simulation, unlike in the pure Hall MHD results, we also find signatures of flux transfer events (FTEs) that agree very well with the observed FTE signatures both in terms of shape and amplitudes. We will also highlight our ongoing efforts to model the magnetospheres of Mercury and
Survey of MHD plant applications
NASA Technical Reports Server (NTRS)
Lynch, J. J.; Seikel, G. R.; Cutting, J. C.
1979-01-01
Open-cycle MHD is one of the major R&D efforts in the Department of Energy's program to meet the national goal of reducing U.S. dependence on oil through increased utilization of coal. MHD offers an effective way to use coal to produce electric power at low cost in a highly efficient and environmentally acceptable manner. Open-cycle MHD plants are categorized by the MHD combustor oxidizer, its temperature and the method of preheat. The paper discusses MHD baseline plant design, open-cycle MHD plant in the Energy Conversion Alternatives Study (ECAS), early commercial MHD plants, conceptual studies of the engineering test facility, retrofit (addition of an MHD topping cycle to an existing steam plant), and other potential applications and concepts. Emphasis is placed on a survey of both completed and ongoing studies to define both commercial and pilot plant design, cost, and performance.
Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement
Furth, H.P.
1985-05-01
The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved.
Magnetohydrodynamic generator electrode
Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.
1979-01-01
An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.
Uranium droplet nuclear reactor core with MHD generator
NASA Astrophysics Data System (ADS)
Anghaie, Samim; Kumar, Ratan
An innovative concept employing liquid uranium droplets as fuel in an ultrahigh-temperature vapor core reactor (UTVR) magnetohydrodynamic (MHD) generator power system for space power generation has been studied. Metallic vapor in superheated form acts as a working fluid for a closed-Rankine-type thermodynamic cycle. Usage of fuel and working fluid in this form assures certain advantages. The major technical issues emerging as a result involve a method for droplet generation, droplet transport in the reactor core, heat generation in the fuel and transport to the metallic vapor, and materials compatibility. A qualitative and quantitative attempt to resolve these issues has indicated the promise and tentative feasibility of the system.
MHD computations for stellarators
Johnson, J.L.
1985-12-01
Considerable progress has been made in the development of computational techniques for studying the magnetohydrodynamic equilibrium and stability properties of three-dimensional configurations. Several different approaches have evolved to the point where comparison of results determined with different techniques shows good agreement. 55 refs., 7 figs.
Ito, Atsushi; Ramos, Jesus J.; Nakajima, Noriyoshi
2007-06-15
The ellipticity criteria for the partial differential equations of axisymmetric single-fluid and Hall magnetohydrodynamic (MHD) equilibria with flow and pressure anisotropy are investigated. The MHD systems are closed with cold ions and electron pressures derived from their parallel heat flux equations, a closure that reproduces the corresponding kinetic dispersion relation. In the single-fluid model, which differs from the double-adiabatic Chew-Goldberger-Low model, it is verified that the elliptic region boundaries occur at poloidal flow velocities equal to wave velocities from the kinetic dispersion relation. For Hall magnetohydrodynamics, a set of anisotropic-pressure equilibrium equations is derived and an ellipticity condition corresponding to a poloidal flow velocity slightly smaller than the ion sound velocity is obtained.
Nebogatov, V. A.; Pastukhov, V. P.
2013-06-15
A closed set of reduced equations describing low-frequency nonlinear flute magnetohydrodynamic (MHD) convection and the resulting nondiffusive processes of particle and energy transport in a weakly collisional cylindrical plasma with an anisotropic pressure is derived. The Chew-Goldberger-Low anisotropic magnetohydrodynamics is used as the basic dynamic model, because this model is applicable to describing flute convection in a cylindrical plasma column even in the low-frequency limit. The reduced set of equations was derived using the method of adiabatic separation of fast and slow motions. It is shown that the structure of the adiabatic transformation and the corresponding velocity field are identical to those obtained earlier in the isotropic MHD model. However, the derived heat transfer equations differ drastically from the isotropic pressure model. In particular, they indicate a tendency toward maintaining different radial profiles of the longitudinal and transverse pressures.
MHD aspects of fire-hose type instabilities
NASA Astrophysics Data System (ADS)
Wang, B. J.; Hau, L. N.
2003-12-01
In a homogeneous anisotropic plasma the magnetohydrodynamic (MHD) shear Alfvén wave may become unstable for p∥ > p⊥ + B2/μo. Recently, a new type of fire-hose instability was found by Hellinger and Matsumoto [2000] that has maximum growth rate occurring for oblique propagation and may grow faster than the Alfvén mode. This new mode is compressional and may be more efficient at destroying pressure anisotropy than the standard fire hose. This paper examines the fire-hose type (p∥ > p⊥) instabilities based on the linear and nonlinear double-polytropic MHD theory. It is shown that there exist two types of MHD fire-hose instabilities, and with suitable choice of polytropic exponents the linear instability criteria become the same as those based on the Vlasov theory in the hydromagnetic limit. Moreover, the properties of the nonlinear MHD fire-hose instabilities are found to have great similarities with those obtained from the kinetic theory and hybrid simulations. In particular, the classical fire-hose instability evolves toward the linear fire-hose stability threshold, while the nonlinear marginal stability associated with the new fire hose is well below the condition of β∥ - β⊥ = 2 but complies with less stringent linear stability threshold for compressible Alfvén waves.
Power Requirement for Nonequilibrium MHD-Bypass Scramjet
NASA Technical Reports Server (NTRS)
Park, Chul; Bogdanoff, David W.; Mehta, Unmeel
2000-01-01
It has been suggested previously that the performance of scramjet propulsion system may be improved by the use of magnetohydrodynamic (MHD) energy bypass: an MHD generator could be made to decelerate the flow entering the combustor, thereby improving combustion efficiency, and the electrical power generated could be made to accelerate the flow exiting from the combustor prior to expanding through the nozzle. In one of such proposed schemes, the MHD generator is proposed to be operated at a low temperature and ionization is to be achieved under nonequilibrium by the application of an external power. In the present work, the required power of such an external source is calculated assuming a 100%-efficient nonequilibrium ionization scheme. The power required is that needed to prevent the degree of ionization from reaching equilibrium with the low gas temperature. The flow is seeded with potassium or cesium. Specific impulse is calculated with and without turbulent friction. The results show that, for typical intended flight conditions, the specific impulse obtained is substantially higher than that of a typical scramjet, but the required external-power is several times that of the power generated in the MHD generator.
MHD Energy Bypass Scramjet Performance with Real Gas Effects
NASA Technical Reports Server (NTRS)
Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.
2000-01-01
The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.
NASA Astrophysics Data System (ADS)
den, M.; Yamashita, K.; Ogawa, T.
A three-dimensional (3D) hydrodynamical (HD) and magneto-hydrodynamical (MHD) simulation codes using an adaptive mesh refinement (AMR) scheme are developed. This method places fine grids over areas of interest such as shock waves in order to obtain high resolution and places uniform grids with lower resolution in other area. Thus AMR scheme can provide a combination of high solution accuracy and computational robustness. We demonstrate numerical results for a simplified model of a shock propagation, which strongly indicate that the AMR techniques have the ability to resolve disturbances in an interplanetary space. We also present simulation results for MHD code.
High-temperature coal-syngas plasma characteristics for advanced MHD power generation
Mikheev, A.V.; Kayukawa, N.; Okinaka, N.; Kamada, Y.; Yatsu, S.
2006-03-15
Properties of magnetohydrodynamic (MHD) plasma based on syngas (CO, H{sub 2}) combustion products were investigated experimentally with shock tube facility. The experiments were carried out under various MHD generator load and shock tube operation conditions. Important characteristics of syngas plasma such as temperature, electric field, conductivity, and total output power were directly measured and evaluated. Special attention was paid to the influence of syngas composition (CO : H{sub 2} : O{sub 2} ratio). The results show that syngas combustion can provide high plasma ionization and attainable plasma electrical conductivity has an order of 60-80 S/m at gas temperature 3100-3300 K.
MHD simulation of a magnetized target in an imploding conical cavity
NASA Astrophysics Data System (ADS)
Li, Cheng
2015-11-01
Conical imploding magnetic target fusion (MTF) is a new concept, in which the compression comes from both fast mechanic implosion and synchronized theta-pinching or Z-pinching. The compressed magnetized target has a moving end, an increasing external current, and an accumulating high density. Magneto-hydrodynamics (MHD) simulation could help revealing the details of the evolving plasma and finding the parameters (imploding speed, fuel amount, theta-pinch or Z-pinch current profile, etc.) required to reach Lawson Criterion. Preliminary 2D MHD simulation results of a conical imploding theta-pinch are presented.
Edge plasma responses to energetic-particle-driven MHD instability in Heliotron J
NASA Astrophysics Data System (ADS)
Ohshima, S.; Kobayashi, S.; Yamamoto, S.; Nagasaki, K.; Mizuuchi, T.; Okada, H.; Minami, T.; Hashimoto, K.; Shi, N.; Zang, L.; Kasajima, K.; Kenmochi, N.; Ohtani, Y.; Nagae, Y.; Mukai, K.; Lee, H. Y.; Matsuura, H.; Takeuchi, M.; Konoshima, S.; Sano, F.
2016-01-01
Two different responses to an energetic-particle-driven magnetohydrodynamic (MHD) instability, modulation of the turbulence amplitude associated with the MHD instability and dynamical changes in the radial electric field (Er) synchronized with bursting MHD activities, are found around the edge plasma in neutral beam injection (NBI) heated plasmas of the Heliotron J device using multiple Langmuir probes. The nonlinear phase relationship between the MHD activity and broadband fluctuation is found from bicoherence and envelope analysis applied to the probe signals. The structural changes of the Er profile appear in perfect synchronization with the periodic MHD activities, and radial transport of fast ions are observed around the last closed flux surface as a radial delay of the ion saturation current signals. Moreover, distortion of the MHD mode structure is clarified in each cycle of the MHD activities using beam emission spectroscopy diagnostics, suggesting that the fast ion distribution in real and/or velocity spaces is distorted in the core plasma, which can modify the radial electric field structure through a redistribution process of the fast ions. These observations suggest that such effects as a nonlinear coupling with turbulence and/or the modification of radial electric field profiles are important and should be incorporated into the study of energetic particle driven instabilities in burning plasma physics.
A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics
Johnson, Jeffrey
2006-04-01
Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical and physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.
A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics
2006-04-01
Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Becausemore » it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical and physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less
MHD plant turn down considerations
Lineberry, J.T.; Chapman, J.N.
1991-01-01
The topic of part load operation of the MHD power plant is assessed. Current and future planned MHD research is reviewed in terms of addressing topping and bottoming cycle integration needs. The response of the MHD generator to turn up and down scenarios is reviewed. The concept of turning the MHD power to met changes in plant load is discussed. The need for new ideas and focused research to study MHD plant integration and problems of plant turn down and up is cited. 7 refs., 5 figs., 1 tab.
NASA Technical Reports Server (NTRS)
Retallick, F. D.
1980-01-01
Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.
Petrick, Michael; Pierson, Edward S.; Schreiner, Felix
1980-01-01
According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.
ERIC Educational Resources Information Center
Russel, William B.; And Others
1979-01-01
Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)
Magnetohydrodynamics of fractal media
Tarasov, Vasily E.
2006-05-15
The fractal distribution of charged particles is considered. An example of this distribution is the charged particles that are distributed over the fractal. The fractional integrals are used to describe fractal distribution. These integrals are considered as approximations of integrals on fractals. Typical turbulent media could be of a fractal structure and the corresponding equations should be changed to include the fractal features of the media. The magnetohydrodynamics equations for fractal media are derived from the fractional generalization of integral Maxwell equations and integral hydrodynamics (balance) equations. Possible equilibrium states for these equations are considered.
Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2004-01-01
Incompressible, homogeneous magnetohydrodynamic (MHD) turbulence consists of fluctuating vorticity and magnetic fields, which are represented in terms of their Fourier coefficients. Here, a set of five Fourier spectral transform method numerical simulations of two-dimensional (2-D) MHD turbulence on a 512(sup 2) grid is described. Each simulation is a numerically realized dynamical system consisting of Fourier modes associated with wave vectors k, with integer components, such that k = |k| less than or equal to k(sub max). The simulation set consists of one ideal (non-dissipative) case and four real (dissipative) cases. All five runs had equivalent initial conditions. The dimensions of the dynamical systems associated with these cases are the numbers of independent real and imaginary parts of the Fourier modes. The ideal simulation has a dimension of 366104, while each real simulation has a dimension of 411712. The real runs vary in magnetic Prandtl number P(sub M), with P(sub M) is a member of {0.1, 0.25, 1, 4}. In the results presented here, all runs have been taken to a simulation time of t = 25. Although ideal and real Fourier spectra are quite different at high k, they are similar at low values of k. Their low k behavior indicates the existence of broken symmetry and coherent structure in real MHD turbulence, similar to what exists in ideal MHD turbulence. The value of PM strongly affects the ratio of kinetic to magnetic energy and energy dissipation (which is mostly ohmic). The relevance of these results to 3-D Navier-Stokes and MHD turbulence is discussed.
Magnetohydrodynamic and hybrid simulations of broadband fluctuations near interplanetary shocks
Agim, Y.Z.; Vinas, A.F.; Goldstein, M.L.
1995-09-01
We present results of a theoretical study of evolution of a spectrum of finite amplitude right-hand elliptically polarized magnetohydrodynamic (MHD) waves. The analysis includes use of one-and-a-half-dimensional solutions of the equations that describe compressible MHD together with one-and-a-half-dimensional hybrid simulation of the phenomenon. The motivation of the study is to understand the origin and properties of finite amplitude waves often observed in the vicinity of collisionless shocks in the heliosphere. The solutions of the MHD equations are compared with both the results of the hybrid simulations and observations previously reported by Vinas et al. in the vicinity of a quasi-parallel interplanetary shock. The initial conditions of the MHD solutions were constructed to model the observed spectrum of magnetic and velocity fluctuations; plasma parameters were also chosen to replicate the observed parameters. For the typical parameters of {beta} = 0.5, {sigma}B/B{sub 0} = 0.25 and a spectrum of parallel propagating, circularly polarized dispersive waves, initially the density and magnetic energy density correlations grow due to the (nonlinear) ponderomotive effect. The spectral features below the ion cyclotron frequency are established quickly on the Alfvenic timescale but then persist and match closely the observed fluctuations. The parametric decay instabilities that subsequently appear further enhance the density fluctuations and produce a high-frequency magnetic power spectrum consistent with the spacecraft observation. The MHD and hybrid simulations extend the previous picture of wave generation by a beam-driven ion cyclotron instability to the fully nonlinear stage. 64 refs., 24 figs.
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-09-15
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The
Converging cylindrical shocks in ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field
NONIDEAL MAGNETOHYDRODYNAMIC TURBULENT DECAY IN MOLECULAR CLOUDS
Downes, T. P.; O'Sullivan, S.
2009-08-20
It is well known that nonideal magnetohydrodynamic (MHD) effects are important in the dynamics of molecular clouds: both ambipolar diffusion and possibly the Hall effect have been identified as significant. We present the results of a suite of simulations with a resolution of 512{sup 3} of turbulent decay in molecular clouds, incorporating a simplified form of both ambipolar diffusion and the Hall effect simultaneously. The initial velocity field in the turbulence is varied from being super-Alfvenic and hypersonic, through to trans-Alfvenic but still supersonic. We find that ambipolar diffusion increases the rate of decay of the turbulence increasing the decay from t {sup -1.25} to t {sup -1.4}. The Hall effect has virtually no impact in this regard. The power spectra of density, velocity, and the magnetic field are all affected by the nonideal terms, being steepened significantly when compared with ideal MHD turbulence with exponents. The density power-spectra components change from {approx}1.4 to {approx}2.1 for the ideal and nonideal simulations respectively, and power spectra of the other variables all show similar modifications when nonideal effects are considered. Again, the dominant source of these changes is ambipolar diffusion rather than the Hall effect. There is also a decoupling between the velocity field and the magnetic field at short length scales. The Hall effect leads to enhanced magnetic reconnection, and hence less power, at short length scales. The dependence of the velocity dispersion on the characteristic length scale is studied and found not to be power law in nature.
Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Sondak, David
The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting
Comparison of three artificial models of the magnetohydrodynamic effect on the electrocardiogram.
Oster, Julien; Llinares, Raul; Payne, Stephen; Tse, Zion Tsz Ho; Schmidt, Ehud Jeruham; Clifford, Gari D
2015-01-01
The electrocardiogram (ECG) is often acquired during magnetic resonance imaging (MRI), but its analysis is restricted by the presence of a strong artefact, called magnetohydrodynamic (MHD) effect. MHD effect is induced by the flow of electrically charged particles in the blood perpendicular to the static magnetic field, which creates a potential of the order of magnitude of the ECG and temporally coincident with the repolarisation period. In this study, a new MHD model is proposed by using MRI-based 4D blood flow measurements made across the aortic arch. The model is extended to several cardiac cycles to allow the simulation of a realistic ECG acquisition during MRI examination and the quality assessment of MHD suppression techniques. A comparison of two existing models, based, respectively, on an analytical solution and on a numerical method-based solution of the fluids dynamics problem, is made with the proposed model and with an estimate of the MHD voltage observed during a real MRI scan. Results indicate a moderate agreement between the proposed model and the estimated MHD model for most leads, with an average correlation factor of 0.47. However, the results demonstrate that the proposed model provides a closer approximation to the observed MHD effects and a better depiction of the complexity of the MHD effect compared with the previously published models, with an improved correlation (+5%), coefficient of determination (+22%) and fraction of energy (+1%) compared with the best previous model. The source code will be made freely available under an open source licence to facilitate collaboration and allow more rapid development of more accurate models of the MHD effect.
A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG
NASA Astrophysics Data System (ADS)
Griffiths, M. K.; Fedun, V.; Erdélyi, R.
2015-03-01
Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.
NASA Astrophysics Data System (ADS)
Ogawa, T.; Usami, S.; Horiuchi, R.; Den, M.; Yamashita, K.; Tanaka, T.
2015-12-01
Magnetic reconnection is a multi-scale phenomenon. Both macroscopic plasma dynamics and microscopic particle kinetics are important there. Numerically, particle methods can deal with micro-scale kinetics, but they generally need much computational resources if one tries to calculate macro-scale by them. On the other hand, magnetohydrodynamics (MHD) can solve macro-scale dynamics efficiently, but it cannot reproduce the phenomenon without an appropriate extension. Usami et al. (2008, 2014) developed a code that uses both Particle-in-Cell (PIC) method and MHD. They divided a computational box into three domains; a PIC domain, a MHD domain and an interaction domain. Both PIC and MHD are calculated in the interaction domain and interlocked. They localized the PIC domain and enabled efficient implementation of simulations. In our previous study, we extended Usami's MHD domain to a hierarchical mesh that is controlled by Adaptive Mesh Refinement (AMR) technique (Ogawa et al. 2014), aiming to connect the local PIC calculation with a global MHD simulation.In this study, we apply the code to a simulation of magnetic reconnection in magnetotail. Outer boundary of the MHD domain is decided by data of another global MHD simulation of Earth's magnetosphere, and it leads to magnetic reconnection in the PIC domain. We will describe our method and show results in our poster.This work was supported by JSPS Grant-in-Aid for Scientific Research (B) 23340182.
Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng
2015-12-15
The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.
Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng
2015-01-01
The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393
Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng
2015-01-01
The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393
Preliminary results in the NASA Lewis H2-O2 combustion MHD experiment
NASA Technical Reports Server (NTRS)
Smith, J. M.
1979-01-01
MHD (magnetohydrodynamic) power generation experiments were carried out in the NASA Lewis Research Center cesium-seeded H2-O2 combustion facility. This facility uses a neon-cooled cryomagnet capable of producing magnetic fields in excess of 5 tesla. The effects of power takeoff location, generator loading, B-field strength, and electrode breakdown on generator performance are discussed. The experimental data is compared to a theory based on one-dimensional flow with heat transfer, friction, and voltage drops.
Sondak, David; Oberai, Assad A.
2012-10-15
Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation of LES to the equations of incompressible MHD. Additionally, a new residual-based eddy viscosity model is introduced for MHD. A mixed LES model that combines the strengths of both of these models is also derived. The new models result in a consistent numerical method that is relatively simple to implement. The need for a dynamic procedure in determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical LES turbulence models. The LES simulations are run in a periodic box of size [-{pi}, {pi}]{sup 3} with 32 modes in each direction and are compared to a direct numerical simulation (DNS) with 512 modes in each direction. The new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by Pouquet et al.['The dynamics of unforced turbulence at high Reynolds number for Taylor-Green vortices generalized to MHD,' Geophys. Astrophys. Fluid Dyn. 104, 115-134 (2010)], for which the ratio of DNS modes to LES modes is 262:144.
NASA Astrophysics Data System (ADS)
Nakariakov, V. M.; Pilipenko, V.; Heilig, B.; Jelínek, P.; Karlický, M.; Klimushkin, D. Y.; Kolotkov, D. Y.; Lee, D.-H.; Nisticò, G.; Van Doorsselaere, T.; Verth, G.; Zimovets, I. V.
2016-04-01
Magnetohydrodynamic (MHD) oscillatory processes in different plasma systems, such as the corona of the Sun and the Earth's magnetosphere, show interesting similarities and differences, which so far received little attention and remain under-exploited. The successful commissioning within the past ten years of THEMIS, Hinode, STEREO and SDO spacecraft, in combination with matured analysis of data from earlier spacecraft (Wind, SOHO, ACE, Cluster, TRACE and RHESSI) makes it very timely to survey the breadth of observations giving evidence for MHD oscillatory processes in solar and space plasmas, and state-of-the-art theoretical modelling. The paper reviews several important topics, such as Alfvénic resonances and mode conversion; MHD waveguides, such as the magnetotail, coronal loops, coronal streamers; mechanisms for periodicities produced in energy releases during substorms and solar flares, possibility of Alfvénic resonators along open field lines; possible drivers of MHD waves; diagnostics of plasmas with MHD waves; interaction of MHD waves with partly-ionised boundaries (ionosphere and chromosphere). The review is mainly oriented to specialists in magnetospheric physics and solar physics, but not familiar with specifics of the adjacent research fields.
NASA Astrophysics Data System (ADS)
Xu, Siyao; Yan, Huirong; Lazarian, A.
2016-08-01
We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
Proceedings of the workshop on nonlinear MHD and extended MHD
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Ul Haq, Rizwan; Rajotia, D; Noor, N F M
2016-03-01
The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (0≤φ ≤ 0.2)) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number.
Ul Haq, Rizwan; Rajotia, D; Noor, N F M
2016-03-01
The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (0≤φ ≤ 0.2)) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number. PMID:27006069
MHD simulation studies of z-pinch shear flow stabilization
NASA Astrophysics Data System (ADS)
Paraschiv, I.; Bauer, B. S.; Sotnikov, V. I.; Makhin, V.; Siemon, R. E.
2003-10-01
The development of the m=0 instability in a z-pinch in the presence of sheared plasma flows is investigated with the aid of a two-dimensional magnetohydrodynamic (MHD) simulation code (MHRDR). The linear growth rates are compared to the results obtained by solving the ideal MHD linearized equations [1] and to the results obtained using a 3D hybrid simulation code [2]. The instability development is followed into the nonlinear regime where its growth and saturation are examined. [1] V.I. Sotnikov, I. Paraschiv, V. Makhin, B.S. Bauer, J.-N. Leboeuf, and J.M. Dawson, "Linear analysis of sheared flow stabilization of global magnetohydrodynamic instabilities based on the Hall fluid mode", Phys. Plasmas 9, 913 (2002). [2] V.I. Sotnikov, V. Makhin, B.S. Bauer, P. Hellinger, P. Travnicek, V. Fiala, J.-N. Leboeuf, "Hybrid Simulations of Current-Carrying Instabilities in Z-pinch Plasmas with Sheared Axial Flow", AIP Conference Proceedings, Volume 651, Dense Z-Pinches: 5th International Conference on Dense Z-Pinches, edited by J. Davis et al., page 396, June 2002.
DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks
NASA Astrophysics Data System (ADS)
Duffell, Paul C.
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.
Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field.
Alexakis, Alexandros
2011-11-01
The magnetohydrodynamic (MHD) equations in the presence of a guiding magnetic field are investigated by means of direct numerical simulations. The basis of the investigation consists of nine runs forced at the small scales. The results demonstrate that for a large enough uniform magnetic field the large scale flow behaves as a two-dimensional (2D) (non-MHD) fluid exhibiting an inverse cascade of energy in the direction perpendicular to the magnetic field, while the small scales behave like a three-dimensional (3D) MHD fluid cascading the energy forwards. The amplitude of the inverse cascade is sensitive to the magnetic field amplitude, the domain size, the forcing mechanism, and the forcing scale. All these dependences are demonstrated by the varying parameters of the simulations. Furthermore, in the case that the system is forced anisotropically in the small parallel scales an inverse cascade in the parallel direction is observed that is feeding the 2D modes k(//)=0.
Damping of magnetohydrodynamic waves by resonant absorption in the solar atmosphere.
Goossens, M; Andries, J; Arregui, I
2006-02-15
In the last decade we have been overwhelmed by an avalanche of discoveries of magnetohydrodynamic (MHD) waves by the Solar and Heliospheric Observatory and Transition Region and Coronal Explorer observatories. Both standing and propagating versions of fast magnetoacoustic and slow magnetoacoustic MHD waves have been detected. Information on the damping times and damping distances of these waves is less detailed and less accurate than that on periods and amplitudes. Nevertheless, observations show the damping times and damping lengths are often short. Also, different types of MHD waves in different types of magnetic structures likely require different damping mechanisms. The phenomenon of fast damping is well documented for the standing fast magnetosonic kink waves in coronal loops. This paper concentrates on standing fast magnetosonic waves. It reports on results on periods and damping times due to resonant absorption in one-dimensional and two-dimensional models of coronal loops. Special attention is given to multiple modes. PMID:16414889
Shukla, P.K.; Kourakis, I.; Stenflo, L.
2005-02-01
A linear theory for intermediate-frequency [much smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies)], long wavelength (in comparison with the ion gyroradius and the electron skin depth) electromagnetic waves in a multicomponent, homogeneous electron-ion-dust magnetoplasma is presented. For this purpose, the generalized Hall-magnetohydrodynamic (GH-MHD) equations are derived for the case with immobile charged dust macroparticles. The GH-MHD equations in a quasineutral plasma consist of the ion continuity equation, the generalized ion momentum equation, and Faraday's law with the Hall term. The GH-MHD equations are Fourier transformed and combined to obtain a general dispersion relation. The latter is analyzed to understand the influence of immobile charged dust grains on various electromagnetic wave modes in a magnetized dusty plasma.
Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device
Haaland, C.M.; Deeds, W.E.
1999-07-13
A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.
Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device
Haaland, Carsten M.; Deeds, W. Edward
1999-01-01
A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.
CONSTRAINED-TRANSPORT MAGNETOHYDRODYNAMICS WITH ADAPTIVE MESH REFINEMENT IN CHARM
Miniati, Francesco; Martin, Daniel F. E-mail: DFMartin@lbl.gov
2011-07-01
We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.
Hyperbolic method for magnetic reconnection process in steady state magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Baty, Hubert; Nishikawa, Hiroaki
2016-06-01
A recent numerical approach for solving the advection-diffusion and Navier-Stokes equations is extended for the first time to a magnetohydrodynamic (MHD) model, aiming in particular consistent improvements over classical methods for investigating the magnetic reconnection process. In this study, we mainly focus on a two-dimensional incompressible set of resistive MHD equations written in flux-vorticity scalar variables. The originality of the method is based on hyperbolic reformulation of the dissipative terms, leading to the construction of an equivalent hyperbolic first-order (spatial derivatives) system. This enables the use of approximate Riemann solvers for handling dissipative and advective flux in the same way. A simple second-order finite-volume discretization on rectangular grids using an upwind flux is employed. The advantages of this method are illustrated by a comparison to two particular analytical steady state solutions of the inviscid magnetic reconnection mechanism, namely the magnetic annihilation and the reconnective diffusion problems. In particular, the numerical solution is obtained with the same order of accuracy for the solution and gradient for a wide range of magnetic Reynolds numbers, without any deterioration characteristic of more conventional schemes. The amelioration of the hyperbolic method and its extension to time-dependent MHD problems related to solar flares mechanisms is also discussed.
Magneto-Hydro-Dynamic Waves In The Collisionless Space Plasma
NASA Astrophysics Data System (ADS)
Dzhalilov, N. S.; Kuznetsov, V. D.; Staude, J.
2007-12-01
The instability of magneto-hydro-dynamic (MHD) waves in an anisotropic, collisionless, rarefied hot plasma is studied. Anisotropy properties of such a plasma are caused by a strong magnetic field, when the thermal gas pressures across and along the field become unequal. Moreover, there appears an anisotropy of the thermal fluxes. The study of the anisotropy features of the plasma are motivated by observed solar coronal data. The 16 moments equations derived from the Boltzmann-Vlasov kinetic equation are used. These equations strongly differ from the usual isotropic MHD case. For linear disturbances the wave equations in homogenous anisotropic plasma are deduced. The general dispersion relation for the incompressible wave modes is derived, solved and analyzed. It is shown that a wide wave spectrum with stable and unstable behavior is possible, in contrast to the usual isotropic MHD case. The dependence of the instability on magnetic field, pressure anisotropy, and heat fluxes is investigated. The general instability condition is obtained. The results can be applied to the theory of solar and stellar coronal heating, to wind models and in other modeling, where the collisionless approximation is valid.
Density-shear instability in electron magneto-hydrodynamics
Wood, T. S. Hollerbach, R.; Lyutikov, M.
2014-05-15
We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is “at least as stable” as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD.
Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.
2003-01-01
The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.
Density-shear instability in electron magneto-hydrodynamics
NASA Astrophysics Data System (ADS)
Wood, T. S.; Hollerbach, R.; Lyutikov, M.
2014-05-01
We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is "at least as stable" as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD.
Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas
NASA Astrophysics Data System (ADS)
Comer, Kathryn J.
We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent
Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Lyles, Garry M. (Technical Monitor)
2001-01-01
The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p(sub 2)/p(sub 1) approx. 34 and D approx. 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (=6 S/m) behind the detonation wave front. In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T. and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Ohm. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the MHD interaction exerted a
Magnetic control of magnetohydrodynamic instabilities in tokamaks
Strait, E. J.
2015-02-15
Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries (δB/B∼10{sup −3} to 10{sup −4}) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas (β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error
NASA Astrophysics Data System (ADS)
Morrison, P. J.; Abdelhamid, H. M.; Grasso, D.; Hazeltine, R. D.; Lingam, M.; Tassi, E.
2015-11-01
Over the years various reduced fluid models have been obtained for modeling plasmas, with the goal of capturing important physics while maintaining computability. Such models have included the physics contained in various generalizations of Ohm's law, including Hall drift and electron inertia. In a recent publication it was shown that full 3D extended MHD is a Hamiltonian system by finding its noncanonical Poisson bracket. Subsequently, this bracket was shown to be derivable from that for Hall MHD by a series of remarkable transformations, which greatly simplifies the proof of the Jacobi identity and allows one to immediately obtain generalizations of the helicity and cross helicity. In this poster we use this structure to obtain exact reduced fluid models with the effects of full two-fluid theory. Results of numerical computations of collisionless reconnection using an exact reduced 4-field model will be presented and analytical comparisons of mode structure of previous reduced models will be made.
NASA Astrophysics Data System (ADS)
Larios, Adam; Titi, Edriss S.
2014-03-01
We prove existence, uniqueness, and higher-order global regularity of strong solutions to a particular Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic (MHD) equations. Specifically, the coupling of a resistive magnetic field to the Euler-Voigt model is introduced to form an inviscid regularization of the inviscid resistive MHD system. The results hold in both the whole space and in the context of periodic boundary conditions. Weak solutions for this regularized model are also considered, and proven to exist globally in time, but the question of uniqueness for weak solutions is still open. Furthermore, we show that the solutions of the Voigt regularized system converge, as the regularization parameter , to strong solutions of the original inviscid resistive MHD, on the corresponding time interval of existence of the latter. Moreover, we also establish a new criterion for blow-up of solutions to the original MHD system inspired by this Voigt regularization.
NASA Astrophysics Data System (ADS)
Larios, Adam; Titi, Edriss S.
2013-05-01
We prove existence, uniqueness, and higher-order global regularity of strong solutions to a particular Voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic (MHD) equations. Specifically, the coupling of a resistive magnetic field to the Euler-Voigt model is introduced to form an inviscid regularization of the inviscid resistive MHD system. The results hold in both the whole space {{R}^3} and in the context of periodic boundary conditions. Weak solutions for this regularized model are also considered, and proven to exist globally in time, but the question of uniqueness for weak solutions is still open. Furthermore, we show that the solutions of the Voigt regularized system converge, as the regularization parameter {α → 0}, to strong solutions of the original inviscid resistive MHD, on the corresponding time interval of existence of the latter. Moreover, we also establish a new criterion for blow-up of solutions to the original MHD system inspired by this Voigt regularization.
NASA Astrophysics Data System (ADS)
Ul Haq, Rizwan; Nadeem, Sohail; Khan, Z. H.; Noor, N. F. M.
2015-01-01
In the present study, thermal conductivity and viscosity of both single-wall and multiple-wall Carbon Nanotubes (CNT) within the base fluids (water, engine oil and ethylene glycol) of similar volume have been investigated when the fluid is flowing over a stretching surface. The magnetohydrodynamic (MHD) and viscous dissipation effects are also incorporated in the present phenomena. Experimental data consists of thermo-physical properties of each base fluid and CNT have been considered. The mathematical model has been constructed and by employing similarity transformation, system of partial differential equations is rehabilitated into the system of non-linear ordinary differential equations. The results of local skin friction and local Nusselt number are plotted for each base fluid by considering both Single Wall Carbon Nanotube (SWCNT) and Multiple-Wall Carbon Nanotubes (MWCNT). The behavior of fluid flow for water based-SWCNT and MWCNT are analyzed through streamlines. Concluding remarks have been developed on behalf of the whole analysis and it is found that engine oil-based CNT have higher skin friction and heat transfer rate as compared to water and ethylene glycol-based CNT.
Metallurgical technologies, energy conversion, and magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Branover, Herman; Unger, Yeshajahu
The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)
EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION
Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul E-mail: strugarek@astro.umontreal.ca
2015-11-10
We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.
Evidence of Active MHD Instability in EULAG-MHD Simulations of Solar Convection
NASA Astrophysics Data System (ADS)
Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul
2015-11-01
We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos & Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.
Comparison of three artificial models of the MHD effect on the electrocardiogram
Oster, Julien; Llinares, Raul; Payne, Stephen; Tse, Zion Tsz Ho; Schmidt, Ehud Jeruham; Clifford, Gari D.
2013-01-01
The Electrocardiogram (ECG) is often acquired during Magnetic Resonance Imaging (MRI) for both image acquisition synchronisation with heart activity and patient monitoring to alert for life-threatening events. Accurate ECG analysis is mandatory for cutting-edge applications, such as MRI guided interventions. Nevertheless, the majority of the clinical analysis of ECG acquired inside MRI is made difficult by the superposition of a voltage called the MagnetoHydroDynamic (MHD) effect. MHD is induced by the flow of electrically charged particles in the blood perpendicular to the static magnetic field, which creates a potential of the order of magnitude of the ECG and temporally coincident with the repolatisation period. In this study, a new MHD model is proposed which is an extension of several existing models and incorporates MRI-based blood flow measurements made across the aortic arch. The model is extended to several cardiac cycles to allow the simulation of a realistic ECG acquisition during MRI examination and the quality assessment of MHD suppression techniques. A comparison of two existing models is made with our new model and with an estimate of the MHD voltage observed during a real MRI scan. Results indicate a good agreement between our proposed model and the estimated MHD for most leads, although there are clearly some descrepencies with the observed signal which are likely to be due to remaining deficiencies in the model. However, the results demonstrate that our new model provides a closer approximation to observed MHD effects and a better depiction of the complexity of the MHD effect compared to the previously published models. The source code will be made freely available under and open source license to facilitate collaboration and allow more rapid development of more accurate models of the MHD effect. PMID:24761753
Magnetohydrodynamical Analogue of a Black Hole
NASA Astrophysics Data System (ADS)
Zamorano, Nelson; Asenjo, Felipe
2014-03-01
We study the conditions that a plasma fluid and its container should meet to generate a magneto-acoustic horizon. This effect becomes an alternative to the analogue black hole found in a transonic fluid flow setting. In this context we use the magnetohydrodynamic formalism (MHD) to analyze the evolution of an irrotational plasma fluid interacting with an external constant magnetic field. Under certain plausible approximations, the dynamic of the field perturbations is described by a scalar field potential that follows a second order differential equation. As we prove here, this equation corresponds to the wave equation associated to a scalar field in a curved space-time. This horizon emerges when the local speed of the medium grows larger than the sound velocity. The magnetic field generates an effective pressure which contributes to the magneto-acoustic speed. We compare these results with the known physics of analogue black holes. We will also refer to our ongoing experiment that, in its first stage, attempts to reproduce the wave horizons found in an open channel with an obstacle: PRL 106, 021302 (2011).
Spectrum of anomalous magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Giovannini, Massimo
2016-05-01
The equations of anomalous magnetohydrodynamics describe an Abelian plasma where conduction and chiral currents are simultaneously present and constrained by the second law of thermodynamics. At high frequencies the magnetic currents play the leading role, and the spectrum is dominated by two-fluid effects. The system behaves instead as a single fluid in the low-frequency regime where the vortical currents induce potentially large hypermagnetic fields. After deriving the physical solutions of the generalized Appleton-Hartree equation, the corresponding dispersion relations are scrutinized and compared with the results valid for cold plasmas. Hypermagnetic knots and fluid vortices can be concurrently present at very low frequencies and suggest a qualitatively different dynamics of the hydromagnetic nonlinearities.
ERIC Educational Resources Information Center
McCready, Mark J.; Leighton, David T.
1987-01-01
Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)
Global MHD simulations of Neptune's magnetosphere
NASA Astrophysics Data System (ADS)
Mejnertsen, L.; Eastwood, J. P.; Chittenden, J. P.; Masters, A.
2016-08-01
A global magnetohydrodynamic (MHD) simulation has been performed in order to investigate the outer boundaries of Neptune's magnetosphere at the time of Voyager 2's flyby in 1989 and to better understand the dynamics of magnetospheres formed by highly inclined planetary dipoles. Using the MHD code Gorgon, we have implemented a precessing dipole to mimic Neptune's tilted magnetic field and rotation axes. By using the solar wind parameters measured by Voyager 2, the simulation is verified by finding good agreement with Voyager 2 magnetometer observations. Overall, there is a large-scale reconfiguration of magnetic topology and plasma distribution. During the "pole-on" magnetospheric configuration, there only exists one tail current sheet, contained between a rarefied lobe region which extends outward from the dayside cusp, and a lobe region attached to the nightside cusp. It is found that the tail current always closes to the magnetopause current system, rather than closing in on itself, as suggested by other models. The bow shock position and shape is found to be dependent on Neptune's daily rotation, with maximum standoff being during the pole-on case. Reconnection is found on the magnetopause but is highly modulated by the interplanetary magnetic field (IMF) and time of day, turning "off" and "on" when the magnetic shear between the IMF and planetary fields is large enough. The simulation shows that the most likely location for reconnection to occur during Voyager 2's flyby was far from the spacecraft trajectory, which may explain the relative lack of associated signatures in the observations.
Magnetorotational Instability of Dissipative MHD Flows
HERRON, ISOM H
2010-07-10
Executive summary Two important general problems of interest in plasma physics that may be addressed successfully by Magnetohydrodynamics (MHD) are: (1) Find magnetic field configurations capable of confining a plasma in equilibrium. (2) Study the stability properties of each such an equilibrium. It is often found that the length scale of many instabilities and waves that are able to grow or propagate in a system, are comparable with plasma size, such as in magnetically confined thermonuclear plasmas or in astrophysical accretion disks. Thus MHD is able to provide a good description of such large-scale disturbances. The Magnetorotational instability (MRI) is one particular instance of a potential instability. The project involved theoretical work on fundamental aspects of plasma physics. Researchers at the Princeton Plasma Physics Laboratory (PPPL) began to perform a series of liquid metal Couette flow experiments between rotating cylinders. Their purpose was to produce MRI, which they had predicted theoretically 2002, but was only observed in the laboratory since this project began. The personnel on the project consisted of three persons: (1) The PI, who was partially supported on the budget during each of four summers 2005-2008. (2) Two graduate research assistants, who worked consecutively on the project throughout the years 2005-2009. As a result, the first student, Fritzner Soliman, obtained an M.S. degree in 2006; the second student, Pablo Suarez obtained the Ph.D. degree in 2009. The work was in collaboration with scientists in Princeton, periodic trips were made by the PI as part of the project. There were 4 peer-reviewed publications and one book produced.
Heating of solar and stellar chromospheres and coronae by MHD waves
NASA Technical Reports Server (NTRS)
Musielak, Z. E.
1992-01-01
The two general classes of models that deal with the required heating of stellar chromospheres and coronae assume that outer stellar atmospheres are heated by hydrodynamic or by magnetohydrodynamic (MHD) waves and that these waves are generated by turbulent motions in the stellar convection zones. This paper considers the types of MHD waves and the source of these waves in stars like sun, the efficiency of the generation of MHD waves, and the manner of propagation and energy dissipation of MHD waves. It is shown that the basic criteria for the validity of any theory of MHD wave heating must account for the mean level of heating observed in stellar chromospheres and coronae, and for the range of radiative losses observed for a given spectral type. It is also required that the MHD wave heating theory accounts for the existence of inhomogeneities in stellar atmospheres. The results obtained indicate that magnetic tube waves might supply enough energy for the chromospheric and coronal heating and might also account for the observed range of variations of stellar radiative losses for a given spectral type.
MHD-Based Specification of Magnetotail Plasma and Fields: Possibilities and Limitations
NASA Technical Reports Server (NTRS)
Hesse, M.; Birn, J.
2000-01-01
Magnetohydrodynamics (MHD) constitutes the simplest comprehensive and self-consistent formulation of the properties of space plasmas. As such, it has been applied with large success to the dynamics of solar system plasmas. For the nightside region of the Earth, the magnetotail, MHD simulations have led to new understanding of the structure and dynamics of the plasmas, in response to both changes in boundary conditions as well as internal dynamical processes. As a result, substantial knowledge of the structure and dynamics of the nightside region have been accumulated. In basic MHD conservation laws on magnetospheric structure, as well as the role of non-MHD processes in the initiation and evolution of dynamical processes of the magnetotail. This presentation will consist of three parts, the first of which addresses the basic constraints on magnetotail structure as well as their consequences for magnetotail specification and forecasting. We will then review some examples of magnetotail structural changes brought about by solar-wind-like boundary conditions. Last, we consider the role of non-MHD processes in magnetotail specification and forecasting. The emphasis here will be on inclusion of these processes into MHD models, and their impact on the overall structure and dynamics.
MHD Performance Demonstration Experiment, FY 1974 to FY 1984. Final report
Whitehead, G.L.; Christensen, L.S.; Felderman, E.J.
1984-06-01
Mounting concern over the world's fuel reserves, in general, and increasing dependence of the US on foreign oil, in particular, led the Energy Research and Development Administration (ERDA) to undertake a national program for the development of commercial, open-cycle, magnetohydrodynamic (MHD) power generation. The emphasis of that national program was, and is, on establishing the engineering feasibility of using coal to fuel the MHD power system. In order to establish feasibility it was necessary to experimentally demonstrate that an MHD generator system simulating a commercial-sized device can convert 16 to 18% of the available thermal energy into electric power at an isentropic efficiency of 60 to 70%. A presidential decree encouraged any government agency which might possess an organic MHD capability to assist ERDA in formulating and executing the national program. Since the largest MHD facility in the United States was located at the Arnold Engineering Development Center (AEDC), it was selected to be the national program element to demonstrate performance. As a result, the AEDC has been under contract since December 1973 (first to ERDA, later to its successor, the Department of Energy, DOE) to modify existing equipment and to design, fabricate, and install new hardware to perform the MHD Performance Demonstration Experiment. This report describes the facility which was developed to conduct that research and summarizes all results achieved to date in pursuit of the project objectives. 21 references, 110 figures.
Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L.
1995-12-31
A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed.
Conceptual design of a coal-fired MHD retrofit. Final technical report
1994-06-01
Coal-fired magnetohydrodynamics (MHD) technology is ready for its next level of development - an integrated demonstration at a commercial scale. The development and testing of MHD has shown its potential to be the most efficient, least costly, and cleanest way to burn coal. Test results have verified a greater than 99% removal of sulphur with a potential for greater than 60% efficiency. This development and testing, primarily funded by the U.S. Department of Energy (DOE), has progressed through the completion of its proof-of-concept (POC) phase at the 50 MWt Component Development and Integration Facility (CDIF) and 28 MWt Coal Fired Flow Facility (CFFF), thereby, providing the basis for demonstration and further commercial development and application of the technology. The conceptual design of a retrofit coal-fired MHD generating plant was originally completed by the MHD Development Corporation (MDC) under this Contract, DE-AC22-87PC79669. Thereafter, this concept was updated and changed to a stand-alone MHD demonstration facility and submitted by MDC to DOE in response to the fifth round of solicitations for Clean Coal Technology. Although not selected, that activity represents the major interest in commercialization by the developing industry and the type of demonstration that would be eventually necessary. This report updates the original executive summary of the conceptual design by incorporating the results of the POC program as well as MDC`s proposed Billings MHD Demonstration Project (BMDP) and outlines the steps necessary for commercialization.
Field topologies in ideal and near-ideal magnetohydrodynamics and vortex dynamics
NASA Astrophysics Data System (ADS)
Low, B. C.
2015-01-01
Magnetic field topology frozen in ideal magnetohydrodynamics (MHD) and its breakage in near-ideal MHD are reviewed in two parts, clarifying and expanding basic concepts. The first part gives a physically complete description of the frozen field topology derived from magnetic flux conservation as the fundamental property, treating four conceptually related topics: Eulerian and Lagrangian descriptions of three dimensional (3D) MHD, Chandrasekhar-Kendall and Euler-potential field representations, magnetic helicity, and inviscid vortex dynamics as a fluid system in physical contrast to ideal MHD. A corollary of these developments clarifies the challenge of achieving a high degree of the frozen-in condition in numerical MHD. The second part treats field-topology breakage centered around the Parker Magnetostatic Theorem on a general incompatibility of a continuous magnetic field with the dual demand of force-free equilibrium and an arbitrarily prescribed, 3D field topology. Preserving field topology as a global constraint readily results in formation of tangential magnetic discontinuities, or, equivalently, electric current-sheets of zero thickness. A similar incompatibility is present in the steady force-thermal balance of a heated radiating fluid subject to an anisotropic thermal flux conducted strictly along its frozen-in magnetic field in the low- β limit. In a weakly resistive fluid the thinning of current sheets by these general incompatibilities inevitably results in sheet dissipation, resistive heating and topological changes in the field notwithstanding the small resistivity. Strong Faraday induction drives but also macroscopically limits this mode of energy dissipation, trapping or storing free energy in self-organized ideal-MHD structures. This property of MHD turbulence captured by the Taylor hypothesis is reviewed in relation to the Sun's corona, calling for a basic quantitative description of the breakdown of flux conservation in the low-resistivity limit
Not Available
1994-07-01
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL`s computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.
Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario
NASA Astrophysics Data System (ADS)
Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi
2012-11-01
The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.
MHD forced convection flow adjacent to a non-isothermal wedge
Yih, K.A.
1999-08-01
The problem of magnetohydrodynamic (MHD) incompressible viscous flow has many important engineering applications in devices such as MHD power generator and the cooling of reactors. In this analysis, the effects of viscous dissipation and stress work on the MHD forced convection adjacent to a non-isothermal wedge is numerically analyzed. These partial differential equations are transformed into the nonsimilar boundary layer equations and solved by the Keller box method. Numerical results for the local friction coefficient and the local Nusselt number are presented for the pressure gradient parameter m, the magnetic parameter {xi}, the Prandtl number Pr, and the Eckert number Ec. In general, increasing the pressure gradient parameter m or the magnetic parameter {xi} or the Prandtl number Pr or decreasing the Eckert number EC increases the local Nusselt number.
Shepard, W.S.; Cook, R.L.
1991-12-31
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL`S computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.
A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars
2016-11-01
We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.
Magnetohydrodynamic modeling of the solar eruption on 2010 April 8
Kliem, B.; Su, Y. N.; Van Ballegooijen, A. A.; DeLuca, E. E.
2013-12-20
The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic (MHD) stability and evolution of nonlinear force-free field (NLFFF) models. This paper uses data-constrained NLFFF models of a solar active region (AR) that erupted on 2010 April 8 as initial conditions in MHD simulations. These models, constructed with the techniques of flux rope insertion and magnetofrictional relaxation (MFR), include a stable, an approximately marginally stable, and an unstable configuration. The simulations confirm previous related results of MFR runs, particularly that stable flux rope equilibria represent key features of the observed pre-eruption coronal structure very well, and that there is a limiting value of the axial flux in the rope for the existence of stable NLFFF equilibria. The specific limiting value is located within a tighter range, due to the sharper discrimination between stability and instability by the MHD description. The MHD treatment of the eruptive configuration yields a very good agreement with a number of observed features, like the strongly inclined initial rise path and the close temporal association between the coronal mass ejection and the onset of flare reconnection. Minor differences occur in the velocity of flare ribbon expansion and in the further evolution of the inclination; these can be eliminated through refined simulations. We suggest that the slingshot effect of horizontally bent flux in the source region of eruptions can contribute significantly to the inclination of the rise direction. Finally, we demonstrate that the onset criterion, formulated in terms of a threshold value for the axial flux in the rope, corresponds very well to the threshold of the torus instability in the considered AR.
A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars
2016-08-01
We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.
MHD performance demonstration experiment, October 1, 1080-September 30, 1981
Whitehead, G. L.; Christenson, L. S.; Felderman, E. J.; Lowry, R. L.; Bordenet, E. J.
1981-12-01
The Arnold Engineering Development Center (AEDC) has been under contract with the Department of Energy (DOE) since December 1973 to conduct a magnetohydrodynamic (MHD) High Performance Demonstration Experiment (HPDE). The objective of this experimental research is to demonstrate the attainment of MHD performance on a sufficiently large scale to verify that projected commercial MHD objectives are possible. This report describes the testing of the system under power-producing conditions during the period from October 1, 1980 to September 30, 1981. Experimental results have been obtained with the channel configured in the Faraday mode. Test conditions were selected to produce low supersonic velocity along the entire channel length. Tests have been conducted at magnetic fields up to 4.1 Tesla (T) (70% of design). Up to 30.5 MW of power has been produced to date (60% of design) for an enthalpy extraction of approximately 11%. The high Hall voltage transient, observed during the previous series of tests has been reduced. The reduction is mostly probably due to the fuel and seed being introduced simultaneously. The replacement of the ATJ graphite caps on the electrode walls with pyrolytic graphite caps has resulted in significantly higher surface temperature. As a result, the voltage drop is some 60% of the cold wall voltage drop during the previous series of tests. However, the absolute value of the present voltage drop is still greater than the original design predictions. Test results indicate, however, that the overall enthalpy extraction objective can be achieved.
Striations in molecular clouds: streamers or MHD waves?
NASA Astrophysics Data System (ADS)
Tritsis, Aris; Tassis, Konstantinos
2016-11-01
Dust continuum and molecular observations of the low column density parts of molecular clouds have revealed the presence of elongated structures which appear to be well aligned with the magnetic field. These so-called striations are usually assumed to be streams that flow towards or away from denser regions. We perform ideal magnetohydrodynamic (MHD) simulations adopting four models that could account for the formation of such structures. In the first two models striations are created by velocity gradients between ambient, parallel streamlines along magnetic field lines. In the third model striations are formed as a result of a Kelvin-Helmholtz instability perpendicular to field lines. Finally, in the fourth model striations are formed from the non-linear coupling of MHD waves due to density inhomogeneities. We assess the validity of each scenario by comparing the results from our simulations with previous observational studies and results obtained from the analysis of CO (J = 1-0) observations from the Taurus molecular cloud. We find that the first three models cannot reproduce the density contrast and the properties of the spatial power spectrum of a perpendicular cut to the long axes of striations. We conclude that the non-linear coupling of MHD waves is the most probable formation mechanism of striations.
Suprathermal electron dynamics and MHD instabilities in a tokamak
NASA Astrophysics Data System (ADS)
Kamleitner, J.; Coda, S.; Decker, J.; Graves, J. P.; the TCV Team
2015-10-01
The dynamics of suprathermal electrons in the presence of magnetohydrodynamics (MHD) activity and the excitation of MHD modes by suprathermal electrons are studied experimentally to improve the understanding of the interaction of fast particles with MHD instabilities in a tokamak. The study focuses on three different aspects of the internal kink mode with poloidal/toroidal mode number m/n=1/1 : the sawtooth instability, electron fishbones and coupled bursts alternating with sawtooth crashes (CAS), all located where the safety factor (q) profile approaches or takes the value q=1 . New quantitative results on suprathermal electron transport and an investigation of electron acceleration during sawtooth crashes are followed by the characterization of initial electron fishbone observations on the Tokamak à configuration variable (TCV). Finally, m/n=1/1 bursts associated with the sawtooth cycle, coupled to a persisting m/n=2/1 mode and alternating with sawtooth crashes, are discussed, in particular in view of the fast electron dynamics and their role in confinement degradation and mode excitation.
Finan, C.H. III
1980-12-01
Resistive magnetohydrodynamics (MHD) is described by a set of eight coupled, nonlinear, three-dimensional, time-dependent, partial differential equations. A computer code, IMP (Implicit MHD Program), has been developed to solve these equations numerically by the method of finite differences on an Eulerian mesh. In this model, the equations are expressed in orthogonal curvilinear coordinates, making the code applicable to a variety of coordinate systems. The Douglas-Gunn algorithm for Alternating-Direction Implicit (ADI) temporal advancement is used to avoid the limitations in timestep size imposed by explicit methods. The equations are solved simultaneously to avoid syncronization errors.
Raphaldini, Breno; Raupp, Carlos F. M. E-mail: carlos.raupp@iag.usp.br
2015-01-20
The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.
Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation
NASA Astrophysics Data System (ADS)
Bromberg, Omer; Tchekhovskoy, Alexander
2016-02-01
Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.
Filamentary magnetohydrodynamic plasmas
Kinney, R.; Tajima, T.; Petviashvili, N.; McWilliams, J.C.
1993-05-01
A filamentary construct of magnetohydrodynamical plasma dynamics, based on the Elsasser variables was developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to ones based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected. the plasma vortex system is described by a Hamiltonian. For a system with many such vortices we present a statistical treatment of a collection of discrete current-vorticity concentrations. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories. but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is outlined as well, which is also Hamiltonian when the inductive force is neglected.
Towards an MHD Theory for the Standoff Distance of Earth's Bow Shock
NASA Technical Reports Server (NTRS)
Carins, Iver H.; Grabbe, Crockett L.
1994-01-01
A magnetohydrodynamic (MHD) theory is developed for the standoff distance a(s) of the bow shock and the thickness Delta(ms) of the magnetosheath, using the empirical Spreiter et al. relation Delta(ms) = kX and the MHD density ratio X across the shock. The theory includes as special cases the well-known gasdynamic theory and associated phenomenological MHD-like models for Delta(ms) and As. In general, however, MHD effects produce major differences from previous models, especially at low Alfev (Ma) and Sonic (Ms) Mach numbers. The magnetic field orientation Ma, Ms and the ratio of specific heats gamma are all important variables of the theory. In contrast, the fast mode Mach number need play no direct role. Three principle conclusions are reached. First the gasdynamic and phenomenological models miss important dependences of field orientation and Ms generally provide poor approximations to the MHD results. Second, changes in field orientation and Ms are predicted to cause factor of approximately 4 changes in Delta(ms) at low Ma. These effects should be important when predicting the shock's location or calculating gramma from observations. Third, using Spreiter et al.'s value for k in the MHD theory leads to maxima a(s) values at low Ma and nominal Ms that are much smaller than observations and MHD simulations require. Resolving this problem requires either the modified Spreiter-like relation and larger k found in recent MHD simulations and/or a breakdown in the Spreiter-like relation at very low Ma.
NASA Technical Reports Server (NTRS)
Wegmann, R.; Schmidt, H. U.; Huebner, W. F.; Boice, D. C.
1987-01-01
An MHD and chemical comet-coma model was developed, applying the computer program of Huebner (1985) for the detailed chemical evolution of a spherically expanding coma and the program of Schmidt and Wegman (1982) and Wegman (1987) for the MHD flow of plasma and magnetic field in a comet to the Giotto-mission data on the ion abundances measured by the HIS ion mass spectrometer. The physics and chemistry of the coma are modeled in great detail, including photoprocesses, gas-phase chemical kinetics, energy balance with a separate electron temperature, multifluid hydrodynamics with a transition to free molecular flow, fast-streaming atomic and molecular hydrogen, counter and cross streaming of the ionized species relative to the neutral species in the coma-solar wind interaction region with momentum exchange by elastic collisions, mass-loading through ion pick-up, and Lorentz forces of the advected magnetic field. The results, both inside and outside of the contact surface, are discussed and compared with the relevant HIS ion mass spectra.
Magnetohydrodynamic effects on a charged colloidal sphere with arbitrary double-layer thickness.
Hsieh, Tzu H; Keh, Huan J
2010-10-01
An analytical study is presented for the magnetohydrodynamic (MHD) effects on a translating and rotating colloidal sphere in an arbitrary electrolyte solution prescribed with a general flow field and a uniform magnetic field at a steady state. The electric double layer surrounding the charged particle may have an arbitrary thickness relative to the particle radius. Through the use of a simple perturbation method, the Stokes equations modified with an electric force term, including the Lorentz force contribution, are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution from solving the linearized Poisson-Boltzmann equation, we obtain closed-form formulas for the translational and angular velocities of the spherical particle induced by the MHD effects to the leading order. It is found that the MHD effects on the particle movement associated with the translation and rotation of the particle and the ambient fluid are monotonically increasing functions of κa, where κ is the Debye screening parameter and a is the particle radius. Any pure rotational Stokes flow of the electrolyte solution in the presence of the magnetic field exerts no MHD effect on the particle directly in the case of a very thick double layer (κa→0). The MHD effect caused by the pure straining flow of the electrolyte solution can drive the particle to rotate, but it makes no contribution to the translation of the particle.
Exploración del modelo coronal MHD de Uchida
NASA Astrophysics Data System (ADS)
Francile, C.; Castro, J. I.; Flores, M.
We present an analysis of the MHD model of an isothermal solar corona with radially symmetrical magnetic field and gravity. The solution in the approximation "WKB" was presented by Uchida (1968). The model is ex- plored for different coronal conditions and heights of initial perturbation to study the propagation of coronal waves and reproduce the observed char- acteristics of phenomena such as Moreton waves. Finally we discuss the obtained results. FULL TEXT IN SPANISH
MHD Modeling of Differential Rotation in Coronal Holes
NASA Technical Reports Server (NTRS)
Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Riley, Pete
2004-01-01
The photosphere and the magnetic flux therein undergo differential rotation. Coronal holes appear to rotate almost rigidly. Magnetic reconnection has been invoked to reconcile these phenomena. Mechanism relevant to the formation of the slow solar wind. We have used our MHD model in spherical coordinates to study the effect of differential rotation on coronal holes. We have imposed a magnetic flux distribution similar to and applied differential rotation for the equivalent of 5 solar rotations.
Nonparametric solutions to the variational principle of ideal magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Betancourt, O. L.; Mcfadden, G.
1985-01-01
In an effort to gain a better understanding of MHD equilibria in three dimensions, the lower dimensional cases are studied. The solution of the three-dimensional problem is based on the classical variational principle of ideal magnetohydrodynamics. The crucial assumption for the numerical method is the existence of a nested set of toroidal flux surfaces, which is then used as a coordinate. This paper studies the nonparametric solutions to this variational problem in those cases when the direct solution is known to have islands. A form of the variational principle for the slab geometry is described; the one-dimensional problem is analyzed; and asymptotic expansions and numerical solutions to the two-dimensional problem are discussed. An example is presented which shows that the assumption of nested flux surfaces need not rule out the occurrence of islands.
A robust high-order ideal magnetohydrodynamic solver
NASA Astrophysics Data System (ADS)
Seal, David; Christlieb, Andrew; Feng, Xiao; Tang, Qi
In this work we present a robust high-order numerical method for the ideal magnetohydrodynamics (MHD) equations. Our method is single-stage and single-step, and hence amenable to adaptive mesh refinement (AMR) technology. The numerical robustness of the scheme is realized by accomplishing a total of two unrelated tasks: we retain positivity of the density and pressure by limiting fluxes similar to what happens in a flux corrected transport method, and we obtain divergence free magnetic fields by implementing an unstaggered transport method for the evolution of the magnetic potential. We present numerical results in two and three dimensions that indicate the utility of the scheme. These results include several classical test problems such as Orzag-Tang, cloud shock interactions and blast wave problems.
Lagrangian Frequency Spectrum as a Diagnostic for Magnetohydrodynamic Turbulence Dynamics
Busse, Angela; Mueller, Wolf-Christian; Gogoberidze, Grigol
2010-12-03
For the phenomenological description of magnetohydrodynamic turbulence competing models exist, e.g., Boldyrev [Phys. Rev. Lett. 96, 115002 (2006)] and Gogoberidze [Phys. Plasmas 14, 022304 (2007)], which predict the same Eulerian inertial-range scaling of the turbulent energy spectrum although they employ fundamentally different basic interaction mechanisms. A relation is found that links the Lagrangian frequency spectrum with the autocorrelation time scale of the turbulent fluctuations {tau}{sub ac} and the associated cascade time scale {tau}{sub cas}. Thus, the Lagrangian energy spectrum can serve to identify weak ({tau}{sub ac}<<{tau}{sub cas}) and strong ({tau}{sub ac{approx}{tau}cas}) interaction mechanisms providing insight into the turbulent energy cascade. The new approach is illustrated by results from direct numerical simulations of two- and three-dimensional incompressible MHD turbulence.
Ideal, steady-state, axisymmetric magnetohydrodynamic equations with flow
Baransky, Y.A.
1987-01-01
The motivation of this study is to gain additional understanding of the effect of rotation on the equilibrium of a plasma. The axisymmetric equilibria of ideal magnetohydrodynamics (MHD) with flow have been studied numerically and analytically. A general discussion is provided of previous work on plasmas with flow and comparisons are made to the static model. A variational principle has been derived for the two dimensional problem with comments as to appropriate boundary conditions. An inverse aspect ratio expansion has been used for a study of the toroidal flow equation for both low- and high-..beta... The inverse aspect ratio expansion has also been used for a study of equations with both poloidal and toroidal flow. An overview is provided of the adaptive finite-difference code which was developed to solve the full equations. (FI)
Magnetohydrodynamics equilibrium of a self-confined elliptical plasma ball
Wu, H. P. O. Box 8730, Beijing 100080 and Institute of Mechanics, Academia Sinica, Beijing, People's Republic of China ); Oakes, M.E. )
1991-08-01
A variational principle is applied to the problem of magnetohydrodynamics (MHD) equilibrium of a self-contained elliptical plasma ball, such as elliptical ball lightning. The principle is appropriate for an approximate solution of partial differential equations with arbitrary boundary shape. The method reduces the partial differential equation to a series of ordinary differential equations and is especially valuable for treating boundaries with nonlinear deformations. The calculations conclude that the pressure distribution and the poloidal current are more uniform in an oblate self-confined plasma ball than that of an elongated plasma ball. The ellipticity of the plasma ball is obviously restricted by its internal pressure, magnetic field, and ambient pressure. Qualitative evidence is presented for the absence of sighting of elongated ball lightning.
Lagrangian frequency spectrum as a diagnostic for magnetohydrodynamic turbulence dynamics.
Busse, Angela; Müller, Wolf-Christian; Gogoberidze, Grigol
2010-12-01
For the phenomenological description of magnetohydrodynamic turbulence competing models exist, e.g., Boldyrev [Phys. Rev. Lett. 96, 115002 (2006)] and Gogoberidze [Phys. Plasmas 14, 022304 (2007)], which predict the same Eulerian inertial-range scaling of the turbulent energy spectrum although they employ fundamentally different basic interaction mechanisms. A relation is found that links the Lagrangian frequency spectrum with the autocorrelation time scale of the turbulent fluctuations τ(ac) and the associated cascade time scale τ(cas). Thus, the Lagrangian energy spectrum can serve to identify weak (τ(ac) ≪ τ(cas)) and strong (τ(ac) ∼ τ(cas)) interaction mechanisms providing insight into the turbulent energy cascade. The new approach is illustrated by results from direct numerical simulations of two- and three-dimensional incompressible MHD turbulence.
Energy cascade and its locality in compressible magnetohydrodynamic turbulence.
Yang, Yan; Shi, Yipeng; Wan, Minping; Matthaeus, William H; Chen, Shiyi
2016-06-01
We investigate energy transfer across scales in three-dimensional compressible magnetohydrodynamic (MHD) turbulence, a model often used to study space and astrophysical plasmas. Analysis shows that kinetic and magnetic energies cascade conservatively from large to small scales in cases with varying degrees of compression. With more compression, energy fluxes due to pressure dilation and subscale mass flux are greater, but conversion between kinetic and magnetic energy by magnetic line stretching is less efficient. Energy transfer between the same fields is dominated by local contributions regardless of compressive effects. In contrast, the conversion between kinetic and internal energy by pressure dilation is dominated by the largest scale contributions. Energy conversion between the velocity and magnetic fields is weakly local.
Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas
Jardin, S C
2010-09-28
Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.
Energy cascade and its locality in compressible magnetohydrodynamic turbulence.
Yang, Yan; Shi, Yipeng; Wan, Minping; Matthaeus, William H; Chen, Shiyi
2016-06-01
We investigate energy transfer across scales in three-dimensional compressible magnetohydrodynamic (MHD) turbulence, a model often used to study space and astrophysical plasmas. Analysis shows that kinetic and magnetic energies cascade conservatively from large to small scales in cases with varying degrees of compression. With more compression, energy fluxes due to pressure dilation and subscale mass flux are greater, but conversion between kinetic and magnetic energy by magnetic line stretching is less efficient. Energy transfer between the same fields is dominated by local contributions regardless of compressive effects. In contrast, the conversion between kinetic and internal energy by pressure dilation is dominated by the largest scale contributions. Energy conversion between the velocity and magnetic fields is weakly local. PMID:27415197
Three-dimensional force-free looplike magnetohydrodynamic equilibria
NASA Technical Reports Server (NTRS)
Finn, John M.; Guzdar, Parvez N.; Usikov, Daniel
1994-01-01
Computations of three-dimensional force-free magnetohydrodynamic (MHD) equilibria, del x B = lambdaB with lambda = lambda(sub 0), a constant are presented. These equilibria are determined by boundary conditions on a surface corresponding to the solar photosphere. The specific boundary conditions used correspond to looplike magnetic fields in the corona. It is found that as lambda(sub 0) is increased, the loops of flux become kinked, and for sufficiently large lambda(sub 0), develop knots. The relationship between the kinking and knotting properties of these equilibria and the presence of a kink instability and related loss of equilibrium is explored. Clearly, magnetic reconnection must be involved for an unknotted loop equilibrium to become knotted, and speculations are made about the creation of a closed hyperbolic field line (X-line) about which this reconnection creating knotted field lines is centered.
Pulse Detonation Rocket MHD Power Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Cook, Stephen (Technical Monitor)
2002-01-01
A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent
Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power
NASA Technical Reports Server (NTRS)
Litchford, Ron J.
2001-01-01
The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p2/p1 approximately 34 and D approximately 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (approximately = 6 S/m) behind the detonation wave front, In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T, and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Omega. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the NM interaction
Magnetohydrodynamic turbulence and enhanced atomic processes in astrophysical plasmas
NASA Astrophysics Data System (ADS)
Spangler, Steven R.
1998-08-01
This article discusses a way in which enhanced atomic physics processes, including radiative energy losses, may occur in an astrophysical plasma containing magnetohydrodynamic turbulence. Two-dimensional (2D) magnetohydrodynamics (MHD) is adopted as a model. A major characteristic feature of 2D MHD turbulence is the development of strong current sheets on a dynamical time scale L/V0 where L is the spatial scale of the turbulent fluid and V0 is the scale of the velocity fluctuations. The current contained in the sheets will be carried by an electron drift relative to the ions. The case of a plasma containing minority atoms or ions with an excited state accessible to collisions from the tail of the electron distribution is considered. In the current carrying sheets or filaments, the electron distribution function will be perturbed such that collisional excitations will be enhanced relative to the current-free plasma. Subsequent radiative de-excitation of the atoms or ions removes energy from the turbulence. Expressions are presented for the electron drift velocity arising in 2D turbulence, the enhancement of collisional excitations of a trace atom or ion, and the energy lost to the plasma turbulence by radiative de-excitation of these atoms or ions. The mechanism would be most pronounced in plasmas for which the magnitude of the magnetic field is large, the outer scale of the turbulence is small, and the electron density and temperature are low. A brief discussion of the relevance of this mechanism to some specific astrophysical plasmas is given.
Divergence-Free Adaptive Mesh Refinement for Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.
2001-12-01
Several physical systems, such as nonrelativistic and relativistic magnetohydrodynamics (MHD), radiation MHD, electromagnetics, and incompressible hydrodynamics, satisfy Stoke's law type equations for the divergence-free evolution of vector fields. In this paper we present a full-fledged scheme for the second-order accurate, divergence-free evolution of vector fields on an adaptive mesh refinement (AMR) hierarchy. We focus here on adaptive mesh MHD. However, the scheme has applicability to the other systems of equations mentioned above. The scheme is based on making a significant advance in the divergence-free reconstruction of vector fields. In that sense, it complements the earlier work of D. S. Balsara and D. S. Spicer (1999, J. Comput. Phys. 7, 270) where we discussed the divergence-free time-update of vector fields which satisfy Stoke's law type evolution equations. Our advance in divergence-free reconstruction of vector fields is such that it reduces to the total variation diminishing (TVD) property for one-dimensional evolution and yet goes beyond it in multiple dimensions. For that reason, it is extremely suitable for the construction of higher order Godunov schemes for MHD. Both the two-dimensional and three-dimensional reconstruction strategies are developed. A slight extension of the divergence-free reconstruction procedure yields a divergence-free prolongation strategy for prolonging magnetic fields on AMR hierarchies. Divergence-free restriction is also discussed. Because our work is based on an integral formulation, divergence-free restriction and prolongation can be carried out on AMR meshes with any integral refinement ratio, though we specialize the expressions for the most popular situation where the refinement ratio is two. Furthermore, we pay attention to the fact that in order to efficiently evolve the MHD equations on AMR hierarchies, the refined meshes must evolve in time with time steps that are a fraction of their parent mesh's time step
Magnetohydrodynamic sea water propulsion
Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.
1991-01-01
An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.
Magnetohydrodynamic sea water propulsion
Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.
1991-12-31
An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.
MHD channel performance for potential early commercial MHD power plants
NASA Technical Reports Server (NTRS)
Swallom, D. W.
1981-01-01
The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.
Multifluid magnetohydrodynamics of weakly ionized plasmas
NASA Astrophysics Data System (ADS)
Menzel, Raymond
The process of star formation is an integral part of the new field of astrobiology, which studies the origins of life. Since the gas that collapses to form stars and their resulting protoplanetary disks is known to be weakly ionized and contain magnetic fields, star formation is governed by multifluid magnetohydrodynamics. In this thesis we consider two important problems involved in the process of star formation that may have strongly affected the origins of life, with the goal of determining the thermal effects of these flows and modeling the physical conditions of these environments. We first considered the outstanding problem of how primitive bodies, specifically asteroids, were heated in protoplanetary disks early in their lifetime. Reexamining asteroid heating due to the classic unipolar induction heating mechanism described by Sonett et al. (1970), we find that this mechanism contains a subtle conceptual error. As original conceived, heating due to this mechanism is driven by a uniform, supersonic, fully-ionized, magnetized, T Tauri solar wind, which sweeps past an asteroid and causes the asteroid to experience a motional electric field in its rest frame. We point out that this mechanism ignores the interaction between the body surface and the flow, and thus only correctly describes the electric field far away from the asteroid where the plasma streams freely. In a realistic protoplanetary disk environment, we show that the interaction due to friction between the asteroid surface and the flow causes a shear layer to form close to the body, wherein the motional electric field predicted by Sonett et al. decreases and tends to zero at the asteroid surface. We correct this error by using the equations of multifluid magnetohydrodynamics to explicitly treat the shear layer. We calculate the velocity field in the plasma, and the magnetic and electric fields everywhere for two flows over an idealized infinite asteroid with varying magnetic field orientations. We
MHD and Kinetic Modeling of the Ionospheres of Venus and Mars
Shinagawa, H.; Terada, N.
2009-06-16
It is widely recognized that both Venus and Mars possess no significant global intrinsic magnetic fields, and that the solar wind interacts directly with the upper atmospheres and ionospheres of Venus and Mars. In addition, local crustal magnetic fields are also present in various regions at Mars, suggesting that some regions of the Martian ionosphere are influenced not only by the solar wind but also by the crustal magnetic field. Previous studies have suggested that the basic structures of the ionospheres of the planets can be described by fluid and MHD(magnetohydrodynamic) processes. Various models of the ionospheres of Venus and Mars based on the MHD formulation have been constructed during the last two decades. Although the MHD approach has been successful in reproducing the ionospheres of the planets, some studies have indicated that MHD modeling is not necessarily appropriate in the regions of the topside ionosphere, the ionopause, and the magnetosheath, where the ion kinetic processes are likely to play an important role. The kinetic processes in the topside ionosphere might have significant influences even in the lower ionosphere. Thanks to a great progress made for computer power as well as the efficiency of calculations of the hybrid model, high-resolution kinetic models of the solar wind interaction with Venus and Mars, which self-consistently include the ionosphere, have been developed. In this paper, status of MHD and kinetic modeling of the ionospheres of Venus and Mars is briefly reviewed.
NASA Astrophysics Data System (ADS)
Moawad, S. M.; Ibrahim, D. A.
2016-08-01
The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.
Extension of Low Dissipative High Order Hydrodynamics Schemes for MHD Equations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, Bjoern; Mansour, Nagi (Technical Monitor)
2002-01-01
The objective of this paper is to extend our recently developed highly parallelizable nonlinear stable high order schemes for complex multiscale hydrodynamic applications to the viscous MHD (magnetohydrodynamic) equations. These schemes employed multiresolution wavelets as adaptive numerical dissipation controls to limit the amount and to aid the selection and/or blending of the appropriate types of dissipation to be used. The new scheme is formulated for both the conservative and non-conservative form of the MHD equations in curvi-linear grids. The three features of the present MHD scheme over existing schemes in the open literature are as follows. First, the scheme is constructed for long-time integrations of shock/turbulence/combustion magnetized flows. Available schemes are too diffusive for long-time integrations and/or turbulence/combustion problems. Second, unlike existing schemes for the conservative MHD equations which suffer from ill-conditioned eigen-decompositions, the present scheme makes use of a well-conditioned eigen-decomposition to solve the conservative form of the MHD equations. This is due to, partly. the fact that the divergence of the magnetic field condition is a different type of constraint from its incompressible Navier-Stokes cousin. Third, a new approach to minimize the numerical error of the divergence free magnetic condition for high order scheme is introduced.
Smoothed MHD equations for numerical simulations of ideal quasi-neutral gas dynamic flows
NASA Astrophysics Data System (ADS)
Popov, Mikhail V.; Elizarova, Tatiana G.
2015-11-01
We introduce a mathematical model and related numerical method for numerical modeling of ideal magnetohydrodynamic (MHD) gas flows as an extension of previously known quasi-gasdynamic (QGD) equations. This approach is based on smoothing, or averaging of the original MHD equation system over a small time interval that leads to a new equation system, named quasi-MHD, or QMHD system. The QMHD equations are closely related to the original MHD system except for additional strongly non-linear dissipative τ-terms with a small parameter τ as a factor. The τ-terms depend on the solution itself and decrease in regions with the small space gradients of the solution. In this sense the QMHD system could be regarded as an approach with adaptive artificial dissipation. The QMHD is a generalization of regularized (or quasi-) gas dynamic equation system suggested in last three decades. In the QMHD numerical method the evolution of all physical variables is presented in a non-split divergence form. Divergence-free evolution of the magnetic field provides by using a constrained transport method based on Faraday's law of induction. Accuracy and convergence of the QMHD method is verified on a wide set of standard MHD tests including the 3D Orszag-Tang vortex flow.
MHD-IPS analysis of relationship among solar wind density, temperature, and flow speed
NASA Astrophysics Data System (ADS)
Hayashi, Keiji; Tokumaru, Munetoshi; Fujiki, Ken'ichi
2016-08-01
The solar wind properties near the Sun are a decisive factor of properties in the rest of heliosphere. As such, determining realistic plasma density and temperature near the Sun is very important in models for solar wind, specifically magnetohydrodynamics (MHD) models. We had developed a tomographic analysis to reconstruct three-dimensional solar wind structures that satisfy line-of-sight-integrated solar wind speed derived from the interplanetary scintillation (IPS) observation data and nonlinear MHD equations simultaneously. In this study, we report a new type of our IPS-MHD tomography that seeks three-dimensional MHD solution of solar wind, matching additionally near-Earth and/or Ulysses in situ measurement data for each Carrington rotation period. In this new method, parameterized relation functions of plasma density and temperature at 50 Rs are optimized through an iterative forward model minimizing discrepancy with the in situ measurements. Satisfying three constraints, the derived 50 Rs maps of plasma quantities provide realistic observation-based information on the state of solar wind near the Sun that cannot be well determined otherwise. The optimized plasma quantities exhibit long-term variations over the solar cycles 21 to 24. The differences in plasma quantities derived from the optimized and original IPS-MHD tomography exhibit correlations with the source-surface magnetic field strength, which can in future give new quantitative constrains and requirements to models of coronal heating and acceleration.
Not Available
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990`s, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
Global Magnetohydrodynamic Modeling of the Solar Corona
NASA Technical Reports Server (NTRS)
Linker, Jon A.
1998-01-01
The coronal magnetic field defines the structure of the solar corona, the position of the heliospheric current sheet, the regions of fast and slow solar wind, and the most likely sites of coronal mass ejections. There are few measurements of the magnetic fields in the corona, but the line-of-sight component of the global magnetic fields in the photosphere have been routinely measured for many years (for example, at Stanford's Wilcox Solar Observatory, and at the National Solar Observatory at Kitt Peak). The SOI/MDI instrument is now providing high-resolution full-disk magnetograms several times a day. Understanding the large-scale structure of the solar corona and inner heliosphere requires accurately mapping the measured photospheric magnetic field into the corona and outward. Ideally, a model should not only extrapolate the magnetic field, but should self-consistently reconstruct both the plasma and magnetic fields in the corona and solar wind. Support from our NASA SR&T contract has allowed us to develop three-dimensional magnetohydrodynamic (MHD) computations of the solar corona that incorporate observed photospheric magnetic fields into the boundary conditions. These calculations not only describe the magnetic field in the corona and interplanetary spice, but also predict the plasma properties as well. Our computations thus far have been successful in reproducing many aspects of both coronal and interplanetary data, including the structure of the streamer belt, the location of coronal hole boundaries, and the position and shape of the heliospheric current sheet. The most widely used technique for extrapolating the photospheric magnetic field into the corona and heliosphere are potential field models, such as the potential field source-surface model (PFSS),and the potential field current-sheet (PFCS) model
[Nonlinear magnetohydrodynamics]. Final report
Montgomery, D.C.
1998-11-01
This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant`s lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the
NASA Astrophysics Data System (ADS)
Alsaedi, A.; Hayat, T.; Muhammad, T.; Shehzad, S. A.
2016-09-01
This study models the magnetohydrodynamic (MHD) three-dimensional boundary layer flow of viscoelastic fluid. The flow is due to the exponentially stretching surface. The heat transfer analysis is performed through prescribed surface temperature (PST) and prescribed surface heat flux (PHF). The thermal conductivity is taken temperature dependent. Series solutions of velocities and temperatures are constructed. Graphical results for PST and PHF cases are plotted and analyzed. Numerical values of skin-friction coefficients and Nusselt numbers are presented and discussed.
NASA Astrophysics Data System (ADS)
Chernov, S. V.
2016-06-01
The full version of the magnetohydrodynamical (MHD) theory of accretion of a perfect fluid with an ultrahard equation of state, p = μ ~ ρ 2 (where p is the pressure, μ the total energy density, and ρ the fluid density), onto a moving Schwarzschild black hole is considered. Exact and approximate analytical solutions have been found. It is shown that smooth continuous solutions exist only in the case when a single critical sound surface is formed.
MHD properties of magnetosheath flow
NASA Astrophysics Data System (ADS)
Siscoe, G. L.; Crooker, N. U.; Erickson, G. M.; Sonnerup, B. U. Ö.; Maynard, N. C.; Schoendorf, J. A.; Siebert, K. D.; Weimer, D. R.; White, W. W.; Wilson, G. R.
2002-04-01
We discuss four aspects of magnetosheath flow that require MHD for their calculation and understanding. We illustrate these aspects with computations using a numerical MHD code that simulates the global magnetosphere and its magnetosheath. The four inherently MHD aspects of magnetosheath flow that we consider are the depletion layer, the magnetospheric sash, MHD flow deflections, and the magnetosheath's slow-mode expansion into the magnetotail. We introduce new details of these aspects or illustrate known details in a new way, including the dependence of the depletion layer on interplanetary magnetic filed clock angle; agreement between the locations of the antiparallel regions of Luhmann et al. (J. Geophys. Res. 89 (1984) 1739) and the magnetospheric sash, and deflections corresponding separately to a stagnation line and magnetic reconnection.
Indian MHD programme - status review
Arunachalam, S.A.; Malghan, V.R.; Thiagarajan, K.
1993-12-31
MHD technology development activities are carried out in 5MWt MHD pilot plant and auxiliary component test rigs. The airpreheater, hot air duct, FRP duct, main combustor, nozzle and downstream ducts have been successfully worked for about 2200 hours. Present direction of experimentation is to develop further the hot wall channel and demonstrate high enthalpy extraction. Initial experiments on MHD channel used water cooled copper electrodes filled with ceramics and was operated in cold mode. The current drain was low in this case and a new generator has been designed to operate at a thermal input of 8 MWt and a hot wall temperature around 1800 C. The status of recent experiments in MHD flow train and development of subsystems are discussed in this paper.
Supersonic regime of the Hall-magnetohydrodynamics resistive tearing instability
Ahedo, Eduardo; Ramos, Jesus J.
2012-07-15
An earlier analysis of the Hall-magnetohydrodynamics (MHD) tearing instability [E. Ahedo and J. J. Ramos, Plasma Phys. Controlled Fusion 51, 055018 (2009)] is extended to cover the regime where the growth rate becomes comparable or exceeds the sound frequency. Like in the previous subsonic work, a resistive, two-fluid Hall-MHD model with massless electrons and zero-Larmor-radius ions is adopted and a linear stability analysis about a force-free equilibrium in slab geometry is carried out. A salient feature of this supersonic regime is that the mode eigenfunctions become intrinsically complex, but the growth rate remains purely real. Even more interestingly, the dispersion relation remains of the same form as in the subsonic regime for any value of the instability Mach number, provided only that the ion skin depth is sufficiently small for the mode ion inertial layer width to be smaller than the macroscopic lengths, a generous bound that scales like a positive power of the Lundquist number.
MAGNETOHYDRODYNAMIC SIMULATIONS OF THE ATMOSPHERE OF HD 209458b
Rogers, T. M.; Showman, A. P. E-mail: showman@lpl.arizona.edu
2014-02-10
We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to that seen in previous models of hot Jupiter atmospheres, with strong equatorial jets and meridional flows poleward near the day side and equatorward near the night side. Inclusion of magnetic fields slows those winds and leads to Ohmic dissipation. We find wind slowing ranging from 10%-40% for reasonable field strengths. We find Ohmic dissipation rates ∼10{sup 17} W at 100 bar, orders of magnitude too small to explain the inflated radius of this planet. Faster wind speeds, not achievable in these anelastic calculations, may be able to increase this value somewhat, but likely will not be able to close the gap necessary to explain the inflated radius. We demonstrate that the discrepancy between the simulations presented here and previous models is due to inadequate treatment of magnetic field geometry and evolution. Induced poloidal fields become much larger than those imposed, highlighting the need for a self-consistent MHD treatment of these hot atmospheres.
Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics
Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; MacLachlan, Scott P.; Tuminaro, Raymond S.
2016-01-06
Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxationmore » procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.« less
Structure Formation through Magnetohydrodynamical Instabilities in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Noguchi, K.; Tajima, T.; Horton, W.
2000-12-01
The shear flow instabilities under the presence of magnetic fields in the protoplanetary disk can greatly facilitate the formation of density structures that serve as seeds prior to the onset of the gravitational Jeans instability. Such a seeding process may explain several outstanding puzzles in the planetary genesis that are further compounded by the new discoveries of extrasolar planets and a new insight into the equation of state of dense matter. This puzzle also includes the apparent narrow window of the age difference of the Sun and the Earth. We evaluate the effects of the Parker, magnetorotational(Balbus-Hawley), and kinematic dynamo instabilities by comparing the properties of these instabilities. We calculate the mass spectra of aggregated density structures by the above mechanism in the radial direction for an axisymmetric magnetohydrodynamic(MHD) torus equiblium and power-law density profile models. The mass spectrum of the magnetorotational instability may describe the origin of giant planets away from the central star such as Jupiter. Our local three-dimentional MHD simulation indicates that the coupling of the Parker and magnetorotational instabilities creates spiral arms and gas blobs in the accretion disk, reinforcing the theory and model.
Magnetohydrodynamic Waves and Instabilities in Homogeneous Gyrotropic Ultrarelativistic Plasma
NASA Astrophysics Data System (ADS)
Chou, M.; Hau, L.-N.
2004-08-01
In some astrophysical systems the ionized gas may be of such high temperature and so strongly magnetized that relativistic effects and pressure anisotropy must be considered in the magnetohydrodynamic (MHD) model. This paper gives an overview of the characteristics of linear MHD waves and instabilities in homogeneous ultrarelativistic plasmas with gyrotropic pressure. The energy closure is the double-polytropic laws with two polytropic exponents, γ∥ and γ⊥, and for the adiabatic and monatomic cases, the polytropic values (γ∥, γ⊥) are respectively (3, 2) and (2, 1.5) for nonrelativistic and ultrarelativistic plasmas. In this formulation, the general dispersion relations can conveniently be reduced to isotropic and/or nonrelativistic limits. Slow waves are found to exhibit some anomalies due to the pressure anisotropy in that they may possess a positive density-magnetic field correlation such as for fast waves and may possibly travel faster than intermediate waves. They may also develop a mirror instability, as well as a new type of compressible fire-hose instability that for a certain parameter regime may grow faster than the standard incompressible fire hose. Both the fire-hose and mirror instability criteria are found to have the same forms of β∥-β⊥>2 and γ∥β∥<β2⊥/(2+γ⊥β⊥), respectively, as for nonrelativistic plasma, although the growth rates may be significantly modified by the relativistic effect.
High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model.
Graham, J Pietarila; Mininni, P D; Pouquet, A
2011-07-01
With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000(3) grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity.
On Hamiltonian Magnetohydrodynamics: Lagrangian, Eulerian and Dynamically Accessible Stability
NASA Astrophysics Data System (ADS)
Andreussi, Tommaso; Morrison, Philip J.; Pegoraro, Francesco
2013-10-01
Stability conditions of magnetized plasma flows are obtained by exploiting the Hamiltonian structure of the magnetohydrodynamics (MHD) equations by using three kinds of energy principles. First, the Lagrangian variable energy principle is described and sufficient stability conditions are presented. Next, plasma flows are described in terms of Eulerian variables and the noncanonical Hamiltonian formulation of MHD is exploited. For symmetric equilibria, the energy-Casimir principle is expanded to second order and sufficient conditions for stability to symmetric perturbation are obtained. Then, dynamically accessible variations, i.e. variations that explicitly preserve invariants of the system, are introduced and the respective energy principle is considered. General criteria for stability are obtained, along with comparisons between the three different approaches. En route to our results we describe a time-dependent relabeling transformation, which to our knowledge has not heretofore been given, that will be needed in the Lagrangian variable framework in connection with the approach considered in E. A. Frieman, M. Rotenberg, Rev. Mod. Phys. 32, 898 (1960).
JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS
Fendt, Christian
2011-08-10
In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.
SYNCHROTRON RADIATION OF SELF-COLLIMATING RELATIVISTIC MAGNETOHYDRODYNAMIC JETS
Porth, Oliver; Fendt, Christian; Vaidya, Bhargav; Meliani, Zakaria E-mail: fendt@mpia.de
2011-08-10
The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow-magnetosonic launching surface of the disk up to 6000{sup 2} Schwarzschild radii allowing jets to reach highly relativistic Lorentz factors. The Poynting-dominated disk wind develops into a jet with Lorentz factors of {Gamma} {approx_equal} 8 and is collimated to 1{sup 0}. In addition to the disk jet, we evolve a thermally driven spine jet emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive very long baseline interferometry radio and (sub-) millimeter diagnostics such as core shift, polarization structure, intensity maps, spectra, and Faraday rotation measure (RM) directly from the Stokes parameters. We also investigate depolarization and the detectability of a {lambda}{sup 2}-law RM depending on beam resolution and observing frequency. We find non-monotonic intrinsic RM profiles that could be detected at a resolution of 100 Schwarzschild radii. In our collimating jet geometry, the strict bimodality in the polarization direction (as predicted by Pariev et al.) can be circumvented. Due to relativistic aberration, asymmetries in the polarization vectors across the jet can hint at the spin direction of the central engine.
Implementation of magnetohydrodynamic energy bypass process for hypersonic vehicles
NASA Astrophysics Data System (ADS)
Lee, Ying Ming; Czysz, Paul A.; Bruno, Claudio
2004-08-01
The global political structure has changed dramatically since the breakup of the former Soviet Union, and world changes have caused the United States to reprioritize its national hypersonic needs. The US Government has looked at the needs of the future, and the hypersonic aerospace plane is one of the systems included in alternative force structures. One hypersonic aerospace plane concept would involve magnetohydrodynamic (MHD) technology (i.e., the AJAX hypersonic flight vehicle concept) originally proposed by Russian scientist Vladimir Fraishtadt. This paper reports on the current progress and findings of an air-breathing horizontal takeoff and landing design concept using an MHD energy bypass injector ramjet engine being studied at MSE Technology Applications, Inc., HyperTech Concepts, and several universities for the National Aeronautics and Space Administration Langley Research Center under a Phase II Small Business Innovation Research project. The areas that are addressed in this paper include: (1) ionization required to achieve the required energy bypass, (2) utilization of a nonequilibrium model to calculate nonequilibrium engine ionization conditions, (3) hydrocarbon fuel reforming, and (4) vehicle performance and sizing. A quasi-onedimensional electromagnetic code combined with a new scramjet model, as well as other tools, were used to examine total system performance.
The Signature of Initial Conditions on Magnetohydrodynamic Turbulence
NASA Astrophysics Data System (ADS)
Dallas, V.; Alexakis, A.
2014-06-01
We demonstrate that the initial correlation between velocity and current density fluctuations can lead to the formation of enormous current sheets in freely evolving magnetohydrodynamic (MHD) turbulence. These coherent structures are observed at the peak of the energy dissipation rate and are the carriers of long-range correlations despite all of the nonlinear interactions during the formation of turbulence. The size of these structures spans our computational domain, dominating the scaling of the energy spectrum, which follows a Evpropk -2 power law. As the Reynolds number increases, the curling of the current sheets due to Kelvin-Helmholtz-type instabilities and reconnection modifies the scaling of the energy spectrum from k -2 toward k -5/3. This transition occurs due to the decorrelation of the velocity and the current density which is proportional to Re_λ -3/2. Finite Reynolds number behavior is observed without reaching a finite asymptote for the energy dissipation rate even for a simulation of Reλ ~= 440 with 20483 grid points. This behavior demonstrates that even state-of-the-art numerical simulations of the highest Reynolds numbers can be influenced by the choice of initial conditions and consequently they are inadequate to deduce unequivocally the fate of universality in MHD turbulence. Implications for astrophysical observations are discussed.
Hydrodynamic and magnetohydrodynamic turbulence: Invariants, cascades, and locality
NASA Astrophysics Data System (ADS)
Aluie, Hussein
This dissertation employs the coarse-graining approach, commonly used as a modeling tool in the LES community, to analyze scale interactions in turbulent flows, following [1]. The main scientific contributions of this dissertation to the fields of hydrodynamic and magnetohydrodynamic (MHD) turbulence are: (1) Establishing necessary conditions for turbulent MHD flows to sustain cascades of energy and cross-helicity to arbitrarily small scales, and proving that it is impossible for magnetic-helicity to undergo a forward cascade. These results provide rigorous constraints on any phenomenological theory of MHD turbulence. (2) Presenting both rigorous results and physical theory on the breakdown of magnetic flux conservation for plasmas by nonlinear effects, independent of any microscopic non-ideality. It shows that instantaneous violation of flux-conservation can occur if singular current sheets and vortex sheets both exist and intersect in sets of non-zero length. This result gives analytical support to and rigorous constraints on theories of fast turbulent reconnection. (3) Establishing scale-locality of the energy cascade in a turbulent flow using Fourier analysis and showing that the primary participants in the process are triplets of "eddies" comprised of adjacent logarithmic bands of Fourier modes. The analysis disproves an alternate picture of "local transfer by nonlocal triads" by showing that such triads make a vanishingly small contribution to the energy flux in the inertial range and that it is only the aggregate effect of a geometrically increasing number of local wavenumber triads which can sustain the cascade to small scales. It also shows that the SGS definition of the flux is the proper measure of the cascading energy and demonstrates the danger in the widespread notion that the elementary interactions in turbulence are those involving triads of single Fourier modes. Numerical support is presented from simulations of Navier-Stokes turbulence. (4
Global MHD Simulation of Mesoscale Structures at the Magnetospheric Boundary
NASA Technical Reports Server (NTRS)
Berchem, Jean
1998-01-01
The research carried out for this protocol was focused on the study of mesoscales structures at the magnetospheric boundary. We investigated three areas: (1) the structure of the magnetospheric boundary for steady solar wind conditions; (2) the dynamics of the dayside magnetospheric boundary and (3) the dynamics of the distant tail magnetospheric boundary. Our approach was to use high resolution three-dimensional global magnetohydrodynamic (MHD) simulations of the interaction of the solar wind with the Earth's magnetosphere. We first considered simple variations of the interplanetary conditions to obtain generic cases that helped us in establishing the basic cause and effect relationships for steady solar wind conditions. Subsequently, we used actual solar wind plasma and magnetic field parameters measured by an upstream spacecraft as input to the simulations and compared the simulation results with sequences of events observed by another or several other spacecraft located downstream the bow shock. In particular we compared results with observations made when spacecraft crossed the magnetospheric boundary.
Transpiration cooled electrodes and insulators for MHD generators
Hoover, Jr., Delmer Q.
1981-01-01
Systems for cooling the inner duct walls in a magnetohydrodynamic (MHD) generator. The inner face components, adjacent the plasma, are formed of a porous material known as a transpiration material. Selected cooling gases are transpired through the duct walls, including electrically insulating and electrode segments, and into the plasma. A wide variety of structural materials and coolant gases at selected temperatures and pressures can be utilized and the gases can be drawn from the generation system compressor, the surrounding environment, and combustion and seed treatment products otherwise discharged, among many other sources. The conduits conducting the cooling gas are electrically insulated through low pressure bushings and connectors so as to electrically isolate the generator duct from the ground.
Poynting Flux-Conserving Boundary Conditions for Global MHD Models
NASA Astrophysics Data System (ADS)
Xi, S.; Lotko, W.; Zhang, B.; Brambles, O.; Lyon, J.; Merkin, V. G.; Wiltberger, M. J.
2014-12-01
Poynting Flux-conserving boundary conditions that conserve low-frequency, magnetic field-aligned, electromagnetic energy flux across the low-altitude (or inner) boundary in global magnetospheric magnetohydrodynamics (MHD) models is presented. This method involves the mapping of both the potential from the ionosphere and the perpendicular magnetic field from the inner magnetosphere to the ghost cells of the computational domain. The single fluid Lyon-Fedder-Mobarry (LFM) model is used to verify this method. The comparisons of simulations using the standard hardwall boundary conditions of the LFM model and the flux-conserving boundary conditions show that the method reported here improves the transparency of the boundary for the flow of low-frequency (essentially DC) electromagnetic energy flux along field lines. As a consequence, the field-aligned DC Poynting flux just above the boundary is very nearly equal to the ionospheric Joule heating, as it should be if electromagnetic energy is conserved.
Closed Loop Feedback of MHD Instabilities on DIII-D
Fredrickson, E.D.; Bialek, J.; Garofalo, A.M.; Johnson, L.C.; La Haye, R.J.; Lazarus, E.A.
2001-01-16
A system of coils, sensors and amplifiers has been installed on the DIII-D tokamak to study the physics of feedback stabilization of low-frequency MHD [magnetohydrodynamic] modes such as the Resistive Wall Mode (RWM). Experiments are being performed to assess the effectiveness of this minimal system and benchmark the predictions of theoretical models and codes. In the last campaign, the experiments have been extended to a regime where the RWM threshold is lowered by a fast ramp of the plasma current. In these experiments, the onset time of the RWM is very reproducible. With this system, the onset of the RWM has been delayed by up to 100 msec without degrading plasma performance. The growth rate of the mode increases proportional to the length of delay, suggesting that the plasma is evolving towards a more unstable configuration. The present results have suggested directions for improving the feedback system including better sensors and improved feedback algorithms.
Not Available
1995-02-01
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.
Lynn, Jacob W.; Quataert, Eliot; Chandran, Benjamin D. G.; Parrish, Ian J.
2014-08-10
We use analytic estimates and numerical simulations of test particles interacting with magnetohydrodynamic (MHD) turbulence to show that subsonic MHD turbulence produces efficient second-order Fermi acceleration of relativistic particles. This acceleration is not well described by standard quasi-linear theory but is a consequence of resonance broadening of wave-particle interactions in MHD turbulence. We provide momentum diffusion coefficients that can be used for astrophysical and heliospheric applications and discuss the implications of our results for accretion flows onto black holes. In particular, we show that particle acceleration by subsonic turbulence in radiatively inefficient accretion flows can produce a non-thermal tail in the electron distribution function that is likely important for modeling and interpreting the emission from low-luminosity systems such as Sgr A* and M87.
Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Philip, Bobby; Chacón, Luis; Pernice, Michael
2008-10-01
An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.
DIFFUSIVE ACCELERATION OF PARTICLES AT OBLIQUE, RELATIVISTIC, MAGNETOHYDRODYNAMIC SHOCKS
Summerlin, Errol J.; Baring, Matthew G. E-mail: baring@rice.edu
2012-01-20
Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma-ray bursts. These sources remain good candidate sites for the generation of ultrahigh energy cosmic rays. In this paper, key predictions of DSA at relativistic shocks that are germane to the production of relativistic electrons and ions are outlined. The technique employed to identify these characteristics is a Monte Carlo simulation of such diffusive acceleration in test-particle, relativistic, oblique, magnetohydrodynamic (MHD) shocks. Using a compact prescription for diffusion of charges in MHD turbulence, this approach generates particle angular and momentum distributions at any position upstream or downstream of the shock. Simulation output is presented for both small angle and large angle scattering scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffmann-Teller frame does not exist. The distribution function power-law indices compare favorably with results from other techniques. They are found to depend sensitively on the mean magnetic field orientation in the shock, and the nature of MHD turbulence that propagates along fields in shock environs. An interesting regime of flat-spectrum generation is addressed; we provide evidence for it being due to shock drift acceleration, a phenomenon well known in heliospheric shock studies. The impact of these theoretical results on blazar science is outlined. Specifically, Fermi Large Area Telescope gamma-ray observations of these relativistic jet sources are providing significant constraints on important environmental quantities for relativistic shocks, namely, the field obliquity, the frequency of scattering, and the level of field turbulence.
JET FORMATION FROM MASSIVE YOUNG STARS: MAGNETOHYDRODYNAMICS VERSUS RADIATION PRESSURE
Vaidya, Bhargav; Porth, Oliver; Fendt, Christian; Beuther, Henrik E-mail: fendt@mpia.de
2011-11-20
Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation-assuming a 30 M{sub Sun} star-we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20 Degree-Sign to 32 Degree-Sign for stellar masses from 20 M{sub Sun} to 60 M{sub Sun }. A small change in the line-force parameter {alpha} from 0.60 to 0.55 changes the opening angle by {approx}8 Degree-Sign . We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.
NASA Astrophysics Data System (ADS)
Akcay, Cihan
A comparative study of 3-D pressureless resistive (single-fluid) magnetohydrodynamic (rMHD) and 3-D pressureless two-fluid magnetohydrodynamic (2fl-MHD) models of the Helicity Injected Torus experiment (HIT-SI) is presented. HIT-SI is a spheromak current-drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The goal of the experiment is to demonstrate that steady inductive helicity injection (SIHI) is a viable method for driving and sustaining a magnetized plasma for the eventual purpose of electricity production with magnetic fusion power. The experiment has achieved sustainment of nearly 100 kA of plasma current for ˜1~ms. Fusion power plants are expected to sustain a burning plasma for many minutes to hours with more than 10~MA of plasma current. The purpose of project is to determine the validity of the single-fluid and two-fluid MHD models of HIT-SI. The comparable size of the collisionless ion skin depth to the diameter of the injectors and resistive skin depth predicates the importance of two-fluid effects. The simulations are run with NIMROD (non-ideal magnetohydrodynamics code with rotation-open discussion), an initial-value, 3-D extended MHD code. A constant and uniform plasma density and temperature are assumed. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification and formation time
Theories of dynamical phenomena in sunspots
NASA Technical Reports Server (NTRS)
Thomas, J. H.
1981-01-01
Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
Multiscaling in Hall-magnetohydrodynamic turbulence: insights from a shell model.
Banerjee, Debarghya; Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul
2013-10-25
We show that a shell-model version of the three-dimensional Hall-magnetohydrodynamic (3D Hall-MHD) equations provides a natural theoretical model for investigating the multiscaling behaviors of velocity and magnetic structure functions. We carry out extensive numerical studies of this shell model, obtain the scaling exponents for its structure functions, in both the low-k and high-k power-law ranges of three-dimensional Hall-magnetohydrodynamic, and find that the extended-self-similarity procedure is helpful in extracting the multiscaling nature of structure functions in the high-k regime, which otherwise appears to display simple scaling. Our results shed light on intriguing solar-wind measurements.
Three-dimensional analysis of MHD generators and diffusers
Vanka, S P; Ahluwalia, R K; Doss, E D
1982-03-01
The three-dimensional flow and heat transfer phenomena in MHD channels and diffusers are analyzed by solving the governing partial differential equations for flow and electrical fields. The equation set consists of the mass continuity equation, the three momentum equations, the equations for enthalpy, turbulence kinetic energy and its dissipation rate, and the Maxwell equations. This set of coupled equations is solved by the use of a finite-difference calculation procedure. The turbulence is represented by a two-equation model of turbulence in which partial differential equations are solved for the turbulence kinetic energy and its dissipation rate. Calculations have been performed for Faraday and diagonally-connected channels. Specifically, the AEDC (Faraday) and the UTSI (diagonal) channels have been analyzed, and the results are compared with experimental data. The agreement is fairly good for all the measured quantities. The effects of channel loading on the three-dimensional flow characteristics of Faraday and diagonally-connected generators have been also analyzed. A simple argument is presented to show qualitatively the role of MHD body forces in generating axial vorticity and hence secondary flows in the cross-stream. Calculations have also been made to study the flow evolution in MHD diffusers. The calculations show that the velocity overshoots and secondary flows decay along the diffusers length. Plots of velocity, skin friction and pressure recovery are presented to illustrate the flow development in MHD diffusers.
A computational magnetohydrodynamic model of a gasdynamic fusion space propulsion system
NASA Astrophysics Data System (ADS)
Ohlandt, Chad J. R.
This work advances the gasdynamic mirror (GDM) fusion space propulsion system concept by testing the potential of an advanced aneutronic fusion fuel combination of proton-11boron and evaluating GDMs operating at less than breakeven being driven with nuclear electric reactors. Finding neither option to be a panacea, the author moves forward in developing an ideal 3-D magnetohydrodynamic (MHD) computational model for simulating concept GDMs. The challenges identified and remediated include Alfven wave-speeds a few percent the speed of light with characteristic lengths on the order of a centimeter, the extreme aspect ratio of GDM systems, massive background magnetic fields, and traveling waves along the length of the GDM. Due to the remaining physical challenges of modeling the GDM system, including a slow systemic relaxation time and localized radiation losses, the computational requirements of the full 3-D MHD model remains too computationally demanding, which suggests a future approach involving a hybrid of 1-D and 3-D models.
A Simple GPU-Accelerated Two-Dimensional MUSCL-Hancock Solver for Ideal Magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Bard, Christopher; Dorelli, John C.
2013-01-01
We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of approx. = 126 for a sq 1024 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.
Guimaraes-Filho, Zwinglio O.; Caldas, Ibere L.; Heller, Maria Vittoria A. P.; Nascimento, Ivan C.; Kuznetsov, Yuri K.; Viana, Ricardo L.; Bengtson, Roger D.
2008-06-15
In Tokamak Chauffage Alfven Bresilien [R. M. O. Galvao et al., Plasma Phys. Controlled Fusion 43, 1181 (2001)], high magnetohydrodynamic (MHD) activity may appear spontaneously or during discharges with a voltage biased electrode inserted at the plasma edge. The turbulent electrostatic fluctuations, measured by Langmuir probes, are modulated by Mirnov oscillations presenting a dominant peak with a common frequency around 10 kHz. We report the occurrence of phase locking of the turbulent potential fluctuations driven by MHD activity at this frequency. Using wavelet cross-spectral analysis, we characterized the phase and frequency synchronization in the plasma edge region. We introduced an order parameter to characterize the radial dependence of the phase-locking intensity.
Jurčišinová, E; Jurčišin, M; Remecký, R
2011-10-01
The turbulent magnetic Prandtl number in the framework of the kinematic magnetohydrodynamic (MHD) turbulence, where the magnetic field behaves as a passive vector field advected by the stochastic Navier-Stokes equation, is calculated by the field theoretic renormalization group technique in the two-loop approximation. It is shown that the two-loop corrections to the turbulent magnetic Prandtl number in the kinematic MHD turbulence are less than 2% of its leading order value (the one-loop value) and, at the same time, the two-loop turbulent magnetic Prandtl number is the same as the two-loop turbulent Prandtl number obtained in the corresponding model of a passively advected scalar field. The dependence of the turbulent magnetic Prandtl number on the spatial dimension d is investigated and the source of the smallness of the two-loop corrections for spatial dimension d=3 is identified and analyzed.
The evolution of cosmic-ray-mediated magnetohydrodynamic shocks: A two-fluid approach
NASA Technical Reports Server (NTRS)
Jun, Byung-Il; Clarke, David A.; Norman, Michael L.
1994-01-01
We study the shock structure and acceleration efficiency of cosmic-ray mediated Magnetohydrodynamic (MHD) shocks both analytically and numerically by using a two-fluid model. Our model includes the dynamical effect of magnetic fields and cosmic rays on a background thermal fluid. The steady state solution is derived by following the technique of Drury & Voelk (1981) and compared to numerical results. We explore the time evolution of plane-perpendicular, piston-driven shocks. From the results of analytical and numerical studies, we conclude that the mean magnetic field plays an important role in the structure and acceleration efficiency of cosmic-ray mediated MHD shocks. The acceleration of cosmic-ray particles becomes less efficient in the presence of strong magnetic pressure since the field makes the shock less compressive. This feature is more prominent at low Mach numbers than at high Mach numbers.
Three-dimensional Simulations of Magnetohydrodynamic Waves in Magnetized Solar Atmosphere
NASA Astrophysics Data System (ADS)
Vigeesh, G.; Fedun, V.; Hasan, S. S.; Erdélyi, R.
2012-08-01
We present results of three-dimensional numerical simulations of magnetohydrodynamic (MHD) wave propagation in a solar magnetic flux tube. Our study aims at understanding the properties of a range of MHD wave modes generated by different photospheric motions. We consider two scenarios observed in the lower solar photosphere, namely, granular buffeting and vortex-like motion, among the simplest mechanism for the generation of waves within a strong, localized magnetic flux concentration. We show that granular buffeting is likely to generate stronger slow and fast magnetoacoustic waves as compared to swirly motions. Correspondingly, the energy flux transported differs as a result of the driving motions. We also demonstrate that the waves generated by granular buffeting are likely to manifest in stronger emission in the chromospheric network. We argue that different mechanisms of wave generation are active during the evolution of a magnetic element in the intergranular lane, resulting in temporally varying emission at chromospheric heights.
THREE-DIMENSIONAL SIMULATIONS OF MAGNETOHYDRODYNAMIC WAVES IN MAGNETIZED SOLAR ATMOSPHERE
Vigeesh, G.; Fedun, V.; Erdelyi, R.; Hasan, S. S.
2012-08-10
We present results of three-dimensional numerical simulations of magnetohydrodynamic (MHD) wave propagation in a solar magnetic flux tube. Our study aims at understanding the properties of a range of MHD wave modes generated by different photospheric motions. We consider two scenarios observed in the lower solar photosphere, namely, granular buffeting and vortex-like motion, among the simplest mechanism for the generation of waves within a strong, localized magnetic flux concentration. We show that granular buffeting is likely to generate stronger slow and fast magnetoacoustic waves as compared to swirly motions. Correspondingly, the energy flux transported differs as a result of the driving motions. We also demonstrate that the waves generated by granular buffeting are likely to manifest in stronger emission in the chromospheric network. We argue that different mechanisms of wave generation are active during the evolution of a magnetic element in the intergranular lane, resulting in temporally varying emission at chromospheric heights.
Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators
Sitaraman, Hariswaran; Raja, Laxminarayan L.
2014-01-15
Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.
NASA Astrophysics Data System (ADS)
Pratt, J.; Busse, A.; Müller, W.-C.
2013-09-01
Intermittent large-scale high-shear flows are found to occur frequently and spontaneously in direct numerical simulations of statistically stationary turbulent Boussinesq magnetohydrodynamic (MHD) convection. The energetic steady state of the system is sustained by convective driving of the velocity field and small-scale dynamo action. The intermittent emergence of flow structures with strong velocity and magnetic shearing generates magnetic energy at an elevated rate on time scales that are longer than the characteristic time of the large-scale convective motion. The resilience of magnetic energy amplification suggests that intermittent shear bursts are a significant driver of dynamo action in turbulent magnetoconvection.
Self-similar magnetohydrodynamic model for direct current discharge fireball experiments
Tsui, K. H.; Navia, C. E.; Robba, M. B.; Carneiro, L. T.; Emelin, S. E.
2006-11-15
Ball lightning models and corresponding laboratory efforts in generating fireballs are briefly summarized to give an overview of the current status. In particular, emphasis is given to direct current discharge experiments at atmospheric pressure such as capillary discharge with a plasma plume in front of the anode opening [Emelin et al., Tech. Phys. Letters 23, 758 (1997)] and water resistor discharge with fluttering fireball overhead [Egorov and Stepanov, Tech. Phys. 47, 1584 (2002)]. These fireballs are interpreted as laboratory demonstrations of the self-similar magnetohydrodynamic (MHD) model of ball lightning [Tsui, Phys. Plasmas 13, 072102 (2006)].
NASA Astrophysics Data System (ADS)
Miyagoshi, Takehiro; Kageyama, Akira; Sato, Tetsuya
2011-07-01
Aiming at understanding of magnetic field generation process in rapidly rotating stars and planets represented by the Earth, computer simulations of magnetohydrodynamic (MHD) dynamo were performed in a rotating spherical shell geometry. Thermal convection and dynamo process with Ekman number of the order of 10-7 were studied. New structures of convection motion, dynamo-generated electrical current, and magnetic field are found. The flow is organized as a set of thin, sheet-like plumes. The current is made of small-scale coil structure with magnetic flux tubes within each of the coil. These flux tubes are connected each other to form a large scale helical magnetic field structure.
NASA Astrophysics Data System (ADS)
Westerhof, E.; Pratt, J.; Ayten, B.
2015-03-01
In the presence of electron cyclotron current drive (ECCD), the Ohm's law of single fluid magnetohydrodynamics (MHD) is modified as E + v × B = η(J - JECCD). This paper presents a new closure relation for the EC driven current density appearing in this modified Ohm's law. The new relation faithfully represents the nonlocal character of the EC driven current and its main origin in the Fisch-Boozer effect. The closure relation is validated on both an analytical solution of an approximated Fokker-Planck equation as well as on full bounce-averaged, quasi-linear Fokker-Planck code simulations of ECCD inside rotating magnetic islands.
Self-similar magnetohydrodynamic model for direct current discharge fireball experiments
NASA Astrophysics Data System (ADS)
Tsui, K. H.; Navia, C. E.; Robba, M. B.; Carneiro, L. T.; Emelin, S. E.
2006-11-01
Ball lightning models and corresponding laboratory efforts in generating fireballs are briefly summarized to give an overview of the current status. In particular, emphasis is given to direct current discharge experiments at atmospheric pressure such as capillary discharge with a plasma plume in front of the anode opening [Emelin et al., Tech. Phys. Letters 23, 758 (1997)] and water resistor discharge with fluttering fireball overhead [Egorov and Stepanov, Tech. Phys. 47, 1584 (2002)]. These fireballs are interpreted as laboratory demonstrations of the self-similar magnetohydrodynamic (MHD) model of ball lightning [Tsui, Phys. Plasmas 13, 072102 (2006)].
Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction
Lemoff, Asuncion V.; Lee, Abraham P.
2010-07-13
A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.
Athena3D: Flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hawley, John; Simon, Jake; Stone, James; Gardiner, Thomas; Teuben, Peter
2015-05-01
Written in FORTRAN, Athena3D, based on Athena (ascl:1010.014), is an implementation of a flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics. Features of the Athena3D code include compressible hydrodynamics and ideal MHD in one, two or three spatial dimensions in Cartesian coordinates; adiabatic and isothermal equations of state; 1st, 2nd or 3rd order reconstruction using the characteristic variables; and numerical fluxes computed using the Roe scheme. In addition, it offers the ability to add source terms to the equations and is parallelized based on MPI.
Barnes, P.R.; Vance, E.F.
1992-01-01
A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohyrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. The geomagnetic disturbance interacts with the soil to induced current and horizontal electric gradients in the earth. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after the exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.
Steady-state axisymmetric nonlinear magnetohydrodynamic solutions with various boundary conditions
NASA Astrophysics Data System (ADS)
Wang, Lile; Lou, Yu-Qing
2014-04-01
Axisymmetric magnetohydrodynamics (MHD) can be invoked for describing astrophysical magnetized flows and formulated to model stellar magnetospheres including main-sequence stars (e.g. the Sun), compact stellar objects [e.g. magnetic white dwarfs (MWDs), radio pulsars, anomalous X-ray pulsars, magnetars, isolated neutron stars, etc.] and planets as a major step forward towards a full three-dimensional model construction. Using powerful and reliable numerical solvers based on two distinct finite-difference method and finite-element method schemes of algorithm, we examine axisymmetric steady-state or stationary MHD models in Throumoulopoulos & Tasso, finding that their separable semi-analytic non-linear solutions are actually not unique given their specific selection of several free functionals and chosen boundary conditions. Similar situations of multiple non-linear solutions with the same boundary conditions actually also happen to force-free magnetic field models of Low & Lou. The multiplicity of non-linear steady MHD solutions gives rise to differences in the total energies contained in the magnetic fields and flow velocity fields as well as in the asymptotic behaviours approaching infinity, which may in turn explain why numerical solvers tend to converge to a non-linear solution with a lower energy than the corresponding separable semi-analytic one. By properly adjusting model parameters, we invoke semi-analytic and numerical solutions to describe different kinds of scenarios, including nearly parallel case and the situation in which the misalignment between the plasma flow and magnetic field is considerable. We propose that these MHD models are capable of describing the magnetospheres of MWDs as examples of applications with moderate conditions (including magnetic field) where the typical values of several important parameters are consistent with observations. Physical parameters can also be estimated based on such MHD models directly. We discuss the challenges
NASA Astrophysics Data System (ADS)
Haverkort, J. W.; de Blank, H. J.; Huysmans, G. T. A.; Pratt, J.; Koren, B.
2016-07-01
Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity. The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite element discretization of the full MHD equations. A rigorous and generally applicable solution is proposed here. Useful analytical test cases are devised to verify the correct implementation of the momentum and induction equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown to be associated with our use of a magnetic vector potential to describe the magnetic field. Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code. The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The results are compared with predictions from the reduced MHD model. Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method without the need to add any physical dissipation.
Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.
1997-11-01
This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.
Long-term evolution of decaying magnetohydrodynamic turbulence in the multiphase interstellar medium
Kim, Chang-Goo; Basu, Shantanu E-mail: basu@uwo.ca
2013-12-01
Supersonic turbulence in the interstellar medium (ISM) is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this general consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to take into account the roles of the global structures of magnetic fields and the ISM. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in a warm neutral medium. The early evolution of turbulent kinetic energy is consistent with previous results for decaying compressible MHD turbulence characterized by rapid energy decay with a power-law form of E∝t {sup –1} and by a short decay time compared with the flow crossing time. If initial magnetic fields are strong and perpendicular to the sheet, however, long-term evolution of the kinetic energy shows that a significant amount of turbulent energy (∼0.2E {sub 0}) still remains even after 10 flow crossing times for models with periodic boundary conditions. The decay rate is also greatly reduced as the field strength increases for such initial and boundary conditions, but not if the boundary conditions are those for a completely isolated sheet. We analyze velocity power spectra of the remaining turbulence to show that in-plane, incompressible motions parallel to the sheet dominate at later times.
Magnetohydrodynamic interference with the edge pedestal motional Stark effect diagnostic on DIII-D.
King, J D; Makowski, M A; Holcomb, C T; Allen, S L; Hill, D N; La Haye, R J; Turco, F; Petty, C C; Van Zeeland, M A; Rhodes, T L; Meyer, W H; Geer, R; Morse, E C
2011-03-01
Accurate measurement of internal magnetic field direction using motional Stark effect (MSE) polarimetry in the edge pedestal is desired for nearly all tokamak scenario work. A newly installed 500 kHz 32-channel digitizer on the MSE diagnostic of DIII-D allows full spectral information of the polarimeter signal to be recovered for the first time. Fourier analysis of this data has revealed magnetohydrodynamic (MHD) fluctuations in the plasma edge pedestal at ρ ≥ 0.92. By correlating edge localized mode fluctuations seen on lock-in amplifier outputs with MSE spectrograms, it has been shown that edge pedestal tearing mode fluctuations cause interference with MSE second harmonic instrument frequencies. This interference results in unrecoverable errors in the real-time polarization angle measurement that are more than an order of magnitude larger than typical polarimeter uncertainties. These errors can cause as much as a 38% difference in local q. By using a redundant measure of the linear polarization found at the fourth harmonic photo-elastic modulator (PEM) frequency, MHD interference can be avoided. However, because of poorer signal-to-noise the fourth harmonic signal computed polarization angle shows no improvement over the MHD polluted second harmonics. MHD interference could be avoided in future edge pedestal tokamak polarimeters by utilizing PEMs with higher fundamental frequencies and a greater separation between their frequencies.
NASA Astrophysics Data System (ADS)
Shiraishi, J.; Aiba, N.; Miyato, N.; Yagi, M.
2014-08-01
Toroidal rotation effects are self-consistently taken into account not only in the linear magnetohydrodynamic (MHD) stability analysis but also in the equilibrium calculation. The MHD equilibrium computation is affected by centrifugal force due to the toroidal rotation. To study the toroidal rotation effects on resistive wall modes (RWMs), a new code has been developed. The RWMaC modules, which solve the electromagnetic dynamics in vacuum and the resistive wall, have been implemented in the MINERVA code, which solves the Frieman-Rotenberg equation that describes the linear ideal MHD dynamics in a rotating plasma. It is shown that modification of MHD equilibrium by the centrifugal force significantly reduces growth rates of RWMs with fast rotation in the order of M2 = 0.1 where M is the Mach number. Moreover, it can open a stable window which does not exist under the assumption that the rotation affects only the linear dynamics. The rotation modifies the equilibrium pressure gradient and current density profiles, which results in the change of potential energy including rotational effects.
On the role of surface rheology in a magnetohydrodynamic swirling flow
NASA Astrophysics Data System (ADS)
Delacroix, Jules; Davoust, Laurent
2015-06-01
The original coupling between the surface rheology of a liquid metal surface and a supporting annular Couette magnetohydrodynamic (MHD) flow is theoretically and numerically investigated in this paper, in the general layout of the classical annular viscometer, as developed by Mannheimer and Schechter ["An improved apparatus and analysis for surface rheological measurements," J. Colloid Interface Sci. 32, 195-211 (1970)]. The purely hydrodynamic interplay between the main azimuthal flow (induced by a rotating floor) and the secondary overturning flow (generated by centrifugation) is found to be strongly affected by both surface viscous shear and surface viscous dilatation. When the flow is subjected to an outer vertical magnetic field, the impact of varying interface boundary conditions (through the surface shear and dilatational viscosities) at the gas/liquid interface profoundly alters the MHD flow topology. Particularly, when centrifugation competes with electromagnetic effects, advection of the main flow by the secondary flow is proved to affect significantly the core MHD flow, leading to a variety of atypical MHD flow patterns.
Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.
Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar
2015-01-01
Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons.
White, M.K.; Li, M.
1991-05-01
Corrosion data have been obtained for tubes, (austenitic steels, carbon steels, and intermediate chromium steels), exposed to conditions representative of superheater and intermediate temperature air heater components for 500 hours in a proof-of-concept magnetohydrodynamics MHD coal fired flow facility (MHD CFFF). The tubes, coated with K{sub 2}SO{sub 4}-rich deposits, developed oxide surface scales which were not protective against intergranular sulfur penetration of the subsurface metal. Corrosion rates derived from scale thickness and intergranular corrosion depth measurements are reported, along with scale morphologies and compositions. The implications of the results on commercial MHD utilization of the alloys are discussed, as well as the indicated need for more corrosion resistant alloys or coatings under the most severe exposure conditions. 4 refs., 27 figs., 6 tabs.
Picologlou, B.F.; Doss, E.D.; Geyer, H.K. ); Sikes, W.C.; Ranellone, R.F. )
1992-01-01
A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate a design oriented MHD thruster performance computer code. The thruster performance code consists of a one-dimensional MHD hydrodynamic model coupled to a two-dimensional electrical model. The code includes major loss mechanisms affecting the performance of the thruster. Among these losses are the joule dissipation losses, frictional losses, electrical end losses, and single electrode potential losses. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.
Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go
2016-05-10
It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.
Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go
2016-01-01
It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346
Two-fluid MHD Regime of Drift Wave Instability
NASA Astrophysics Data System (ADS)
Yang, Shang-Chuan; Zhu, Ping; Xie, Jin-Lin; Liu, Wan-Dong
2015-11-01
Drift wave instabilities contribute to the formation of edge turbulence and zonal flows, and thus are believed to play essential roles in the anomalous transport processes in tokamaks. Whereas drift waves are generally assumed to be local and electrostatic, experiments have often found regimes where the spatial scales and the magnetic components of drift waves approach those of magnetohydrodynamic (MHD) processes. In this work we study such a drift wave regime in a cylindrical magnetized plasma using a full two-fluid MHD model implemented in the NIMROD code. The linear dependency of growth rates on resistivity and the dispersion relation found in the NIMROD calculations qualitatively agree with theoretical analysis. As the azimuthal mode number increases, the drift modes become highly localized radially; however, unlike the conventional local approximation, the radial profile of the drift mode tends to shift toward the edge away from the center of the density gradient slope, suggesting the inhomogeneity of two-fluid effects. Supported by National Natural Science Foundation of China Grant 11275200 and National Magnetic Confinement Fusion Science Program of China Grant 2014GB124002.
Lagrangian, Eulerian, and Dynamically Accessible Stability of MHD flows
NASA Astrophysics Data System (ADS)
Andreussi, Tommaso; Morrison, Philip; Pegoraro, Francesco
2012-10-01
Stability conditions of magnetized plasma flows are obtained by exploiting the Hamiltonian structure of the magnetohydrodynamics (MHD) equations and, in particular, by using three kinds of energy principles. First, the Lagrangian energy principle of Ref. [1] is introduced and sufficient stability conditions are presented. Next, plasma flows are described in terms of Eulerian variables and the noncanonical Hamiltonian formulation of MHD [2] is exploited. For symmetric equilibria, the energy-Casimir principle of Ref. [3] is expanded to second order and sufficient conditions for stability to symmetric perturbation are obtained. Then, dynamically accessible variations, i.e. variations that explicitly preserve the invariants of the system, are introduced and the respective energy principle is considered. As in Ref. [4], general criteria for stability are obtained. A comparison between the three different approaches is finally presented. [4pt] [1] E.A. Frieman and M. Rotenberg, Rev. Mod. Phys., 32 898 (1960).[0pt] [2] P.J. Morrison, J.M. Greene, Phys. Rev. Lett., 45 790 (1980).[0pt] [3] T. Andreussi, P.J. Morrison, F. Pegoraro, Phys. Plasmas, 19 052102 (2012).[0pt] [4] E. Hameiri, Phys. Plasmas, 10 2643 (2003).