Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods
NASA Technical Reports Server (NTRS)
Wu, S. T.
1988-01-01
Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.
Chatterjee, Dipankar; Amiroudine, Sakir
2011-02-01
A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative.
Magnetohydrodynamics (MHD) program evaluation
Not Available
1983-05-01
Conclusions and Recommendations: (1) Progress has been made in performance testing of virtually every critical MHD component and subsystem, except for seed regeneration. (2) No insurmountable technical barriers have been identified; however, the component tests have for the most part been of short duration and, in most instances, were conducted under simulated coal-fired conditions. Long duration, coal-fired integrated tests of the MHD power train and of the HRSR subsystem are required to demonstrate system operability and durability. (3) It would appear most appropriate that the first series of complete power train and HRSR tests be conducted at the 50 MW/sub t/ level. The major objectives of these tests should be to verify predicted performance and to show system operability and durability for a period of at least 2000 hours. (4) Assuming successful 50 MW/sub t/ duration tests, a 150 MW/sub t/ completely integrated (topping and bottoming cycles) utility demonstration test is then suggested (3:1 scale-up). (5) The final development step would involve the fabrication of a commercial size plant at a power level of 500 MW/sub t/ or greater. (6) The ultimate adoption of MHD as a means for electric power generation will not be solely determined by its technical performance; the economic climate and projections at the time the technology is mature will strongly influence utility decisions. (7) Estimated capital costs of early commercial MHD plants seem to range from 10% to 30% greater than those for PCF plants with scrubbers. However, because of the higher inherent efficiency of MHD relative to PCF plants (50% vs 35%), the cost of electric power (COE) from an MHD system can nevertheless be competitive for an appropriately broad range of economic scenarios. (8) Finally, it is recognized that a major investment will be necessary to bring the technology to a state of commercial readiness.
Magnetohydrodynamic (MHD) channel corner seal
Spurrier, Francis R.
1980-01-01
A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.
MHD (Magnetohydrodynamics) recovery and regeneration
McIlroy, R. A.; Probert, P. B.; Lahoda, E. J.; Swift, W. M.; Jackson, D. M.; Prasad, J.; Martin, J.; Rogers, C.; Ho, K. K.; Senary, M. K.; Lee, S.; Westinghouse Electric Corp., Pittsburgh, PA; Argonne National Lab., IL; Tennessee Univ., Tullahoma, TN . Space Inst.; Hudson Engineering; Babcock and Wilcox Co., Alliance, OH . Re
1988-10-01
A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.
Magnetohydrodynamic (MHD) driven droplet mixer
Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.
2004-05-11
A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.
Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Tesche, F.M.
1985-01-01
This paper summarizes a method to evaluate the possible effects of magnetohydrodynamic-electromagnetic pulse (MHD-EMP) on power systems. This method is based on the approach adapted to study the impact of geomagnetic storms on power systems. The paper highlights the similarities and differences between the two phenomena. Also presented are areas of concern which are anticipated from MHD-EMP on the overall system operation. 12 refs., 1 fig.
A kinetic-MHD model for low frequency phenomena
Cheng, C.Z.
1991-07-01
A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter {tau} and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented.
Diagnostic development and support of MHD (magnetohydrodynamics) test facilities
Not Available
1989-07-01
Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.
Explosively-driven magnetohydrodynamic (MHD) generator studies
Agee, F.J.; Lehr, F.M.; Vigil, M.; Kaye, R.; Gaudet, J.; Shiffler, D.
1995-08-01
Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.
MHD (magnetohydrodynamics) instabilities in simple plasma configuration
Manheimer, W.M.; Lashmore-Davies, C.
1984-01-01
This work provides what, we hope, is a relatively simple, self contained description of MHD instabilities in plasmas with simple configurations. By simple configuration, we mean a plasma in which all quantities vary in only one spatial direction. We deal with such plasmas here because we want to emphasize the basic physics of MHD instabilities. Although some fusion devices are inherently two or three dimensional in nature, there are others, specifically tokamaks and reversed field pinches which are, to good approximation, one dimensional. Also, these devices both display a wealth of complex MHD activity which can be fruitfully discussed. One deceptive aspect of MHD instabilities is that the simplest ones are extremely easy to understand. However more complicated instabilities, for instance in a plasma where both an axial and azimuthal field are present are much more difficult to visualize; but they are also much more interesting. This work is divided into two parts. Chapters 2-9 describe linear theory and chapters 10-15 describe the nonlinear theory. The latter part is naturally much more speculative than the former because less is known about nonlinear theory.
Barnes, P.R.; Tesche, F.M.; McConnell, B.W.; Vance, E.F.
1993-09-01
A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic-electromagnetic pulse (MHD-EMP). MHD-EMP is similar to solar geomagnetic storms in its global and low frequency (less than 1 Hz) nature except that it can be more intense with a shorter duration. It will induce quasi-dc currents in long lines. The MHD-EMP induced currents may cause large voltage fluctuations and severe harmonic distortion in commercial electric power systems. Several MHD-EMP coupling models for predicting the induced current on a wide variety of conducting structures are described, various simulation concepts are summarized, and the results from several MHD-EMP tests are presented. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building, and the commercial power harmonics and voltage swings must be addressed. It is found that facilities can be protected against MHD-EMP by using methods which are consistent with standard engineering practices. MHD-EMP Interaction Analysis, Power Line Model, MHD-EMP Protection Guidelines, Transformer Test.
Performance characteristics of an MHD (Magnetohydrodynamic) pilot plant electrostatic precipitator
NASA Astrophysics Data System (ADS)
Lindner, J. S.; Jang, P. R.; Okhuysen, W. P.; Holt, J. K.
In magnetohydrodynamic (MHD) power generation, a seed material, normally K2CO3, is added to enhance the conductivity of the coal-fired gas stream. The plasma is passed through a magnetic field and electricity is produced by the Hall effect. Future large scale MHD facilities are expected to be more efficient than conventional coal-fired power plants not only because of the dc electricity produced but also from increased heat recovery owing to the large (3000 K) combustion temperatures employed. There is; however, a finite cost for the seed material and the resulting K2SO4 particles (SO2 emissions are minimized by combination with seed potassium) must be collected, converted back to K2CO3 or KCO2H, and recycled back to the combustor. The performance characteristics of the MHD electrostatic precipitator (ESP) are therefore, of interest. We describe Mie scattering and electric field measurements on an MHD pilot scale ESP located at the Coal Fire Flow Facility (CFFF) at the University of Tennessee Space Institute. Results are reported for the determination of near-real-time collection efficiencies, the variation of the ESP performance with seed percentage, and initial studies on the extent of particle re-entrainment.
Characterization of Magnetohydrodynamic (MHD) Shock Sensor using Schlieren Imaging
NASA Astrophysics Data System (ADS)
Rockwell, Owen; Hargather, Michael
2013-11-01
Schlieren imaging is used to quantitatively determine the speed and pressure duration of a shock wave traveling through air. The high-speed quantitative schlieren images are then used to characterize a new magnetohydrodynamic (MHD) shock sensor. This device uses the air density and particle velocity changes across a shock wave to determine the shock velocity via the distortion of a magnetic field. Using Faraday's law of electromagnetic induction, the shock velocity and pressure can be interpreted from a change in potential across the electrodes within the device. This principle along with the assumption that the shock wave is traveling through the undisturbed air allows for the calculation of shock velocity. Piezoelectric pressure gauges are used for comparison to measure the pressure pulse magnitude and duration.
High-. beta. operation and MHD (magnetohydrodynamic) activity on TFTR
McGuire, K.
1990-04-01
Magnetohydrodynamic (MHD) activity within three zones (core, half- radius, and edge) of TFTR (Plasma Physics and Controlled Nuclear Fusion Research (1986), (IAEA, Vienna, 1987), Vol. 1, P. 51) tokamak plasmas are discussed. Near the core of the plasma column, sawteeth are often observed. Two types of sawteeth are studied in detail: one with complete, and the other with incomplete magnetic reconnection. Their characteristics are determined by the shape of the q profile. Near the half-radius the m/n = 3/2 and 2/1 resistive ballooning modes are found to correlate with a beta collapse. The pressure and the pressure gradient at the mode rational surface are found to play an important role in stability. MHD activity is also studied at the plasma edge during limiter H-modes. The Edge Localized Mode (ELMs) are found to have a precursor mode with a frequency between 50--200 kHz and a mode number m/n = 1/0. The mode does not show a ballooning structure. While these instabilities have been studied on many other machines, on TFTR the studies have been extended to high pressure (plasma pressure greater than 4 {times} 10{sup 5} Pa) and low collisionality. 16 refs., 3 figs.
Tesche, F.M. , Dallas, TX ); Barnes, P.R. ); Meliopoulos, A.P.S. . Dept. of Electrical Engineering)
1992-02-01
This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth's surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.
Tesche, F.M.; Barnes, P.R.; Meliopoulos, A.P.S.
1992-02-01
This report discusses the effects of the late-time high-altitude electromagnetic pulse (HEMP) on electrical transmission and distribution (T&D) systems. This environment, known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), is a very slowly varying electric field induced in the earth`s surface, similar to the field induced by a geomagnetic storm. It can result in the flow of a quasi-dc current in grounded power lines and in the subsequent magnetic saturation of transformers. This saturation, in turn, causes 6-Hz harmonic distortion and an increase in the reactive power required by generation facilities. This report analyzes and discusses these phenomena. The MHD-EMP environment is briefly discussed, and a simplified form of the earth-induced electric field is developed for use in a parametric study of transmission line responses. Various field coupling models are described, and calculated results for the responses of both transmission- and distribution-class power lines are presented. These calculated responses are compared with measurements of transformer operation under dc excitation to infer the MHD-EMP response of these power system components. It is found that the MHD-EMP environment would have a marked effect on a power system by inducing up to several hundreds of amperes of quasi-dc current on power lines. These currents will cause transformers to saturate which could result in excessive harmonic generation, voltage swings, and voltage suppression. The design of critical facilities which are required to operate during and after MHD-EMP events will have to be modified in order to mitigate the effects of these abnormal power system conditions.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
A high current density DC magnetohydrodynamic (MHD) micropump.
Homsy, Alexandra; Koster, Sander; Eijkel, Jan C T; van den Berg, Albert; Lucklum, F; Verpoorte, E; de Rooij, Nico F
2005-04-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-microm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined frit-like structure that connects the pumping channel to side reservoirs, where platinum electrodes are located. Current densities up to 4000 A m(-2) could be obtained without noticeable Joule heating in the system. The pump performance was studied as a function of current density and magnetic field intensity, as well as buffer ionic strength and pH. Bead velocities of up to 1 mm s(-1) (0.5 microL min(-1)) were observed in buffered solutions using a 0.4 T NdFeB permanent magnet, at an applied current density of 4000 A m(-2). This pump is intended for transport of electrolyte solutions having a relatively high ionic strength (0.5-1 M) in a DC magnetic field environment. The application of this pump for the study of biological samples in a miniaturized total analysis system (microTAS) with integrated NMR detection is foreseen. In the 7 T NMR environment, a minimum 16-fold increase in volumetric flow rate for a given applied current density is expected.
Analytical investigation of critical MHD phenomena
NASA Technical Reports Server (NTRS)
1981-01-01
Development and analysis of schemes for suppression of the startup overvoltage transient in the AEDC High Performance Demonstration Experiment (HPDE), analysis of performance enhancement due to electrode voltage drop reduction by use of pyrolytic graphites in the HPDE, prediction of optimal loading schemes for the HPDE, prediction of PHDE performance with a diagonal electrical connection, and predictions of the likelihood and effects of axial current leakage between adjacent electrodes in the HPDE are reviewed. Simulations of tests at the AEDC/HPDE with STD Research Corporation multidimensional and time dependent computer codes provided additional validation for the computer codes and shed light on physical mechanisms which govern performance and durability of MHD power generators. The magnetoaerothermal effect was predicted by STD Research Corporation to have a significant effect on the HPDE/MHD generator performance at high interaction.
Magnetogasdynamic Phenomena in Pulsed MHD Flows.
1979-10-01
r D-A079 919 STD RESEARCH CORP ARCADIA CALIF F/a 20/9 VA NETOGASDYNAMIC PHENODE’A IN PULSED MHD FLOWS.(U) OCT 79 D A OLIVER, T F SWEAN. D M MARKHAN...N00014-77-C-0574 UNCLASSIFIED STD -UP-002-77-1 NL ".’ rnunnnnunnnnSllflflflflflflf lllll /////IlEEEEE//!i *fl///////lfl l I/fflIEN I2) STD -UP-002-77-1...DEMETRIADES OCTOBER 1979 --A li JTlrSUMMARY REPORT FOR THE PERIOD 1 OCTOBER 1978 THROUGH 30 SEPTEMBER 1979 STD RESEARCH CORPORATION ARCADIA, CA S1006 PREPARED
Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Vance, E.F. , Fort Worth, TX )
1992-03-01
A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.
Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants
NASA Technical Reports Server (NTRS)
Owens, W.; Berg, R.; Murthy, R.; Patten, J.
1981-01-01
A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2010-01-01
This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.
MHD (magnetohydrodynamic) undersea propulsion: A novel concept with renewed interest
Doss, E.D.; Geyer, H.K. ); Roy, G.D. )
1990-01-01
This paper discusses the reasons for the national and international renewed interest in the concept of MHD seawater propulsion. The main advantages of this concept are presented, together with some of the technical challenges that need to be overcome to achieve reliability, performance, and stealth. The paper discusses in more detail some of the technical issues and loss mechanisms influencing the thruster performance in terms of its electrical efficiency. Among the issues discussed are the jet losses and nozzle efficiency. Ohmic losses and frictional losses inside the thruster. Also discussed are the electrical end losses caused by the fringing magnetic field near the end of the electrodes. It has been shown that the frictional and end losses can have strong adverse effects on the thruster performance. Furthermore, a parametric study has been performed to investigate the effects of several parameters on the performance of the MHD thrusters. Those parameters include the magnetic field, thruster diameter, all roughness, flow velocity, and electrical load factor. The results of the parametric study indicate that the thruster efficiency increases with the strength of the magnetic field and thruster diameter, and decreases with the wall roughness and the flow velocity. 8 refs., 8 figs.
Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
Guazzotto, L.; Betti, R.
2011-09-15
Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.
Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
NASA Astrophysics Data System (ADS)
Guazzotto, L.; Betti, R.
2011-09-01
Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.
NASA Technical Reports Server (NTRS)
Wu, S. T.
1987-01-01
Theoretical and numerical modeling of solar activity and its effects on the solar atmosphere within the context of magnetohydrodynamics were examined. Specifically, the scientific objectives were concerned with the physical mechanisms for the flare energy build-up and subsequent release. In addition, transport of this energy to the corona and solar wind was also investigated. Well-posed, physically self-consistent, numerical simulation models that are based upon magnetohydrodynamics were sought. A systematic investigation of the basic processes that determine the macroscopic dynamic behavior of solar and heliospheric phenomena was conducted. A total of twenty-three articles were accepted and published in major journals. The major achievements are summarized.
Barnes, P.R.; Tesche, F.M.; Vance, E.F.
1992-03-01
A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth`s magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.
Nonlinear tearing mode study using the almost ideal magnetohydrodynamics (MHD) constraint
Ren, C.; Callen, J.D.; Jensen, T.H.
1998-12-31
The tearing mode is an important resistive magnetohydrodynamics (MHD) mode. It perturbs the initial equilibrium magnetic flux surfaces through magnetic field line reconnection to form new flux surfaces with magnetic islands. In the study of the tearing mode, usually the initial equilibria are one dimensional with two ignorable coordinates and the perturbed equilibria are two dimensional with one ignorable coordinate. The tearing mode can be linearly unstable and its growth saturates at a fine amplitude. The neoclassical tearing mode theory shows that the mode can be nonlinearly driven by the bootstrap current even when it is linearly stable to the classical tearing mode. It is important to study the nonlinear behavior of the tearing mode. As an intrinsically nonlinear approach, the use of the almost ideal MHD constraint is suited to study the nonlinear properties of the tearing mode. In this paper, as a validation of the method, the authors study two characteristics of the tearing mode using the almost ideal MHD constraint: (1) the linear stability condition for the initial one dimensional equilibrium; and (2) the final saturation level for the unstable case. In this work, they only consider the simplest case where no gradient of pressure or current density exists at the mode resonant surface.
NASA Astrophysics Data System (ADS)
Walker, A. D. M.
2014-12-01
Magnetohydrodynamic (MHD) waves in the solar wind and magnetosphere are propagated in a medium whose velocity is comparable to or greater than the wave velocity and which varies in both space and time. In the approximation where the scales of the time and space variation are long compared with the period and wavelength, the ray-tracing equations can be generalized and then include an additional first-order differential equation that determines the variation of frequency. In such circumstances the wave can exchange energy with the background: wave energy is not conserved. In such processes the wave action theorem shows that the wave action, defined as the ratio of the wave energy to the frequency in the local rest frame, is conserved. In this paper we discuss ray-tracing techniques and the energy exchange relation for MHD waves. We then provide a unified account of how to deal with energy transport by MHD waves in non-uniform media. The wave action theorem is derived directly from the basic MHD equations for sound waves, transverse Alfvén waves, and the fast and slow magnetosonic waves. The techniques described are applied to a number of illustrative cases. These include a sound wave in a medium undergoing a uniform compression, an isotropic Alfvén wave in a steady-state shear layer, and a transverse Alfvén wave in a simple model of the magnetotail undergoing compression. In each case the nature and magnitude of the energy exchange between wave and background is found.
Development of materials for open-cycle magnetohydrodynamics (MHD): ceramic electrode. Final report
Bates, J.L.; Marchant, D.D.
1986-09-01
Pacific Northwest Laboratory, supported by the US Department of Energy, developed advanced materials for use in open-cycle, closed cycle magnetohydrodynamics (MHD) power generation, an advanced energy conversion system in which the flow of electrically conducting fluid interacts with an electric field to convert the energy directly into electricity. The purpose of the PNL work was to develop electrodes for the MHD channel. Such electrodes must have: (1) electrical conductivity above 0.01 (ohm-cm)/sup -1/ from near room temperature to 1900/sup 0/K, (2) resistance to both electrochemical and chemical corrosion by both slag and potassium seed, (3) resistance to erosion by high-velocity gases and particles, (4) resistance to thermal shock, (5) adequate thermal conductivity, (6) compatibility with other channel components, particularly the electrical insulators, (7) oxidation-reduction stability, and (8) adequate thermionic emission. This report describes the concept and development of high-temperature, graded ceramic composite electrode materials and their electrical and structural properties. 47 refs., 16 figs., 13 tabs.
Magnetohydrodynamic power generation
NASA Technical Reports Server (NTRS)
Smith, J. L.
1984-01-01
Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.
Advances in Simulation of Wave Interaction with Extended MHD Phenomena
Batchelor, Donald B; Abla, Gheni; D'Azevedo, Ed F; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, Joshua; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Foley, S.; Fu, GuoYong; Harvey, R. W.; Jaeger, Erwin Frederick; Jardin, S. C.; Jenkins, T; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; Lynch, Vickie E; McCune, Douglas; Ramos, J.; Schissel, D.; Schnack,; Wright, J.
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Batchelor, Donald B; D'Azevedo, Eduardo; Bateman, Glenn; Bernholdt, David E; Bonoli, P.; Bramley, Randall B; Breslau, Joshua; Elwasif, Wael R; Foley, S.; Jaeger, Erwin Frederick; Jardin, S. C.; Klasky, Scott A; Kruger, Scott E; Ku, Long-Poe; McCune, Douglas; Ramos, J.; Schissel, David P; Schnack, Dalton D
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Integrated Physics Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Batchelor, Donald B; D'Azevedo, Eduardo; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Fu, GuoYong; Harvey, R. W.; Houlberg, Wayne A; Jaeger, Erwin Frederick; Jardin, S. C.; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; McCune, Douglas; Schissel, D.; Schnack, D.; Wright, J. C.
2007-06-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP).
Observation of finite-. beta. MHD phenomena in tokamaks
McGuire, K.M.
1984-09-01
Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1 internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.
Analytical investigation of critical phenomena in MHD power generators
NASA Technical Reports Server (NTRS)
1980-01-01
Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the U.S. U-25 Experiment, are analyzed. The performance of a NASA specified 500 MW(th) flow train is analyzed. Critical phenomena analyzed include: Hall voltage overshoots; optimal load schedules; parametric dependence of the electrode voltage drops; boundary layer behavior; near electrode phenomena with finite electrode segmentation; current distribution in the end regions; scale up rules; optimum Mach number distribution; and the effects of alternative cross sectional shapes.
NASA Astrophysics Data System (ADS)
Kalteh, M.; Ghorbani, S.; Khademinejad, T.
2016-05-01
An axisymmetric magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a fluid over a slender cylinder are investigated numerically. The effects of viscous dissipation, thermal radiation, and surface transverse curvature are taken into account in the simulations. For this purpose, the governing partial differential equations are transformed to ordinary differential equations by using appropriate similarity transformations. The resultant ordinary differential equations along with appropriate boundary conditions are solved by the fourth-order Runge-Kutta method combined with the shooting technique. The effects of various parameters on the velocity and temperature profiles, local skin friction coefficient, and Nusselt number are analyzed.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.
NASA Technical Reports Server (NTRS)
Riggins, David W.
2002-01-01
The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet
NASA Technical Reports Server (NTRS)
Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.
1981-01-01
A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.
NASA Astrophysics Data System (ADS)
Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.
2014-12-01
We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.
NASA Technical Reports Server (NTRS)
1981-01-01
The estimated plant capital cost for a coal fired 200 MWE electric generating plant with open cycle magnetohydrodynamics is divided into principal accounts based on Federal Energy Regulatory Commision account structure. Each principal account is defined and its estimated cost subdivided into identifiable and major equipment systems. The cost data sources for compiling the estimates, cost parameters, allotments, assumptions, and contingencies, are discussed. Uncertainties associated with developing the costs are quantified to show the confidence level acquired. Guidelines established in preparing the estimated costs are included. Based on an overall milestone schedule related to conventional power plant scheduling experience and starting procurement of MHD components during the preliminary design phase there is a 6 1/2-year construction period. The duration of the project from start to commercial operation is 79 months. The engineering phase of the project is 4 1/2 years; the construction duration following the start of the man power block is 37 months.
Lattice Boltzmann model for simulation of magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William
1991-01-01
A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.
Lattice Boltzmann model for simulation of magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William
1991-01-01
A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.
Matsumoto, R.; Tajima, T.; Kaisig, M.; Shibata, K.; Ishido, Y.; Tsuneta, S.; Kawai, G; Kurokawa, H.; Akioka, M.; Acton, L.; Strong, K.; Nitta, N.
1992-01-01
The soft X-ray telescope on the Yohkoh mission enabled us to observe the evolution of emerging flux regions (EFR) in coronal X-rays with high spatial and temportal resolution. Futhermore, we now have enough computing capability to perform three-dimensional MHD simulation of EFRs with sufficient spacial resolution to study details of the flux emergence process. These new tools provide the opportunity to investigate the physics involved in the formation of coronal loops in much more detail. We carried out 3D MHD simulations of emerging magnetic flux regions under various initial conditions; (1) a horizontal magnetic flux sheet, (2) a bundle of horizontal flux tubes, and (3) a flux sheet with sheared magnetic fields. Numerical results show that coronal magnetic loops are formed due to the enhanced bouyancy resulting from gas precipitating along magnetic field lines. The interchange modes help to produce a fine fibrous structure perpendicular to the magnetic field direction in the linear stage, while the undular modes determine the overall loop structure. We observe in 3D simulations that during the ascendance of loops the bundle of flux tubes, or even the flux sheet, developes into dense filaments pinched between magnetic loops. We also find that magnetic field lines are twisted by the vortex motion produced by the horizontal expansion of magnetic loops. Our numerical results may explain the observed signatures such as (1) the spacial relation between soft X-ray loops and H[alpha] arch filaments obtained by coordinated observation between Yohkoh and ground-based observatories (Kawai et al. 1992), (2) the rate of increase in size of soft X-ray loops in EFRs (Ishido et al. 1992), (3) emergence of twisted magnetic loops, and (4) the threshold flux for formation of chromospheric arch filament systems (AFS).
Fast Soft X-ray Images of MHD Phenomena in NSTX
C.E. Bush, B.C. Stratton, J. Robinson, L.E. Zakharov, E. D. Fredrickson, D. Stutman, K. Tritz
2008-07-21
A variety of MHD phenomena have been observed on NSTX. Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and PIN diode arrays for soft x-ray emission from the plasma core. Data reported here are from an unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a CCD chip, of light resulting from conversion of soft x-rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot), and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and ELMs. New data including modes with frequency > 90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and PIN diode array results.
Transient Phenomena of Disk MHD Generator due to Change of Load Resistance
NASA Astrophysics Data System (ADS)
Koka, Hidetoshi; Okuno, Yoshihiro; Yamasaki, Hiroyuki
Results of experimental study on transient phenomena of the closed cycle disk MHD generator are described in this paper. The transient phenomena were caused by a step-like change of load resistance during a test time of the shock-tube driven disk MHD generator. The load resistance was changed by using an IGBT (Insulated Gate Bipolar Transistor) installed in a load circuit. When the load resistance was changed from 0.096Ω to 2.5Ω, an overshoot of the Hall output voltage and of the Hall electric field was observed, and a large fluctuation of static pressure was also observed. At the same time, a spike-like increase of cesium recombination continuum and line spectrum appeared just after the load change. Results of the quasi-one dimensional numerical simulation have indicated that the observed overshoot was caused by the following phenomena: 1) a steep reduction of the Hall current and a steep increase in both the Faraday current and the electrical conductivity, and 2) a slow reduction of gas velocity due to the enhanced retarding force. Furthermore, the measured spike-like increase of radiation intensity was ascribed to an increase of electron temperature and electron number density by a steep increase of Joule heating.
Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump.
Wang, Pei-Jen; Chang, Chia-Yuan; Chang, Ming-Lang
2004-07-30
MHD micro-pumps circumvent the wear and fatigue caused by high pressure-drop across the check valves of mechanical micro-pumps in micro-fluidic systems. Early analyses of the fluid flow for MHD micro-pumps were mostly made possible by the Poiseuille flow theory; however, this conventional laminar approach cannot illustrate the effects of various channel sizes and shapes. This paper, therefore, presents a simplified MHD flow model based upon steady state, incompressible and fully developed laminar flow theory to investigate the characteristics of a MHD pump. Inside the pump, flowing along the channel is the electrically conducting fluid flowing driven by the Lorentz forces in the direction perpendicular to both dc magnetic field and applied electric currents. The Lorentz forces were converted into a hydrostatic pressure gradient in the momentum equations of the MHD channel flow model. The numerical simulations conducted with the explicit finite difference method show that the channel dimensions and the induced Lorentz forces have significant influences on the flow velocity profile. Furthermore, the simulation results agree well with the experimental results published by other researchers.
MHD Modelling of Flow Phenomena during the Impulse Plasma Deposition Process
Rabinski, M.; Zdunek, K.
2008-03-19
The paper presents recent computational studies of plasma dynamics in a coaxial accelerator used in surface engineering for Impulse Plasma Deposition (IPD). In our earlier studies we proposed a schematic pattern of a discharge region and a physical model of dynamic phenomena in the IPD accelerator with a tubular external electrode. The simplified snow plow code of our previous studies assumes that all the swept up mass is compressed into an infinitely thin layer immediately behind the shock. In the presented work the complete two-dimensional two-fluid magnetohydrodynamic model has been applied to investigate the sweeping of the working gas by the moving layer as well as the details of phenomena that take place behind a current sheet.
MHD Modelling of Flow Phenomena during the Impulse Plasma Deposition Process
NASA Astrophysics Data System (ADS)
Rabiński, M.; Zdunek, K.
2008-03-01
The paper presents recent computational studies of plasma dynamics in a coaxial accelerator used in surface engineering for Impulse Plasma Deposition (IPD). In our earlier studies we proposed a schematic pattern of a discharge region and a physical model of dynamic phenomena in the IPD accelerator with a tubular external electrode. The simplified snow plow code of our previous studies assumes that all the swept up mass is compressed into an infinitely thin layer immediately behind the shock. In the presented work the complete two-dimensional two-fluid magnetohydrodynamic model has been applied to investigate the sweeping of the working gas by the moving layer as well as the details of phenomena that take place behind a current sheet.
NASA Astrophysics Data System (ADS)
Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.
2016-02-01
As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.
NASA Astrophysics Data System (ADS)
Haiducek, J. D.; Welling, D. T.; Morley, S.; Ozturk, D. S.
2015-12-01
Magnetospheric substorms are events in which energy stored in the magnetotail is released into the auroral zone and into the downstream solar wind. Because of the complex, nonlinear, and possibly chaotic nature of the substorm energy release mechanism, it may be extremely difficult to forecast individual substorms in the near term. However, the inter-substorm timing (the amount of time elapsed between substorms) can be reproduced in a statistical sense, as was demonstrated by Freeman and Morley (2004) using their Minimal Substorm Model (MSM), a simple solar-wind driven model with the only free parameter being a recurrence time. The goal of the present work is to reproduce the observed distribution of inter-substorm timings with a global MHD model. The period of 1-31 January 2005 was simulated using the Space Weather Modeling Framework (SWMF), driven by solar wind observations. Substorms were identified in the model output by synthesizing surface magnetometer data and by looking for tailward-moving plasmoids. Substorms identified in the MHD model are then compared with observational data from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft, Los Alamos National Laboratory (LANL) geostationary satellite energetic particle data, and surface magnetometer data. For each dataset (MHD model and observations), we calculate the substorm occurrence rate, and for the MHD model we additionally calculate the timing error of the substorm onsets relative to the observed substorms. Finally, we calculate distribution functions for the inter-substorm timings in both the observations and the model. The results of this analysis will guide improvements to the MHD-based substorm model, including the use of Hall MHD and embedded particle in cell (EPIC), leading to a better reproduction of the observed inter-substorm timings and an improved understanding of the underlying physical processes. ReferencesM. P. Freeman and S. K. Morley. A minimal substorm model that
Experiments in Magnetohydrodynamics
ERIC Educational Resources Information Center
Rayner, J. P.
1970-01-01
Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)
Experiments in Magnetohydrodynamics
ERIC Educational Resources Information Center
Rayner, J. P.
1970-01-01
Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)
A nonvariational code for calculating three-dimensional MHD (magnetohydrodynamic) equilibria
Greenside, H.S.; Reiman, A.H.; Salas, A.
1987-09-01
Details are presented of the PIES code, which uses a nonvariational algorithm for calculating fully three-dimensional MHD equilibria. The MHD equilibrium equations are directly iterated in special coordinates to find self-consistent currents and magnetic fields for given pressure and current profiles and for a given outermost magnetic surface. Three important advantages of this approach over previous methods are the ease with which net current profiles can be imposed, the explicit treatment of resonances, and the ability to handle magnetic islands and stochastic field lines. The convergence properties of the code are studied for several axisymmetric and nonaxisymmetric finite-..beta.. equilibria that have magnetic surfaces. 36 refs., 14 figs., 3 tabs.
1992-03-01
DEPARTMENT OF ENERGY 3 . under contract DE-AC05-84OR21400 . . , r4 a 1 j/ Avq ’a: lter Code .DsI l S --\\ [’,I s t 7 -qn:’ jor TABLE OF CONTENTS...1 2. M HD-EM P EFFECTS ....................................................................................... 3 2.1. G...eneral ................................................................................................ 3 2.2. MHD-EMP Effects on Commercial Power
Design study of superconducting magnets for a combustion magnetohydrodynamic (MHD) generator
NASA Technical Reports Server (NTRS)
Thome, R. J.; Ayers, J. W.
1977-01-01
Design trade off studies for 13 different superconducting magnet systems were carried out. Based on these results, preliminary design characteristics were prepared for several superconducting magnet systems suitable for use with a combustion driven MHD generator. Each magnet generates a field level of 8 T in a volume 1.524 m (60 in.) long with a cross section 0.254 m x 0.254 m (10 in. x 10 in.) at the inlet and 0.406 m x .406 m (16 in. x 16 in.) at the outlet. The first design involves a racetrack coil geometry intended for operation at 4.2 K; the second design uses a racetrack geometry at 2.0 K; and the third design utilizes a rectangular saddle geometry at 4.2 K. Each case was oriented differently in terms of MHD channel axis and main field direction relative to gravity in order to evaluate fabrication ease. All cases were designed such that the system could be disassembled to allow for alteration of field gradient in the MHD channel by changing the angle between coils. Preliminary design characteristics and assembly drawings were generated for each case.
NASA Technical Reports Server (NTRS)
Leventis, Nicholas; Dass, Amala
2004-01-01
There are three kinds of body forces operating in electrolytic solutions in the magnetic field: the magnetohydrodynamic force F(sub B) (=i x B), the F(sub delB) force (approximately B(raised dot)gradB) and the F(sub delC) force (approximately |B|(sup 2)gradC). These three forces manifest themselves differently, depending on the experimental conditions. Thus, diamagnetic disc millielectrodes (e.g., Au) with their plane parallel to the flux density of the homogeneous magnetic field of an electromagnet yield convective behavior analogous to that observed with rotating electrodes; that response is controlled by F(sub B). The same electrodes placed in the inhomogeneous field of a strong permanent magnet yield also convective behavior that is controlled by both F(sub B) and F(sub delB). Finally, similarly sized millielectrodes made of permanent magnets (e.g., Au-coated Nd-Fe-B discs) yield diffusion-controlled behavior at conditions where a gold disc electrode shows behavior dominated by density gradient driven natural convection; in this case the predominant forces are both F(sub delB) and F(sub delC). Under open circuit conditions, ferromagnetic (i.e., magnetizable) millielectrodes (Co, Fe, Ni) dipped in corrosive solutions and placed in homogeneous magnetic fields yield mass-transfer phenomena that seem to be controlled by magnetophoresis.
NASA Technical Reports Server (NTRS)
Leventis, Nicholas; Dass, Amala
2004-01-01
There are three kinds of body forces operating in electrolytic solutions in the magnetic field: the magnetohydrodynamic force F(sub B) (=i x B), the F(sub delB) force (approximately B(raised dot)gradB) and the F(sub delC) force (approximately |B|(sup 2)gradC). These three forces manifest themselves differently, depending on the experimental conditions. Thus, diamagnetic disc millielectrodes (e.g., Au) with their plane parallel to the flux density of the homogeneous magnetic field of an electromagnet yield convective behavior analogous to that observed with rotating electrodes; that response is controlled by F(sub B). The same electrodes placed in the inhomogeneous field of a strong permanent magnet yield also convective behavior that is controlled by both F(sub B) and F(sub delB). Finally, similarly sized millielectrodes made of permanent magnets (e.g., Au-coated Nd-Fe-B discs) yield diffusion-controlled behavior at conditions where a gold disc electrode shows behavior dominated by density gradient driven natural convection; in this case the predominant forces are both F(sub delB) and F(sub delC). Under open circuit conditions, ferromagnetic (i.e., magnetizable) millielectrodes (Co, Fe, Ni) dipped in corrosive solutions and placed in homogeneous magnetic fields yield mass-transfer phenomena that seem to be controlled by magnetophoresis.
Zhu, X. S.; Wang, H. N.; Du, Z. L.; Fan, Y. L.
2013-05-10
We undertake an attempt to reconstruct the Sun's non-force-free magnetic field. The solar corona is often considered to be magnetohydrostatic. We solve the full MHD equations with a semi-realistic atmosphere model to attain this stationary state. Our method is tested with a Sun-like model which simulates the emergence of a magnetic flux rope passing from below the photosphere into the corona. Detailed diagnostics shows that our method can model the forced field more successfully than the optimization and potential method, but it still needs to be applied to real data.
Magnetohydrodynamic (MHD) flow of Cu-water nanofluid due to a rotating disk with partial slip
Hayat, Tasawar; Rashid, Madiha; Imtiaz, Maria; Alsaedi, Ahmed
2015-06-15
This paper investigates MHD steady flow of viscous nanofluid due to a rotating disk. Water is treated as a base fluid and copper as nanoparticle. Nanofluid fills the porous medium. Effects of partial slip, viscous dissipation and thermal radiation are also considered. Similarity transformations reduce the nonlinear partial differential equations to ordinary differential equations. Flow and heat transfer characteristics are computed by HAM solutions. Also computations for skin friction coefficient and Nusselt number are presented and examined for pertinent parameters. It is noted that higher velocity slip parameter decreases the radial and azimuthal velocities while temperature decreases for larger values of the thermal slip parameter. Also the rate of heat transfer enhances when the nanoparticle volume fraction increases.
NASA Technical Reports Server (NTRS)
Wang, A. H.; Wu, S. T.; Liu, Yang; Hathaway, D.
2008-01-01
We introduce a numerical simulation method for recovering the photospheric velocity field from the vector magnetograms. The traditional method is local correlation tracking (LCT) which is based on measuring the relative displacements of features in blocks of pixels between successive white-light images or magnetograms. Within this method, there are a variety of implementations. One of recently developed implementations is induction local correlation tracking (ILCT) as described by Welsch et al. (2004). They employ the normal component of magnetic induction equation as a constraint to assure consistent solutions. Our numerical method uses the fully three-dimensional MHD equations to recover the photospheric velocity field with individual vector magnetograms. We compare our method to the ILCT method using NOAA AR8210 as an example. The differences and similarities are discussed in detail.
MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS
Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I.; Downs, Cooper; Roussev, Ilia I.; Evans, Rebekah M.
2013-02-10
We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.
NASA Technical Reports Server (NTRS)
Wang, A. H.; Wu, S. T.; Liu, Yang; Hathaway, D.
2008-01-01
We introduce a numerical simulation method for recovering the photospheric velocity field from the vector magnetograms. The traditional method is local correlation tracking (LCT) which is based on measuring the relative displacements of features in blocks of pixels between successive white-light images or magnetograms. Within this method, there are a variety of implementations. One of recently developed implementations is induction local correlation tracking (ILCT) as described by Welsch et al. (2004). They employ the normal component of magnetic induction equation as a constraint to assure consistent solutions. Our numerical method uses the fully three-dimensional MHD equations to recover the photospheric velocity field with individual vector magnetograms. We compare our method to the ILCT method using NOAA AR8210 as an example. The differences and similarities are discussed in detail.
An innovative demonstration of high power density in a compact MHD (magnetohydrodynamic) generator
Schmidt, H.J.; Lineberry, J.T.; Chapman, J.N.
1990-06-01
The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible. 4 refs., 60 figs., 9 tabs.
ERIC Educational Resources Information Center
Kantrowitz, Arthur; Rosa, Richard J.
1975-01-01
Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)
ERIC Educational Resources Information Center
Kantrowitz, Arthur; Rosa, Richard J.
1975-01-01
Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)
Introduction to Modern Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Galtier, Sébastien
2016-10-01
Preface; Table of physical quantities; Part I. Foundations: 1. Introduction; 2. Magnetohydrodynamics; 3. Conservation laws; Part II. Fundamental Processes: 4. Magnetohydrodynamic waves; 5. Dynamo; 6. Discontinuities and shocks; 7. Magnetic reconnection; Part III. Instabilities and Magnetic Confinement: 8. Static equilibrium; 9. Linear perturbation theory; 10. Study of MHD instabilities; Part IV. Turbulence: 11. Hydrodynamic turbulence; 12. MHD turbulence; 13. Advanced MHD turbulence; Appendix 1. Solutions to the exercises; Appendix 2. Formulary; References; Index.
The Magnetohydrodynamics of Supersonic Gas Clouds: MHD Cosmic Bullets and Wind-swept Clumps
NASA Astrophysics Data System (ADS)
Jones, T. W.; Ryu, Dongsu; Tregillis, I. L.
1996-12-01
We report an extensive set of two-dimensional MHD simulations exploring the role and evolution of magnetic fields in the dynamics of supersonic plasma clumps. We examine the influence of both ambient field strength and orientation on the problem. Of those two characteristics, field orientation is far more important in the cases we have considered with β0 = Pg/Pb ≥ 1. That is due to the geometry-sensitivity of field stretching/amplification from large-scale shearing motions around the bullet When the ambient magnetic field is transverse to the bullet motion, even a very modest field, well below equipartition strength, can be amplified by field line stretching around the bullet within a couple of bullet crushing times so that Maxwell stresses become comparable to the ram pressure associated with the bullet motion. The possibility is discussed that those situations might lead to large, induced electric potentials capable of accelerating charged particles. When the ambient field is aligned to the bullet motion, on the other hand, reconnection-prone topologies develop that shorten the stretched field and release much of the excess energy it contains. In this geometry, the Maxwell stresses on the bullet never approach the ram pressure level. In both cases, however, the presence of a field with even moderate initial strength acts to help the flow realign itself around the bullet into a smoother, more laminar form. That reduces bullet fragmentation tendencies caused by destructive instabilities. Eddies seem less effective at field amplification than flows around the bullet, because fields within eddies tend to be expelled to the eddy perimeters. Similar effects cause the magnetic field within the bullet itself to be reduced below its initial value over time. For oblique fields, we expect that the transverse field cases modeled here are more generally relevant What counts is whether field lines threading the face of the bullet are swept around it in a fashion that folds
Three-dimensional fluid and electrodynamic modeling for MHD DCW channels
NASA Astrophysics Data System (ADS)
Liu, B. L.; Lineberry, J. T.; Schmidt, H. J.
1983-01-01
A three dimensional, numerical solution for modeling diagonal conducting wall (DCW) magnetohydrodynamic (MHD) generators is developed and discussed. Cross plane gasdynamic and electrodynamic profiles are computed considering coupled MHD flow and electrical phenomena. A turbulent transport model based on the mixing length theory is used to deal with wall roughness generated turbulence effects. The infinitely fine electrode segmentation formulation is applied to simplify the governing electrical equations. Calculations show the development of distorted temperature and velocity profiles under influence of magnetohydrodynamic interaction. Since both sidewall and electrode wall boundary losses are treated, the results furnish a realistic representation of MHD generator behavior.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Panitchob, S.
1986-01-01
Solar flare energy buildup at the photospheric level and energy release and transport into heliospheric space are examined using a composite MHD model. A four phase composite MHD model is described. An example demonstrating the applicability of the model is presented; the model was applied to the active region AR 2372. The limitations of this composite MHD model approach to analyzing solar flare energy buildup are discussed.
Magnetohydrodynamic (MHD) Magnet Modeling
1979-06-01
quench initiated. This peak temper- ature cannnt exceed the melting point of solder, approximately 480 K. The vol- tage drop across the resistive region...solder melting point . The best method of reducing the maximum temperatures in the magnet systems is to increase the spread of the normal region. The same...Tangent crossover points 5 Inlet field-. \\ Slope must exceed/’- 110T/mifrom -a 3either tangent S- .. .. . ...... __crossover point 4. Outlet 7u field •2_ E
Gyroscopic analog for magnetohydrodynamics
Holm, D.D.
1981-01-01
The gross features of plasma equilibrium and dynamics in the ideal magnetohydrodynamics (MHD) model can be understood in terms of a dynamical system which closely resembles the equations for a deformable gyroscope.
NASA Astrophysics Data System (ADS)
Benyo, Theresa Louise
Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sajid; Shehzad, Sabir Ali; Alsaedi, Ahmed
Mathematical analysis of magnetohydrodynamic (MHD) three-dimensional nonlinear convective flow of Maxwell nanofluid towards a stretching surface is made in this article. Characteristics of heat transfer are examined under thermal radiation, heat generation/absorption and prescribed heat flux condition. Nanofluid model includes Brownian motion and thermophoresis. Dimensional nonlinear expressions of momentum, energy and concentration are converted into dimensionless systems by invoking suitable similarity variables. A well-known homotopic technique is implemented for dimensionless expressions. Impact of different quantities on velocities, temperature and concentration are scrutinized graphically and discussed in detail. The expressions of Nusselt and Sherwood numbers are calculated and addressed comprehensively. It is also seen that thermal radiation parameter enhances the temperature field and heat transfer rate.
Boquist, Carl W.; Marchant, David D.
1978-01-01
A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.
Not Available
1988-03-15
This progress report of the Space Power MHD System project presents the accomplishments during 1 November 1987 through 31 January 1988. The scope of work covered encompasses the definition of an MHD power system conceptual design and development plan (Task 1). Progress included the following: Subcontracts were issued to the MIT Plasma Fusion Center and the Westinghouse R and D Center. The performance of the 100 MW 500 sec. power system was optimized and the design concept finalized, including mass and energy balances. Mass and cost estimates were prepared. A design review was held at DOE/PETC. This also included the review of the technical issues definition and of the R and D Plan. Following the review, a final iteration on the conceptual design was initiated. Formulation of the R and D Plan was continued. Preparation of the Task 1 R and D Report was initiated. 12 figs.
NASA Technical Reports Server (NTRS)
1981-01-01
Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.
Coherent Eigenmodes in Homogeneous MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2010-01-01
The statistical mechanics of Fourier models of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence is discussed, along with their relevance for dissipative magnetofluids. Although statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation, i.e., we have coherent structure. We use eigenanalysis of the modal covariance matrices in the probability density function to explain this phenomena in terms of `broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We provide examples from 2-D and 3-D magnetohydrodynamic simulations of homogeneous turbulence, and show new results from long-time simulations of MHD turbulence with and without a mean magnetic field
Efficient magnetohydrodynamic simulations on graphics processing units with CUDA
NASA Astrophysics Data System (ADS)
Wong, Hon-Cheng; Wong, Un-Hong; Feng, Xueshang; Tang, Zesheng
2011-10-01
Magnetohydrodynamic (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the best of the author's knowledge, the first implementation of MHD simulations entirely on GPUs with CUDA, named GPU-MHD, to accelerate the simulation process. GPU-MHD supports both single and double precision computations. A series of numerical tests have been performed to validate the correctness of our code. Accuracy evaluation by comparing single and double precision computation results is also given. Performance measurements of both single and double precision are conducted on both the NVIDIA GeForce GTX 295 (GT200 architecture) and GTX 480 (Fermi architecture) graphics cards. These measurements show that our GPU-based implementation achieves between one and two orders of magnitude of improvement depending on the graphics card used, the problem size, and the precision when comparing to the original serial CPU MHD implementation. In addition, we extend GPU-MHD to support the visualization of the simulation results and thus the whole MHD simulation and visualization process can be performed entirely on GPUs.
Anghaie, S.; Saraph, G.
1995-12-31
A nuclear driven magnetohydrodynamic (MHD) generator system is proposed for the space nuclear applications of few hundreds of megawatts. The MHD generator is coupled to a vapor-droplet core reactor that delivers partially ionized fissioning plasma at temperatures in range of 3,000 to 4,000 K. A detailed MHD model is developed to analyze the basic electrodynamics phenomena and to perform the design analysis of the nuclear driven MHD generator. An incompressible quasi one dimensional model is also developed to perform parametric analyses.
NASA Technical Reports Server (NTRS)
Wu, S. T.; Guo, W. P.
1997-01-01
We present results for an investigation of the interaction of a helmet streamer arcade and a helical flux-rope emerging from the sub-photosphere. These results are obtained by using a three-dimensional axisymmetric, time-dependent ideal magnetohydrodynamic (MHD) model. Because of the physical nature of the flux-rope, we investigate two types of flux-ropes; (1) high density flux-rope (i.e. flux-rope without cavity), and (2) low density flux rope (i.e. flux-rope with cavity). When the streamer is disrupted by the flux-rope, it will evolve into a configuration resembling the typical observed loop-like Coronal Mass Ejection (CMES) for both cases. The streamer-flux rope system with cavity is easier to be disrupted and the propagation speed of the CME is faster than the streamer-flux rope system without cavity. Our results demonstrate that magnetic buoyancy force plays an important role in disrupting the streamer.
Sialon Electrodes and Insulators for MHD Device
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1984-01-01
Rectangular magnetohydrodynamic (MHD) channel structure for electrical power generation designed using pure sialon ceramic for insulating portion of structure and metal-bearing sialon cermet for conducting portion.
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel
Magnetohydrodynamic fluidic system
Lee, Abraham P.; Bachman, Mark G.
2004-08-24
A magnetohydrodynamic fluidic system includes a reagent source containing a reagent fluid and a sample source containing a sample fluid that includes a constituent. A reactor is operatively connected to the supply reagent source and the sample source. MHD pumps utilize a magnetohydrodynamic drive to move the reagent fluid and the sample fluid in a flow such that the reagent fluid and the sample fluid form an interface causing the constituent to be separated from the sample fluid.
Interactions between magnetohydrodynamical discontinuities
Dai, W.; Woodward, P.R. )
1994-11-01
Interactions between magnetohydrodynamical (MHD) discontinuities are studied through numerical simulations for the set of one-dimensional MHD equations. The interactions include the impact of a shock on a contact discontinuity, the collision of two shocks, and the catchup of a shock over another shock. The shocks involved in the interactions may be very strong. Each shock in an interaction may be either a fast or a slow shock.
AC magnetohydrodynamic microfluidic switch
Lemoff, A V; Lee, A P
2000-03-02
A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.
MHD-to-PIC transition for modeling of conduction and opening in a plasma opening switch
NASA Astrophysics Data System (ADS)
Schumer, J. W.
2001-06-01
The plasma opening switch (POS) is a critical element of some inductive-energy-storage pulsed-power generators. Detailed understanding of plasma redistribution and thinning during the POS conduction phase can be gained through magnetohydrodynamic fluid (MHD) simulations. As space-charge separation and kinetic effects become important late in the conduction phase (beginning of the opening phase), MHD methods become invalid and particle-in-cell (PIC) methods should be used. In this article, the applicability of MHD techniques is extended into PIC-like regimes by including non-ideal MHD phenomena such as the Hall effect and resistivity. The feasibility of the PIC technique is likewise extended into high-density, low-temperature MHD-like regimes by using a novel numerical cooling algorithm. At an appropriate time, an MHD-to-PIC transition must be accomplished in order to accurately simulate the POS opening phase. The mechanics for converting MHD (MACH2) output into PIC (MAGIC2d) input are introduced, as are the transition criteria determining when to perform this conversion. To establish these transition criteria, side-by-side MHD and PIC simulations are presented and compared. These separate simulations are then complemented by a proof-of-principle MHD-to-PIC transition, thereby demonstrating this MHD-to-PIC technique as a potentially viable tool for the simulation of POS plasmas. Practical limitations of the MHD-to-PIC transition method and applicability of the transition criteria to hybrid fluid-kinetic simulations are discussed.
Dynamic multiscaling in magnetohydrodynamic turbulence.
Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul
2016-11-01
We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.
NASA Technical Reports Server (NTRS)
Kabin, K.; Hansen, K. C.; Gombosi, T. I.; Combi, M. R.; Linde, T. J.; DeZeeuw, D. L.; Groth, C. P. T.; Powell, K. G.; Nagy, A. F.
2000-01-01
Magnetohydrodynamics (MHD) provides an approximate description of a great variety of processes in space physics. Accurate numerical solutions of the MHD equations are still a challenge, but in the past decade a number of robust methods have appeared. Once these techniques made the direct solution of MHD equations feasible, a number of global three-dimensional models were designed and applied to many space physics objects. The range of these objects is truly astonishing, including active galactic nuclei, the heliosphere, the solar corona, and the solar wind interaction with planets, satellites, and comets. Outside the realm of space physics, MHD theory has been applied to such diverse problems as laboratory plasmas and electromagnetic casting of liquid metals. In this paper we present a broad spectrum of models of different phenomena in space science developed in the recent years at the University of Michigan. Although the physical systems addressed by these models are different, they all use the MHD equations as a unifying basis.
Variational formulation for weakly nonlinear perturbations of ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hirota, M.
2011-10-01
A new equation of motion that governs weakly nonlinear phenomena in ideal magnetohydrodynamics (MHDs) is derived as a natural extension of the well-known linearized equation of motion for the displacement field. This derivation is made possible by expanding the MHD Lagrangian explicitly up to third order with respect to the displacement of plasma, which necessitates an efficient use of the Lie series expansion. The resultant equation of motion (i.e. the Euler-Lagrange equation) includes a new quadratic force term which is responsible for various mode-mode coupling due to the MHD nonlinearity. The third-order potential energy serves to quantify the coupling coefficient among resonant three modes and its cubic symmetry proves the Manley-Rowe relations. In contrast to earlier works, the coupling coefficient is expressed only by the displacement vector field, which is already familiar in the linear MHD theory, and both the fixed and free boundary cases are treated systematically.
Marchant, David D.; Killpatrick, Don H.
1978-01-01
An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.
Tripathi, Dharmendra; Anwar Bég, O
2013-11-01
Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport.
NASA Technical Reports Server (NTRS)
1981-01-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
Legro, J.R.; Abi-Samra, N.C.; Tesche, F.M.
1985-05-01
In addition to the initial transients designated as fast transient high-altitude EMP (HEMP) and intermediate time EMP, electromagnetic signals are also perceived at times from seconds to hundreds of seconds after a high-altitude nuclear burst. This signal has been defined by the term magnetohydrodynamic-electromagnetic pulse (MHD-EMP). The MHD-EMP phenomena has been both detected in actual weapon tests and predicted from theoretical models. This volume documents a preliminary research effort to investigate the nature and coupling of the MHD-EMP environments to electric power systems, define the construction of approximate system response network models, and document the development of a unified methodology to assess equipment and systematic vulnerability. The MHD-EMP environment is compared to a qualitatively similar natural event, the electromagnetic environment produced by geomagnetic storms.
Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.
Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav
2015-02-13
Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.
Multi-region relaxed magnetohydrodynamics with flow
Dennis, G. R. Dewar, R. L.; Hole, M. J.; Hudson, S. R.
2014-04-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Magneto-Hydrodynamics Based Microfluidics
Qian, Shizhi; Bau, Haim H.
2009-01-01
In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890
Feasibility of MHD submarine propulsion
Doss, E.D. ); Sikes, W.C. )
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
NASA Technical Reports Server (NTRS)
Tsu, T. C.
1976-01-01
A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.
Solar Flares: Magnetohydrodynamic Processes
NASA Astrophysics Data System (ADS)
Shibata, Kazunari; Magara, Tetsuya
2011-12-01
This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 1032 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.
Magnetohydrodynamic Turbulence and the Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2016-01-01
Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.
Applying MHD Results to a Scramjet Vehicle
2007-02-12
1194, Reno, NV, January 2005. 10. Rosa, R.J., "Magnetohydrodynamic Energy Conversion", Hemisphere Publishing Corp., New York, 1968, Revised Printing ...Introduction and Background Projects Analytical and experimental studies of both electrohydrodynamic (EHD) and magnetohydrodynamic (MHD) application to...Institute, Tullahoma, TN, June 1981. 26. Vendell, E.W., "Free- Jet Electrical Conductivity Profiles of a Seeded MHD Combustion Plasma", 15"’ Symposium
NASA Astrophysics Data System (ADS)
Shaharuz Zaman, Azmanira; Aziz, Ahmad Sukri Abd; Ali, Zaileha Md
2017-09-01
The double slips effect on the magnetohydrodynamic boundary layer flow over an exponentially stretching sheet with suction/blowing, radiation, chemical reaction and heat source is presented in this analysis. By using the similarity transformation, the governing partial differential equations of momentum, energy and concentration are transformed into the non-linear ordinary equations. These equations are solved using Runge-Kutta-Fehlberg method with shooting technique in MAPLE software environment. The effects of the various parameter on the velocity, temperature and concentration profiles are graphically presented and discussed.
Parabolized Navier-Stokes Code for Computing Magneto-Hydrodynamic Flowfields
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B. (Technical Monitor); Tannehill, J. C.
2003-01-01
This report consists of two published papers, 'Computation of Magnetohydrodynamic Flows Using an Iterative PNS Algorithm' and 'Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm'.
NASA Technical Reports Server (NTRS)
Hoover, D. Q.
1976-01-01
Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.
NASA Astrophysics Data System (ADS)
Dawson, A. M.; Overlan, D.
The first volume of this conference on magnetohydrodynamics (MHD) for electrical power generation covers: (1) MHD pilot plants; (2) MHD generator experiments and modeling; (3) the performance of various MHD generator types; (4) MHD channel design considerations; (5) MHD channel materials considerations; (6) MHD system components, heat recovery and emissions; and (7) MHD oxidizers and inverters. The second volume deals with (8) MHD system magnets and combustors; (9) MHD field, flow and chemical processes; (10) MHD fluid dynamics; (11) MHD electrical power plant design; (12) current transfer and diagnostics; and (13) MHD power plant systems considerations.
Modeling open boundaries in dissipative MHD simulation
NASA Astrophysics Data System (ADS)
Meier, E. T.; Glasser, A. H.; Lukin, V. S.; Shumlak, U.
2012-04-01
The truncation of large physical domains to concentrate computational resources is necessary or desirable in simulating many natural and man-made plasma phenomena. Three open boundary condition (BC) methods for such domain truncation of dissipative magnetohydrodynamics (MHD) problems are described and compared here. A novel technique, lacuna-based open boundary conditions (LOBC), is presented for applying open BC to dissipative MHD and other hyperbolic and mixed hyperbolic-parabolic systems of partial differential equations. LOBC, based on manipulating Calderon-type near-boundary sources, essentially damp hyperbolic effects in an exterior region attached to the simulation domain and apply BC appropriate for the remaining parabolic effects (if present) at the exterior region boundary. Another technique, approximate Riemann BC (ARBC), is adapted from finite volume and discontinuous Galerkin methods. In ARBC, the value of incoming flux is specified using a local, characteristic-based method. A third commonly-used open BC, zero-normal derivative BC (ZND BC), is presented for comparison. These open BC are tested in several gas dynamics and dissipative MHD problems. LOBC are found to give stable, low-reflection solutions even in the presence of strong parabolic behavior, while ARBC are stable only when hyperbolic behavior is dominant. Pros and cons of the techniques are discussed and put into context within the body of open BC research to date.
Takamoto, Makoto; Inoue, Tsuyoshi
2011-07-10
We present a new numerical method of special relativistic resistive magnetohydrodynamics with scalar resistivity that can treat a range of phenomena, from non-relativistic to relativistic (shock, contact discontinuity, and Alfven wave). The present scheme calculates the numerical flux of fluid by using an approximate Riemann solver and electromagnetic field by using the method of characteristics. Since this scheme uses appropriate characteristic velocities, it is capable of accurately solving problems that cannot be approximated as ideal magnetohydrodynamics and whose characteristic velocity is much lower than the velocity of light. The numerical results show that our scheme can solve the above problems as well as nearly ideal MHD problems. Our new scheme is particularly well suited to systems with initially weak magnetic field and mixed phenomena of relativistic and non-relativistic velocity, for example magnetorotational instability in an accretion disk and super Alfvenic turbulence.
Chen, Yuxi; Tóth, Gábor; Cassak, Paul; ...
2017-09-18
Here, we perform a three-dimensional (3D) global simulation of Earth's magnetosphere with kinetic reconnection physics to study the flux transfer events (FTEs) and dayside magnetic reconnection with the recently developed magnetohydrodynamics with embedded particle-in-cell model (MHD-EPIC). During the one-hour long simulation, the FTEs are generated quasi-periodically near the subsolar point and move toward the poles. We also find the magnetic field signature of FTEs at their early formation stage is similar to a ‘crater FTE’, which is characterized by a magnetic field strength dip at the FTE center. After the FTE core field grows to a significant value, it becomesmore » an FTE with typical flux rope structure. When an FTE moves across the cusp, reconnection between the FTE field lines and the cusp field lines can dissipate the FTE. The kinetic features are also captured by our model. A crescent electron phase space distribution is found near the reconnection site. A similar distribution is found for ions at the location where the Larmor electric field appears. The lower hybrid drift instability (LHDI) along the current sheet direction also arises at the interface of magnetosheath and magnetosphere plasma. Finally, the LHDI electric field is about 8 mV/m and its dominant wavelength relative to the electron gyroradius agrees reasonably with MMS observations.« less
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
NASA Astrophysics Data System (ADS)
González, J. J.; Guzmán, F.
2015-12-01
In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Plasma relaxation and topological aspects in Hall magnetohydrodynamics
Shivamoggi, B. K.
2012-07-15
Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient {alpha} in the Hall MHD Beltrami condition turns out now to be proportional to the potential vorticity. The Hall MHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics if the Hall MHD Lagrange multiplier {beta} is taken to be proportional to the potential vorticity as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as potential vorticity lines in 2D hydrodynamics.
Modeling eruptive coronal magnetohydrodynamic systems with FLUX
NASA Astrophysics Data System (ADS)
Rachmeler, L. A.
In this dissertation I explore solar coronal energetic eruptions in the context of magnetic reconnection, which is commonly thought to be a required trigger mechanism for solar eruptions. Reconnection is difficult to directly observe in the corona, and current numerical methods cannot model reconnectionless control cases. Thus, it is not possible to determine if reconnection is a necessary component of these eruptions. I have executed multiple controlled simulations to determine the importance of reconnection for initiation and evolution of several eruptive systems using FLUX, a numerical model that uses the comparatively new fluxon technique. I describe two types of eruptions modeled with FLUX: a metastable confined flux rope theory for coronal mass ejection (CME) initiation, and symmetrically twisted coronal jets in a uniform vertical background field. In the former, I identified an ideal magnetohydrodynamic (MHD) instability that allows metastable twisted flux rope systems to suddenly lose stability and erupt even in the absence of reconnection, contradicting previous conjecture. The CME result is in contrast to the azimuthally symmetric coronal jet initiation model, where jet-like behavior does not manifest without reconnection. My work has demonstrated that some of the observed eruptive phenomena may be triggered by non-reconnective means such as ideal MHD instabilities, and that magnetic reconnection is not a required element in all coronal eruptions.
Generalized reduced magnetohydrodynamic equations
Kruger, S.E.
1999-02-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics.
Viscosity and Vorticity in Reduced Magneto-Hydrodynamics
Joseph, Ilon
2015-08-12
Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, D.H.; Thresh, H.R.
1980-06-24
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.
Isogeometric analysis in reduced magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Ratnani, A.; Sonnendrücker, E.
2012-01-01
Isogeometric analysis (IGA) consists of using computer-aided design (CAD) models defining the geometry of the computational domain using both B-splines and non-uniform rational B-splines (NURBS) to represent the unknowns that are the solution of a partial differential equation using a finite element principle. In this paper, we review the main ideas of IGA and apply it to a reduced magnetohydrodynamic (MHD) model that is used in tokamak simulations. This is a first step towards arbitrary high-order and smooth approximations of reduced MHD generalizing the Bézier splines approach of Czarny and Huysmans (2008 J. Comput. Phys. 227 7423-45).
An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system
Lee, A P; Lemoff, A V; McConaghy, C F; Miles, R R
1999-03-01
An AC Magnetohydrodynamic (MHD) micropump has been demonstrated in which the Lorentz force is used to propel an electrolytic solution along a microchannel etched in silicon. This micropump has no moving parts, produces a continuous (not pulsatile) flow, and is compatible with solutions containing biological specimens. micropump, using the Lorentz force as the pumping mechanism for biological analysis. The AC Magnetohydrodynamic (MHD) micropump investigated produces a continuous flow and allows for complex microchannel design.
Remarkable connections between extended magnetohydrodynamics models
Lingam, M. Morrison, P. J. Miloshevich, G.
2015-07-15
Through the use of suitable variable transformations, the commonality of all extended magnetohydrodynamics (MHD) models is established. Remarkable correspondences between the Poisson brackets of inertialess Hall MHD and inertial MHD (which has electron inertia, but not the Hall drift) and extended MHD (which has both effects) are established. The helicities (two in all) for each of these models are obtained through these correspondences. The commonality of all the extended MHD models is traced to the existence of two Lie-dragged 2-forms, which are closely associated with the canonical momenta of the two underlying species. The Lie-dragging of these 2-forms by suitable velocities also leads to the correct equations of motion. The Hall MHD Poisson bracket is analyzed in detail, the Jacobi identity is verified through a detailed proof, and this proof ensures the Jacobi identity for the Poisson brackets of all the models.
Compressible magnetohydrodynamic sawtooth crash
NASA Astrophysics Data System (ADS)
Sugiyama, Linda E.
2014-02-01
In a toroidal magnetically confined plasma at low resistivity, compressible magnetohydrodynamic (MHD) predicts that an m = 1/n = 1 sawtooth has a fast, explosive crash phase with abrupt onset, rate nearly independent of resistivity, and localized temperature redistribution similar to experimental observations. Large scale numerical simulations show that the 1/1 MHD internal kink grows exponentially at a resistive rate until a critical amplitude, when the plasma motion accelerates rapidly, culminating in fast loss of the temperature and magnetic structure inside q < 1, with somewhat slower density redistribution. Nonlinearly, for small effective growth rate the perpendicular momentum rate of change remains small compared to its individual terms ∇p and J × B until the fast crash, so that the compressible growth rate is determined by higher order terms in a large aspect ratio expansion, as in the linear eigenmode. Reduced MHD fails completely to describe the toroidal mode; no Sweet-Parker-like reconnection layer develops. Important differences result from toroidal mode coupling effects. A set of large aspect ratio compressible MHD equations shows that the large aspect ratio expansion also breaks down in typical tokamaks with rq =1/Ro≃1/10 and a /Ro≃1/3. In the large aspect ratio limit, failure extends down to much smaller inverse aspect ratio, at growth rate scalings γ =O(ɛ2). Higher order aspect ratio terms, including B˜ϕ, become important. Nonlinearly, higher toroidal harmonics develop faster and to a greater degree than for large aspect ratio and help to accelerate the fast crash. The perpendicular momentum property applies to other transverse MHD instabilities, including m ≥ 2 magnetic islands and the plasma edge.
NASA Astrophysics Data System (ADS)
Inoue, Satoshi
2016-12-01
In this paper, we summarize current progress on using the observed magnetic fields for magnetohydrodynamics (MHD) modeling of the coronal magnetic field and of solar eruptions, including solar flares and coronal mass ejections (CMEs). Unfortunately, even with the existing state-of-the-art solar physics satellites, only the photospheric magnetic field can be measured. We first review the 3D extrapolation of the coronal magnetic fields from measurements of the photospheric field. Specifically, we focus on the nonlinear force-free field (NLFFF) approximation extrapolated from the three components of the photospheric magnetic field. On the other hand, because in the force-free approximation the NLFFF is reconstructed for equilibrium states, the onset and dynamics of solar flares and CMEs cannot be obtained from these calculations. Recently, MHD simulations using the NLFFF as an initial condition have been proposed for understanding these dynamics in a more realistic scenario. These results have begun to reveal complex dynamics, some of which have not been inferred from previous simulations of hypothetical situations, and they have also successfully reproduced some observed phenomena. Although MHD simulations play a vital role in explaining a number of observed phenomena, there still remains much to be understood. Herein, we review the results obtained by state-of-the-art MHD modeling combined with the NLFFF.
Conservation of circulation in magnetohydrodynamics
Bekenstein; Oron
2000-10-01
We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices.
The classification of magnetohydrodynamic regimes of thermonuclear combustion
Remming, Ian S.; Khokhlov, Alexei M.
2014-10-10
Physical properties of magnetohydrodynamic (MHD) reaction fronts are studied as functions of the thermodynamic conditions, and the strength and orientation of the magnetic field in the unburned matter through which the fronts propagate. We determine the conditions for the existence of the various types of MHD reaction fronts and the character of the changes in physical quantities across these reaction fronts. The analysis is carried out in general for a perfect gas equation of state and a constant energy release, and then extended to thermonuclear reaction fronts in degenerate carbon-oxygen mixtures and degenerate helium in conditions typical of Type Ia supernova explosions. We find that as unburned matter enters perpendicular to a reaction front, the release of energy through burning generates shear velocity in the reacting gas that, depending on the type of reaction front, strengthens or weakens the magnetic field. In addition, we find that the steady-state propagation of a reaction front is impossible for certain ranges of magnetic field direction. Our results provide insight into the phenomena of MHD thermonuclear combustion that is relevant to the interpretation of future simulations of SN Ia explosions that have magnetic fields systematically incorporated.
Dynamo onset as a first-order transition: lessons from a shell model for magnetohydrodynamics.
Sahoo, Ganapati; Mitra, Dhrubaditya; Pandit, Rahul
2010-03-01
We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydrodynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number PrM and the magnetic Reynolds number ReM. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (PrM-1,ReM) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.
Multi-symplectic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Webb, G. M.; McKenzie, J. F.; Zank, G. P.; Zank
2014-10-01
A multi-symplectic formulation of ideal magnetohydrodynamics (MHD) is developed based on the Clebsch variable variational principle in which the Lagrangian consists of the kinetic minus the potential energy of the MHD fluid modified by constraints using Lagrange multipliers that ensure mass conservation, entropy advection with the flow, the Lin constraint, and Faraday's equation (i.e. the magnetic flux is Lie dragged with the flow). The analysis is also carried out using the magnetic vector potential Ã where α=Ã. d x is Lie dragged with the flow, and B=∇×Ã. The multi-symplectic conservation laws give rise to the Eulerian momentum and energy conservation laws. The symplecticity or structural conservation laws for the multi-symplectic system corresponds to the conservation of phase space. It corresponds to taking derivatives of the momentum and energy conservation laws and combining them to produce n(n-1)/2 extra conservation laws, where n is the number of independent variables. Noether's theorem for the multi-symplectic MHD system is derived, including the case of non-Cartesian space coordinates, where the metric plays a role in the equations.
Magnetohydrodynamic turbulence: Observation and experiment
Brown, M. R.; Schaffner, D. A.; Weck, P. J.
2015-05-15
We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.
Magnetohydrodynamic Turbulence and the Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2014-01-01
The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.
Magnetohydrodynamic turbulence: Observation and experimenta)
NASA Astrophysics Data System (ADS)
Brown, M. R.; Schaffner, D. A.; Weck, P. J.
2015-05-01
We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations EB(f ) . We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.
BOOK REVIEW: Magnetohydrodynamics of Plasma Relaxation
NASA Astrophysics Data System (ADS)
Connor, J. W.
1998-06-01
This monograph on magnetohydrodynamic (MHD) relaxation in plasmas by Ortolani and Schnack occupies a fascinating niche in the plasma physics literature. It is rare in the complex and often technically sophisticated subject of plasma physics to be able to isolate a topic and deal with it comprehensively in a mere 180 pages. Furthermore, it brings a refreshingly original and personal approach to the treatment of plasma relaxation, synthesizing the experiences of the two authors to produce a very readable account of phenomena appearing in such diverse situations as laboratory reversed field pinches (RFPs) and the solar corona. Its novelty lies in that, while it does acknowledge the seminal Taylor theory of relaxation as a general guide, it emphasizes the role of large scale numerical MHD simulations in developing a picture for the relaxation phenomena observed in experiment and nature. Nevertheless, the volume has some minor shortcomings: a tendency to repetitiveness and some omissions that prevent it being entirely self-contained. The monograph is divided into nine chapters, with the first a readable, `chatty', introduction to the physics and phenomena of relaxation discussed in the later chapters. Chapter 2 develops the tools for describing relaxation processes, namely the resistive MHD model, leading to a discussion of resistive instabilities and the stability properties of RFPs. This chapter demonstrates the authors' confessed desire to avoid mathematical detail with a rather simplified discussion of Δ' and magnetic islands; it also sets the stage for their own belief, or thesis, that numerical simulation of the non-linear consequences of the MHD model is the best approach to explaining the physics of relaxation. Nevertheless, in Chapter 3 they provide a reasonably good account and critique of one analytic approach that is available, and which is the commonly accepted picture for relaxation in pinches - the Taylor relaxation theory based on the conservation of
PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code
NASA Astrophysics Data System (ADS)
Price, Daniel J.; Wurster, James; Nixon, Chris; Tricco, Terrence S.; Toupin, Stéven; Pettitt, Alex; Chan, Conrad; Laibe, Guillaume; Glover, Simon; Dobbs, Clare; Nealon, Rebecca; Liptai, David; Worpel, Hauke; Bonnerot, Clément; Dipierro, Giovanni; Ragusa, Enrico; Federrath, Christoph; Iaconi, Roberto; Reichardt, Thomas; Forgan, Duncan; Hutchison, Mark; Constantino, Thomas; Ayliffe, Ben; Mentiplay, Daniel; Hirsh, Kieran; Lodato, Giuseppe
2017-09-01
Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.
Global Magnetohydrodynamic Modeling of the Solar Corona
NASA Technical Reports Server (NTRS)
Linker, Jon A.
2001-01-01
This report describes the progress made in the investigation of the solar corona using magnetohydrodynamic (MHD) simulations. Coronal mass ejections (CME) are believed to be the primary cause of nonrecurrent geomagnetic storms and these have been investigated through the use of three-dimensional computer simulation.
BOOK REVIEW: Nonlinear Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
MHD Energy Bypass Scramjet Engine
NASA Technical Reports Server (NTRS)
Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)
2001-01-01
Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several
Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines
NASA Astrophysics Data System (ADS)
Cole, Lord Kahil
A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two
Hall-magnetohydrodynamic turbulence with electron inertia
NASA Astrophysics Data System (ADS)
Martin, L. N.; Andres, N.; Dmitruk, P.; Gomez, D. O.
2013-12-01
The magnetohydrodynamic (one-fluid) model is often regarded as a reasonable description of the dynamics of a plasma. One-fluid models are useful in the context of large scale dynamics, but when a more detailed description is needed (for instance, when the physical context favors the development of small scales) it is most appropriate to consider two-fluid models. Within the framework of two-fluid MHD for a fully ionized hydrogen plasma, we study the effect of the Hall term and electron inertia in MHD turbulence, observing whether these effects change the energy cascade, the characteristic scales of the flow and the dynamics of global magnitudes, with particular interest in the dissipation processes. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics (RHMHD) and 2.5-D Hall-MHD including electron inertia are performed for different values of the ion and electron skin depth (controlling the impact of the Hall term and the electron inertia).
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
NASA Astrophysics Data System (ADS)
González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.
2015-12-01
We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
Shell models of magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Plunian, Franck; Stepanov, Rodion; Frick, Peter
2013-02-01
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfvén waves and the Hall effect.
Doss, E.D.; Sikes, W.C.
1992-09-01
This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.
Hypervelocity Plasmas with Strong MHD (Magnetohydrodynamic) Interactions.
1984-12-01
ARD-Ai5S 867 HYPERVELOCITY PLASMAS WITH STRONG NHD j/j (MAGNETOHYDRODYNANIC) INTERRCTIONS(U) STD RESEARCH CORP ARCADIA CA S T DEMETRIADES FT AL DEC...MIRCP RSLTO-TS HR NAINLBUEUO SADRS-16- -ArO’ mi -T7- (7 % STD RESEARCH CORPORATION POST OFFICE OX ’C’ ARC ADIA, CALIFORNIA 91006 LTf.LEPHONE! (213...Covered: 1 June 1983 -31 May 1984 December 1984 STD Research Corporation P.O. Box "’C" Arcadia, California 91006 Appi-u ’, 2 I~t or1 ’Pub I rege
MHD (Magnetohydrodynamic) Simulation of a Comet Magnetosphere.
1984-04-12
Rosenberg ATTN: Reading Roo Harvard University Princeton University Center for Astrophysics Princeton, New Jersey 08540 60 Garden Street Attn...Thomas Moore (SEL, R-43) Stevens Institute of Technology W. Bernstein Hoboken, Kew Jersey 07030 D. Williams ATTN: Z . Rosen G. Schmidt Sandia
Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.
2015-12-01
Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.
Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator
NASA Astrophysics Data System (ADS)
Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.
2015-09-01
The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.
Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)
2002-01-01
A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate
Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)
2002-01-01
A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate
Data assimilation for magnetohydrodynamics systems
NASA Astrophysics Data System (ADS)
Mendoza, O. Barrero; de Moor, B.; Bernstein, D. S.
2006-05-01
Prediction of solar storms has become a very important issue due to the fact that they can affect dramatically the telecommunication and electrical power systems at the earth. As a result, a lot of research is being done in this direction, space weather forecast. Magnetohydrodynamics systems are being studied in order to analyse the space plasma dynamics, and techniques which have been broadly used in the prediction of earth environmental variables like the Kalman filter (KF), the ensemble Kalman filter (EnKF), the extended Kalman filter (EKF), etc., are being studied and adapted to this new framework. The assimilation of a wide range of space environment data into first-principles-based global numerical models will improve our understanding of the physics of the geospace environment and the forecasting of its behaviour. Therefore, the aim of this paper is to study the performance of nonlinear observers in magnetohydrodynamics systems, namely, the EnKF.The EnKF is based on a Monte Carlo simulation approach for propagation of process and measurement errors. In this paper, the EnKF for a nonlinear two-dimensional magnetohydrodynamic (2D-MHD) system is considered. For its implementation, two software packages are merged, namely, the Versatile Advection Code (VAC) written in Fortran and Matlab of Mathworks. The 2D-MHD is simulated with the VAC code while the EnKF is computed in Matlab. In order to study the performance of the EnKF in MHD systems, different number of measurement points as well as ensemble members are set.
An MHD model of the earth's magnetosphere
NASA Technical Reports Server (NTRS)
Wu, C. C.
1985-01-01
It is pointed out that the earth's magnetosphere arises from the interaction of the solar wind with the earth's geomagnetic field. A global magnetohydrodynamics (MHD) model of the earth's magnetosphere has drawn much attention in recent years. In this model, MHD equations are used to describe the solar wind interaction with the magnetosphere. In the present paper, some numerical aspects of the model are considered. Attention is given to the ideal MHD equations, an equation of state for the plasma, the model as an initial- and boundary-value problem, the shock capturing technique, computational requirements and techniques for global MHD modeling, a three-dimensional mesh system employed in the global MHD model, and some computational results.
A photolithographic fabrication technique for magnetohydrodynamic micropumps
NASA Astrophysics Data System (ADS)
Kuenstner, Stephen; Baylor, Martha-Elizabeth
2014-03-01
Magnetohydrodynamic (MHD) devices use perpendicular electric and magnetic fields to exert a Lorentz body force on a conducting fluid. Miniaturized MHD devices have been used to create pumps, stirrers, heat exchangers, and microfluidic networks. Compared to mechanical micropumps, MHD micropumps are appealing because they require no moving parts, which simplifies fabrication, and because they are amenable to electronic control. This abstract reports the fabrication and testing of a centimeter-scale MHD pump using a thiol-ene/methacrylate-based photopolymer and mask-based photolithographic technique. Pumps like this one could simplify the fabrication of sophisticated optofluidic devices, including liquid-core, liquid cladding (L2) waveguides, which are usually created with PDMS using stamps, or etched into silicon wafers. The photolithographic technique demonstrated here requires only one masking step to create fluid channels with complex geometries.
Finite Larmor radius magnetohydrodynamics of the Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Huba, J. D.
1996-07-01
The evolution of the Rayleigh-Taylor instability is studied using finite Larmor radius (FLR) magnetohydrodynamic (MHD) theory. Finite Larmor radius effects are introduced in the momentum equation through an anisotropic ion stress tensor. Roberts and Taylor [Phys. Rev. Lett. 3, 197 (1962)], using fluid theory, demonstrated that FLR effects can stabilize the Rayleigh-Taylor instability in the short-wavelength limit (kLn≫1, where k is the wave number and Ln is the density gradient scale length). In this paper a linear mode equation is derived that is valid for arbitrary kLn. Analytic solutions are presented in both the short-wavelength (kLn≫1) and long-wavelength (kLn≪1) regimes, and numerical solutions are presented for the intermediate regime (kLn˜1). The long-wavelength modes are shown to be the most difficult to stabilize. More important, the nonlinear evolution of the Rayleigh-Taylor instability is studied using a newly developed two-dimensional (2-D) FLR MHD code. The FLR effects are shown to be a stabilizing influence on the Rayleigh-Taylor instability; the short-wavelength modes are the easiest to stabilize, consistent with linear theory. In the nonlinear regime, the FLR effects cause the ``bubbles and spikes'' that develop because of the Rayleigh-Taylor instability to convect along the density gradient and to tilt. Applications of this model to space and laboratory plasma phenomena are discussed.
Generic magnetohydrodynamic model at the Community Coordinated Modeling Center
NASA Astrophysics Data System (ADS)
Honkonen, I. J.; Rastaetter, L.; Glocer, A.
2016-12-01
The Community Coordinated Modeling Center (CCMC) at NASA Goddard Space Flight Center is a multi-agency partnership to enable, support and perform research and development for next-generation space science and space weather models. CCMC currently hosts nearly 100 numerical models and a cornerstone of this activity is the Runs on Request (RoR) system which allows anyone to request a model run and analyse/visualize the results via a web browser. CCMC is also active in the education community by organizing student research contests, heliophysics summer schools, and space weather forecaster training for students, government and industry representatives. Recently a generic magnetohydrodynamic (MHD) model was added to the CCMC RoR system which allows the study of a variety of fluid and plasma phenomena in one, two and three dimensions using a dynamic point-and-click web interface. For example students can experiment with the physics of fundamental wave modes of hydrodynamic and MHD theory, behavior of discontinuities and shocks as well as instabilities such as Kelvin-Helmholtz.Students can also use the model to experiments with numerical effects of models, i.e. how the process of discretizing a system of equations and solving them on a computer changes the solution. This can provide valuable background understanding e.g. for space weather forecasters on the effects of model resolution, numerical resistivity, etc. on the prediction.
Micromachined magnetohydrodynamic actuators and sensors
Lee, Abraham P.; Lemoff, Asuncion V.
2000-01-01
A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.
Scaling laws in magnetohydrodynamic turbulence
Campanelli, Leonardo
2004-10-15
We analyze the decay laws of the kinetic and magnetic energies and the evolution of correlation lengths in freely decaying incompressible magnetohydrodynamic (MHD) turbulence. Scale invariance of MHD equations assures that, in the case of constant dissipation parameters (i.e., kinematic viscosity and resistivity) and null magnetic helicity, the kinetic and magnetic energies decay in time as E{approx}t{sup -1}, and the correlation lengths evolve as {xi}{approx}t{sup 1/2}. In the helical case, assuming that the magnetic field evolves towards a force-free state, we show that (in the limit of large magnetic Reynolds number) the magnetic helicity remains constant, and the kinetic and magnetic energies decay as E{sub v}{approx}t{sup -1} and E{sub B}{approx}t{sup -1/2} respectively, while both the kinetic and magnetic correlation lengths grow as {xi}{approx}t{sup 1/2}.
Relativistic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito
2016-01-15
A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.
Stability of weak solutions to equations of magnetohydrodynamics with Lebesgue initial data
NASA Astrophysics Data System (ADS)
Fan, Jishan; Jiang, Song; Nakamura, Gen
We prove the existence, the uniqueness and the Lipschitz continuous dependence on the initial data of global weak solutions to equations of magnetohydrodynamics (MHD) with the initial data in the Lebesgue spaces.
Magnetohydrodynamic waves in coronal polar plumes.
Nakariakov, Valery M
2006-02-15
Polar plumes are cool, dense, linear, magnetically open structures that arise from predominantly unipolar magnetic footpoints in the solar polar coronal holes. As the Alfvén speed is decreased in plumes in comparison with the surrounding medium, these structures are natural waveguides for fast and slow magnetoacoustic waves. The simplicity of the geometry of polar plumes makes them an ideal test ground for the study of magnetohydrodynamic (MHD) wave interaction with solar coronal structures. The review covers recent observational findings of compressible and incompressible waves in polar plumes with imaging and spectral instruments, and interpretation of the waves in terms of MHD theory.
Comparison of Collisionless Shock Structures with the MHD Model
NASA Astrophysics Data System (ADS)
Choi, E.; Min, K. W.; Choi, C.; Nishikawa, K.; Lee, E.
2011-12-01
Shocks are ubiquitous in astrophysical plasmas from the planetary bow shocks, produced by the interaction of solar wind with planetary magnetic fields, to the shocks associated with supernova explosions and jets. Global morphologies of these shocks are described by magnetohydrodynamics (MHD) with the assumption of local thermal equilibrium, which may easily be reached only when collisions are frequent, and the resulting Rankine-Hugoniot shock jump conditions are applied to obtain the relationship between the upstream and downstream physical quantities. On the other hand, it is generally believed that collisions are infrequent in astrophysical plasmas, with the shock widths much smaller than the collisional mean free paths, and in fact, a variety of kinetic phenomena are seen at the shock fronts through in situ observations. Hence, it is natural that both methods have been adopted in the theoretical and numerical studies of the astrophysical shocks to describe different aspects of the physical phenomena associated with the shocks. Nevertheless, the transition from the kinetic scale to the MHD scale has not been understood well and the two regimes of shock descriptions have been treated separately. In this paper, we would like to address this issue with the results of particle-in-cell (PIC) simulations applied to non-relativistic and relativistic shocks. We will compare the results of PIC simulations with the structures predicted by MHD. We will discuss how the upstream flows become thermalized through the shock transition layers using the phase space and velocity distribution plots taken from different regions of the shock structures for quasi- parallel and perpendicular shocks. We will also discuss how entropy changes across the shock fronts.
Government research and development summaries: Magnetohydrodynamic project briefs. Irregular
1995-03-01
Magnetohydrodynamic Project Briefs describe the status of all R and D programs submitted to the Power Information Center by the government sponsors in energy conversion involving the magnetohydrodynamic (MHD) interaction between electromagnetic fields and electrically conducting fields, including fuels, materials, plasma dynamics, and combustion. The document is not to be reproduced, in whole or in part, for dissemination outside your own organization nor may it be reproduced for advertising or sales promotion purposes.
Government research and development summaries: Magnetohydrodynamic project briefs. Irregular
Not Available
1993-01-01
Magnetohydrodynamic Project Briefs describe the status of all R and D programs submitted to the Power Information Center by the government sponsors in energy conversion involving the magnetohydrodynamic (MHD) interaction between electromagnetic fields and electrically conducting fields, including fuels, materials, plasma dynamics, and combustion. The document is not to be reproduced, in whole or in part, for dissemination outside your own organization nor may it be reproduced for advertising or sales promotion purposes.
Government research and development summaries: Magnetohydrodynamic project briefs. Irregular
Not Available
1994-01-01
Magnetohydrodynamic Project Briefs describe the status of all R and D programs submitted to the Power Information Center by the government sponsors in energy conversion involving the magnetohydrodynamic (MHD) interaction between electromagnetic fields and electrically conducting fields, including fuels, materials, plasma dynamics, and combustion. The document is not to be reproduced, in whole or in part, for dissemination outside your own organization nor may it be reproduced for advertising or sales promotion purposes.
MHD Integrated Topping Cycle Project
Not Available
1992-03-01
The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.
Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory
NASA Astrophysics Data System (ADS)
Rogachevskii, Igor; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Kleeorin, Nathan; Brandenburg, Axel; Schober, Jennifer
2017-09-01
The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma (chiral magnetic effect). We present a self-consistent treatment of the chiral MHD equations, which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.
Linear gyrokinetic theory for kinetic magnetohydrodynamic eigenmodes in tokamak plasmas
NASA Astrophysics Data System (ADS)
Qin, H.; Tang, W. M.; Rewoldt, G.
1999-06-01
A two-dimensional (2D) numerical solution method is developed for the recently derived linear gyrokinetic system which describes arbitrary wavelength electromagnetic perturbations in tokamak plasmas. The system consists of the gyrokinetic equation, the gyrokinetic Poisson equation, and the gyrokinetic moment equation. Since familiar magnetohydrodynamic (MHD) results can be recovered entirely from this gyrokinetic model, and all interesting kinetic effects are intrinsically included, this gyrokinetic system offers an approach for kinetic MHD phenomena which is more rigorous, self-consistent, and comprehensive than the previous hybrid models. Meanwhile, drift type microinstabilities can be also investigated systematically in this theoretical framework. The linear gyrokinetic equation is solved for the distribution function in terms of the perturbed fields by integrating along unperturbed particle orbits. The solution is substituted back into the gyrokinetic moment equation and the gyrokinetic Poisson equation. When the boundary conditions are incorporated, an eigenvalue problem is formed. The resulting numerical code, KIN-2DEM, is applied to kinetic ballooning modes, internal kink modes, and toroidal Alfvén eigenmodes (TAEs). The numerical results are benchmarked against the well-established FULL code [G. Rewoldt, W. M. Tang, and M. S. Chance, Phys. Fluids 25, 480 (1982)], the PEST code [J. Manickam, Nucl. Fusion 24, 595 (1984)], and the NOVA-K code [C. Z. Cheng, Phys. Rep. 211, No. 1 (1992)]. More importantly, kinetic effects on MHD modes can be investigated nonperturbatively. In particular, the kinetic effects of the background plasma on internal kink modes and the hot particle destabilization of TAEs are studied numerically.
Magnetohydrodynamic instability
NASA Technical Reports Server (NTRS)
Priest, E. R.; Cargill, P.; Forbes, T. G.; Hood, A. W.; Steinolfson, R. S.
1986-01-01
There have been major advances in the theory of magnetic reconnection and of magnetic instability, with important implications for the observations, as follows: (1) Fast and slow magnetic shock waves are produced by the magnetohydrodynamics of reconnection and are potential particle accelerators. (2) The impulsive bursty regime of reconnection gives a rapid release of magnetic energy in a series of bursts. (3) The radiative tearing mode creates cool filamentary structures in the reconnection process. (4) The stability analyses imply that an arcade can become unstable when either its height or twist of plasma pressure become too great.
Investigation of a liquid-metal magnetohydrodynamic power system.
NASA Technical Reports Server (NTRS)
Elliott, D. G.; Hays, L. G.; Cerini, D. J.; Bogdanoff, D. W.
1972-01-01
Liquid-metal magnetohydrodynamic power conversion is being investigated for nuclear-electric propulsion. A liquid-metal MHD converter has no moving mechanical parts and requires a heat source temperature of only 1300 K. Cycle efficiencies of 5% to 8% for single-stage converters and 10% for multistage converters appear attainable. The specific weight of a 240 kWe MHD power plant has been estimated as 30 kg/kWe with shielding for unmanned science missions.
Investigation of a liquid-metal magnetohydrodynamic power system.
NASA Technical Reports Server (NTRS)
Elliott, D. G.; Hays, L. G.; Cerini, D. J.; Bogdanoff, D. W.
1972-01-01
Liquid-metal magnetohydrodynamic power conversion is being investigated for nuclear-electric propulsion. A liquid-metal MHD converter has no moving mechanical parts and requires a heat source temperature of only 1300 K. Cycle efficiencies of 5% to 8% for single-stage converters and 10% for multistage converters appear attainable. The specific weight of a 240 kWe MHD power plant has been estimated as 30 kg/kWe with shielding for unmanned science missions.
Magnetohydrodynamic energy conversion by using convexly divergent channel
NASA Astrophysics Data System (ADS)
Murakami, Tomoyuki; Okuno, Yoshihiro
2009-12-01
We describe a magnetohydrodynamic (MHD) electrical power generator equipped with a convexly divergent channel, as determined through shock-tunnel-based experiments. The quality of MHD power-generating plasma and the energy conversion efficiency in the convexly divergent channel are compared with those from previous linearly divergent channel. The divergence enhancement in the channel upstream is effective for suppressing an excessive increase in static pressure, whereby notably high isentropic efficiency is achieved.
Exact solutions of the incompressible dissipative Hall magnetohydrodynamics
Xia, Zhenwei; Yang, Weihong
2015-03-15
By using analytical method, the exact solutions of the incompressible dissipative Hall magnetohydrodynamics (MHD) equations are derived. It is found that a phase difference may occur between the velocity and magnetic field fluctuations when the kinetic and magnetic Reynolds numbers are both very large. Since velocity and magnetic field fluctuations are both circular polarized, the phase difference makes them no longer parallel or anti-parallel like that in the incompressible ideal Hall MHD.
Magnetohydrodynamic energy conversion by using convexly divergent channel
Murakami, Tomoyuki; Okuno, Yoshihiro
2009-12-21
We describe a magnetohydrodynamic (MHD) electrical power generator equipped with a convexly divergent channel, as determined through shock-tunnel-based experiments. The quality of MHD power-generating plasma and the energy conversion efficiency in the convexly divergent channel are compared with those from previous linearly divergent channel. The divergence enhancement in the channel upstream is effective for suppressing an excessive increase in static pressure, whereby notably high isentropic efficiency is achieved.
Analytical and experimental studies of the helical magnetohydrodynamic thruster design
Gilbert, J.B. II; Lin, T.F.
1994-12-31
This paper describes the results of analytical and experimental studies of a helical magnetohydrodynamic (MHD) seawater thruster using a 8-Tesla (T) solenoid magnet. The application of this work is in marine vehicle propulsion. Analytical models are developed to predict the performance of the helical MHD thruster in a closed-loop condition. The analytical results are compared with experimental data and good agreement is obtained.
Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel
1976-08-24
A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.
NASA Astrophysics Data System (ADS)
Barnes, P. R.; Vance, E. F.
A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.
NASA Astrophysics Data System (ADS)
Lorenzo, Maibys Sierra; Domingues, Margarete Oliveira; Mecías, Angela León; Menconi, Varlei Everton; Mendes, Odim
2016-12-01
A global magnetohydrodynamic (MHD) model describes the solar-terrestrial system and the physical processes that live in it. Information obtained from satellites provides input to MHD model to compose a more realistic initial state for the equations and, therefore, more accurate simulations. However, the use of high resolution in time data can produce numerical instabilities that quickly interrupt the simulations. Moreover, satellite time series may have gaps which could be a problem in this context. In order to contribute to the overcoming of such challenges, we propose in this work a methodology based on a variant of the continuous wavelet transform to introduce environmental satellite data on the global resistive MHD model originally developed by Prof. Ogino at the University of Nagoya. Our methodology uses a simplified time-scale version of the original data that preserves the most important spectral features of the phenomena of interest. Then, we can do a long-term integration using this MHD model without any computational instability, while preserving the main time-scale features of the original data set and even overcome possible occurrence of gaps on the satellite data. This methodology also contributes to keeping more realistic physical results.
Compendium of MHD-related terminology
NASA Astrophysics Data System (ADS)
Hart, A. T.; Lofftus, D. A.; Rudberg, D. A.; Green, R. A.
The magnetohydrodynamic (MHD) researchers in the United States have joined together in the past few years to prove the viability of the technology. As new designs for hardware methods of operation, approaches for data analysis, and levels of understanding have been attained, a set of MHD-unique terminology has been developed but not always documented. A glossary of terminology unique to the study of MHD was compiled for SEAM 27 to provide an information source for workers in this field and to assist those interested in the commercial potential of MHD in reading and understanding technical articles on the subject. The terminology defined was primarily related to the U.S. proof-of-concept program of MHD development and eventual retrofitting of a coal fired plant with MHD equipment. Basic theoretical terms as well as terminology related to the commercialization of MHD were presented. Emphasis was placed on terms related to commercialization and those related to currently active areas of study. This paper builds on the SEAM 27 contribution. Areas of concentration in this paper are retrofit/power plant terminology, advanced measurement technology applicable to MHD, research sites.
MHD turbulence model for global simulations of the solar wind and SEP acceleration
Sokolov, Igor V.; Roussev, Ilia I.
2008-08-25
The aim of the present work is to unify the various transport equations for turbulent waves that are used in different areas of space physics. We mostly focus on the magnetohydrodynamic (MHD) turbulence, in particular the Alfvenic turbulence.
Tokamak magnetohydrodynamic equilibrium states with axisymmetric boundary and a 3D helical core.
Cooper, W A; Graves, J P; Pochelon, A; Sauter, O; Villard, L
2010-07-16
Magnetohydrodynamic (MHD) equilibrium states with imposed axisymmetric boundary are computed in which a spontaneous bifurcation develops to produce an internal three-dimensional (3D) configuration with a helical structure in addition to the standard axisymmetric system. Equilibrium states with similar MHD energy levels are shown to develop very different geometric structures. The helical equilibrium states resemble saturated internal kink mode structures.
Tokamak Magnetohydrodynamic Equilibrium States with Axisymmetric Boundary and a 3D Helical Core
Cooper, W. A.; Graves, J. P.; Pochelon, A.; Sauter, O.; Villard, L.
2010-07-16
Magnetohydrodynamic (MHD) equilibrium states with imposed axisymmetric boundary are computed in which a spontaneous bifurcation develops to produce an internal three-dimensional (3D) configuration with a helical structure in addition to the standard axisymmetric system. Equilibrium states with similar MHD energy levels are shown to develop very different geometric structures. The helical equilibrium states resemble saturated internal kink mode structures.
NASA Astrophysics Data System (ADS)
Bityurin, V. A.; Bocharov, A. N.; Popov, N. A.; Baranov, D. S.
2012-01-01
The magnetohydrodynamic (MHD) parachute effect is studied numerically for the reentry conditions. The effects of the extra ionization due to induced electric field U × B are taken into account. The efficiency of MHD interaction in terms of drag is estimated. For the flight conditions under consideration, the increase of total drag due to electromagnetic one is more than twice.
Characteristics of a magnetohydrodynamic electrical power generator using convexly divergent channel
NASA Astrophysics Data System (ADS)
Murakami, Tomoyuki; Okuno, Yoshihiro
2010-03-01
We describe a magnetohydrodynamic (MHD) electrical power generator equipped with a convexly divergent channel, as determined through shock-tunnel-based experiments. The slight enhancement in a MHD channel divergence upstream provides boundary layer relief in a MHD flow decelerated by a retarding Lorentz force. Despite the present approach being simple and requiring a relatively minor modification of the MHD channel profile, the quality of MHD power-generating plasma and the energy conversion efficiency are improved compared to those from a previous linearly divergent channel; an excessive increase in static pressure is suppressed and a Hall field is enhanced, whereby notably high isentropic efficiency is achieved.
Global Magnetohydrodynamic Modeling of the Solar Corona
NASA Technical Reports Server (NTRS)
Linker, Jon A.
1997-01-01
Under this contract, we have continued our investigations of the large scale structure of the solar corona and inner heliosphere using global magnetohydrodynamic (MHD) simulations. These computations have also formed the basis for studies of coronal mass ejections (CMES) using realistic coronal configurations. We have developed a technique for computing realistic magnetohydrodynamic (MHD) computations of the solar corona and inner heliosphere. To perform computations that can be compared with specific observations, it is necessary to incorporate solar observations into the boundary conditions. We have used the Wilcox Solar Observatory synoptic maps (collected during a solar rotation by daily measurements of the line-of-sight magnetic field at central meridian) to specify the radial magnetic field (B,) at the photosphere. For the initial condition, we use a potential magnetic field consistent with the specified distribution of B, at the lower boundary, and a wind solution consistent with the specified plasma density and temperature at the solar surface. Together this initial condition forms a (non-equilibrium) approximation of the state of the solar corona for the time-dependent MHD computation. The MHD equations are then integrated in time to steady state. Here we describe solutions relevant to a recent solar eclipse, as well as Ulysses observations. We have also developed a model configuration of solar minimum, useful for studying CME initiation and propagation.
Geometrical shock dynamics of fast magnetohydrodynamic shocks
NASA Astrophysics Data System (ADS)
Mostert, Wouter; Pullin, Dale I.; Samtaney, Ravi; Wheatley, Vincent
2016-11-01
We extend the theory of geometrical shock dynamics (GSD, Whitham 1958), to two-dimensional fast magnetohydrodynamic (MHD) shocks moving in the presence of nonuniform magnetic fields of general orientation and strength. The resulting generalized area-Mach number rule is adapted to MHD shocks moving in two spatial dimensions. A partially-spectral numerical scheme developed from that of Schwendeman (1993) is described. This is applied to the stability of plane MHD fast shocks moving into a quiescent medium containing a uniform magnetic field whose field lines are inclined to the plane-shock normal. In particular, we consider the time taken for an initially planar shock subject to an initial perturbed magnetosonic Mach number distribution, to first form shock-shocks. Supported by KAUST OCRF Award No. URF/1/2162-01.
Nuclear magnetohydrodynamic EMP, solar storms, and substorms
Rabinowitz, M. ); Meliopoulous, A.P.S.; Glytsis, E.N. . School of Electrical Engineering); Cokkinides, G.J. )
1992-10-20
In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E [approx lt] 10[sup [minus] 1] V/m and lasts [approx lt] 10[sup 2] sec, whereas for solar storms E [approx gt] 10[sup [minus] 2] V/m and lasts [approx gt] 10[sup 3] sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects.
Action principles for extended magnetohydrodynamic models
NASA Astrophysics Data System (ADS)
Keramidas Charidakos, I.; Lingam, M.; Morrison, P. J.; White, R. L.; Wurm, A.
2014-09-01
The general, non-dissipative, two-fluid model in plasma physics is Hamiltonian, but this property is sometimes lost or obscured in the process of deriving simplified (or reduced) two-fluid or one-fluid models from the two-fluid equations of motion. To ensure that the reduced models are Hamiltonian, we start with the general two-fluid action functional, and make all the approximations, changes of variables, and expansions directly within the action context. The resulting equations are then mapped to the Eulerian fluid variables using a novel nonlocal Lagrange-Euler map. Using this method, we recover Lüst's general two-fluid model, extended magnetohydrodynamic (MHD), Hall MHD, and electron MHD from a unified framework. The variational formulation allows us to use Noether's theorem to derive conserved quantities for each symmetry of the action.
Magnetohydrodynamics in Materials Processing
NASA Astrophysics Data System (ADS)
Davidson, P. A.
1999-01-01
Magnetic fields can be used to melt, pump, stir, and stabilize liquid metals. This provides a nonintrusive means of controlling the flow of metal in commercial casting and refining operations. The quest for greater efficiency and more control in the production of steel, aluminum, and high-performance superalloys has led to a revolution in the application of magnetohydrodynamics (MHD) to process metallurgy. Three typical applications are described here, chosen partially on the basis of their general interest to fluid dynamicists, and partially because of their considerable industrial importance. We look first at magnetic stirring, where a rotating magnetic field is used to agitate and homogenize the liquid zone of a partially-solidified ingot. This is a study in Ekman pumping. Next, we consider magnetic damping, where an intense, static magnetic field is used to suppress fluid motion. In particular, we look at the damping of jets, vortices, and turbulence. We conclude with a discussion of the magnetic destabilization of liquid-liquid interfaces. This is of particular importance in aluminum production.
NASA Astrophysics Data System (ADS)
Vlahakis, Nektarios
2010-03-01
Outflows emanating from the environment of stellar or galactic objects are a widespread phenomenon in astrophysics. Their morphology ranges from nearly spherically symmetric winds to highly collimated jets. In some cases, e.g., in jets associated with young stellar objects, the bulk outflow speeds are nonrelativistic, while in others, e.g., in jets associated with active galactic nuclei or gamma-ray bursts, it can even be highly relativistic. The main driving mechanism of collimated outflows is likely related to magnetic fields. These fields are able to tap the rotational energy of the compact object or disk, accelerate, and collimate matter ejecta. To zeroth order these outflows can be described by the highly intractable theory of magnetohydrodynamics (MHD). Even in systems where the assumptions of zero resistivity (ideal MHD), steady state, axisymmetry, one fluid description, and polytropic equation of state are applicable, the problem remains difficult. In this case the problem reduces to only two equations, corresponding to the two components of the momentum equation along the flow and in the direction perpendicular to the magnetic field (transfield direction). The latter equation is the most difficult to solve, but also the most important. It answers the question on the degree of the collimation, but also crucially affects the solution of the first, the acceleration efficiency and the bulk velocity of the flow. The first and second parts of this chapter refer to nonrelativistic and relativistic flows, respectively. These Parts can be read independently. In each one, the governing equations are presented and discussed, focusing on the case of flows that are magnetically dominated near the central source. The general characteristics of the solutions in relation to the acceleration and collimation mechanisms are analyzed. As specific examples of exact solutions of the full system of the MHD equations that satisfy all the analyzed general characteristics, self
Simakov, Andrei N; Chacón, L
2008-09-05
Dissipation-independent, or "fast", magnetic reconnection has been observed computationally in Hall magnetohydrodynamics (MHD) and predicted analytically in electron MHD. However, a quantitative analytical theory of reconnection valid for arbitrary ion inertial lengths, d{i}, has been lacking and is proposed here for the first time. The theory describes a two-dimensional reconnection diffusion region, provides expressions for reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and d{i}. It also confirms the electron MHD prediction that both open and elongated diffusion regions allow fast reconnection, and reveals strong dependence of the reconnection rates on d{i}.
Magnetohydrodynamic turbulence: Generalized formulation and extension to compressible cases
Shivamoggi, Bhimsen K.
2008-06-15
A general framework that incorporates the Iroshnikov-Kraichnan (IK) and Goldreich-Sridhar (GS) phenomenalogies of magnetohydrodynamic (MHD) turbulence is developed. This affords a clarification of the regimes of validity of the IK and GS models and hence help resolve some controversies on this aspect. This general formulation appears to have a certain robustness as revealed here by its form invariance with respect to inclusion of compressible effects. Generalizations of the IK and GS spectra to compressible MHD turbulence are given. These two branches are shown to merge with the MHD shockwave spectrum, as to be expected, in the infinite compressibility limit.
Computation of Multi-region Relaxed Magnetohydrodynamic Equilibria
Hudson, S. R.; Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; von Nessi, G.; Lazerson, S.
2013-03-29
We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.
Selective decay and dynamic alignment in the MHD turbulence: The role of the rugged invariants
NASA Astrophysics Data System (ADS)
Telloni, Daniele; Perri, Silvia; Carbone, Vincenzo; Bruno, Roberto
2016-03-01
In the evolving MagnetoHydroDynamic (MHD) turbulence a key role is played by the relaxation processes, which drive a magnetized fluid towards self-organized, stable configurations, like a force-free state (resulting from a selective decay) or a dynamic alignment (anti-alignment) between the plasma flow velocity and magnetic field. The evolution of the three MHD rugged invariants, namely of the magnetic helicity Hm, the cross-helicity Hc and the total energy E, is of particular importance in interpreting the asymptotic solutions of the MHD decay. It is thus prominent to investigate the magnetic and cross-helicity content carried by the solar wind and by magnetic structures advected by the flowing plasma, and particularly their radial evolution throughout the inner heliosphere, in order to offer a rather complete picture of the phenomenological aspect of the relaxation phenomena occurring in the solar wind turbulence. The results presented in this paper show that within some solar wind streams, the ideal MHD decays towards a state with maximal cross-helicity, where the magnetic and velocity fluctuations are (anti-)aligned with a high correlation degree. The maximal magnetic helicity state, say the force-free configuration, is instead observed in interplanetary flux ropes, a particular class of magnetic objects advected by the solar wind. However, it is worth noting that in some peculiar flux ropes, the competitive action of both rugged invariants drives the MHD configuration of these structures to intermediate states, where both the magnetic and cross-helicity significantly deviate from zero, without, however, reaching a maximum value.
Accurate, meshless methods for magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Raives, Matthias J.
2016-01-01
Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.
Shadid, J. N.; Pawlowski, R. P.; Cyr, E. C.; Tuminaro, R. S.; Chacon, L.; Weber, P. D.
2016-02-10
Here, we discuss that the computational solution of the governing balance equations for mass, momentum, heat transfer and magnetic induction for resistive magnetohydrodynamics (MHD) systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena, as well as the significant range of time- and length-scales that the interactions of these physical mechanisms produce. This paper explores the development of a scalable, fully-implicit stabilized unstructured finite element (FE) capability for 3D incompressible resistive MHD. The discussion considers the development of a stabilized FE formulation in context of the variational multiscale (VMS) method, and describes the scalable implicit time integration and direct-to-steady-state solution capability. The nonlinear solver strategy employs Newton–Krylov methods, which are preconditioned using fully-coupled algebraic multilevel preconditioners. These preconditioners are shown to enable a robust, scalable and efficient solution approach for the large-scale sparse linear systems generated by the Newton linearization. Verification results demonstrate the expected order-of-accuracy for the stabilized FE discretization. The approach is tested on a variety of prototype problems, that include MHD duct flows, an unstable hydromagnetic Kelvin–Helmholtz shear layer, and a 3D island coalescence problem used to model magnetic reconnection. Initial results that explore the scaling of the solution methods are also presented on up to 128K processors for problems with up to 1.8B unknowns on a CrayXK7.
Electrolysis Bubble Noise in Small-Scale Tests of a Seawater MHD thruster
1990-09-01
project title "The Fundamental Conceptual Design and Analysis of Magnetohydrodynamic Propulsors ." The opinions and conclusions expressed in this report are...Reilly, and D.E. Bagley, "Propul- sive Efficiencies of Magnetohydrodynamic Submerged Vehicular Propulsors ," David Taylor Research Center, DTRC-90/009...magnetic field. The test configuration was a small-scale version of a seawater magnetohydrodynamic (MHD) thrust- er and the test conditions were similar
MHD processes in the outer heliosphere
NASA Technical Reports Server (NTRS)
Burlaga, L. F.
1984-01-01
The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.
Coronal magnetohydrodynamic waves and oscillations: observations and quests.
Aschwanden, Markus J
2006-02-15
Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.
The optimization air separation plants for combined cycle MHD-power plant applications
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Springmann, H.; Greenberg, R.
1980-01-01
Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.
Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2
NASA Technical Reports Server (NTRS)
Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.
1997-01-01
This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.
Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1
NASA Technical Reports Server (NTRS)
Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.
1997-01-01
This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.
NASA Astrophysics Data System (ADS)
Dewar, R. L.; Mills, R.; Hole, M. J.
2009-05-01
The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics. To resolve the continuation problem we regularize the Newcomb equation, solve it in terms of Legendre functions of imaginary argument, and define the small weak solutions of the Newcomb equation as generalized functions in the manner of Lighthill, i.e. via a limiting sequence of analytic functions that connect smoothly across the singularity.
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, Don H.; Thresh, Henry R.
1982-01-01
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.
Weakly nonlinear magnetohydrodynamic wave interactions
Webb, G.M.; Brio, M.; Kruse, M.T.; Zank, G.P.
1999-06-01
Equations describing weakly nonlinear magnetohydrodynamic (MHD) wave interactions in one Cartesian space dimension are discussed. For wave propagation in uniform media, the wave interactions of interest consist of: (a) three-wave resonant interactions in which high frequency waves, may evolve on long space and time scales if the wave phases satisfy the resonance conditions; (b) Burgers self-wave steepening for the magnetoacoustic waves, and (c) mean wave field effects, in which a particular wave interacts with the mean wave field of the other waves. For wave propagation in non-uniform media, further linear wave mixing terms appear in the equations. The equations describe four types of resonant triads: slow-fast magnetosonic wave interaction; Alfv{acute e}n-entropy wave interaction; Alfv{acute e}n-magnetosonic wave interaction; and magnetosonic-entropy wave interaction. The formalism is restricted to coherent wave interactions. {copyright} {ital 1999 American Institute of Physics.}
Seyler, C. E.; Martin, M. R.
2011-01-15
It is shown that the two-fluid model under a generalized Ohm's law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm's law determines the current density to a system where Ohm's law determines the electric field. This result is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.
Seyler, C. E.; Martin, M. R.
2011-01-14
In this study, it is shown that the two-fluid model under a generalized Ohm’s law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm’s law determines the current density to a system where Ohm’s law determines the electric field. This resultmore » is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.« less
Heat transfer with thermal radiation on MHD particle-fluid suspension induced by metachronal wave
NASA Astrophysics Data System (ADS)
Bhatti, M. M.; Zeeshan, A.; Ellahi, R.
2017-09-01
In this article, effects of heat transfer on particle-fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm's law and Roseland's approximation. The governing flow problem for Casson fluid model is based on continuity, momentum and thermal energy equation for fluid phase and particle phase. Taking the approximation of long wavelength and zero Reynolds number, the governing equations are simplified. Exact solutions are obtained for the coupled partial differential equations. The impact of all the embedding parameters is discussed with the help of graphs. In particular, velocity profile, pressure rise, temperature profile and trapping phenomena are discussed for all the emerging parameters. It is observed that while fluid parameter enhances the velocity profile, Hartmann number and particle volume fraction oppose the flow.
NASA Astrophysics Data System (ADS)
Ripperda, B.; Porth, O.; Xia, C.; Keppens, R.
2017-05-01
Magnetic reconnection and non-thermal particle distributions associated with current-driven instabilities are investigated by means of resistive magnetohydrodynamics (MHD) simulations combined with relativistic test particle methods. We propose a system with two parallel, repelling current channels in an initially force-free equilibrium, as a simplified representation of flux ropes in a stellar magnetosphere. The current channels undergo a rotation and separation on Alfvénic time-scales, forming secondary islands and (up to tearing unstable) current sheets in which non-thermal energy distributions are expected to develop. Using the recently developed particle module of our open-source grid-adaptive mpi-amrvac software, we simulate MHD evolution combined with test particle treatments in MHD snapshots. We explore under which plasma-β conditions the fastest reconnection occurs in 2.5D scenarios, and in these settings, test particles are evolved. We quantify energy distributions, acceleration mechanisms, relativistic corrections to the particle equations of motion and effects of resistivity in magnetically dominated proton-electron plasmas. Due to large resistive electric fields and indefinite acceleration of particles in the infinitely long current channels, hard energy spectra are found in 2.5D configurations. Solutions to these numerical artefacts are proposed for both 2.5D setups and future 3D work. We discuss the MHD of an additional kink instability in 3D setups and the expected effects on energy distributions. The obtained results hold as a proof-of-principle for test particle approaches in MHD simulations, relevant to explore less idealized scenarios like solar flares and more exotic astrophysical phenomena, like black hole flares, magnetar magnetospheres and pulsar wind nebulae.
Broken Symmetry and Coherent Structure in MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Absolute equilibrium ensemble theory for ideal homogeneous magnetohydrodynamic (MHD) turbulence is fairly well developed. Theory and Simulation indicate that ideal MHD turbulence non-ergodic and contains coherent structure. The question of applicability real (i.e., dissipative) MHD turbulence is examined. Results from several very long time numerical simulations on a 64(exp 3) grid are presented. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection with inverse spectral cascades and selective decay will also be discussed.
MHD instabilities in accretion mounds - I. 2D axisymmetric simulations
NASA Astrophysics Data System (ADS)
Mukherjee, Dipanjan; Bhattacharya, Dipankar; Mignone, Andrea
2013-04-01
We have performed stability analysis of axisymmetric accretion mounds on neutron stars in high-mass X-ray binaries by 2D magnetohydrodynamic (MHD) simulations with the PLUTO MHD code. We find that the mounds are stable with respect to interchange instabilities, but the addition of excess mass destabilizes the equilibria. Our simulations confirm that accretion mounds are unstable with respect to MHD instabilities beyond a threshold mass. We investigate both filled and hollow mounds and for the latter also compute the expected profile of cyclotron resonance scattering features (CRSF). In comparison to the CRSF from filled mounds reported in our earlier work, hollow mounds display wider and more complex line profiles.
Vlaykov, Dimitar G.; Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R. G.
2016-06-15
Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.
NASA Astrophysics Data System (ADS)
Vlaykov, Dimitar G.; Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R. G.
2016-06-01
Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.
Two Types of Magnetohydrodynamic Sheath Jets
NASA Astrophysics Data System (ADS)
Kaburaki, Osamu
2009-06-01
Recent observations of astrophysical jets emanating from various galactic nuclei strongly suggest that a double-layered structure, or a spine-sheath structure, is likely to be their common feature. We propose that such a sheath jet structure can be formed magnetohydrodynamically within a valley of the magnetic pressures, which is formed between the peaks due to the poloidal and toroidal components, with the centrifugal force acting on the rotating sheath plasma being balanced by the hoop stress of the toroidal field. The poloidal field concentrated near the polar axis is maintained by a converging plasma flow toward the jet region, and the toroidal field is developed outside the jet cone owing to the poloidal current circulating through the jet. Under such situations, the set of magnetohydrodynamic (MHD) equations allows two main types of solutions, at least, in the region far from the footpoint. The first type solution describes the jets of marginally bound nature. This type is realized when the jet temperature decreases like a virial one, and neither the pressure-gradient nor the MHD forces, which are both determined consistently, cannot completely overcome the gravity, even at infinity. The second type is realized under an isothermal situation, and the gravity is cancelled exactly by the pressure-gradient force. Hence, the jets of this type are accelerated purely by the MHD force. It is also suggested that these two types correspond, respectively, to the jets from type I and II radio galaxies in the Fanaroff-Riley classification.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M.
1997-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
Double-duct liquid metal magnetohydrodynamic engine
Haaland, Carsten M.
1995-01-01
An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.
Slow shock and rotational discontinuity in MHD and Hall MHD models with anisotropic pressure
NASA Astrophysics Data System (ADS)
Hau, L.-N.; Wang, B.-J.
2016-07-01
Pressure anisotropy may modify the characteristics of magnetohydrodynamic (MHD) waves, in particular, the slow mode wave and the corresponding shocks and discontinuities. In this study the formation of slow shocks (SSs) in anisotropic plasmas is examined by solving the gyrotropic MHD and Hall MHD equations numerically for one-dimensional Riemann problem. The MHD shocks and discontinuities are generated by imposing a finite normal magnetic field on the Harris type current sheet with a guide magnetic By component. It is shown that anomalous SSs moving faster than the intermediate wave or with positive density-magnetic field correlation may be generated in gyrotropic MHD and Hall MHD models. Moreover, for some parameter values SSs may exhibit upstream wave trains with right-handed polarization in contrast with the earlier prediction that SSs shall possess downstream left-hand polarized wave trains based on the isotropic Hall MHD theory. For the cases of By ≠ 0, SSs with increased density and decreased magnetic field followed by noncoplanar intermediate mode or rotational discontinuity (RD)-like structures similar to the compound SS-RD structures observed in space plasma environments may possibly form in symmetric and asymmetric current layers. The Walén relation of these anomalous RDs without the correction of pressure anisotropy may significantly be violated.
Nonlinear magnetohydrodynamic detonation: Part I
Hurricane, O.A.; Fong, B.H.; Cowley, S.C.
1997-10-01
The sudden release of magnetic free energy, as occurs in spectacular solar flare events, tokamak disruptions, and enigmatic magnetospheric substorms, has long defied any acceptable theoretical explanation. Usual attempts at explaining these explosive events invoke magnetic reconnection and/or ideal magnetohydrodynamic (MHD) instability. However, neither of these two mechanisms can explain the fast time scales without nonlinear destabilization. Recently, Cowley {ital et al.} [Phys. Plasmas {bold 3}, 1848 (1996)] have demonstrated a new mechanism for nonlinear explosive MHD destabilization of a line tied Rayleigh{endash}Taylor model. In this paper, this picture is generalized to arbitrary magnetic field geometries. As an intermediate step, the ballooning equation in a general equilibrium is derived including the effects of magnetic field curvature, shear, and gravity. This equation determines the linear stability of the plasma configuration and the behavior of the plasma displacement along the magnetic field line. The nonlinear equation which determines the time and spatial dependence, transverse to the equilibrium magnetic field, of the plasma displacement is obtained in fifth order of the expansion. The equations show that explosive behavior is a natural and generic property of ballooning instabilities close to the linear stability boundary. {copyright} {ital 1997 American Institute of Physics.}
Magnetohydrodynamic Propulsion for the Classroom
NASA Astrophysics Data System (ADS)
Font, Gabriel I.; Dudley, Scott C.
2004-10-01
The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.
MHD--Developing New Technology to Meet the Energy Crisis
ERIC Educational Resources Information Center
Fitch, Sandra S.
1978-01-01
Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)
MHD--Developing New Technology to Meet the Energy Crisis
ERIC Educational Resources Information Center
Fitch, Sandra S.
1978-01-01
Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)
Magnetohydrodynamic Voltage Recorder for Comparing Peripheral Blood Flow.
Wu, Kevin J; Gregory, T Stan; Lastinger, Michael C; Murrow, Jonathan R; Tse, Zion Tsz Ho
2017-06-22
Blood flow is a clinical metric for monitoring of cardiovascular diseases but current measurements methods are costly or uncomfortable for patients. It was shown that the interaction of the magnetic field (B 0) during MRI and blood flow in the body, through the magnetohydrodynamic (MHD) effect, produce voltages (V MHD) observable through intra-MRI electrocardiography (ECG), which are correlated with regional blood flow. This study shows the reproducibility of V MHD outside the MRI and its application in a portable flow monitoring device. To recreate this interaction outside the MRI, a static neodymium magnet (0.4T) was placed in between two electrodes to induce the V MHD in a single lead ECG measurement. V MHD was extracted, and integrated over to obtain a stroke volume metric. A smartphone-enabled device utilizing this interaction was developed in order to create a more accessible method of obtaining blood flow measurements. The portable device displayed a <6% error compared to a commercial recorder, and was able to successfully record V MHD using the 0.4T magnet. Exercise stress testing showed a V MHD increase of 23% in healthy subjects, with an 81% increase in the athlete. The study demonstrates a new device utilizing MHD interactions with body circulation to obtain blood flow metrics.
The development of MHD energy conversion methods in the USSR
NASA Astrophysics Data System (ADS)
Kirillin, V. A.; Sheindlin, A. E.
1981-12-01
It is noted that the development of magnetohydrodynamic (MHD) power conversion systems has evolved to the point where it is possible to commercially introduce MHD power plants into industry. Even with the present level of technology, the sharp increase in thermal efficiency of these plants by as much as 50-60% results in fuel economies of 20-35% and in reductions in generation costs of 6-7%. A description is given of an MHD power plant and its various aggregates. Also given are a review of the state of the art of MHD technology and an outline of the Soviet program for its commercial exploitation. The design of MHD electrical power plants, the interrelation between various aggregates, and the problems arising from nonstandard equipment are discussed.
ANALYTIC APPROXIMATE SEISMOLOGY OF PROPAGATING MAGNETOHYDRODYNAMIC WAVES IN THE SOLAR CORONA
Goossens, M.; Soler, R.; Arregui, I.
2012-12-01
Observations show that propagating magnetohydrodynamic (MHD) waves are ubiquitous in the solar atmosphere. The technique of MHD seismology uses the wave observations combined with MHD wave theory to indirectly infer physical parameters of the solar atmospheric plasma and magnetic field. Here, we present an analytical seismological inversion scheme for propagating MHD waves. This scheme uses the observational information on wavelengths and damping lengths in a consistent manner, along with observed values of periods or phase velocities, and is based on approximate asymptotic expressions for the theoretical values of wavelengths and damping lengths. The applicability of the inversion scheme is discussed and an example is given.
Properties of mass-loading shocks. II - Magnetohydrodynamics. [of Giacobini-Zinner and Halley comets
NASA Technical Reports Server (NTRS)
Zank, G. P.; Oughton, S.; Neubauer, F. M.; Webb, G. M.
1992-01-01
The one-dimensional magnetohydrodynamics of mass-loading shocks is examined. These shocks, which are distinct from MHD shocks of classical nonreacting fluid dynamics and of combustion theory and which are characterized by the addition of mass within the shock transition, are to be found at comets and, depending upon circumstances, at nonmagnetized and weakly magnetized planets such as Venus and Mars. A completely general mass-loading form of the Hugoniot equation is derived, and some of the most important differences between mass-loading and nonreacting classical MHD shocks are identified. Two new types of MHD shocks are described which have no classical MHD analogues.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2013-12-14
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Multi-region relaxed Hall magnetohydrodynamics with flow
Lingam, Manasvi; Abdelhamid, Hamdi M.; Hudson, Stuart R.
2016-08-15
The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks
Chen, L. )
1994-07-20
The resonant excitations of high-n magnetohydrodynamic (MHD) instabilities by the energetic ions/alpha particles in tokamaks are theoretically analyzed. Here, n is the toroidal mode number. Since, typically, the MHD modes consist of two-scale structures; one singular ( inertial'') region and one regular (ideal) region, the energetic particle contributions in the singular region are suppressed by the finite-size orbits. Analytical dispersion relations can then be derived via the asymptotic matching analysis. The dispersion relations have the generic form of the fishbone'' dispersion relation and demonstrate, in particular, the existence of two types of modes; that is, the MHD gap mode and the energetic-particle continuum mode. Specific expressions are given for both the kinetic ballooning modes (KBM) and the toroidal Alfven modes (TAM). It is suggested that the stability property may be qualitatively regarded as the hybrid'' of conventional MHD tokamaks and field reversed ion rings. [copyright]American Institute of Physics
Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective
Lee, W. W.
2016-07-15
The effort to obtain a set of MagnetoHydroDynamic (MHD) equations for a magnetized collisionless plasma was started nearly 60 years ago by Chew et al. [Proc. R. Soc. London, Ser. A 236(1204), 112–118 (1956)]. Many attempts have been made ever since. Here, we will show the derivation of a set of these equations from the gyrokinetic perspective, which we call it gyrokinetic MHD, and it is different from the conventional ideal MHD. However, this new set of equations still has conservation properties and, in the absence of fluctuations, recovers the usual MHD equilibrium. Furthermore, the resulting equations allow for the plasma pressure balance to be further modified by finite-Larmor-radius effects in regions with steep pressure gradients. The present work is an outgrowth of the paper on “Alfven Waves in Gyrokinetic Plasmas” by Lee and Qin [Phys. Plasmas 10, 3196 (2003)].
Performance of Combustion Disk MHD Generators.
NASA Astrophysics Data System (ADS)
Jenkins, Marion Karl
of Hall fields were investigated using external voltage augmentation, and electric fields of 9 KV/m were observed in the channel with no evidence of breakdown. The analytical work consisted of the development of a two-dimensional computer program to predict boundary layer phenomena in disk generators, including the effects of turbulence, variable gas properties and MHD interaction. The numerical results show the effect of the variable MHD body force across the insulating wall boundary layer, giving rise to boundary layer velocities higher than those in the core. This leads to greater skin friction and heat transfer losses than what would be predicted with a quasi -one dimensional model. Calculations carried out for baseload -sized generators show the expected dependence of boundary layer behavior on channel operating conditions such as wall temperature, swirl, magnetic field strength and channel loading.
Theory and Simulation Basis for Magnetohydrodynamic Stability in DIII-D
Turnbull, A.D.; Brennan, D.P.; Chu, M.S.; Lao, L.L.; Snyder, P.B.
2005-10-15
Theory and simulation have provided one of the critical foundations for many of the significant achievements in magnetohydrodynamic (MHD) stability in DIII-D over the past two decades. Early signature achievements included the validation of tokamak MHD stability limits, beta and performance optimization through cross-section shaping and profiles, and the development of new operational regimes. More recent accomplishments encompass the realization and sustainment of wall stabilization using plasma rotation and active feedback, a new understanding of edge stability and its relation to edge-localized modes, and recent successes in predicting resistive tearing and interchange instabilities. The key to success has been the synergistic tie between the theory effort and the experiment made possible by the detailed equilibrium reconstruction data available in DIII-D and the corresponding attention to the measured details in the modeling. This interaction fosters an emphasis on the important phenomena and leads to testable theoretical predictions. Also important is the application of a range of analytic and simulation techniques, coupled with a program of numerical tool development. The result is a comprehensive integrated approach to fusion science and improving the tokamak approach to burning plasmas.
Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics
Klein, R I; Stone, J M
2007-11-20
We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.
MAGNETOHYDRODYNAMIC SHALLOW WATER WAVES: LINEAR ANALYSIS
Heng, Kevin; Spitkovsky, Anatoly E-mail: anatoly@astro.princeton.ed
2009-10-01
We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincare modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them 'magnetostrophic modes'. We obtain analytical functions for the velocity, height, and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.
Magnetohydrodynamic Modeling of the Jovian Magnetosphere
NASA Technical Reports Server (NTRS)
Walker, Raymond
2005-01-01
Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.
Font, José A
2008-01-01
This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do) overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable, an effort has
Dorelli, John C.; Bhattacharjee, A.
2008-05-15
Magnetic reconnection is thought to be the primary mode by which the solar wind couples to the terrestrial magnetosphere, driving phenomena such as magnetic storms and aurorae. While the theory of two-dimensional reconnection is well developed and has been applied with great success to axisymmetric and toroidal systems such as laboratory plasma experiments and fusion devices, it is difficult to justify the application of two-dimensional theory to nontoroidal plasma systems such as Earth's magnetosphere. Unfortunately, the theory of three-dimensional magnetic reconnection is much less well developed, and even defining magnetic reconnection has turned out to be controversial. In this paper, recent progress in the use of magnetohydrodynamics (MHD) to address the physics of three-dimensional reconnection in Earth's magnetosphere is reviewed. The paper consists of two parts. In the first part, various definitions of three-dimensional reconnection are reviewed, with the goal of mapping these definitions to sets of physical phenomena that have been identified as 'reconnection' in various contexts. In the second part of the paper, MHD simulation results for the magnetosphere are presented, and two qualitatively distinct types of reconnection phenomena are identified: (1) Steady separator reconnection under generic northward interplanetary magnetic field (IMF) conditions, involving plasma flow across magnetic separatrices, and (2) time-dependent reconnection under generic southward IMF conditions, involving a locally detectable change in the magnetic field topology. It is concluded that magnetic reconnection phenomena at Earth's dayside magnetopause are adequately captured by two distinct definitions: The Vasyliunas definition [V. M. Vasyliunas, Rev. Geophys 13, 303 (1975)], which identifies magnetic reconnection with plasma flow across magnetic separatrices, and the Greene definition [J. Greene, Phys. Fluids B 5, 2355 (1993)], which identifies magnetic reconnection with a
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Mohseni, F.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1 / 2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
NASA Technical Reports Server (NTRS)
Montgomery, David
1988-01-01
Three areas of study in MHD turbulence are considered. These are the turbulent relaxation of the toroidal Z pinch, density fluctuations in MHD fluids, and MHD cellular automata. A Boolean computer game that updates a cellular representation in parallel and that has macroscopic averages converging to solutions of the two-dimensional MHD equations is discussed.
Nuclear-electric magnetohydrodynamic propulsion for submarine. Master's thesis
Bednarczyk, A.A.
1989-05-01
The thesis analyzes the superconducting technology for a shipboard magnetohydrodynamic propulsion system. Based on the the principles of magnetohydrodynamics (MHD), the concept of open-water efficiency was used to optimize the preliminary design of the MHD thruster. After the baseline submarine hull modeled after the Los Angeles class submarine was selected, propulsive efficiency and the top speed for four variant MHD submarines were evaluated. The design criteria were set at a 100-MWt nuclear reactor power upper limit and a requirement of 30 knots for the top speed. This required advanced reactor plants and advanced energy conversion systems. The selection of High Temperature Gas Reactor (HTGR) and Liquid-Metal Fast Breeder Reactor (LMFBR) was based on the combined merits of safety, environmental impact, high source temperature and maximum-volume power density (KW/L). With the reactor outlet temperatures of 2000 K, direct-cycle energy conversion-systems gave the best results in terms of thermal efficiency and propulsion plant power density. Two energy conversion systems selected were closed-cycle gas turbine geared to a superconducting generator, and closed-cycle liquid-metal MHD generator. Based on submarine reliability and safety, the option of using an intermediate heat exchanger was also considered. Finally, non-nuclear support systems affected by the advanced power plant and MHD propulsion, stressing submarine safety, are proposed.
MHD Wave Modes Resolved in Fine-Scale Chromospheric Magnetic Structures
NASA Astrophysics Data System (ADS)
Verth, G.; Jess, D. B.
2016-02-01
Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must be founded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromospheric magnetoseismology.
Dipole Alignment in Rotating MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
Magnetic levitation and MHD propulsion
NASA Astrophysics Data System (ADS)
Tixador, P.
1994-04-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d
Numerical solutions of the three-dimensional magnetohydrodynamic alpha model.
Mininni, Pablo D; Montgomery, David C; Pouquet, Annick
2005-04-01
We present direct numerical simulations and alpha -model simulations of four familiar three-dimensional magnetohydrodynamic (MHD) turbulence effects: selective decay, dynamic alignment, inverse cascade of magnetic helicity, and the helical dynamo effect. The MHD alpha model is shown to capture the long-wavelength spectra in all these problems, allowing for a significant reduction of computer time and memory at the same kinetic and magnetic Reynolds numbers. In the helical dynamo, not only does the alpha model correctly reproduce the growth rate of magnetic energy during the kinematic regime, it also captures the nonlinear saturation level and the late generation of a large scale magnetic field by the helical turbulence.
Magnetohydrodynamic waves and coronal seismology: an overview of recent results.
De Moortel, Ineke; Nakariakov, Valery M
2012-07-13
Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfvén waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares.
Microwave imaging of magnetohydrodynamic instabilities in fusion plasma
NASA Astrophysics Data System (ADS)
Sabot, Roland; Elbèze, Didier; Lee, Woochang; Nam, Yoonbum; Park, Hyeon; Shen, Junsong; Yun, Gunsu; Choi, Minjun; Giacalone, Jean-Claude; Nicolas, Timothée; Bottereau, Christine; Clairet, Frédéric; Lotte, Philippe; Molina, Diego
2016-11-01
Microwave imaging diagnostics are extremely useful for observing magnetohydrodynamic (MHD) instabilities in magnetic fusion plasmas. Two imaging diagnostics will be available on the WEST tokamak. A method was developed to reconstruct electron density maps from electron density profiles measured by ultrafast reflectometry, a technique based on FM-CW radar principle. It relies on plasma rotation to perform 2D reconstruction. An Electron Cyclotron Emission Imaging (ECEI) diagnostic will image directly the temperature fluctuations. It will be equivalent to 24 stacked vertically radiometers, each probing a spot of few centimetres. These two complementary techniques will contribute to the validation of MHD models.
Energy decay laws in strongly anisotropic magnetohydrodynamic turbulence.
Bigot, Barbara; Galtier, Sébastien; Politano, Hélène
2008-02-22
We investigate the influence of a uniform magnetic field B(0)=B(0)e( parallel) on energy decay laws in incompressible magnetohydrodynamic (MHD) turbulence. The nonlinear transfer reduction along B(0) is included in a model that distinguishes parallel and perpendicular directions, following a phenomenology of Kraichnan. We predict a slowing down of the energy decay due to anisotropy in the limit of strong B(0), with distinct power laws for energy decay of shear- and pseudo-Alfvén waves. Numerical results from the kinetic equations of Alfvén wave turbulence recover these predictions, and MHD numerical results clearly tend to follow them in the lowest perpendicular planes.
Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.
2000-01-01
The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.
2D Numerical MHD Models of Solar Explosive Events
NASA Astrophysics Data System (ADS)
Roussev, I.
2001-10-01
Observations of the Sun reveal a great variety of dynamic phenomena interpretable as a manifestation of magnetic reconnection. These range from small-scale 'Explosive events' seen in the 'quiet' Sun, through violent flares observed in active regions. The high degree of complexity of the magnetic field inferred from observations may locally produce a fruitful environment for the process of magnetic reconnection to take place. Explosive events are associated with regions undergoing magnetic flux cancellation. This thesis presents a 2-dimensional (2D) numerical study devoted to explore the idea that the salient spectral signatures seen in explosive events are most probably caused by bi-directional outflow jets as a results of an ongoing magnetic reconnection. In order to provide qualitative results needed for the better physical interpretation of solar explosive events, several models intended to represent a 'quiet' Sun transition of solar explosive events, several models intended to represent a 'quiet' Sun transition region undergoing magnetic reconnection are examined, in both unstratified and gravitationally stratified atmospheres. The magnetic reconnection is initiated in an ad hoc manner, and the dynamic evolution is followed by numerically solving the equations of 2D dissipative magnetohydrodynamics (MHD), including the effects of field-aligned thermal conduction, radiative losses, volumetric heating, and anomalous resistivity.
A MHD-turbulence model for solar corona
NASA Astrophysics Data System (ADS)
Romeou, Z.; Velli, M.; Einaudi, G.
2009-02-01
The disposition of energy in the solar corona has always been a problem of great interest. It remains an open question how the low temperature photosphere supports the occurence of solar extreme phenomena. In this work, a turbulent heating mechanism for the solar corona through the framework of reduced magnetohydrodynamics (RMHD) is proposed. Two-dimensional incompressible long time simulations of the average energy disposition have been carried out with the aim to reveal the characteristics of the long time statistical behavior of a two-dimensional cross-section of a coronal loop and the importance of the photospheric time scales in the understanding of the underlying mechanisms. It was found that for a slow, shear type photospheric driving the magnetic field in the loop self-organizes at large scales via an inverse MHD cascade. The system undergoes three distinct evolutionary phases. The initial forcing conditions are quickly “forgotten” giving way to an inverse cascade accompanied with and ending up to electric current dissipation. Scaling laws are being proposed in order to quantify the nonlinearity of the system response which seems to become more impulsive for decreasing resistivity. It is also shown that few, if any, qualitative changes in the above results occur by increasing spatial resolution.
Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence
Donato, S.; Servidio, S.; Carbone, V.; Dmitruk, P.; Shay, M. A.; Matthaeus, W. H.; Cassak, P. A.
2012-09-15
The statistical study of magnetic reconnection events in two-dimensional turbulence has been performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field structures in analogy to laminar studies, leading locally to faster reconnection processes in this case of reconnection embedded in turbulence. This study supports the idea that the global rate of energy dissipation is controlled by the large scale turbulence, but suggests that the distribution of the reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection sites.
Efficient acceleration of relativistic magnetohydrodynamic jets
NASA Astrophysics Data System (ADS)
Toma, Kenji; Takahara, Fumio
2013-08-01
Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although the conversion mechanism from the Poynting into the particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating the transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences between the fast magnetosonic point of the MHD flow and the sonic point of the de Laval nozzle.
MHD Turbulence and Magnetic Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Validation of the linear ideal magnetohydrodynamic model of three-dimensional tokamak equilibria
Lanctot, M. J.; Reimerdes, H.; Garofalo, A. M.; Chu, M. S.; Strait, E. J.; Jackson, G. L.; La Haye, R. J.; Osborne, T. H.; Schaffer, M. J.; Liu, Y. Q.
2010-03-15
The first quantitative comparison of linear ideal magnetohydrodynamic (MHD) theory with external magnetic measurements of the nonaxisymmetric plasma perturbation driven by external long-wavelength magnetic fields in high-temperature tokamak plasmas is presented. The comparison yields good (within 20%) agreement for plasma pressures up to approx75% of the ideal stability limit calculated without a conducting wall. For higher plasma pressures, the ideal MHD model tends to overestimate the perturbed field indicating the increasing importance of stabilizing nonideal effects.
Interaction of a Variable Solar Wind with Jupiter's Magnetosphere: A 3D MHD Simulation
NASA Astrophysics Data System (ADS)
Ranquist, D. A.; Bagenal, F.; Delamere, P. A.; Ma, X.
2016-12-01
Jupiter's magnetosphere is the largest obstacle for the solar wind in the solar system. Voyager 2 even detected its presence on its approach to Saturn, 4.3 AU from Jupiter. Also, the time scale for the interplanetary magnetic field (IMF) to change directions is smaller than the time for the solar wind to propagate the entire length of Jupiter's magnetotail. Due to the large spatial extent and long time scales, varied solar wind conditions are expected to interact with Jupiter's magnetosphere simultaneously, which can lead to magnetic reconnection and other plasma phenomena. Using the FLASH 3D magnetohydrodynamics (MHD) code, we have simulated the global interaction between a variable solar wind and Jupiter's magnetosphere. We simulated Jupiter's magnetosphere as a viscous obstacle because of arguments made by Delamere & Bagenal (2010). For the solar wind, we used in situ data from the Ulysses spacecraft taken at 5 AU along the ecliptic plane. Here we present the 3D MHD simulation results with alternating IMF directions for several obstacle viscosities.
NASA Astrophysics Data System (ADS)
Kawasaki, Akira; Kubota, Kenichi; Funaki, Ikkoh; Okuno, Yoshihiro
2016-09-01
Steady-state and self-field magnetoplasmadynamic (MPD) thruster, which utilizes high-intensity direct-current (DC) discharge, is one of the prospective candidates of future high-power electric propulsion devices. In order to accurately assess the thrust performance and the electrode temperature, input electric power and wall heat flux must correctly be evaluated where electrostatic sheaths formed in close proximity of the electrodes affect these quantities. Conventional model simulates only plasma flows occurring in MPD thrusters with the absence of electrostatic sheath consideration. Therefore, this study extends the conventional model to a coupled magnetohydrodynamic (MHD) and thermal model by incorporating the phenomena relevant to the electrostatic sheaths. The sheaths are implemented as boundary condition of the MHD model on the walls. This model simulated the operation of the 100-kW-class thruster at discharge current ranging from 6 to 10 kA with argon propellant. The extended model reproduced the discharge voltages and wall heat load which are consistent with past experimental results. In addition, the simulation results indicated that cathode sheath voltages account for approximately 5-7 V subject to approximately 20 V of discharge voltages applied between the electrodes. This work was supported by JSPS KAKENHI Grant Numbers 26289328 and 15J10821.
NASA Astrophysics Data System (ADS)
Wu, S. T.; Zhou, Yufen; Jiang, Chaowei; Feng, Xueshang; Wu, Chin-Chun; Hu, Qiang
2016-02-01
In this study, we present a three-dimensional magnetohydrodynamic model based on an observed eruptive twisted flux rope (sigmoid) deduced from solar vector magnetograms. This model is a combination of our two very well tested MHD models: (i) data-driven 3-D magnetohydrodynamic (MHD) active region evolution (MHD-DARE) model for the reconstruction of the observed flux rope and (ii) 3-D MHD global coronal-heliosphere evolution (MHD-GCHE) model to track the propagation of the observed flux rope. The 6 September 2011, AR11283, event is used to test this model. First, the formation of the flux rope (sigmoid) from AR11283 is reproduced by the MHD-DARE model with input from the measured vector magnetograms given by Solar Dynamics Observatory/Helioseismic and Magnetic Imager. Second, these results are used as the initial boundary condition for our MHD-GCHE model for the initiation of a coronal mass ejection (CME) as observed. The model output indicates that the flux rope resulting from MHD-DARE produces the physical properties of a CME, and the morphology resembles the observations made by STEREO/COR-1.
Computational Methods for Ideal Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Kercher, Andrew D.
Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency
Magnetic reversals in a simple model of magnetohydrodynamics.
Benzi, Roberto; Pinton, Jean-François
2010-07-09
We study a simple magnetohydrodynamical approach in which hydrodynamics and MHD turbulence are coupled in a shell model, with given dynamo constraints in the large scales. We consider the case of a low Prandtl number fluid for which the inertial range of the velocity field is much wider than that of the magnetic field. Random reversals of the magnetic field are observed and it shown that the magnetic field has a nontrivial evolution--linked to the nature of the hydrodynamics turbulence.
Corrosion and arc erosion in MHD channels
NASA Astrophysics Data System (ADS)
Rosa, R. J.; Pollina, R. J.
1991-04-01
The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. Two phenomena that can effect the analysis of slag leakage current have been investigated and found significant. These are: (1) transverse current along the slag layer in the insulator walls of an MHD duct, and (2) electrode surface voltage drops. Both tend to reduce the value inferred for average plasma conductivity and increase the value inferred for axial leakage current. These two effects in combination are potentially capable of explaining the high leakage inferred. Corrosion on the water side of metal MHD duct wall elements has been examined in CDIF and Mark 7 generators. It appears to be controllable by adjusting the pH of the water and/or by controlling the dissolved oxygen content.
NASA Astrophysics Data System (ADS)
Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.
2015-07-01
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.
Pankratov, I. M. E-mail: rjzhou@ipp.ac.cn; Zhou, R. J. E-mail: rjzhou@ipp.ac.cn; Hu, L. Q.
2015-07-15
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.
Laser-powered MHD generators for space application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1986-01-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
In-situ MHD energy conversion for fusion. [R
Campbell, R.B.; Logan, B.G.; Hoffman, M.A.
1986-06-01
An advanced concept, in-situ MHD conversion, is described for converting fusion energy to electricity. Considerable cost savings can be realized because of the conversion of thermal energy to electricity achieved in the blanket by means of magnetohydrodynamic (MHD) generators. The external disk generator, also described, is another application of the MHD idea, which may have certain advantages over the in-situ scheme for advanced-fuel tokamaks. The feature that makes these schemes fusion-specific is the novel use of the electro-magnetic radiation naturally emitted by the plasma. The synchrotron radiation can be used either to heat the nonequilibrium MHD plasma, or possibly improve its stability. A Rankine cycle with cesium-seeded mercury as a working fluid is used in either case. Performance predictions by a quasi-one-dimensional model are presented. An experiment to determine the effect of microwave radiation on channel performance is planned.
TRANSITION FROM KINETIC TO MHD BEHAVIOR IN A COLLISIONLESS PLASMA
Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.; Wan, Minping
2015-10-01
The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag–Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the question of interest by examining several different indicators of MHD-like behavior.
Transition from Kinetic to MHD Behavior in a Collisionless Plasma
NASA Astrophysics Data System (ADS)
Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.; Wan, Minping
2015-10-01
The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag-Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the question of interest by examining several different indicators of MHD-like behavior.
Klimachkov, D. A. Petrosyan, A. S.
2016-09-15
Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the
Heeter, R F; Fasoli, A; Testa, D; Sharapov, S; Berk, H L; Breizman, B; Gondhalekar, A; Mantsinen, M
2004-03-23
Experiments are conducted on the JET tokamak to assess the diagnostic potential of MHD active and passive spectroscopy, for the plasma bulk and its suprathermal components, using Alfv{acute e}n Eigenmodes (AEs) excited by external antennas and by energetic particles. The measurements of AE frequencies and mode numbers give information on the bulk plasma. Improved equilibrium reconstruction, in particular in terms of radial profiles of density and safety factor, is possible from the comparison between the antenna driven spectrum and that calculated theoretically. Details of the time evolution of the non-monotonic safety factor profile in advanced scenarios can be reconstructed from the frequency of ICRH-driven energetic particle modes. The plasma effective mass can be inferred from the resonant frequency of externally driven AEs in discharges with similar equilibrium profiles. The stability thresholds and the nonlinear development of the instabilities can give clues on energy and spatial distribution of the fast particle population. The presence of unstable AEs provides lower limits in the energy of ICRH generated fast ion tails. Fast ion pressure gradients and their evolution can be inferred from the stability of AEs at different plasma radial positions. Finally, the details of the AE spectrum in the nonlinear stage can be used to obtain information about the fast particle velocity space diffusion.
Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts
NASA Astrophysics Data System (ADS)
Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei
2016-05-01
Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)
MHD control in burning plasmas MHD control in burning plasmas
NASA Astrophysics Data System (ADS)
Donné, Tony; Liang, Yunfeng
2012-07-01
Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge
Multimegawatt NEP with vapor core reactor MHD
NASA Astrophysics Data System (ADS)
Smith, Blair; Knight, Travis; Anghaie, Samim
2002-01-01
Efforts at the Innovative Nuclear Space Power and Propulsion Institute have assessed the feasibility of combining gaseous or vapor core reactors with magnetohydrodynamic power generators to provide extremely high quality, high density, and low specific mass electrical power for space applications. Innovative shielding strategies are employed to maintain an effective but relatively low mass shield, which is the most dominating part of multi-megawatt space power systems. The fission driven magnetohydrodynamic generator produces tens of kilowatt DC power at specific mass of less than 0.5 kg/kW for the total power system. The MHD output with minor conditioning is coupled to magnetoplasmadynamic thruster to achieve an overall NEP system specific mass of less than 1.0 kg/kW for power levels above 20 MWe. Few other concepts would allow comparable ensuing payload savings and flexible mission abort options for manned flights to Mars for example. .
H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation
NASA Technical Reports Server (NTRS)
Jones, Jonathan E.; Hawk, Clark W.
1998-01-01
A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is
Simulation of wave interactions with MHD
Batchelor, Donald B; Abla, G; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Fu, GuoYong; Harvey, R. W.; Jaeger, Erwin Frederick; Jardin, S. C.; Jenkins, T; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; Lynch, Vickie E; McCune, Douglas; Ramos, J.; Schissel, D.; Schnack,; Wright, J.
2008-07-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
MHD shocks in coronal mass ejections
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.
1991-01-01
The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).
Classical MHD shocks: theory and numerical simulation
Pogorelov, Nikolai V.
2005-08-01
Recent results are surveyed in the investigation of the behavior of shocks in ideal magnetohydrodynamics (MHD) and corresponding structures in dissipative/resistive plasma flows. In contrast to evolutionary shocks, a solution of the problem of the nonevolutionary shock interaction with small perturbations is either nonunique or does not exist. The peculiarity of non-ideal MHD is in that some nonevolutionary shocks have dissipative structures. Since this structure is always non-plane, it can reveal itself in problems where transverse perturbations do not exist due to symmetries restrictions. We discuss the numerical behavior of nonevolutionary shocks and argue that they necessarily disappear once the problem is solved in a genuinely three-dimensional statement.
Numerical MHD codes for modeling astrophysical flows
NASA Astrophysics Data System (ADS)
Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.
2016-05-01
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.
Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence
NASA Astrophysics Data System (ADS)
Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.
2017-02-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Magnetohydrodynamic Waves in an Asymmetric Magnetic Slab
NASA Astrophysics Data System (ADS)
Allcock, Matthew; Erdélyi, Robert
2017-02-01
Analytical models of solar atmospheric magnetic structures have been crucial for our understanding of magnetohydrodynamic (MHD) wave behaviour and in the development of the field of solar magneto-seismology. Here, an analytical approach is used to derive the dispersion relation for MHD waves in a magnetic slab of homogeneous plasma enclosed on its two sides by non-magnetic, semi-infinite plasma with different densities and temperatures. This generalises the classic magnetic slab model, which is symmetric about the slab. The dispersion relation, unlike that governing a symmetric slab, cannot be decoupled into the well-known sausage and kink modes, i.e. the modes have mixed properties. The eigenmodes of an asymmetric magnetic slab are better labelled as quasi-sausage and quasi-kink modes. Given that the solar atmosphere is highly inhomogeneous, this has implications for MHD mode identification in a range of solar structures. A parametric analysis of how the mode properties (in particular the phase speed, eigenfrequencies, and amplitudes) vary in terms of the introduced asymmetry is conducted. In particular, avoided crossings occur between quasi-sausage and quasi-kink surface modes, allowing modes to adopt different properties for different parameters in the external region.
Global invariants in ideal magnetohydrodynamic turbulence
Shebalin, John V.
2013-10-15
Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.
Global invariants in ideal magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Shebalin, John V.
2013-10-01
Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.
Energetic particle effects on global magnetohydrodynamic modes
Cheng, C.Z. )
1990-06-01
The effects of energetic particles on magnetohydrodynamic (MHD) type modes are studied using analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K) ({ital Workshop} {ital on} {ital Theory} {ital of} {ital Fusion} {ital Plasmas}, (Societa Italiana di Fisica, Bologna, 1987), p. 185). In particular, the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances are addressed. Analytical theories are presented to help explain the NOVAresults. For energetic trapped particles generated by neutral beam injection or ion cyclotron resonant heating, a stability window for the {ital n}=1 internal kink mode in the hot particle beta space exists even in the absence of core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to resonantly excite instability of the {ital n}=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha-particle pressure.
Imbalanced relativistic force-free magnetohydrodynamic turbulence
Cho, Jungyeon; Lazarian, A.
2014-01-01
When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b{sub +}{sup 2}/b{sub −}{sup 2}∝(ϵ{sub +}/ϵ{sub −}){sup n} with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.
Magnetohydrodynamic Power Generation in the Laboratory Simulated Martian Entry Plasma
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Popovic, S.; Drake, J.; Moses, R. W.
2005-01-01
This paper addresses the magnetohydrodynamic (MHD) conversion of the energy released during the planetary entry phase of an interplanetary vehicle trajectory. The effect of MHD conversion is multi-fold. It reduces and redirects heat transferred to the vehicle, and regenerates the dissipated energy in reusable and transportable form. A vehicle on an interplanetary mission carries about 10,000 kWh of kinetic energy per ton of its mass. This energy is dissipated into heat during the planetary atmospheric entry phase. For instance, the kinetic energy of Mars Pathfinder was about 4220 kWh. Based on the loss in velocity, Mars Pathfinder lost about 92.5% of that energy during the plasma-sustaining entry phase that is approximately 3900 kWh. An ideal MHD generator, distributed over the probe surface of Mars Pathfinder could convert more than 2000 kWh of this energy loss into electrical energy, which correspond to more than 50% of the kinetic energy loss. That means that the heat transferred to the probe surface can be reduced by at least 50% if the converted energy is adequately stored, or re-radiated, or directly used. Therefore, MHD conversion could act not only as the power generating, but also as the cooling process. In this paper we describe results of preliminary experiments with light and microwave emitters powered by model magnetohydrodynamic generators and discuss method for direct use of converted energy.
NON-LOCALITY OF HYDRODYNAMIC AND MAGNETOHYDRODYNAMIC TURBULENCE
Cho, Jungyeon
2010-12-20
We compare non-locality of interactions between different scales in hydrodynamic (HD) turbulence and magnetohydrodynamic (MHD) turbulence in a strongly magnetized medium. We use three-dimensional incompressible direct numerical simulations to evaluate non-locality of interactions. Our results show that non-locality in MHD turbulence is much more pronounced than that in HD turbulence. Roughly speaking, non-local interactions count for more than 10% of total interactions in our MHD simulation on a grid of 512{sup 3} points. However, there is no evidence that non-local interactions are important in our HD simulation with the same numerical resolution. We briefly discuss how non-locality affects the energy spectrum.
Derivation of the Hall and extended magnetohydrodynamics brackets
D'Avignon, Eric C. Morrison, Philip J.; Lingam, Manasvi
2016-06-15
There are several plasma models intermediate in complexity between ideal magnetohydrodynamics (MHD) and two-fluid theory, with Hall and Extended MHD being two important examples. In this paper, we investigate several aspects of these theories, with the ultimate goal of deriving the noncanonical Poisson brackets used in their Hamiltonian formulations. We present fully Lagrangian actions for each, as opposed to the fully Eulerian, or mixed Eulerian-Lagrangian, actions that have appeared previously. As an important step in this process, we exhibit each theory's two advected fluxes (in analogy to ideal MHD's advected magnetic flux), discovering also that with the correct choice of gauge they have corresponding Lie-dragged potentials resembling the electromagnetic vector potential, and associated conserved helicities. Finally, using the Euler-Lagrange map, we show how to derive the noncanonical Eulerian brackets from canonical Lagrangian ones.
Fully Implict Magneto-hydrodynamics Simulations of Coaxial Plasma Accelerators
Subramaniam, Vivek; Raja, Laxminarayan L.
2017-01-05
The resistive Magneto-Hydrodynamic (MHD) model describes the behavior of a strongly ionized plasma in the presence of external electric and magnetic fields. We developed a fully implicit MHD simulation tool to solve the resistive MHD governing equations in the context of a cell-centered finite-volume scheme. The primary objective of this study is to use the fully-implicit algorithm to obtain insights into the plasma acceleration and jet formation processes in Coaxial Plasma accelerators; electromagnetic acceleration devices that utilize self-induced magnetic fields to accelerate thermal plasmas to large velocities. We also carry out plasma-surface simulations in order to study the impact interactionsmore » when these high velocity plasma jets impinge on target material surfaces. Scaling studies are carried out to establish some basic functional relationships between the target-stagnation conditions and the current discharged between the coaxial electrodes.« less
Derivation of the Hall and Extended Magnetohydrodynamics Brackets
NASA Astrophysics Data System (ADS)
D'Avignon, Eric; Lingam, Manasvi; Morrison, Philip
2016-10-01
There are several plasma models intermediate in complexity between ideal magnetohydrodynamics (MHD) and two-fluid theory, with Hall and Extended MHD being two important examples. In this research we investigate several aspects of these theories, with the ultimate goal of deriving the noncanonical Poisson brackets used in their Hamiltonian formulations. We present fully Lagrangian actions for each, as opposed to the fully Eulerian, or mixed Eulerian-Lagrangian, actions that have appeared previously. As an important step in this process we exhibit each theory's two advected fluxes (in analogy to ideal MHD's advected magnetic flux), discovering also that with the correct choice of gauge they have corresponding Lie-dragged potentials resembling the electromagnetic vector potential, and associated conserved helicities. Finally, using the Euler-Lagrange map, we show how to derive the noncanonical Eulerian brackets from canonical Lagrangian ones.
Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Lingam, Manasvi; Miloshevich, George; Morrison, Philip J.
2016-07-01
The paper describes the unique geometric properties of ideal magnetohydrodynamics (MHD), and demonstrates how such features are inherited by extended MHD, viz. models that incorporate two-fluid effects (the Hall term and electron inertia). The generalized helicities, and other geometric expressions for these models are presented in a topological context, emphasizing their universal facets. Some of the results presented include: the generalized Kelvin circulation theorems; the existence of two Lie-dragged 2-forms; and two concomitant helicities that can be studied via the Jones polynomial, which is widely utilized in Chern-Simons theory. The ensuing commonality is traced to the existence of an underlying Hamiltonian structure for all the extended MHD models, exemplified by the presence of a unique noncanonical Poisson bracket, and its associated energy.
Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Turner, M. W.; Hawk, C. W.; Litchford, R. J.
2009-01-01
Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.
Smoothed particle hydrodynamics and magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Price, Daniel J.
2012-02-01
This paper presents an overview and introduction to smoothed particle hydrodynamics and magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.
NDSPMHD Smoothed Particle Magnetohydrodynamics Code
NASA Astrophysics Data System (ADS)
Price, Daniel J.
2011-01-01
This paper presents an overview and introduction to Smoothed Particle Hydrodynamics and Magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.
Featured Image: Tests of an MHD Code
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-09-01
Creating the codes that are used to numerically model astrophysical systems takes a lot of work and a lot of testing! A new, publicly available moving-mesh magnetohydrodynamics (MHD) code, DISCO, is designed to model 2D and 3D orbital fluid motion, such as that of astrophysical disks. In a recent article, DISCO creator Paul Duffell (University of California, Berkeley) presents the code and the outcomes from a series of standard tests of DISCOs stability, accuracy, and scalability.From left to right and top to bottom, the test outputs shown above are: a cylindrical Kelvin-Helmholtz flow (showing off DISCOs numerical grid in 2D), a passive scalar in a smooth vortex (can DISCO maintain contact discontinuities?), a global look at the cylindrical Kelvin-Helmholtz flow, a Jupiter-mass planet opening a gap in a viscous disk, an MHD flywheel (a test of DISCOs stability), an MHD explosion revealing shock structures, an MHD rotor (a more challenging version of the explosion), a Flock 3D MRI test (can DISCO study linear growth of the magnetorotational instability in disks?), and a nonlinear 3D MRI test.Check out the gif below for a closer look at each of these images, or follow the link to the original article to see even more!CitationPaul C. Duffell 2016 ApJS 226 2. doi:10.3847/0067-0049/226/1/2
NASA Technical Reports Server (NTRS)
Barth, Timothy
2005-01-01
The role of involutions in energy stability of the discontinuous Galerkin (DG) discretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differences are identified in the symmetrization of the Maxwell and MHD systems that impact the construction of energy stable discretizations using the DG method. Specifically, general sufficient conditions to be imposed on the DG numerical flux and approximation space are given so that energy stability is retained These sufficient conditions reveal the favorable energy consequence of imposing continuity in the normal component of the magnetic induction field at interelement boundaries for MHD discretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations using the discontinuous Galerkin method.
Experience of ALCOA-KOFEM with MHD induction stirrer
Petho, S.
1996-10-01
Every ingot cast shop makes an effort to reduce the costs and to increase the productivity. The MHD stirrer is an adequate tool to achieve a more economical production. The electromagnetic stirrer accelerates the melting rate of the charge, reduces the metal loss and improves the consistency of ingot quality. The Ingot Business Unit of ALCOA-KOFEM operates seven melting furnaces. Each furnace is equipped with a POTOK type MHD induction stirrer in order to achieve a more profitable melting operation. Magnetohydrodynamic stirrers were installed between 1988 and 1990 on melting furnaces ranging in capacity from 25 to 60 tons of molten metal.
The superconducting MHD-propelled ship YAMATO-1
NASA Technical Reports Server (NTRS)
Sasakawa, Yohei; Takezawa, Setsuo; Sugawara, Yoshinori; Kyotani, Yoshihiro
1995-01-01
In 1985 the Ship & Ocean Foundation (SOF) created a committee under the chairmanship of Mr. Yohei Sasakawa, Former President of the Ship & Ocean Foundation, and began researches into superconducting magnetohydrodynamic (MHD) ship propulsion. In 1989 SOF set to construction of a experimental ship on the basis of theoretical and experimental researches pursued until then. The experimental ship named YAMATO-1 became the world's first superconducting MHD-propelled ship on her trial runs in June 1992. This paper describes the outline of the YAMATO-1 and sea trial test results.
The superconducting MHD-propelled ship YAMATO-1
NASA Astrophysics Data System (ADS)
Sasakawa, Yohei; Takezawa, Setsuo; Sugawara, Yoshinori; Kyotani, Yoshihiro
1995-04-01
In 1985 the Ship & Ocean Foundation (SOF) created a committee under the chairmanship of Mr. Yohei Sasakawa, Former President of the Ship & Ocean Foundation, and began researches into superconducting magnetohydrodynamic (MHD) ship propulsion. In 1989 SOF set to construction of a experimental ship on the basis of theoretical and experimental researches pursued until then. The experimental ship named YAMATO-1 became the world's first superconducting MHD-propelled ship on her trial runs in June 1992. This paper describes the outline of the YAMATO-1 and sea trial test results.
Magnetohydrodynamic cellular automata
NASA Technical Reports Server (NTRS)
Montgomery, David; Doolen, Gary D.
1987-01-01
A generalization of the hexagonal lattice gas model of Frisch, Hasslacher and Pomeau is shown to lead to two-dimensional magnetohydrodynamics. The method relies on the ideal point-wise conservation law for vector potential.
Shadid, J. N.; Pawlowski, R. P.; Cyr, E. C.; ...
2016-02-10
Here, we discuss that the computational solution of the governing balance equations for mass, momentum, heat transfer and magnetic induction for resistive magnetohydrodynamics (MHD) systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena, as well as the significant range of time- and length-scales that the interactions of these physical mechanisms produce. This paper explores the development of a scalable, fully-implicit stabilized unstructured finite element (FE) capability for 3D incompressible resistive MHD. The discussion considers the development of a stabilized FE formulation in context of the variational multiscale (VMS) method,more » and describes the scalable implicit time integration and direct-to-steady-state solution capability. The nonlinear solver strategy employs Newton–Krylov methods, which are preconditioned using fully-coupled algebraic multilevel preconditioners. These preconditioners are shown to enable a robust, scalable and efficient solution approach for the large-scale sparse linear systems generated by the Newton linearization. Verification results demonstrate the expected order-of-accuracy for the stabilized FE discretization. The approach is tested on a variety of prototype problems, that include MHD duct flows, an unstable hydromagnetic Kelvin–Helmholtz shear layer, and a 3D island coalescence problem used to model magnetic reconnection. Initial results that explore the scaling of the solution methods are also presented on up to 128K processors for problems with up to 1.8B unknowns on a CrayXK7.« less
MHD performance demonstration experiment, FY 1974 to FY 1984
NASA Astrophysics Data System (ADS)
Whitehead, G. L.; Christensen, L. S.; Felderman, R. J.
1984-06-01
A national program for the development of commercial, open-cycle, magnetohydrodynamic (MHD) power generation is described. The emphasis of that national program was, and is, on establishing the engineering feasibilty of using coal to fuel the MHD power system. In order to establish feasibility it was necessary to experimentally demonstrate that an MHD generator system simulating a commercial-sized device can convert 16 to 18% of the available thermal energy into electric power at an isentropic efficiency of 60 to 70%. A presidential decree encouraged any government agency which might possess an organic MHD capability to assist ERDA in formulating and executing the national program. Since the largest MHD facility in the United States was located at the Arnold Engineering Development Center (AEDC), it was selected to be the national program element to demonstrate performance. As a result, the AEDC has been under contract since December 1973 (first to ERDA, later to its successor, the department of Energy, DOE) to modify existing equipment and to design, fabricate, and install new hardware to perform the MHD Performance Demonstration Experiment. The MHD facility is described and all results achieved to date are summarized.
Toward 3D MHD modeling of neoclassical tearing mode suppression by ECCD
NASA Astrophysics Data System (ADS)
Pratt, J.; Westerhof, E.
2012-09-01
We propose a framework to extend the magnetohydrodynamic (MHD) equations to include electron cyclotron current drive (ECCD) and discuss previous models proposed by Giruzzi et al. [2] and by Hegna and Callen [3]. To model neoclassical tearing mode (NTM) instabilities and study the growth of magnetic islands as NTMs evolve, we employ the nonlinear reduced-MHD simulation JOREK. We present tearing-mode growth-rate calculations from JOREK simulations.
The Effects of Space Charge in a Hypersonic Magnetohydrodynamic Power Generator
2007-06-01
MHD Power Demonstration – HVEPS Project Overview,” AIAA-2006-8010, 14th AIAA/ AHI International Space Planes and Hypersonic Systems and Technologies...Magnetohydrodynamic Generator Design”, AFRL-PR-WP-TR-2006-2072, February 2006. Electronic Publications 30. Martinez, Marty, “General Atomics Scores Power
NASA Technical Reports Server (NTRS)
Fennelly, A. J.; Evans, C. R.
1980-01-01
Magnetohydrodynamic (MHD) perturbations in flat Robertson-Walker universes were analyzed, emphasizing their effects on galaxy formation. The Newtonian approximation is used. There is no increase in the growth rates beyond those of the usual perturbed Robertson-Walker models; the MHD modes extract as much energy as they contribute. Some global properties of fully MHD Bianchi I relativistic models are analyzed including vorticity, fluid accelerations, and dissipative effects. The time dependence of perturbations of a fully MHD diagonal Bianchi I cosmology is studied, with an enhanced growth rate of the density contrast of t found which is still not exponential Jeans-type growth. This indicates that a more detailed analysis is needed if a solution to the galaxy formation problem in MHD cosmologies is to be found.
Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Xu, Kun
1998-01-01
A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.
Supersonic MHD generator system
Rahman, M.A.
1983-11-29
An improved MHD electrical power generating system of the type having a MHD topping cycle and a steam generating bottoming cycle is disclosed. The system typically includes a combustion system, a conventional MHD generator and a first diffuser radiant boiler. The improvement comprises a first supersonic MHD generator and ramjet engine configuration operatively connected in series with each other and with the conventional MHD generator. The first supersonic MHD generator and ramjet engine configuration increase the power output and improve the operating efficiency of the electrical generating system. A diffuser system is also disclosed which is in fluid communication with the supersonic MHD generator and the ramjet engine for collecting bypass plasma gas to be used for heating a second radiant boiler adapted for powering a steam turbine generator.
Pulse Detonation Rocket Magnetohydrodynamic Power Experiment
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.
2003-01-01
The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.
Pulse Detonation Rocket Magnetohydrodynamic Power Experiment
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.
2003-01-01
The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.
NASA Astrophysics Data System (ADS)
Löhner-Böttcher, Johannes
2016-03-01
Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the
Tomida, Kengo; Okuzumi, Satoshi; Machida, Masahiro N. E-mail: okuzumi@geo.titech.ac.jp
2015-03-10
The transport of angular momentum by magnetic fields is a crucial physical process in the formation and evolution of stars and disks. Because the ionization degree in star-forming clouds is extremely low, nonideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion and ohmic dissipation work strongly during protostellar collapse. These effects have significant impacts in the early phase of star formation as they redistribute magnetic flux and suppress angular momentum transport by magnetic fields. We perform three-dimensional nested-grid radiation magnetohydrodynamic simulations including ohmic dissipation and ambipolar diffusion. Without these effects, magnetic fields transport angular momentum so efficiently that no rotationally supported disk is formed even after the second collapse. Ohmic dissipation works only in a relatively high density region within the first core and suppresses angular momentum transport, enabling formation of a very small rotationally supported disk after the second collapse. With both ohmic dissipation and ambipolar diffusion, these effects work effectively in almost the entire region within the first core and significant magnetic flux loss occurs. As a result, a rotationally supported disk is formed even before a protostellar core forms. The size of the disk is still small, about 5 AU at the end of the first core phase, but this disk will grow later as gas accretion continues. Thus, the nonideal MHD effects can resolve the so-called magnetic braking catastrophe while keeping the disk size small in the early phase, which is implied from recent interferometric observations.
MHD Stability of Polar Caps of Accreting Neutron Stars
NASA Astrophysics Data System (ADS)
Litwin, C.; Brown, E. F.; Rosner, R.
2000-12-01
We assess the stability of magnetic Rayleigh-Taylor type modes driven by the overpressure of magnetically confined accreted matter on the surface of a neutron star. We employ the magnetohydrodynamic (MHD) energy principle to analyze the stability of short-wavelength (ballooning) modes subject to line-tying in the neutron star crust. Research supported by ASCI/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago.
Solar-Driven Liquid-Metal MHD Generator
NASA Technical Reports Server (NTRS)
Hohl, F.; Lee, J. H.
1982-01-01
Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.
Solar-Driven Liquid-Metal MHD Generator
NASA Technical Reports Server (NTRS)
Hohl, F.; Lee, J. H.
1982-01-01
Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.
New Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence
NASA Astrophysics Data System (ADS)
Banerjee, Supratik; Galtier, Sebastien
2016-04-01
Hall magnetohydrodynamics is a mono-fluid plasma model appropriate for probing Final{some of the} physical processes (other than pure kinetic effects) at length scales smaller than the scales of standard MHD. In sub-ionic space plasma turbulence (e.g. the solar wind) this fluid model has been proved to be useful. Three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses three inviscid invariants which are the total energy, the magnetic helicity and the generalized helicity. In this presentation, we would like to discuss new exact relations for helicities (magnetic helicities and generalized helicities) which are derived for homogeneous stationary (not necessarily isotropic) Hall MHD turbulence (and also for its inertialess electron MHD limit) in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e. the scalar product of two different increments and are written simply as ηM = di < δ ( {b} × {j}) \\cdot δ {b} >, with ηM the average magnetic helicity flux rate, {b} the magnetic field, {j} the current and ± ηG = < δ ( {v} × {Ω} ) \\cdot δ {Ω} > , with ηM the average generalized helicity flux rate, {v} the fluid velocity and {Ω} = {b} + dI {ω} being the generalized helicity where ω is simply the fluid vorticity ( = nabla × {v}). It provides, therefore, a direct measurement of the dissipation rates for the corresponding helicities even in case of an anisotropic plasma turbulence. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations while the magnetic helicity cascade is linked to the right polarized fluctuations. The newly derived relations also show that like energy, a non-zero helicity flux can only be associated to a departure of Beltrami flow state. {Reference} S. Banerjee & S. Galtier, {Chiral Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence} (submitted).
NASA Astrophysics Data System (ADS)
Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.
2010-03-01
A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n =1-20). The results use the compressible MHD model and depend on a precise representation of "ideal-like" and "vacuumlike" or "halo" regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 108 and 103 for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 105, which is much larger than experimentally measured values using Te values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.
Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.
2010-03-15
A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10{sup 8} and 10{sup 3} for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10{sup 5}, which is much larger than experimentally measured values using T{sub e} values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.
Self-consistent hybrid neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan Carrick
2014-11-01
Neoclassical effects (e.g., conductivity reduction and bootstrap currents) have a profound impact on many magnetohydrodynamic (MHD) instabilities in toroidally-confined plasmas, including tearing modes, edge-localized modes, and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We review a hybrid formulation from the recent literature
Self-consistent hybrid neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
NASA Astrophysics Data System (ADS)
Lyons, Brendan Carrick
Neoclassical effects (e.g., conductivity reduction and bootstrap currents) have a profound impact on many magnetohydrodynamic (MHD) instabilities in toroidally-confined plasmas, including tearing modes, edge-localized modes, and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We review a hybrid formulation from the recent literatureAB that is appropriate for such studies. In particular, the formulation uses a set of time-dependent drift-kinetic equations (DKEs) to advance the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by a set of MHD equations which are closed by moments of fNM . We then present two DKE solvers based upon this formulation in axisymmetric toroidal geometries. The Neoclassical Ion-Electron Solver (NIES) solves the steady-state DKEs in the low-collisionality limit. Convergence and benchmark studies are discussed, providing a proof-of-principle that this new formulation can accurately reproduce results from the literature in the limit considered. We then present the DK4D code which evolves the finite-collisionality DKEs time-dependently. Computational methods used and successful benchmarks to other neoclassical models and codes are discussed. Furthermore, we couple DK4D to a reduced, transport-timescale MHD code. The resulting hybrid code is used to simulate the evolution of the current density in a large-aspect-ratio plasma in the presence of several different time-dependent pressure profiles. These simulations demonstrate the self-consistent, dynamic formation of the ohmic and bootstrap currents. In the slowly-evolving plasmas considered
A solution of two-dimensional magnetohydrodynamic flow using the finite element method
Verardi, S.L.L.; Cardoso, J.R.; Motta, C.C.
1998-09-01
The problem of magnetohydrodynamic flow through channels has become important because of several engineering applications such as design of nuclear reactor cooling systems, electromagnetic pumps, MHD flowmeters, MHD generators, blood flow measurements, etc. A numerical code based on the Finite Element Method (FEM) was developed to solve the two-dimensional, steady-state magnetohydrodynamic (MHD) flow in a rectangular channel. In order to apply the FEM, the Galerkin Weak Formulation was used. In this analysis, in contrast with the previous works, the thickness of the duct wall is taken into account and the results are compared to those obtained in the limit case when the thickness is much smaller than a characteristic dimension of the duct. In this case, convergence behavior of several iterative methods, for high Hartmann numbers, was also investigated.
Comparison of helioseismic cut-off frequency formulations by the means of MHD simulation results
NASA Astrophysics Data System (ADS)
Bourdin, Philippe-A.; Thaler, Irina; Roth, Markus
2017-04-01
The discussion of helioseismic wave phenomena requires a self-consistent description of the plasma pressure. Magnetically active regions on the Sun are observed to have distinct wave phenomena as compared to quiet regions. With better helioseismologic diagnostics near active regions one may also better understand not only the chromospheric energy budget, but also halo formation and running penumbral waves. The line formation height (with respect to the beta=1 level) and the magnetic field inclination near the solar surface are in the same time difficult to measure and important to correctly interpret observations. With the help of a large-scale 3D magneto-hydrodynamic (MHD) model, that features an active region as bottom boundary and has shown good agreement to various observations, we may compute values for theoretically derived formulations of cut-off frequencies from the model plasma parameters. Our results show strongly varying vertical atmospheric profiles and we give estimates of their influence on the expected cut-off frequencies.
Hughes, Rosner, Weiss: Stellar MHD: Magnetohydrodynamics of stellar interiors
NASA Astrophysics Data System (ADS)
Hughes, David; Rosner, Robert; Weiss, Nigel
2005-08-01
David Hughes, Robert Rosner and Nigel Weiss describe what was achieved during a programme on stellar magnetic fields at the Isaac Newton Institute in Cambridge. Over a four-month period more than 90 participants visited the Institute for a mixture of structured workshops and informal collaboration.
MHD (Magnetohydrodynamic) Slow Shocks in Coronal and Interplanetary Space
1989-08-01
closed magnetic structure. The disconnected bubble manifests as a magnetic cloud in interplanetary space. Second, as the CME associated forward...shock pair was observed on October 31 and November 1 of 1972 from IMP 7. The event was associated with a unurually longlasting soli. flaie S 7 which...ld diiiscot ,cted bubble is ielieved to manifest as i a magnetic cloud observed at i AU I" \\ v elit I im magtetic cloud in interplanetarv space
Magnetohydrodynamic turbulence and turbulent dynamo in partially ionized plasma
NASA Astrophysics Data System (ADS)
Xu, Siyao; Lazarian, A.
2017-06-01
Astrophysical fluids are turbulent, magnetized, and frequently partially ionized. As an example of astrophysical turbulence, the interstellar turbulence extends over a remarkably large range of spatial scales and participates in key astrophysical processes happening on different ranges of scales. Significant progress has been achieved in the understanding of the magnetohydrodynamic (MHD) turbulence since the turn of the century, and this enables us to better describe turbulence in magnetized and partially ionized plasmas. In fact, the modern revolutionized picture of MHD turbulence physics facilitates the development of various theoretical domains, including the damping process for dissipating MHD turbulence and the dynamo process for generating MHD turbulence with many important astrophysical implications. In this paper, we review some important findings from our recent theoretical works to demonstrate the interconnection between the properties of MHD turbulence and those of turbulent dynamo in a partially ionized gas. We also briefly exemplify some new tentative studies on how the revised basic processes influence the associated outstanding astrophysical problems in areas such as magnetic reconnection, cosmic ray scattering, and magnetic field amplification in both the early and present-day universe.
Statistics of passive tracers in three-dimensional magnetohydrodynamic turbulence
Busse, Angela; Mueller, Wolf-Christian; Homann, Holger; Grauer, Rainer
2007-12-15
Magnetohydrodynamic (MHD) turbulence is studied from the Lagrangian viewpoint by following fluid particle tracers in high resolution direct numerical simulations. Results regarding turbulent diffusion and dispersion as well as Lagrangian structure functions are presented. Whereas turbulent single-particle diffusion exhibits essentially the same behavior in Navier-Stokes and MHD turbulence, two-particle relative dispersion in the MHD case differs significantly from the Navier-Stokes behavior. This observation is linked to the local anisotropy of MHD turbulence which is clearly reflected by quantities measured in a Lagrangian frame of reference. In the MHD case the Lagrangian structure functions display a lower level of intermittency as compared to the Navier-Stokes case contrasting Eulerian results. This is not only true for short time increments [H. Homann, R. Grauer, A. Busse, and W.-C. Mueller, J. Plasma Phys. 73, 821 (2007)] but also holds for increments up to the order of the integral time scale. The apparent discrepancy can be explained by the difference in the characteristic shapes of fluid particle trajectories in the vicinity of most singular dissipative structures.
Statistics of passive tracers in three-dimensional magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Busse, Angela; Müller, Wolf-Christian; Homann, Holger; Grauer, Rainer
2007-12-01
Magnetohydrodynamic (MHD) turbulence is studied from the Lagrangian viewpoint by following fluid particle tracers in high resolution direct numerical simulations. Results regarding turbulent diffusion and dispersion as well as Lagrangian structure functions are presented. Whereas turbulent single-particle diffusion exhibits essentially the same behavior in Navier-Stokes and MHD turbulence, two-particle relative dispersion in the MHD case differs significantly from the Navier-Stokes behavior. This observation is linked to the local anisotropy of MHD turbulence which is clearly reflected by quantities measured in a Lagrangian frame of reference. In the MHD case the Lagrangian structure functions display a lower level of intermittency as compared to the Navier-Stokes case contrasting Eulerian results. This is not only true for short time increments [H. Homann, R. Grauer, A. Busse, and W.-C. Müller, J. Plasma Phys. 73, 821 (2007)] but also holds for increments up to the order of the integral time scale. The apparent discrepancy can be explained by the difference in the characteristic shapes of fluid particle trajectories in the vicinity of most singular dissipative structures.
Broken Ergodicity in MHD Turbulence in a Spherical Domain
NASA Technical Reports Server (NTRS)
Shebalin, John V.; wang, Yifan
2011-01-01
Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.
Nonlinear magnetohydrodynamic stability
NASA Technical Reports Server (NTRS)
Bauer, F.; Betancourt, O.; Garabedian, P.
1981-01-01
The computer code developed by Bauer et al. (1978) for the study of the magnetohydrodynamic equilibrium and stability of a plasma in toroidal geometry is extended so that the growth rates of instabilities may be estimated more accurately. The original code, which is based on the variational principle of ideal magnetohydrodynamics, is upgraded by the introduction of a nonlinear formula for the growth rate of an unstable mode which acts as a quantitative measure of instability that is important in estimating numerical errors. The revised code has been applied to the determination of the nonlinear saturation, ballooning modes and beta limits for tokamaks, stellarators and torsatrons.
NASA Astrophysics Data System (ADS)
Stone, James M.; Norman, Michael L.
1992-06-01
In this, the second of a series of three papers, we continue a detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows in astrophysics including a self-consistent treatment of the effects of magnetic fields and radiation transfer. In this paper, we give a detailed description of the magnetohydrodynamical (MHD) algorithms in ZEUS-2D. The recently developed constrained transport (CT) algorithm is implemented for the numerical evolution of the components of the magnetic field for MHD simulations. This formalism guarantees the numerically evolved field components will satisfy the divergence-free constraint at all times. We find, however, that the method used to compute the electromotive forces must be chosen carefully to propagate accurately all modes of MHD wave families (in particular shear Alfvén waves). A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-CT method provides for the accurate evolution of all modes of MHD wave families.
Applying MHD technology to the continuous casting of steel slab
NASA Astrophysics Data System (ADS)
Takeuchi, Eiichi
1995-05-01
The application of magnetohydrodynamics (MHD) in the continuous casting process started with the electromagnetic stirring of the stand pool with a traveling magnetic field. It has now advanced to the electromagnetic stirring of molten steel in the mold and the control of molten steel flow by an in-mold direct current magnetic field brake. These applied MHD techniques are designed to further improve the continuous casting process capability. They improve the surface quality of cast steel by homogenizing the meniscus temperature, stabilizing initial solidification, and cleaning the surface layer. They also improve the internal quality of cast steel by preventing inclusions from penetrating deep into the pool and promoting the flotation of argon bubbles. Applied MHD technology is still advancing in scope and methods in addition to the improvement of conventional continuously cast slab qualities. The continuous casting of bimetallic slab by suppressing mixing in the pool is one example of this progress.
Outline of fast analyzer for MHD equilibrium FAME
NASA Astrophysics Data System (ADS)
Sakata, Shinya; Haginoya, Hirofumi; Tsuruoka, Takuya; Aoyagi, Tetsuo; Saito, Naoyuki; Harada, Hiroo; Tani, Keiji; Watanabe, Hideto
1994-02-01
The FAME (Fast Analyzer for Magnetohydrodynamic (MHD) Equilibrium) system has been developed in order to provide more than 100 MHD equilibria in time series which are enough for the non-stationary analysis of the experimental data of JT-60 within about 20 minutes shot interval. The FAME is an MIMD type small scale parallel computer with 20 microprocessors which are connected by a multi-stage switching system. The maximum theoretical speed is 250 MFLOPS. For the software system of FAME, MHD equilibrium analysis code SELENE and its input data production code FBI are tuned up taking the parallel processing into consideration. Consequently, the computational performance of the FAME system becomes more than 7 times faster than the existing general purpose computer FACOM M780-10s. This report summarizes the outline of the FAME system including hardware, soft-ware and peripheral equipments.
Diagnostic development and support of MHD test facilities
Not Available
1990-01-01
The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with DIAL's computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. DIAL personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. 9 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Lebedev, E. F.; Ostashev, V. E.; Fortov, V. E.
2004-11-01
Explosive driven MHD generators (EMHD) occupy an intermediate position between destroyed Explosive Flux Compression Generators and solid-propellant- pulsed MHD generators. Studies revealed the negative consequences of destroying a plasma liner through Rayleigh-Taylor instability. The real efficiency of conversion of condensed HE charge chemical energy reaches ~10% if the magnetic field in a MHD channel is approximately 8-10 T. Accommodation of 20-30 linear MHD channels into a toroidal magnet seems to be optimal for EMHD generator design. This device may operate repeatedly with a frequency of up to 6.5×103pps.
NASA Astrophysics Data System (ADS)
Subramaniam, Vivek; Raja, Laxminarayan L.
2017-06-01
Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.
Subramaniam, Vivek; Raja, Laxminarayan L.
2017-06-13
Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this study, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and themore » resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. Finally, this also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.« less
Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves
NASA Astrophysics Data System (ADS)
Lehmann, Andrew; Wardle, Mark
2015-08-01
The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.
Helicity and its role in the varieties of magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Montgomery, David C.; Bates, Jason W.
Magnetic helicity has appeared as an important but slippery quantity in the theory of magnetohydrodynamic (MHD) turbulence in two contexts: (1) as a slowly-decaying ideal invariant that can control to some extent the formation of a "relaxed" MHD state—one far from thermal equilibrium—in laboratory confinement devices such as the toroidal pinch; and (2) as a potentially inversely-cascadable global quantity in driven, homogeneous MHD turbulence. In the former case, the origin of helicity is straightforwardly clear: electric current is forced to flow along a dc magnetic field, generating poloidal magnetic flux and causing the magnetic field lines to kink up, helically. In the latter, helicity's origins and physical interpretation are more obscure, sometimes having to do with mechanically driven helical motions which supposedly generate magnetic helicity that, however, no longer has any obvious "linked flux" interpretation. In both cases, its usefulness and even its definition sometimes depend sensitively on boundary conditions in a way that, say, those for energy do not. We will examine what the utility of the concept of magnetic helicity has so far been shown to be in discussing turbulent MHD, and comment on some of the ways it differs from other global ideal invariants that have been discussed, such as kinetic energy in 2D Navier-Stokes flows, and mean-square magnetic vector potential in 2D MHD. Attention will be devoted to the evidence for variational principles such as "maximal helicity," or "minimum energy," conjectured to predict various relaxation processes and late-time laminar states in evolving MHD situations. What is believed to be an important distinction between applications of the principles to decaying and driven situations will be stressed. Our discussion will be confined to the cases of small but non-zero transport coefficients, and will not deal with any possible role of helicity in ideal MHD.
The impact of non-ideal magnetohydrodynamics on binary star formation
NASA Astrophysics Data System (ADS)
Wurster, James; Price, Daniel J.; Bate, Matthew R.
2017-04-01
We investigate the effect of non-ideal magnetohydrodynamics (MHD) on the formation of binary stars using a suite of three-dimensional smoothed particle magnetohydrodynamics simulations of the gravitational collapse of 1 M⊙, rotating, perturbed molecular-cloud cores. Alongside the role of Ohmic resistivity, ambipolar diffusion and the Hall effect, we also examine the effects of magnetic field strength, orientation and amplitude of the density perturbation. When modelling sub-critical cores, ideal MHD models do not collapse whereas non-ideal MHD models collapse to form single protostars. In supercritical ideal MHD models, increasing the magnetic field strength or decreasing the initial-density perturbation amplitude decreases the initial binary separation. Strong magnetic fields initially perpendicular to the rotation axis suppress the formation of binaries and yield discs with magnetic fields ∼10 times stronger than if the magnetic field was initially aligned with the rotation axis. When non-ideal MHD is included, the resulting discs are larger and more massive, and the binary forms on a wider orbit. Small differences in the supercritical cores caused by non-ideal MHD effects are amplified by the binary interaction near periastron. Overall, the non-ideal effects have only a small impact on binary formation and early evolution, with the initial conditions playing the dominant role.
Group velocity and causality in standard relativistic resistive magnetohydrodynamics
Koide, Shinji; Morino, Ryogo
2011-10-15
Group velocity of electromagnetic waves in plasmas derived by standard relativistic resistive magnetohydrodynamics equations is superluminal. If we assume that the group velocity represents the propagation velocity of a signal, we have to worry about the causality problem. That is, some acausal phenomena may be induced, such as information transportation to the absolute past and a spontaneous decrease in the entropy. Here, we tried to find the acausal phenomena using standard relativistic resistive magnetohydrodynamics numerical simulations in the suggested situation of the acausal phenomena. The calculation results showed that even in such situations no acausal effect happens. The numerical result with respect to the velocity limit of the information transportation is consistent with a linear theory of wave train propagation. Our results assure that we can use these equations without the problems of acausal phenomena.
Electron magnetohydrodynamics: Dynamics and turbulence
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
2013-11-01
We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k1=k2 do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade ∝k-2. The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated.
On magnetohydrodynamic gauge field theory
NASA Astrophysics Data System (ADS)
Webb, G. M.; Anco, S. C.
2017-06-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.
NASA Astrophysics Data System (ADS)
Hayat, T.; Rashid, M.; Imtiaz, M.; Alsaedi, A.
2017-03-01
This study is focused on the heat and mass transfer effects in a magnetohydrodynamic (MHD) flow of a viscous nanofluid saturating a porous medium past an exponentially radiating stretching sheet. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. It is noted that stratification affects the local Nusselt and Sherwood numbers.
Robust preconditioners for incompressible MHD models
NASA Astrophysics Data System (ADS)
Ma, Yicong; Hu, Kaibo; Hu, Xiaozhe; Xu, Jinchao
2016-07-01
In this paper, we develop two classes of robust preconditioners for the structure-preserving discretization of the incompressible magnetohydrodynamics (MHD) system. By studying the well-posedness of the discrete system, we design block preconditioners for them and carry out rigorous analysis on their performance. We prove that such preconditioners are robust with respect to most physical and discretization parameters. In our proof, we improve the existing estimates of the block triangular preconditioners for saddle point problems by removing the scaling parameters, which are usually difficult to choose in practice. This new technique is applicable not only to the MHD system, but also to other problems. Moreover, we prove that Krylov iterative methods with our preconditioners preserve the divergence-free condition exactly, which complements the structure-preserving discretization. Another feature is that we can directly generalize this technique to other discretizations of the MHD system. We also present preliminary numerical results to support the theoretical results and demonstrate the robustness of the proposed preconditioners.
MHD thrust vectoring of a rocket engine
NASA Astrophysics Data System (ADS)
Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic
2016-09-01
In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.
Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.
2008-01-01
Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing
Zhao, Xuan; Seyler, C. E.
2015-07-15
The magnetized shock problem is studied in the context where supersonic plasma flows past a solid obstacle. This problem exhibits interesting and important phenomena such as a bow shock, magnetotail formation, reconnection, and plasmoid formation. This study is carried out using a discontinuous Galerkin method to solve an extended magneto-hydrodynamic model (XMHD). The main goals of this paper are to present a reasonably complete picture of the properties of this interaction using the MHD model and then to compare the results to the XMHD model. The inflow parameters, such as the magnetosonic Mach number M{sub f} and the ratio of thermal pressure to magnetic pressure β, can significantly affect the physical structures of the flow-obstacle interaction. The Hall effect can also significantly influence the results in the regime in which the ion inertial length is numerically resolved. Most of the results presented are for the two-dimensional case; however, two three-dimensional simulations are presented to make a connection to the important case in which the solar wind interacts with a solid body and to explore the possibility of performing scaled laboratory experiments.
Large-scale quasi-geostrophic magnetohydrodynamics
Balk, Alexander M.
2014-12-01
We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.
Global magnetohydrodynamic simulations of the magnetosphere
Walker, R.J.; Ogino, T.
1989-04-01
Global magnetohydrodynamic (MHD) simulations of the interaction between the solar wind and a planetary magnetosphere enable us to calculate self-consistently the time-dependent three-dimensional configuration of the magnetosphere. To demonstrate the application of a global MHD model to the magnetosphere, the authors have calculated the dependence of the magnetospheric configuration and polar-cap structure on the north-south component of the interplanetary magnetic field (IMF). First, they modeled the magnetosphere in the absence of an IMF and found a slowly evolving system in which steady convection leads to slow reconnection in the plasma sheet. When a uniform northward IMF was initially imposed throughout the system the plasma sheet thickened in a small region near the noon-midnight meridian and extended into the tail lobes. When viewed from the polar cap, this appears as a narrow finger of closed field lines extending into the polar cap. The plasma sheet thickening is caused by reconnection on the nightside magnetopause. This plasma sheet extension becomes less pronounced when the northward IMF enters the simulation box with the solar wind. For both cases the convection near midnight is toward the sun, and region-1-type field-aligned currents appear on both sides of the plasma sheet extension. For northward IMF the resulting magnetospheric configuration approached a quasi-steady state in which stable magnetospheric convection was maintained. The simulation results indicate that the presence of a northward B in the plasma sheet stabilizes the tail.
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Rosner, R.
1988-01-01
Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Rosner, R.
1988-01-01
Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.
System study of an MHD/gas turbine combined-cycle baseload power plant
NASA Astrophysics Data System (ADS)
Annen, K. D.
1981-08-01
The magnetohydrodynamics (MHD) gas turbine systems were modeled with sufficient detail, using realistic component specifications and costs, so that that the thermal and economic performance of the systems could be accurately determined. Three cases of MHD gas turbine systems were studied, with Case I being similar to a MHD steam system so that a direct comparison of the performances could be made, with Case II being representative of a second generation MHD system, and with Case III considering oxygen enrichment for early commercial applications. The results show that the MHD gas turbine system has very good thermal and economic performances while requiring either little or no cooling water. Compared to the MHD steam system which has a cooling tower heat load of 720 MN, the Base Case I MHD/gas turbine system has a heat rate which is 13% higher and a cost of electricity which is only 7% higher while requiring no cooling water. Case II results show that an improved performance can be expected from second generation MHD gas turbine systems. Case III results show that an oxygen enriched MHD gas turbine system may be attractive for early commercial applications in dry regions of the country.
A Global Magnetohydrodynamic Model of Jovian Magnetosphere
NASA Technical Reports Server (NTRS)
Walker, Raymond J.; Sharber, James (Technical Monitor)
2001-01-01
The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5R(sub J). The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by C(sub max)(Delta)t/(Delta)x less than 1 where C(sub max) is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is C(sub w) and the flow speed is C(sub f), C(sub max) = C(sub w) + C(sub f). Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a
NASA Astrophysics Data System (ADS)
Raphaldini, Breno; Raupp, Carlos F. M.
2015-01-01
The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (~11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from -35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.
NASA Astrophysics Data System (ADS)
Webb, G. M.; Dasgupta, B.; McKenzie, J. F.; Hu, Q.; Zank, G. P.
2014-03-01
Conservation laws in ideal gas dynamics and magnetohydrodynamics (MHD) associated with fluid relabeling symmetries are derived using Noether's first and second theorems. Lie dragged invariants are discussed in terms of the MHD Casimirs. A nonlocal conservation law for fluid helicity applicable for a non-barotropic fluid involving Clebsch variables is derived using Noether's theorem, in conjunction with a fluid relabeling symmetry and a gauge transformation. A nonlocal cross helicity conservation law involving Clebsch potentials, and the MHD energy conservation law are derived by the same method. An Euler-Poincaré variational approach is also used to derive conservation laws associated with fluid relabeling symmetries using Noether's second theorem.
Properties of balanced and imbalanced relativistic alfvénic magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Cho, Jungyeon
2014-09-01
When the magnetic field is so strong that the magnetic energy density is much larger than that of matter, magnetic perturbations propagate along the magnetic field lines, and the speed of propagation approaches the speed of light. As in the non-relativistic case, counter-traveling waves in this relativistic limit can interact and generate turbulence. In the present paper, we discuss the properties of the magnetohydrodynamic (MHD) turbulence generated by such interactions. First, we discuss the scaling relations for driven, balanced, relativistic MHD turbulence, in which the amplitudes of counter-traveling wave packets are similar. Second, we discuss the scaling relations of imbalanced relativistic MHD turbulence, in which the amplitudes of counter-traveling wave packets are different. Numerical simulations show that the scaling relations of relativistic MHD turbulence for both cases are very similar to those for their non-relativistic counterparts.
An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension)
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.
1994-01-01
An approximate Riemann solver is developed for the governing equations of ideal magnetohydrodynamics (MHD). The Riemann solver has an eight-wave structure, where seven of the waves are those used in previous work on upwind schemes for MHD, and the eighth wave is related to the divergence of the magnetic field. The structure of the eighth wave is not immediately obvious from the governing equations as they are usually written, but arises from a modification of the equations that is presented in this paper. The addition of the eighth wave allows multidimensional MHD problems to be solved without the use of staggered grids or a projection scheme, one or the other of which was necessary in previous work on upwind schemes for MHD. A test problem made up of a shock tube with rotated initial conditions is solved to show that the two-dimensional code yields answers consistent with the one-dimensional methods developed previously.
Statistical Analysis of Current Sheets in Three-dimensional Magnetohydrodynamic Turbulence
NASA Astrophysics Data System (ADS)
Zhdankin, Vladimir; Uzdensky, Dmitri A.; Perez, Jean C.; Boldyrev, Stanislav
2013-07-01
We develop a framework for studying the statistical properties of current sheets in numerical simulations of magnetohydrodynamic (MHD) turbulence with a strong guide field, as modeled by reduced MHD. We describe an algorithm that identifies current sheets in a simulation snapshot and then determines their geometrical properties (including length, width, and thickness) and intensities (peak current density and total energy dissipation rate). We then apply this procedure to simulations of reduced MHD and perform a statistical analysis on the obtained population of current sheets. We evaluate the role of reconnection by separately studying the populations of current sheets which contain magnetic X-points and those which do not. We find that the statistical properties of the two populations are different in general. We compare the scaling of these properties to phenomenological predictions obtained for the inertial range of MHD turbulence. Finally, we test whether the reconnecting current sheets are consistent with the Sweet-Parker model.
STATISTICAL ANALYSIS OF CURRENT SHEETS IN THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC TURBULENCE
Zhdankin, Vladimir; Boldyrev, Stanislav; Uzdensky, Dmitri A.; Perez, Jean C. E-mail: boldyrev@wisc.edu E-mail: jcperez@wisc.edu
2013-07-10
We develop a framework for studying the statistical properties of current sheets in numerical simulations of magnetohydrodynamic (MHD) turbulence with a strong guide field, as modeled by reduced MHD. We describe an algorithm that identifies current sheets in a simulation snapshot and then determines their geometrical properties (including length, width, and thickness) and intensities (peak current density and total energy dissipation rate). We then apply this procedure to simulations of reduced MHD and perform a statistical analysis on the obtained population of current sheets. We evaluate the role of reconnection by separately studying the populations of current sheets which contain magnetic X-points and those which do not. We find that the statistical properties of the two populations are different in general. We compare the scaling of these properties to phenomenological predictions obtained for the inertial range of MHD turbulence. Finally, we test whether the reconnecting current sheets are consistent with the Sweet-Parker model.
Statistical Theory of the Ideal MHD Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the
MHD Instabilities Occurring Near/AT the Transport Barrier, Including Loss of Confinement in H-Modes
L. L. Lao
1999-09-01
In configurations with transport barriers the improved edge and core confinement leads to large pressure gradient and large edge bootstrap current density which often drive magnetohydrodynamic (MHD) instabilities terminating the discharge or reducing the discharge performance. The edge and the core transport barriers deteriorate or are completely lost. In this presentation, recent experimental and theoretical developments concerning MHD instabilities occurring near/at the edge and the core transport barriers are summarized emphasizing the dominant instabilities and the comparison with theory.
The role of magnetohydrodynamics in heliospheric space plasma physics research
NASA Technical Reports Server (NTRS)
Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan
1988-01-01
Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.
Spectral method for obtaining three-dimensional magnetohydrodynamic equilibria
Hirshman, S.P.; Lee, D.K.
1985-07-01
A description is given of a new code, MOMCON (spectral moments with constraints), that obtains three-dimensional ideal magnetohydrodynamic (MHD) equilibria in a fixed toroidal domain using a Fourier expansion for the inverse coordinates (R,Z) representing nested magnetic surfaces. A set of nonlinear coupled ordinary differential equations for the spectral coefficients of (R,Z) is solved using an accelerated steepest descent method. A stream function lambda is introduced to improve the mode convergence properties of the Fourier series for R and Z. Constraint equations relating the m greater than or equal to 2 moments of R and Z are solved to define a unique poloidal angle.
Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics
Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; MacLachlan, Scott P.; Tuminaro, Raymond S.
2016-01-06
Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxation procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.
Feedback control of multimode magnetohydrodynamic instabilities via neutral beams
Sen, A.K.
1998-08-01
In most scenarios of confinement degradation due to MHD (magnetohydrodynamic) fluctuations in both tokamaks and reversed field pinches several MHD modes are involved. This is the motivation for the development of a multimode feedback scheme in the present paper, in contrast to the past work. The scheme is based on modal (state) feedback, where each mode is unscrambled out of the sensor signal, which is a superposition of all mode information and then individually acted upon by a unique gain and phase. Finally, all these individually processed mode signals are electronically summed and impressed on the accelerator grid of a neutral beam as a single control signal. It is shown that this process can lead to the stabilization of all unstable modes without destabilization of any stable modes, in contrast to previous feedback experiments. {copyright} {ital 1998 American Institute of Physics.}
MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283
Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu
2013-07-10
Current magnetohydrodynamic (MHD) simulations of the initiation of solar eruptions are still commonly carried out with idealized magnetic field models, whereas the realistic coronal field prior to eruptions can possibly be reconstructed from the observable photospheric field. Using a nonlinear force-free field extrapolation prior to a sigmoid eruption in AR 11283 as the initial condition in an MHD model, we successfully simulate the realistic initiation process of the eruption event, as is confirmed by a remarkable resemblance to the SDO/AIA observations. Analysis of the pre-eruption field reveals that the envelope flux of the sigmoidal core contains a coronal null and furthermore the flux rope is prone to a torus instability. Observations suggest that reconnection at the null cuts overlying tethers and likely triggers the torus instability of the flux rope, which results in the eruption. This kind of simulation demonstrates the capability of modeling the realistic solar eruptions to provide the initiation process.
Magnetohydrodynamic disc winds and line width distributions - II
NASA Astrophysics Data System (ADS)
Chajet, L. S.; Hall, P. B.
2017-02-01
We study AGN emission line profiles combining an improved version of the accretion disc-wind model of Murray & Chiang with the magnetohydrodynamic (MHD) model of Emmering et al. Here, we extend our previous work to consider central objects with different masses and/or luminosities. We have compared the dispersions in our model C IV line-width distributions to observational upper limit on that dispersion, considering both smooth and clumpy torus models. Following Fine et al., we transform that scatter in the profile line-widths into a constraint on the torus geometry and show how the half-opening angle of the obscuring structure depends on the mass of the central object and the accretion rate. We find that the results depend only mildly on the dimensionless angular momentum, one of the two integrals of motion that characterize the dynamics of the self-similar ideal MHD outflows.
Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability—Theory
Andreussi, T.; Morrison, P. J.; Pegoraro, F.
2013-09-15
Stability conditions of magnetized plasma flows are obtained by exploiting the Hamiltonian structure of the magnetohydrodynamics (MHD) equations and, in particular, by using three kinds of energy principles. First, the Lagrangian variable energy principle is described and sufficient stability conditions are presented. Next, plasma flows are described in terms of Eulerian variables and the noncanonical Hamiltonian formulation of MHD is exploited. For symmetric equilibria, the energy-Casimir principle is expanded to second order and sufficient conditions for stability to symmetric perturbation are obtained. Then, dynamically accessible variations, i.e., variations that explicitly preserve invariants of the system, are introduced and the respective energy principle is considered. General criteria for stability are obtained, along with comparisons between the three different approaches.
Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Kumar, Rohit; Verma, Mahendra K.
2017-09-01
It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.
Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.
2016-01-01
We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R approx. 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.
On the locality of magnetohydrodynamic turbulence scale fluxes
Teaca, Bogdan; Carati, Daniele; Andrzej Domaradzki, J.
2011-11-15
The scale locality of energy fluxes for magnetohydrodynamics (MHD) is investigated numerically for stationary states of turbulence. Two types of forces are used to drive turbulence, a kinetic force that acts only on the velocity field and a kinetic-inductive force, which acts on the velocity and magnetic fields alike. The analysis is performed in spectral space, which is decomposed into a series of shells following a power law for the boundaries. The triadic transfers occurring among these shells are computed, and the fluxes and locality functions are obtained by partial summation over the relevant shells. Employing Kraichnan locality functions, values of 1/3 and 2/3 for the scaling exponents of the four MHD energy fluxes are found. These values are smaller than the value of 4/3 found for hydrodynamic turbulence. To better understand these results, an in depth analysis is performed on the total energy flux.
Quantitative analytical model for magnetic reconnection in hall magnetohydrodynamics
Simakov, Andrei N
2008-01-01
Magnetic reconnection is of fundamental importance for laboratory and naturally occurring plasmas. Reconnection usually develops on time scales which are much shorter than those associated with classical collisional dissipation processes, and which are not fully understood. While such dissipation-independent (or 'fast') reconnection rates have been observed in particle and Hall magnetohydrodynamics (MHD) simulations and predicted analytically in electron MHD, a quantitative analytical theory of fast reconnection valid for arbitrary ion inertial lengths d{sub i} has been lacking. Here we propose such a theory without a guide field. The theory describes two-dimensional magnetic field diffusion regions, provides expressions for the reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and di. It also demonstrates that both open X-point and elongated diffusion regions allow dissipation-independent reconnection and reveals a possibility of strong dependence of the reconnection rates on d{sub i}.
Global magnetohydrodynamic instabilities in the L-2M stellarator
Mikhailov, M. I.; Shchepetov, S. V.; Nührenberg, C.; Nührenberg, J.
2015-12-15
Analysis of global magnetohydrodynamic (MHD) instabilities in the L-2M stellarator (Prokhorov General Physics Institute, Russian Academy of Sciences) is presented. The properties of free-boundary equilibria states are outlined, the stability conditions for small-scale modes are briefly discussed, and the number of trapped particles is estimated. All the magnetic configurations under study are stable against ballooning modes. It is shown that global ideal internal MHD modes can be found reliably only in Mercier unstable plasmas. In plasma that is stable with respect to the Mercier criterion, global unstable modes that are localized in the vicinity of the free plasma boundary and are not associated with any rational magnetic surface inside the plasma (the so-called peeling modes) can be found. The radial structure of all perturbations under study is almost entirely determined by the poloidal coupling of harmonics. The results of calculations are compared with the available experimental data.
A renormalization group analysis of two-dimensional magnetohydrodynamic turbulence
NASA Technical Reports Server (NTRS)
Liang, Wenli Z.; Diamond, P. H.
1993-01-01
The renormalization group (RNG) method is used to study the physics of two-dimensional (2D) magnetohydrodynamic (MHD) turbulence. It is shown that, for a turbulent magnetofluid in two dimensions, no RNG transformation fixed point exists on account of the coexistence of energy transfer to small scales and mean-square magnetic flux transfer to large scales. The absence of a fixed point renders the RNG method incapable of describing the 2D MHD system. A similar conclusion is reached for 2D hydrodynamics, where enstrophy flows to small scales and energy to large scales. These analyses suggest that the applicability of the RNG method to turbulent systems is intrinsically limited, especially in the case of systems with dual-direction transfer.
Forest, C. B.
2002-11-15
The project is designed to understand current and magnetic field generation in plasmas and other magnetohydrodynamic systems. The experiments will investigate the generation of a dynamo using liquid Na.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1984-11-16
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Local conservative regularizations of compressible magnetohydrodynamic and neutral flows
NASA Astrophysics Data System (ADS)
Krishnaswami, Govind S.; Sachdev, Sonakshi; Thyagaraja, A.
2016-02-01
Ideal systems like magnetohydrodynamics (MHD) and Euler flow may develop singularities in vorticity ( w =∇×v ). Viscosity and resistivity provide dissipative regularizations of the singularities. In this paper, we propose a minimal, local, conservative, nonlinear, dispersive regularization of compressible flow and ideal MHD, in analogy with the KdV regularization of the 1D kinematic wave equation. This work extends and significantly generalizes earlier work on incompressible Euler and ideal MHD. It involves a micro-scale cutoff length λ which is a function of density, unlike in the incompressible case. In MHD, it can be taken to be of order the electron collisionless skin depth c/ωpe. Our regularization preserves the symmetries of the original systems and, with appropriate boundary conditions, leads to associated conservation laws. Energy and enstrophy are subject to a priori bounds determined by initial data in contrast to the unregularized systems. A Hamiltonian and Poisson bracket formulation is developed and applied to generalize the constitutive relation to bound higher moments of vorticity. A "swirl" velocity field is identified, and shown to transport w/ρ and B/ρ, generalizing the Kelvin-Helmholtz and Alfvén theorems. The steady regularized equations are used to model a rotating vortex, MHD pinch, and a plane vortex sheet. The proposed regularization could facilitate numerical simulations of fluid/MHD equations and provide a consistent statistical mechanics of vortices/current filaments in 3D, without blowup of enstrophy. Implications for detailed analyses of fluid and plasma dynamic systems arising from our work are briefly discussed.
Approximate Riemann solvers for the cosmic ray magnetohydrodynamical equations
NASA Astrophysics Data System (ADS)
Kudoh, Yuki; Hanawa, Tomoyuki
2016-11-01
We analyse the cosmic ray magnetohydrodynamic (CR MHD) equations to improve the numerical simulations. We propose to solve them in the fully conservation form, which is equivalent to the conventional CR MHD equations. In the fully conservation form, the CR energy equation is replaced with the CR `number' conservation, where the CR number density is defined as the three-fourths power of the CR energy density. The former contains an extra source term, while latter does not. An approximate Riemann solver is derived from the CR MHD equations in the fully conservation form. Based on the analysis, we propose a numerical scheme of which solutions satisfy the Rankine-Hugoniot relation at any shock. We demonstrate that it reproduces the Riemann solution derived by Pfrommer et al. for a 1D CR hydrodynamic shock tube problem. We compare the solution with those obtained by solving the CR energy equation. The latter solutions deviate from the Riemann solution seriously, when the CR pressure dominates over the gas pressure in the post-shocked gas. The former solutions converge to the Riemann solution and are of the second-order accuracy in space and time. Our numerical examples include an expansion of high-pressure sphere in a magnetized medium. Fast and slow shocks are sharply resolved in the example. We also discuss possible extension of the CR MHD equations to evaluate the average CR energy.
Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Airbreathing Hypersonic Engines
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Bityurin, Valentine A.; Lineberry, John T.
1999-01-01
Established analyses of conventional ramjet/scramjet performance characteristics indicate that a considerable decrease in efficiency can be expected at off-design flight conditions. This can be explained, in large part, by the deterioration of intake mass flow and limited inlet compression at low flight speeds and by the onset of thrust degradation effects associated with increased burner entry temperature at high flight speeds. In combination, these effects tend to impose lower and upper Mach number limits for practical flight. It has been noted, however, that Magnetohydrodynamic (MHD) energy management techniques represent a possible means for extending the flight Mach number envelope of conventional engines. By transferring enthalpy between different stages of the engine cycle, it appears that the onset of thrust degradation may be delayed to higher flight speeds. Obviously, the introduction of additional process inefficiencies is inevitable with this approach, but it is believed that these losses are more than compensated through optimization of the combustion process. The fundamental idea is to use MHD energy conversion processes to extract and bypass a portion of the intake kinetic energy around the burner. We refer to this general class of propulsion system as an MHD-bypass engine. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass airbreathing hypersonic engines using ideal gasdynamics and fundamental thermodynamic principles.
Neoclassical viscosity effects on resistive magnetohydrodynamic modes in toroidal geometry
Yang, J.G.; Oh, Y.H.; Choi, D.I. ); Kim, J.Y.; Horton, W. )
1992-03-01
The flux-surface-averaged linearized resistive magnetohydrodynamic (MHD) boundary-layer equations including the compressibility, diamagnetic drift, and neoclassical viscosity terms are derived in toroidal geometry. These equations describe the resistive layer dynamics of resistive MHD modes over the collisionality regime between the banana plateau and the Pfirsch--Schlueter. From the resulting equations, the effects of neoclassical viscosity on the stability of the tearing and resistive ballooning modes are investigated numerically. Also, a study is given for the problem of how the neoclassical resistive MHD mode is generated as the collisionality is reduced. It is shown that the neoclassical viscosity terms give a significant destabilizing effect for the tearing and resistive ballooning modes. This destabilization comes mainly from the reduction of the stabilizing effect of the parallel ion sound compression by the ion neoclassical viscosity. In the banana-plateau collisionality limit, where the compressibility is negligible, the dispersion relations of the tearing and resistive ballooning modes reduce to the same form, with the threshold value of the driving force given by {Delta}{sub {ital c}}=0. On the other hand, with the finite neoclassical effect it is found that the neoclassical resistive MHD instability is generated in agreement with previous results. Furthermore, it is shown that this later instability can be generated in a wide range of the collisionality including near the Pfirsch--Schlueter regime as well as the banana-plateau regime, suggesting that this mode is a probable cause of anomalous transport.
Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind.
Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos
2012-04-27
Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.
Dynamo action in dissipative, forced, rotating MHD turbulence
NASA Astrophysics Data System (ADS)
Shebalin, John V.
2016-06-01
Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.
Dynamo action in dissipative, forced, rotating MHD turbulence
Shebalin, John V.
2016-06-15
Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 64{sup 3} grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.
Results from a large-scale MHD propulsion experiment
NASA Astrophysics Data System (ADS)
Petrick, M.; Libera, J.; Bouillard, J. X.; Pierson, E. S.; Hill, D.
Magnetohydrodynamic (MHD) thrusters have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnetic (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2 T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (greater than 6-T) practical MHD propulsion systems appear possible. The feasibility of attaining the requisite higher magnetic fields has increased markedly because of rapid advances in building high-field superconducting magnets and the recent evolution of high-temperature superconductors.
A New MHD-assisted Stokes Inversion Technique
NASA Astrophysics Data System (ADS)
Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.
2017-03-01
We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as an initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat the method in a second iteration, which further improves the match between observation and simulation, resulting in a factor of 2.2 lower mean {χ }2 value. One advantage of the new technique is that it provides the physical parameters on a geometrical height scale. It constitutes a first step toward inversions that give results consistent with the MHD equations.
FEMHD: An adaptive finite element method for MHD and edge modelling
Strauss, H.R.
1995-07-01
This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.
Future of Magnetohydrodynamic Ship Propulsion,
1983-08-16
83 FOREIGN TECHNOLOGY DIVISION FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION by A.P. Baranov DTIQ ~E tJ Approved for public release; 0.. distribution...MAGNETOHYDRODYNAMIC SHIP PROPULSION By: A.P. Baranov -,English pages: 10 Source: Sudostroyeniye, Nr. 12, December 1966, pp. 3-6 . Country of origin: USSR X...equations, etc. merged into this translation were extracted from the best quality copy available. FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION A. P
NASA Astrophysics Data System (ADS)
Gaina, Alex
1996-08-01
Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.
Aiba, N.; Hirota, M.
2015-08-15
In a rotating toroidal plasma surrounded by a resistive wall, it is shown that linear magnetohydrodynamic (MHD) instabilities can be excited by interplay between the resistive wall mode (RWM) and stable ideal MHD modes, where the RWM can couple with not only a stable external kink mode but also various stable Alfvén eigenmodes that abound in a toroidal plasma. The RWM growth rate is shown to peak repeatedly as the rotation frequency reaches specific values for which the frequencies of the ideal MHD modes are Doppler-shifted to the small RWM frequency. Such destabilization can be observed even when the RWM in a static plasma is stable. A dispersion relation clarifies that the unstable mode changes from the RWM to the ideal MHD mode destabilized by wall resistivity when the rotation frequency passes through these specific values. The unstable mode is excited at these rotation frequencies even though plasma rotation also tends to stabilize the RWM from the combination of the continuum damping and the ion Landau damping.
Magnetohydrodynamic generator electrode
Marchant, David D.; Killpatrick, Don H.; Herman, Harold; Kuczen, Kenneth D.
1979-01-01
An improved electrode for use as a current collector in the channel of a magnetohydrodynamid (MHD) generator utilizes an elongated monolithic cap of dense refractory material compliantly mounted to the MHD channel frame for collecting the current. The cap has a central longitudinal channel which contains a first layer of porous refractory ceramic as a high-temperature current leadout from the cap and a second layer of resilient wire mesh in contact with the first layer as a low-temperature current leadout between the first layer and the frame. Also described is a monolithic ceramic insulator compliantly mounted to the frame parallel to the electrode by a plurality of flexible metal strips.
Observational Tests of Recent MHD Turbulence Perspectives
NASA Astrophysics Data System (ADS)
Ghosh, Sanjoy
2001-06-01
This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.
A helically distorted MHD flux rope model
NASA Technical Reports Server (NTRS)
Theobald, Michael L.; Montgomery, David
1990-01-01
A flux rope model is proposed which has a variable degree of helical distortion from axisymmetry. The basis for this suggestion is a series of numerical and analytical investigations of magnetohydrodynamic states which result when an axial electric current is directed down on dc magnetic field. The helically distorted states involve a flow velocity and seem to be favored because of their lower rate of energy dissipation. Emphasis is on the magnetometer and particle energy analyzer traces that might be characteristic of such flux ropes. It is shown that even a fractionally small helical distortion may considerably alter the traces in minimum-variance coordinates. In short, what may be fairly common MHD processes can render a flux rope almost unrecognizable under standard diagnostics, even if the departures from axisymmetry are not great.
Global MHD Models of the Solar Corona
NASA Technical Reports Server (NTRS)
Suess, S. T.; Rose, Franklin (Technical Monitor)
2001-01-01
Global magnetohydrodynamic (MHD) models of the solar corona are computationally intensive, numerically complex simulations that have produced important new results over the past few years. After a brief overview of how these models usually work, I will address three topics: (1) How these models are now routinely used to predict the morphology of the corona and analyze Earth and space-based remote observations of the Sun; (2) The direct application of these models to the analysis of physical processes in the corona and chromosphere and to the interpretation of in situ solar wind observations; and (3) The use of results from global models to validate the approximations used to make detailed studies of physical processes in the corona that are not otherwise possible using the global models themselves.
Observational Tests of Recent MHD Turbulence Perspectives
NASA Technical Reports Server (NTRS)
Ghosh, Sanjoy; Guhathakurta, M. (Technical Monitor)
2001-01-01
This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.
Drag reduction in turbulent MHD pipe flows
NASA Technical Reports Server (NTRS)
Orlandi, P.
1996-01-01
This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.
General Relativistic MHD Simulations of Jet Formation
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.
2005-01-01
We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.
Andreussi, T.; Morrison, P. J.; Pegoraro, F.
2012-05-15
The noncanonical Hamiltonian formulation of magnetohydrodynamics (MHD) is used to construct variational principles for continuously symmetric equilibrium configurations of magnetized plasma, including flow. In particular, helical symmetry is considered, and results on axial and translational symmetries are retrieved as special cases of the helical configurations. The symmetry condition, which allows the description in terms of a magnetic flux function, is exploited to deduce a symmetric form of the noncanonical Poisson bracket of MHD. Casimir invariants are then obtained directly from the Poisson bracket. Equilibria are obtained from an energy-Casimir principle and reduced forms of this variational principle are obtained by the elimination of algebraic constraints.
Moawad, S. M.
2015-02-15
In this paper, we present a solution method for constructing exact analytic solutions to magnetohydrodynamics (MHD) equations. The method is constructed via all the trigonometric and hyperbolic functions. The method is applied to MHD equilibria with mass flow. Applications to a solar system concerned with the properties of coronal mass ejections that affect the heliosphere are presented. Some examples of the constructed solutions which describe magnetic structures of solar eruptions are investigated. Moreover, the constructed method can be applied to a variety classes of elliptic partial differential equations which arise in plasma physics.
NASA Astrophysics Data System (ADS)
Picologlou, B.; Doss, E.; Black, D.; Sikes, W. C.
1992-08-01
A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate MHD thruster performance computer models. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rational are discussed. Finally, representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.
Picologlou, B.; Doss, E.; Black, D.; Sikes, W.C.
1992-09-01
A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate MHD thruster performance computer models. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rational are discussed. finally, representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.
Picologlou, B.; Doss, E.; Black, D. ); Sikes, W.C. )
1992-01-01
A two Tesla test facility was designed, built, and operated to investigate the performance of magnetohydrodynamic (MHD) seawater thrusters. The results of this investigation are used to validate MHD thruster performance computer models. The facility test loop, its components, and their design are presented in detail. Additionally, the test matrix and its rational are discussed. finally, representative experimental results of the test program are presented, and are compared to pretest computer model predictions. Good agreement between predicted and measured data has served to validate the thruster performance computer models.
de Baar, M.R.; Hogeweij, G.M.; Lopes Cardozo, N.J.; Oomens, A.A.; Schueller, F.C.
1997-06-01
In the Rijnhuizen Tokamak Project, plasmas with steady-state negative central shear (NCS) are made with off-axis electron cyclotron heating. Shifting the power deposition by 2mm results in a sharp transition of confinement. The good confinement branch features a transport barrier at the off-axis minimum of the safety factor (q) , where q{le}3, and two magnetohydrodynamic (MHD) instabilities, where one is localized at the off-axis minimum of q and one covers the entire NCS region. The low confinement branch has q{gt}3 everywhere, no transport barrier, and no MHD activity. {copyright} {ital 1997} {ital The American Physical Society}
Variational integration for ideal magnetohydrodynamics with built-in advection equations
Zhou, Yao; Burby, J. W.; Bhattacharjee, A.; Qin, Hong
2014-10-15
Newcomb's Lagrangian for ideal magnetohydrodynamics (MHD) in Lagrangian labeling is discretized using discrete exterior calculus. Variational integrators for ideal MHD are derived thereafter. Besides being symplectic and momentum-preserving, the schemes inherit built-in advection equations from Newcomb's formulation, and therefore avoid solving them and the accompanying error and dissipation. We implement the method in 2D and show that numerical reconnection does not take place when singular current sheets are present. We then apply it to studying the dynamics of the ideal coalescence instability with multiple islands. The relaxed equilibrium state with embedded current sheets is obtained numerically.
Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement
Furth, H.P.
1985-05-01
The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved.
Phenomenology treatment of magnetohydrodynamic turbulence with non-equipartition and anisotropy
Zhou, Y; Matthaeus, W H
2005-02-07
Magnetohydrodynamics (MHD) turbulence theory, often employed satisfactorily in astrophysical applications, has often focused on parameter ranges that imply nearly equal values of kinetic and magnetic energies and length scales. However, MHD flow may have disparity magnetic Prandtl number, dissimilar kinetic and magnetic Reynolds number, different kinetic and magnetic outer length scales, and strong anisotropy. Here a phenomenology for such ''non-equipartitioned'' MHD flow is discussed. Two conditions are proposed for a MHD flow to transition to strong turbulent flow, extensions of (1) Taylor's constant flux in an inertial range, and (2) Kolmogorov's scale separation between the large and small scale boundaries of an inertial range. For this analysis, the detailed information on turbulence structure is not needed. These two conditions for MHD transition are expected to provide consistent predictions and should be applicable to anisotropic MHD flows, after the length scales are replaced by their corresponding perpendicular components. Second, it is stressed that the dynamics and anisotropy of MHD fluctuations is controlled by the relative strength between the straining effects between eddies of similar size and the sweeping action by the large-eddies, or propagation effect of the large-scale magnetic fields, on the small scales, and analysis of this balance in principle also requires consideration of non-equipartition effects.
NASA Astrophysics Data System (ADS)
Li, Kai; Liu, Jun; Liu, Weiqiang
2017-04-01
As a novel thermal protection technique for hypersonic vehicles, Magnetohydrodynamic (MHD) heat shield system has been proved to be of great intrinsic value in the hypersonic field. In order to analyze the thermal protection mechanisms of such a system, a physical model is constructed for analyzing the effect of the Lorentz force components in the counter and normal directions. With a series of numerical simulations, the dominating Lorentz force components are analyzed for the MHD heat flux mitigation in different regions of a typical reentry vehicle. Then, a novel magnetic field with variable included angle between magnetic induction line and streamline is designed, which significantly improves the performance of MHD thermal protection in the stagnation and shoulder areas. After that, the relationships between MHD shock control and MHD thermal protection are investigated, based on which the magnetic field above is secondarily optimized obtaining better performances of both shock control and thermal protection. Results show that the MHD thermal protection is mainly determined by the Lorentz force's effect on the boundary layer. From the stagnation to the shoulder region, the flow deceleration effect of the counter-flow component is weakened while the flow deflection effect of the normal component is enhanced. Moreover, there is no obviously positive correlation between the MHD shock control and thermal protection. But once a good Lorentz force's effect on the boundary layer is guaranteed, the thermal protection performance can be further improved with an enlarged shock stand-off distance by strengthening the counter-flow Lorentz force right after shock.
2006-09-01
tested is a model to simulate the hypersonic intake configuration. The corresponding photo is presented in Fig. 49. 75 i I I I I I I Figure 49. The third... hypersonic air stream within the propulsion system inlet. The extra benefit of this proposed Project is the experimental facility to be used for experimental...plasma aerodynamics, and in particular, MHD control of external and internal flows. The MHD control of the external hypersonic flow over the simplest
NASA Astrophysics Data System (ADS)
Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu
2016-12-01
Numerical and experimental investigation results on the magnetohydrodynamics (MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity (V), the chute width (W) and the inlet film thickness (d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field, especially small radial magnetic fields (Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB125003 and 2013GB114002), National Natural Science Foundation of China (No. 11105044)
NASA Astrophysics Data System (ADS)
Toth, G.; Jia, X.; Chen, Y.; Markidis, S.; Peng, B.; Daldorff, L. K. S.; Tenishev, V.; Borovikov, D.; Haiducek, J. D.; Gombosi, T. I.; Glocer, A.; Dorelli, J.; Lapenta, G.
2015-12-01
We have recently developed a new modeling capability to embed the implicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-US magnetohydrodynamic model. The PIC domain can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient with its block-adaptive grid. The current implementation of the MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. The MHD and PIC grids can have different grid resolutions. The MHD variables and the moments of the PIC distribution functions are interpolated and message passed in an efficient manner through the Space Weather Modeling Framework (SWMF). Both BATS-R-US and iPIC3D are massively parallel codes fully integrated into, run by and coupled through the SWMF. We have successfully applied the MHD-EPIC code to model Ganymede's magnetosphere. Using four PIC regions we have in effect performed a fully kinetic simulation of the moon's mini-magnetosphere with a grid resolution that is about 5 times finer than the ion inertial length. The Hall MHD model provides proper boundary conditions for the four PIC regions and connects them with each other and with the inner and outer outer boundary conditions of the much larger MHD domain. We compare our results with Galileo magnetic observations and find good overall agreement with both Hall MHD and MHD-EPIC simulations. The power spectrum for the small scale fluctuations, however, agrees with the data much better for the MHD-EPIC simulation than for Hall MHD. In the MHD-EPIC simulation, unlike in the pure Hall MHD results, we also find signatures of flux transfer events (FTEs) that agree very well with the observed FTE signatures both in terms of shape and amplitudes. We will also highlight our ongoing efforts to model the magnetospheres of Mercury and
Nebogatov, V. A.; Pastukhov, V. P.
2013-06-15
A closed set of reduced equations describing low-frequency nonlinear flute magnetohydrodynamic (MHD) convection and the resulting nondiffusive processes of particle and energy transport in a weakly collisional cylindrical plasma with an anisotropic pressure is derived. The Chew-Goldberger-Low anisotropic magnetohydrodynamics is used as the basic dynamic model, because this model is applicable to describing flute convection in a cylindrical plasma column even in the low-frequency limit. The reduced set of equations was derived using the method of adiabatic separation of fast and slow motions. It is shown that the structure of the adiabatic transformation and the corresponding velocity field are identical to those obtained earlier in the isotropic MHD model. However, the derived heat transfer equations differ drastically from the isotropic pressure model. In particular, they indicate a tendency toward maintaining different radial profiles of the longitudinal and transverse pressures.
Time evolution from linear to nonlinear stages in magnetohydrodynamic parametric instabilities
NASA Technical Reports Server (NTRS)
Hoshino, M.; Goldstein, M. L.
1989-01-01
The nonlinear evolution of the magnetohydrodynamic (MHD) parametric instability of wave fluctuations propagating along an unperturbed magnetic field is investigated. Both a magnetohydrodynamic perturbation-theoretical approach and a nonlinear MHD simulation are used. It is shown that high harmonic waves are rapidly excited by wave-wave coupling, and that the wave spectrum evolves from a state containing a small number of degrees of freedom in k space to one which contains a large number of degrees of freedom. It is found that the spectral evolution prior to nonlinear saturation is well described by the prturbation theory. During this stage, the ratio of the growth rate of the nth harmonic wave to the linear growth rate of the fundamental wave is n. The nonlinear saturation stage is characterized by a frequency shift of the fundamental wave that destroys the wave-wave resonance condition which, in turn, causes the wave amplitude to cease its growth.
Magnetohydrodynamics of fractal media
Tarasov, Vasily E.
2006-05-15
The fractal distribution of charged particles is considered. An example of this distribution is the charged particles that are distributed over the fractal. The fractional integrals are used to describe fractal distribution. These integrals are considered as approximations of integrals on fractals. Typical turbulent media could be of a fractal structure and the corresponding equations should be changed to include the fractal features of the media. The magnetohydrodynamics equations for fractal media are derived from the fractional generalization of integral Maxwell equations and integral hydrodynamics (balance) equations. Possible equilibrium states for these equations are considered.
Magnetohydrodynamic Underwater Acoustic Transducer
1986-12-01
conductivity of an electrolyte not in the vicinity of an electrode + surface is "classically" analyzed using the theories of Debye and HuckelI5 and Debye and...15. P. Debye and E. Huckel , Physik. Z. 24 (1933) (in German). 16. P. Debye and H. Falkenhagen, Physik. Z. 29 121 (1928) (in German). 153 17. K. J...Transdtction 3 B. Present Work 4 Chapter 2 THEORY : THE MAGNETOHYDRODYNAMIC- THERMOACOUSTIC WAVE EQUATION A. Ohm’s Law for an Electrolyte 7 B Derivation of the
Free-boundary ideal MHD stability of W7-X divertor equilibria
NASA Astrophysics Data System (ADS)
Nührenberg, C.
2016-07-01
Plasma configurations describing the stellarator experiment Wendelstein 7-X (W7-X) are computationally established taking into account the geometry of the test-divertor unit and the high-heat-flux divertor which will be installed in the vacuum chamber of the device (Gasparotto et al 2014 Fusion Eng. Des. 89 2121). These plasma equilibria are computationally studied for their global ideal magnetohydrodynamic (MHD) stability properties. Results from the ideal MHD stability code cas3d (Nührenberg 1996 Phys. Plasmas 3 2401), stability limits, spatial structures and growth rates are presented for free-boundary perturbations. The work focusses on the exploration of MHD unstable regions of the W7-X configuration space, thereby providing information for future experiments in W7-X aiming at an assessment of the role of ideal MHD in stellarator confinement.
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
NASA Astrophysics Data System (ADS)
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics
Johnson, Jeffrey
2006-04-01
Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical and physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.
Large eddy simulations of compressible magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Grete, Philipp
2017-02-01
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the
Operational analysis of open-cycle MHD
NASA Astrophysics Data System (ADS)
Lippert, T. E.; McCutchan, D. A.
1980-07-01
Open cycle magnetohydrodynamic (OCMHD) conceptual power plant designs are studied in the context of a utility system to form a better basis for understanding their design, design requirements, and market possibilities. Based on assumed or projected plant costs and performance characteristics, assumed economics and escalation factors, and one coal supply and delivery scenario, overall and regional OCMHD utility market possibilities are reviewed. Additionally, for one hypothetical utility system a generation expansion plan is developed that includes OCMHD as a baseload power generating station. The impact on generation system economics and operation of alternating selected MHD plant cost and performance characteristics is reviewed. Baseload plant availability is shown as an important plant design consideration, and a general methodology and data base is developed to assess the impact on design and cost of various reliability decisions. An overall plant availability goal is set and the required availabilities of various MHD high technology components are derived to meet the plant goal. The approach is then extended to projecting channel life goals for various plant design configurations and assumptions.
Solar wind turbulence: Observations of MHD effects
NASA Technical Reports Server (NTRS)
Bavassano, B.
1995-01-01
Since the first in-situ observations it was realized that the solar wind is permeated by large-amplitude variations on a very extended range of scales. In this paper an overview of our present state of knowledge for fluctuations in the magnetohydrodynamic (MHD) regime is given. These fluctuations are an important component of the solar wind variability and notably contribute to the overall energy and momentum flux. They generally have a turbulent character and their amplitude is large enough to suggest the presence of nonlinear effects. In recent years the use of high time-resolution data on an extended range of heliocentric distances has allowed major steps towards a satisfactory understanding of the solar wind MHD fluctuations. Their radial evolution in the expanding wind has been determined through detailed analyses of the variations in their spectral features. correlations. and anisotropics. The role of interplanetary sources has been carefully investigated. The influence of interactions with structures convected by the solar wind has been examined. Fluctuations have been studied in the light of theories developed to draw together the effects of both incompressibility and compressibility. Increasing attention has been devoted to the intermittent character of the turbulence. Finally, very recent observations by Ulysses at high heliographic latitudes have allowed the first in-situ analysis of turbulence features in polar regions of the heliosphere.
Converging cylindrical shocks in ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-09-15
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The
NASA Astrophysics Data System (ADS)
Zhao, Guangpu; Jian, Yongjun; Chang, Long; Buren, Mandula
2015-08-01
By using the method of separation of variables, an analytical solution for the magnetohydrodynamic (MHD) flow of the generalized Maxwell fluids under AC electric field through a two-dimensional rectangular micropump is reduced. By the numerical computation, the variations of velocity profiles with the electrical oscillating Reynolds number Re, the Hartmann number Ha, the dimensionless relaxation time De are studied graphically. Further, the comparison with available experimental data and relevant researches is presented.
NASA Astrophysics Data System (ADS)
Wang, Yanqing; Wu, Gang; Zhou, Daoguo
2016-12-01
By means of blow-up method and the special structure of the 3D viscous magnetohydrodynamics equations, we derive some interior regularity criteria in terms of horizontal part of the velocity with sufficiently small local scaled norm and both the vertical part of the velocity and the magnetic field with bounded local scaled norm for the suitable weak solutions to this system. As an application, this allows us to improve the previous limiting case for the regularity criterion about the MHD equations.
Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions
NASA Astrophysics Data System (ADS)
Fang, Tiegang
2014-05-01
In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.
3D MHD disruptions simulations of tokamaks plasmas
NASA Astrophysics Data System (ADS)
Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua
2008-11-01
Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.
NASA Technical Reports Server (NTRS)
Kuznetsova, M. M.; Sibeck, D. G.; Hesse, M.; Wang, Y.; Rastaetter, L.; Toth, G.; Ridley, A.
2009-01-01
We use the global magnetohydrodynamic (MHD) code BATS-R-US to model multipoint observations of Flux Transfer Event (FTE) signatures. Simulations with high spatial and temporal resolution predict that cavities of weak magnetic field strength protruding into the magnetosphere trail FTEs. These predictions are consistent with recently reported multi-point Cluster observations of traveling magnetopause erosion regions (TMERs).
Chiral magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Pavlović, Petar; Leite, Natacha; Sigl, Günter
2017-07-01
In this work the influence of the chiral anomaly effect on the evolution of magnetohydrodynamic turbulence was studied. We argue that before the electroweak symmetry breaking and for temperatures high enough such that the electron mass can be ignored, the description of a charged plasma in general needs to take into account the interplay between turbulence and the anomaly effects. It was demonstrated that this generalization can have important consequences on the evolution of turbulence, leading to the creation of maximally-helical fields from initially nonhelical ones. Therefore, chiral effects can strongly support turbulent inverse cascade, and lead to a slower decrease of the magnetic field with time, and also to a faster growth of the correlation length, when compared to the evolution predicted by the standard magnetohydrodynamics description. Using the weak anomaly approximation, and treating the anomaly contributions to magnetic energy and helicity as a small perturbation, we derive the specific solutions for the inverse cascade regime that demonstrate how chiral effects support the inverse cascade.
On the performance of exponential integrators for problems in magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Einkemmer, Lukas; Tokman, Mayya; Loffeld, John
2017-02-01
Exponential integrators have been introduced as an efficient alternative to explicit and implicit methods for integrating large stiff systems of differential equations. Over the past decades these methods have been studied theoretically and their performance was evaluated using a range of test problems. While the results of these investigations showed that exponential integrators can provide significant computational savings, the research on validating this hypothesis for large scale systems and understanding what classes of problems can particularly benefit from the use of the new techniques is in its initial stages. Resistive magnetohydrodynamic (MHD) modeling is widely used in studying large scale behavior of laboratory and astrophysical plasmas. In many problems numerical solution of MHD equations is a challenging task due to the temporal stiffness of this system in the parameter regimes of interest. In this paper we evaluate the performance of exponential integrators on large MHD problems and compare them to a state-of-the-art implicit time integrator. Both the variable and constant time step exponential methods of EPIRK-type are used to simulate magnetic reconnection and the Kevin-Helmholtz instability in plasma. Performance of these methods, which are part of the EPIC software package, is compared to the variable time step variable order BDF scheme included in the CVODE (part of SUNDIALS) library. We study performance of the methods on parallel architectures and with respect to magnitudes of important parameters such as Reynolds, Lundquist, and Prandtl numbers. We find that the exponential integrators provide superior or equal performance in most circumstances and conclude that further development of exponential methods for MHD problems is warranted and can lead to significant computational advantages for large scale stiff systems of differential equations such as MHD.
Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2004-01-01
Incompressible, homogeneous magnetohydrodynamic (MHD) turbulence consists of fluctuating vorticity and magnetic fields, which are represented in terms of their Fourier coefficients. Here, a set of five Fourier spectral transform method numerical simulations of two-dimensional (2-D) MHD turbulence on a 512(sup 2) grid is described. Each simulation is a numerically realized dynamical system consisting of Fourier modes associated with wave vectors k, with integer components, such that k = |k| less than or equal to k(sub max). The simulation set consists of one ideal (non-dissipative) case and four real (dissipative) cases. All five runs had equivalent initial conditions. The dimensions of the dynamical systems associated with these cases are the numbers of independent real and imaginary parts of the Fourier modes. The ideal simulation has a dimension of 366104, while each real simulation has a dimension of 411712. The real runs vary in magnetic Prandtl number P(sub M), with P(sub M) is a member of {0.1, 0.25, 1, 4}. In the results presented here, all runs have been taken to a simulation time of t = 25. Although ideal and real Fourier spectra are quite different at high k, they are similar at low values of k. Their low k behavior indicates the existence of broken symmetry and coherent structure in real MHD turbulence, similar to what exists in ideal MHD turbulence. The value of PM strongly affects the ratio of kinetic to magnetic energy and energy dissipation (which is mostly ohmic). The relevance of these results to 3-D Navier-Stokes and MHD turbulence is discussed.
Magnetohydrodynamic generator experimental studies
NASA Technical Reports Server (NTRS)
Pierson, E. S.
1972-01-01
The results for an experimental study of a one wavelength MHD induction generator operating on a liquid flow are presented. First the design philosophy and the experimental generator design are summarized, including a description of the flow loop and instrumentation. Next a Fourier series method of treating the fact that the magnetic flux density produced by the stator is not a pure traveling sinusoid is described and some results summarized. This approach appears to be of interest after revisions are made, but the initial results are not accurate. Finally, some of the experimental data is summarized for various methods of excitation.
NONIDEAL MAGNETOHYDRODYNAMIC TURBULENT DECAY IN MOLECULAR CLOUDS
Downes, T. P.; O'Sullivan, S.
2009-08-20
It is well known that nonideal magnetohydrodynamic (MHD) effects are important in the dynamics of molecular clouds: both ambipolar diffusion and possibly the Hall effect have been identified as significant. We present the results of a suite of simulations with a resolution of 512{sup 3} of turbulent decay in molecular clouds, incorporating a simplified form of both ambipolar diffusion and the Hall effect simultaneously. The initial velocity field in the turbulence is varied from being super-Alfvenic and hypersonic, through to trans-Alfvenic but still supersonic. We find that ambipolar diffusion increases the rate of decay of the turbulence increasing the decay from t {sup -1.25} to t {sup -1.4}. The Hall effect has virtually no impact in this regard. The power spectra of density, velocity, and the magnetic field are all affected by the nonideal terms, being steepened significantly when compared with ideal MHD turbulence with exponents. The density power-spectra components change from {approx}1.4 to {approx}2.1 for the ideal and nonideal simulations respectively, and power spectra of the other variables all show similar modifications when nonideal effects are considered. Again, the dominant source of these changes is ambipolar diffusion rather than the Hall effect. There is also a decoupling between the velocity field and the magnetic field at short length scales. The Hall effect leads to enhanced magnetic reconnection, and hence less power, at short length scales. The dependence of the velocity dispersion on the characteristic length scale is studied and found not to be power law in nature.
An advanced implicit solver for MHD
NASA Astrophysics Data System (ADS)
Udrea, Bogdan
A new implicit algorithm has been developed for the solution of the time-dependent, viscous and resistive single fluid magnetohydrodynamic (MHD) equations. The algorithm is based on an approximate Riemann solver for the hyperbolic fluxes and central differencing applied on a staggered grid for the parabolic fluxes. The algorithm employs a locally aligned coordinate system that allows the solution to the Riemann problems to be solved in a natural direction, normal to cell interfaces. The result is an original scheme that is robust and reduces the complexity of the flux formulas. The evaluation of the parabolic fluxes is also implemented using a locally aligned coordinate system, this time on the staggered grid. The implicit formulation employed by WARP3 is a two level scheme that was applied for the first time to the single fluid MHD model. The flux Jacobians that appear in the implicit scheme are evaluated numerically. The linear system that results from the implicit discretization is solved using a robust symmetric Gauss-Seidel method. The code has an explicit mode capability so that implementation and test of new algorithms or new physics can be performed in this simpler mode. Last but not least the code was designed and written to run on parallel computers so that complex, high resolution runs can be per formed in hours rather than days. The code has been benchmarked against analytical and experimental gas dynamics and MHD results. The benchmarks consisted of one-dimensional Riemann problems and diffusion dominated problems, two-dimensional supersonic flow over a wedge, axisymmetric magnetoplasmadynamic (MPD) thruster simulation and three-dimensional supersonic flow over intersecting wedges and spheromak stability simulation. The code has been proven to be robust and the results of the simulations showed excellent agreement with analytical and experimental results. Parallel performance studies showed that the code performs as expected when run on parallel
MHD mixed convection stagnation point flow over a permeable surface
NASA Astrophysics Data System (ADS)
Abdul Hamid, Rohana; Abu Bakar, Nor Ashikin; Wan Zaimi, Wan Mohd Khairy Adly; Bidin, Biliana
2013-04-01
In this paper, the effects of suction and injection parameters on magnetohydrodynamic (MHD) mixed convection stagnation point flow are studied numerically. Using appropriate similarity transformations, the governing system of partial differential equations is transformed into a system of ordinary differential equations which are then solved using the shooting method. Numerical results are obtained for the velocity, temperature and concentration profiles. The results show that the suction and injection parameters affect the skin friction coefficient as well as the local Nusselt number for both assisting and opposing flows. The suction parameter increases the skin friction coefficient and the local Nusselt number while the opposite behavior is observed for the injection parameter.
MHD instabilities in accretion mounds - II. 3D simulations
NASA Astrophysics Data System (ADS)
Mukherjee, Dipanjan; Bhattacharya, Dipankar; Mignone, Andrea
2013-10-01
We investigate the onset of pressure-driven toroidal-mode instabilities in accretion mounds on neutron stars by 3D magnetohydrodynamic (MHD) simulations using the PLUTO MHD code. Our results confirm that for mounds beyond a threshold mass, instabilities form finger-like channels at the periphery, resulting in mass-loss from the magnetically confined mound. Ring-like mounds with hollow interior show the instabilities at the inner edge as well. We perform the simulations for mounds of different sizes to investigate the effect of the mound mass on the growth rate of the instabilities. We also investigate the effect of such instabilities on observables such as cyclotron resonant scattering features and timing properties of such systems.
Stabilization of global MHD instabilities by toroidal plasma rotation
Chu, M.S.; Miller, R.L.; Bondeson, A.; Luetjens, H.; DeRidder, G.; Sauter, O.
1995-07-01
Theoretical study and experimental observations suggest that rotation can play a crucial role in determining plasma stability. Since conventional magnetohydrodynamic (MHD) analysis ignores rotation, more advanced computational tools are being developed to confirm the theoretical understanding and to perform comparison between theory and experiment. In a previous work, the authors reported on the formulation and computation of MHD modes in plasmas with a small (subsonic) toroidal rotation. R.otation is found to have a substantial stabilizing effect under many circumstances. In this work, they extend the formulation in Ref. 4 to include an arbitrary (large) toroidal plasma rotation. It is the purpose of this work to examine the difference between these two formulations and report on results from computations using these formulations.
NASA Astrophysics Data System (ADS)
Sujito; Wisodo, Hari; Setiahadi, Bambang
2017-05-01
This research is compare of magnetohydrodynamics (MHD) simulation and observational product to solar coronal helmet streamer (SCHS). Magnetohydrodynamics simulation is performed to construct evolution of a solar coronal helmet streamer attaining magnetohydrodynamics stability in solar corona. The dynamical evolution is satisfied by implementing numerical approach to reach complete self-consistent solution through modified general equation of Lagrangian-Navier-Stokes time-dependent. The density profile resulting from numerical solution is compared to the real data derived from large-angle solar coronagraph data taking by a coronagraph satellite. The research product show range of error is 10% with using measure of differential emission. We conclude that the plasma electron density distribution derived from simulation is in accordance with observational data.
Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Sondak, David
The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting
Comparison of three artificial models of the magnetohydrodynamic effect on the electrocardiogram.
Oster, Julien; Llinares, Raul; Payne, Stephen; Tse, Zion Tsz Ho; Schmidt, Ehud Jeruham; Clifford, Gari D
2015-01-01
The electrocardiogram (ECG) is often acquired during magnetic resonance imaging (MRI), but its analysis is restricted by the presence of a strong artefact, called magnetohydrodynamic (MHD) effect. MHD effect is induced by the flow of electrically charged particles in the blood perpendicular to the static magnetic field, which creates a potential of the order of magnitude of the ECG and temporally coincident with the repolarisation period. In this study, a new MHD model is proposed by using MRI-based 4D blood flow measurements made across the aortic arch. The model is extended to several cardiac cycles to allow the simulation of a realistic ECG acquisition during MRI examination and the quality assessment of MHD suppression techniques. A comparison of two existing models, based, respectively, on an analytical solution and on a numerical method-based solution of the fluids dynamics problem, is made with the proposed model and with an estimate of the MHD voltage observed during a real MRI scan. Results indicate a moderate agreement between the proposed model and the estimated MHD model for most leads, with an average correlation factor of 0.47. However, the results demonstrate that the proposed model provides a closer approximation to the observed MHD effects and a better depiction of the complexity of the MHD effect compared with the previously published models, with an improved correlation (+5%), coefficient of determination (+22%) and fraction of energy (+1%) compared with the best previous model. The source code will be made freely available under an open source licence to facilitate collaboration and allow more rapid development of more accurate models of the MHD effect.
Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere
NASA Technical Reports Server (NTRS)
Toth, Gabor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.;
2016-01-01
We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHO-EPIC) algorithm Is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the Interaction between Jupiter's magnetospherlc plasma and Ganymede's magnetosphere. We compare the MHO-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the Importance of kinetic effects In controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHO-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular. the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHO-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-0 structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHO-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.
MHD generator electrode development
NASA Astrophysics Data System (ADS)
Retallick, F. D.; Dietrick, D. L.; Lloyd, I.; Rossing, B. R.; Smith, R.
1981-08-01
Metallurgical and engineering understanding of cold metallic electrode alternatives to the continued use of platinum as an anode clad material is discussed. The results of evaluating materials for MHD electrodes through use of a laboratory electrochemical and arc test are presented. Results for standard available materials as well as for some specially fabricated ones are presented. The development of a high temperature (11000 C to 14000 C) electrochemical test is outlined. Initial operation of the Westinghouse Electrode Systems Test Facility (WESTF), since major modification to include a magnet, is reported for a test section designed to operate as a small scale MHD generator and for test sections designed for the purpose of materials test evaluation in the operating MHD plasma environment.
MHD Energy Bypass Scramjet Performance with Real Gas Effects
NASA Technical Reports Server (NTRS)
Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.
2000-01-01
The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.
Studying Solar MHD Wave Propagation in Two Dimensions
NASA Astrophysics Data System (ADS)
McIntosh, S. W.; Bogdan, T. J.
1999-05-01
We present preliminary results on simulations of Magnetohydrodynamic (MHD) wave propagation in a two dimensional stratified model of the upper solar atmosphere. The simulations presented are obtained using the High-Order Godunov scheme of Zachary, Malagoli & Colella (1994). These simulations allow us to analyze quantitatively the coupling, resonances and absorption of MHD waves in a stratified plasma such as that of the Sun. In particular, we are able to observe the dynamic evolution of energy and momentum balances of the model atmosphere in response the wave propagation. In addition, we are able to study the phenomenology of MHD wave passage through particular regions of interest. We will concentrate mostly upon the physical manifestation of MHD waves propagating in ``network'' and ``internetwork'' regions and study the effect on physical parameters and the basic field structure imposed at outset. We believe that such simulations are important in that they compliment the high quality/temporal resolution data currently being acquired by the SOHO and TRACE spacecraft.
Numerical investigation of unsteady real gas flowfields with MHD effects
NASA Astrophysics Data System (ADS)
Munipalli, Ramakanth
1998-12-01
The design of ground based test facilities to simulate high temperature flight environments has received much attention in recent years. This dissertation deals with the numerical simulation of such facilities in order to assist their design and estimate their importance in modern aerodynamic research. The central problem addressed here is the simulation of a Magnetohydrodynamics (MHD) based accelerator which can potentially improve the test Mach number range of conventional facilities while at the same time providing realistic gas chemistry at the appropriate flight conditions. The study uses two types of gas models: (a) an equilibrium model in which the flow is assumed to be in thermochemical equilibrium at all points and (b) a nonequilibrium model based on finite rate chemistry and two distinct flow temperatures. The latter is utilized to study accelerators based on nonequilibrium ionization. The effect of finite rate processes on MHD accelerators is studied. Equilibrium air models are used to validate nonequilibrium air calculations and to study the effect of adding seed material to increase electrical conductivity at relatively low temperatures. Some comparisons with experimental data are made to validate the basic gas models and numerical schemes. Simplified solutions to the Maxwell equations are used to simulate the electromagnetic field. Some general considerations in the design of seeded MHD accelerators are studied. Upwind based flux split schemes based on Roe's scheme are used to solve the flow equations. Steady and unsteady solutions are presented for a variety of MHD related problems.
CME generated MHD shocks: creation, evolution and impact
NASA Astrophysics Data System (ADS)
Poedts, S.; van der Holst, B.; Chattopadhyay, I.; Shergelashvili, D.; Banerjee, D.; Deconinck, H.
2003-04-01
The shocks in the solar corona caused by fast Coronal Mass Ejections (CMEs) are studied in the framework of computational magnetohydrodynamics (MHD). Such MHD shocks can have a complicated structure including secondary shock fronts, overcompressive and compound shocks, etc. Numerical simulations show that CME shocks (generated in the lower corona) can have such a complex structure. The evolution of these CME shocks is followed during their propagation through the solar wind and, in particular, though the critical points in the wind. Complex IP events involving two CME shocks colliding to each other, as often observed, are also investigated. Finally, an analysis based on a parameter study of the impact of the resulting IP magnetic clouds on the Earth's bow shock involving 3D MHD simulations is presented and discussed. In addition, time accurate MHD simulations show how the magnetic reconnection at the Earth's bow shock is affected dramatically by the magnetic cloud impact. The CME shocks are important for `space weather' because they can easily be observed in radio wavelengths. This makes it possible to track the position of the CMEs/magnetic clouds and, hence, to follow their propagation through the corona. The topology of the shock at the Earth's magnetosphere at the impact of a magnetic cloud is important for the `geo-effectiveness' of the magnetic storms.
Electrical characteristics of a seawater MHD thruster. Final report
Tempelmeyer, K.E.
1990-06-01
There is renewed interest in the application of the magnetohydrodynamic (MHD) propulsion concept to marine propulsion. However, there is almost no experimental information concerning the major physical processes which will occur in a seawater MHD propulsion unit, such as (1) the seawater electrolysis process at operational conditions needed for ship propulsion, (2) the effects of bubble formation on the performance of a seawater thruster and (3) the effectiveness of the MHD interaction in seawater. Small scale tests of an MHD type channel but without an applied magnetic field have been carried out to provide information about the first two of these areas (1) seawater electrolysis and (2) the effect of the H2 bubbles generated during the electrolysis of seawater. Current/voltage characteristics were obtained with different electrode materials for current densities up to 0.3 amp/sq cm. The effect of bubble formation on the channel current has been assessed over a range of operating conditions. Long-duration tests to 100 hrs have been made to provide information on electrode durability and long-term operational problems.
MHD computations for stellarators
Johnson, J.L.
1985-12-01
Considerable progress has been made in the development of computational techniques for studying the magnetohydrodynamic equilibrium and stability properties of three-dimensional configurations. Several different approaches have evolved to the point where comparison of results determined with different techniques shows good agreement. 55 refs., 7 figs.
Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng
2015-01-01
The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393
Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng
2015-12-15
The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.
Study of fractal features of magnetized plasma through an MHD shell model
NASA Astrophysics Data System (ADS)
Domínguez, M.; Nigro, G.; Muñoz, V.; Carbone, V.
2017-07-01
A magnetohydrodynamic (MHD) shell model is used to describe the dissipative events which take place in magnetized plasmas. A scatter plot box-counting fractal dimension D is calculated for the time series of the magnetic energy dissipation rate obtained in the MHD shell model, and the correlation between D and the energy dissipation rate is analyzed. We show that, depending on the values of the viscosity and the diffusivity, the fractal dimension and the occurrence of bursts exhibit correlations similar to those observed in previous studies.
Compressible sub-Alfvénic MHD turbulence in low-beta plasmas.
Cho, Jungyeon; Lazarian, A
2002-06-17
We present a model for compressible sub-Alfvénic isothermal magnetohydrodynamic (MHD) turbulence in low- beta plasmas and numerically test it. We separate MHD fluctuations into three distinct families: Alfvén, slow, and fast modes. We find that production of slow and fast modes by Alfvénic turbulence is suppressed. As a result, Alfvén modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfvén modes. However, fast modes show isotropy and a scaling similar to acoustic turbulence.
Special Issue on the 20th Workshop on MHD Stability Control
Park, Jong -Kyu
2016-11-08
The 20th workshop on magnetohydrodynamic (MHD) stability control took place November 22–24, 2015, in Princeton Plasma Physics Laboratory (PPPL), following the American Physical Society—Division of Plasma Physics annual meeting on November 16–20 in Savannah, GA. The purpose of this workshop is to stimulate in depth discussion and motivate future research in the areas of MHD stability physics and control of magnetically confined plasmas. Furthermore, the workshop was organized jointly by Auburn University, Columbia University, General Atomics, Princeton Plasma Physics Laboratory, University of Wisconsin-Madison, and the Los Alamos National Laboratory, and under the auspices of the US/Japan Collaboration.
NASA Astrophysics Data System (ADS)
L. Braga, F.
2013-10-01
The solution of Grad-Shafranov equation determines the stationary behavior of fusion plasma inside a tokamak. To solve the equation it is necessary to know the toroidal current density profile. Recent works show that it is possible to determine a magnetohydrodynamic (MHD) equilibrium with reversed current density (RCD) profiles that presents magnetic islands. In this work we show analytical MHD equilibrium with a RCD profile and analyze the structure of the vacuum vector potential associated with these equilibria using the virtual casing principle.
On global existence, energy decay and blow-up criteria for the Hall-MHD system
NASA Astrophysics Data System (ADS)
Wan, Renhui; Zhou, Yong
2015-12-01
In this paper, we obtain global existence and energy decay for 3D Hall-magnetohydrodynamics (Hall-MHD) system with - Δu and - ΔB. Besides the classical energy method and Besov space techniques, the interpolating inequalities are crucial in the proof of decay estimates. Then two Osgood type blow-up criteria are established. Our results improve the corresponding theorems in [3] and [4]. In addition, we establish two Beale-Kato-Majda blow-up criterion for the generalized version of Hall-MHD with - Δu and (- Δ) β B, β > 1.
Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Lyles, Garry M. (Technical Monitor)
2001-01-01
The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p(sub 2)/p(sub 1) approx. 34 and D approx. 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (=6 S/m) behind the detonation wave front. In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T. and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Ohm. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the MHD interaction exerted a
Magnetic control of magnetohydrodynamic instabilities in tokamaks
NASA Astrophysics Data System (ADS)
Strait, E. J.
2015-02-01
Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( δB /B ˜10-3 to 10-4 ) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error fields at low
Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas
NASA Astrophysics Data System (ADS)
Comer, Kathryn J.
We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent
Magnetic control of magnetohydrodynamic instabilities in tokamaks
Strait, Edward J.
2014-11-24
Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( δB/B ~ 10^{-3} to 10^{-4}) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode — a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static
Magnetic control of magnetohydrodynamic instabilities in tokamaks
Strait, Edward J.
2014-11-24
Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( δB/B ~ 10-3 to 10-4) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of themore » plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode — a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error fields
Magnetic control of magnetohydrodynamic instabilities in tokamaks
Strait, E. J.
2015-02-15
Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries (δB/B∼10{sup −3} to 10{sup −4}) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas (β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1986-07-08
A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.
Implicit Predictor-Corrector finite difference scheme for the ideal MHD simulations
NASA Astrophysics Data System (ADS)
Tsai, T.; Yu, H.; Lai, S.
2012-12-01
A innovative simulation code for ideal magnetohydrodynamics (MHD) is developed. We present a multiple-dimensional MHD code based on high-order implicit predictor-corrector finite difference scheme (high-order IPCFD scheme). High-order IPCFD scheme adopts high-order predictor-corrector scheme for the time integration and high-order central difference method as the spatial derivative solver. We use Elimination-of-the-Runoff-Errors (ERE) technology to avoid the numerical oscillations and numerical instability in the simulation results. In one-dimensional MHD problem, our simulation results show good agreement with the Brio & Wu MHD shock tube problem. The divergent B constraint remains fully satisfied, that is the divergent B equals to zero throughout the simulation. When solving the two-dimensional (2D) linear wave in MHD plasma, we clearly obtain the group-velocity Friedrichs diagrams of the MHD waves. Here we demonstrate 2D simulation results of rotor problem, Orszag-Tang vortex system, vortex type K-H instability, and kink type K-H instability by using our IPCFD MHD code and discuss the advantage of our simulation code.
Sondak, David; Oberai, Assad A.
2012-10-15
Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation of LES to the equations of incompressible MHD. Additionally, a new residual-based eddy viscosity model is introduced for MHD. A mixed LES model that combines the strengths of both of these models is also derived. The new models result in a consistent numerical method that is relatively simple to implement. The need for a dynamic procedure in determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical LES turbulence models. The LES simulations are run in a periodic box of size [-{pi}, {pi}]{sup 3} with 32 modes in each direction and are compared to a direct numerical simulation (DNS) with 512 modes in each direction. The new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by Pouquet et al.['The dynamics of unforced turbulence at high Reynolds number for Taylor-Green vortices generalized to MHD,' Geophys. Astrophys. Fluid Dyn. 104, 115-134 (2010)], for which the ratio of DNS modes to LES modes is 262:144.
NASA Astrophysics Data System (ADS)
Kawazura, Yohei; Miloshevich, George; Morrison, Philip J.
2017-02-01
Two types of Eulerian action principles for relativistic extended magnetohydrodynamics (MHD) are formulated. With the first, the action is extremized under the constraints of density, entropy, and Lagrangian label conservation, which leads to a Clebsch representation for a generalized momentum and a generalized vector potential. The second action arises upon transformation to physical field variables, giving rise to a covariant bracket action principle, i.e., a variational principle in which constrained variations are generated by a degenerate Poisson bracket. Upon taking appropriate limits, the action principles lead to relativistic Hall MHD and well-known relativistic ideal MHD. For the first time, the Hamiltonian formulation of relativistic Hall MHD with electron thermal inertia (akin to Comisso et al., Phys. Rev. Lett. 113, 045001 (2014) for the electron-positron plasma) is introduced. This thermal inertia effect allows for violation of the frozen-in magnetic flux condition in marked contrast to nonrelativistic Hall MHD that does satisfy the frozen-in condition. We also find the violation of the frozen-in condition is accompanied by freezing-in of an alternative flux determined by a generalized vector potential. Finally, we derive a more general 3 + 1 Poisson bracket for nonrelativistic extended MHD, one that does not assume smallness of the electron ion mass ratio.
Incompressible magnetohydrodynamic modes in the thin magnetically twisted flux tube
NASA Astrophysics Data System (ADS)
Cheremnykh, O. K.; Fedun, V.; Kryshtal, A. N.; Verth, G.
2017-08-01
Context. Observations have shown that twisted magnetic fields naturally occur, and indeed are omnipresent in the Sun's atmosphere. It is therefore of great theoretical interest in solar atmospheric waves research to investigate the types of magnetohydrodynamic (MHD) wave modes that can propagate along twisted magnetic flux tubes. Aims: Within the framework of ideal MHD, the main aim of this work is to investigate small amplitude incompressible wave modes of twisted magnetic flux tubes with m ≥ 1. The axial magnetic field strength inside and outside the tube will be allowed to vary, to ensure the results will not be restricted to only cold plasma equilibria conditions. Methods: The dispersion equation for these incompressible linear MHD wave modes was derived analytically by implementing the long wavelength approximation. Results: It is shown, in the long wavelength limit, that both the frequency and radial velocity profile of the m = 1 kink mode are completely unaffected by the choice of internal background magnetic twist. However, fluting modes with m ≥ 2 are sensitive to the particular radial profile of magnetic twist chosen. Furthermore, due to background twist, a low frequency cut-off is introduced for fluting modes that is not present for kink modes. From an observational point of view, although magnetic twist does not affect the propagation of long wavelength kink modes, for fluting modes it will either work for or against the propagation, depending on the direction of wave travel relative to the sign of the background twist.
Experimental and theoretical study of magnetohydrodynamic ship models.
Cébron, David; Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe
2017-01-01
Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques.
Generalized Hall effect as a modification of ideal magnetohydrodynamics
Goodman, M.L.
1986-01-01
The generalized Hall effect (GHE) in the generalized Hall model (GHM) is studied as a correction to ideal magnetohydrodynamics (MHD) in the context of how it affects the linear stability of cylindrically symmetric equilibria and how it changes helically symmetric equilibria. The GHM differs from what is usually called the Hall model by including the electron pressure in the electron-momentum equations. This gives the GHM some aspects of a two-fluid model, whereas the Hall model is a one-fluid model. In both cases of cylindrical and helical symmetry, the presence of the electron pressure gradient as part of the GHE gives rise to an electric field tangent to the boundary of the plasma. This introduces an additional boundary condition in the case of a perfectly conducting plasma boundary. In the case of helical symmetry, the equilibrium equations are a generalization of the Grad-Shafranov equation to equilibria with flow and GHE. In the case of cylindrical symmetry, a class of Alfven-wave solutions that do not exist in ideal MHD is obtained and the accumulation point, with respect to large radial wavenumber, of the slow magnetoacoustic wave is shown to be changed from a finite nonzero value in ideal MHD to infinity by the GHE>
Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.
2003-01-01
The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.
Density-shear instability in electron magneto-hydrodynamics
Wood, T. S. Hollerbach, R.; Lyutikov, M.
2014-05-15
We discuss a novel instability in inertia-less electron magneto-hydrodynamics (EMHD), which arises from a combination of electron velocity shear and electron density gradients. The unstable modes have a lengthscale longer than the transverse density scale, and a growth-rate of the order of the inverse Hall timescale. We suggest that this density-shear instability may be of importance in magnetic reconnection regions on scales smaller than the ion skin depth, and in neutron star crusts. We demonstrate that the so-called Hall drift instability, previously argued to be relevant in neutron star crusts, is a resistive tearing instability rather than an instability of the Hall term itself. We argue that the density-shear instability is of greater significance in neutron stars than the tearing instability, because it generally has a faster growth-rate and is less sensitive to geometry and boundary conditions. We prove that, for uniform electron density, EMHD is “at least as stable” as regular, incompressible MHD, in the sense that any field configuration that is stable in MHD is also stable in EMHD. We present a connection between the density-shear instability in EMHD and the magneto-buoyancy instability in anelastic MHD.
Some topics in the magnetohydrodynamics of accreting magnetic compact objects
NASA Technical Reports Server (NTRS)
Aly, J. J.
1986-01-01
Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.
CONSTRAINED-TRANSPORT MAGNETOHYDRODYNAMICS WITH ADAPTIVE MESH REFINEMENT IN CHARM
Miniati, Francesco; Martin, Daniel F. E-mail: DFMartin@lbl.gov
2011-07-01
We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.
Experimental and theoretical study of magnetohydrodynamic ship models
Viroulet, Sylvain; Vidal, Jérémie; Masson, Jean-Paul; Viroulet, Philippe
2017-01-01
Magnetohydrodynamic (MHD) ships represent a clear demonstration of the Lorentz force in fluids, which explains the number of students practicals or exercises described on the web. However, the related literature is rather specific and no complete comparison between theory and typical small scale experiments is currently available. This work provides, in a self-consistent framework, a detailed presentation of the relevant theoretical equations for small MHD ships and experimental measurements for future benchmarks. Theoretical results of the literature are adapted to these simple battery/magnets powered ships moving on salt water. Comparison between theory and experiments are performed to validate each theoretical step such as the Tafel and the Kohlrausch laws, or the predicted ship speed. A successful agreement is obtained without any adjustable parameter. Finally, based on these results, an optimal design is then deduced from the theory. Therefore this work provides a solid theoretical and experimental ground for small scale MHD ships, by presenting in detail several approximations and how they affect the boat efficiency. Moreover, the theory is general enough to be adapted to other contexts, such as large scale ships or industrial flow measurement techniques. PMID:28665941
Some topics in the magnetohydrodynamics of accreting magnetic compact objects
NASA Technical Reports Server (NTRS)
Aly, J. J.
1986-01-01
Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.
Helicities and Lie Dragged Invariants in Magnetohydrodynamics and Gas Dynamics
NASA Astrophysics Data System (ADS)
Webb, G. M.; Dasgupta, B.; McKenzie, J. F.; Hu, Q.; Zank, G. P.
2013-12-01
We discuss helicity conservation in ideal fluid mechanics, and cross helicity and magnetic helicity conservation laws in magnetohydrodynamics (MHD) . Local helicity and cross helicity conservation laws are obtained for the case of a barotropic gas where the gas pressure depends only on the gas density D and not on the entropy S. We show how these conservation laws can be generalized for the case of a non-barotropic equation of state for the gas where the gas pressure depends on both the density and the entropy by using Clebsch variables. These generalized helicity conservation laws are nonlocal because the Clebsch potentials are nonlocal. We also discuss the local conservation law for magnetic helicity in MHD and the advantages of using a gauge in which the one-form for the magnetic vector potential is Lie dragged with the flow. We also discuss Lie dragged invariants in MHD and gas dynamics and the connection of these results with Noether's theorems and gauge transformations for the action and Casimir invariants.
Development of magnetic liquid metal suspensions for magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Carle, Florian; Bai, Kunlun; Casara, Joshua; Vanderlick, Kyle; Brown, Eric
2017-01-01
We demonstrate how to suspend various magnetic and nonmagnetic particles in liquid metals and characterize their properties relevant to magnetohydrodynamics (MHD). The suspending method uses an acid as a flux to eliminate oxidation from both metal particles and liquid, which allows the particles to be wetted and suspended into the liquid if the particles have higher conductivity than the liquid. With this process we were able to suspend a wide range of particle materials and sizes from 40 nm to 500 μ m into three different liquid metal bases and volume fractions ϕ up to the liquid-solid transition ϕc. By controlling the volume fraction of iron particles in liquid eGaIn, we increased the magnetic permeability by a factor of 5.0 and the electrical conductivity by 13% over that of the pure liquid metal, which gives these materials the potential to exhibit strong MHD effects on the laboratory scale that are usually only observable in the cores of planets and stars. By adding nonmagnetic zinc particles, we increased the viscosity by a factor of 160 while keeping the magnetic and electrical properties nearly constant, which would allow independent control of MHD effects from turbulence. We show that the suspensions flow like Newtonian fluids up to the volume fraction of the liquid-solid transition ϕc.
Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions
NASA Astrophysics Data System (ADS)
Lin, Hongxia; Du, Lili
2013-01-01
In this paper, we give some new global regularity criteria for three-dimensional incompressible magnetohydrodynamics (MHD) equations. More precisely, we provide some sufficient conditions in terms of the derivatives of the velocity or pressure, for the global regularity of strong solutions to 3D incompressible MHD equations in the whole space, as well as for periodic boundary conditions. Moreover, the regularity criterion involving three of the nine components of the velocity gradient tensor is also obtained. The main results generalize the recent work by Cao and Wu (2010 Two regularity criteria for the 3D MHD equations J. Diff. Eqns 248 2263-74) and the analysis in part is based on the works by Cao C and Titi E (2008 Regularity criteria for the three-dimensional Navier-Stokes equations Indiana Univ. Math. J. 57 2643-61 2011 Gobal regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor Arch. Rational Mech. Anal. 202 919-32) for 3D incompressible Navier-Stokes equations.
Global ideal magnetohydrodynamic stability analysis for the configurational space of Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Nührenberg, Carolin
1996-06-01
A survey of the magnetohydrodynamic (MHD) stability properties of three-dimensional (3-D) MHD configurations representing the Wendelstein 7-X (W7-X) stellarator experiment [ G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] was performed with the Code for the Analysis for the Stability of 3-D Equilibria (CAS3D) [C. Schwab, Phys. Fluids B 5, 3195 (1993)] . This study confirms and elaborates previous indications on the structural characteristics of global MHD modes in stellarators. In particular these characteristics pertain to the compressibility of these modes, the equivalence of the decoupled stability problems for the modes with different parities, and the separability of global from fine-scale perturbations within the same mode family. As to the W7-X stellarator experiment, the envisaged configurational class—providing the intended experimental flexibility—appears to offer scenarios of safely stable operation.
Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device
Haaland, Carsten M.; Deeds, W. Edward
1999-01-01
A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.
Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device
Haaland, C.M.; Deeds, W.E.
1999-07-13
A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.
DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks
NASA Astrophysics Data System (ADS)
Duffell, Paul C.
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.
NASA Astrophysics Data System (ADS)
Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Ng, C. S.; Bhattacharjee, A.
2006-10-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate the problem of island coalescence instability (ICI) in 2D. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described in [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys., 215, 59-80 (2006)], allowing both statically refined and dynamically refined grids. ICI is a MHD process that can produce strong current sheets and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [cf., Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Thus, it is desirable to use adaptive refinement grids to increase resolution, and to maintain accuracy at the same time. Results are compared with simulations using finite difference method with the same refinement grid, as well as pesudo-spectral simulations using uniform grid.
Steady and unsteady Hall magnetohydrodynamics near an X-type magnetic neutral line
Shivamoggi, Bhimsen K.
2011-05-15
Hall magnetohydrodynamics (MHD) properties near a two-dimensional (2D) X-type magnetic neutral line in the steady state are considered via heuristic and rigorous developments. The heuristic development turns out to be useful in providing insight into the lack of dependence of the reconnection rate on the mechanism breaking the frozen-in condition of the magnetic field lines in the electron fluid. The latter result can be understood in terms of the ability of the ions and electrons to transport equal amounts of magnetic flux per unit time out of the reconnection region. The Hall effects are shown via a rigorous development to be able to sustain the hyperbolicity of the magnetic field (and hence a more open X-point configuration) near the neutral line in the steady state. The time-dependent Hall MHD problem shows that the Hall effect, when sufficiently strong, can indeed quench the finite-time singularity exhibited in ideal MHD.
Magnetohydrodynamic Origin of Jets from Accretion Disks
NASA Technical Reports Server (NTRS)
Lovelace, R. V. E.; Romanova, M. M.
1998-01-01
A review is made of magnetohydrodynamic (MHD) theory and simulation of outflows from disks for different distributions of magnetic field threading the disk. In one limit of a relatively weak, initially diverging magnetic field, both thermal and magnetic pressure gradients act to drive matter to an outflow, while a toroidal magnetic field develops which strongly collimates the outflow. The collimation greatly reduces the field divergence and the mass outflow rate decreases after an initial peak. In a second limit of a strong magnetic field, the initial field configuration was taken with the field strength on the disk decreasing outwards to small values so that collimation was reduced. As a result, a family of stationary solutions was discovered where matter is driven mainly by the strong magnetic pressure gradient force. The collimation in this case depends on the pressure of an external medium. These flows are qualitatively similar to the analytic solutions for magnetically driven outflows. The problem of the opening of a closed field line configuration linking a magnetized star and an accretion disk is also discussed.
Magnetohydrodynamic Origin of Jets from Accretion Disks
NASA Technical Reports Server (NTRS)
Lovelace, R. V. E.; Romanova, M. M.
1998-01-01
A review is made of magnetohydrodynamic (MHD) theory and simulation of outflows from disks for different distributions of magnetic field threading the disk. In one limit of a relatively weak, initially diverging magnetic field, both thermal and magnetic pressure gradients act to drive matter to an outflow, while a toroidal magnetic field develops which strongly collimates the outflow. The collimation greatly reduces the field divergence and the mass outflow rate decreases after an initial peak. In a second limit of a strong magnetic field, the initial field configuration was taken with the field strength on the disk decreasing outwards to small values so that collimation was reduced. As a result, a family of stationary solutions was discovered where matter is driven mainly by the strong magnetic pressure gradient force. The collimation in this case depends on the pressure of an external medium. These flows are qualitatively similar to the analytic solutions for magnetically driven outflows. The problem of the opening of a closed field line configuration linking a magnetized star and an accretion disk is also discussed.
NASA Technical Reports Server (NTRS)
Retallick, F. D.
1980-01-01
Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.
ERIC Educational Resources Information Center
Russel, William B.; And Others
1979-01-01
Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)
ERIC Educational Resources Information Center
Russel, William B.; And Others
1979-01-01
Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)
ERIC Educational Resources Information Center
Shah, D. B.
1984-01-01
Describes a course designed to achieve a balance between exposing students to (1) advanced topics in transport phenomena, pointing out similarities and differences between three transfer processes and (2) common methods of solving differential equations. (JN)
A Fast MHD Code for Gravitationally Stratified Media using Graphical Processing Units: SMAUG
NASA Astrophysics Data System (ADS)
Griffiths, M. K.; Fedun, V.; Erdélyi, R.
2015-03-01
Parallelization techniques have been exploited most successfully by the gaming/graphics industry with the adoption of graphical processing units (GPUs), possessing hundreds of processor cores. The opportunity has been recognized by the computational sciences and engineering communities, who have recently harnessed successfully the numerical performance of GPUs. For example, parallel magnetohydrodynamic (MHD) algorithms are important for numerical modelling of highly inhomogeneous solar, astrophysical and geophysical plasmas. Here, we describe the implementation of SMAUG, the Sheffield Magnetohydrodynamics Algorithm Using GPUs. SMAUG is a 1-3D MHD code capable of modelling magnetized and gravitationally stratified plasma. The objective of this paper is to present the numerical methods and techniques used for porting the code to this novel and highly parallel compute architecture. The methods employed are justified by the performance benchmarks and validation results demonstrating that the code successfully simulates the physics for a range of test scenarios including a full 3D realistic model of wave propagation in the solar atmosphere.
On accelerated flow of MHD powell–eyring fluid via homotopy analysis method
NASA Astrophysics Data System (ADS)
Salah, Faisal; Viswanathan, K. K.; Aziz, Zainal Abdul
2017-09-01
The aim of this article is to obtain the approximate analytical solution for incompressible magnetohydrodynamic (MHD) flow for Powell–Eyring fluid induced by an accelerated plate. Both constant and variable accelerated cases are investigated. Approximate analytical solution in each case is obtained by using the Homotopy Analysis Method (HAM). The resulting nonlinear analysis is carried out to generate the series solution. Finally, Graphical outcomes of different values of the material constants parameters on the velocity flow field are discussed and analyzed.
NASA Astrophysics Data System (ADS)
Galperti, C.; Marchetto, C.; Alessi, E.; Minelli, D.; Mosconi, M.; Belli, F.; Boncagni, L.; Botrugno, A.; Buratti, P.; Calabro', G.; Esposito, B.; Garavaglia, S.; Granucci, G.; Grosso, A.; Mellera, V.; Moro, A.; Piergotti, V.; Pucella, G.; Ramogida, G.; Bin, W.; Sozzi, C.
2014-11-01
The biorthogonal decomposition analysis of signals from an array of Mirnov coils is able to provide the spatial structure and the temporal evolution of magnetohydrodynamic (MHD) instabilities in a tokamak. Such analysis can be adapted to a data acquisition and elaboration system suitable for fast real time applications such as instability detection and disruption precursory markers computation. This paper deals with the description of this technique as applied to the Frascati Tokamak Upgrade (FTU).
Ul Haq, Rizwan; Rajotia, D; Noor, N F M
2016-03-01
The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (0≤φ ≤ 0.2)) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number.
Field topologies in ideal and near-ideal magnetohydrodynamics and vortex dynamics
NASA Astrophysics Data System (ADS)
Low, B. C.
2015-01-01
Magnetic field topology frozen in ideal magnetohydrodynamics (MHD) and its breakage in near-ideal MHD are reviewed in two parts, clarifying and expanding basic concepts. The first part gives a physically complete description of the frozen field topology derived from magnetic flux conservation as the fundamental property, treating four conceptually related topics: Eulerian and Lagrangian descriptions of three dimensional (3D) MHD, Chandrasekhar-Kendall and Euler-potential field representations, magnetic helicity, and inviscid vortex dynamics as a fluid system in physical contrast to ideal MHD. A corollary of these developments clarifies the challenge of achieving a high degree of the frozen-in condition in numerical MHD. The second part treats field-topology breakage centered around the Parker Magnetostatic Theorem on a general incompatibility of a continuous magnetic field with the dual demand of force-free equilibrium and an arbitrarily prescribed, 3D field topology. Preserving field topology as a global constraint readily results in formation of tangential magnetic discontinuities, or, equivalently, electric current-sheets of zero thickness. A similar incompatibility is present in the steady force-thermal balance of a heated radiating fluid subject to an anisotropic thermal flux conducted strictly along its frozen-in magnetic field in the low- β limit. In a weakly resistive fluid the thinning of current sheets by these general incompatibilities inevitably results in sheet dissipation, resistive heating and topological changes in the field notwithstanding the small resistivity. Strong Faraday induction drives but also macroscopically limits this mode of energy dissipation, trapping or storing free energy in self-organized ideal-MHD structures. This property of MHD turbulence captured by the Taylor hypothesis is reviewed in relation to the Sun's corona, calling for a basic quantitative description of the breakdown of flux conservation in the low-resistivity limit
Characterization of open-cycle coal-fired MHD generators
NASA Astrophysics Data System (ADS)
Wormhoudt, J.; Yousefian, V.; Weinberg, M.; Kolb, C.; Martinez-Sanchez, M.; Cheng, W.; Bien, F.; Dvore, D.; Unkel, W.; Stewart, G.
1980-09-01
The successful design of full-scale, open-cycle, coal-fired MHD generators for baseload electrical production requires a detailed understanding of the plasma chemical and plasma dynamic characteristics of anticipated combustor and channel fluids. Progress in efforts to model the efficiency of an open-cycle, coal-fired MHD channel based on the characterization of the channel flow as well as laboratory experiments to validate the modeling effort is detailed. In addition, studies related to understanding arcing phenomena in the vicinity of an anode are reported.
Magnetohydrodynamic modeling of the solar eruption on 2010 April 8
Kliem, B.; Su, Y. N.; Van Ballegooijen, A. A.; DeLuca, E. E.
2013-12-20
The structure of the coronal magnetic field prior to eruptive processes and the conditions for the onset of eruption are important issues that can be addressed through studying the magnetohydrodynamic (MHD) stability and evolution of nonlinear force-free field (NLFFF) models. This paper uses data-constrained NLFFF models of a solar active region (AR) that erupted on 2010 April 8 as initial conditions in MHD simulations. These models, constructed with the techniques of flux rope insertion and magnetofrictional relaxation (MFR), include a stable, an approximately marginally stable, and an unstable configuration. The simulations confirm previous related results of MFR runs, particularly that stable flux rope equilibria represent key features of the observed pre-eruption coronal structure very well, and that there is a limiting value of the axial flux in the rope for the existence of stable NLFFF equilibria. The specific limiting value is located within a tighter range, due to the sharper discrimination between stability and instability by the MHD description. The MHD treatment of the eruptive configuration yields a very good agreement with a number of observed features, like the strongly inclined initial rise path and the close temporal association between the coronal mass ejection and the onset of flare reconnection. Minor differences occur in the velocity of flare ribbon expansion and in the further evolution of the inclination; these can be eliminated through refined simulations. We suggest that the slingshot effect of horizontally bent flux in the source region of eruptions can contribute significantly to the inclination of the rise direction. Finally, we demonstrate that the onset criterion, formulated in terms of a threshold value for the axial flux in the rope, corresponds very well to the threshold of the torus instability in the considered AR.
A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars
2016-11-01
We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.
Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)
2002-01-01
Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great
Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)
2002-01-01
Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great
Filamentary magnetohydrodynamic plasmas
Kinney, R.; Tajima, T.; Petviashvili, N.; McWilliams, J.C.
1993-05-01
A filamentary construct of magnetohydrodynamical plasma dynamics, based on the Elsasser variables was developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to ones based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected. the plasma vortex system is described by a Hamiltonian. For a system with many such vortices we present a statistical treatment of a collection of discrete current-vorticity concentrations. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories. but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is outlined as well, which is also Hamiltonian when the inductive force is neglected.
MHD flow of Powell-Eyring nanofluid over a non-linear stretching sheet with variable thickness
NASA Astrophysics Data System (ADS)
Hayat, T.; Ullah, Ikram; Alsaedi, A.; Farooq, M.
This research explores the magnetohydrodynamic (MHD) boundary layer flow of Powell-Eyring nanofluid past a non-linear stretching sheet of variable thickness. An electrically conducting fluid is considered under the characteristics of magnetic field applied transverse to the sheet. The mathematical expressions are accomplished via boundary layer access, Brownian motion and thermophoresis phenomena. The flow analysis is subjected to a recently established conditions requiring zero nanoparticles mass flux. Adequate transformations are implemented for the reduction of partial differential systems to the ordinary differential systems. Series solutions for the governing nonlinear flow of momentum, temperature and nanoparticles concentration have been executed. Physical interpretation of numerous parameters is assigned by graphical illustrations and tabular values. Moreover the numerical data of drag coefficient and local heat transfer rate are executed and discussed. It is investigated that higher wall thickness parameter results in the reduction of velocity distribution. Effects of thermophoresis parameter on temperature and concentration profiles are qualitatively similar. Both the temperature and concentration profiles are enhanced for higher values of thermophoresis parameter.
Proceedings of the workshop on nonlinear MHD and extended MHD
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Modeling Eruptive Coronal Magnetohydrodynamic Systems with FLUX
NASA Astrophysics Data System (ADS)
Rachmeler, Laurel
2010-05-01
I explore solar coronal energetic eruptions in the context of magnetic reconnection, which is commonly thought to be a required trigger mechanism for solar eruptions. Reconnection is difficult to observe in the corona, and current numerical methods cannot model reconnectionless control cases. Thus, it is not possible to determine if it is a necessary component. I have executed multiple controlled simulations to determine the importance of reconnection for initiation and evolution of several eruptive systems using FLUX, a numerical model that uses the comparatively new fluxon technique. I describe two types of eruptions modeled with FLUX: a confined flux rope theory for CME initiation, and symmetrically twisted coronal jets in a uniform vertical background field. In the former, I identified an ideal MHD instability that allows metastable twisted flux rope systems to suddenly lose stability and erupt even in the absence of reconnection, contradicting previous conjecture. The CME result is in contrast to the azimuthally symmetric coronal jet initiation model, where jet-like behavior does not manifest without reconnection. I demonstrate that some eruptive phenomena may be triggered by non-reconnective means such as ideal MHD instabilities, and that magnetic reconnection is not a required element in all coronal eruptions.
Raphaldini, Breno; Raupp, Carlos F. M. E-mail: carlos.raupp@iag.usp.br
2015-01-20
The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.